
1 Introduction

The analysis of the inequality is a crucial issue in our society. All the govern-
ments have the important task to take under control and eventually to reduce
the inequality among their citizens. Since the beginning of the last century, the
scientific literature started to think about the inequality, by formalizing the
issue, and by proposing methods for measuring it. Basically there two kinds of
mathematical-statistical tools for evaluating the inequality: the curves and the
indexes. An inequality curve can be seen as a pointwise measure of inequality,
while an inequality index is a synthetic measure of it.

Nowadays in the literature, the most used curve in inequality analysis
is the Lorenz curve. It is usually denoted by L(p), and it can be defined in
several equivalent ways. One of them is the following one (see Pietra [10], and
Gastwirth [5]):

LX(p) =
1

E(X)

∫ p

0

F−1
X (t) dt p ∈ [0, 1], (1)

where FX and E(X) denote the distribution function and the finite positive
expected value of the non-negative continuous random variableX , respectively.
Another classical inequality curve strictly related with the Lorenz one, is the
Bonferroni curve introduced by Bonferroni in [3]. Using the same notation
than before, it can be defined as follows:

BX(p) =
1

pE(X)

∫ p

0

F−1
X (t) dt p ∈ (0, 1]. (2)

This paper deals with the inequality curves, and it is organized as follows: in
the next Section the definition of the inequality I(p) curve is presented for the
discrete case and for the continuous one; Section 3 describes the main features
of the I(p) curve, with a particular focus on the partial order based on it. The
same section provides the analytical form of the I(p) curve for some classical
distribution models used for modeling the income distribution. Section 4 is
devoted to an empirical analysis based on real data, while the final section
cointains some brief conclusions.

2 A good alternative

Beyond the well-known Lorenz and Bonferroni curves, in the last years, two
relatively new tools suitable for evaluating the inequality, have been proposed
and they continue to obtain more and more attention. They are the I(p) curve



and the index I, introduced by Zenga in [20]. The definition for the discrete
case is provided in the next subsection; the extension to the continuous one is
described later.

2.1 The discrete case

Let the couples {(xj, nj) : j = 1, 2, . . . , s; 0 ≤ x1 < · · · < xs;
∑s

j=1 nj = N}
be the frequency distribution of a non-negative variable X . For j = 1, 2, . . . , s,
consider:

• Nj =

j
∑

i=1

ni

• pj = Nj/N

• Qj =

j
∑

i=1

xini.

The basic idea is, for each j = 1, 2, . . . s, to split the observations into two
collectively exhaustive and mutually exclusive groups: the first one contains
the smallest values of X (named lower group); the second one contains all the
remaining values (named the upper group). For each group, it is possible to
calculate the mean, obtaining the lower and the upper mean, respectively. The
lower mean can be therefore defined as

−

M (pj)=
Qj

Nj
=

1

Nj

j
∑

i=1

xini j = 1, . . . , s

and the upper mean as

+

M (pj)=







T −Qj

N −Nj
j = 1, . . . , s− 1

xs j = s,

where T denotes the total sum, that is:

T = Qs =
s

∑

i=1

xini.

Then for j = 1, 2, . . . , s, the pointwise measure I(pj) can be calculated as:

I(pj) =

+

M (pj) −
−

M (pj)

+

M (pj)

= 1−

−

M (pj)

+

M (pj)

. (3)



Following the procedure described in Zenga [20], by using the s couples (pj , I(pj)),
a very useful graphical representation of the diagram of inequality I(pj) can
be easily obtained. An example of such diagram is shown in Figure 1. It
is worth remarking that the j−th rectangle has length given by the interval
(pj−1, pj] and width equal to the value I(pj). The synthetic inequality index I
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Figure 1: An example of the diagram of inequality I(pj)

can be calculated as the weighted arithmetic mean of the values taken on by
the pointwise measure I(pj) with weights nj/N . It coincides with the sum of
the areas of the s rectangles, it can be evaluated as

I =

s
∑

j=1

I(pj) ·
nj

N
,

and it can be also seen as the area below the I(pj) diagram. Figure 2 shows the
I(pj) diagram for the two extreme situations: the case of minimun inequality
is shown in the left panel, whereas the case of maximum inequality in the right
one. In the former case

Imin = 0,

while in the latter one

Imax = 1−
1

N2
.
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Figure 2: The pointwise measure I(pj) for the two extreme situations: min-
imun inequality (on the left), maximun inequality (on the right)

2.2 The continuous case

The pointwise measure defined in (3) can also be generalized to the continuous
case. In such case, let X be a non-negative continuous random variable, with
support (a, b), with probability density function f , with distribution function
F and with positive expectation µ. The lower and the upper means can be
defined as

−

M (p)=
1

p

∫ p

0

F−1(y) dy, p ∈ (0, 1),

and
+

M (p)=
1

1− p

∫ 1

p

F−1(y) dy p ∈ (0, 1),

where F−1 denotes the inverse of the distribution function F , or if needed, the
generalized inverse function given by:

F−1(p) =

{

inf{y : F (y) ≥ p} if p ∈ (0, 1]
inf{y : F (y) > p} if p = 0.



In analogy with the discrete case, Zenga in [20] defines the inequality curve
I(p) as:

I(p) =

+

M (p) −
−

M (p)

+

M (p)

= 1−

−

M (p)

+

M (p)

p ∈ (0, 1).

As for the I(pj) diagram, the graph of the inequality I(p) curve lies in the
unitary square [0, 1]2, and the area below it is the value of the inequality index
I, that is:

I =

∫ 1

0

I(p) dp.

Figure 3 shows a typical behaviour (U-shaped) of the I(p) curve for a real
income distribution.
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Figure 3: A tipical behaviour of the I(p) curve

3 Features of the I(p) curve

In Zenga [20] it is proved that there exists an analytic relationship between
the I(p) curve and the most used inequality curves. More in detail, the link
between the I(p) curve and the Lorenz curve L(p) defined in (1) is given by:

I(p) =
p− L(p)

p[1− L(p)]
p ∈ (0, 1), (4)



while between the I(p) curve and the Bonferroni curve B(p) defined in (2),
the following relationship holds true:

I(p) =
1− B(p)

1− pB(p)
p ∈ (0, 1). (5)

The two aforementioned formulas (formula (4) and (5)) prove that there
is a one-to-one relationship between the I(p) curve and the other most used
inequality curves.

An important property of the I(p) curve is that it has not a pre-
established behavior. This feature is not so common, since it is well-known
that both the Lorenz and the Bonferroni curves are necessarily increasing
functions of p (see for example Sarabia et al. [16]). For the I(p) curve this
restriction does not apply. For this reason the I(p) curve can be considered
more flexible than the other ones, in fact some different real situations bring
to very different I(p) curves, but not so different L(p) or B(p) curves (see for
further investigation Maffenini and Polisicchio [8]). All this gives to the I(p)
curve a major capability to capture information of real situations than the
other inequality curves.

The more flexibility of the I(p) curve is also revealed by the fact that
the Lorenz curve of the continuous random variable X evaluated at p ∈ [0, 1]
is the ratio of

∫ p

0
F−1
X (t) dt over the expected value of X . So, it is trivial that

L(0) = 0 and L(1) = 1, no matter how the variable X is. For this reason the
explaining power of the Lorenz curve vanishes for values of p close to 0 and
close to 1. Such restriction does not apply to the I(p) curve, in fact, if (a, b)
is the support of the continuous random variable X (with 0 ≤ a < b ≤ +∞),
Polisicchio in [11] showed that

lim
p→0+

I(p) = 1−
a

E(X)

and

lim
p→1−

I(p) = 1−
E(X)

b
.

This means that near the boundary of the domain, the I(p) curve is related to
the support of X , and therefore it is more explanatory than Lorenz one and
so much more suitable for inequality analysis around lower or upper values of
X . A similar discussion holds for the Bonferroni curve.

Another valuable issue concerns the interpretation of the values as-
sumed by the I(p) curve. It is well-known that, if the random variable X
models the incomes, LX(p

∗) = L∗ means that the “poorest” proportion p∗ of



the considered population owns the proportion L∗ of the total income. On the
other hand, BX(p

∗) = B∗ means that the mean of the income of the “poorest”
proportion p∗ is B∗ times the average income of the whole population. The
interpretation of the I(p) curve is quite different, since it provides a clearer
information. It follows by the definition that if the I(p) curve is equal to I∗

at p = p∗, it means that the income mean of the “poorest” proportion p∗ of
the considered population is (1− I∗)-times the income mean of the remaining
population. In other words, the I(p) curve compares the means of two groups
partitioning the population (the lower and the upper group): this approach
seems to be more informative than the comparison between a group and the
total of the population.

A conventional application of the inequality curves regards the partial
orders. Starting from an inequality curve, it is usually possible to define a par-
tial ordering. The following two definitions characterize the very well-known
ordering based on Lorenz curve and the ordering based on the Bonferroni
curve, respectively.

Definition 1 Let X and Y be two continuous non-negative random variables,
both with finite and positive expected value. X is said to be larger (or more
unequal) than Y in the Lorenz ordering (and it is denoted by X ≥L Y ), iff

LX(p) ≤ LY (p) ∀p ∈ (0, 1)

where LX(p) and LY (p) are the value of the Lorenz curve of X and that of Y
at p, respectively.

Definition 2 Let X and Y be two continuous non-negative random variables,
both with finite and positive expected value. X is said to be larger (or more
unequal) than Y in the Bonferroni ordering (and it is denoted by X ≥B Y ),
iff

BX(p) ≥ BY (p) ∀p ∈ (0, 1)

where BX(p) and BY (p) are the value of the Bonferroni curve of X and that
of Y at p, respectively.

Many papers in the literature deal with the partial order based on the
Lorenz curve; whereas some examples of papers dealing with the order based
on the Bonferroni curve are: Tarsitano [19], Giorgi and Crescenzi [6], Pundir
et al. [14]. In analogy to the two aforementioned orderings, Polisicchio and
Porro in [12] introduced the order based on the I(p) curve, by the following
definition.



Definition 3 Let X and Y be two continuous non-negative random variables,
both with finite and positive expected value. X is said to be larger (or more
unequal) than Y in the ordering based on the I(p) curve (and it is denoted by
X ≥I Y ), iff

IX(p) ≥ IY (p) ∀p ∈ (0, 1)

where IX(p) and IY (p) are the value of the I(p) curve of X and that of Y at
p, respectively.

The links among different orders and their relationships with inequal-
ity have been deeply studied (see for example Atkinson, [2] and Muliere and
Scarsini, [9]). Keeping this in mind, Polisicchio and Porro in [12] stated and
proved the following equivalence lemma.

Lemma 1 (Equivalence Lemma) Let X and Y be two continuous non-
negative random variables, both with finite and positive expected value. Then:

X ≥L Y ⇔ X ≥I Y.

This lemma makes evident the coherence of the I(p) and the Lorenz
curves, in fact two distributions are ordered for Lorenz ordering if and only
if they are ordered for the ordering based on I(p) curve, too. It is important
to remark that these two orders are only partial orders, meaning that there
are some distributions with crossing L(p) curves and therefore with crossing
I(p) curves, that are not ordinable for all p ∈ (0, 1). In order to collocate the
equivalence lemma in a broader framework, the following result is reported. A
detailed proof and more insights can be found in Porro [13].

Theorem 1 Let X and Y be two continuous non-negative random variables,
with the same finite and positive expected value. Then all the following state-
ments are equivalent:

i) X ≥L Y
ii) X ≥I Y
iii) X ≥B Y
iv) X ≥CV Y
v) X ≥2 Y

where ≥CV and ≥2 denote the convex order and the second-order stochastics
dominance, respectively.

Refer to Shaked and Shanthikumar [17] for the definitions and features of the
convex order and the second-order stochastics dominance.



3.1 Some examples

This subsection provides the analytical form of the I(p) curve for some classi-
cal distribution models used in income-distribution analysis. The considered
models are: the log-normal, the Pareto, the Dagum, and the Singh-Maddala
distributions.

Let X be a random variable with log-normal distribution, depending
on the parameters γ ∈ R and δ > 0. Then it can be proved that the I(p) curve
of X is given by:

I(p) =
p− φ[φ−1(p)− δ]

p{1− φ[φ−1(p)− δ]}
p ∈ (0, 1)

where φ denotes the normal standard distribution function.
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Figure 4: The I(p) curve for the log-normal distribution

Figure 4 shows the I(p) curves for the log-normal distribution for dif-
ferent values of the parameter δ. It is worth noting that the I(p) curve for the
log-normal distribution does not depend on γ, since such parameter is a scale
parameter. It can be proved that for the log-normal model, the parameter δ is
a direct inequality indicator: the bigger value it assumes, the more inequality
(see more details in Porro [13]).

The Pareto model, depending on the parameters x0 > 0 and θ > 1
(in order to have finite expected value), is characterized by the distribution
function

F (x) = 1− (x−1x0)
θI{x>x0}(x),



and it has the I(p) curve given by:

I(p) =
1− (1− p)

1

θ

p
p ∈ (0, 1).

Such curve does not depend on the parameter x0, but only on θ. It can be
proved that, for any fixed p ∈ (0, 1) as θ increases, the I(p) curve decreases,
and so inequality does. This means that the distribution parameter θ is an
inverse inequality indicator for the I(p) curve. In the literature, it is well-
known that the parameter θ of the Pareto distribution is an inverse inequality
indicator also for the Lorenz and the Bonferroni curves. In Figure 5 the I(p)
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Figure 5: The I(p) curve for the Pareto distibution

curves of the Pareto distribution for different values of the parameter θ are
shown.

A more sophisticated model used for representing the income distribu-
tion is the Dagum distribution described for the first time in [4]. The distribu-
tion function, depending on the three positive parameters λ, θ and β, is given
by

F (x) = (1 + λx−θ)−βI{x>0}(x).

In order to have finite expected value, θ must be also greater than 1. The I(p)
curve of the Dagum distribution is:

I(p) =

p−B

(

p
1

β ; β +
1

θ
; 1−

1

θ

)

p

[

1− B

(

p
1

β ; β +
1

θ
; 1−

1

θ

)] p ∈ (0, 1). (6)



where B(x; a; b) denotes the incomplete Beta function defined as

B(x; a; b) =

∫ x

0

1

B(a; b)
ua−1(1− u)b−1 du x ∈ (0, 1), a > 0, b > 0,

and B(a; b) is the function Beta with parameters a e b, that is:

B(a; b) =

∫ 1

0

xa−1(1− x)b−1 dx a > 0, b > 0.
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Figure 6: Some I(p) curves for the Dagum distribution: θ = 2, and β varies
(left panel); β = 1 and θ varies (right panel)

In Figure 6 some I(p) curves for the Dagum distribution are shown
with different values of the parameters: in the left panel, θ is fixed and equal
to 2, while β takes on different values; in the right panel the value of the
parameter β is fixed and equal to 1, while θ changes. Two important remarks
need to be mentioned: the first one is that λ for the Dagum model is a scale
parameter, therefore as aspected, the I(p) curve does not depend on it. The
second remark regards the remaining two parameters: as one parameter is
fixed, then the other one is an inverse inequality indicator. Such dynamic can
be observed also in the Figure 6.



The last model considered is the Singh-Maddala distribution, also known
in the literature as Burr Type XII distribution. The distribution function of
this model, proposed for the first time in [18] is given by

F (x) = 1− (1 + λ−βxβ)−δI{x>0}(x),

where the three parameters λ, β and δ must be all positive. The further con-
dition δ > 1/β must be satisfied in order to have finite expected value. In that
case, the inequality I(p) curve is:

I(p) =
p− B

(

1− (1− p)
1

δ ; 1 + 1
β
; δ − 1

β

)

p
[

1−B
(

1− (1− p)
1

δ ; 1 + 1
β
; δ − 1

β

)] p ∈ (0, 1).

In Figure 7 some I(p) curves for the Singh-Maddala distribution are shown
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Figure 7: Some I(p) curves for the Singh-Maddala distribution: β = 0.5, and
δ varies (left panel); δ = 1 and β varies (right panel)

with different values of the parameters: in the left panel, β is fixed and equal
to 0.5, while δ takes on different values; in the right panel the value of the
parameter δ is fixed and equal to 1, while β changes. Also for the Singh-
Maddala model, λ is a scale parameter, therefore any inequality curve must
not depend on it. The other two remaining parameters play the same role seen
for the Dagum model: as one parameter is fixed, the other one is an inverse
inequality indicator.

It is now important to highlight the following remark.



Remark 1 All the inverse (direct) inequality indicators for the I(p) curve
presented in this section are also inverse (direct) inequality indicator for the
Lorenz curve and for the Bonferroni curve. This characteristic reveals an
important and valuable coherence of all these three inequality curves.

The following table summarizes the expressions of the I(p) curve for
the analyzed models used to represent the income distributions.

Model I(p) curve

Pareto I(p) =
1− (1− p)1/θ

p

Log-normal I(p) =
p− Φ[Φ−1(p)− δ]

p[1− Φ(Φ−1(p)− δ)]

Dagum I(p) =
p−B

(

p1/β ; β + 1/θ; 1− 1/θ
)

p[1− B (p1/β ; β + 1/θ; 1− 1/θ)]

Singh Maddala I(p) =
p−B

(

1− (1− p)
1

δ ; 1 + 1/β; δ − 1/β
)

p
[

1−B
(

1− (1− p)
1

δ ; 1 + 1/β; δ − 1/β
)]

4 Application to real data

In this section some Lorenz curves and some I(p) curves for the income dis-
tribution of the metropolitan area of Flint are presented. Data came from
the IPUM-USA database (see Ruggles et al., [15]). The income distributions
considered regard the years 1980, 1990, 2000 and 2010. The income analyzed
is the total individual income of the income earners. All the negative and the
zero incomes have been removed from the dataset. In order to compare the in-
comes in different years, the data have been adjusted with the Consumer Price
Index factors (CPI 1999 = 1). The data came from different surveys, therefore
the sample sizes over years are not equal. The following table summarizes the
sample sizes used in this empirical application.

Year 1980 1990 2000 2010
Sample size 13645 10524 6166 1016

Another relevant difference is that the distribution of 1980 is topcoded:
all the values greater than a threshold are censored and put equal to the value
of the threshold, which therefore represents the maximum admissible value of
the distribution. In order to overcome this issue, since data of other years are



not censored, the topcoded observations in 1980 have been replaced using the
procedure proposed in Jenkins et al. [7] and in Armour et al. [1]. In such way
the distribution is prolonged, by performing a multi-imputation procedure.
Figure 8 shows the Lorenz curves for the considered income distributions. The
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Figure 8: The Lorenz curve of Flint income in different years

curves point out a medium-high level of inequality, but actually no relevant
difference over years is highlighted: it is difficult to obtain more details about
the dynamic evolution of the inequality. In Figure 9, the corresponding I(p)
curves are drawn. By an analysis of these curves instead, some dissimilarities
among the years can be found. The behaviour of the I(p) curves over years
shows much clearly that the inequality for lower incomes (related to the low
values of p) decreased from 1980 to 2010, while for higher incomes (related to
the values of p approaching to 1) the situation is very different: for such kind
of incomes, the inequality increased in the considered time range. A possible
interpretation of such dynamic is that from 1980 to 2010, the lower incomes
became flat, causing a decreasing of inequality, while the the upper incomes
grew up, causing an increase of inequality. Remaks of such kind are difficult



to be observed in the Lorenz curve, but they can really help the researchers to
better understand the social phenomena, that otherwise can be remain hidden.
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Figure 9: The I(p) curve of Flint income in different years

5 Final remarks

In this paper some features of the inequality I(p) curve have been presented.
This curve can be considered more explanatory and flexibile than other in-
equality curves. The interpretation of its values is very intuitive and easily
understandable. All these characteristics play a fundamental role, especially
in the applicative field. For this reason the I(p) curve seem to be a valid al-
ternative to the classical inequality curves, like the Lorenz and the Bonferroni
ones.
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