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Summary. Reproducibility Probability (RP) estimation is improved in a general para-

metric framework, which includes Z, t, χ2, and F tests. The preservation of RP-testing

(i.e. RP estimation based significance testing with threshold at 1/2) is taken into account.

Average conservative, weighted conservative, uninformative Bayesian, and Rao-Blackwell

RP estimators are introduced, and their relationship studied. Several optimality cri-

teria to define the parameters of weighting functions of conservative RP estimators are

adopted. RP-testing holds for average conservative estimators and, under mild conditions,

for weighted conservative ones; uninformative Bayesian and Rao-Blackwell RP estimators

perform RP-testing only under the location shift model. The performances of RP es-

timators are compared mainly through MSE. The reduction of MSE given by average

conservative estimators is, on average, higher than 20%, and can reach 35%. The perfor-

mances of optimal weighted RP estimators are even better: on average, the reduction of

MSE is higher than 30%.

Keywords: conservative RP estimation; Bayesian RP estimation; average conserva-

tive RP estimation; weighted conservative RP estimation.

1 Introduction

Reproducibility is one of the main principles of the scientific method, and several relevant

science journals have recently launched a campaign on reproducibility issues, titled “Jour-

nals unite for reproducibility” (see [1, 2]). For research findings based on randomness,
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in particular the many based on statistical test outcomes, the reproducibility probabil-

ity (RP) should logically be taken into account before considering the reproducibility of

methodologies adopted in research. RP estimates are mainly adopted in clinical trials (see

e.g. [3, 4, 5]). Nevertheless, RP estimation may be extended to several other experiments

where data are analyzed by statistical tests.

Actually, when the type I error probability α is given fixed, RP estimates could replace

p-values thanks to RP-testing: this consists in testing statistical hypotheses on the basis

of an RP estimate whose significance threshold is 1/2. Here, we do not argue the adoption

of RP estimates to replace p-values: we focus on technical aspects of RP estimation and

testing.

Two of the most cited papers on RP estimation are [6] and [3]. RP-testing, introduced

several years later [7], holds in many parametric situations. In nonparametrics, RP esti-

mation has been studied for various tests [8, 9, 10]: RP-testing holds exactly for some of

them, and with good approximations for the remaining ones.

In practice, RP estimators presented in the above mentioned papers showed the disad-

vantage of being affected by high variability. For example, the mean error of the simplest

RP estimator for the Z-test (i.e. the plug-in pointwise one) is ' .29 when RP = .5, and

' .26 when RP = .8. The mean errors of RP estimators for the other tests studied,

parametric or nonpametric, were of the same amplitude.

In this paper, we aim at substantially reducing the MSE of such family of RP estima-

tors. Particular emphasis is given to estimators for which RP-testing holds.

In section 2 some results on the Z-test are presented, with the aim to introduce the

basic idea and results of this work. The general framework is defined in section 3 and

in section 4 the main results are presented, which are: a class of weighted conservative

RP estimators (with some special cases), the uninformative Bayesian RP estimator, a

Rao-Blackwell RP estimator, and their theoretical relationship. The behavior of the

RP estimators is studied and compared in section 5, where bias, variance and MSE is

computed for the t, Z and χ2 tests, under several settings. An example of application is

shown in section 6 and discussion and conclusion follow in section 7.

2 Preliminary results on the Z-test

We started this work focusing on Bayesian RP estimators for the Z-test to compare two

means with known variances. We found that the Uninformative Bayesian (UB) estimator

showed a variability smaller than that of the simplest pointwise estimator. In Figure 1,
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the differences between percentiles of RP estimators and RP are reported (i.e. R̂P
•
ptile −

RP ), as RP goes from 5% to 95%; the 10th and the 90th percentiles, together with the

quartiles (i.e. 25th, 50th, 75th percentiles) of R̂P
•

are considered. It is worth noting

that the differences between percentiles of R̂P
UB

are smaller than those of the pointwise

estimator R̂P . Also, R̂P
UB

is median biased, whereas R̂P is unbiased by definition (i.e.

R̂P 50% − RP = 0, ∀RP ). Nevertheless, we found (numerically) that RP-testing holded

for the UB estimator too.

In the light of these findings, we started studying the problem formally, and the results

follow here below.

2.1 Basic framework and frequentist RP estimators

Let us consider the test statistic Tn ∼ N(λ, 1), and assume that the noncentrality param-

eter λ is equal to 0 under the null hypothesis, whereas λ > 0 under the alternative one.

Being α ∈ (0, 1) the type I error probability, the critical value is z1−α = Φ−1
0,1(1 − α) and

the statistical test is:

Φα(Tn)=

{
1 iff Tn > z1−α

0 iff Tn ≤ z1−α

The power function is Pλ(Tn > z1−α) = πα,n(λ) and, denoting by λt the unknown true

value of λ, the true power, i.e. the reproducibility probability, is RP = πα,n(λt).

The simplest estimator of the RP is given by plugging the estimator of λ, i.e. Tn, into

the power function: R̂P = πα,n(Tn). This pointwise RP estimator is median unbiased, i.e.

P (R̂P < RP ) = 1/2. Often, lower bounds for the RP are useful, and consequently the

γ-conservative estimator for λ was introduced: λγn = Tn−zγ [3, 7]. By plugging-in λγn, the

γ-conservative estimator is obtained R̂P
γ

= πα,n(λγn), which gives P (R̂P
γ
< RP ) = γ.

2.2 Uninformative Bayesian and Average Conservative RP es-

timators

When the Bayesian approach is adopted, the posterior distribution of λt is first computed,

i.e. h(·|Tn). Then, the Bayesian estimator is R̂P
B

=
∫
πα,n(λ)h(λ|Xn) dλ (see also [3]).

This estimator usually depends on subjective assumptions on the prior distribution of λt,

and so RP estimate depends on subjectiveness too. For this reason, we consider here only

uninformative priors. As a consequence, the posterior distribution of λt is normal with

mean Tn and unitary variance, that is h(·|Tn) turns out to be equal to the likelihood of λt:

φTn,1(•). So, the Uninformative Bayesian estimator, which was proposed in [6], results to
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be

R̂P
UB

=

∫
πα,n(λ)φTn,1(λ) dλ

A more intuitive approach to RP estimation, which might be viewed as a robust one,

consists in averaging the γ-conservative estimators. In this way, the Average Conservative

estimator of the RP turns out to be:

R̂P
AC

=

∫ 1

0

R̂P
γ
dγ (1)

It is worth noting that deviates from Tn in the likelihood function can be written in

function of γ, and consequently it is easy to obtain:

R̂P
UB

=

∫
πα,n(λ)φTn,1(λ) dλ =

∫ 1

0

R̂P
γ
dγ = R̂P

AC

In other words, in the context of the Z-test the UB estimator can be viewed as the average

of frequentist γ-conservative estimators. For clarity, in this section only the notation

R̂P
AC

will be adopted.

2.3 RP-testing

We formally show here that RP-testing holds in the context of Z-tests, for Average Con-

servative (and so for Uninformative Bayesian) estimators of the RP.

Theorem 1. The AC estimator of the RP performs RP-testing.

Φα(Tn)=

{
1 iff R̂P

AC
> 1/2

0 iff R̂P
AC
≤ 1/2

Proof. It is a direct consequence of Theorem 1 in [7]. In detail, ∀ γ ∈ (0, 1) we have:

Φα(Tn) = 1 iff R̂P
γ
> γ. Then, by integrating on γ we obtain the claim.

Remark 1 It is easy to extend Theorem 1 to a wide class of tests, i.e. those included

in the general testing framework adopted in [7]. Nevertheless, we do not provide this

extention since a more general result will be provided later (i.e. Theorem 2).
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2.4 Variability of the AC/UB RP estimator

The variability of RP estimators is quite high: RP estimates can often fall quite far from

RP. The MSEs of R̂P
AC

and R̂P for the Z-test are shown in Figure 1 as functions of RP .

It can be noted that the AC estimator performs better, being its MSE often lower

than that of R̂P . On average, the reduction in MSE provided by R̂P
AC

, with respect to

R̂P , is 21.4% (i.e. the relative variation of average MSEs). The best reduction is observed

for RP values close to 1/2, where the uncertainty on the decision is highest: the MSE of

R̂P
AC

is more than 35% smaller than that of R̂P .

The good behavior of R̂P
AC

in terms of MSE is given by bias and variance results: in

Figure 3 it is shown that the bias of R̂P (which is median unbiased) is the lowest, and

that R̂P
AC

presents the lowest variance, but the variance reduction of R̂P
AC

is stronger

and determines its lower MSE.

Remark 2 Figures 2 and 3 and the results mentioned above concerning Z-test are gen-

eral, since the differences R̂P
•
ptile −RP of R̂P and R̂P

AC
, and consequently their biases,

variances and MSEs, do not depend on n or α (proof omitted).

2.5 Concluding remarks

Given the good results of R̂P
AC

in terms of MSE, in the following, the study of AC and

UB estimators is extended to a general context, which includes a wide family of tests, in

order to: a) generalize UB and AC estimators; b) introduce, if possible, other estimators

of the RP; c) study theoretical relationships among different estimators; d) evaluate if

RP-testing holds; e) compare the performances of RP estimators, in terms of MSE. To

pursue these aims, it is first necessary to provide a general framework.

3 General theoretical framework

Let X be a random variable with distribution function Ft ∈ F and let Xn be a random

sample drawn from Ft. Let Tn = T (Xn) be the test statistic used to test the statistical

hypotheses

H0 : Ft ∈ F0 vs H1 : Ft ∈ F\F0. (2)

Assume that Tn has a continuous parametric distribution Gn,λt , with λt = L(Ft, n), sat-

isfying the following conditions:

(I) the analytical formula of Gn,λ is known for all n and λ = L(n, F ), F ∈ F ;
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(II) for simplicity, and without loss of generality,

sup
H0

{λ} = sup
F∈H0

{L(n, F )} = 0 ∀ n;

(III) Gn,λ is stochastically strictly increasing in λ, that is

Gn,λ′(t) > Gn,λ′′(t) ∀t, if λ′ < λ′′ .

Assuming that the statistical hypotheses (2) are one-sided (for example on the left

tail), the critical region based on the Tn, thanks to (I)-(III), results

Φα (Xn) =

{
1 iff Tn > tn,1−α

0 iff Tn ≤ tn,1−α
, (3)

where α ∈ (0, 1) is the prefixed Type-I error probability and tn,1−α = G−1
n,0(1 − α). Note

that Z-tests, as well as t-tests, χ2-tests and F -tests, are included in this framework.

Let Λ be the image of F under the functional L(n, ·). The power function of test (3)

is the function with domain Λ defined as

πα,n(λ) = PF (Tn > tn,1−α) = 1−Gn,λ(tn,1−α) . (4)

Note that, thanks to (III), πα,n(λ) is strictly increasing in λ over Λ and the test Φα (Xn)

is strictly unbiased. The Reproducibility Probability (RP ) of the test (3) coincides with

the “true power” of the same test:

RP = πn,α(λt) = 1−Gn,λt(tn,1−α) . (5)

The “naive” RP estimator, proposed by [3], is obtained through the estimation of λt

by Tn:

R̂P
N

= 1−Gn,Tn(tn,1−α) , (6)

The γ-conservative estimator of λt, denoted by λ̂γn, is implicitly defined as the solution

of Gn,λ̂γn
(Tn) = 1− γ. Consequently, the general γ-conservative RP estimator [7] is:

R̂P
γ

= πn,α

(
λ̂γn

)
= 1−Gn,λ̂γn

(tn,1−α) , (7)

When the amount of conservativeness adopted is γ = 0.5, the median unbiased estimator

is defined:

R̂P = R̂P
0.5

= πn,α

(
λ̂0.5
n

)
= 1−Gn,λ̂0.5n

(tn,1−α) , (8)

We recall that R̂P performs RP-testing in the general framework above [7], whereas R̂P
N

does not.
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4 RP estimators in the general framework

In this section, several families of RP estimators are introduced, and their theoretical

relationships are studied.

4.1 A class of Weighted Conservative RP estimators

The idea of average conservative estimation is developed here, and the possibility of

averaging the R̂P
γ
s even not uniformly is introduced with the aim to define, if possible,

a more suitable setting of weights. Let us denote by w(γ) the weight function, where

w(γ) ≥ 0 and
∫ 1

0
w(γ)dγ = 1. Then, the class of Weighted Conservative estimators is:

R̂P
WC

=

∫ 1

0

R̂P
γ
w(γ)dγ (9)

In general, R̂P
WC

does not fulfill RP-testing, but under a simple condition on w it

does.

Theorem 2. If the mean of weights is 1/2, then the WC estimator performs RP-

testing.

Φα(Tn)=

{
1 iff R̂P

WC
> 1/2

0 iff R̂P
WC
≤ 1/2

Proof. It is analogous to that of Theorem 1, and exploits
∫ 1

0
γ w(γ)dγ = 1/2.

4.1.1 Beta-weighted conservative RP estimators

Let us consider a particular class of weights, where w is the Beta density with parameters

a and b:

w(γ; a, b) =
1

B(a, b)
γa−1(1− γ)b−1 a > 0, b > 0, 0 < γ < 1 .

The variation of a and b allows w to assume a wide range of shapes. In order to allow

RP-testing, the weights with average 1/2 are of particular interest, and are obtained when

a = b - note that with this setting the Beta density is symmetric. Thus, the Beta-weighted

conservative estimator is defined just when a = b:

R̂P
βWC

(a) =
1

B(a, a)

∫ 1

0

R̂P
γ
γa−1(1− γ)a−1dγ a > 0 (10)

Theorem 2 gives that RP-testing holds for R̂P
βWC

(a).
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Remark 3 When a = 1, w is uniform, i.e. w(γ; 1, 1) = 1, ∀ γ ∈ (0, 1), and the Beta-

weighted conservative estimator turns out to be equal to the AC one: R̂P
βWC

(1) = R̂P
AC

,

that is defined in (1).

Remark 4 When a tends to ∞, w degenerates to the Dirac measure on 1/2, so that the

Beta-weighted conservative estimator is equal to the pointwise one: lima→∞ R̂P
βWC

(a) =

R̂P .

Remark 5 When a tends to 0, w becomes a discrete measure with support {0,1}, each

point with probability mass 1/2. In this case, the Beta-weighted conservative estimator

degenerates to a constant: lima→0 R̂P
βWC

(a) = 1/2 almost surely. This note will be useful

mainly when analyzing results.

4.1.2 Parameter choices in Beta-symmetrically-weighted conservative RP es-

timators

The special cases described above emphasize that the choice of a plays a crucial role in

the behavior of R̂P
βWC

(a). Therefore, we introduce several optimality criteria to define

some choices of a.

First, the parameter amv giving the Beta-weighted conservative estimator that mini-

mizes the global variability (i.e. the average of the MSE over RP ∈ (0, 1)) is defined:

amv is such that

∫ 1

0

MSE(R̂P
βWC

(amv)) dRP ≤
∫ 1

0

MSE(R̂P
βWC

(a)) dRP ,∀a > 0

Second, to provide a more stable estimation for high values of the RP (that are useful,

for example, to avoid the second confirmative clinical trial (see [3, 4]) the value amvp that

minimizes the proportional global variability of Beta-weighted conservative estimator, is

defined:

amvp is such that∫ 1

0

MSE(R̂P
βWC

(amvp))RP dRP ≤
∫ 1

0

MSE(R̂P
βWC

(a))RP dRP ,∀a > 0

Third, a minimax approach is developed: the parameter amm giving the minimal

maximal variability of Beta-weighted conservative estimator is defined:

amm is such that max
RP∈(0,1)

MSE(R̂P
βWC

(amm)) ≤ max
RP∈(0,1)

MSE(R̂P
βWC

(a)) ,∀a > 0

Thus, the estimators: R̂P
βWC

(amv), R̂P
βWC

(amvp), and R̂P
βWC

(amm) are defined,

and will be considered when comparing the behavior of RP estimators.
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Remark 6 If MSE(R̂P
βWC

(a)) is symmetric for all a > 0, then amv = amvp. This note

will be useful mainly when analyzing results. Proof is omitted.

4.2 The Uninformative Bayesian RP estimator

Being h (·|Tn) the posterior distribution of λt, the Bayesian estimator of the RP is R̂P
B

=∫
Λ
πn,α(λ)h(λ|Tn) dλ. When an uninformative prior is adopted, the posterior distribution

results h(λ|Tn) = gn,λ(Tn)/
∫

Λ
gn,λ(Tn)dλ, where gn,λ denotes the density of Gn,λ. Thus,

the uniformative Bayesian RP-Estimator results:

R̂P
UB

= C−1

∫
Λ

πn,α(λ)gn,λ(Tn) dλ (11)

where C =
∫

Λ
gn,λ(Tn)dλ.

4.2.1 Relations among Uninformative Bayesian and Weighted Conservative

RP estimators

The Bayesian RP-Estimator and the conservative (frequentist) RP-Estimators are linked.

Let us consider Gn,λ(Tn), and looking at it as a function of λ denote it by Ln,Tn(λ). Then,

the conservative estimator of λ results λ̂γn = L−1
n,Tn

(1− γ) (note that L−1
n,Tn

is well defined

thanks to (III), which implies that Ln,Tn is strictly decreasing and so invertible).

Now, consider the uninformative Bayesian estimator in (11) and the change of variable

λ = L−1
n,Tn

(1− γ), conditioned to Tn, in the related integral.

Since dλ = dγ/−ln,Tn(L−1
n,Tn

(1− γ)), where ln,Tn = L′n,Tn , and assuming that the image of

Λ under the functional L(n, ·) is (0, 1), the UB estimator becomes:

R̂P
UB

= C−1

∫ 1

0

[1−Gn,L−1
n,Tn

(1−γ)(tn,1−α)]
gL−1

n,Tn
(1−γ)(Tn)

−ln,Tn(L−1
n,Tn

(1− γ))
dγ

= C−1

∫ 1

0

[1−Gn,λ̂γn
(tn,1−α)]

gn,λ̂γn(Tn)

−ln,Tn(λ̂γn)
dγ

= C−1

∫ 1

0

R̂P
γ gn,λ̂γn(Tn)

−ln,Tn(λ̂γn)
dγ (12)

where C =
∫

Λ
gn,λ(Tn)dλ =

∫ 1

0

g
n,λ̂

γ
n

(Tn)

−ln,Tn (λ̂γn)
dγ.

This equation recalls (9) and highlights the relationship between the UB estimator

and the WC one. First, note that wUB(γ) = gn,λ̂γn(Tn)/(−ln,Tn(λ̂γn))C, with γ ∈ (0, 1), is

a weight function since, thanks to (III), −ln,Tn(·) is positive because Ln,Tn(·) is strictly

decreasing. Nevertheless, wUB(γ) is a random weight function, because it depends on Tn.
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Consequently, the UB estimator can not be a particular case of the WC one, since the

random wUB(γ) can not be equal to any prefixed w(γ).

Remark 7 In general, the mean weight of wUB(γ) is not 1/2, so that Theorem 2 concern-

ing RP testing can not be applied. Moreover, in many cases (i.e. with several distributions

G) R̂P
UB

does not perform RP testing (e.g. G = t, G = χ2).

Remark 8 When λ is a location parameter for Tn, R̂P
UB

performs RP testing. Indeed, in

this case we have Gn,λ(t) = Gn,0(t− λ), that implies dGn,0(t− λ)/dt = −dGn,0(t− λ)/λ,

giving gn,λ(t) = −ln,t(λ). Consequently, wUB(γ) = 1 = w(γ; 1, 1), with γ ∈ (0, 1), implying

R̂P
UB

= R̂P
AC

, and Theorem 2 holds.

4.3 An improved Rao-Blackwell RP estimator

In the wake of improving RP estimation, the Rao-Blackwell theorem (see, for example,

[11]) is applied here, to reduce the MSE of the naive RP estimator (6).

Given that the noncentrality parameter λt can be viewed as a function of the param-

eters of Ft, i.e. λt = τ(θt) where θt is a vector of length d ≥ 1, its plug-in estimator

λ̃n = τ
(
θ̂n

)
can be considered, where θ̂n is an estimator of θt.

In many technical situations (e.g. when Gn,λ is Gaussian, or t, χ2, F , . . .) we have that:

I) θ̂n can be easily defined as a set of sufficient statistics for θt; II) the test statistic Tn is

a function of the θ̂n, and is an estimator of the noncentrality parameter: λ̃n = Tn. Under

these conditions, when the Rao-Blackwell theorem is applied to (6) an RP estimator with

lower variance is obtained:

R̂P
RB

= E
[
R̂P

N
|θ̂n
]

=

∫
Rd

(
1−Gn,τ(t)(tn,1−α)

)
fθ̂n(t)dt

=

∫
R

(1−Gn,t(tn,1−α)) gn,λ̃n(t)dt (13)

The Rao-Blackwellization might be also applied to other RP estimators, e.g. to the

median unbiased one (R̂P ), but this possibility is not developed here.

4.3.1 Relations among naive-Rao-Blackwellized and Weighted Conservative

RP estimators

Consider (13) and the change of variable λ̃n = Tn, that give:

R̂P
RB

=

∫
R

(1−Gn,t(tn,1−α)) gn,Tn(t)dt
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=

∫ 1

0

(
1−Gn,λ̂γn

(tn,1−α)
) gn,Tn(λ̂γn)

−ln,Tn(λ̂γn)
dγ

=

∫ 1

0

R̂P
γ gn,Tn(λ̂γn)

−ln,Tn(λ̂γn)
dγ (14)

Hence, even the RB estimator recalls the WC one (9). Nevertheless, wRB(γ) =

gn,Tn(λ̂γn)/(−ln,Tn(λ̂γn)), with γ ∈ (0, 1), is a random weight function, since it depends

on Tn. Consequently, the RB estimator can not be included in the WC family.

Remark 9 Expression (14) of R̂P
RB

recalls that of the Uninformative Bayesian in (12),

and, actually, the two formulas coincide under the conditions of Remark 7: when λ is a

location parameter and gn,0(t) is symmetric, then R̂P
RB

= R̂P
UB

= R̂P
AC

(see Remark

7), and RP-testing holds (Theorem 2).

5 Evaluating MSE of RP-estimators

The behavior of several estimators is evaluated here, in terms of MSE, for the t, Z, and

χ2 tests, for three values of α: 0.01, 0.05, 0.1.

First, R̂P
βWC

(a) was considered, since it is the most general and flexible estimator;

the MSE at eight levels of a within [0,+∞] was computed, with RP ∈ (0, 1), in order to

have a first look at the behavior of R̂P
βWC

(a) and of the values of a that perform well.

The values of a taken into account are: 0, 0.3, 0.6, 1, 1.2, 2.4, 4.8,∞; indeed, a = 1 gives

R̂P
βWC

(1) = R̂P
AC

(which can be considered an intermediate approach), a = ∞ gives

the extreme estimator R̂P
βWC

(∞) = R̂P , and a = 0 represents the opposite extreme

estimator, R̂P
βWC

(0).

Then, the following seven estimators are considered:

• the classical pointwise estimator: R̂P = R̂P
0.5

• the average conservative estimator: R̂P
AC

• the uninformative Bayesian estimator: R̂P
UB

• the Rao-Blackwell estimator: R̂P
RB

• the minimal variability Beta-weighted conservative estimator: R̂P
βWC

(amv)
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• the RP proportional minimal variability Beta-weighted conservative estimator:

R̂P
βWC

(amvp)

• the minimal maximal variability Beta-weighted conservative estimator: R̂P
βWC

(amm)

The “naive” RP estimator in (6) is not considered, since it does not perform RP-testing

and its MSE is close the that of R̂P .

Two global indexes based on MSE comparison are computed, concerning MSE reduc-

tion provided by the generic RP estimator with respect to the classical pointwise one:

the mean relative gain MRG =
∫

(MSE(R̂P
•
)/MSE(R̂P ) dRP − 1, and the the relative

mean gain RMG = (
∫
MSE(R̂P

•
) dRP −

∫
MSE(R̂P ) dRP )/

∫
MSE(R̂P ) dRP .

Bias and variance are not reported, since the kind of impact they have on RP esti-

mators was shown in Section 2. Since the MSE was evaluated for several settings, just

a few graphs are reported here; the remaining results are provided in the supplementary

material, as well as graphs on bias and variance.

5.1 MSE for the t-test

RP estimation was studied with η = 10, 30, 50, 100 dfs. For each of the 12 settings so

obtained (i.e 4 ηs times 3 αs), performances were evaluated both for R̂P
βWC

(a) (when a

varies) and for the set of (seven) RP estimators listed above.

As it concerns R̂P
βWC

(a), results report that variations due to different αs are very

small. This was expected for large dfs, since t-distribution can be approximated by the

Z one, where MSE does not depend on α (see Section 2), but it holds also for small ηs.

Even the differences between MSE as η increases are very small: with η = 10, the paths

of MSE curves are very similar to (just a bit less symmetrical, with respect to RP = 1/2,

than) those of the Z-test.

First, there is not a value a′ for which the MSE of R̂P
βWC

(a′) is lower than that of

R̂P
βWC

(a), with a ≥ 0, on the whole range of RP .

For the estimators with a ≥ 0.3 (i.e. all but R̂P
βWC

(0)), the MSE is similar when the

RP becomes close to 0 or 1 - actually, it tends to zero; on the contrary, when RP goes

from 0.15 to 0.85 the MSEs show large differences, often lying between 0.04 and 0.08 (see

Figure 4).

This means that RP estimation can be highly variable, in particular when RP is

close to 1/2 (i.e. when the variability of the Bernoullian outcome of a statistical test is

maximal), where the MSE is about 0.085 for R̂P
βWC

(∞) = R̂P (this is in accordance

with the introductive section); nevertheless, the MSE can be reduced remarkably: for
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example R̂P
βWC

(0.3) gives an MSE ' 0.031 when RP is close to 1/2, providing an MSE

reduction of about 63%. The estimator R̂P
βWC

(0) is almost surely equal to 1/2 and,

then, it performs very well when RP is very close to 1/2, and very poorely when RP is

close to the margins.

As regards comparisons among the seven estimators here considered, variations in

MSE due to different αs are, once again, very small, even when η = 10. Differences

between some estimators are relevant when η is small, since when it increases the MSE

of R̂P
UB

, R̂P
AC

, and R̂P
RB

tend to overlap (indeed, these estimators tend to coincide

when η → ∞, see Remark 9). Moreover, also R̂P
βWC

(amv) and R̂P
βWC

(amvp) tend to

coincide as dfs increase, since the MSE curves of R̂P
βWC

(a) tends to be symmetric when

η →∞ (see Remarks 6 and 9).

In general, there is no estimator dominating the others in terms of MSE. Never-

theless, the results are interesting and useful, since the three optimized estimators, i.e.

R̂P
βWC

(a•), improved RP estimation not only with respect to R̂P , but also to R̂P
UB

,

R̂P
AC

and R̂P
RB

.

The three latter estimators showed an MSE often lower than that of R̂P , especially

when RP is close to 1/2. In particular, R̂P
UB

and R̂P
RB

work better for high RP and

poorly when RP is low; on the contrary, the MSE of R̂P
AC

is quite stable (' 0.06) when

RP goes from 0.15 to 0.85.

The optimized estimators R̂P
βWC

(amv) and R̂P
βWC

(amvp) are the best performers,

among those considered, when RP is close to 1/2; when RP is high (viz. > 0.85), their

behavior is the worst - R̂P
βWC

(amvp) performs a bit better than R̂P
βWC

(amv).

The minimax estimator R̂P
βWC

(amm) does not perform bad close to 0 or 1 (just a

bit worse than R̂P
AC

) and presents an MSE quite a bit lower than R̂P
AC

(and not far

from the two optimized estimators above) when RP is close to 1/2. In detail, when

η = 30, α = 0.05, and RP goes from 0.15 to 0.85, the average MSE reduction with

respect to R̂P
AC

is 10%, and is 36% with respect to R̂P . Hence, we suggest the adoption

of R̂P
βWC

(amm).

The indexes of MSE reduction (viz. RMG and MRG) of the considered RP-estimators

with respect to R̂P , are reported in Tables 1 and 2. It can be noted that although the RMG

of R̂P
βWC

(amm) is not best, its MRG is best, and this estimator shows the most uniform

improvement. For completeness, the values of amv, amvp and amm, for the considered

values of η and α, are reported in Table 3.

Recall that for the t-test, R̂P
UB

and R̂P
RB

do not perform RP-testing.
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5.2 MSE for the Z-test

The behavior of RP estimators of the Z-test can be viewed as that of the t-test when the

dfs go to ∞. It has been noted that, with the Z-test, the behavior of the estimators is

independent from α and their MSE curves are symmetric (Remark 2). Then, R̂P
βWC

(amv)

and R̂P
βWC

(amvp), obtained when amvp = 0.13, coincide (see Remark 6). From Section

2.2 and Remark 9 it also follows that R̂P
UB

= R̂P
AC

= R̂P
RB

.

As for the t-test, in general there is no estimator dominating the others in terms of

MSE. R̂P
βWC

(0.13) perform best when RP is close to 1/2, but suffer when RP ≤ .2 or

RP ≥ .8. Nevertheless, the adoption of R̂P
βWC

(amm) is suggested, since it still performs

better than R̂P
UB

= R̂P
AC

= R̂P
RB

, in analogy with the t-test. When RP goes from

0.15 to 0.85, the relative mean gain of R̂P
βWC

(amm) with respect to that of R̂P
AC

is 13%,

and is 36% with respect to R̂P .

5.3 MSE for the χ2-test

Four values of dfs for the χ2 distribution were considered: η = 4, 9, 16, 30. For each of the

12 settings (i.e 4 ηs times 3 αs), estimation performances were evaluated in analogy with

those of the tests above.

As it concerns Beta-weighted estimators, their MSEs are very similar to those of the

t-test, that is, there are small differences varying dfs or α; also, their behavior when the

parameter a increases is very close to the related ones under t distributions. Therefore,

numerical comments of section 5.1 are still valid, and Figure 4(a) can be considered. Once

again, there is no value a′ for which the MSE of R̂P
βWC

(a′) is best on the whole range of

RP .

Some of the seven estimators considered showed different behaviors compared to pre-

vious settings. In particular, R̂P
RB

performed very poorely, and R̂P
UB

is poor when

RP > 0.5; moreover, recall that both RP estimators do not perform RP-testing.

In general, R̂P , R̂P
AC

and R̂P
βWC

(amm) performed quite similar to their behaviors

under t distributions, whereas R̂P
βWC

(amv) and R̂P
βWC

(amvp) are still similar just for

RP > 0.2. On the contrary, when RP is small, the latter two estimators tend to over-

estimate quite a bit - this is more evident when α increases. Also, R̂P
UB

and, mainly,

R̂P
RB

are seriously affected by overestimation. This is due to the the domain (0,+∞)

of λt, which implies that RP estimates are at least equal to α. The performances of RP

estimators are quite similar when η vary.

To conclude, there is no estimator dominating the others in terms of MSE. The RMG
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and MRG are reported in Tables 4 and 5. Although R̂P
βWC

(amm) provides, once again,

a uniform improvement with respect to R̂P and therefore seems to be preferable, relative

gain indexes indicate that R̂P
βWC

(amv) is the best performer.

The optimal parameters a• are quite different from those of the t-test; their values,

when η and α vary, are reported in Table 6.

6 Numerical example

Two means are compared to evaluate superiority. Given that the superiority margin of

scientific interest is 1, the hypotheses of interest are H1 : µT−µC > 1 vsH0 : µT−µC ≤ 1,

according to [12]. Two random samples of size 16 are drawn, where the known common

variance is 2. The standardized difference between sample means is considered for testing.

The experimental error α is set at 2.5%, and the critical value is 1.96. The treatment

group showed a mean equal to 2.94 and the control mean resulted 0.79. Thus, the Z

statistic resulted significant: z =
√

16/2(2.94 − 0.79 − 1)/
√

2 = 2.3 > 1.96. Also, 2.3

seems quite far from 1.96 and the observed significance appears to be a reliable/stable

result.

On the contrary, RP estimates result quite low: r̂p = r̂pN = 63.31%, r̂pAC = r̂pUB =

r̂pRB = 59.50%, and R̂P
βWC

(0.62) = 58.03%. From the RP perspective, this does not

look like a stable result. Moreover, the most efficient estimator we introduced provided

an estimate quite far from the simplest (naive) one.

With the same observed means, if the sample sizes per group were 32, then z = 3.25,

the RP estimates are higher: r̂p = r̂pN = 90.19%, r̂pAC = r̂pUB = r̂pRB = 81.97%, and

R̂P
βWC

(0.62) = 77.93%. Now, the most efficient estimators provided an estimate even

farther from the naive one. As it concerns conservative estimation, this result is 90%-

stable (viz. r̂p90% = 50.45% > 1/2): this means that not only significance is observed

(viz. r̂p > 1/2), but even the variability-accounted-for 90%-conservative estimate of RP

is significant (see [4]).

Assume now that the variance is unknown and two samples of 16 data provide an

observed test statistic of t30 = 2.427. Then, the pointwise RP estimate for the t-test is

r̂p = 64.38% and the average conservative r̂pAC = 60.24%, both respecting RP-testing;

the uninformative Bayesian and the Rao-Blackwell (that do not fulfill RP-testing) give

r̂pUB = 61.28% and r̂pRB = 61.74%; finally, the Beta-weighted estimators with opti-

mized parameters for 30 dfs provide R̂P
βWC

(0.11) = 52.94%, R̂P
βWC

(0.15) = 53.73%

and R̂P
βWC

(0.59) = 58.47%. Once again, the RP values provided by the most efficient
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estimators are quite far from the simplest one.

7 Discussion and conclusion

We fulfilled the aim of improving RP estimation preserving RP-testing, and our results

hold under a quite general model including Z, t, χ2 and F tests. Several RP estimators

have been introduced, some of which stemmed from classical statistical theory, and some

other based on original ideas; moreover, their relationship has been studied. In particular,

the average conservative Beta-weighted optimized RP estimators (viz. R̂P
βWC

(amv) and

R̂P
βWC

(amm)) has been introduced, for which RP-testing holds and that provided very

good numerical results: on average, the MSE reduction provided by them with respect to

R̂P is about 30%.

Since optimal settings of parametrized RP estimators R̂P
βWC

(a) exists (see Figure

4(a)) but are unknown (depending on the unknown RP), one could resort to Calibration

(see [13]) to first estimate the best value of a and then use it to estimate the RP. Readers

should be informed that calibration work bad in this context, providing RP estimators

with higher MSE.

The behavior of RP estimators for local alternatives might be considered in further

studies, but it is implicitly already done in this paper. Indeed, the MSE of estimators is

computed by keeping fixed the RP, and this condition can be obtained when the noncen-

trality parameter tends to zero and the sample size increases, i.e. under local alternatives.

We recall that the RP estimators here introduced improve pointwise estimation, whereas

in order to evaluate the stability of test outcomes, conservative RP estimation should be

adopted (De Martini, 2012).

Further developments might concern extending the average conservative RP estima-

tion techniques here introduced to some nonparametric tests, since several results on

nonparametric RP estimation are available (see [9, 10]).
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η α amv amvp amm

10 0.01 0.11 0.21 0.53

0.05 0.13 0.19 0.55

0.1 0.13 0.19 0.55

30 0.01 0.11 0.15 0.59

0.05 0.11 0.15 0.59

0.1 0.11 0.13 0.61

50 0.01 0.11 0.13 0.61

0.05 0.11 0.13 0.61

0.1 0.11 0.13 0.61

100 0.01 0.11 0.11 0.63

0.05 0.11 0.13 0.61

0.1 0.11 0.13 0.61

Table 3: Values of parameters amv, amvp, and amm for the t test and for the considered

values of α and η.
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η α amv amvp amm

4 0.01 0.1 0.08 0.58

0.05 0.09 0.07 0.78

0.1 0.07 0.06 1

9 0.01 0.1 0.08 0.57

0.05 0.09 0.07 0.78

0.1 0.07 0.05 0.99

16 0.01 0.1 0.08 0.57

0.05 0.09 0.07 0.77

0.1 0.07 0.05 0.99

30 0.01 0.1 0.08 0.57

0.05 0.09 0.07 0.78

0.1 0.07 0.05 1

Table 6: Values of parameters amv, amvp, and amm for the χ2 test and for the considered

values of α and η.
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