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Chapter 1

Introduction

The thesis focuses on computational problems motivated by the need of understanding

the evolution of genomic information starting from data produced by Next Generation

Sequencing (NGS) technologies. Recent improvements in NGS technologies have drasti-

cally reduced the cost of sequencing a whole genome and have led to a huge increase in

the amount of DNA/RNA and protein sequences available for the analyses.

Therefore, nowadays there is the necessity of developing new computational models and

methods that can manage and elaborate this large collection of sequences efficiently.

These data represent a quite useful source of information and pose new computational

issues in studying and reconstructing the evolutionary history of genomic sequences

in the context of population genomics and comparative genomics. In this dissertation

we mainly address the problem of reconstructing evolutionary histories following two

research directions: the stochastic simulation of complex scenarios of multiple population

evolution with admixture and the combinatorial reconstruction of phylogenetic trees

from binary data. Both research directions explore algorithms for the generation (or

reconstruction) of graphs (or trees) that model evolution in presence of evolutionary

events, such as recombinations and Single Nucleotide Polymorphisms (SNPs). The basic

combinatorial models, that are investigated here, are ancestral recombination graphs and

phylogenetic trees.

The first research direction regards the design and the development of accurate and

efficient algorithms for simulating complex scenarios of multiple population evolution

with admixture, which summarize the series of genetic events (such as coalescences,

recombinations, mutations). This is an important task for answering many basic questions

related to population genomics and several aspects have been studied extensively in the

past few decades. Given the large empirical data sets available for the analysis, it is

not feasible to model every detail of all the genetic events occurring among genomic

1
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sequences during the evolution. The aim of simulations is not only to capture the

resulting extant population samples, for testing complex hypotheses of the effect on the

genetic profile of extant populations, but also their relevant evolutionary history. The

common evolutionary history of extant samples of a population is captured by a graph,

called Ancestral Recombination Graph (ARG), which is an additional important vehicle

in hypothesis checking and reconstruction studies. More precisely, an ARG represents

genetic exchange events (coalescences and recombinations) that occurs among individuals

in the evolving population together with the polymorphisms of the duplication model.

In literature, most models are based on rather simplistic hypothesis of the possible inter-

evolution of present day populations. One of the main bottlenecks has been the sheer size

of the monolithic common history of multi-populations, each of realistic size. Under these

conditions simulators often do not terminate in reasonable time in spite of meaningful

parameter settings, even when simulating simple scenarios with just three populations.

Therefore, we address the task of developing an efficient backward simulation algorithm

for sampling ARGs representing evolutionary histories of several present-day populations

that are related and admixed. The inferential analysis is retrospective, i.e., genomic

sequences (such as chromosomes or portions of chromosomes) are collected from one

or several contemporary populations of a single species and the goal is to understand

aspects of the population evolutionary past through analysis of present day samples. This

problem becomes more relevant and interesting as more detailed genomes of different

organisms, highlighting the unexpected diversity within a species, are available.

Our main contribution, in this context, has been the introduction of a framework

for modeling complex evolutionary scenarios and a backward simulation algorithm,

named SimRA (Simulation based on Random-graphs Algorithms), that is both time

and space efficient enough to be practical [1]. SimRA makes it possible to run hundreds

of experiments in very short time, enabling a very effective vehicle of carrying out

complex studies. In [1, 2] we show, through extensive experimental analysis, that SimRA

has better space and time performance than another established backward simulation

algorithm, that we call here Hudson algorithm, and that is the basis of all the backward

simulators. Moreover, to the best of our knowledge, in [1], we derive for the first time,

analytic forms of the expected ARG characteristics of a population, i.e., height of the

graph, number of recombinations, number of mutations and population diversity in terms

of its defining parameters. Through simulations we illustrate that the expected values

for the ARGs characteristics closely match the empirical values, proving the accuracy

of SimRA. Hence, we demonstrate that SimRA is efficient, without compromising any

accuracy of the resulting simulations, all the while producing ARGs in compact form.

Complex simulation of scenarios results in complex interplay of parameters. Thus, the

closed-form functions for ARG characteristics are also crucial in aiding the user to specify
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meaningful parameters for simulating complicated scenarios, not through trial-and-error

based on raw compute power, but through intelligent parameter estimation.

Moreover, we report how the efficiency of SimRA has been fundamental to conduct

controlled simulations with the purpose of validating a new topological framework

that allows to detect admixture in related contemporary populations. Relatedness of

populations is an interesting problem and has been studied extensively in the population

genomics community, for instance in the context of humans and plants. In particular,

in plant breeding this understanding is very important in gauging the diversity in the

genetic pool and using it effectively in breeding programs. In the context of humans,

admixture mapping of the genome is useful for disease or complex trait association

studies. In [3] we present the first combinatorial approach, based on persistency in

topology, that characterizes admixture in populations. We show, based on controlled

simulations computed by SimRA, that the topological characteristics have the potential

for detecting subtle admixture in related contemporary populations. Then we apply the

technique successfully to a set of avocado germplasm data indicating that the approach

can lead to novel characterizations of relatedness in populations.

The second research direction regards the development of efficient algorithms to re-

construct phylogenesis from binary data encoding genomic information obtained from

the analysis of NGS genome data. A phylogeny is a tree that models the ancestral

relationships among extant taxa or species. We focus on characters-based methods to

reconstruct the phylogenesis of contemporary species. A character-based phylogeny

is a tree explaining the evolutionary history of a set of species described by genomic

characters or attributes, such as haplotypes, protein domains or markers in tumors.

Therefore, from a computational point of view, it is not relevant whether we are actually

studying taxa or individuals or other genomic data. We will follow the usual convention

of calling species the units under study. The problem of reconstructing character-based

phylogenesis takes as input a matrix, where the rows are the extant species and the

columns are the characters describing the species. Indeed, each species is explained

by a set of characters assuming a finite set of states. The goal is to find a phylogeny

where the present-day and known species are the leaves, and the internal nodes are

labeled just as the leaves by a set of character states. Characters may mutate their

states in the tree representing their gain and loss during the evolution. For each edge

(x, y) of the phylogeny, the mutated characters along the edge are those whose states

for some characters are different in species x and y. The simplest case is when all

characters are binary, modeling the situation when each species has or does not have a

given feature, hence we focus on binary matrices. Character-based methods are based

on the maximum parsimony principle that looks for the evolutionary tree explaining

the observed characters in actual species with the minimum number of changes (gains
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and losses). Established maximum parsimony models (or simply parsimony models) are

Dollo and Camin-Sokal, both leading to NP-hard reconstruction problems. On the other

hand, the most restrictive maximum parsimony model is the perfect phylogeny, which is

based on the infinite site assumption (i.e., each character can be gained at most once in

the whole tree). The perfect phylogeny has very efficient polynomial time algorithmic

solutions, including linear-time algorithms. This model has been widely investigated and

applied in different areas of computational biology specially in the context of haplotype

inference. However, the binary perfect phylogeny model is often too restrictive to explain

the evolution of real biological data where homoplasy is present. Indeed the perfect

phylogeny does not allow to represent homoplasy events, such as recurrent mutations

(multiple gains of a character) and back mutations (losses of a character) [4]. Two cases,

where those limitations are evident, are the study of carcinogenesis and protein domains

evolution. Hence, a central goal is to define new models that are more widely applicable

than the perfect phylogeny, while retaining its computational efficiency where possible.

Therefore, we address the problem of reconstructing a variant of the perfect phylogeny

model, the persistent perfect phylogeny, which relaxes the strict assumption of the perfect

phylogeny, allowing one back mutation for each character. With the aim of investigating

its computational complexity, we introduce the Constrained Persistent Perfect Phylogeny

problem (CPPP) [5] which generalizes the Persistent Perfect Phylogeny (PPP) problem,

by adding constraints for some characters in the input matrix. More precisely, the CPPP

problem requires that for some pairs (character, species) neither the species nor any

of its ancestors can have the character. We explore some algorithmic solutions for the

CPPP problem, in particular providing a polynomial time algorithm for a particular

class of input matrices for both the PPP and CPPP problems. Using this result, we also

develop a parameterized algorithm for solving the general constrained and unconstrained

reconstruction problems where the parameter is the number of characters. We test

our algorithm both on simulated and real data. More precisely, we use haplotype data

from the set ASW (African ancestry in Southwest USA) coming from the International

HapMap project. A preliminary experimental analysis shows that our algorithm performs

efficiently on simulated matrices as well as on real data. Indeed, the tree technique

adopted, combined with the use of constraints, allows to obtain solutions efficiently for

matrices that otherwise would require exponential time. Consequently, the constrained

persistent perfect phylogeny model allows to explain efficiently data that do not conform

with the classical perfect phylogeny model. Moreover, we identify a family of binary

matrices that cannot be explained by the persistent perfect phylogeny model, while all

their sub-matrices can [6].

We conclude the thesis presenting results concerning the scaffold filling computational

problem. The latter problem derives from the necessity of filling incomplete genomic
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sequences, also called scaffolds, with missing genes, in order to reconstruct complete

genomes that share a high level of similarities with a known reference genome. This is

an intriguing challenge as most of the released genomes, produced by high-throughput

NGS technologies, are unfinished and incomplete. These incomplete genomic sequences

may introduce errors when used for phylogenetic reconstruction studies and comparative

genomic analyses.

Hence, we consider two combinatorial problems: One-sided scaffold filling problem and

Two-sided scaffold filling problem. The first problem consists of filling a scaffold B with

missing genes so that the resulting complete genome B′ maximize the similarity with the

reference genome A. In the Two-sided case, instead, both genomes are incomplete and

the problem consists of filling A and B maximizing the similarity between them. If we

consider the maximum number of common adjacencies between two genomes as similarity

measure, both One-sided and Two-sided scaffold filling problems are NP-hard under this

measure. Hence, a natural goal is the investigation of their parameterized complexity,

where the parameter is the maximum number of common adjacencies. Our contribution,

in this context, is the development of two Fixed Parameter Tractable (FPT)-algorithms

for both problems [7, 8]. The two FPT-algorithms we propose are mainly based on the

color-coding technique and a perfect family of hash functions. Moreover, both algorithms

find a solution applying dynamic programming steps.

Thesis structure

The thesis is organized as follows.

In Chapter 2 we present the theoretical basis and some key concepts needed for a better

understanding of the results obtained while investigating the first research direction, that

is the development of stochastic algorithms for simulating the evolution of populations.

Chapter 3 is devoted to a detailed description of our backward simulation algorithm,

called SimRA, that simulates generic and complex scenarios of multiple population

evolution with admixture. In this chapter we also present all theoretical contributions

and experimentations related to SimRA.

In Chapter 4 we present a new topological framework to detect admixture in related

contemporary populations. We show, based on controlled simulations computed by

SimRA, that the topological characteristics have the potential for detecting admixture

in related present-day populations and we applied the topological framework to real

biological data.
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Chapter 5 is dedicated to the state of art regarding computational model and methods

for phylogenetic reconstruction, useful for a better understanding of the results obtained

while investigating this research direction. More precisely, we present a survey of character

based methods to reconstruct phylogenesis and we focus our attention on the perfect

phylogeny model and one of its variant, called persistent perfect phylogeny.

In Chapter 6 we introduce the Constrained Persistent Perfect Phylogeny (CPPP) problem

and we present a polynomial time algorithm for a particular class of instances and a

parameterized algorithm for the general CPPP and PPP problems. We also give a

characterization of binary matrices that cannot be described by the persistent perfect

phylogeny.

Chapter 7 describes two Fixed-Parameter Tractable algorithms for the One-sided scaffold

filling and Two-sided scaffold filling problems respectively.

Finally, in Chapter 8 we summarize our contributions and we present interesting future

directions and goals that can be investigated.



Chapter 2

The coalescent theory and the

ancestral recombination graph

In this chapter we present some key concepts useful for a better understanding of the

results obtained while investigating the first research direction, that is the development of

stochastic algorithms for simulating complex scenarios of multiple population evolution.

More precisely, we give a brief overview of forward and backward simulation tools and we

introduce the coalescent model, a mathematical model for common evolutionary history

of a set of genomic sequences or chromosomes. Moreover, we describe the established

Write-Fisher model of evolving population (which is the basis of the discrete and the

continuous coalescent processes for a sample of genomic sequences) and we explain how

it can be extended to include recombination. We present a fundamental mathematical

object, the Ancestral Recombination Graph (ARG), modeling the historical genetic

exchange events that occur among genomic sequences. Finally, we report a basic and

well-known backward simulation algorithm, that we call Hudson algorithm, for sampling

an ARG of a population of individuals (genomic sequences). The Write-Fisher model

with recombination, the ARG and Hudson algorithm are the theoretical basis of the

framework for modeling complex evolutionary scenarios and the backward simulation

algorithm proposed in Chapter 3.

2.1 Forward and backward simulation algorithms

In population genomics, simulation algorithms are useful to understand the evolutionary

consequences of complex systems, that are populations of individuals where interactions

among these are difficult to predict analitically [9]. In literature many simulation tools

7
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have been presented. The interested reader is referred to [9] for a wide review of them.

However, in the following we want to classify simulators based on their underlying

approaches. More precisely, there are two categories of simulation systems, forward and

backward, that differ in capabilities and computation times, hence they are suitable

for addressing different questions. The main output for simulators is a sample of m

genetic sequences, given the population of size N along with other parameters. In

both approaches a genealogical structure is constructed. Indeed, the common history

of a population is represented by a genealogy1 where the leaves are all homologous

copies of the same genetic segment in the genome and are collected from one or several

contemporary populations of a single species [10]. A population is best understood as a

population of N genomic sequences, that are genes or genomes or chromosomes, rather

than a population of individuals. A genomic sequence is composed by nucleotides and

two sequences of the same genetic region are different if they do not have identical alleles.

A lineage is a line of descent or ancestry for a homologous genomic sequence or a locus

(regardless of whether or not copies of the locus are identical or different).

2.1.1 Forward simulators

Forward simulation is conceptually the simpler of the two approaches, indeed events

proceeds forward in time, that is from past to present. Forwards-in-time simulators are

centred on individuals: each individual in the simulated population (or populations)

follows a life cycle (i.e., birth, selection, mating, reproduction, mutation, migration

and death) [9]. Looking forward, given the known individuals at each generation in the

pedigree2, the relationships between ancestors and descendants are traced forward in time

to the most recent generation by means of basic probabilities [11]. This approach allows

researchers to monitor changes in the genetic landscape of a population analyzing samples

at specific time intervals. Moreover, an advantage of this approach is its adaptability to

diverse evolutionary forces, such as genetic drift, selection and mutation. For instance,

SFS CODE [12] is a forward simulator that allows to handle effects of migration, demo-

graphics, and selection. Fregene [13] incorporates selection, recombination (crossovers

and gene conversion), population size and structure, and migration. simuPOP [14] is an

individual-based forward simulation environment. This system implements interactive

evolution of populations and allows to model complex evolutionary scenarios in the

environment [15].

1A genealogy, also known as family history, is the record of ancestor–descendant relationships (the
trace of lineages) for a family or population.

2The pedigree is the complete genealogical network representing the evolution of a population.
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Figure 2.1: The genealogy of three randomly sampled sequences (1, 2, 3) from left to
right. Edges tracking backward the ancestors of these three sequences are highlighted.
Two generations back in time, sequences 1 and 2, find a common ancestor and this
lineage might be labelled (1, 2) to reflect this fact. The ancestry of the sequences are
marked by bold lines sixteen generations back in time. Nine generations back all three
sampled sequences have found a common ancestor. The Figure has been taken from
Chapter 1 of [10].

2.2 The coalescent model and the backward approach

While a natural direction to proceed is forward in time, another type of analysis of

ancestor–descendant relationships is possible based on a retrospective or backward

approach from the present time to the past. In principle, this is more economical in space

and time as we will discuss more in details in Section 2.8. The underling mathematically

approach consists of simulating the time to the next genetic event back in the past

without explicitly simulating every generation. Indeed, this backward approach is the

base of a powerful set of models known as coalescent theory.

In the following, we describe the coalescent model that captures the backward approach.

The prospective of the coalescent model is to predict the probability that two lineages

trace back in time to a single ancestral lineage in a previous generation. This event is

called coalescence or coalescent event and literally means to grow together or to fuse. A

central concept in coalescent theory is connecting a group of extant lineages back through

time to a single ancestor in the past. The latter is the first ancestor (going backward
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in time) of all the lineages in a sample at the present time and is referred as the most

recent common ancestor or MRCA (See Fig. 2.1 as an example).

The inferential analysis is retrospective, meaning that we want to infer details about the

sample’s (and the population’s) evolutionary past through analysis of the present day

sample [10]. More precisely, given a collection of N chromosomal segments (a population),

under the best computational scenario (in terms of time, space and sophistication of

algorithms), the aim consists of constructing the evolutionary history (the genealogy) of

these N extant sequences by means of simulation algorithms.

Simulation algorithms are based on a generative coalescent model that simulates the

population by evolving it over time. We consider the Wright-Fisher [16, 17] model of

evolving population, since it is one of the most applied and well-known.

2.3 The Wright-Fisher Model of Evolving Population

Wright [16] and Fisher [17] introduced a simple model of evolving population that

describes the genealogical relationships of genetic sequences or genomes. This basic

model of reproduction provides a dynamic description of the evolution of an idealized

population and the transmission of genetic sequences from one generation to the next

one.

Genealogies in the diploid model and the haploid model are probabilistically similar

for large choices of effective population size N . However, for convenience we consider

an haploid population of N individuals. In the haploid model, all individuals choose

independently of each other. In other words, each individual of generation j choose

one random parent from the previous generation j + 1. The generations are discrete,

i.e., starting from the present time, or generation 0, we go back to the past considering

previous generation 1, 2, and so on.

The Wright-Fisher Model assumes some important properties of the evolving popula-

tion [10]:

1. discrete and not overlapping generations: in the case of humans, this is equivalent

to assuming that everybody has the same lifetime expectancy from conception to

reproduction, and that reproduction and death are simultaneous and synchronous

for all individuals;

2. constant population size: observe that the model would be different if the population

is growing, contracting, oscillating;
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3. panmictic population: all individuals have equal ration and are equally fit. Indeed,

panmixia means random mating, i.e., the mating between two organisms is not

influenced by any environmental, hereditary, or social interaction. A panmictic

population is one where all individuals are potential partners. This assumption is

convenient for the basic theoretical concepts, but presumably not realistic. Indeed

it can be relaxed to investigate the presence and strength of natural selection.

2.4 The discrete-time coalescent process

Using rules of random sampling based on the assumptions of the Wright–Fisher model of

reproduction and the properties of the associated probability distributions (the binomial,

the geometric and the exponential distributions) we can derive the basic coalescent

process [10]. The original formulation of the coalescent process has been given by

Kingman in 1982 [18], termed as the n-coalescent or just the coalescent for a sample of

m genomic sequences.

Again, we consider the haploid model since is more straightforward and predictions

that follow from the haploid coalescent model can be applied to samples of lineages

from diploid organisms. Moreover, the coalescent sampling process can be extended to

approximate the process of reproduction for diploid lineages.

The constant population size is N . Consider a random sample of two lineages of the N

total lineages in the present generation. We can develop a prediction for the number of

generations back in time until two lineages coalesce to a single lineage. Given that one

of these two sampled lineages can choose its ancestor freely in the previous generation,

for coalescence to occur, the second lineage must choose the same ancestor as the first

lineage, which is one out of N possible ancestors in the previous generation. Hence, the

probability of coalescence for two lineages is 1
N whereas the probability that two lineages

do not have a common ancestor in the previous generation is 1− 1
N .

Observe that the probability of coalescence for two lineages depends only on the current

generation. In other words, sampling in different generations is independent of each other.

Hence, the probability that two randomly sampled lineages coalesce to their common

ancestor back in time at an arbitrary generation j is

P (T 2
c = j) =

(
1− 1

N

)j−1 1

N
, (2.1)

where T 2
c denote the time of coalescent event back in the past. In the first j−1 generations

they chose different ancestors, and then in generation j they chose the same ancestor.
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In the coalescent process the average time to a coalescent event is called waiting time

and it is simply the inverse of the probability of a coalesce event. Thus, the probability

for a pair of lineages to occur is 1
N , then the waiting time is N .

Suppose we want to determine the waiting time for k lineages, where k is less than

m (total number of lineages sampled from a population of N). When no coalescence

event occurs, one lineage finds its ancestor among any of N individuals in the previous

generation, meaning that the next lineage must find its ancestor among N −1 individuals

over N in the previous generation, and again the next lineage has to find its ancestor

among N − 2 individuals and so on till the final lineage must find its ancestor among

N − (k − 1) possible parents.

Hence, the probability that k lineage over N do not coalesce (i.e., k lineages have k

different ancestors in the previous generation) is:

1

(
N − 1

N

)(
N − 2

N

)(
N − 3

N

)
. . .

(
N − (k − 1)

N

)

that can also be written as:

1

(
1− 1

N

)(
1− 2

N

)(
1− 3

N

)
. . .

(
1− k − 1

N

)
=

k−1∏
i=1

(
1− i

N

)
. (2.2)

If the number k of lineages sampled is much smaller than the total number of lineages

in the population N then the probability of non-coalescence for k lineages can be

approximated by

1−
(
k

2

)
1

N
, (2.3)

where the binomial factor
(
k
2

)
enumerates all different ways to uniquely sample pairs of

lineages from a total of k that can be also written as:

(
k

2

)
=
k(k − 1)

2
. (2.4)

On the other hand, the probability of coalescence for any of the unique pairs among k

lineages is

(
k

2

)
1

N
=
k(k − 1)

2N
. (2.5)
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Consequently, the probability that k lineages experience a single coalescence event at

generation j (i.e., 2 lineages out of k find a common ancestor at an arbitrary generation

T kc = j back in the past, for j = 1, 2 . . . ) is:

P (T kc = j) ≈
(

1− k(k − 1)

2N

)j−1(k(k − 1)

2N

)
, (2.6)

that can be written also as:

P (T kc = j) ≈
(

1−
(
k

2

)
1

N

)j−1(k
2

)
1

N
. (2.7)

T kc has approximately a geometric distribution with parameter
(
k
2

)
1
N . Since all pairs

of genes are equally likely to find a common ancestor, the pair that finds a common

ancestor is chosen with equal probability among the
(
k
2

)
. The times of coalescence are

independent [10].

2.5 The continuous-time coalescent process

In the Wright–Fisher model time is measured in generations that are discrete units.

However, from a computational and conceptual point of view it is convenient to consider

continuous time approximations [10]. Indeed, the series of failures (non-coalescence)

until a success (coalescence) in the genealogical process can be modeled where time is

continuous.

Let j be the time measured in generations, to derive the continuous coalescent process

we set the continuous time t = j
N . It follows that j = Nt is the continuous time t back

into j generations.

The probability of coalescence at time t is approximated using an exponential distribution.

2.5.1 The exponential distribution

The exponential distribution describes situations in which an object initially in one state

can change to an alternative state with some probability that remains constant through

time.

Recall that the cumulative distribution function, CDF, of an exponential distribution

with parameter λ is
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Exp(λ) =
[
PT6t = 1− e−λt

]
. (2.8)

Consider a discrete distribution (where j is an integer) and parameter λ′ < 1 as

PJ6j = 1− (1− λ′)j . (2.9)

For some scaling factor N as j = Nt the two distributions are related as follows:[
PT6t = 1−

(
1− λ

N

)Nt]
−→

[
PT6t = 1− e−λt

]
, (2.10)

as N −→∞. In fact the above holds for small p and large N with λ = pN .

Note that, assuming that the effective population size N is large , then the probability

of coalescence is small 1
N .

The mean of the exponential distribution is

E(x = t) =
1

λ

and the variance is:

E(x) =
1

λ2

The following properties of an exponential distribution are used to deal with multiple

exponential distributions, each with possibly different parameters.

Let X ∼ Exp(λ1) and Y ∼ Exp(λ2). Then:

Property 1.

min(X,Y ) ∼ Exp(λ1 + λ2).

Property 2.

P (X < Y ) =
λ1

λ1 + λ2
.

Property 3.

E(X) = 1/λ1.

The exponential distribution can be used to obtain an approximate average and variance

for coalescence times. In other words, the cumulative exponential distribution is used to

approximate the probability that a coalescent event occurs at or before some time t. The

waiting time, T ck , in the continuous representation for k genes to have k − 1 ancestors is

exponentially distributed with T ck ≈ exp(
(
k
2

)
), that is:



Chapter 2. The coalescent theory and the ancestral recombination graph 15

P (T ck 6 t) ≈ 1− e−tN
k(k−1)

2N = 1− e−t
k(k−1)

2 (2.11)

Recall that k(k−1)
2 =

(
k
2

)
. This is derived from equations (2.5) and (2.6). where T ck is

the time to coalescence e t is scaled in unit of N generations, i.e., t = j
N . Note that

the probability of coalescence increase more rapidly toward one for larger numbers of

lineages j.

In the following, we describe a stochastic algorithm that samples genealogies for m

genomic extant sequences [10].

Algorithm

1. Start with k = m active lineages;

2. Simulate the waiting time T ck to the closest coalescent event back in the past,

i.e., T ck = exp(
(
k
2

)
);

3. Choose a random pair (i, j) of active lineages uniformly among the
(
k
2

)
possible

pairs;

4. Merge i and j into a new active lineage and decrease k by one, k → k − 1;

5. If k > 1 go to 2, otherwise stop;

2.6 Modeling recombination in the coalescent model

The coalescent model has been also extended to include recombination, that is one of

the primary genetic events shaping an autosomal chromosome. This genetic exchange

event consists of the production of offspring having different combinations of homologous

chromosomal segments, that differ from those found in either parent. In eukaryotes,

recombination naturally occurs during meiosis and leads to a novel set of genetic informa-

tion that can be passed on from the parents to the offspring. Recombination complicates

the genetic landscape of a population, and understanding the manifestations of this

genetic exchange event in the evolutionary history of chromosome sequences has been a

subject of intense studies [19]. In case of recombinations the structure needed to describe

the relationships of a set of genomics sequences is a complicated graph rather than a

single tree.

Hudson introduced recombination into the coalescent process and presented a simple

model in 1983 [20]. Hudson’s model of recombination is illustrated in Fig. 2.2.
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Figure 2.2: This Figure shows the Hudson model of recombination from a backward
and a forward prospective. Looking forward, the allelic states of the grandparent’s
chromosomes determine one of the child’s two chromosomes. Looking backward, the
child’s dark grey chromosome is inherited through the other parent and the dark grey
chromosomes in grandparents have unknown allelic states. The Figure has been taken
from Chapter 5 of [10].

When recombination occurs, a random point uniformly along the chromosome is picked.

Then the genetic material to the left of this point from one parent chromosome is copied

and the genetic material to the right of this point from the other parent chromosome is

copied. Looking forward, two sequences are recombined into one recombinant sequence.

Looking backward, an individual chooses a chromosome from one parent and this

chromosome is split into two grandparental chromosomes.

Note that recombination events are the opposite of coalescent events that, instead,

combine two sampled sequences into one ancestor. Indeed, from a backward prospective

in time, recombination causes splitting and coalescent causes the merge of sequences.

In [20] the coalescent process with recombination is formulated as competing exponentially

distributed, and independent, waiting times for coalescent and recombination events. In

other words, recombination and coalescent are competing processes that determine the

genealogy of the sample. The latter is a graph rather than a tree. The parameter of the

exponential distribution, determining the coalescent intensity, depends on the number of

ancestors carrying ancestral material to the sample. On the other hand, the parameter

of the exponential distribution for the intensity of recombination depends on the scaled

recombination rate ρ over the sequence times the number of ancestral lineages. The

scaled recombination rate is ρ = Nr, where r is the recombination rate, i.e., the expected

number of recombination events in the population of size N in one generation.

Once these intensities have been specified, a backward algorithm for simulating the

process includes splitting (recombination) and joining (coalescence) of ancestors until a

single ancestor is produced, called the Grand Most Recent Common Ancestor (GMRCA).

The resulting structure is a graph, called Ancestral Recombination Graph (ARG).
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(a) (b) (c)

Figure 2.3: (a) shows the complete genealogical (pedigree) graph of a Wright Fisher
population of 8 individuals at each generation. Every individual has exactly 2 parents.
(b) shows the substructure of (a) based on tracking some chromosomal segment from 4
extant samples, marked in dark purple. The bold edges mark the flow of the genetic
segments of interest to the 4 extant units. (c) shows the relevant part, the ARG, by
removing the extraneous parts of the network of (b). Note that a forward simulator
(moving in time from past to present) may have to simulate the network in (a) or (b),
whereas the network in (c) is adequate for a backward simulator (moving in time from
present to past).

2.7 The Ancestral Recombination Graph

The ancestral recombination graph is a fundamental mathematical object, introduced by

Griffith and Marjoram [21], modeling all historical genetic exchange events (recombination

and coalescent events) that occurs among individuals in the evolving population together

with the polymorphisms of the duplication model. Algorithmic approaches to estimate

the ARG are discussed in [22].

Given a population of size N , the ARG is a directed acyclic graph (DAG) that captures

the common evolutionary history of m extant samples [21]. More precisely, an ARG

is a random object usually parameterized by four essential parameters: m the number

of extant samples, N the population size, r the recombination rate and g the segment

length (chromosome or portion of chromosome) carried by each individual. The leaves of

an ARG are the extant samples, while the internal nodes are some common ancestors.
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The edges represent the flow of genetic materials among individuals from one generation

to the next one. The direction is toward the more recent generation (or leaves). In other

words, the leaves (extant nodes) have no outgoing edges and the root has no incoming

edges. A directed edge from node v1 to node v2 is interpreted as v1 being an ascendant

of v2 or v2 is a descendant of v1. The topology has no cycles, since a member cannot be

an ancestor of itself. Thus, the topology is always a directed acyclic graph (DAG).

The edges and nodes of the ARG must be annotated with the genetic material that are

carrying. The GMRCA plays an important role in restricting the zone of interest in the

common evolutionary history of a population. In fact, the GMRCA is defined as an

ancestral unit whose genetic material is ancestral to all genetic materials in all the m

extant samples.

Fig. 2.3(c) shows an example of ARG. In 2.3(a) is shown the pedigree graph, or complete

genealogical network, of a population of size 8. However, if we are interested only in

the evolutionary history of 4 extant samples, we can select those samples and trace

back their flow of genetic material until we find a root, the GMRCA of the sample (see

Fig 2.3(b)). Removing all extraneous parts we obtain a substructure 2.3(c) that is the

ARG describing the evolutionary history of 4 samples.

2.8 Backward simulators

In the following we report some backward simulators, that have been presented in

literature, and we motivate our choice to investigate the development of backward

simulation algorithms to estimate the evolution of populations by random graphs.

COSI [23] is an implementation of simulation with the addition of human population

demographics to the coalescent model. SelSim [24] is a simulator that incorporates natural

selection and recombination within a coalescent framework. SIMCOAL2 [25] allows to

simulate the genomic diversity of samples drawn from a set of populations with arbitrary

patterns of migrations and complex demographic histories, including bottlenecks and

various modes of demographic expansion. Hudson has introduced ms [26] to generate

samples drawn from a population evolving according to a Wright–Fisher neutral model.

The program assumes an infinite-sites model of mutation, and allows recombination, gene

conversion, symmetric migration among subpopulations, and a variety of demographic

histories. SimCoal2 and ms have been the most widely applyed, probably due to their

flexibility and ease of use [9].

However, backward simulators are suited when deviations from the Wright–Fisher model

are minor, for instance they are more limited than forward simulators for modeling
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natural selection. On the other hand, even though forward simulators are useful to model

more complexity (making them more suited to answer questions at a short timescale)

they are much slower because they follow each individual in the population generation

by generation. On the contrary, the coalescent approach, used in backward simulators,

only considers the genealogy of the samples and not each single individual in the whole

population. Recall, indeed, that a forward simulation algorithm (moving in time from past

to present while sampling the ARG) may have to simulate the complete network in Fig. 2.3

(a) or (b), whereas the network in Fig. 2.3 (c) is adequate for a backward simulation

algorithm (moving in time from present to past). Hence, backward simulations are usually

much faster than forward simulations due to the elimination of genetic transmission paths

that are not relevant to the samples under study. Backward simulators are generally

more efficient specially when population size N is large relative to sample size m [9].

For this reason, we choose to focus on the development of an efficient and accurate

backward simulation algorithm that allows to model complex scenarios of multiple

population evolution [1] (introduced in Chapter 3). Our algorithm is based on the basic,

simplest and most applied backward simulation algorithm, that we call Hudson algorithm

or simply Hudson. The latter algorithm is described in the next section. However [10]

and [26] give a comprehensive description of Hudson.

2.9 Hudson Algorithm

Assume the history of m sampled sequences is being described going backwards in time

and that the first event encountered is a recombination event. Before the recombination

event, there were m lineages, each carrying the ancestral material to the m samples.

Going back in time, after the recombination event, one of the sequences had two ancestral

sequences: one carrying ancestral material to the left of the recombination break point

and one carrying ancestral material to the right of the recombination point.

If time is measured discretely in generation, the time until a recombination event occurs

is geometrically distributed with parameter r = ρ/N . Let Tr denote the number of

generations until the first recombination event occurs. Tracing a sequence back in time,

the probability that this sequence was created by recombination j generations back in

the past is:

P (Tr = j) = r(1− r)j−1. (2.12)

The discrete generations can be approximated with continuous time by means of the

exponential distribution. When a recombination event occurs, it is equally likely to occur
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in any of the k ancestors and the position of the recombination breakpoint is picked

uniformly over the length of the selected sequence.

More precisely, by rescaling time as t = j/N , it follows that:

P (Tr 6 t) = 1− (1− r)j = 1−
(

1− Nr

N

)Nt
≈ 1− erNt = 1− eρt. (2.13)

Assuming k sequences, the time to a coalescence event is exponentially distributed with

parameter k(k − 1)/2 =
(
k
2

)
and the time to a recombination event is exponentially

distributed with parameter kρ. Note that these two distributions are independent. Indeed

if N is large, it is unlikely that a sequence is involved in both a recombination event

and a coalescence event at the same time. Since the two exponential distributions are

independent, by using Property 1 of the exponential distribution, the time to the closest

event in the past is exponentially distributed with parameter:

(
k

2

)
+ ρk. (2.14)

Hence, the probability of a coalescent event is

(
k
2

)(
k
2

)
+ ρk

, (2.15)

while the probability of a recombination event is

ρ(
k
2

)
+ ρk

, (2.16)

where ρ = rN .

The algorithm that simulates the process first finds the time until either a coalescence

or recombination event occurs. Then, if recombination occurs, the number of ancestral

sequences or active lineages k is increased by one, while if coalescence occurs the number

of active lineages is decreased by one.

In the following, we describe the main steps of Hudson algorithm for simulating an ARG

of a sample of m genomic sequences from the coalescent model with recombination.

Hudson

1. Start with k = m samples and active lineages outgoing from the samples;
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2. For k active lineages, pick the time to the next event by drawing a random number

from the exponential distribution with parameter
(
k
2

)
+ kρ. This is the time to the

next event;

3. With probability
(k2)

(k2)+ρk
the event is a coalescence event, otherwise it is a recombi-

nation event;

4. If it is recombination, pick a random lineages among the k active lineages. Then

pick a random point on the sequence carried by the chosen lineage. Create an

ancestor lineage with the ancestral material to the left of the chosen point and a

second ancestor lineage with the ancestral material to the right of the recombination

point. Increase the number of ancestral lineages k by one and go to 1;

5. If it is a coalescence event, choose two lineages at random and merge the sequences

into one ancestral sequence and create an ancestral lineage carrying this sequence.

Decrease the number of lineages k by one. If k = 1 end the process, otherwise go

to 1.

The graph structure, resulting from applying Hudson algorithm, is an ARG that includes

all information about the history of the sample [10].

In the next chapter we introduce a new backward simulation algorithm, developed in [1],

that is based and, therefore, similar to Hudson algorithm described above.



Chapter 3

SimRA: Sampling ARG of

multiple populations

In this chapter we present the results achieved while investigating randomized methods

for studying the evolution of populations. More precisely, we present a backward

simulation algorithm which simulates generic scenarios of multiple population evolution

with admixture. In the following sections we firstly motivate the study and summarize

the main results achieved, then we describe our algorithm SimRA (Simulation based

on Random graph Algorithms), that is based on random graphs. Moreover, through

comparison studies, we show that SimRA improves dramatically, in time and space

requirements, the classical backward simulation algorithm for single population (Hudson

algorithm), and produces ARGs in compact forms without compromising any accuracy.

Using the underlying random graphs model, we also derive closed form functions of

expected values of the ARG characteristics, useful in aiding the user to specify meaningful

parameters for complex scenario simulations.

3.1 Motivation

Simulating complex evolution scenarios of multiple populations is an important task

for answering many basic questions relating to population genomics. Apart from the

population samples, the underlying ancestral recombination graph is an additional

important vehicle in hypothesis checking and reconstruction studies (see Section 2.7 for

a detailed definition of ARG).

In [1] we address the task of modeling and simulating complex scenarios of related

multiple populations with subdivision and admixture. These scenarios can be used

22
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to study the effect on the genetic profiles of extant populations as well as for testing

complex hypotheses. The aim of simulations is not only to capture the resulting extant

populations but also their relevant evolutionary history (for possible reconstruction

studies). In literature, most admixture models are based on rather simplistic hypothesis

of their possible inter-evolution history. Moreover, one of the main bottlenecks has been

the sheer size of the monolithic common history of multi-populations, each of realistic size.

Under these conditions simulators of even simple scenarios of only three populations often

do not terminate in reasonable time in spite of meaningful parameter settings (sometimes

up to 10-12 hours, for instance with COSI [23]). We observed a similar abort-and-rerun

requirement in our experiments even with the classical backward simulation algorithm,

called Hudson’s algorithm (see Section 2.9 for a detailed description of the algorithm).

In [1] we present a framework for modeling complex evolutionary scenarios and an

algorithm, named SimRA (Simulation based on Random-graph Algorithms), that is both

time and space efficient enough to be practical. SimRA makes it possible to run hundreds

of experiments in very short time (in minutes) enabling a very effective means of carrying

out complex studies, such as in [3].

SimRA is based on random graph and backward simulation of the ARG. Recall that

backward simulations begin in the present and move in time through the past generations

and are usually more efficient than forward simulations due to the elimination of many

(obvious) redundant paths in the evolution process. See Sections 2.1 and 2.8 for a

detailed comparison between backward and forward simulation algorithms. The big

picture showing the relationship between a complete genealogical network (or pedigree

graph) and an ARG highlighting the backward trace of evolutionary history of a sample

is illustrated in Fig 2.3.

3.2 Modeling multiple population evolution

We model the relationship between m populations by a Direct Acyclic Graph (DAG) P ′

with m leaf nodes, and we call it a scaffold. An example is shown in Fig 3.1 (i). The

progress of time is assumed to be from top to bottom and the m leaf nodes are annotated

with the population labels. Further, each edge e in P ′ has three characteristics:

- len(e) : the incubation length, that is a time parameter defined in generations;

- lb(e) : the number of the lineages at the bottom of the edge;

- lt(e) : the number of lineages at the top of the edge.
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BDA C

⇒

A BDC

(i) scaffold P ′ (ii) ARG P

Figure 3.1: An example with four populations A, B, C, D. (i) shows the scaffold P ′.
(ii) shows a corresponding ARG P . Note that in general the structure of P ′ is not
apparent from P and the ARG P simply looks like the ARG in Fig 2.3. See text for
more details.

Note that two parameters, an effective population size N and a recombination rate r,

determine the number of lineages lt(e) for a fixed pair of values of lb(e) and len(e).

We assume that the scaffold P ′ is binary, meaning that each internal node in P ′ has

exactly two ascendants or two descendants, but not both.

For each internal node, we define two junction constraints as follows. A node v in P ′ is

called split node if it has two incoming edges e1 and e2 and an outgoing edge e3. For a

split node v, the following relationship holds: lt(e3) 6 lb(e1)+ lb(e2), i.e., the lineages at v

is the union of the lineages of the two incoming edges. Similarly a node v is merge node if

it has two outgoing edges e1 and e2 and one incoming edge e3, then lb(e3) 6 lt(e1) + lt(e2)

holds, i.e., the lineages at v is the union of the lineages of the two outgoing edges.

Each edge e of P ′ represents the evolution of a Wright Fisher population captured in

a DAG say Pe. The union of each of these DAGs by appropriately gluing the ends of

the edges corresponding to the nodes of P ′ gives the ARG P that can be written as:

P =
⋃
e∈P ′ Pe. Such a P is shown in Fig 3.1 (ii) where the leaf nodes correspond to

extant units of each population of P ′.

Finally, we say that P ′ defines admixture if there exists a closed path (CP) in P ′.

Fig 3.2 shows an example of parameters that define the scaffold P ′. Additionally a

recombination rate (r) and effective population size for each edge, ultimately decides

the topology of the resulting ARG. Further, the mutation rates and the short tandem

repeats (STRs) details define the polymorphism in the samples of the individuals of the

populations.
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Figure 3.2: Specifying the family of 4 populations, A, B, C and D with sample
sizes 10, 14, 18 and 12 respectively. The horizontal dashed lines correspond to times
t0 = 0 < t1 < t2 < ... < t7. At times t1 and t2 the surviving lineages are split in the
ratio 1:1 along the diverging lines of the scaffold at the split nodes.

t

t

N N1 2

Figure 3.3: The two types of nodes in a scaffold P ′ with thick brown edges: Merge
and split nodes are marked by the horizontal dashed lines at time t. The tiny black disc
nodes and the thin black edges are part of the underlying ARG P .

Consider the scaffold specified in Fig 3.2. Each edge is simulated as a single population. In

Section 3.3 we describe our algorithm for sampling an ARG of a single population. Assume

that the effective populations size Nej is specified for each edge ej . For instance, the

edge e1 labeled with population D is simulated with 12 extant samples, i.e., lb(e1) = 12,

len(e1) = t1. The resulting surviving lineages lt(e1) is split in the ratio 1:1 as shown

in Fig 3.3. Similarly, the edge e2 is labeled with population C with 18 extant samples,

lb(e2) = 18, len(e2) = t2. The resulting surviving lineages lt(e2) is split in the ratio

1:1. Next, lt(e1)/2 lineages are simulated until a time depth of t3 on edge e3 to give

lt(e3) lineages. Population B is simulated with 14 extant samples on edge e4 until a

time depth of t3, i.e., lb(e4) = 14, len(e4) = t4. The lt(e3) lineages are combined with

lt(e4) lineages. This node in the scaffold is a merge node as shown in Fig 3.3 and the

population is simulated to a time depth of t6 (i.e., for time t6 − t3). Similarly all the

edges are simulated until a total time depth of t7.
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I

0 1 1

I

0

(a) Using den(I) in Eqn 3.16. (b) Using len(I) in Eqn 3.16.

Figure 3.4: The top line represents a chromosomal segment I carried by an edge in
both (a) and (b): gaps(I) are shown as dashed lines and solid(I) as solid segments. I
is mapped to a normalized line segment, say [0, 1], shown in the bottom in both (a)
and (b). In (a) the gaps are skipped, and the lengths of each element in solid(I) is
proportionally represented in [0, 1]. Thus any element in [0, 1] can be mapped back to a
unique location in solid(I). In (b) the gaps are not skipped, and the lengths of each
element in solid(I) and in gaps(I), is proportionally represented in [0, 1]. Any element
only in the solid section in [0, 1] can be mapped back to a unique location in solid(I);
any other element maps to a gap in I.

3.3 Modeling single population evolution

Now we address the problem of sampling an ARG of a single population. This is a well

studied problem as discussed in [10, 26]. The core of SimRA, that simulates the evolution

of a single population, is based on Kingman coalescence [18] and Hudson algorithm (that

we described in Section 2.9). The latter algorithm is not efficient enough to admit complex

multiple population simulations: it is too time consuming and in many instances failed

to terminate in reasonable time, forcing to abort and re-run. Simulating the evolution of

multiple populations requires multiple runs (corresponding to each population, i.e., each

edge in a scaffold) thus making the Hudson prohibitively expensive.

In the following, we present SimRA for simulating a single (neutral) population that

makes a few subtle changes in the algorithm based on Observation 1 (as we describe

later in Section 3.4).

The algorithm works back-in-time starting from the present (time 0), moving back into

the past. Further, the ARG is incrementally constructed by identifying the event nodes

(recombination or coalescence) in the graph. An event node either has multiple incoming

or multiple outgoing edges. For example a chain node is not an event node. An important

assumption, that considerably simplifies the algorithm, is made: the probability of

multiple events in the same epoch (generation) is extremely low, hence the algorithm

assumes there is at most one event per generation. The design of the overall algorithm is

affected by this and at each step the algorithm simply seeks the closest generation from

the current one where an event node occurs.

In the remained of the chapter we say that a lineage is active if it has no node father

and it can be involved in a new coalescent o recombination event.
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To keep the discussion self-contained, we recall here a few basic definitions that has been

presented in Chapter 2 in more details.

Basic definitions

Coalescent event. If the population size is N then the probability of two units having

the same ancestor in the immediate previous generation is 1/N . Thus the probability of

having the same ancestor exactly at j generation ago is
(
1− 1

N

)j−1 1
N . In other words,

the probability of two units having same ancestor at generation > j ago is

PJ>j =

(
1− 1

N

)j
. (3.1)

Notice that there is no biology at play here. Simply the stochastic nature of the

transmission of genetic material through generations in a population. Using

j = Nt (3.2)

to convert the equation to the form of Eqn 2.10, we obtain the corresponding exponential

distribution (λ = 1) as follows:[
PT6t = 1−

(
1− 1

N

)Nt]
≈

[
PT6t = 1− e−t

]
. (3.3)

Recombination event. Let a recombination event occur uniformly on a chromosomal

segment. Note that each unit carries a genetic material of some length. Let rl be the

probability of a recombination in one generation of lineage l (depending on the segment

in the chromosome this unit carries). The probability of this unit having encountered its

first recombination event exactly j generations ago is

(1− rl)j−1rl.

In other words, the probability of the unit having a recombination at generation > j ago

is

PJ>j = (1− rl)j . (3.4)

Indeed there is biology, i.e., recombination, at play here. Thus both the biology and the

stochastic processes will affect the shape of the ARG.

Letting j = Nt, so that the scaling matches the time scaling for the coalescence event,

and using Eqn 2.10 (since rl is small and N is large), we have:
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[
PT6t = 1−

(
1− Nrl

N

)Nt]
≈

[
PT6t = 1− e−(Nrl)t

]
. (3.5)

Approximation to exponential distributions. The approximations to exponential

distribution in Eqns 3.3 and 3.5 help in designing a time-efficient (approximate) simulation

algorithm. But these approximation can be used only when N is large and rl is small.

Genetic material flowing through the ARG. Based on the following Observation 1

from [19], we describe how the nodes and the edges in the ARG have to be decorated

with the genetic material and how the latter is transmitted through the ARG.

Observation 1. (ancestor without ancestry paradox) The edges (and nodes) of

an ARG must be annotated with the chromosomal segment that flows through the edges.

The chromosomal segment whose evolutionary history is captured by the ARG is rep-

resented as the real interval [0, 1], without loss of generality. The implicit assumption

is that this maps to the chromosome of length g. Every node in the ARG is annotated

with some sub-interval or union of sub-intervals of [0, 1].

Thus the genetic material, I, carried by a node is: I = {[`1, u1], [`2, u2], ..., [`s, us]}, where

0 6 `1 < u1 < `2 < u2 < .. < `s < us 6 1. The closed intervals [`i, ui] ∈ I are termed

solids and the open intervals (ui, `i+1) are termed gaps where 1 6 i < i + 1 6 s. The

length (len) of I is defined as the total span of I, irrespective of the gaps, while the

density (den) of I is defined as the total span of the solid intervals only. The definitions

are summarized as:

solid(I) = [`1, u1] ∪ [`2, u2] ∪ ... ∪ [`s, us],

gaps(I) = (u1, `2) ∪ (u2, `3) ∪ ... ∪ (us−1, `s),

len(I) = us − `1,

den(I) =
s∑
i=1

ui − `i,

[x, y] ⊂ solid(I) ⇔ [x, y] ⊂ [`i, ui], for some 1 6 i 6 s.

The union, or merge, operation on segments, Ia∪Ib = Ia∪b, has the natural interpretation:

[`, u] ∈ Ia∪b ⇐⇒ [`, u] ⊂ solid(Ia) OR [`, u] ⊂ solid(Ib). (3.6)

The splitting of a segment I at point x (`1 6 x 6 us) into Ia and Ib is defined as:
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I
split

−→



Ia = Ib = I,when x = `1 or x = us,

Ia = {[`1, u1], [`2, u2], ..., [`j , x]} ,
Ib = {[x, uj ], [`j+1, uj+1], ..., [`s, us]} ,

}
when `j < x < uj ,

Ia = {[`1, u1], [`2, u2], ..., [`j , uj ]} ,
Ib = {[`j+1, uj+1], ..., [`s, us]}

}
when uj 6 x 6 `j+1.

(3.7)

Note that if a coalescent event occurs involving two lineages la and lb, then their respective

genetic materials Ia and Ib are merged as described by Eqn 3.6. The resulting genetic

material Ia∪b will be carried by the new active lineage l created by the coalescent event.

On the other hand, if a recombination event occurs at lineage l the genetic material I

carried by l is split as described by Eqn. 3.7. The new two active lineages generated by

the recombination event la and lb will carry respectively two segments Ia and Ib resulting

from the splitting.

In the next paragraph we describe how to compute the time of the closest event in the

past and decide the kind of this event.

The closest event node from the current state in the ARG.

Let L lineages be active at time T . Since these lineages are active they can be involved

in a coalescent or recombination event. Let tcoal
ab denote the time to the coalescence of

lineages la and lb. Let trcmb
l denote the time to the closest (to T ) recombination event of

lineage l. Eqn 3.1 shows that each of the
(
L
2

)
coalescent events, generically written as

tcoal
ab , can be approximated by an exponential distribution with parameter λ = 1.

On the other hand, based on the Observation 1, Eqn 3.5 can be approximated by an

exponential distribution with parameter r′l where r′l = Nrl and rl is the recombination

rate of the segment flowing through lineage l. Hence, each active lineage l has is own

recombination rate rl that is given by rl = glen(I), where I is the genetic material carried

by l and r is the recombination rate (i.e., input parameter of the algorithm).

These approximations to the exponential distributions are based on two assumptions

of the Wright Fisher population: the population at each generation is N and a unit

picks its parent randomly from the previous generation (non-overlapping generations

and panmictic mating population). Also, note that the factor of N in r′l is due to the

approximation of the distributions, and not due to the underlying population evolution

model.
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The task is to find t, the time to the closest event node in the past. This event could

either be a coalescent event (merging of two lineages) or a recombination event (splitting

of a lineage in two new lineages). Since all the events are independent, then we seek

overall minimum. Thus using Property 1 of exponential distribution, we compute the

time t to the closest event back in time from the current time T as following:

t = min

︷ ︸︸ ︷
min

16a<b6L
(tcoal
ab ), min

16l6L
(trcmb
l )︸ ︷︷ ︸


= Exp

(︷ ︸︸ ︷
1 + 1 + · · ·+ 1 + r′1 + r′2 + · · ·+ r′L︸ ︷︷ ︸

)
, (3.8)

The over-braces capture the
(
L
2

)
possible coalescent events and the under-braces capture

the L possible recombination events. In order to understand if the closest event is

coalescence or recombination we pick the minimum value using Property 2 of exponential

distribution.

Hence, the event is a coalescent event with probability(
L
2

)(
L
2

)
+
∑

l r
′
l

, (3.9)

and a recombination event at lineage 1 6 k 6 L with probability

r′k(
L
2

)
+
∑

l r
′
l

. (3.10)

3.3.1 Algorithm to generate the topology

INPUT: The input parameters and some typical parameter values for a human chromo-

somal segment are given in Table 3.1. Note that due to historical reasons, the unit of

recombination rate is specified in centiMorgans per megabase per generation and the

mutation rate is specified in number of mutations per base pair per generation (×10−8).

Recall that the relationship between generation j, (discrete) and the time t (or edge

length), used in the Kingman coalescence, is defined as j=Nt. See Section 2.5 for more

details.

ASSUMPTION: Not more than one event, coalescent or recombination, occurs at a generation.

Also, no back mutations, i.e., a position (base) undergoes no more than one mutation in

the entire ARG. The mutation rate and recombination rate are uniform over the segment
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Parameters
User-Specified Units in bp Example

Units for Algorithm Values

g segment length Kb ×103bp 75× 103

V STR locations - - [0.3, 0.7]× g
m extant units - - 100× 1

N population size - - 10× 103

rates/generation

r recombination cM/Mb/gen f(x) =

{
×( 0.01

106 = 10−8)
Morgan/bp/gen

0.1× 10−8

µ SNP mutation mut/bp/gen ×10−8 ×1 mut/bp/gen 1.5× 10−8

µstr STR mutation mut/locus/gen ×10−4 ×1 mut/locus/gen 6.9× 10−4

Table 3.1: The table shows some typical parameter values for a human chromosomal
segment that SimRA takes as input.

being simulated.

OUTPUT: ARG; L is the number of GMRCAs.

ALGORITHM:

Initialization.

1. The genetic material, Iv, of each of the m leaf nodes, v, is set to Iv = {[0, 1]}. The

number of active lineages L is initialized to m.

2. For lineage l, incident on leaf node v, the recombination rate (using Eqn (3.5))

r′l = Nrl where rl = grlen(Iv). (3.11)

Since, len(Iv) = 1 for the leaf nodes, for each l, r′l = α where

α = Ngr. (3.12)

3. Time T is set to 0 and iteration i to 1.

Loop. Iterate until L is one (or T crosses a pre-defined threshold).

Iteration i is defined as follows.

1. Compute the recombination rate r′l of each lineage l (the outgoing edge on node

v) using Eqns 3.11 and 3.12 as r′l = α× len(Iv). Then compute the time ti to the
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next event using the exponential distribution (Eqn 3.8):

ti = Exp

((
L

2

)
+

L∑
l=1

r′l

)
. (3.13)

In other words, draw a random number from the above exponential distribution.

2. Based on Eqns 3.9 and 3.10, if coalescent event, then pick two lineages, la and lb

(with genetic material Ia and Ib respectively) at random and coalesce them to one

and update the genetic material of this new node and lineage Ia ∪ Ib (as defined in

Eqn 3.6). Update L to L− 1.

If recombination at lineage lk, then randomly pick a point x on the segment being

carried by lineage k, splitting the lineage into two, as defined in Eqn 3.7. Update the

genetic material of the two lineages based on this splitting point. Update L to L+1.

3. T is updated as T + ti and iteration as i+ 1.

3.3.2 Painting ARG edges with SNP & STR mutations

We consider two kinds of polymorphisms that can occur in the genomic sequences: Single

Nucleotide Polymorphisms (SNP) and Short Tandem Repeats (STR) mutations.

Note that the mutations (SNPs and STRs) do not affect the shape of the neutral ARG

(i.e., ARG sampled without considering selection). Thus after the ARG has been fully

constructed, the edges can be annotated with the mutations.

SNP Mutations

SNPs are variations in DNA sequences occurring commonly within a population of

individuals in which a single nucleotide — A, T, C or G — in the genome (or other

shared sequence) differs between members of a biological species or paired chromosomes.

For example, two sequenced DNA fragments from different individuals, AAGCCTA to

AAGCTTA, contain a difference in a single nucleotide.

For SNP mutations, we assume the infinite sites model, meaning that no more than

one mutation event occurs at each site. The mutation rate, µ, is specified in terms

of generation per site, and, the assumption is that the rate holds uniformly along the

chromosome. Thus the probability p of mutation at one site is the modified mutation

rate for j generations as

p = µj. (3.14)
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Consider a segment Iv carried by an edge incident on node v. Note that den(Iv) denotes

the span of the solid intervals in this segment (without gaps). If j is the number of

generations represented by this edge, then the expected number of mutations, λ, in this

segment after j generations, is

λ = p den(Iv) = µj den(Iv). (3.15)

Usually since p is small, den(Iv) is large and the product is a small number, the

distribution of this number can be approximated by a Poisson distribution. Hence in the

algorithm, we use a Poisson distribution with parameter λ to estimate the number of

mutations that occur after j generations and decorate the segment carried by the edge

incoming on node v.

Let time t be associated with an incoming edge on node v. At this stage, each edge is

annotated with the mutation events, which is appropriately reflected in Iv, the segment

carried by node v. Since number of generations is Nt and the span of the segment Iv

has been normalized in the initialization step, let

p = µNt and n = gden(Iv). (3.16)

Each edge of the ARG, incident on node v, is annotated with number of mutations based

on Eqn 3.16 as follows. X, the random draw from a Poisson distribution with parameter

np:

X = Poisson (np). (3.17)

Afterwards, the actual locations of the X mutations are placed at random in the solid

intervals of Iv carried by the edge incoming on node v (excluding the gaps, see Fig 3.4).

STR mutations

STRs are short sequences of DNA, normally of length 2-5 base pairs, that are repeated

numerous times (typically 5-50 times) in a head-tail manner. For example, the 16 bp

sequence of GATAGATAGATAGATA would represent 4 head-tail copies of the GATA.

The polymorphisms in STRs are due to the different number of copies of the repeat

element that can occur in a population of individuals. STRs occur at thousands of

locations in the human genome and they are notable for their high mutation rate and

high diversity in the population.

Note that the number and positions of the STR loci are fixed by the input specification.

For each STR locus, k, carried by the segment Iv, we compute the following. The number
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of STR mutations at locus k on each edge of the ARG, incoming on node v, is Xv, the

random number draw from a Poisson distribution with parameter Ntµstr:

Xk = Poisson (Ntµstr). (3.18)

Note that µstr is the mutation rate for STRs given in input. Let p+ be the probability

of the mutation that increases the number of copies (by 1 in one generation) and p−

be the probability of the mutation that decreases the number of copies (by 1 in one

generation). Then, Xk+ , the number of times the STR mutation results in an increase in

the number of copies of the repeat follows a binomial distribution, hence is the random

draw from a binomial distribution with parameter Xk and p+ Xk+ = Binomial (Xk, p+).

Thus the remainder, i.e., Xk −Xk+ must be the number of events that result in decrease

of the number of copies. Thus ∆k the net change in the number of copies at locus k

is: ∆k = Xk+ − (Xk −Xk+) = 2Xk+ −Xk. If unspecified, we use the default value of

p+ = 1
2 , assuming p+ = p− = 1

2 .

3.4 Difference from Hudson algorithm

In an implementation of SimRA algorithm, both Eqns 3.9 and 3.10 are used in a single

draw of a random number. Imagine a unit interval [0, 1] is broken up into 1 + L sub

intervals of lengths in the following ratio
(
L
2

)
: r′1 : r′2 : ... : r′l : ... : r′L. Thus a random

number drawn from the interval [0, 1] belongs to one of these 1 + L sub-intervals and is

appropriately interpreted. In other words, the first interval implies coalescent event and

kth (k > 1) interval implies a recombination at the lineage lk−1.

Note that Steps 1 and 2 in SimRA differ from the corresponding steps in Hudson

algorithm Indeed in Hudson algorithm, a single scaled recombination rate ρ = Nr is used

throughout the iterations in the backward simulation of the ARG, , while SimRA uses

the L segmented versions r′l = Nrl, for l = 1, . . . , L. This is reflected in Equation (3.9)

in SimRA that differs from Equation (2.15) in Hudson and in Equation (3.10) in SimRA

that differs from Equation (2.16) in Hudson.

In our algorithm Equation (3.8) suggests that to account for recombination event, the

time of the closest event t takes into account not just the number L of active lineages

but also the length of the segments carried by each of them (i.e., rl = grlen(Iv) of

Equation (3.11)).

Note that
∑

v len(Iv) 6= 1 at each iteration makes the two computations distinct; hence

the algorithms SimRA and Hudson. A consequence is that in Hudson algorithm if pc is
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the probability of coalescence (Equation (2.15) ) then the probability of recombination is

1− pc with equal probability over all the lineages, meaning that a lineage is picked at

random among the active ones. On the other hand, SimRA uses Equation (3.10) to pick

the lineage for recombination (See Step 2 of SimRA algorithm). Thus Equation (3.10)

has no counterpart in the classical Hudson algorithm. The accuracy of the two algorithms

are comparable, while SimRA outperforms Hudson in time, space and non redundancy

factor as we will show in Sections 3.6, 3.7.3 and 3.10.

3.5 Comparison study

For a comprehensive survey of sampling algorithms and simulators the reader is directed

to [9], which discusses both backward and forward simulators that incorporate a variety

of demographic models. SimRA simulates multiple populations under admixture and

subdivision, while other simulators incorporate other demographic models, making the

comparison difficult. However, the core engine of SimRA can be compared with Hudson,

which forms the basis in all backward simulators. Hence, in the comparative analysis, we

run SimRA for sampling the ARG of a single population version of (the algorithm core

described in Section 3.3 and the classical Hudson’s algorithm, presented in Section 2.9.

Furthermore, to keep the comparisons agnostic to the underlying systems, we use identical

implementation for the common parts of SimRA and Hudson. In Section 3.6 we compare

SimRA and Hudson on time and space performance. In Section 3.7.3 we compare the

compactness of the ARGs produced by both algorithms. Finally in Section 3.10 we

compare their accuracy.

3.6 Time and space performance

We performed extensive comparative analysis between SimRA and Hudson algorithms

for a single population. In particular, we carried out hundred runs for each parameter

set up, for both the algorithms. Fig 3.5 shows the superior performance of SimRA in

both time and space. The difference is particularly accentuated with increasing values of

recombination rate r. Notice that for higher values of r, the time and space requirement

is nearly two orders of magnitude higher for Hudson, while SimRA time and space

requirements are at par or lower than Hudson for r = 0.1× 10−8. It is worth pointing

out that r = 0.3× 10−8 is the value of recombination rate of real data.
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Figure 3.5: The box-and-whisker diagrams of the time and memory performance of
SimRA and Hudson computed for 100 runs with N=10K, g=150K, µ = 1.5 × 10−8

and different value of recombination rates (shown in the x-axis). On each box, the
central mark is the median, the circle is the mean, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not considered
outliers, and outliers are plotted individually. The red line demarcates the time and
space requirement for Hudson for the rightmost value of r. While for lower values of r
the time and space requirement of SimRA is marginally lower than that requireq for
Hudson, notice that for the high value of r, the time and space requirement for SimRA
is nearly two orders of magnitude lower than that for Hudson.
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Figure 3.6: (a) The ARG of Fig 2.3. (b) shows the flow of the 3 non-mixing segments.
These are shown in three distinct colors, green, red and blue (from left to right on the
chromosomal segment). The dashed edges imply that these do not affect any of the 4
extant samples, due to a recombination node in their path. (c) The ARG showing only
those segments that affect at least one of the 4 extant samples. Note that for each color,
the corresponding subgraph is a tree, called marginal or embedded tree. These trees are
shown in (d)-(f).

3.7 Compactness measure of ARG

In this section we compare the compactness of the ARGs produced by SimRA algorithm

with the ARGs produces by Hudson algorithm [10].

In order to carry out this comparison, we define the compactness of an ARG in terms

of its non-redundant core, the minimal descriptor introduced in [27]. Hence, we discuss

the reduction of a given ARG to a minimal descriptor by removal of non t-coalescent

nodes. These are nodes that have a single ascendant and multiple descendants while

they are not non-trivial nodes, i.e., part of a chain, in any of the embedded marginal

trees. In other words a non t-coalescent node is a coalescent node in the ARG, but it

is not a coalescent node in any of the embedded marginal trees (see [27] for a detailed
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exposition). In [1] we prove that the minimal descriptor of an ARG G is unique and we

use it to compare the compactness of the ARGs produced by SimRA and Hudson.

3.7.1 Background

To keep the discussion self-contained, in the following we paraphrase some important

definitions (t-coalescent node and minimal descriptor), theorems and lemmas from [27].

Let G be an instance of the random object ARG. Let the edges of G be directed from the

root to the more recent generation (or the leaves). The edges of the ARG are annotated

with genetic event (mutations) and the labels are displayed in the illustrations. See

Fig. 3.6 for an example. The ARG G is defined on m extant samples and is decomposed

into K trees, where K corresponds to the number of un-mixing or completely-linked

segments in the extant samples. These un-mixing units are portions of the whole segment

that are never split by recombination events during the evolution. Note, indeed, that K

is equal to the number of recombination events minus one.

Theorem 3.1. Every ARG G on m > 1 extant samples is the topological union of some

K > 1 trees (or forests) called marginal or embedded trees.

An edge in G is defined to have multiple strands that are shown as distinct colors, where

each color corresponds to one of the component trees 1 6 i 6 K. Between any pair of

vertices v1 and v2 in G, no two strands can be of the same color. Thus the number of

multiple strands, corresponding the edge, between a pair of vertices v1, v2 can be no

more than the number of marginal trees K. Each strand of an edge is labeled by a set of

genetic events (SNPs), possibly empty. The annotations on the edges (with SNPs and/or

STRs) play a critical role since they ultimately shape the extant samples. To keep this

discussion simple, let the non-exchange genetic event correspond to SNPs.

Note that the embedded or marginal trees are very important in an ARG and critical

in defining it. Given the topology of an ARG G with the embedded trees and the

annotations representing genetic duplication events, an unambiguous genetic flow giving

rise to the samples S(G) is defined. The set of labels of edge v1v2 is written as lbl(v1v2).

Then xi ∈ lbl(v1v2) is a label on strand i of edge v1v2. For example in Fig. 3.6 the labels

on the green tree are the SNPs a, b, c, d.

The exact position of the SNPs on the genome does not matter. However, in the ARG, a

particular ordering of the K trees is assumed. Hence the SNPs of each of the K trees

respect this order. More precisely, we assume that the un-mixing K segments of interest

are consecutive on the chromosomes of the samples. Hence, the corresponding embedded
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trees can be numbered by consecutive integers from 1 to K. An example is shown in

Fig 3.6, where the red marginal tree represents the flow of the the leftmost segment and

blue one of the rightmost. Observe that this is then reflected in the sample definitions.

The samples of a graph instance G of the ARG are denoted as S(G). The latter is a

set of m sequences which is also the number of leaf nodes (or extant units) in G. Each

sequence is obtained simply by flowing the genetic event labels (mutations) of tree i, for

each 1 6 i 6 K, along paths of color i all the way down to the leaf units (samples).

The multiple colored edges of G implies an annotation of a node v as well. In [27] the

annotation of a node v, sg(v) is defined as follows.

Definition 3.2 (sg(v) overlap). Given node v in an ARG G, sg(v) is the set of the

embedded trees that v is incident on. Two vertices v1 and v2 in G are said to overlap if

sg(v1) ∩ sg(v2) 6= ∅.

In order to identify redundancies in the topology of an ARG G, nodes that do not effect

the topology on the samples S(G) have been identified. The removal of these nodes in

the ARG leads to a core that preserves the essential characteristics.

More precisely the removal of a node v from an instance G of ARG is defined by the

following steps [15]:

1. For each child vc,i of v, that is in the embedded tree 1 6 i 6M

a. adding new edges: connect vc,i by a new edge to vp,i, a parent of v in the

marginal tree i;

b. annotating the new edges.: annotate the new edges between vc,i and vp,i as

follows: for each strand i, the label of the new edge is the union of the labels on

the i-path from vp,i to vc,i. Next, if a label appears on multiple new outgoing

edges of vp,i, then it is removed from all but one of the outgoing edges. (This

is to avoid introducing mutations, i.e., the same label appearing multiple times

on the embedded tree i.)

2. The node v with all the edges incident on it are removed from G.

Definition 3.3 (sample preserving). Two distinct instances of ARG, G and G′, are

samples preserving if and only if S(G) = S(G′).

When two ARGs are samples preserving, all the allele statistics, including allele frequen-

cies, linkage disequilibrium (LD) decay, and so on are identical in the two.
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A node v of G is called non-resolvable if S(G) = S(G \ {v}). The intuition is that the

removal of the node v has no effect on the samples. On the other hand a node v is called

resolvable if S(G) 6= S(G)\{v}. The idea is that no algorithm can detect a non-resolvable

node considering only the samples of G and G′, while some algorithm may be able to

detect a resolvable node.

Next we identify nodes in G that determine the topology (as well as the branch lengths

which represent the time in generations to the next coalescent event) in the K marginal

trees and can lead to a structure-preserving transformation.

Definition 3.4 (structure preserving transformation). Given two instances of the ARG,

G and G′, if each of the K embedded trees in G and G′ are identical in topology and

branch lengths (in generations), then G′ preserves the structure of G and vice versa.

Definition 3.5 (t-coalescent node). A coalescent node in G is t-coalescent if and only if

it is also a coalescent node in at least one of the K embedded trees of G.

For ease of exposition, the state of a vertex refers to a node being a genetic-exchange node

(recombination node), t-coalescent or non t-coalescent. Also, recall that a chain node is a

coalescent node that has a single parent and a single child, thus a non t-coalescent node.

Any node is in exactly one of these three states.

The following Theorems and Definitions have been presented in [27].

Theorem 3.6. If G′ = G \ U and no t-coalescent vertex of G is in U , then G′ is

structure-preserving.

Theorem 3.7. A resolvable coalescent node v is also t-coalescent in G.

In other words, if a set of coalescent nodes U that are not t-coalescent are removed from

G to obtain G′, then G and G′ are structure preserving. These useful properties lead to

the definition of a core of an ARG, i.e., an its compact version which is structure and

sample preserving. This is called minimal descriptor (introduced in [15]). In other words,

a minimal descriptor is a non-redundant structure that can be extracted from any ARG.

Definition 3.8 (minimal descriptor). An ARG G is a minimal descriptor if and only if

every coalescent vertex, except the GMRCA, is t-coalescent.

Another equivalent definition of minimal descriptor is the following.

Definition 3.9 (minimal descriptor). An ARG Gmd is a minimal descriptor of G if and

only if (a) Gmd is a minimal descriptor, (b) Gmd preserves the structure of G, and (c) G

and Gmd are samples preserving, i.e., S(G) = S(Gmd).
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Figure 3.7: Portions of a graph: A solid black node is a non t-coalescent node; a
hatched node is a genetic-exchange node, while a white node can be of any one of the
three states. (a) A non t-coalescent node A with its parent and genetic exchange child
Z. The colors l and l′ of Lemma 3.13 are red and black respectively. (b) shows the
removal of the non t-coalescent node A that changes the state of Z to non t-coalescent
node.

The minimal descriptor Gmd of an ARG G is biologically and evolutionarily relevant as

it is structure preserving, meaning that the embedded (marginal) trees of G and Gmd

are identical and it is samples preserving, meaning that the allele statistics (including

allele frequencies) in the samples in both G and Gmd are identical.

Lemma 3.10. Removing a non t-coalescent node A may affect the state of only its

immediate neighbors, i.e., the parent or the children of A.

Lemma 3.11. Let A be a non t-coalescent node. Then removal of A does not change

the state of its parent but may change the state of its genetic-exchange children.

Corollary 3.12. Removal of a t-coalescent node can only change the state of genetic-

exchange nodes of the ARG and this state is never restored by further removal of subsequent

non t-coalescent nodes.

Note that in our discussion l would represent one of the colors (say red) and the l-path is

a path of red edges. Let s = sg(v0) ∩ sg(v1) ∩ ... ∩ sg(vd). Then if l ∈ s, then an l-path

of length d on the graph is the directed path v0, v1, v2, .., vd. On the other hand if s is

empty, then there exists no path from v0 to vd (of any color). A scenario where a node

changes state is the following.

Lemma 3.13. Let A be a non t-coalescent node. Let the unique parent of A be denoted

as parent(A). Let Z be the child of A which is a genetic-exchange node. Then Z will

change state if and only if the following holds. There exists a color l such that there is

an l-colored edge between parent(A) and Z; there is an l-colored edge between parent(A)

and A; and there exists a color l′ 6= l with an l′-colored edge between parent(A) and Z.
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See Fig 3.7 for an example where a genetic exchange node changes state. Here the l-color

is the red edge.

Now we are ready to present out proof on the uniqueness of the minimal descriptor of an

ancestral recombination graph.

3.7.2 Reduced ARG (mdARG) is unique

To avoid any biases in the comparison study, we first prove the following:

Lemma 3.14. Given an instance of an ARG, it can be reduced uniquely to its minimal

descriptor.

Sketch of proof: We give the following construction. Consider a genetic-exchange node

x. Let d > 0 be the smallest possible number such that there exists some l-path from

A = v0, v1, v2, ...,vd = X, where only v0 in the path is a non t-coalescent node and the

others (i.e. vk, 0 < k 6 d) are not. Let A1, A2, ..., Ah be h such t-coalescent nodes.

Then let Lbl(X) = {A1, A2, ..., Ah} and let dep(X) = d. For every other node let the

labels be empty. See Fig 3.8 for an example.

Each genetic-exchange node is labeled as above. Let iterations be defined as follows. At

Iteration 0, all non t-coalescent nodes are removed. At Iteration i+ 1, the nodes that

became t-coalescent due to state change in Iteration i are removed. Then we claim that

at Iteration i > 0, if node v is removed then, dep(v) must be i.

The above says that at Iteration i, it is possible that a node v with dep(v) = i, may

not be removed. The precise conditions under which a state change occurs is as follows,

which is a natural extension of Lemma 3.13.

Lemma 3.15. Let A be a non t-coalescent node. Let the unique parent of A be denoted

as parent(A). Let Z be the child of A which is a genetic-exchange node with A ∈ Lbl(Z)

and dep(Z) = d. Then Z will change state at Iteration d if and only if the following

holds. There exists a color l such that there is an l-colored edge between parent(A) and

Z; there is an l-colored path between parent(A) and another parent Z (other than the

node parent(A)); and there exists a color l′ 6= l with an l′-colored path between parent(A)

and Z.

Further, no other genetic-exchange node can change state. This ends the proof of the

theorem. 2

Corollary 3.16. An ARG is reduced to an mdARG in no more than K iterations, where

K is the number of marginal trees.
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Figure 3.8: Portions of a graph: A solid black node is a non t-coalescent node; a
hatched node is a genetic-exchange node, while a white node can be of any of the three
states. (a) The non t-coalescent node is marked A. (b) The non t-coalescent nodes are
marked A, B, C and D.

0.01 x 10
-8

0.05 x 10
-8

0.1 x10
-8

0.3 x 10
-8

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

f

r

SimRA

Hudson

Figure 3.9: The box-and-whisker diagrams of the ratio f , for different values of r. The
other parameter values are the same as used in Fig 3.5 and for each parameter setting
both the algorithms were run 100 times. Recall that higher the values of f , higher the
compaction factor.

For a non t-coalescent node A, parent(A) can have at most K children that have distinct

color edges between them and parent(A). Hence no changes occur to the graph after K

iterations. Fig 3.8 (a) gives an example.

Lemma 3.14 proves that the order of the operations (i.e., deletion of redundant nodes) is

immaterial and it leads to the same non-redundant core.
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3.7.3 Comparing the compactness of SimRA and Hudson

In order to compare the compactness of ARGs produced by SimRA and Hudson we

run both the algorithms one hundred times for different parameter sets-up that differ

in recombination rate values and we computed the minimal descriptor of each resulting

ARG. As compactness measure we use f , the ratio of the number of nodes in the minimal

descriptor to the number of nodes in the original ARG, as used in [28]. Observe that the

closer the value of f to 1, the less redundant is the ARG and thus more compact. Fig 3.9

shows that the ARGs produced by SimRA are systematically more compact than the

ones produced by Hudson algorithm. Moreover, Hudson algorithm had to be aborted and

re-run several times and it took over six months just to complete the comparison study

shown in Fig 3.9 while SimRA was done with the four hundred runs in less than half a

day. Hence, the superior performance of SimRA, as shown in Section 3.6 is possibly due

to the fact that SimRA’s ARGs are much more compact (see Section 3.7 for a rigorous

definition of compactness).

3.8 On the uniqueness of GMRCA

In the following we give a prove on the uniqueness of GMRCA.

Let Ω denote the set of all (infinite) graphs, with nodes partitioned into distinct levels, or

generations, with N nodes at each level, and each node having no more than two parents.

For each X ∈ Ω, and any subset V of the nodes at level 0, there is an induced subgraph

of X, namely the ARG induced by V and we call this the ARG associated with X.

Following [22] we introduce a probability measure on Ω as follows.

Definition 3.17 (Truncation). For X ∈ Ω and h > 0, we denote by Xh the truncation

of X to depth h, i.e., Xh is the finite induced graph from X on the set of vertices of level

6 h.

Similarly, for a subset E ⊂ Ω, and h > 0, we denote Eh = {Xh | X ∈ E}. We say that E

is finitely determined if there exists some h0, such that X ∈ E ⇔ Xh0 ∈ Eh0 , and in this

case we denote µ(E) =
|Eh0

|
|Ωh0

| .

The family, F , of finitely determined subsets E ∈ 2Ω clearly forms a field, and thus by

the Caratheodory extension theorem (see for example [29], Theorem 1.1, page 4), µ can

be uniquely extended to the σ-field generated B by this family. We denote this measure

also by µ and consider Ω as a probability space with measure µ.
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Let Eunq ⊂ Ω be the set of graphs X ∈ Ω, such that the ARG associated to X has

a unique GMRCA. The following theorem follows from the definition of the measure

µ. It assures us that almost every ARG has a unique GMRCA. In fact, in over ten

thousand simulations, of which about three thousand are reported in this paper, SimRA

terminated in every instance with a unique GMRCA.

Theorem 3.18. The subset Eunq is measurable and µ(Eunq) = 1.

Proof. For h > 0, let Eunq
h denote the subset of ARGs having a unique GMRCA at level

6 h. Then, Eunq
h is finitely determined and hence measurable, and

Eunq = ∪h>0E
unq
h ,

being a countable union of measurable sets is measurable as well.

We now prove that µ(Eunq) = 1. Suppose that the list of nucleotides in the chromosome

is α1, . . . , αN . For 1 6 i 6 N . Let X be a random ARG, and for 1 6 i 6 N , let

Xi be the marginal forest corresponding to the nucleotide αi. Let for h > 0, ni,h(X)

denote the number of vertices in Xi at level h. It is easy to see that for every h > 0,

Pr(ni,h+1(X) < ni,h(X)) is positive and bounded away from 0 by a constant independent

of h. This implies that with probability one, Xi is a tree. If Xi ⊂ X is a tree, we let Γi be

the infinite path starting at the last node with positive in-degree in Xi and extending to

infinite height. Such a path exists for all i, 1 6 i 6 N with probability one, and it is also

easy to see that with probablity one the paths Γi, 1 6 i 6 N will intersect at a common

vertex of the ARG X. Such a vertex with the least height is the unique GMRCA of X,

using Theorem 1, and we have proved that it exists with probability one.

Corollary 3.19. The measure of the space of all ARGs with no unique GMRCA is zero.

3.9 Four Quantitative Hallmarks of ARG network

In this section we identify some quantitive hallmarks or characteristics of an ancestral

recombination graph and we derive approximations of the expected hallmark values as

closed-form functions of the ARG parameters.

Indeed, the ARG is a random object defined by the following parameters:

- m: the extant sample size;

- g: the length of the genomic segment whose common history is being tracked;
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- N : the population size;

- r: the recombination rate;

- µ: the SNP mutation rate.

Moreover, other polymorphisms, such as STRs, can be incorporated just as the SNP

mutations are.

Note that a backward simulator can also accommodate multiple founding ancestors m′.

While the number of surviving lineages does not go down monotonically from m to 1,

it is reasonable to impose that a truncated ARG has m′ < m active lineages or roots.

Note that if m′ = 1, then the lone active lineage is the GMRCA. Note that the unique

founding ancestor, GMRCA, is attained in an ARG with probability 1 (see Section 3.8).

We consider the following four quantities as the hallmarks of the random object ARG

with parameters m, N , g, r, µ:

1. Depth of the ARG;

2. Number of non-mixing segments in the sample population;

3. Number of polymorphic sites in the sample population;

4. Diversity (defined by the polymorphisms) in the sample population.

In the following we present how we derive closed-form functions of the ARG parameters

that provide approximations of the expected hallmark values. We did not find analytic

or closed-forms of the expected values for the general scenario in literature, except some

very specialized cases such as depth of GMRCA in the absence of recombinations [10].

Our derivations are based on the theorems and observations in [22].

Indeed, we find that if we require a single population only to study the hallmark expected

values, but not the sample population, then the closed form approximations are tight

enough to make the actual simulation redundant.

3.9.1 Closed-Form approximations of the expected hallmark values

First, we need to define two new notions: the depth of a node and the girth of an edge.

Definition 3.20 (depth of a node). An edge length, as well as depth of a node, is defined

to be in time units. The unit of time is measured in generations. The depth of each node

is measured from the leaf nodes and the depth of a leaf node is defined to be 0.
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Figure 3.10: The horizontal lines denote the time at which an event (coalescence
or recombination) occurs. (a) An example of an ARG with recombinations shown as
hatched nodes. (b) shows the flow of the 3 non-mixing segments. These are shown
in three distinct colors, green, red and blue (from left to right on the chromosomal
segment).

Definition 3.21 (girth of an edge). The girth of an edge is defined to be the product of the

edge length and the genomic segment width in the edge annotation (see Observation 1).

Moreover consider the following observations:

1. the ARG network is decomposed into overlapping trees (see Theorem 3.22);

2. for each tree, we compute the depth of each node and the girth of each edge, using

Kingman coalescence. The depth of a tree is simply the depth of its root node.

The girth of the tree is the sum of the girth of each edge of the tree;

3. the depth and girth of each tree is used for approximating the ARG hallmark

values. However, the interdependence of the trees complicates these computations

(see details below).
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Figure 3.11: The decomposition of the ARG of Fig. 3.10 into four trees of Eqn. (3.27):
T1, T2 and T3 corresponding to the three non-mixing segments are shown in (a)-(c) and
T ′ is shown in (d)

Mathematical details

To keep this section self-contained, we report here the following basic identities. Let

0 < m′ < m.

m∑
i=m′+1

(
1

i− 1
− 1

i

)
=

1

m′
− 1

m
, (3.19)

m∑
i=2

1

i− 1
= 1 +

1

2
+ . . .+

1

m− 1
≈ logm, (3.20)

m∑
i=m′+1

1

i− 1
≈ logm− logm′ = log

m

m′
. (3.21)

Consider a tree with m leafnodes. Using Kingman coalesence, all the non-leaf nodes of

the tree can be written in increasing depth (from the leafnodes) as v1, v2, .., vm−1, with

the active lineages decreasing by one at each node. Let ti denote the depth of vi from

vi−1 where depth of v0 is defined to be 0. Then the tree truncated at a depth that has

m′ active lineages, is written as Tm,m′ . Let HTm,m′ be the depth of this tree. Then using

Property 3, linearity of expectations, and the above identities we get:

E(HTm,m′ ) =

m∑
i=1+m′

E(ti) =

m∑
i=1+m′

1(
i
2

) =

m∑
i=1+m′

1
i(i−1)

2

=

= 2
m∑

i=1+m′

(
1

i− 1
− 1

i

)
= 2

(
1

m′
− 1

m

)
. (3.22)
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Let g the length of the genomic segment carried by each edge in the tree and the girth of

the tree be wtTm,m′ . Then by using 3.21 we obtain:

E(wtTm,m′ ) =

m∑
i=1+m′

iE(ti)g

= g
m∑

i=1+m′

i(
i
2

) = 2g
m∑

i=1+m′

i

i(i− 1)
= 2g

m∑
i=1+m′

1

i− 1
(3.23)

≈ 2g log
m

m′
. (3.24)

The complete tree with a single root node is written as Tm,1 and

E(HTm,1) = 2

(
1− 1

m

)
, (3.25)

E(wtTm,1) = 2g logm. (3.26)

We recall the following from [22] relating population genetics entities with graph entities

like least common ancestor (LCA). A non-mixing genetic segment does not have any

recombination event in the common history of the m samples.

Theorem 3.22. Let G be an ARG with some K > 1 non-mixing segments. Then K

marginal trees are embedded in G and the GMRCA of G is the LCA of the K LCAs of

the K marginal trees.

Fig 3.6 gives a simple illustration on an ARG on four samples with three non-mixing

segments. An alternative view of the theorem is as follows: Let T (l, b) denote a tree

defined on l leaf nodes each carrying the segment of length b. Then for some partition of

genome segment g into K non-overlapping segments, where g = g1 ∪ g2 ∪ ... ∪ gK ,

G ≈

(
K⋃
k=1

Tk(m, gk)

)
∪ T ′(K, g), (3.27)

where the roots of the Tk’s are the leaves of T ′. In the example illustrated in Fig. 3.10

and Fig. 3.11; T1, T2 and T3 are as in Fig. 3.11(a)-(c) and T ′ as in (d).

Corollary 3.23. If H1 is the maximum of the depths of Tk(m, gk) and H2 is the depth

of T ′(K, g) and H is the depth of the GMRCA of the G, then

H = H1 +H2. (3.28)

Corollary 3.24. The girth of ARG G is the sum of the girth of each Tk(m, gk) and

T ′(K, g).
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Now we are ready to introduce the derivation of closed-form functions for the four

quantitive hallmarks of an ARG.

Expected number of recombinations Z

Consider K from Theorem 3.22, H1 and H2 from Corollary 3.23. Then based on Eqn 3.25

and Corollary 3.23:

H1 = 2

(
1− 1

m

)
,

H2 = 2

(
1− 1

K

)
. (3.29)

The number of generations to the top of the ARG is HN . We assume infinite sites model

of the recombination sites, i.e., a recombination occurs at a site no more than once. Also,

notice that a recombination occurs only at the nodes of the ARG, but not along the

edges, hence we use the following approximation of Z:

Z ≈ (H1 +H2)Nrg. (3.30)

We postpone the derivation of E(H) to the next section, but note that

E(Z) ≈ E(H)Nrg.

Expected depth of ARG H

Let α = Nrg and β = αH1 + 1. Since the number of un-mixing units K (that is the

number of marginal trees) is equal to the number of recombinations plus one, then using

Eqn 3.30

K = Z + 1 = Nrg(H2 +H1) + 1 = α(H2 +H1) + 1 = αH2 + β. (3.31)

Based on Eqns 3.29 and 3.31, we get

αH2
2 + (β − 2α)H2 + 2(1− β) = 0. (3.32)

Sketch of the proof.
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H2 = 2

(
1− 1

K

)
,

H2 = 2

(
1− 1

αH2 + β

)
,

H2 = 2

(
αH2 + β − 1

αH2 + β

)
,

(αH2 + β)H2 = 2(αH2 + β − 1),

αH2
2 + βH2 = 2αH2 + 2β − 2,

αH2
2 + βH2 − 2αH2 − 2β + 2 = 0,

αH2
2 + (β − 2α)H2 + 2(1− β) = 0.

As β > 1 and α > 0, (1− β) < 0. Hence one of the roots is positive while the other is

negative and we are interested only in the positive root. Thus we consider the larger of

the two roots given below:

H2 =
2α− β ±

√
(β − 2α)2 − 8α(1− β)

2α
.

Recall that

H1 = 2

(
1− 1

m

)
,

then

E(H) ≈ H1 +H2. (3.33)

Expected number of mutations Y

Unlike recombinations, polymorphisms such as point mutations or STR mutations occur

along the edge of the ARG. Thus an edge of length t is tN in units of generation and

has tNµ mutations. Thus the girth of the network offers a better handle in computing

the total number of polymorphisms. Here too we assume an infinite sites model, i.e., a

mutation occurs at one site no more than once.

Next, Corollary 3.24 suggests that the girth of an ARG can be computed from the girth

of the K + 1 tree topologies. Then by Eqn 3.26,

E(wtG) =

K∑
k=1

2gkE(wtTkm,1
) + 2gE(wtTK,1

)

= 2g (logm+ logK) .
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Recall that K = Z + 1, then

E(Y ) ≈ µNE(wtG),

E(Y ) ≈ µN2g (logm+ logK) . (3.34)

Expected diversity D in the population samples

Let pj be allele frequency of SNP j, i.e., if aj is the number of samples with a fixed SNP

value then pj = aj/m. Then

D =
∑
j

dj where dj = pj(1− pj).

To compute the approximation, we make the following assumptions: (a) Firstly, we

count the polymorphisms (SNPs) only in Tk of Eqn 3.27 but not in T ′, since the latter

potentially propagates the mutations to the entire sample. (b) Secondly, the contribution

of each Tk to D is the same on an average. (c) Finally, at each iteration i of the girth

computation the number of samples are partitioned equally, on an average, in the
(
i
2

)
branches of each Tk.

We augment the girth computation of Eqn 3.23 for each Tk as follows. At each iteration

i, the girth of the tree Tk is

iE(ti)gk = gki

(
1(
i
2

)) ,
iE(ti)gk = gki

(
1

i(i−1)
2

)
.

Then the expected number of mutations at each iteration i is

Nµ
2gk
i− 1

,

and the pj of mutation j, based on assumption (c) above, is

pj =
m/i

m
=

1

i
, giving dj =

(
1

i

)(
1− 1

i

)
=
i− 1

i2
.
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Summing over all the mutations at iteration i:

Nµ
2gk
i− 1

dj = Nµ
2gk
i2
.

Summing over all the iterations i in Tk gives 2gkNµ
∑m

i=2
1
i2
. Finally, based on assumption

(b), we sum the contributions from all the Tk. Thus

E(D) ≈ 2gNµ

m∑
i=2

1

i2
. (3.35)

Expected height of a truncated ARG

For a meaningful simulation of the intermixing populations around a scaffold, the single

population in an edge should not be allowed to coalesce into a single lineage. Hence we

study the truncated ARG. The lone founding ancestor, GMRCA, is attained in an ARG

with probability 1 (see Section 3.8).

A backward simulator can also accommodate multiple founding ancestors m′, by stopping

the simulation and truncating the ARG when there are m′ active lineages. While the

number of surviving lineages does not go down monotonically from m to 1, it is reasonable

to impose that a truncated ARG has m′ < m active lineages. Also, it is reasonable to

impose that 1 6 m′ << m/2, to allow enough room for time to leave its footprint, in

terms of mutations, in the population. Note that if m′ = 1, then the lone active lineage

is the GMRCA.

Although Thm 3.22 is based on the complete ARG with the GMRCA, in the approximation

below, we use the theorem in the context of the truncated ARG that has 1 6 m′ < m

roots. Consider H1 and H2 from Corollary 3.23. Then based on Eqns 3.22 and 3.25 we

make the approximation:

H1 = 2

(
1− 1

m

)
,

H2 = 2

(
1

m′
− 1

K

)
.

As before we get,

αm′H2
2 + (m′β − 2α)H2 + 2(m′ − β) = 0,
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and we consider only the positive root of the following:

H2 =
2α−m′β ±

√
(m′β − 2α)2 − 8αm′(m′ − β)

2αm′
.

3.9.2 Summary of closed-form formulations

Here we summarize the formulas that have been used to compute the accuracy of the

ARG sampling algorithm. Recall that H is the height of the ARG; Z is the number of

recombinations; Y is the number of mutations; D is the diversity of the population. The

formulas are recapitulated here, for convenience. Let

H1 = 2

(
1− 1

m

)
,

α = Nrg,

β = αH1 + 1,

γ = 2α− β,

H2 =
γ +

√
γ2 − 8α(1− β)

2α
, when r > 0,

K = (H1 +H2)Nrg + 1.

Then the four (expected) hallmark values are:

E(H) ≈ H1 +H2,

E(Z) ≈ K − 1,

E(Y ) ≈ 2µgN (logm+ logK) ,

E(D) ≈ 2gNµ
m∑
i=2

1

i2
.

Given that α and β values are as above, the expected height of truncated ARG is:

H1 = 2

(
1− 1

m

)
,

γ = 2α−m′β,

H2 =
γ ±

√
γ2 − 8αm′(m′ − β)

2αm′
, when r > 0,

K = (H1 +H2)Nrg + 1,

E(H) ≈ H1 +H2.
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Figure 3.12: The closed form expected values (green diamonds) of the height H of
ARGs are compared against empirical values for different parameter values of m, g, and
N . The recombination rate used is r = 0.1× 10−8 Morgan/bp/generation, the mutation
rate is µ = 1.5× 10−8 mutations/bp/generation and m′ = 1.

3.10 Accuracy

We present the accuracy of SimRA by comparing the four hallmark values to the ones

computed by Hudson. The results are shown in Figs. 3.12, 3.13, 3.14, 3.15. The closed

form expected values are compared against empirical values for different parameter values

of sample size m, segment length g, population size N . We run both the algorithms,

SimRA and Hudson, 100 times for each parameter set-up. The recombination rate used

is r = 0.1× 10−8 Morgan/bp/generation and m′ = 1. Note that the mutation rate affects

only 3.14 and 3.15 and µ = 1.5× 10−8 mutations/bp/generation. The box-and-whisker

diagram summarizes the results as in Fig 3.5. In each plot, the green diamond is the

expected value as computed by the closed form, while the hollow circles are the observed

empirical values by SimRA and Hudson.

Notice that not only SimRA and Hudson estimates are very similar, if not identical, over

100 runs for each parameter set-up, but the closed form is also a good approximation.

Moreover we used the closed-form function for the expected height of a truncated ARG

to compare the estimates produced by both the algorithm SimRA and Hudson against

the expected values. Fig 3.16 shows the expected height of truncated ARG, for different

values of m′ as fractions of m, compared against the observed values obtained using both

SimRA and Hudson. Again, note the tightness of the approximations.
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Figure 3.13: The closed form expected values (green diamonds) of the number
of recombinations Z in ARGs are compared against empirical values for different
parameter values of m, g, and N . The recombination rate used is r = 0.1 × 10−8

Morgan/bp/generation, the mutation rate is µ = 1.5× 10−8 mutations/bp/generation
and m′ = 1.
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Figure 3.14: The closed form expected values (green diamonds) of the number of mu-
tations Y in ARGs are compared against empirical values for different parameter values
of m, g, and N . The recombination rate used is r = 0.1× 10−8 Morgan/bp/generation,
the mutation rate is µ = 1.5× 10−8 mutations/bp/generation and m′ = 1.
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D
D

Figure 3.15: The closed form expected values (green diamonds) of the diversity of the
population D are compared against empirical values for different parameter values of m,
g, and N . The recombination rate used is r = 0.1× 10−8 Morgan/bp/generation, the
mutation rate is µ = 1.5× 10−8 mutations/bp/generation and m′ = 1.
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Figure 3.16: The height of the truncated ARG for different values of m′ as fractions
of m. The recombination rate used was r = 0.1 × 10−8 Morgan/bp/generation and
g=25K. Each parameter setting was run 100 times and the results are captured in the
box-and-whisker diagram (as detailed in Fig 3.5). In each parameter setting, the green
diamond is the expected value as computed by the closed form, while the hollow circles
are the observed empirical values by SimRA and Hudson.
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3.11 Using closed-form approximations for complex sce-

narios parameter set-up

In the following, we give an example of the use of the closed-form approximations to

design appropriate parameter set-up for a given scaffold. In particular, the expected

depth of a truncated ARG is used.

Suppose that a scaffold (see Fig. 3.17 as an example) and the common parameters for all

edges (i.e., recombination rate, segment length and mutation rate) are given as input.

Suppose also that the sample size of each contemporary population is given.

In order to design a parameter set-up for the given scaffold it is necessary to choose

appropriate values for the time parameters and the effective population size for each

edge in the scaffold. Hence, the closed form of the expecting depth of an ARG can be

used, by applying the following procedure.

Each edge (or population) ej is characterized by the start time, startj , when ej starts to

be constructed during the backward simulation process, and end time endj , when the

ARG for ej stops growing and is involved in a merging or splitting event. Moreover, for

each edge ej , lb(ej) represents the number of lineages at the bottom of ej , and lt(ej) the

number of lineages at the top of ej . Note that for each contemporary population the

number of lineages at the bottom corresponds to the sample size.

Suppose the scaffold has n event times, then their values are set in ascending order (t1, t2,

. . . , tn) by computing the expected depths of the edges of the scaffold from the bottom

to the top.

Consider a time ti. If at time ti the edge (representing a population in the scaffold) ej is

split, then an approximate value for ti can be computed by adding the start time of ej ,

startj to the expected depth of ej . E(Hj) is computed by using the closed form function

of the expected height of a truncated ARG (See Section 3.9.2). Note that if ej is a leaf

population, its start time is known and it is equal to zero. Otherwise, if ej is a internal

edge in the scaffold, then its start time corresponds to a previous time tk, where k < j,

that have been already set in a previous step of this procedure.

If tl is the time in which two populations ej and ek merge, then the expected depth of ej ,

E(Hj) plus the start time startj of ej has to be approximatively equal to the expected

depth of ek plus the start time startk of ek. In other words, the depths of the two paths

that meet at time tl, when ej and ek merge and form a new ancestral population el, have

to be approximatively equal, so that it is possible to assign a consistent value to tl. Note
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Figure 3.17: Scaffold with 3 contemporary populations where two of them are admixed.
Each edge is labeled with the respective ID and effective population size. The leaf nodes
are also labeled with the selected sample size. The figure shows the time line and the
chosen values for the time parameters t1, t2, . . . , t7.

that tl will correspond to the start time of the population el deriving from the merge of

ej and ek.

In order to obtain equal or closed values of depths of two paths involved in a merge

event and to respect the ascending order of times, it may be necessary to adjust some

parameters during the process of computing the expected depths of the edges. The

parameters that can be adjusted are, for example, the effective population size Nj and

the number of surviving lineages at the top lt(ej) of each edge ej .

Indeed, while the recombination rate r, the length of the segment g and the number

of lineages at the bottom lb(ej) of an edge ej are already given, it is possible to select

appropriate values for the effective population size Nj and the number of lineages at the

top lt(ej) to obtain an expected depth E(Hej ) consistent with the constraints given by

the scaffold.

Note that in the closed form m is the number of lineages lb(ej) at the bottom ej , while

m
′

is the number of the lineages lt(ej) at the top of ej .

In the following a practical example of the above procedure is presented. Consider

the scaffold in Fig. 3.17. Suppose that the following parameters are given in input:

recombination rate r = 0.1 × 10−8, mutation rate µ = 1.5 × 10−8, segment length
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Nj lb(ej) lt(ej) E(Hej )

e1 10000 50 15 0.898
e2 5000 50 25 0.139
e3 5000 50 20 0.169
e4 5000 12 4 0.790
e5 10000 13 5 1.180
e6 5000 10 4 0.729
e7 5000 10 4 0.729
e8 5000 19 8 0.412
e9 10000 8 5 1.013
e10 5000 13 5 0.626
e11 5000 10 1 2.829

Table 3.2: The first three columns are respectively the selected values for the effective
population size, the number of lineages at the bottom and number of lineages at the
top of each edge in the scaffold. The last column is the expected depth of each edge
computed by using closed-form (see Section 3.9.2).

g = 75 × 103. Moreover the sample size for each contemporary population is known:

me1 = 50, me2 = 50 and me3 = 50.

The procedure starts computing the time t1, when the surviving lineages of e2 are split.

The time t1 corresponds to the expected depth of e2. It is convenient to choose N1 = 5000

and x = lt(e2) = 25, in order that the expected depth of e2 is E(He2) = 0.139, thus

t1 = 0.139.

At time t2 the surviving lineages of e3 are split, then t2 corresponds to the expected

depth of e3. Since t2 has to be greater than t1 and the effective population size N3 = 5000

is chosen to be equal to N2, it is necessary to set lt(e3) < lt(e2) so that t2 > t1. Indeed,

if lt(e3) = 20 the expected depth of e3 is equal to E(He2) = 0.9, thus t2 = 0.9.

At time t3 the respective surviving lineages of e1 and e6 merged. In this case, in order to

select an appropriate value for t3, it is needed to obtain similar values of the expected

depth of e1 and the sum of t2 and the expected depth of e6. By selecting the following

values N1 = 10000, lt(e1) = 15, N6 = 5000 and lt(e6) = 4, then the two resulting values

(E(He1) = 0.898 and t2 +E(He6) = 0.92) are close, thus t3 can be set as an intermediate

value, t3 = 0.9.

At time t4 the surviving lineages of e7 and e4 are merged. Applying the same method

as before, values for N7, N4, lt(e4) and lt(e7) are assigned. The time for t4 is picked

comparing the following two values: t1 +E(He4) = 0.139+0.79 = 0.929 and t2+E(H7) =

0.198 + 0.729 = 0.927. These two values are very close so that t4 = 0.93.

The parameters values that have been chosen during this process are summarized in

Table 3.2.
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At time t5 the surviving lineages of e8 and e5 merge. Following the same process as before,

a value between t3 +E(He8) = 0.9+0.412 = 1.319 and t1 +E(He5) = 0.139+1.18 = 1.319

can be chosen. In this case the two values are exactly the same thus t5 = 1.319.

Furthermore, t6 is approximatively equal to 1.944 since t5 + E(He10) = 1.319 + 0.626 =

1.945 and t4 + E(He9) = 0.93 + 1.013 = 1.943. Finally the expected depth of the most

ancestral population e11 is approximatively E(He11) = 2.829. Therefore t7 can be set to

t6 + E(He11) = 4.773, but in this case a larger threshold of time for example t7 = 10.00

can be chosen.

Availability. SimRA (Simulation based on Random graph Algorithms) source, exe-

cutable, user manual and sample input-output sets are available for downloading at:

https://github.com/ComputationalGenomics/SimRA

 https://github.com/ComputationalGenomics/SimRA


Chapter 4

Topological signatures for

population admixture

In this chapter a new topological framework to detect admixture in contemporary

related populations is introduced and applied to biological data. We illustrate, based on

controlled simulations computed by SimRA, that the topological characteristics have the

potential for detecting subtle admixture in related populations. Afterwards, we apply the

technique successfully to a set of avocado germplasm data, proving that the approach

has the potential for novel characterizations of relatedness in populations.

4.1 Motivation

Relatedness of populations is an interesting problem and has been studied extensively

in the population genetics community [30, 31]. In the context of plant breeding, this

understanding is very important in gauging the diversity in the genetic pool and using it

effectively in breeding programs [32]. In the context of humans, admixture mapping of

the genome is useful for disease or complex trait association studies [33, 34].

Various statistical models have been proposed in literature [31, 35] to characterize

admixture which build mainly on linkage disequilibrium footprints via minimum allele

frequencies of the markers. In [3] a combinatorial model based on persistence in topology

to model and detect admixture in populations has been presented. The authors in [36]

have used a similar model to study presence/absence of genetic exchange as recombination

or reassortment in viral populations. However, the problem that we address here is a

little more nuanced: to tease apart subtle admixtures from the usual interrelationships

62
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BDA C

⇒

A BDC

a

≡

b
(i) scaffold P ′ (ii) ARG P

Figure 4.1: An example with four populations A, B, C, D. (i) shows the scaffold
P ′. (ii) shows a corresponding ARG P . (ii-a) shows the ARG with the “shape” of P ′

superimposed on it, while the (ii-b) shows some of the details of P of (ii-a). Note that
in general the structure of P ′ is not apparent from P and the ARG P simply looks like
the one shown in (ii-b). See text for more details.

of related populations. In other words, the aim is to discern admixture from amongst

the ubiquitous recombination events.

The problem is defined as follows.

4.2 Problem Setting

Let P be an ARG (or a subARG), where the leaf nodes have an additional population

label. Fig 4.1 (ii) shows an example with four population labels. Let the relationship

between the m populations be defined by a DAG P ′ with m leaf nodes, called a scaffold,

as shown in Fig 3.1 (i). See Section 3.2 for a detailed definition of scaffold.

We recall that each edge e of P ′ represents the evolution of a Wright Fisher population

captured in a DAG say Pe. The union of each of these DAGs by appropriately gluing

the ends of the edges corresponding to the nodes of P ′ gives the ARG P that can be

written as:

P =
⋃
e∈P ′

Pe.

Such a P is shown in Fig 4.1 (ii), where the leaf nodes correspond to extant units of each

population of P ′; (ii-b) shows some of the typical details of enclosed area of (ii-a). Each

row in (ii-b) is a generation and the edges denote the flow of genetic material towards the

extant units at the leaf nodes (the arrows are not shown to avoid clutter). A node with

two incoming edges in (ii-b) denotes a genetic exchange event such as recombination. We

refer the reader to Section 2.7 for further details of a typical ARG P .
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A BDC DA C B DA C B DC BA

0 CP 1 CP 1 CP 2 CP

Figure 4.2: Examples of CPs shown as solid dark closed paths in the respective
ARGs. In contrast, the dashed closed paths cannot correspond to CPs in the underlying
scaffolds.

We say that a scaffold P ′ defines admixture if there exists a closed path (CP) in P ′.

Moreover, observe that a recombination event in the evolution process leads to the

occurrence of a CP in P .

Now we are ready to define the central problem as a riddle with three actors as follows.

Problem 1. Tom generates a scaffold P ′ on m populations with the three parameters

len(e), lb(e) and lt(e) for each edge e ∈ P ′ satisfying the junction constraints. Based on

P ′, Dick constructs an ARG P on m populations. Can Harry detect whether Tom’s P ′

has any CPs i.e., admits admixture, based on the data given to him by Dick:

Scenario I: the ARG P ;

Scenario II: a subARG of P that has all leaf nodes of P ;

Scenario III: only the leaf nodes of P .

Outline of our approach to the solution

Note that given an ARG or subARG P , its underlying scaffold P ′ is not immediately

computable. Indeed, due to recombinations, many CPs exist in P , but they do not

necessarily indicate a CP (admixture) in P ′. Fig 4.2 shows some examples. In [3] , we

resort to topology and translate this problem into persistence homology computation

in the Vietoris-Rips complex defined by P . Notice that Scenario I is an ideal situation

while Scenarios II and III correspond to practical situations, and, we focus on the latter.

4.3 Topology Model

In this section we present a theoretical model that explains the topological signal for the

presence or absence of admixtures in the populations being studied in the persistence

diagrams that we compute. We model Scenario III of the last section as follows. Denote

the leaf nodes of P , by L(P ). There exists a notion of distance between nodes v, v′ of
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L(P ), denoted w(v, v′), obtained by setting

w(v, v′) = min
u∈lca(v,v′)

depth(u),

where depth(u) denotes the depth of the node u in P (measured in terms of the number

of generations), the depth of any leaf node of P is 0 and lca(v, v′) is the set of least

common ancestors of v and v′ in P . Recall that the population labels of the leaf nodes

partitions L(P ) into disjoint subsets, where each subset corresponds to a population.

Let the set of populations be denoted by L̃(P ). Hence, there exists a surjective map,

φ : L(P )→ L̃(P ). The distance function w(·, ·) on L, induces a distance function w̃ on

L̃(P ), obtained by setting, for A,B ∈ L̃(P ) (where A,B are population labels),

w̃(A,B) = min
v∈L(P ),φ(v)=A,
v′∈L(P ),φ(v′)=B

w(v, v′). (4.1)

Note that in our method (that we describe later in the next sections in more details), we

do not need to know explicitly either the set P̃ or the surjective map φ. It is reasonable

to assume that w and w̃ defined as above satisfy the following properties.

There exists c > 0, with c� depth(P ), where depth(P ) = maxv∈P depth(v), and such

that

Property 4. For each pair each pair u, v ∈ L(P ),

(a) φ(u) = φ(v) implies that w((u, v)) < c;

(b) φ(u) 6= φ(v) implies that w((u, v)) > 2c;

(c) For all u′, v′ ∈ with φ(u) = φ(u′), φ(v) = φ(v′), |w(u, v)− w(u′, v′)| < c.

In other word, Property 4 implies that the distance between two leaf nodes of P carrying

the same population label is very small, while those carrying different labels is large,

and the latter distance depends only slightly on the chosen representatives, u, v, of the

respective populations. Property 4 is an ideal property which if satisfied by the data

implies a topological result relating the induced Vietoris-Rips complexes on L(P ), and

on the set of populations L̃(P ) (using the distance measures w and w̃) by virtue of

Theorem 4.3 below. Normally, the data will not satisfy this ideal property exactly – but

never-the-less we observe a behavior which is close to what the mathematical theorem

suggests.

Before stating the precise topological theorem we first explain the main idea.
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4.3.1 The topological framework

Suppose that in a given finite metric space M = (V,w), where w : V × V → R>0, the

values of w (i.e. the distances) occur in two scales. Suppose also that the points of V

form clusters with pairwise distances amongst pairs in each individual cluster belong to

the smaller of the two scales – while, the distance between two clusters, measured by

taking the minimum of the pairwise distances between the points of the two clusters,

belong to the larger scale. We denote the set of clusters by Ṽ and the induced metric on

Ṽ by w̃.

Given any d > 0 (where d is “time”, in generations, in P ), the Vietoris-Rips complex of

M with parameter d, which we denote by Rips(M,d) (see Definition 4.1), is a certain

simplicial complex on V (i.e. a family of subsets of V closed under inclusion), and

this complex grows with d. For small values of d (i.e. closer to the smaller scale) the

Vietoris-Rips complex can have complicated topology (measured by the dimensions of the

homology groups or the Betti numbers of the complex Rips(M,d)) which depend only

on the induced metric spaces on each of the separate clusters. As d grows, the various

Vietoris-Rips sub-complexes corresponding to each cluster become contractible, and all

homology groups in dimensions > 0 vanish (and thus the higher Betti numbers which

are the dimensions of these homology groups vanish). After the value of d grows even

further (i.e. reaches the larger scale), new homology classes in dimensions > 0 might be

born and these classes correspond to those of the Vietoris-Rips complex associated to

the space M̃ = (Ṽ , w̃) obtained from M by clustering.

4.3.2 Persistent homology

A systematic way of understanding the birth and death of homology cycles in the Vietoris-

Rips complex is through the persistent homology groups [37] (see Definition 4.2 for precise

definition). Denoting by Rips(M,d) the Vietoris-Rips complex of M at “time” d, and

for all d′ > d, the inclusion homomorphism id,d
′

: Rips(M,d) ↪→ Rips(M,d′) (which

includes Rips(M,d) in the larger complex Rips(M,d′)) induces a homomorphism

id,d
′

∗ : H∗(Rips(M,d))→ H∗(Rips(M,d′))

between their respective homology groups. Unlike, the homomorphism id,d
′
, id,d

′
∗ is not

necessarily injective. A non-zero homology class in H∗(Rips(M,d)) can map to 0 under

id,d
′

∗ . The image of id,d
′

∗ – whose non-zero elements correspond to non-zero homology

classes of H∗(Rips(M,d)) that persists till time d′, is called the (d, d′)-th persistent

homology group, which we will denote by Hd,d′
∗ (M).
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One would expect that the the persistent homology groups of the Vietoris-Rips complex

associated to M (in dimensions > 0) will also show a separation with respect to the two

scales. (The zero-th homology groups will not show such a separation for obvious reasons

– and in fact by definition of the Vietoris-Rips complex the zero-th Betti number is just

a decreasing function of d.) Moreover, one would expect that the homology classes of

the Vietoris-Rips complex associated to M̃ which persists over long periods (which are

the ones identified with the larger scale) already appear in the persistent homology of

the Vietoris-Rips complex associated to M̃ , while those associated to the smaller scale

appear much earlier and die earlier.

Theorem 4.3 assures us that provided M,M̃ satisfy certain conditions (Property 4) any

non-zero persistent homology class in Hd,d′

i (M̃), is the image of a class in Hd+c,d′

i (M)

(where c is a constant appearing in Property 4) and can be interpreted as an upper bound

on the distances of the smaller scale. Thus, even though we do not have direct access

to the Vietoris-Rips complexes of M̃ , we can obtain information about its persistent

homology from those of the Vietoris-Rips complexes of M . In addition, Theorem 4.3

also assures us of the separation on the time scale, of the homology in the Vietoris-Rips

complex of M in the smaller time scale, from the “interesting” homology in the larger time

scale which contributes to the homology of the Vietoris-Rips complex of M̃ . Together

they imply that the persistent homology of the Vietoris-Rips complexes of M contains

information allowing us to read the persistent homology of the Vietoris-Rips complex M̃

if the latter is non-zero.

Precise definitions and statement of the topological theorem

To state the topological result alluded to above we first need some definition and notation.

We first recall the well known definition of the Vietoris-Rips complex of a finite set V

equipped with a distance function w : V × V → R>0, satisfying w(v, v) = 0 for all v ∈ V .

Definition 4.1 (Vietoris-Rips Complex). Let M = (V,w) be a pair, where V is a finite

set and w : V × V → R>0 is a map (which need not be a metric on V ) satisfying

w(v, v) = 0 for all v ∈ V . Then, for any integer d > 0, we define the chain complex of the

Vietoris-Rips complex of (M,d), which we will denote by Rips•(M,d) = (C•(M,d), ∂•)

as follows. Let, V = {1, . . . , n}, and for each p > 0, define

Cp(M,d) =
⊕
U⊂V,

card(U)=p+1,∧
u,u′∈U w(u,u′)6d

Q · U.
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The boundary map ∂p is defined by setting for each U = {i0, . . . , ip} ⊂ V , with 1 6 i0 <

· · · < ip 6 n, where Uj = U \ {ij}:

∂p(U) =

p∑
j=0

(−1)j · Uj .

Definition 4.2 (Persistent homology groups of M). For d 6 d′, the inclusion map id,d
′

:

Rips(M,d) ↪→ Rips(M,d′) induces homomorphisms id,d
′

• : Rips•(M,d)→ Rips•(M,d′)

between the corresponding chain complexes, which in turn induces homomorphisms

id,d
′

∗ : H∗(Rips•(M,d))→ H∗(Rips•(M,d′)) in homology. We call the image of id,d
′

∗ , the

(d, d′)-th persistent homology group of M (see for example [37]), and we will denote this

group by Hd,d′
∗ (M).

In [3] the following theorem, which relates the persistent homology groups of two pairs

M = (V,w) and M̃ = (Ṽ , w̃) under certain conditions, has been proved.

Theorem 4.3. Let M = (V,w), M̃ = (Ṽ , w̃) be as in above with V, V ′ finite, c > 0 and

φ : V → V ′ a surjective map, such that for each pair u, v ∈ V satisfies Property 4. Then,

1. Hi(Rips•(M̃, d)) = 0 for i > 0, and d < 2c.

2. For all d, d′ > 0 satisfying d′ − d > 2c φ induces a surjective homomorphism

φd,d
′

∗ : Hd+c,d′
∗ (M) −→ Hd,d′

∗ (M̃).

Moreover, if ĩd,d
′

∗ : H∗(Rips•(M̃, d)) −→ H∗(Rips•(M̃, d′)) is an isomorphism,

then so is φd,d
′

∗ .

We report here the proof of the theorem from [3]. Proof: The first claim immediately

follows from Part (c) of Property 4. We now prove the second claim. We first check

that for any d > 0, the map φ induces a simplicial map φ : Rips(M,d)→ Rips(M̃, d).

To see this let U ⊂ V such that
∧
u,u′∈U w(u, u′) 6 d. We claim that for each u, u′ ∈ U ,

w̃(φ(u), φ(u′)) 6 d. This follows immediately from the definition of w̃ (see Eqn 4.1).

Notice that the min function used in the definition of w̃ is crucial here. This proves that

the induced map of φ is simplicial i.e. it carries simplices to simplices. Now suppose that

d′− d > 2c, and consider a simplex in the Vietoris-Rips complex Rips(M̃, d) spanned by

Ũ ⊂ Ṽ . Since, Ũ is a simplex in the Vietoris-Rips complex, Rips(M̃, d), by definition∧
ũ,ũ′∈Ũ w̃(ũ, ũ′) 6 d. Then, for all u ∈ φ−1(ũ), u′ ∈ φ−1(ũ′), w(u, u′) 6 d + c, (using

Parts (a) and (b) of Property 4 ). Thus, the inverse image of the simplex spanned by Ũ

in Rips(M̃, d), is contractible inside Rips(M,d+ c) ↪→ Rips(M,d′). It now follows by

an application of the Vietoris-Begle theorem (see for example [38, page 344]), that the
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induced homomorphism φd,d
′

∗ : Hd+c,d′
∗ (M) → Hd,d′

∗ (M̃) is a surjective homomorphism,

and is an isomorphism if ĩd,d
′

∗ : H∗(Rips•(M̃, d))→ H∗(Rips•(M̃, d′)) is an isomorphism.

2

Theorem 4.3 is applicable in the context of Scenario III as follows. Take M = (L(P ), w)

and M̃ = (L̃(P ), w̃). Further suppose that for A,B ∈ L̃(P ), A 6= B, |w̃(A)− w̃(B)| > 2c

(say), that is distinct populations are separated by a larger distance than individuals

within the same population.

In this case the surjection given in Theorem 4.3 implies that the presence of persistent

homology (i.e. homology cycles that are born after d = 2c and that persists for intervals

of length > c) in the Vietoris-Rips complex of M̃ can be detected from that of the

Vietoris-Rips complex of M . Hence, for all small values of d, d′, i.e. 0 < d < d′ < c, the

persistent homology groups, Hd,d′
∗ (M) reflect the topology of the ARG P , created by the

recombination events. For c < d < d+ 2c < d′ by Theorem 4.3, there is a surjection

Hd+c,d′
∗ (M)→ Hd,d′

∗ (M̃).

which is an isomorphism if ĩd,d
′

∗ is an isomorphism, and any persistent homology (in

dimension > 0) in this range can be attributed to the cycles in the population graph P ′

which are caused by admixture.

4.3.3 Topological Signatures

The theorem thus predicts that the presence of admixtures should be detectable from the

persistent homology diagrams of the Vietoris-Rips complex of M itself. This is indeed

seen in the experimental results. In Figs 4.3-4.6, we display the results of computing the

homology groups of the Rips complexes obtained from both simulated as well as real data.

We take M = (L(P ), w) where P is an ARG obtained either from simulated or real data.

Fig 4.7 shows results for real data while the others are for simulated data. The horizontal

axis corresponds to the values of d, and for each fixed d, the number of horizontal lines

above is the dimension of homology group of the Vietoris-Rips complex corresponding

to this value of d. Thus, each horizontal line depicts the “life” of a non-zero homology

cycle. The x-coordinate of its left end point is the time of its “birth” and the right end

point the time of its “death”. We see a clear separation between persistent cycles in

dimensions > 1, in the case of admixed populations – which can be seen as a signal

indicating presence of admixture.



Chapter 4. Topological signatures for population admixture 70

4.4 Experiments on simulated data

We first describe the simulation experiments. The populations were simulated using

SimRA (See Chapter 3). Once the set of haplotypes were generated for all three

populations, we created a distance matrix between all pairs of haplotypes using Hamming

distance metric. The Vietoris-Rips complex was constructed on the graph embedding of

the distance matrix (a complete graph with each vertex corresponding to an individual

haplotype and edge weights corresponding to the Hamming distance between the pair

of haplotypes). We computed homology groups on the Vietoris-Rips complex for zero

and one dimensions using Javaplex v4.2.0 [39]. Recall that the dimension of the zero-

dimensional homology group of a simplicial complex counts the number of connected

components of the simplicial complex, while the dimension of the one-dimensional

homology group counts the number of independent one-dimensional cycles which do not

bound.

In the results, irreducible cycles computed from the simulation experiments are pre-

sented as barcode plots, which display when individual cycles representing non-zero

one-dimensional homology classes are born and when they disappear. The upper half

of each barcode plot for the simulation experiments display the persistence of zero-

dimensional homology, while the lower half display barcode line segments indicate the

persistence of one-dimensional homology. While short cycles can be due to noise, longer

(persistent) cycles represent fundamental topological structures within the genetic distance

matrix.

Fig 4.3 shows the topological signatures in the context of presence and absence of

admixture. The persistent cycles for dimension > 0 clearly separate into two groups.

Figs 4.5-4.6 show the results of experiments with different simulation parameters, including

stochasticity of the ARGs.

4.5 Experiments on avocado germplasm

We consider three main avocado cultivars: West Indian (W), Guatamelan (G) and

Mexican (M). Moreover, we also consider an F1 population WxG. Each of the group is

composed of 19 samples, from which we have 3348 markers. The genotype data were

phased using Beagle [40] and both haplotypes are used in our experiments. In particular,

using these four groups, we created two datasets to match our simulation study set-up:

one composed of W, G and WxG samples and the other of G, M and W. The former set

admits admixture while the latter does not.
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Figure 4.3: Topology signatures embedded in the ARGs, on simulated data. There
is an absence of admixture in the top while a presence in the bottom panel. This
proof-of-concept experimental setting shows that, in ideal scenarios of simulations,
topological signatures for recombinations and admixture can be differentiated (notice, in
particular, the separation of the persistent cycles of dimension > 0). In the simulations,
the effective population size is N = 10K. See text for further details.
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Figure 4.4: Analysis of the persistent cycles of avocado germplasm data: It shows
that the admixed samples have larger cycle lengths (> 100). The mean length for the
3 admixed populations is larger than the other cases. Also, the individuals for the G
and W cultivars are the same in both the experiments, and they have comparable mean
length (the red and black lines in the plot), while the total cycle lengths are different.

In order to compute the persistent homology groups on the avocado germplasm data,

we concatenated SNP loci from all 12 chromosomes into a single sequence for each

haplotype and computed the distance matrix based on the Hamming distance metric as

described above. For the two avocado germplasm datasets, we computed zero, one and

two-dimensional cycles representing non-zero elements of the persistent homology groups

on the Vietoris-Rips complex using Javaplex. Fig 4.7 shows barcode plots describing

zero, one and two-dimensional topological signatures on these two avocado germplasm

data sets with and without admixture present. Further analysis of the persistent cycles

in terms of their mean length and variances again shows distinguishing characteristics:

see Fig 4.4.
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Figure 4.5: In the simulations recombination rate r = 0.1× 10−8. Notice that in the
absence of recombinations, no particular separation of persistent cycles is observed. In
the simulations, the effective population size is N = 10K.
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Figure 4.6: Six simulations, each with effective population size N = 10K; with
recombination (r = 0.3× 10−8) as well as admixture to show that stochasticity does not
affect the topological signature, i.e. the separation of the persistent cycles into roughly
two groups.
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Figure 4.7: Haplotypes from three groups of avocado germplasm data: West Indian
(W), Mexican (M), and Guatemalan (G). The top plot corresponds to the populations
with no admixture, while the bottom admits admixture in the populations. Notice the
separation of the persistent cycles in both dimension 1 and 2 for the latter scenario,
while the former shows no clear separation.



Chapter 5

Character based methods to

reconstruct phylogenetic trees

In this chapter we introduce the state of art regarding computational model and methods

for phylogenetic reconstruction. This is useful for a better understanding of the results

obtained while investigating the second research direction, that is the development of

combinatorial algorithms for the reconstruction of trees representing the evolutionary

history of a set of species. In particular, we present a survey of character based methods

to reconstruct phylogenesis, mainly following the line of [4], and we focus our attention

on the perfect phylogeny model and one of its variant, called persistent perfect phylogeny.

5.1 Motivation

Phylogenetics is the research area of Computational Biology devoted to computing

phylogenies. A phylogeny is a prototypical representation of any evolutionary history,

that is a labeled tree whose leaves are the extant species, or individuals, or simply

biological data, such as genomic sequences, that we are currently able to analyze [41].

In this field, the focus has shifted through the years. The initial developments date

back to the pioneering work by Cavalli-Sforza and Edwards [42] in the 60s, where some

fundamental ideas of the study of phylogeniesis have been introduced, namely the fact that

evolution is a branching process where characters or attributes of species are changing.

Initially the emphasis has be focused on character-based approaches due to the limited

computational resources of time, together with the kind of data available (phenotypical

data (characters) were much more frequent than genomic data). Character-based methods

are based on maximum parsimony models that want to minimize the total amount of

76
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evolutionary events compatible with available data. Successively new advances, also

in the statistical modeling of evolution [41], made the approaches based on inferring

maximum likelihood phylogenies more attractive. More recently, the pendulum has swung

again, as parsimony models and character-based methods have found new relevance,

mostly due to new applications and available data. Recent applications, indeed, show

that parsimony models can be applied to analyze the evolution of data related to various

genomic information, such as protein domains [43] and markers in tumor [44].

5.2 Maximum Parsimony Models and the perfect phylogeny

Maximum parsimony models are based on specific constraints deriving from some biologi-

cal assumptions. The first basic assumption states that each species or taxon is described

by a set of attributes, called characters, where each character is inherited independently

and can assume one of a finite set of values, also called states. Another basic assumption

about the evolution of characters, called homology, assumes that characters that are

present in more than one species must be inherited by a common ancestor. In other

words, parsimony models assume a coalescent model, i.e., a characteristic shared by a set

of species can be traced back to a single ancestral species.

The natural computational problem has, as input, a matrix M with n rows and m

columns, where each row can be viewed as a m-vector over the set of character states.

The matrix describes a set of n taxa (species or individuals) – corresponding to the rows

of M – and a set of m characters – corresponding to the columns of M – and asks for

a minimum cost tree explaining the input matrix M . In a tree T explaining a matrix

M (i) the nodes are labeled by m-long vectors of character states, (ii) each row of M

labels exactly one node of T , (iii) the leaves are labeled by some rows of M (iv) each

edge (r1, r2) of T is labeled by the character c of M whose state differs in r1 from that

in r2 (see Figure 5.1 as an example). The cost of a tree is the number of state changes or

transitions of characters, called mutations.

We consider binary parsimony models – the most widely used – where characters can

take only the values (or states) zero or one, usually interpreted as the presence or absence

of an attribute in the taxa or species.

We can now introduce some specific parsimony models, starting from the simplest and

most restrictive: the perfect phylogeny. This parsimony model, that is one of the most

investigated [45], is conceptually based on the infinite sites assumption, i.e., no character

can mutate more than once in the whole tree. More precisely, in a perfect phylogenetic

tree each character i mutates exactly once (i.e., there is exactly one edge such that the
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M c1 c2 c3 c4 c5

s1 1 1 0 0 0
s2 0 0 1 0 0
s3 1 1 0 0 1
s4 0 0 1 1 0

(a) Binary matrix M

(b) A perfect phylogeny T

Figure 5.1: Example of perfect phylogeny T in Fig. 5.1(b) for a binary matrix M in
Fig. 5.1(a) of 5 characters and 4 species. In Fig. 5.1(b) each character has associated
a different color. The leaves of T are labeled with the species of M and the colors of
characters they own.

vertices are labeled by vectors differing in position i). Notice that a perfect phylogeny (if

it exists) minimizes the overall cost, as any perfect phylogeny has cost m corresponding

to the number of characters in the input binary matrix M .

We call the perfect phylogeny directed or rooted if there is a distinguished node (root of

the tree) corresponding to the [0, . . . , 0] vector. We focus on the rooted binary perfect

phylogeny and we give a formal definition from [41].

Definition 5.1 (perfect phylogeny). A rooted binary tree T explaining a binary matrix

M is called perfect phylogeny if and only if the following holds:

1. the root is labeled with a vector of all zero [0 . . . 0];

2. each character c of M univocally labels an edge in T representing the state transition

(or mutation) from 0 to 1 of the character c;

3. characters that label edges on the path from the root to a leaf i correspond to the

characters that have state 1 for the species i.

An example of perfect phylogeny is in Fig. 5.1.
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It is immediate that we can transform an un-rooted perfect phylogeny into a rooted

perfect phylogeny, by choosing an arbitrary node x and flipping (in each species) the

state of each character that initially has value 1 in x (those characters are also called

active in x). However in the following, unless specified differently, by perfect phylogeny

we mean rooted perfect phylogeny.

The binary perfect phylogeny reconstruction problem has received much attention. A

linear time algorithm when all data is known [46] and a near-optimal time algorithm

when the input data is incomplete [47] have been presented in literature.

The perfect phylogeny model turned out to be coherent and widely applied within the

haplotyping problem [48, 49], where we want to distinguish the two haplotypes present

in each individual when only genotype data is given. More precisely, the interest here is

in computing a set of haplotypes and a perfect phylogeny such that the haplotypes (i)

label the vertices of the perfect phylogeny and (ii) explain the input set of genotypes.

This context has been deeply studied in the last decade, giving rise to a number of

algorithms [50, 51].

Even though the perfect phylogeny has been central in the previous decades, the infinite

state assumption is too restrictive for explaining many other kinds of real biological

data and cannot be applied without adaptations or improvements. A first generalization

allows characters to assume more states (but keeping the infinite sites assumption). In

the general case, the problem is NP-hard [52], but fixed-parameter tractable algorithms

for the general perfect phylogeny problem, where the parameter is the maximum number

of states for each character, have been proposed [53, 54]. The special cases when there

are three or four possible states have more efficient algorithms [55–57].

Even allowing more states for each character, the perfect phylogeny still cannot explain the

biological complexity of real data. Unfortunately there are some evolutionary phenomena,

such as homoplasies, that violate the fundamental assumptions of perfect phylogeny [41].

Two kinds of homoplasies are recurrent mutations and back mutations. The first event

occurs when a character changes state along divergent branches of the tree, while a

back mutation implies that a character may go back to the ancestral state in descendant

species after changing its state. Two cases where the limitation of the perfect phylogeny

in presence of homoplasies is evident are the study of carcinogenesis and protein domains

evolution.

A protein domain is a part of protein sequence and structure that can evolve independently

of the rest of the protein chain. Many proteins consist of several structural domains,

while a domain may appear in a variety of different proteins. In this case it is quite

frequent to acquire a domain and then lose it [43].
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Carcinogenesis consists of the factors and mechanisms that cause the onset of cancer; it

results from many combinations of mutations, but only a few, called progression pathways,

seem to account for most human tumors [58]. The observation that tumors are evolving

cell populations leads to phylogeny-based studies. At the same time, the intrinsic nature

of quickly and degenerately proliferating cancer cells, results in a relative high amount of

sites with multiple mutations (i.e., in violations of the infinite sites assumption). The

studies of carcinogenesis reveal that data do not always fit the perfect phylogeny model,

since some mutations lead to inconsistency in the data that must be solved by their

removal. Detection of inconsistencies that have to be removed is a crucial task of many

tools for single nucleotide variants (SNVs) calling in tumor tissues [59]. Thus relaxing

the infinite site assumption, allowing for example back mutations, may solve this issue.

While the perfect phylogeny model does not model any homoplasy, some extended

parsimony models have been introduced to allow recurrent or back mutations. In the

following we present some established binary parsimony models that mainly differ from

different kinds of restriction on the type of state transitions from zero to one and vice

versa [41].

5.3 Camin Sokal Parsimony, Dollo Parsimony and its vari-

ants

A first extended model is the Camin-Sokal parsimony [60], where characters are directed,

i.e., only changes from zero to one are possible on any path from the root to one leaf of a

tree T . This fact means that the root of T is assumed to be labeled by the ancestral

state with all zeroes, and no back mutation is allowed, but any character can be acquired

more than once, i.e., recurrent mutations are possible. Fig. 5.2 gives an example of

Camin-Sokal parsimony tree.

Another maximum parsimony model that relaxes the strict assumption of the perfect

phylogeny model is the Dollo Parsimony. The latter model requires that characters can

be acquired at most once in the tree, but may be lost multiple times. In other words,

the Dollo parsimony allows any character to change state from zero to one only once,

but gives no restriction on the number of times that each character can mutate from one

to zero [41]. See Fig. 5.3 for an example.

Notice that, differently from the perfect phylogeny, a rooted Dollo phylogeny always

exists for an input matrix M . Indeed if we assume a special internal node [1, . . . , 1],

that is also the least common ancestor of all leaves, any binary vector can be generated,

as there is no restriction on the number of mutations from 1 to 0. Even though there
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Figure 5.2: Example of Camin-Sokal parsimony. Each character has a different color.
The edges are labeled with colored arrows indicating state transitions from 0 to 1 of the
corresponding characters. Observe that c1 (blue arrows) is gained twice in the tree.

Figure 5.3: Example of Dollo parsimony over a matrix of five characters. Each
character has a different color. The edges are labeled with colored arrows indicating
state transitions from 0 to 1 or from 1 to 0 of the corresponding characters. Observe
that c1 (blue arrows) is the only one that is lost twice on two different paths of the tree.

is no guarantee that such tree is optimal, it suffices to prove the existence of a Dollo

phylogeny. However such a tree does not make sense from a biological point of view,

because it implies the existence of an ancestral taxon that has all characters that are

present in the extant taxa.

An interesting application of the Dollo parsimony is the analysis of dynamic protein

interactions [61], which has also shown an interesting connection with graph theory.

Protein networks are graphs modeling protein interactions. More precisely, nodes are

proteins under analysis and edges represent the interactions among proteins.

As pointed out above, the perfect phylogeny model is too restrictive for some applications,

since it cannot explain the evolution of characters in the presence of homoplasy events.
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On the other hand, the optimization problems associated to the Dollo and Camin-Sokal

parsimony models are NP-hard [41]. Moreover, these models are often too general to be

useful in practical applications where characters are usually affected only by a few back

mutations or recurrent mutations. Therefore the research activity has been focused on

developing new models that relax the strict assumption of the perfect phylogeny in order

to adequately model actual phenomena and maintain the computational efficiency at

the same time. For example, in the context of proteomics when analyzing properties of

multi-domain proteins [43, 61].

The problem of constructing phylogenies with deviations from perfect phylogeny has

been tackled under the name of near perfect phylogeny [62] or near perfect phylogeny

haplotyping problems [63]. Especially the impossibility of losing a character that has

been previously acquired is too restrictive, resulting in more elaborated models, such

as the persistent character [43] and the General Cladistic Character Compatibility

(GCCC) [64, 65].

In particular, the persistent perfect phylogeny model [66] allows each character to be

lost (i.e., can chance its state from 1 to 0) in at most one edge of the phylogeny, while

the General Cladistic Character Compatibility imposes some restrictions on the possible

mutations (i.e., on the possible states labeling the endpoints of an edge), while allowing

the input data to be a set of possible states for each character of a species.

In the next section, we present the persistent perfect phylogeny model, the basis of the

results presented in Chapter 6.

5.4 The persistent perfect phylogeny

An important ingredient that may affect the applicability and success of parsimony

models is given by the set of characters used to infer the phylogeny. The issue of selecting

characters has been addressed in [61], where the notion of persistent or stable character

has been proposed. Such characters are allowed to violate the properties of a perfect

phylogeny, as a persistent character is gained and lost exactly once in the whole tree.

Based on this notion, a different model, which is a generalization of perfect phylogeny,

called the persistent perfect phylogeny has been proposed in [66]. Note that a persistent

perfect phylogeny is also a Dollo phylogeny, but differently from Dollo Parsimony, some

binary matrices may not admit a persistent perfect phylogeny.

Therefore, the main computational problem we discuss in this section is to compute (if

it exists) a persistent perfect phylogeny describing the evolutionary history of a given
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matrix M . We notice that the computational complexity of this problem is still unsettled,

while there exists an algorithm that is exponential in the number of characters, but

polynomial in the number of species [66]. This time complexity makes the algorithm

of practical interest for biological applications we have discussed before, as usually the

number of species is large, while the number of characters is bounded.

More precisely, the problem is called Persistent Perfect Phylogeny (PPP) reconstruction

problem and it is formally defined as follows.

5.4.1 The Persistent Perfect Phylogeny (PPP) Problem

Given a binary matrix M in input, the PPP problem asks for finding a PPP for M if

such a tree exists. Hence, the input is an n ×m binary matrix M where columns are

associated with the set of characters C = {c1, . . . , cm} and rows are associated with the

set S = {s1, . . . , sn} of species. Then M [i, j] = 1 if and only if the species si has the

character cj , otherwise M [i, j] = 0. The character c is gained on the only edge where

its state goes from 0 to 1 or, more formally, on the edge (x, y) such that y is a child of

x and c has state 0 in x and state 1 in y. In this case the edge (x, y) is labeled by c+.

Conversely, c is lost on the edge (x, y) if y is a child of x and c has state 1 in x and

state 0 in y. In the latter case the edge (x, y) is labeled by c−. For each character c, the

persistent perfect phylogeny model allows at most one edge labeled by c−.

Definition 5.2 (persistent perfect phylogeny). Let M be an n×m binary matrix. Then

a persistent perfect phylogeny for M is a rooted tree T such that:

1. each node x of T is labeled by a vector lx of length m;

2. the root of T is labeled by a vector of all zeroes, while for each node x of T the

value lx[j] ∈ {0, 1} represents the state of character cj in tree T ;

3. each edge e = (v, w) can be labeled by one character, but only edges incident on a

leaf can be unlabeled;

4. for each character cj there are at most two edges e = (x, y) and e′ = (u, v) such

that lx[j] 6= ly[j] and lu[j] 6= lv[j] (representing a state transition of cj). In that

case e, e′ occur along the same path from the root of T to a leaf of T ; if e is closer

to the root than e′, then lx[j] = lv[j] = 0, ly[j] = lu[j] = 1, and the edge e is labeled

c+
j , while e′ is labeled c−j ;

5. there is a 1-to-1 correspondence between each row r of M and each leaf x of T .

Moreover the vector lx corresponds to row r.
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M c1 c2 c3 c4

x1 1 0 0 0
x2 1 1 0 0
x3 0 1 0 1
x4 0 0 1 1

(a) Binary matrix M

(b) Persistent perfect phylogeny T for M

Figure 5.4: Example of persistent perfect phylogeny over a binary matrix M of 4
characters and 4 species. The species x1, x2, x3, x4 of M in Fig. 5.4(a) label the leaves in
the persistent phylogeny in Fig. 5.4(b). At each character of M we associate a different
color and the edges in T are labeled with colored state transitions from 0 to 1 or from 1
to 0. Note that c4 and c2 are persistent characters since they mutate twice.

Then we say that the binary matrix M is solved by tree T .

Fig. 5.4 shows an example of persistent phylogeny for an input binary matrix M of size

4× 4.

The requirement that only edges incident on a leaf might be unlabeled is technical and

stems from the fact that we want to establish a 1-to-1 correspondence between rows of

M and leaves of T . It is possible to give an equivalent definition, where each edge is

labeled by at least one character (or exactly one character), but in that case we would

need to associate also internal nodes to rows of M (see the definition of phylogenetic

network [67] for such an example).

We give below a formal definition of persistent character.
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Definition 5.3 (persistent character). Let s be a species and let c be a character such

that, in a persistent perfect phylogeny T , the path from the root of T to s traverses one

edge labeled c−. Then c is called persistent for s in T .

5.4.2 The extended matrix, the red black graph and the conflict graph

We can restate the PPP problem as a variant of the Incomplete Directed Perfect Phy-

logeny [47] by associating to the input matrix M an incomplete matrix called extended

matrix Me defined as follows.

Definition 5.4 (extended matrix). Let M be an instance of the PPP problem. The

extended matrix associated with M is an n× 2m matrix Me over alphabet {0, 1, ?} which

is obtained by replacing each column c of M by a pair of columns (c+, c−), where c+ is

called the positive character, and c− is called the negated character. Moreover for each row

s of M , Me[s, c
+] = 1 and Me[s, c

−] = 0 if M [s, c] = 1, while Me[s, c
+] = Me[s, c

−] =? if

M [s, c] = 0. The symbol ? means that the value of such cell is unknown.

Fig. 5.5 provides an example of extended matrix Me associated to a matrix M .

The goal is to complete the extended matrix Me obtaining a new matrix Mf by assigning

values to each ? entry. The pairs of characters (c+, c−) are called conjugate. A completion

of a pair (?, ?) associated to a species s and conjugate characters (c+, c−) of Me consists

of forcing Me[c
+, s] = Me[c

−, s] = 0 or Me[c
+, s] = Me[c

−, s] = 1.

Informally, the assignment of a conjugate pair (?, ?) in a species row s for two conjugate

characters (c+, c−) with (1, 1) means that character c is persistent for species s, i.e., it

is first gained and then lost on the path from the root to the leaf s. In the latter case

Mf [s, c−] = 1 is interpreted as the fact that the species s does not have the character

c, but some of its ancestors used to have it. On the contrary, the assignment of (1, 0)

means that character c is only gained on the path from the root to the species s.

A partial completion of the extended matrix Me, associated with an input matrix M ,

is a completion of some of its conjugate pairs, while a completion Mf is full if all its

conjugate pairs are completed.

Observation 2. The idea of completing a matrix with missing data in order to obtain

a perfect phylogeny has been introduced in [47], but in our case the completion has

some constrains, making the algorithm of [47] inapplicable. Indeed, the completion of a

conjugate pair (?, ?) is required to be either (0, 0) or (1, 1).
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M a b c d e

s1 0 0 0 1 0
s2 0 0 1 1 1
s3 0 1 1 0 0
s4 1 1 0 0 0
s5 1 1 1 0 1

Me a+ a− b+ b− c+ c− d+ d− e+ e−

s1 ? ? ? ? ? ? 1 0 ? ?
s2 ? ? ? ? 1 0 1 0 1 0
s3 ? ? 1 0 1 0 ? ? ? ?
s4 1 0 1 0 ? ? ? ? ? ?
s5 1 0 1 0 1 0 ? ? 1 0

Figure 5.5: An example of binary matrix M (which is the input of the persistent
phylogeny problem) and its associated extended matrix Me.

Figure 5.6: The conflict graph Gc associated with the binary matrix M of Fig. 5.5.

Finding such a full completion Mf of an extended matrix Me, associated with an input

matrix M , that admits a perfect phylogeny is equivalent to computing a persistent

phylogeny on the original matrix M . The following Theorem has been proved in [66].

Theorem 5.5. Let M be a binary matrix and Me the extended matrix associated with

M . Then M admits a persistent phylogeny if and only if there exists a completion Mf of

Me admitting a perfect phylogeny.

We devote the remainder of the section to the discussion of the algorithm of [66] for

determining whether an input matrix M admits a persistent perfect phylogeny and, in

case, to compute such a phylogeny (even though the solution computed may not be the

most parsimonious).

Note that a persistent perfect phylogeny is a generalization of a perfect phylogeny, as the

latter model represents the case when no character is ever lost. Based on this, another

definition of persistent phylogeny is the following.

Definition 5.6 (persistent phylogeny). A persistent phylogeny T is a perfect phylogeny

if there are no persistent characters.

A fundamental contribution of [66], building upon [47, 67], is to restate the problem of

computing a persistent perfect phylogeny as a graph theory question. In the following,

to keep the discussion self-contained we briefly recall two pivotal graphs used in this

approach. A graph without edges is called edgeless. A connected component is called

nontrivial if it has more than one vertex.
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The first graph, called conflict graph and defined in Def. 5.8 is based on the notion of

conflicting characters.

Definition 5.7 (conflicting characters). Let M be a binary matrix and let c1, c2 be two

characters of M . Then the configurations induced by the pair (c1, c2) in M is the set

of ordered pairs (M [s, c1],M [s, c2]) over all species S. Two characters c1 and c2 of M

are conflicting if and only if the columns c1 and c2 induce the four configurations (0, 1),

(1, 1), (1, 0), (0, 0).

Definition 5.8 (conflict graph). The conflict graph Gc = (C,Ec ⊆ C × C) of a matrix

M has vertices C and edges Ec the pairs (ci, cj) of conflicting characters.

See Figure 5.6 for an example of conflict graph.

The second graph, called red black graph, provides a graph representation a partial, or

full, completion of an extended matrix Me.

Definition 5.9 (red black graph). Let Me be an extended matrix associated with the

input matrix M . The red–black graph GRB for Me is an edge colored graph (V,E) where

V = C ∪ S, given S = {s1, ..., sn} and C = {c1, . . . , cm} the set of species and characters

of Me (i.e., for each two conjugate characters c+ and c−, only c is a vertex of GRB). The

set of edges E is defined as follows:

i. a pair (s, c) is a black edge iff the corresponding pair (c+, c−) at row s is completed

as Me[s, c
+] = 1 and Me[s, c

−] = 0;

ii. (s, c) is a red edge if the conjugate pair (c+, c−) at row s is completed as Me[s, c
+] =

Me[s, c
−] = 1;

iii. (s, c) is not an edge in GRB iff the conjugate pair (c+, c−) at row s is completed

either Me[s, c
+] = Me[s, c

−] = 0 or Me[s, c
+] = Me[s, c

−] = ?.

Given a red black graph GRB associated to a partial completion of an extended matrix

Me, the completion of pairs of conjugate characters in Me is translated in a graph

operation on the edges of the GRB, called realization of a character, which consists of

adding red edges, removing black or red edges. This graph operation over edges of GRB

may be iterated till the graph has no edge, i.e., GRB is edgeless.

Let (c+, c−) be two conjugate characters of Me. Let C(c) be the connected component of

GRB containing the vertex c. A character c in GRB is in one of three possible states:

- inactive: c has black incident edges in GRB;
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Figure 5.7: The figure illustrates the realization of character c4 in the red-black graph
GRB associated with an extended matrix Me. The corresponding completion of the
conjugate columns (c+4 , c

−
4 ) in Me is highlighted in red.

- active: c has red incident edges in GRB;

- free: the character c is an isolated node in GRB.

Hence, let us present the definition of realization of a character in GRB.

Definition 5.10 (realization of a character). Let GRB be a red-black graph and let C(c)

be the set of species that are in the connected component of GRB containing character c.

The realization of c in GRB corresponds to completing the conjugate pairs (c+, c−) in

Me and consists of the following steps:

1. If c is inactive then:

(a) for each species s /∈ C(c), pose Me[s, c
+] = Me[s, c

−] = 0;

(b) for each species s ∈ C(c) if there is no black edge (c, s) in GRB, add a red

edge (c, s) and complete Me by setting Me[s, c
+] = Me[s, c

−] = 1;

(c) remove from GRB all black edges (c, s) and label c active.

2. Else if c is active and c is connected by red edges to all species in C(c), then:

(a) remove all red edges (s, c) from GRB and label c free;

Fig. 5.7 shows an example of realization of a character in a GRB and the corresponding

completion of its conjugate pairs in the associated extended matrix Me.

Observe that when c is free in GRB , the corresponding conjugate pairs of columns (c+, c−)

in Me have been completed. Note also that given the input matrix M and its original

incomplete extended matrix Me, the corresponding GRB has only black edges, where all

characters are inactive. Moreover, a character c in GRB , that has been realized, is either
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(a) red Σ-graph in GRB

Me c+
1 c−1 c+

2 c−2 c+
3 c−3 c+

4 c−4
s1 1 0 1 1 ? ? 1 0
s2 1 1 1 0 1 0 ? ?
s3 1 1 1 1 1 0 1 0
s4 1 0 1 0 ? ? 1 0

(b) Completion of Me which contains a forbidden sub-matrix

Figure 5.8: Figure 5.8(a) shows a red black graph that has a red Σ-graph induced by two
characters c1 and c2 and three species s1, s2, s3. Figure 5.8(b) shows the corresponding
completion of the extended matrix Me associated to GRB. The forbidden sub matrix
(0, 1), (1, 0), (1, 1), highlighted in red, shows that the corresponding completion of the
extended matrix Me does not admit a perfect phylogeny.

free, or is active but there exists a species s ∈ C(c) that is not connected to c by a red

edge. In the latter case the realization of c in GRB is impossible meaning that c cannot

become free, till it is eventually connected to all species in C(c) by red edges.

In the following we recall from [66] an important definition of subgraph of GRB that it is

useful to understand if a partial, or full, completion of an extended matrix is solved by a

perfect phylogeny.

Definition 5.11 (red Σ-graph). Given a red black graph GRB, a red Σ-graph is a

sub-graph of GRB induced by two characters and three species consisting in a path of

four red edges.

Observation 3. Note that the red Σ-graph represents the forbidden matrix (0, 1), (1, 0)

and (1, 1) in a completion of the extended matrix Me. Hence, whenever the red Σ-graph

is present in the red-black graph, the corresponding completion of Me does not admit a

directed perfect phylogeny [45]. Consequently, the input matrix M for the PPP problem

cannot be solved by a persistent perfect phylogeny. In fact, by definition of red-black

graph associated with a partial or full completion of Me, a red Σ-graph (that includes two

characters c1 and c2 and three species s1, s2, s3) corresponds to two columns c−1 , c
−
2 in

the extended matrix such that have the configurations (0, 1), (1, 1) and (1, 0) for the rows

s1, s2, s3 in Me. Note that in GRB characters c1 and c2 cannot become free and their

realization is impossible.
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Fig. 5.8 shows an example of a GRB with a red Σ-graph and the corresponding completion

of Me containing the forbidden sub-matrix (0, 1), (1, 0), (1, 1).

Now we are ready to describe the main ingredients of the approach (presented in [66]) to

compute a persistent perfect phylogeny for an input matrix M , if such a tree exists.

5.4.3 An algorithm to compute a persistent perfect phylogeny

Recall that the aim is computing a completion Mf of the extended matrix Me that

admits a perfect phylogeny obtained by the realization of a special sequence of characters

of the red–black graph GRB, called successful reduction and defined below.

Definition 5.12 (successful reduction). Given a graph GRB for an extended matrix Me,

a successful reduction of GRB is an ordering r = 〈ci1, . . . , cim〉 of the set of characters

{c1, . . . , cm} of the input matrix M such that GRB becomes an edgeless red-black graph

by realizing each character in the sequence r and each active character whenever it can

be labeled free.

In [66], it has been shown that finding a solution for an instance of the IP-PP problem

is equivalent to computing the existence of a successful reduction for the red–black

graph. More precisely, let Me be an instance of the IP-PP problem. In the following,

Theorem 5.13 states that if Me admits a completion Mf that has a perfect phylogeny T ,

then there exists a successful reduction of graph GRB . Vice versa, a successful reduction

of the red black graph GRB for Me provides a completion Mf of Me that admits a perfect

phylogeny, thus giving a solution for the IP-PP instance.

Theorem 5.13. Let Me be an extended matrix associated with a binary matrix M . Then

Me admits a perfect phylogeny, if and only if there exists a successful reduction of the

graph GRB for Me.

The algorithm in [66], based on Theorems 5.5 and 5.13, builds a decision tree T that

explores all permutations of the set C of characters of Me (i.e., for each conjugate

pair (c+, c−), only the corresponding character c is in C) in order to find one that is

a successful reduction for GRB, if it exists. More precisely, each edge of the decision

tree represents a character of C and each path of the tree from the root to a leaf is a

distinct permutation of the set C. The algorithm works in a branch and bound like

manner, in the sense that if a branch of the decision tree ending in node x does not lead

to a solution, then the decision tree below x is discarded. More precisely, each branch

ending in node x gives a partial permutation π that consists of all characters labeling the

path from root r of T to node x. A partial completion Mπ is computed by realizing the
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sequence of characters, provided by the partial permutation π, in the red black graph

GRB. Whenever Mπ contains the forbidden matrix, then the branch ending in x does

not lead to a solution, and x is labeled as a fail node.

The worst case time of the algorithm is achieved when the whole decision tree T is

explored. Generating all permutations requires m! time. In [66] the authors showed that

the time complexity is O(m!×n×m×α(n2×m)), improving the complexity of a trivial

algorithm that tries all possible completions for the pairs (?, ?), and would require a

worst time that is exponential in both the number of species and columns of the input

matrix.

In Chapter 6, we consider the computational problem of explaining binary data by

the persistent perfect phylogeny model (referred as PPP problem) and investigating its

computational complexity. For this purpose we investigate the problem of reconstructing

a persistent phylogeny where some constraints are imposed on the paths of the tree.



Chapter 6

Explaining evolution via

constrained persistent perfect

phylogeny

In this chapter we define a natural generalization of the Persistent Perfect Phylogeny

(PPP) problem by combining the PPP and the Generalized Cladistic Character Compat-

ibility (GCCC) problems. We introduce the Constrained Persistent Perfect Phylogeny

problem (CPPP) which generalizes the PPP problem by adding constraints for some

characters in the input matrix [5].

We explore some algorithmic solutions for the CCCP problem. More precisely, based

on a graph formulation of the CPPP problem, we are able to provide a polynomial

time solution for matrices whose conflict graph has no edges. Using this result, we also

develop a parameterized algorithm for solving the CPPP problem where the parameter

is the number of characters, partially answering the open problem of determining the

computational complexity of the PPP problem.

We conduct a preliminary experimental analysis, both on simulated and real data, showing

that our method can manage successfully binary characters data incorporating back

mutations.

Finally, we give a characterization of binary matrices that cannot be described by the

persistent perfect phylogeny model.

92
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6.1 The constrained persistent perfect phylogeny

We now formally define the constrained persistent perfect phylogeny (CPPP) problem.

The input of the problem is a binary matrix M and a set F = {(ci1 , si1), . . . , (cil , sil)} of

constraints, such as M [sij , cij ] = 0 for each j. The fact that a pair (c, s) (i.e., a character

c and a species s) is constrained means that s and all of its ancestors do not have the

character c. In other words, c cannot be persistent on the path from the root of the tree

to the leaf node s. A solution for this instance is a persistent perfect phylogeny T for

M such that, for each constraint (cij , sij ), none of the edges from the root of T to the

leaf labeled by sij is labeled c+
ij

. This implies that no edge from the root of T to the leaf

labeled by sij can be labeled c−ij .

The idea of the extended matrix Me applies also to the CPPP problem. In this case, if

M [s, c] = 1, then Me[s, c
+] = 1 and Me[s, c

−] = 0, if M [s, c] = 0 and (c, s) is a constraint,

then Me[s, c
+] = Me[s, c

−] = 0. Finally, if M [s, c] = 0 but (c, s) is not a constraint,

then Me[s, c
+] =? and Me[s, c

−] =?. An immediate extension of the result in [66] shows

that Me is solved by a directed perfect phylogeny if and only if (M,F ) is solved by a

constrained persistent perfect phylogeny.

Just as for the PPP problem, we explore a graph formulation of the CPPP problem

based on the equivalence of PPP to the problem of completing an extended matrix Me

associated with a binary matrix M . The graph formulation derives again by representing

a completion in terms of the red black graph associated with an extended matrice, as

described in Section 5.4.2.

Recall that there exists a 1-to-1 correspondence between completing entries of an extended

matrix Me and realizing characters in the corresponding the red black graph GRB.

When considering the CPPP problem, some entries of a partially completed matrix are

constrained meaning that some characters in the associated red black graph cannot be

realized. On the contrary, all characters in a red black graph for the PPP problem can

be realized. Thus, it is quite easy to show that the main red black graph reduction

characterization stated for the PPP problem can be extended to the constrained persistent

perfect phylogeny problem, by simply adding the constraint that some characters cannot

be realized in the red black graph.

The red black graph reduction turns out to be quite useful to investigate new algorithmic

solutions for the PPP problem. In [5] we are able to prove that there exists a class of

binary matrices that always admit a solution for the PPP problem. In other words,

this kind of instances admits a persistent perfect phylogeny that can be computed in

polynomial time. Hence, we provide a polynomial time algorithm for this special case.

Based on the latter algorithm we give a fixed-parameter algorithm for the CPPP problem,
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where the parameter is the number of characters. This algorithm is based on the search

tree technique [68], improving the exponential time algorithm given in [66] and described

in Section 5.4.3.

We observe that the CPPP problem is a special case of the General Character Cladistic

Compatibility problem (GCCC) [64]. An instance of the GCCC problem is a matrix

MG where rows are species and columns are characters. Each entry of the matrix MG

is a subset of the states that character c may assume in species s. Another part of the

instance is a specification of all allowed transitions between states in a solution. A feasible

solution is a perfect phylogeny where for each species s and for each character c, the state

is picked from the input set MG[s, c]. Given an instance (M,F ) of CPPP, we obtain a

matrix MG as follows. If M [s, c] = 1, then MG[s, c] = {1}. If M [s, c] = 0 and (c, s) ∈ F ,

then MG[s, c] = {0}. Finally, if M [s, c] = 0 and (c, s) /∈ F , then MG[s, c] = {0, 2}. The

only allowed transitions are from state 0 to 1 and from 1 to 2. This case of GCCC

corresponds to case 6 of Table 1 in [64], whose complexity is reported as open. Thus the

results we give in [5] also apply to this case.

Recall that a main result of [66] is that finding a solution of PPP is equivalent to finding

a successful reduction for a red black graph GRB , that is a sequence of characters whose

realization in GRB makes the red black graph edgeless (see Section 5.4.3). For the CPPP

problem a similar result holds, but we have to adapt the notion of successful reduction,

so that there is a third case when the reduction is impossible: when for some species

s with (c, s) ∈ F (i.e., it must be Me[s, c
+] = Me[s, c

−] = 0), (c, s) is also a red edge of

GRB.

In the following section we give a different notion of successful reduction, that we call

c-reduction, corresponding to a sequence of edge labels in a depth first traversal of a

persistent perfect phylogeny.

6.2 The c-reduction and the persistent perfect phylogeny

In this section we explore the connections between the notion of persistent phylogeny,

the red black graph and a successful reduction.

Let T be a persistent perfect phylogeny for a binary matrix M . Consider a depth-first

traversal of T . The sequence of edge labels C traversed during the depth fist traversal of

T is uniquely defined. The converse also holds, that is given a sequence C of edge labels,

we can reconstruct the unique persistent perfect phylogeny T such that C is the sequence

of edge labels traversed during a depth-first traversal of T .
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The main idea is that we associate a partial phylogeny P to each prefix of C, where each

leaf x of P is labeled with the submatrix Mx of Me such that Mx has exactly the species

and the characters that are in the subtree of T rooted at x. Recall that each matrix

Mx has a graphical representation given by the red black graph. Then determining the

next edge label (c+
i or c−i ) to be added to the prefix of C corresponds to realizing the

corresponding unsigned character ci (respectively making ci active or free) in the red

black graph associated with Mx, as described in Definition 5.10.

Observe that given a persistent phylogeny T for M , we can label each node of T with

a red black graph whose vertices are the species and the characters of the extended

matrix Me associated with M . Note that for each conjugate pair (c+, c−) in Me, only the

corresponding unsigned character c of M is a node in GRB . The red black graph labeling

the root of T (also called the red black graph associated to M) contains only black edges

(s, c) for each species s and character c such that M [s, c] = 1. The red black graph

GRB(w) labeling a node w of T is defined recursively from the red black graph GRB(v)

labeling the parent v of w. Given the correspondence between a partial completion of

an extended matrix Me and a red black graph, the red black graph labeling a node v

is a complete representation of the sub-matrix of Me that must be solved by a subtree

rooted at v. In other words, while constructing a persistent phylogeny T , the operation

of adding a new edge to T labeled by c+ or c− corresponds to realizing the corresponding

unsigned character c in the red black graph.

In [6] we give a definition of successful reduction that is slightly different from the one

in [66] (see Section 5.4.3).

Definition 6.1 (c-reduction [6]). A c-reduction is a sequence C of characters, such that

each character appears once or twice in C. Moreover, if a negative character c− appears

in R, then the corresponding positive character c+ precedes c− in C.

Observation 4. A fundamental observation is that a traversal of a persistent phylogeny

T corresponds to a c-reduction, and that a c-reduction corresponds to a traversal of a

persistent phylogeny T . Moreover, this correspondence exists also between prefixes of a

c-reduction and partial persistent phylogenies. We recall that, to obtain an algorithm for

PPP, it suffices to have an algorithm that finds the edge label to be added to the prefix of

C computed up to that point. The c-reduction C obtained by a depth-first traversal of the

tree is a sequence of edge labels whose realization results in an edgeless red black graph.

This observation allows to describe exponential time algorithms that basically consist of

enumerating all possible c-reductions, exploiting the fact that if a given partial c-reduction

leads to a realization with an edgeless red black graph, then it is impossible to extend
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M c1 c2 c3 c4 c5

s1 0 0 0 1 0
s2 0 0 1 1 1
s3 0 1 1 0 0
s4 1 1 0 0 0
s5 1 1 1 0 1

Figure 6.1: Binary matrix M of size 5× 5

the partial c-reduction into a complete c-reduction (that is a persistent phylogeny solving

the original instance).

In the following, we give a definition of conflict graph Gc associated with a generic red

black graph GRB rather than with a binary matrix M , as described below.

Definition 6.2 (conflict graph associated with a red black graph). Given an input

binary matrix M and a red black graph GRB associated with a partial completion of

the extended matrix Me of M , we compute the sub-matrix M ′ of M by selecting only

species and characters that are not isolated nodes in GRB (i.e., they are at least in one

connected component of GRB). The conflict graph Gc associated with GRB has nodes

that are characters in the sub-matrix M ′ and there is an edge (ci, cj) in Gc iff ci and cj

are conflicting in M ′(see Definition 5.7).

An example of correspondence between successful of c-reduction and a per-

sistent perfect phylogeny T

Given the binary matrix M in Fig. 6.1, Fig. 6.2 illustrates a persistent perfect phylogeny

T that explains M .

Observe that the sequence of edge labels C = 〈c+
4 , c

+
3 , c

+
5 , c

+
2 , c
−
4 , c

+
1 , c
−
5 , c
−
3 , c
−
1 〉, traversed

by a the depth-first traversal of T , corresponds to a successful c-reduction of the red black

graph GRB. More precisely, the root r of T is labeled with the initial red black graph

GRB(r) having only black edges and no active character. Given the edge (r, v) labeled

c+
4 in T , v is labeled with the red black graph GRB(v) obtained after the realization of

the inactive character c4 in GRB(r) as we can see in Fig. 6.2. Similarly, given the edge

(w, z) with label c−4 , w is labeled with the red black graph GRB(w) where c−4 is active

and not free, while z is labeled with the red black graph GRB(z) obtained from GRB(w)

by making c4 free (c4 becomes an isolated node in GRB(z)). This holds for all the edges

in T while traversing T by means of a depth-first traversal. Note that the last edge that

is traversed, say (y, l), is the one labeled by c−1 , the character that appears as last in C.
Observe that the node l is labeled by the edgeless red black graph GRB(l). This shows

an example of the fact that a traversal of a persistent phylogeny T corresponds to a
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Figure 6.2: The figure illustrates that the c-reduction C =
〈c+4 , c

+
3 , c

+
5 , c

+
2 , c
−
4 , c

+
1 , c
−
5 , c
−
1 , c
−
1 〉 corresponds to a depth-first traversal of a per-

sistent perfect phylogeny for the binary matrix M if Fig. 6.1. Each node of the three
has its associated GRB. In the figure only some red black graphs are shown. Finally,
some nodes of T are labeled with conflict graphs associated with red black graphs
labelling the corresponding nodes.

c-reduction, and that a c-reduction corresponds to a traversal of a persistent phylogeny

T .

Observe that each red black graph labeling a node in T (see Fig. 6.2) has its associated

conflict graph. For example the root r of T is labeled with GRB(r) that is the red black

graph, where all characters are inactive, associated to the whole binary matrix M in

Fig. 6.1. Given the edge (r, v) labeled by c+
4 , the node v in T is labeled with the red black

graph GRB(v). The latter has associated a conflict graph with only one edge (c1, c2).

Indeed, by selecting from M only the characters and the species that are non-isolated

nodes in GRB(v), we obtain a sub-matrix M ′ of M that does not have the species s1.

Hence, the conflict graph of M ′ has, hence, only one pair of conflicting characters (c1, c2).

Similarly, given the edge (e, d) of T labeled by c+
5 , the node d is labeled with the red
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black graph GRB(d) obtained from GRB(e) after the realization of c+
5 in GRB(e). The

conflict graph associated with GRB(d) is edgeless.

6.3 Solving CPPP on matrices with edgeless conflict graphs

In the following, we will exploit some properties of the red black graph to demonstrate

that the PPP problem for matrices that have an edgeless conflict graph has always a

solution. More precisely, we give a polynomial algorithm for solving the PPP problem

for such matrices that consists in finding a successful reduction for the associated red

black graphs.

First, we need to give other basic definitions that are fundamental for the algorithm we

develop: neighborhood of character in GRB; maximal characters in a red black graph

GRB; adjacency graph.

Definition 6.3 (neighborhood of a character). Given a red black graph GRB and given

a character c in GRB the neighborhood of c is the set of species N(c) that are directly

connected to c either by black edges or by red edges (dependently from the fact that c is

inactive or active in GRB).

Definition 6.4 (maximal character). Given a red black graph GRB, a character c is

maximal in GRB if there is no character c′, such that c 6= c′ and N(c) ⊆ N(c′).

We build a graph G = (V ;E), called adjacency graph for a red black graph GRB , defined

as follows.

Definition 6.5. (adjacency graph) The adjacency graph G for a red black graph GRB,

is a pair of G = (V,E), where V is the set of characters of GRB and (u, v) is an edge of

G if and only if u, v are adjacent in GRB, i.e., there is at least one species s such that s

is adjacent to both u and v in the red black graph GRB. In other words, u and v share

at least one species.

Given an instance (M,F ) for the CPPP problem, we say that one character ck of M can

be realized in GRB if ck does not belong to any pair (cij , sij ) ∈ F . In other words, ck can

be realized if it is not involved in any constraint.

Our algorithm for solving the PPP and CPPP problems, for instances described by

edgeless conflict graphs, finds a successful reduction by simply at each step computing

the maximal inactive characters that can be realized in the red black graph following the

set of constraints.
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We first state some Lemmas that are used to show that maximal characters in GRB can

be realized without inducing any red Σ-graph in the red black graph (see Definition of

red Σ-graph 5.11).

The following property is easily proved by induction on the length of a path in the red

black graph connecting two maximal characters.

Lemma 6.6. Let GRB be a connected red black graph such that GRB has no red Σ-graph

and the associated conflict graph Gc is edgeless. Let CM be the set of maximal inactive

characters in GRB. Then CM consists of elements that are pairwise adjacent in the

adjacency graph for GRB.

Proof. Assume that M is the matrix for the red black graph GRB. Let a, b be two

arbitrary characters in CM .

Since the red black is connected, there exists a path π connecting the two vertices a and

b. Then by induction on the number k of internal characters of the smallest path in GRB

that connects a to b we show that (a, b) is an edge in the adjacency graph G. Assume

first that k = 1, i.e. c is the only internal character of the shortest path π. It follows

that (a, c), (c, b) are edges of the adjacency graph G.

Assume on the contrary that there is no edge (a, b) in the adjacency graph. First assume

that c is comparable with b or a in GRB. Since a, b ∈ CM , it holds that c < b or c < a.

But this fact would imply that a, b are adjacent in graph G as they must a common

species with c, being GRB connected and c adjacent to a or b in the adjacency graph G.

Hence, assume now that c is not comparable with both a and b. First let us consider the

case that c is non active in GRB. The following cases must be considered. First, since a

is adjacent to c, there exists s1 such that a and c share s1, i.e. s1 ∈ N(a) ∩N(c). Hence

we have the configuration (1, 1) for (a, c) in M . Moreover, as c is not comparable with

a, there exists as species s2, s.t. s2 ∈ N(a) \N(c) and vice versa there exists a species

s3, s.t. s3 ∈ N(c) \N(a). Thus we have the configurations (1, 0) and (0, 1) for the pair

of characters (a, c). Now, being b maximal and not comparable with c, there must be a

species s4 s.t. s4 ∈ N(b) \N(c). Being N(b) and N(a) disjoint sets (as we assumed a

and b do not share any species), it follows that s4 6∈ N(a) ∪N(c). Hence we have also

the fourth configuration (0, 0) for the pair (a, c). But this fact would imply that (a, c) is

an edge of the conflict graph Gc which is a contradiction with the hypothesis.

Let us now consider the case that c is an active character connecting a and b in GRB by

red edges. Recall that by assumption c is not comparable with both a and b.

Let N(c)− denote the species that are not in N(c). Note that N(c)− is the set of species

connected to c by black edges before its realization in GRB.
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Now, as c is connected by a red edge to a species s1 possessed by a then s1 ∈ N(a)\N(c)−.

Hence the pair (a, c) has the configuration (1, 0) for the species s1 in M . Similarly, there

is a species s2 ∈ N(b) \N(c)−, as s2 is possessed by b but there is a red edge connecting

c and s2. Note that since N(a) and N(b) are disjoint, s2 6∈ N(a). This means that the

pair (a, c) has the configuration (0, 0) for the species s2 in M .

Since c and b are not comparable there must be a species s3 such that s3 ∈ N(b) and

s3 6∈ N(c), then s3 must be in N(c)−. Recall that N(a) and N(b) are disjoint by

assumption, meaning that s3 6∈ N(a). Thus the pair (a, c) has the configuration (0, 1)

for the species s3 in M .

For the same reason, since a and c are not comparable in GRB, there must be a species

s4 such that s4 ∈ N(a) and s4 ∈ N(c)−. Hence the pair (a, c) have the configuration

(1, 1) for the species s4 in M . Consequently, (a, c) are in conflict that is a contradiction

with the initial assumption on the conflict graph.

Then assume that k = n > 1. Clearly, G must have edge (a, c) where c is the vertex

adjacent to a on the path having k internal vertices. Since the path connecting c and

b has k − 1 internal vertices, by induction it holds that also edge (c, b) is in graph G.

Consequently, there exists a path with 1 vertex in the red black graph connecting a and

b. By induction, we show that (a, b) must be an edge of the graph G, as required.

The following properties can be proved as consequence of the definition of realization of

characters in the red black graph and assuming that the input matrix is associated with

has an edgeless conflict graph.

Lemma 6.7. Let GRB be a connected red black graph has no red Σ-graph and the

associated conflict graph is edgeless. Then the realization of two maximal non active

characters a and b in GRB does not produce any red Σ-graph.

Proof. First note that by Lemma 6.6 a and b are adjacent in GRB , thus (a, b) is an edge

in the adjacency graph. In other words, there is a species s1, s.t. s1 ∈ N(a)∩N(b). Also,

since a and b are maximal characters there must be two species s2, s3, s.t. s2 ∈ N(a)\N(b)

and s3 ∈ N(b) \ N(a). Hence, there does not exist a species s4, such that s4 6∈ N(a)

and s4 6∈ N(b), otherwise (a, b) would be an edge in the conflict graph Gc that is a

contradiction with the hypothesis. It follows that after the realization of a and b in GRB

the red edges adjacent to a are disjoint from the red edges adjacent to b. Moreover, the

red-edges adjacent to a include the red-edges of active characters contained in b and the

same holds for the red-edges adjacent to b.

Now, assume that there is a character c active in GRB that is adjacent to b. Either c is

free after the realization of b, otherwise the realization of b adds red-edges that are in
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Algorithm 1: Procedure Solve-CPPP-edgeless-conflict

Input : A red black graph GRB s.t. its associated conflict graph Gc is edgeless and a
set F of constraints.

Output : A realization Sc of the characters of GRB resulting in a constrained persistent
perfect phylogeny taking in account F , if such a phylogeny exists.

1 Sc ← empty sequence;
2 while GRB is not edgeless do
3 foreach active character c in GRB that is free do
4 realize c in GRB;
5 CM ← maximal inactive characters that are in the same connected component of

GRB;
6 D ← the subset of CM consisting of the characters that can be realized, i.e., the set

of constrained F is satisfied;
7 if D = ∅ then
8 return no solution
9 else

10 Add to Sc all characters in D;
11 Realize the characters of D in any order, updating GRB;
12 add to D the free characters in the graph GRB;

13 return Sc;

the same red connected component of c. The same fact holds after the realization of a

character a that is adjacent to b in the adjacency graph. This is a consequence of the

fact that as stated above there does not exists species s, s′, s′′ such that s 6∈ N(a)∪N(b),

s′ 6∈ N(a) ∪N(c) and s′′ 6∈ N(b) ∪N(c). Thus the Lemma follows.

Remark 6.8. The absence of conflicts does not guarantee that a solution for the CPPP

problem actually exists, while a solution always exists for the unconstrained PPP problem.

However, we are able to provide an efficient algorithm (Algorithm 1) for the CPPP

problem in absence of conflicting characters, which is a cornerstone for our algorithm for

the general case. Observe that Algorithm 1 can be also applied to find a solution for the

PPP problem simply setting F = ∅.

Algorithm 1 builds a successful reduction Sc by iteratively adding to Sc the maximal

inactive characters of the red black graph GRB. Recall that the successful reduction in

GRB provides a completion of the extended matrix that admits a perfect phylogeny. The

latter can be built using the classical linear time algorithm for reconstructing a perfect

phylogeny [45].

Theorem 6.9. Let GRB be a connected red black graph such that GRB has no red Σ-graph

and the associated conflict graph is edgeless. Then Algorithm 1 computes a successful

reduction of GRB.
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Proof. We show that at each iteration of Algorithm 1 the following invariant property

holds: the connected components of GRB have no red Σ-graph. Consequently, at the end

of the iterative step, when no inactive character is left, it holds that all active characters

are free and the graph GRB is edgeless, as required, showing that Sc is a successful

reduction.

Clearly, the invariant property holds initially for GRB. Moreover, at each iteration the

invariant property holds as a consequence of Lemma 6.6 and Lemma 6.7. In fact, only

maximal inactive characters are realized, which by Lemma 6.6 are pairwise adjacent. By

Lemma 6.7, their realization does not produce any red Σ-graph.

6.4 An algorithm for CPPP problem

In this section we propose an algorithm for the CPPP problem that extends the algorithm

in [66] (discussed in Section 5.4.3), but uses the procedure Solve-CPPP-edgeless-

conflict(GRB, F ) to improve the efficiency. Our algorithm uses implicitly a search tree

technique [68] to explore the tree of all possible permutations of characters to be realized

in GRB. The search tree has at most m! leaves, where m is the number of columns of

the input matrix M . Therefore we only need to describe a polynomial-time algorithm to

compute an edge of the search tree (which mainly consists of realizing a character c of

M in GRB). Just as the algorithm in [66], we associate to the matrix M , of the instance

(M,F ), an extended matrix Me which is then analyzed to find a solution. In fact, (M,F )

has a solution if and only if there exists a successful reduction for GRB which respects F

and corresponds to a completion Mf of Me explained by a perfect phylogeny. Indeed, we

require also that all constraints in F are satisfied for the CPPP problem.

The algorithm in [66] explores all feasible permutations of the set of characters to be

realized in GRB in order to find one that is a successful reduction, if such a sequence

exists. Clearly computing all permutations is not efficient, therefore we implicitly build

a decision tree T , where at each step we fix a character in a given position of the

permutation.

More precisely, for each node x of the decision tree, we compute Me(x), obtained from

Me by realizing the sequence of characters πx labelling the edges on the path from the

root of T to x. We label x with the corresponding red black graph GRB(x) obtained

realizing πx. Then, we compute the conflict graph Gc(x) for x associated with GRB(x)

(See Definition 6.2). When Gc(x) is edgeless, instead of further exploring the decision

tree, we apply Algorithm 1, hence we cut the decision tree. On the other hand, if GRB(x)

contains a red Σ-graph, then Me(x) does not admit a perfect phylogeny. In this case M
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cannot admit a persistent perfect phylogeny, hence we can stop exploring that portion of

the decision tree. Moreover, we can stop the search as soon as we find a solution, since

we have no optimization criterion to discriminate among feasible solutions. In practice,

all those criteria allow to avoid exploring a large part of the decision tree, improving the

efficiency of the algorithm in [66] as shown in our experimental analysis.

6.5 Experimental analysis

We implemented our algorithm as a C++ program and we tested it over simulated

data produced by ms [26]. Moreover, we tested our program on real data coming from

the International HapMap project [69]. All tests have been performed on a standard

workstation.

The two different kinds of data correspond to two separate goals. The analysis on

simulated data is aimed at studying the scalability of our approach for increasing numbers

of species and characters. More precisely we run our program for n = 10, 20, 40, 60 (recall

that n is the number of species) and for values of m (the number of characters) ranging

from n/2 to 3
2n.

Moreover, ms produces matrices that have a perfect phylogeny, but can have duplicated

rows and columns. To introduce back mutations, we randomly modified at most one

state of each duplicated row. For each choice of the parameters n and m we produced

100 random instances, on which we have run our program with a 15-minute timeout,

without imposing any constraint. The results are represented in Table 6.1.

For the first 10 out of the 100 instances of each parameter choice, we modified the input

matrices, by introducing some random constraints, in order to settle if constraining the

set of feasible solutions can help in finding a persistent phylogeny. For each instance of

the first phase, we produced 10 instances with 1 or 16 random constraints. For both cases

we determined when at least one of the 10 constrained instances is solved more quickly

than the unconstrained instance. The goal is to settle when there is a sizable (in our

case 10%) probability that introducing some random constraints can help in computing

a persistent phylogeny. Moreover, we determine when the median of the 10 constrained

instances is solved more quickly than the unconstrained instance. In this case the goal is

to determine when there is a 50% probability that some random constraints can help in

computing a persistent phylogeny.

The most important result of this experiment is that for instances where our implementa-

tion requires at least a second (on average), the idea of introducing random constraints
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Species Characters
Instances
completed

within 15 min.

Min time
(sec)

Max
time
(sec)

Avg.
time
(sec)

Std.
dev.

10 5 100/100 0 0.01 0.00 0.00
10 7 100/100 0 0.25 0.01 0.03
10 10 100/100 0 1.93 0.11 0.30
10 12 94/100 0 12.95 0.84 1.93
10 15 84/100 0 43.89 5.71 9.80
20 10 100/100 0 4.72 0.08 0.47
20 15 97/100 0.02 18.12 1.15 2.53
20 20 93/100 0.13 95.03 10.44 19.14
20 25 79/100 1.09 253.68 41.98 60.35
20 30 63/100 3.84 247.03 59.06 63.81
40 20 100/100 0.06 89.02 2.04 8.93
40 30 98/100 0.99 156.16 22.03 33.17
40 40 80/100 7.23 598.32 128.47 154.92
40 50 45/100 19.14 585.42 198.81 146.39
40 60 19/100 50.26 577.1 319.25 183.10
60 30 99/100 0.64 222.79 14.36 33.21
60 45 90/100 8.76 590.03 123.05 148.48
60 60 51/100 37.63 593.06 252.34 168.92

Table 6.1: Running times on unconstrained simulated instances. All times are in
seconds.

is often beneficial. This fact suggests a direction for further improvements, that is incor-

porating into our program some deterministic constraints, based on a cursory analysis

of conflict graphs and red black graphs. Actually, how we manage an edgeless conflict

graph is as an example of this idea. Table 6.2 summarizes the experiment on constrained

simulated instances.

Finally, the algorithm has been tested on real data coming from the International HapMap

project [69]. The data are classified by type of population. In our case, we used data from

the set ASW (African ancestry in Southwest USA). Each individual is described by the

two haplotypes (in our application the two haplotypes correspond to two different species,

i.e. two different rows of the matrix). This experiment investigates the usefulness of the

constrained persistent model to manage haplotypes data that cannot be explained by

the perfect phylogeny model. In fact, none of those instances admits a perfect phylogeny,

but our model and implementation are able to find a reasonable interpretation for the

data. The data set consists of binary matrices of dimensions 10× 10, 26× 15, 26× 25,

and 26 × 30. For each group we considered 10 matrices. In all cases the matrices do

not admit perfect phylogeny, and the number of conflicts changes from a minimum of 4

to a maximum of 138. Increasing the size of the matrix, and therefore the number of

conflicts, the percentage of matrices that admit persistent perfect phylogeny decreases.

More in detail, 80% of the tested matrices of size 10× 10 admits solution, only 20% of

the tested matrices of size 26 × 15 admits solution, and none of the sets 26 × 25, and
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26× 30 admits solution. The results show that haplotype data may be related by the

persistent phylogeny in case they cannot be explained by the perfect model. It would be

interesting to investigate the biological soundness of the persistent perfect phylogeny in

this context.

6.6 A characterization of matrices without a persistent

phylogeny

In this section we investigate some properties of matrices that do not admit a persistent

phylogeny. In the case of the perfect phylogeny, there exists a well known characterization

of matrices that do not have a solution as those matrices that contain a small fixed

forbidden sub-matrix.

We will show that, differently from the case of the perfect phylogeny, in the persistent

case there exists an infinite family of minimal forbidden sub-matrices. More precisely, we

Number of added constraints

1 16

Species Characters Fastest Median Fastest Median

10 5 0 0 0 0
10 7 1 0 1 1
10 10 7 5 7 7
10 12 7 5 7 6
10 15 8 3 9 8

20 10 9 4 10 10
20 15 10 9 10 10
20 20 9 1 10 10
20 25 9 7 9 9
20 30 7 2 10 9

40 20 9 7 10 10
40 30 10 7 10 10
40 40 8 1 10 9
40 50 10 0 10 10
40 60 1 0 9 6

60 30 8 7 10 10
60 45 10 8 10 10
60 60 7 6 8 7

Table 6.2: Improvements of constrained simulated instances over unconstrained
instances. For each choice of the number of species and of characters, we state the
number of instances where at least one of the 10 random constrained instances is solved
more quickly than the unconstrained instance (columns labeled Fastest). Moreover we
state the number of instances where the median of the 10 random constrained instances
is solved more quickly than the unconstrained instance (columns labeled Median).
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will provide a set of n× n matrices that cannot be explained by a persistent phylogeny,

but whose sub-matrices all have a persistent phylogeny. The proof of these result is based

on the red black graph representation of those instances.

Theorem 6.10. Let M be the binary matrix with n rows and n columns (with n > 4)

such that such that its associated red black graph consists of a simple cycle. Then M does

not admit a persistent perfect phylogeny, but any sub-matrix of M admits a persistent

phylogeny.

Proof. Assume that s1, c1, s2, c2, s3, c3 . . . , sn, cn, s1 is the simple cycle of the red black

graph, where n > 4. Then we can show that any permutation of characters the cannot

be a successful reduction of the red black graph since the consecutive realization of any

pair of characters induces a red Σ-graph in the GRB.

Let ci and cj be two characters of the simple cycle, where 1 6 i < j 6 n. Now, each

character ci and cj is adjacent to two species. But since there are at least 5 species in

the simple cycle, it follows that there is a species s
′

that is not adjacent to both ci and

cj . First notice that ci is adjacent to species si and si+1, cj for j 6= n is adjacent to sj

and sj+1 while, when j = n, cj is adjacent to sj and s1 closing the cycle. Thus, the

consecutive realization of ci and cj in GRB produces a red Σ-graph induced by the pair

of characters (ci, cj) and the species: (a) si, s
′
, cj+1 when i > 1 and j < n, or (b) species

s
′
, si, s1 when i > 1 and j = n, or (c) species s

′
, si+1, sn when i = 1 and j = n.

Recall that the presence of a red Σ-graph in GRB corresponds to a completion of the

extended matrix Me that does not admit a perfect phylogeny. Finally, since the realization

of any pair of characters in the red black graph induces a red Σ-graph no solution exists

for the instance M of the PPP problem.

Now we will prove that any sub-matrix of M has a persistent phylogeny. By construction

of M , it suffices to prove the cases when the last column or the last row of M is removed.

Let Mr be the sub-matrix of M obtained by removing the n-th row. The phylogeny

consisting of one single path whose edges are labeled by the sequence of characters

(c-reduction) 〈c+
n , c1+, c−n , c

+
2 , c
−
1 , c

+
3 , c
−
2 , . . . , c

+
n−1〉 solves the matrix Mr. Let Mc be the

sub-matrix of M obtained by removing the n-th column. In this case, the phylogeny

consisting of one single path whose edges are labeled by the sequences of characters (c-

reduction) 〈c+
1 , c2+, c−1 , c

+
3 , c
−
2 , . . . , c

−
n−2, c

−
n−1〉 is a solution for the matrix Mc, completing

the proof.

An example of GRB consisting of a simple cycle and associated to an input binary matrix

M of size n× n is in Fig. 6.4.
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Figure 6.3: The figure illustrates the conflict graph Gc associated with the binary
matrix M of size n× n of Lemma 6.10.

Figure 6.4: The figure illustrates the red black graph (a simple cycle) associated with
the binary matrix M of size n× n of Lemma 6.10.

M c1 c2 c3 c4 c5

s1 0 0 0 1 1
s2 0 0 1 0 0
s3 0 1 1 1 0
s4 1 0 1 1 1
s5 1 1 0 0 1

Figure 6.5: Binary matrix M of size 5× 5 that does not admit a persistent perfect
phylogeny

Observe that the set of matrices described in Theorem 6.10 have associated a chordal

conflict graph (an example in Fig. 6.3).

Moreover, notice that the forbidden condition stated in Lemma 6.10 is not sufficent to

identify matrices that do not have a solution. In fact the matrix M of size 5× 5 illustrate

in Fig. 6.5 is another example of matrix that does not have a solution but whose red

black graph is not a simple cycle.



Chapter 7

Filling incomplete genomic

sequences

In this chapter we consider two combinatorial problems that aim to reconstruct complete

genomes by inserting a collection of missing genes in incomplete genomic sequences. The

next-generation sequencing technologies provide a huge amount of data, that can be

used, for instance, for reconstruction studies. However, these technologies are often not

able to reconstruct complete genomes and they provide only an incomplete information.

The first problem we consider, called One-sided scaffold filling, given an incomplete

genome B and a complete genome A, asks for the insertion of missing genes into an

incomplete genome B with the goal of maximizing the common adjacencies between

genomes B′ (resulting from the insertion of missing genes in B) and A. The second

problem, called Two-sided scaffold filling, given two incomplete genomes A, B, asks for

the insertion of missing genes into both genomes so that the resulting genomes A′ and B′

have the same multi-set of genes and the number of common adjacencies between A′

and B′ is maximized.

Both problems were proved to be NP-hard, while their parameterized complexity, when

the parameter is the number of common adjacencies of the resulting genomes, was left as

an open problem. We settle this open problem by presenting fixed-parameter algorithms

for One-sided scaffold filling and Two-sided scaffold filling problems.

7.1 Background and motivations

Comparative genomics is a widely investigated field of bioinformatics in which the genomic

features of different organisms are compared in order to identify biological differences and

108
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similarities. The genomic features include DNA sequences, genes, regulatory sequences

and other genomic structural landmarks [70]. The ultimate goal of the approaches in

this field is to understand genome functions, relationships between organisms and their

evolutionary history. In this context, several interesting combinatorial problems have

been introduced and studied by the computer science community (see for example [71]).

The introduction of Next Generation Sequencing (NGS) technologies lead to a huge

increase on the amount of DNA/RNA and protein sequences available for genomic and

trascriptomic analyses [72]. NGS technologies produce millions of short DNA/RNA

fragments, called reads, that are joined together to reconstruct longer sequences. While

NGS technologies generate such a huge amount of data, the cost of obtaining a complete

genome is still high, in particular if compared to the cost of sequencing. Due to this

fact, often released genomes are unfinished and incomplete [72]. When used in genomic

analyses, incomplete draft genomes (also called scaffolds) may introduce errors. Hence, a

relevant problem for genome comparison is the filling of scaffolds with missing genes, by

mean of combinatorial algorithms, in order to reconstruct complete genomes that share

a high level of similarities with a known reference genome.

A combinatorial problem that has been introduced recently is the One-sided scaffold

filling problem [73]. Such problem consists of filling a scaffold B so that the resulting

complete genome B′ minimizes the Double-Cut and Join (DCJ) distance [74] with respect

to the reference genome A. Given two genomes, the DCJ distance is the minimum

number of allowed rearrangement operations that transform one genome into the other.

The authors presented a polynomial-time algorithm for the problem when the input

genomes do not contain duplicated genes.

Later in [75], the scaffold filling problem has been investigated considering both the

DCJ distance and the breakpoint distance. Given two related sequences A and B, two

consecutive elements ai and ai+1 in A form an adjacency if they are also consecutive

in B independently from the order (i.e., as aiai+1 or ai+1ai), otherwise they form a

breakpoint. Therefore, the breakpoint distance between A and B is defined as the number

of breakpoints in A, which is equal to that of B. In [75] Jiang et al. introduced a new

related variant of the combinatorial problem, called Two-sided scaffold filling problem,

where both genomes are incomplete. The authors in [75] show that when the input

genomes do not contain gene repetitions the problem is polynomially solvable under

both the DCJ distance and the breakpoint distance. However, when genomes contain

duplicated genes, the scenario changes. Indeed, the authors show that the One-sided

problem is NP-complete even under the breakpoint distance.

In [8] we consider a different similarity measure to compare genomes, namely the maximum

number of common adjacencies between two genomes. This measure has been introduced
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for the One-sided/Two-sided scaffold filling problems in [76]. The two problems were both

proved to be NP-hard under this similarity measure [77]. The same paper has investigated

the approximation complexity of the two problems, showing a 2-approximation algorithm

for the Two-sided scaffold filling problem, and a 4
3 -approximation algorithm for the

One-sided scaffold filling problem. This latter result has been recently improved in [78],

where an approximation algorithm of factor 5
4 for the One-sided scaffold filling problem

has been presented. An approximation algorithm for a related variant of the problem

has been given in [79].

In [8], we focus on the parameterized complexity of One-sided scaffold filling and Two-

sided scaffold filling. Parameterized complexity aims to investigate the computational

complexity of a problem with respect to a set of interesting parameters, with the goal

of understanding if the exponential explosion of an exact algorithm can eventually be

confined only to the considered parameters (and not to the overall input). We refer the

reader to [68, 80] for an introduction to parameterized complexity.

A preliminary analysis of the parameterized complexity of the One-sided scaffold filling

problem started in [77]. The authors presented two Fixed Parameter Tractable (FPT)

algorithms for One-sided scaffold filling, under two different parameterizations. In the first

case, they considered as parameters the number k of common adjacencies between a filled

genome B′ and a reference genome A, and the maximal number d of occurrences of a gene

inside a genome, and gave an FPT algorithm of time complexity O((2d)2kpoly(|A||B|)).
In the second case, the authors considered as parameters the number k of common

adjacencies between a filled genome B′ and a reference genome A and the size c of

the alphabet (that is the set of genes), and gave an FPT algorithm of time complexity

O(c2kpoly(|A||B|)). A natural problem, left open in [77], is to consider the parameterized

complexity of One-sided and Two-sided scaffold filling, when parameterized only by the

maximum number of common adjacencies k.

Our contribution. We present two FTP-algorithms for both Scaffold Filling problems,

initially presented in preliminary work [7] and then extended in [8], thus answering

the open question in [77]. More precisely, we give an algorithm of time complexity

2O(k)poly(|A||B|) for One-sided scaffold filling and an algorithm of time complexity

2O(k·log k)poly(|A||B|) for Two-sided scaffold filling, where k is the number of common

adjacencies between the resulting genomes (A and B′ for the One-sided case, A′ and B′

for the Two-sided case). We point out that the contribution of [8] is mainly theoretical,

since in practice the parameter k is often close to the length of the genomes.

The rest of the chapter is organized as follows. First, in Section 7.2 we introduce some

preliminary definitions and we give the formal definition of the two Scaffold Filling



Chapter 7. Filling incomplete genomic sequences 111

problems. In Section 7.3, we present the FPT algorithm for the One-sided case, while in

Section 7.4 we present the FPT algorithm for the Two-sided case.

7.2 Preliminaries

Let Σ be an alphabet, that is a non-empty finite set of symbols. We represent an

(unsigned) unichromosomal genome A as a string over alphabet Σ. It follows that the

symbols in A (where each symbol represents a gene) form a multiset on Σ, denoted

by [A]. Consider, for example, the string A = abcdabcdaa on alphabet Σ = {a, b, c, d},
then [A] = {a, a, a, a, b, b, c, c, d, d}. Given a string A, we denote by A[i] the symbol of A

in i-th position, and by A[i . . . j] the substring of A that starts at position i and ends

in position j. Moreover, we denote the size of A by |A|. Note that since we mostly

work with multi-sets, operations ∪, ∩ and \ are implicitely understood to be multi-set

operations.

Given a string A, an adjacency of A is an unordered pair of consecutive elements of A,

that is A[i]A[i + 1] or A[i + 1]A[i], with 1 6 i 6 |A| − 1. We say that a position i,

1 6 i 6 |A|, induces an adjacency ab, if (A[i] = a and A[i + 1] = b) or (A[i] = b

and A[i+ 1] = a). We denote by JAK the multi-set of adjacencies of A. Following the

previous example, where A = abcdabcdaa, we have that the multi-set of adjacencies of A

is JAK = {aa, ab, ab, ad, ad, bc, bc, cd, cd}).

The endpoints of A, are its first and last position, that is A[1] and A[|A|]. In order to

deal with endpoints of the two strings, for all the strings we consider, we assume that the

first and the last positions contain a dummy symbol ], that is not contained in any other

position. Formally, for a string A, with |A| = n, it holds A[1] = A[n] = ] and A[i] 6= ]

when 2 6 i 6 n− 1. Notice that the dummy symbol is not considered when the set of

adjacencies JAK is defined, i.e. ]A[2] and A[n− 1]] are not in JAK.

When comparing two input strings A and B, we denote by X = [A] \ [B] the multi-set of

symbols of A missing in B, and by Y = [B] \ [A] the multi-set of symbols of B missing

in A. Given a multi-set of symbols on an alphabet Σ, a scaffold is a string on Σ with

some missing elements with respect to another string. For the One-sided scaffold filling

problem, the multi-set Y is empty.

The two scaffold filling problems we consider in [8] are both based on the definition of

common adjacency between two genomes (strings) (refer to Fig. 7.1 for an example).

Definition 7.1. Consider two strings A, B on alphabet Σ. The multi-set of common

adjacencies between A, B is defined as JAK∩ JBK. A matching M of the adjacencies of A
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and the adjacencies of B is a relation between the positions of A and the positions of B

such that:

- for each position i of A or B, there exists at most one pair in M containing i;

- for each position i of A and j of B, (i, j) ∈M if and only if position i and position j

induce the same adjacency;

- each position that induces a common adjacency belongs to some pair of M .

We say that a position of A or B is matched, if it belongs to a pair of M . Informally, M

relates the positions inducing common adjacencies of the two strings A and B. Notice

that, unlike in permutations, where every position of a permutation inducing a common

adjacency matches exactly one position in the other permutation, in strings a position

of one string inducing a common adjacency may correspond to many positions of the

second string (in Fig. 7.1, notice that position 1 of A, inducing adjacency ab, can match

position 4 or position 5 of B′).

Given a scaffold B and a multi-set X of symbols, a string B′ is called a filling of B

with X if

1. [B′] = [B] ∪X

2. B is a subsequence of B′ such that the first and last symbols of B′ are respectively

the first and last symbols of B.

X = [A] \ [B] = {b, b, e}

A

B'

A

B

a b a c b d b e

c d a a b

c d a a bb b e

a a c b d b eb

Figure 7.1: An instance for the One-sided SF-MNSA problem. Given the complete
genome A and the scaffold B, we compute the filled genome B′ by inserting the symbols
of X in B. The lines between A and B′ connect positions inducing common adjacencies
and represent a matching M between the adjacencies of A and B′. The number of
common adjacencies between A and B′ is 5.

Now, we are ready to present the formal definitions of the two Scaffold Filling problems

investigated in [8]. Notice that, since we are interested in the parameterized complexity

of the two problems, we give the definitions of the parameterized versions of the two

problems.
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One-sided Scaffold Filling to Maximize the Number of common String Adja-

cencies (One-sided SF-MNSA)

Input: Two strings A and B, such that [B] ⊆ [A].

Output: A filling B′ of B with X = [A] \ [B] such that A and B′ have at least k common

adjacencies.

Parameter: k.

Two-sided Scaffold Filling to Maximize the Number of common String Ad-

jacencies (Two-sided SF-MNSA)

Input: Two strings A and B.

Output: A filling B′ of B with X = [A] \ [B] and a filling A′ of A with Y = [B] \ [A] such

that A′ and B′ have at least k common adjacencies.

Parameter: k.

Notice that the One-sided SF-MNSA problem can be seen a restriction of Two-sided

SF-MNSA with Y = ∅.

Now, we discuss some properties that will be useful to design our FPT-algorithms. First,

we present the following property for the parameter k, proved in [77].

Lemma 7.2. [77] Let A and B two strings, X = [A] \ [B], and Y = [B] \ [A]. Let k

be the optimal number of common adjacencies for Two-sided SF-MNSA between two

fillings A′ and B′. Then |X|, |Y | 6 k.

Notice that, since One-sided SF-MNSA problem can be seen as a restriction of Two-sided

SF-MNSA, Lemma 7.2 holds also for One-sided SF-MNSA, that is when Y = ∅, it holds

|X| 6 k.

Let A and B be two strings of symbols over an alphabet Σ, which are input of One-sided

SF-MNSA or Two-sided SF-MNSA, and consider the multiset AD of common adjacencies

between A and B. We can assume that |AD| < k, otherwise we already know that

One-sided SF-MNSA/Two-sided SF-MNSA admits a solution consisting of at least k

common adjacencies. Now, since |AD| < k, we can compute a partition of AD into two

subsets as follows:

• the multiset ADpr ⊆ AD of common adjacencies that are preserved after the filling

of B and/or A;

• the multiset ADbr ⊆ AD of common adjacencies that are broken by inserting symbols

of X = [A] \ [B] (of Y = [B] \ [A] respectively) into B (into A respectively).
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Then the following easy property holds.

Property 1. Let A and B be two strings on alphabet Σ and let AD be the multiset of

common adjacencies between A and B. Consider a solution for One-sided SF-MNSA/Two-

sided SF-MNSA that partitions AD into multisets ADpr, ADbr, then we can compute the

partition of AD into the two multisets ADpr and ADbr in time O(2k).

Proof. Recall that |AD| < k, since otherwise we already know that the One-sided/Two-

sided SF-MNSA problem admits a solution consisting of at least k common adjacencies.

Then, it easy to see that there can be at most 2k subsets ADpr of AD, hence at most 2k

subsets ADbr of AD.

This property is implicitly used in the two fixed-parameter algorithms, presented in the

next sections, in order to guess which adjacencies of the set AD will be preserved. The

latter adjacencies are induced by positions where no insertion is possible when a filling

of an input string is computed. Hence, we assume in the following that when a string is

inserted into A or B, it is not inserted in a position that induces an adjacency in ADpr.

Color-Coding. The FPT algorithms we present are based on a well-known technique

to design FPT algorithms, called color-coding [81]. Originally introduced to identify

subgraphs such as simple paths inside a larger graph [81], color-coding has been applied

to many graph problems, for example for the graph motif problem and variant thereof [82–

85]. We apply this technique in a different context, that is for string comparison, following

some recent examples [86, 87].

Informally, given a set U of size n, the color-coding technique aims to find a solution S ⊆ U
of size k by coloring the elements of U with k colors, so that each element of S is associated

with a distinct color. While enumerating the subsets having size k of U takes time O(nk),

by means of the coloring and applying combinatorial properties of the problem, it is

possible in some cases to compute whether a solution of size k exists in time f(k)poly(n),

thus leading to an FPT algorithm.

We now introduce the definition of a perfect family of hash functions, which are used to

compute the coloring.

Definition 7.3. [81] Let I be a set, a family F of hash functions from I to {c1, . . . , ck}
is called perfect if for any subset I ′ ⊆ I, with |I ′| = k, there exists a function f ∈ F
which is injective on I ′.

A perfect family F of hash functions from I to {c1, . . . , ck}, having size O(log |I|2O(k)),

can be constructed in time O(2O(k)|I| log |I|) [81].
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7.3 An FPT algorithm for One-sided SF-MNSA

In this section we present an FPT algorithm for the One-sided SF-MNSA problem

parameterized by the number k of common adjacencies between the input string A and

a filling B′ of B with the multi-set X. We recall that X = [A] \ [B] and that by Lemma

7.2, it holds |X| 6 k. Furthermore, we assume that we have already computed the two

subset ADpr and ADbr of AD (the common adjacencies of A, B) and that no insertion

is possible during the filling in a position associated with an adjacency of ADpr by the

matching M of the common adjacencies of A and B (see Prop. 1).

Let CA = {c1, . . . , ck} be a set of colors. Consider a family F of perfect hash functions

from the positions inducing the adjacencies of A in ADbr (recall that ADbr = AD \ ADpr)

to colors in CA. Informally, the coloring is used to identify those positions of A that, due

to the insertion of symbols in X, match positions of B, hence inducing new adjacencies.

In the following, we consider a function f ∈ F , for the positions of A, and we assume

that such a function f is injective with reference to a filling B′ of B, that is if there

exists a filling B′ that induces k common adjacencies, we assume that the positions of A

inducing these common adjacencies are colored with k distinct color by f .

Given a string S, S is said colorful for CA if there exist {sc | c ∈ CA} ⊆ (JSK∩ JAK), such

that for each c ∈ CA there is a position of A colored by c which induces the adjacency sc.

Our objective is thus to compute a filling B′ of B which is colorful for CA.

The algorithm is based on two levels of dynamic programming recurrences. First, we

present a dynamic programming recurrence to compute if there exists a string on X to

be inserted at a given position j of A so that the resulting string is colorful for a given

set Cj ⊆ CA. Then, this result is used to define the dynamic programming recurrence

for the insertion of a set of symbols in the string B[1, j] so that the result is colorful for

a set C ′ ⊆ CA.

Inserting symbols at a specific position.

We first focus on inserting a given set of symbols at one given position of B. Given a

position j in B, two sets Xj ⊆ X and Cj ⊆ CA, define Insj (Xj , Cj) ∈ {0, 1} as follows:

Insj (Xj , Cj) = 1⇔ there exists a filling of B[j − 1, j] with Xj which is

colorful for Cj .



Chapter 7. Filling incomplete genomic sequences 116

Note that Insj (∅, ∅) = 1 for all j. In the following lemma, we show that Ins can be

computed in time O(22kk2) by dynamic programming.

Lemma 7.4. We can compute the values of Insj (Xj , Cj) — where Xj ⊆ X, Cj ⊆ CA
with |Xj |, |Cj | 6 k, and j is an integer with 1 < j 6 |B| — in overall time O(22kk2|B|).

We compute the table Insj (Xj , Cj) by dynamic programming. More precisely, for any

fixed j, we compute a table Addα (X ′, C ′) ∈ {0, 1} defined over all subsets X ′ ⊆ X,

C ′ ⊆ C and symbols α ∈ X ′ as follows:

Addα
(
X ′, C ′

)
= 1⇔ there exists a string s′ with symbols [s′] = X ′ so that

the concatenation s = B[j − 1]s′ is colorful for C ′,

and the rightmost symbol of s is α

Intuitively, Add gives, for any set of colors C ′, the strings formed over X which are

colorful for C ′ if inserted after B[j − 1]. In fact, rather than computing the precise

ordering of each such string, the table only focuses on the set of symbols (X ′) and the

last symbol (α) for each one. Moreover, for any given j, the table Add contains enough

information to deduce the values of Insj (Xj , Cj) for all pairs (Xj , Cj).

We prove that table Add can be computed using the following dynamic programming

recurrence.

Recurrence 1. Let X ′ ⊆ X,C ′ ⊆ CA, α ∈ Σ.

• if X ′ = ∅, then Addα (∅, C ′) = 1 iff C ′ = ∅ and α = B[j − 1]

• if |X ′| > 0 and α /∈ X ′, then Addα (X ′, C ′) = 0.

• if |X ′| > 0 and α ∈ X ′, then:

Addα
(
X ′, C ′

)
= max

β∈X′\{α}



Addβ (X ′ \ {α}, C ′)

∨∃c ∈ C ′, Addβ (X ′ \ {α}, C ′ \ {c}) and there exists

a position of A colored by c that induces

an adjacency αβ

Proof. Base case. Easily, any string s′ with [s′] = ∅ yields s = B[j − 1]s′ = B[j − 1].

Hence s is only colorful for the empty set of colors, and its last symbol is α = B[j − 1].
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Recurrence. The case where α /∈ X ′ is equally trivial (any s′ with [s′] = X ′ would be

non-empty and have a last letter in X ′, and so would s = B[j−1]s′). We now consider the

case where α ∈ X ′. Assume that, for some β ∈ X ′ \ {α}, we have Addβ (X ′ \ {α}, C ′) = 1

or ∃c′ ∈ C ′, Addβ (X ′ \ {α}, C ′ \ {c′}) = 1. In the former case there exists a string s′

such that B[j − 1]s′ is colorful for C ′, hence also B[j − 1]s′α is colorful for C ′. In the

latter case there exists a string s′ such that B[j − 1]s′ is colorful for C ′ \ {c′}, where β is

the last symbol of s′. Moreover, there exists a position of A colored by c′ that induces

an adjacency βα, hence string s = B[j − 1]s′α is colorful for C ′. Note that in both cases,

[s′] = X ′ \ {α} and [s′α] = X ′.

Reciprocally, assume that Addα (X ′, C ′) = 1, i.e. there exist strings s′ and s ending with

α such that [s′] = X ′ and s = B[j − 1]s′ is colorful for C ′. Let j = |s|, and consider

the substring s∗ = s[1, j − 1]. Then s∗ is colorful for some C∗ ⊆ C ′ and write β for the

last symbol of s∗. By definition, Addβ (X ′ \ {α}, C∗) = 1. Now, we have two possible

cases. If βα does not induce a common adjacency (that is s∗ is colorful for C ′), then

Addβ (X ′ \ {α}, C∗) = 1. If βα induces a common adjacency (that is s∗ is colorful for

C∗ = C ′ \ {c′}, for some c′ ∈ C ′), then Addα (X ′ \ {α}′, C ′ \ {c′}) = 1. In both cases, the

recurrence correctly sets Addα (X ′, C ′) to 1.

We now have all the tools to prove Lemma 7.4.

of Lemma 7.4. For any j, 1 < j 6 |B|, the table Add can be computed using Recurrence 1.

It is easy to deduce the values of Insj :

Insj (Xj , Cj) = max
α∈Xj



Addα (Xj , Cj)

∨∃c ∈ C, Addα (Xj , Cj \ {c}) and there exists

a position of A colored by c that induces

an adjacency αB[j]

Indeed, if Insj (Xj , Cj) = 1, then it follows that there is a substring s over alphabet Xj ,

such that B[j− 1]sB[j] is colorful for Cj . Write α for the last symbol of B[j− 1]s. Then,

either the substring B[j − 1]s is colorful for Cj , hence Addα (Xj , Cj) = 1, or B[j − 1]s is

colorful for Cj \ {c′}, for some color c′ ∈ Cj , hence Addα (Xj , Cj \ {c′}) = 1, and there

exists a position of A colored by c′ that induces an adjacency αB[j]. The reciprocal is

clear with a similar decomposition.

Now, we discuss the time complexity of computing Addα (X ′, C ′). Table Addα (X ′, C ′)

consists of O(22kk) entries, since |X ′|, |C ′| 6 k, hence we have 2k possible subsets of
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each X ′ ⊆ X, C ′ ⊆ CA. Each entry is computed in time O(k2), since the algorithm

looks for at most k2 entries in the table, depending on the chosen β ∈ X ′ and c ∈ C ′,
and |X ′|, |C ′| 6 k. Given the table Addα (X ′, C ′), the time complexity to compute each

entry Insj (Xj , Cj) is O(k2), since again in the worst case we have to look for k2 entries,

depending on the chosen α ∈ Xj and c ∈ Cj . This process has to be repeated O(n)

times, varying j 6 |B|. Hence the overall time complexity to compute the whole table

Insj (Xj , Cj) is O(22kk2n).

Inserting symbols in a prefix of B.

Next we consider the general problem of inserting a multiset of symbol in different

positions of a prefix of B.

Given a multiset X ′ ⊆ X of symbols and a set C ′A ⊆ CA of colors, define Fillj (X ′, C ′A) ∈
{0, 1} as follows:

Fillj
(
X ′, C ′A

)
= 1⇔ there exists a filling of B[1, . . . , j] with X ′ which is

colorful for C ′A.

We now prove that Fillj (X ′, C ′A) satisfies the following recurrence property. The

objective, as stated in Lemma 7.5, is to determine whether a prefix of B can be filled

with a given multiset of symbols X ′ contained in X, so that the resulting filling is colorful

for a subset of CA.

Recurrence 2. Let X ′ ⊆ X, C ′A ⊆ CA.

• For j = 2, Fill2 (X ′, C ′A) = Ins2 (X ′, C ′A).

• For all j > 2,

Fillj
(
X ′, C ′A

)
= max

Xj⊆X′,Cj⊆C′A

 Fillj−1 (X ′ \Xj , C
′
A \ Cj)

∧ Insj (Xj , Cj)

Proof. Base case. The case j = 2 is easily deduced by definition: Fillj (X ′, C ′A) = 1 if

and only if Insj (X ′, C ′A) = 1.

Consider j > 2, and assume that Fillj (X ′, C ′A) = 1, that is there exists a filling B′ of

B[1, . . . , j] with X ′ colorful for C ′A. Consider the set of symbols Xj ⊆ X inserted in

position j of B and let Cj be a set of colors such that there exists a set of positions of A
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colored by Cj associated by the matching with adjacencies using elements of Xj . By

definition, Insj (Xj , Cj) = 1 and Fillj−1 (X ′ \Xj , C
′
A \ Cj) = 1, hence the recurrence

formula correctly sets Fillj (X,CA) to 1.

Assume now that Insj (Xj , Cj) = 1 and Fillj−1 (X ′ \Xj , C
′
A \ Cj) = 1 for some Xj ⊆

X ′, Cj ⊆ C ′A, that is the recurrence formula sets Fillj (X ′, C ′A) to 1. Then by definition

it follows that there exists a filling of B[1, . . . , j − 1] with X ′ \Xj which is colorful for

C ′A \Cj and a filling of B[j − 1, j] with Xj which is colorful for Cj . Hence concatenating

the two fillings (the filling of B[1, . . . , j− 1] and the filling between B[j− 1, j]), we obtain

a filling B′ of B[1, . . . , j] with X ′ which is colorful for C ′A, thus Fillj (X ′, C ′A) = 1.

In the following, we prove the correctness of Recurrence 2, that is that Fill|B| (X,CA)

allows us to determine whether B admits a filling with k common adjacencies.

Lemma 7.5. Let (A,B) be an instance of One-sided Scaffold Filling, X = [A] \ [B], k

be an integer, CA be a set of k colors, and F be a perfect family of hash functions from

the positions of A to CA. Then the following propositions are equivalent:

(i) There exists a filling B′ of B with X such that A and B′ have k common adjacencies;

(ii) There exists a coloring f ∈ F for which Fill|B| (X,CA) = 1.

Proof. (i)⇒(ii) Let B′ be a filling of B with X such that A and B′ have k common

adjacencies; write I ′ = JAK ∩ JB′K. Since |I ′| = k, there exists f ∈ F such that f is

injective on the positions of A that induce I ′. For each color c ∈ CA, there exists an

adjacency f(c) in B′ such that f(c) is induced by a position of A colored by c, hence B′

is colorful for CA. By definition of Fill, we thus have Fill|B| (X,CA) = 1.

(ii)⇒(i) Assume that for some f ∈ F , Fill|B| (X,CA) = 1, then there exists a filling

of B with X colorful for CA. For each c ∈ CA, let xc be the unique position of A colored

by c inducing a common adjacencies with B′. Then {xc | c ∈ CA} is a set of positions of

size k yielding k common adjacencies between A and B′.

Next, we show how the recurrence described in Recurrence 2 yields a dynamic program-

ming algorithm to solve One-sided SF-MNSA.

Theorem 7.6. Let A, B be two strings of symbols on an alphabet Σ and let X = [A]\ [B]

be the multiset of symbols missing in B. It is possible to compute a solution of One-sided

SF-MNSA in time 2O(k)poly(|A|+ |B|).

Proof. By Lemma 7.5, it suffices to compute a family F of hash functions from the

positions of A to CA. Then the problem admits a solution if and only if there exists a
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coloring f ∈ F for which Fill|B| (X,CA) = 1. Recurrence 2 together with Lemma 7.4

yields a dynamic programming algorithm to compute Fill|B| (X,CA) for each coloring.

Now, we consider the time complexity of the algorithm. Write n = |A|+ |B|. First, a

perfect family F of hash functions that color-codes the positions of A can be computed

in time 2O(k)poly(n). Once the family is computed, the algorithm iterates over the

2O(k) log(n) possible functions f ∈ F and the respective color codings. For each function

f ∈ F , the table Insj (X ′, C ′A) is computed in time O(22kk2|B|) (see Lemma 7.4). Then

the O(22k|B|) entries of table Fillj (X ′, C ′A) are computed (Recurrence 7.4), where

each entry requires O(22k) look-ups, depending on the choice of Xj and Cj . Thus the

algorithm requires O(24kn) time to compute table Fillj (X ′, C ′A). Finally, the overall

complexity is indeed 2O(k)poly(n).

7.4 An FPT algorithm for Two-sided SF-MNSA

In this section, we consider the Two-sided SF-MNSA problem and we present a fixed-

parameter tractable algorithm for it. As for the One-sided case, the algorithm is based

on color-coding and dynamic programming. However, the same approach described in

the previous section cannot be applied directly and new challenges make Two-sided

SF-MNSA more complicated than One-sided SF-MNSA. First, there exist a new kind

of common adjacencies, namely adjacencies that are created in the fillings although

they never appear as such in any of the input strings. Also, unlike the One-sided case,

it is not known a priori whether a given adjacency of the string A may be used in a

common adjacency or should be split to insert a substring. We deal with the first issue

by bounding (and enumerating) the possible arrangements of such adjacencies, and with

the second by introducing “insertion” colors, so that the positions associated with such

colors can only be used to insert a substring and not (directly) to create a common

adjacency.

Given two strings A and B over alphabet Σ, denote by k the number of common

adjacencies between two fillings A′ and B′ of A, B respectively. We denote by X = [A]\[B]

the multi-set of symbols of A missing in B and by Y = [B] \ [A] the multi-set of symbols

of B missing in A, where X,Y 6= ∅ (otherwise the problem is equivalent to One-sided

SF-MNSA) and X
⋂
Y = ∅ (by the definition of sets X and Y for the Two-sided

SF-MNSA).

Recall that, by Lemma 7.2, the following property holds: |X|, |Y | 6 k. Furthermore, as

in the previous section, we assume that we have already computed the subset ADpr of
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JAK ∩ JBK, that is those common adjacencies of A and B, that must be preserved during

the filling (see Prop. 1).

Before giving the details of the FPT-algorithm, we present an informal overview. A

filling B′ (A′ respectively) of B (of A respectively) consists of inserting substrings on

alphabet X (on alphabet Y respectively) into B (into A respectively). Now, the algorithm

consists of four steps.

Step 1. In the first step, the algorithm “guesses” (that is iterates over all possible cases)

how the letters from X and Y should be arranged into strings to be inserted into A

and B. Such strings are called filler strings. Note that we do not guess the insertion

point of those strings, and since |X|, |Y | 6 k, the number of cases to try depends only

on a function of k (see Prop. 2).

Step 2. The second phase identifies two kinds of common adjacencies for two fillings A′,

B′. In the first kind, one adjacency appears already in JAK or JBK: this case can be dealt

with as in the One-sided algorithm. In the second kind, both adjacencies inducing a

common adjacency of A′ and B′ have been created during the filling, using one element

from X in B′ and one from Y in A′. They are called (X,Y )-adjacencies. Since X∩Y = ∅,
such adjacencies use exactly one element of X and one element of Y . Therefore these

adjacencies consist of an endpoint of an inserted string as well as a symbol already

present in the original strings A and B. The second step of the algorithm identifies and

matches the endpoints of inserted strings (computed in Step 1) which correspond to such

(X,Y )-adjacencies (see Def. 7.8 and Prop. 3).

Step 3. In the third step, the algorithm opportunely color-codes the positions of A

and B with two disjoint sets of colors, in order to:

1. match non (X,Y )-adjacencies (like in the previous algorithm)

2. identify the positions of A and B where an insertion is possible (we will show that

the number of these positions is bounded by k in Remark 2)

Step 4. Step 4 finally inserts the strings into A and B by dynamic programming, while

creating the remaining adjacencies (see Recurrence 3).

Now we are able to present the details of the different steps of the algorithm.

Step 1: Compute filler strings.

Consider a solution of Two-sided SF-MNSA (A′, B′) inducing k common adjacencies.

We call filler string a non-empty string consisting of elements of X or of Y inserted into
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a bcb

a a c Y = [B] \ [A] = {b, b}

A'

B'

A

B

d

c da a bb

a a d bb

X = [A] \ [B] = {a, d}

c

Figure 7.2: An instance of the Two-sided SF-MNSA problem. Given two scaffolds A
and B, we obtain the filled genomes A′ and B′ by inserting symbols X in B and Y in A
(inserted symbols are in red). Straight Lines connect common adjacencies, dotted lines
connect (X,Y )-adjacencies. Notice for example that the bd common adjacency is an
(X,Y )-adjacency induced by the insertion of b into string A and of d into string B.

B or A to create B′ or A′. We write SX and SY for the two multi-sets of filler strings

over the multi-sets X and Y that are inserted into B and A respectively. The algorithm

simply iterates through all such pairs (SX , SY ) of multi-sets of strings over (X,Y ): in

some iteration, the correct pair (SX , SY ) will eventually be considered. The following

property bounds both the number of possible pairs (SX , SY ) and the number of positions

where filler strings can be inserted into A and B.

Property 2. Let X, Y be two multi-sets of symbols to be inserted into the string B and A

respectively. Then (1) the number of positions in each of A, B where a filler string is

inserted is bounded by k and (2) the number of possible multi-sets SX and SY of filler

strings over X, Y to be inserted into B and A respectively is bounded by O(k2k).

Proof. (1) The property follows easily from the fact that, since |X|, |Y | 6 k, |SX |, |SY | 6
k.

(2) By Lemma 7.2, |X|, |Y | 6 k. Now, consider w.l.o.g. a multi-set SX of filler strings

inserted into B. This multi-set obviously consists of at most k strings, where each one

has length bounded by |X| 6 k. Hence, the number of possible multi-sets of filler strings

to be inserted into B is bounded by O(kk). We can conclude that the overall possible

multi-sets of filler strings over X, Y inserted into B and A respectively, in order to obtain

two fillings B′, A′, is bounded by O(k2k).

Step 2: Identify (X,Y )-adjacencies.

We first define formally the concept of (X,Y )-adjacency (see Fig. 7.2 for an example).

Definition 7.7. Consider a filling B′ of B with X and a filling A′ of A with Y . A

common adjacency z ∈ JA′K ∪ JB′K is an (X,Y )-adjacency if it is induced by positions i,

j of A′, B′ respectively, such that

• one of A′[i] or A′[i+ 1] is the endpoint of a filler string sy ∈ SY ,
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• and one of B′[j] or B′[j + 1] is the endpoint of a filler string sx ∈ SX

Notice that, since X ∩ Y = ∅, it follows that any new common adjacency of A′ (of B′

respectively) is either involved in only one insertion (hence, in one input string, it is

induced by a position where no insertion occurs), or it is an (X,Y )-adjacency.

Now, the algorithm considers the endpoints of the filler strings computed in the previous

step, and defines which endpoints induce a common (X,Y )-adjacency. Denote by EX

(EY respectively), the set of endpoints of the strings in set SX (in set SY respectively).

Note that we consider that each string yields two end-points, even length-one filler strings.

In order to compute which endpoints of EX and EY induce a common (X,Y )-adjacency,

we use a procedure, called number assignment, that associates with each endpoint in EX

and EY a number which identifies the (X,Y )-adjacency, if any, which uses this endpoint.

The procedure assumes that k′ is the number of induced (X,Y )-adjacencies.

Definition 7.8. A number assignment for the strings in SX ∪ SY is a function from

EX ∪ EY to {0, 1, . . . , k′}, where each number {1, . . . , k′} is assigned to exactly one

endpoint in EX and one endpoint in EY .

Consider a solution of Two-sided SF-MNSA, a corresponding number assignment is

obtained as follows (recall that k′ denotes the number of (X,Y )-adjacencies). Consider

an endpoint ez ∈ EX ∪ EY , then:

- endpoint ez is associated with 0 if and only if it is not involved in an (X,Y )-

adjacency;

- endpoint ez is associated with a number i ∈ {1, . . . , k′} if and only if it is involved

in the i-th (X,Y )-adjacency.

The set E′X ⊆ EX (E′Y ⊆ EY ) denotes the set of endpoints of EX (of EY respectively)

associated with a positive number.

Next, we show how to compute a number assignment in time O((4k)k+1). The following

property gives an easy upper bound on the number of such assignments.

Property 3. There exist at most (4k)k+1 number assignments.

Proof. Notice that |EX ∪ EY | 6 4k, since |SX |, |SY | 6 k. Moreover, each endpoint

is assigned a number in {0, 1, . . . , k′}, with k′ 6 k, hence there exist at most (4k)k+1

number assignments.
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The algorithm iterates over each possible number assignment, hence, in what follows we

assume that the algorithm guesses the correct number assignment to EX ∪ EY .

Once we have defined through the number assignment which endpoints in E′X∪E′Y induce

a common adjacency, we have to bound the possible symbols adjacent to an endpoint in

E′X ∪E′Y . Indeed, when we will insert into A a filler string sy whose endpoint induces an

(X,Y )-adjacency, we will not be able to define a matching between this adjacency and

an adjacency of B, because we still have to insert the “companion” strings in B (that is

the filler string sx that induces an (X,Y )-adjacency with sy). However, by restricting

the possible symbols that must be made adjacent to the filler strings, we will be able to

ensure that a common adjacency is eventually induced.

Now, we show how we can restrict the possible symbols that are adjacent to an endpoint

in E′X ∪ E′Y . First, we introduce the following definition.

Definition 7.9. Consider a solution (A′, B′) to the scaffold-filling problem and a filler

string sx ∈ SX (sy ∈ SY respectively). Let ex ∈ E′X (ey ∈ E′Y respectively) be an

endpoint of sx (of sy respectively) yielding an (X,Y )-adjacency. Then we define v(ex)

(v(ey) respectively) as the symbol of Y (of X respectively) adjacent to ex in B′ (to ey

in A′ respectively).

The symbols v(ex), v(ey), for each ex ∈ E′X , ey ∈ E′Y are immediately deduced from

the number assignment. Indeed, if ex ∈ E′X and ey ∈ E′Y are associated with the same

number i (that is they induce an (X,Y )-adjacency), then v(ex) must be the symbol of

the filler strings at endpoint ey, while v(ey) must be the symbol at endpoint ex.

Remark 1. A number assignment uniquely determines the value v(ez) for ez ∈ E′X ∪ E′Y .

Proof. Consider the case that ex ∈ EX and ey ∈ EY are associated by the number

assignment with the same number i ∈ {1, . . . , k′}. Since X ∩ Y = ∅, it follows that ex

must be inserted in a position of B containing the same symbol as ey and ey must be

inserted in a position of A containing the same symbol as ex.

Using the number assignment and the values v(ez), with ez ∈ E′X ∪E′Y , the algorithm

creates the following table which tells whether, according to (X,Y )-adjacencies, a filler

string can be inserted at a certain position. We define the table for filler strings of

SX , the definition for SY being similar. Let j ∈ {1, . . . , |B|}, s be a filler string in SX ,

and sl, sr for the left and right endpoints of s respectively:
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XY-FitsB,j (s) =


0 if (sl ∈ E′X and B[j − 1] 6= v(sl))

or (sr ∈ E′X and B[j] 6= v(sr))

1 otherwise.

Step 3: Color-code the positions in A and B.

Our next goal is to distinguish, for each input string, adjacencies that need to be broken

to insert a filler string, from adjacencies that will yield a common adjacency when the

other filling is created. Since there are at most k adjacencies of either kind, we use

color-coding to achieve this goal. Consider a coloring f ∈ F of the positions of A and B

with a set C of z, k 6 z 6 2k, colors. We partition C into disjoint subsets CM,A, CM,B,

CI,A, CI,B defined as follows:

• Let CM,B (CM,A respectively) be a set of colors associated with positions of B

(of A respectively) that matches positions of A′ (of B′ respectively). Notice that in

a position colored by CM,A (CM,B respectively) a string of SX (of SY respectively)

cannot be inserted.

• Let CI,B (CI,A respectively) be a set of colors assigned to positions in B (in A

respectively) where insertions of strings of SX (of SY respectively) are allowed.

Since the two multisets of strings SX , SY are fixed, and the number assignment of the k′

(X,Y )-adjacencies is fixed, we only consider partitions where |CI,A| = |SY |, |CI,B| = |SX |,
and |CM,A|+ |CM,B|+ k′ = k.

Step 4: Insert strings by dynamic programming.

Now we have all the tools to decide where each string must be inserted. Thanks to Steps

1–3, we can now deal with both sides independently, hence without loss of generality we

describe the algorithm inserting filler strings of SX in B. The constraints one needs to

observe are the following.

- Filler strings are inserted at positions colored by CI,B . Note that we do not require

to insert a filler string in every colors of CI,B: we only need to ensure that no

adjacency having a color in CM,B is broken.

- (X,Y )-adjacencies are created as guessed during Step 3, that is each filler string s

inserted at position j yields XY-FitsB,j (s) = 1
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- The remaining created adjacencies yield enough common adjacencies with A. More

precisely, for each color c ∈ CM,A, we create at least one adjacency which can be

matched to an adjacency with color c in A.

The first two constraints can clearly be checked in constant time for any filler string s at

any position j. The third constraint is dealt with as follows.

Let s ∈ SX be a filler string, and j be a position of B. Let H be the substring of

B[j − 1]sB[j] from which B[j − 1] is removed if sl ∈ E′B and from which B[j] is removed

if sr ∈ E′B. That is, if the string s is inserted at position j in B, then H covers the

positions which may create a common adjacency which is not an (X,Y )-adjacency. In

order to determine whether H induces enough new common adjacencies for a given set

of colors, we define Col-FitsB,j (s, Cj) ∈ {0, 1} for all Cj ⊆ CM,A:

Col-FitsB,j (s, Cj) = 1⇔ H is colorful for Cj

Combining with the first two constraints, and similarly to the One-sided case, we define

InsB,j (s, Cj) ∈ {0, 1}, where Cj ⊆ CM,A, as follows:

InsB,j (s, Cj) = 1⇔ B[j − 1] is assigned a color in CI,B

∧ XY-FitsB,j (s) = 1

∧ Col-FitsB,j (s, Cj) = 1

We extend the definition to deal with the empty string ε:

InsB,j (ε, Cj) = 1⇔ Cj = ∅

Here table InsB,j (s, Cj) is easier to compute than in the one-sided case, because the

string to be insterted is known (and not only the set of its elements). Each entry can be

computed in time O(k3) using a matching algorithm.

Lemma 7.10. Let j be an integer s.t. j 6 |B| and Cj ⊆ CM,B. Then we can compute

InsB,j (s, Cj) in time O(k3).

Proof. Recall that the color of B[j − 1] is known from Step 3 and that XY-FitsB,j (s) is

directly deduced from the number assignment computed at Step 2. Hence computing

InsB,j (s, Cj) only requires to compute the value of Col-FitsB,j (s, Cj), which in turn

goes down to deciding whether a given string H is colorful for a given set of colors Cj .

This can be achieved as follows.
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Let H = JHK be the multiset of adjacencies of H (that is, the ones created by inserting

string s which need to cover all colors in Cj). Create a bipartite graph G with vertex set

H ∪ Cj . Add an edge (h, c) for each h ∈ H and c ∈ Cj such that there exists a position

with color c inducing an adjacency h. Then string H is colorful for C if and only if graph

G admits a matching covering all vertices of Cj . The existence of such a matching can be

determined in time O(
√
|H|+ |Cj ||H||Cj |) = O(k3) [88]. We can then deduce the values

of Col-FitsB,j (s, Cj) and InsB,j (s, Cj).

We can now compute a filling of B satisfying all the above constraints. We do this

by dynamic programming, i.e. filling progessively B while keeping track of inserted

substrings and covered colors.

Definition 7.11. Let S′X ⊆ SX , C ′M,A ⊆ CM,A, and 1 6 j 6 |B|. We define

Fill-Bj

(
S′X , C

′
M,A

)
∈ {0, 1} as follows. Fill-Bj

(
S′X , C

′
M,A

)
= 1 if and only if there

exists a filling B′ of B[1, . . . , j] such that:

1. B′ is obtained by inserting all strings in S′X in different positions of B[1, . . . , j],

2. the inserted strings are inserted at positions colored by CI,B,

3. for any inserted string s ∈ SX at position j, XY-FitsB,j (s) = 1,

4. the filling is colorful for C ′M,A after removing (X,Y )-adjacencies.

We observe that the entries of Fill-B can be computed using the following dynamic

programming recurrence.

Recurrence 3. Let S′X ⊆ SX , C ′A ⊆ CA.

• For j = 1, Fill-Bj

(
S′X , C

′
M,A

)
= 1 iff S′X = ∅ and C ′M,A = ∅.

• For all j > 2,

Fill-Bj
(
S′X , C

′
M,A

)
= max

sj∈SX∪{ε}
Cj⊆C′M,A

 Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
∧ InsB,j (sj , Cj)

Proof. In case j = 1, note that no substring can be inserted in the size-1 string B[1 . . . 1],

hence Fill-Bj

(
S′X , C

′
M,A

)
= 1 implies that S′X = ∅. Note that in this case (S′X = ∅),

no common adjacencies can be created, hence Fill-Bj

(
S′X , C

′
M,A

)
= 1 if and only if

C ′M,A = ∅.

We now prove the recurrence formula.
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Assume that Fill-Bj

(
S′X , C

′
M,A

)
= 1. Let B′ be a filling of B[1, . . . , j] using S′X and

colorful for C ′M,A. If there is no string inserted at position j − 1 (i.e. in B[j − 1, j]), then

we directly have Fill-Bj−1

(
S′X , C

′
M,A

)
= 1. Using sj = ε, and since Ins∅ (B, ε) j = 1,

the formula is correct in this case. Otherwise, assume that a string sj ∈ SX is included

between B[j− 1] and B[j], creating a string B[j− 1]sjB[j] that is colorful for some Cj ⊆
C ′M,A (after removing (X,Y )-adjacencies). Then, for this particular string sj and this

subset Cj , we have both Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
= 1 and InsB,j (sj , Cj) = 1.

Thus, again, the recurrence formula correctly sets Fill-Bj

(
S′X , C

′
M,A

)
to 1.

Conversely, assume that

max
sj∈SX∪{ε}
Cj⊆C′M,A

 Fill-Bj−1

(
S′X \ {sj}, C ′M,A \ Cj

)
∧ InsCj (B, sj) j

= 1

Consider first the case where the maximum is obtained for sj = ε and some Cj ⊆ C ′M,A.

Then InsCj (B, ε) j = 1 yields Cj = ∅. Hence Fill-Bj−1

(
S′X , C

′
M,A

)
= 1, and there

exists a filling of B[1, . . . , j− 1] which is trivially extended to a filling B′ of B[1, . . . , j] by

adding element B[j]. Filling B′ directly satisfies Definition 7.11. Otherwise, the max is

obtained for some sj ∈ S′X and some Cj ⊆ C ′M,A. We thus obtain a filling of B[1, . . . , j−1],

and augment this filling by adding string sjB[j]. It is easy to check that this new filling

satisfies Definition 7.11. In both cases, we have Fill-Bj

(
S′X , C

′
M,A

)
= 1

The following Lemma sums up all the results from Steps 1–4. Note that since Step 4

must be run for both A and B independently, we define and compute a table Fill-A

similarly to table Fill-B.

Lemma 7.12. Let (A,B) be an instance of Two-sided Scaffold Filling, X = [A] \ [B],

Y = [B] \ [A], k be an integer, C be a set of colors, and F be a perfect family of hash

functions from the positions of A and B to C. Then the following propositions are

equivalent:

(i) There exists a filling A′ of A with Y and a filling B′ of B with X such that A′ and B′

have k common adjacencies;

(ii) There exist two multi-sets of strings SX and SY over X, Y , a number assign-

ment, a color-coding f ∈ F and a partition C = CM,A ∪ CM,B ∪ CI,A ∪ CI,B such that

Fill-A|A| (SY , CM,B) = Fill-B|B| (SX , CM,A) = 1.

Proof. (i)⇒(ii) Let A′ be a filling of A with Y and B′ be a filling of B with X such

that A′ and B′ have k common adjacencies;
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Define SX , SY , a number assignment, a color-coding f ∈ F and a partition C =

CM,A ∪ CM,B ∪ CI,A ∪ CI,B according to these two fillings, so that Definition 7.11 is

satisfied. Then it follows that Fill-A|A| (SY , CM,B) = Fill-B|B| (SX , CM,A) = 1.

(ii)⇒(i) Reciprocally, assume that Fill-A|A| (SY , CM,B) = 1 and Fill-B|B| (SX , CM,A) =

1. Then it follows that SX , CM,A, CI,B satisfy Definition 7.11 for B[1, |B|]. The same

property holds for SY , CM,B, CI,A satisfying Definition 7.11 for A[1, |A|]. This leads to

a filling of A and B with k adjacencies as follows: k′ (X,Y )-adjacencies obtained from

the endpoints of the corresponding inserted strings (remember that XY-FitsB,j (s) = 1

for any s inserted at a position j in string B), and at least |CM,A| (resp |CM,B|) other

common adjacencies between the filling of B (resp. the filling of A) and A (resp. of B).

Note that these last common adjacencies appear also in the filling of A (resp., of B) since

no substring may break them (all substring are inserted in positions colored by CI,B and

CI,A). Thus there are, overall, k′ + |CM,A|+ |CM,B| = k common adjacencies between

the fillings of A and B.

We present now the main result of this section.

Theorem 7.13. Let A, B be two strings over alphabet Σ and let X = [A] \ [B] be the

multiset of symbols of A missing in B and Y = [B] \ [A] the multiset of symbols of B

missing in A. It is possible to compute a solution of Two-sided SF-MNSA over instance

(A,B) in time 2O(k log k)poly(n).

Proof. The correctness of the algorithm is directly given by Lemma 7.12: once a perfect

family of hash functions F is fixed and two multi-sets of strings SX and SY over X,

Y , a number assignment, a color-coding f ∈ F and a partition C = CM,A ∪ CM,B ∪
CI,A ∪ CI,B are selected by exhaustive branching, it suffices to compute the entries

Fill-A|A| (SY , CM,B) and Fill-B|B| (SX , CM,A), and return the corresponding fillings

of A and B if both entries are equal to 1.

The time complexity of the algorithm is dominated by the iteration over all possible

pairs (SX , SY ) and of the number assignment. The number of possible sets SX , SY is

bounded by k2k from Prop. 2. By Prop. 3 there are O(4kk+1) number assignments to

iterate through. The dynamic programming recurrence requires time O(24kn).

Consider now, the color-coding. There exists k values of z to test. For each z, there are

O(2O(z) log n) colorings [81], and for each coloring, 4z ways of partitionning C into CM,A,

CM,B, CI,A, CI,B. Overall, there are thus O(2O(k) log n) cases to consider.

Since a family of perfect hash function of size O(2O(k)poly(n)) can be computed in time

O(2O(k)poly(n)) [81], and the possible partitions of C into sets CM,A, CM,B, CI,A, CM,B
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are less than 24k (including the constraint |CM,A| + |CM,B| + k′ = k), it follows that

the overall time complexity of the algorithm is bounded by O((2k)2k+12O(k)poly(n)) =

2O(k log k)poly(n).



Chapter 8

Conclusions and future research

This dissertation explores two main research directions sharing the common goal of

studying the evolutionary history of populations or genomic information. The first

research direction investigated regards the development of simulation algorithms for

sampling ancestral recombination graphs representing the evolution of multiple present

day populations of a single species that are related and admixed. On the other hand, our

effort is also devoted to the development of combinatorial algorithms for the reconstruction

of phylogenesis representing the evolutionary history of several species or taxa (described

by a set of attributes or characters). Part of the thesis is also dedicated to deal with the

problem of completing draft incomplete genomic sequences, called scaffolds, produced by

NGS technologies and used in comparative and reconstruction analyses.

In the following, for each problem we faced, we summarize our main contributions and

we point out some future research directions and open problems we consider worthwhile

and interesting.

8.1 SimRA: Sampling ARG of multiple populations - Ch. 3

The literature on reconstruction of ancestral recombination graphs (ARGs) has advanced

considerably in recent years, mostly due to the fact that genetic variation data is now

available on large enough scales to have hope of reconstructing them. However, method

developers generally need simulated data because real population genetic data rarely

come with a known ARG. Hence, it is valuable to this community to have good tools for

rapidly simulating large numbers of ARGs. Consequently, simulating complex evolution

scenarios of multiple populations is an important task in population genomics. Apart from

the population samples, obtained by simulation, the underlying ARG is an additional

important vehicle in checking hypothesis and reconstruction studies.

131
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With this aim in mind, in [1] we present an algorithm SimRA that simulates generic

multiple population evolution model with admixture. SimRA is based on random graphs

and improves dramatically, in terms of time and space requirements, the classical backward

simulation algorithm for single population (Hudson algorithm [10, 26]) . Our experimental

analysis reveals that SimRA performs better specially with higher values of recombination

rate r, although both are backward simulators (see Section 3.6). Additionally, SimRA also

simulates STR polymorphisms. In this framework, the ARG is a random graph defined

on a set of parameters (i.e., effective population size, sample size, recombination rate,

segment length and mutation rate). Moreover, complex scenarios simulations of multiple

population evolution require an excess of interdependent parameters making even the

scenario-specification highly nontrivial. Using the underlying random graphs model, we

derive closed form functions of expected values of the ARG characteristics in terms of its

defining parameters (see Section 3.9). These derivations use the graph-theoretic results

of the random graph model presented in [19]. More precisely, we consider the following

hallmarks, or characteristics, of an ARG: height of the graph, number of recombinations,

number of mutations and population diversity. To the best of our knowledge this is the

first time closed form expressions have been computed for the ARG properties. What

is the need for closed-form values of these characteristics ? Apart from an effort at

mathematical completeness, firstly they provide a framework for checking the correctness

of ARG sampling algorithms and secondly they represent an useful tool in aiding the user

to specify meaningful parameters for complex population scaffold architectures. In other

words, the closed form functions are crucial in helping the user to design parameter set-up

for complex scenario simulations, not through trial-and-error based on raw computational

power but intelligent parameter estimation, thus removing time consuming trials and

error iterations.

Moreover, we give an example of use of the expected height of a truncated ARG for

designing complex scenarios of multiple population evolution. Indeed, we may ask what

should be the sample size m of a population such that the expected number of active

lineages in t generations is more than one. See the case study presented in Section 3.11.

We show, through simulations, that the expected values closely match the empirical

values.

Through comparison studies, we demonstrate that the ARGs produced by SimRA

are more compact (i.e., the redundancies are drastically reduced in SimRA), without

compromising any accuracy. Indeed, extensive experiments illustrate that the accuracy

of the two algorithms (SimRA and Hudson) are comparable (see Section 3.10), while

SimRA outperforms Hudson in time, space and non-redundancy factor.
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SimRA is both time and space efficient enough to be practical, indeed it makes possible

to run hundreds of experiments in very short time (in minutes) enabling a very effective

vehicle of carrying out complex studies, such as in [3].

A relevant future direction is to incorporate natural selection in the single population

mode of SimRA, since natural selection is what drives evolution. SimRA is based on

the neutral Write-Fisher model of evolving population, but it is challenging to model

selection in our backward simulation algorithm in order to consider its effects on the

resulting topology and samples.

8.2 Topological Signatures for Population Admixture - Ch. 4

In [3] the first combinatorial approach to characterize admixture in populations, based

on ARGs, has been presented. Traditionally admixture has been addressed by studying

linkage disequilibrium distributions. Through controlled simulations, we show that it is

feasible to detect admixture by topological signatures.

Moreover, when the model is applied on avocado germplasm data, we observe similar

signatures of the persistent cycles, as is seen in the simulation experiments. Due to noise

and other unknown factors in real data, the signatures may require to be calibrated (i.e.,

values of c in Section 4.3) based on training data.

Observe that it has been possible to conduct controlled simulations thanks to the efficiency

and accuracy of SimRA [1]. Indeed, SimRA made the simulation of complex scenarios of

multiple populations evolution (where each population has huge size) feasible.

From the promising results obtained, we believe that the topological signatures have the

potential not only for detecting, but also discriminating ancient from recent admixture

in multiple populations. This preliminary work is promising and in our future work, we

plan to explore more complex admixture models, both in terms of complex topology of

the scaffolds as well as complex characterizations of admixture.

8.3 Explaining evolution via Constrained Persistent Phy-

logeny - Ch. 6

The availability of a huge amount of genomic and proteomic data makes the use of

genetic attributes or biological markers quite appealing in evolution analysis, thus giving

even more importance to applying computationally efficient parsimony models. On

the other hand, there is a huge gap between tractable and NP-hard parsimony models
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that needs to be filled. In fact, one extreme is the perfect phylogeny, which has linear

time solution but has only a few specific biological applications. On the other hand

we have models, such as Dollo or Camin-Sokal parsimony models, which are often too

generic from a biological viewpoint and computationally impracticable. A middle ground

is occupied by the persistent perfect phylogeny model introduced in [66], which finds

specific applications such as protein networks and domains analysis [61].

In [5, 6] we continue the investigation of the persistent perfect phylogeny model. More

precisely, we investigate the constrained persistent perfect phylogeny (CPPP) problem,

which is the general problem of computing a persistent perfect phylogeny for binary

matrices where some characters may be forced to be non-persistent in the tree. We

provide algorithmic solutions for the problem: a polynomial time algorithm when the

conflict graph is edgeless and a fixed-parameter algorithm for the general CPPP problem

(See Sections 6.3 and 6.4). Note that both the algorithms can be applied also to the

unconstrained case, the PPP problem, simply posing the set of constrains F = ∅.

We experimentally illustrate that the search tree technique, combined with the use

of constraints, speeds up the computation for matrices that otherwise would require

exponential time. In [5] we run a preliminary experimental analysis showing that our

method can manage successfully binary characters data incorporating back mutations.

Indeed, the algorithm performs efficiently on simulated matrices as well as on real

data taken from the HapMap project [69]. Hence, the experiments illustrate that the

constrained persistent perfect phylogeny model allows to explain data that do not conform

with the classical perfect phylogeny model (See Section 6.5). Future research can be

devoted to experimental investigation of possible improvements based on introducing a

carefully crafted set of constraints to speed up the computation.

Moreover, using the notion of red black graph, we give a polynomial time solution for

both the constrained and unconstrained persistent perfect phylogeny reconstruction

problems over instances that have edgeless conflict graphs [5]. Also we demonstrate that

when no constraint is given and the conflict graph is edgeless, a solution for the PPP

problem always exists.

Finally, we characterize an infinite class of instances on which the persistent phylogeny

problem have no solution, but all their induced sub-instances can be solved by a persistent

phylogeny [6]. These instances are represented by red black graphs with simple cycles

of length greater than 4 and whose conflict graphs have also cycles (See Section 6.6).

Clearly, graphs that contains such induced cyclic subgraphs are also not solvable. Hence,

a natural question is the following. Is there a necessary and sufficient condition that

characterizes the red black graphs that can be solved? Can such condition be tested in

polynomial time?
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Another relevant problem still open is whether there exists a polynomial time algorithm

to find a successful reduction for a red black graph. Solving this question implies the

possibility to develop a polynomial time solution for the PPP problem.

Observe, indeed, that the computational complexity of the CPPP problem, hence of

the PPP problem, is still open. Moreover, as the CPPP problem is equivalent to the

case of Generalized Cladistic Character Compatibility (GCCC) problem in Table 1 rows

(5-6) in [64], whose complexity is left open, our results also apply to that case of GCCC

problem.

It is also of interest considering the optimization version of the PPP problem, which

consists of finding the persistent phylogeny that minimizes the number of persistent char-

acters. Consequently, a natural question is characterizing the computational complexity

of Parsimonious PPP problem.

Finally, from a theoretical point of view, the investigation of variants of the perfect

phylogeny or restrictions of the Dollo parsimony, different from the persistent perfect

phylogeny, is still an important research direction to be investigated.

8.4 Filling incomplete genomic sequences - Ch. 7

In [8] we consider two variants of the Scaffold Filling problem (One-sided SF-MNSA and

the Two-sided SF-MNSA), a problem related to the reconstruction of complete genomes

from incomplete draft genomes produced by the NGS technologies. We present two Fixed

Parameter Tractable (FPT) algorithms for the two variants of Scaffold Filling, where the

parameter is the number of common adjacencies in the resulting genomes (See Sections 7.3

and 7.4). However, the two designed FPT algorithms are only of theoretical relevance,

since they have time complexity that makes them infeasible for practical applications.

Therefore, there are some interesting open problems from an algorithmic perspective.

First, it would be challenging to improve upon the time (and space) complexity of

the two algorithms. In this direction, it would be interesting to investigate whether

the algebraic technique applied to Graph Motif [89, 90] and Repetition Free Longest

Common Subsequence [91] can be useful in this context. Then, it would be intriguing to

study the kernelization complexity of the two problems. Moreover, the approximation

complexity of the Scaffold Filling problems, in particular of the Two-sided case, should

be further investigated. Finally, an interesting open problem in this direction (see [79])

is whether it is possible to design an approximation algorithm for Two-sided SF-MNSA

with approximation factor better than 2.
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