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when I am far away from them. They have been the greatest support in my life for

everything I do. I am very much lucky to have such an amazing, loving family.

v





Contents

Acknowledgements v

1 Introduction 1

1.1 The Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Liveness and Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Security and Non-interference . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Definitions 7

3 Liveness and Serviceability 11

3.1 Observable Liveness for Serviceability . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Observable liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.3 Properties of observable liveness . . . . . . . . . . . . . . . . . . . 20

3.1.4 Conflict-free transitions . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Deterministic uncontrollable behavior . . . . . . . . . . . . . . . . 25

3.1.6 Observable liveness and supervisory control . . . . . . . . . . . . . 33

3.1.7 Further discussions on observable liveness . . . . . . . . . . . . . . 33

3.2 Weak Observable Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Checking Observable Liveness . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Infinite games on finite graphs . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Checking weak observable liveness by Streett games . . . . . . . . 44

4 Non-interference 49

4.1 Information Flow and Non-interference . . . . . . . . . . . . . . . . . . . . 49

4.2 Non-interference Notions with Petri Nets . . . . . . . . . . . . . . . . . . 51

4.3 Reveals Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Reveals relations on occurrence nets . . . . . . . . . . . . . . . . . 54

4.3.2 Reveals Relations on Petri Nets . . . . . . . . . . . . . . . . . . . 55

4.4 Excludes Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 A new relation: Excludes . . . . . . . . . . . . . . . . . . . . . . . 63

vii



viii CONTENTS

4.4.2 Future/Past excludes . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Reveals and Excludes Based Non-interference Notions . . . . . . . . . . . 66

4.5.1 Non-interference based on reveals . . . . . . . . . . . . . . . . . . . 67

4.5.2 Non-interference based on extended-reveals . . . . . . . . . . . . . 68

4.5.3 Non-interference based on repeated-reveals . . . . . . . . . . . . . 69

4.5.4 Positive/negative non-interference based on reveals and excludes . 71

4.5.5 Improved positive/negative non-interference based on reveals and
future/past excludes . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Comparison of Non-interference Notions with the Ones in the Literature . 74

4.7 Checking Non-interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7.1 The methods in the literature . . . . . . . . . . . . . . . . . . . . . 76

4.7.2 LTL model checking . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7.3 Diagnosis approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Non-interference with Languages . . . . . . . . . . . . . . . . . . . . . . . 92

4.8.1 Reveals, extended-reveals and repeated reveals relations on lan-
guages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8.2 Excludes relation on languages . . . . . . . . . . . . . . . . . . . . 95

4.8.3 Non-interference notions based on reveals and excludes relations
with languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusions and Future Work 99

Bibliography 103



Chapter 1

Introduction

The main goal of this thesis is to propose new approaches for defining secure and service-

able systems, provide model checking methods and explore formal techniques for design-

ing secure and serviceable systems. The thesis examines distributed systems equipped

with an interface through which users can control the system and get service. On one

hand, an interface provides possibilities to a user to control the system, whereas on the

other hand, it can create certain unwanted situations in terms of security. In general,

maximizing security will reduce serviceability of the system and vice versa. The thesis

studies these two notions separately and provides a common formal framework in which

the two notions can be put together to reach a reasonable compromise.

In modeling distributed systems, it is assumed that there are actions that can be per-

formed. Some of these actions are observable by the users, e.g., interactions between

the user and the system, whereas the others are hidden internal actions. Some observ-

able actions are controllable by the user. The aim of this work is to achieve secure and

serviceable systems under this setting. The thesis focuses in particular on serviceability

and information flow in distributed systems modeled with Petri nets. In addition to ex-

amining and comparing the existing notions of serviceability and information flow, the

thesis proposes new notions and formal techniques. Potential application areas of this

work include industrial control systems, critical infrastructures and security protocols.

1.1 The Setting

In our setting, we consider two kinds of entities for a distributed system: service providers

and clients. A service provider is responsible for reliable service to the clients as well as

for protection of sensible information. Assuming that one or more of the clients can be

1



2 Chapter 1. Introduction

attackers, two possible scenarios can be considered. In the first scenario, the attacker can

try to break down the system. The thesis provides a special kind of liveness notion for

Petri net models which guarantees that the service provider will continue to serve. In the

second scenario, the attacker can try to get hidden information about the other clients

or about the internal actions of the service provider. The thesis studies non-interference

notion in order to prevent unwanted information flow. For formal modeling, Petri nets

and their unfoldings are used.

1.2 Liveness and Serviceability

The term ‘serviceability’ is defined as follows in this thesis: if a system is serviceable,

a user is always able to get the expected service from the system by controlling it

through the interface. Liveness is one of the properties which can be used for expressing

serviceability, however the traditional liveness notion in Petri net theory is not suitable

for partially observable and controllable systems. Chapter 3 introduces a new notion

called observable liveness for expressing serviceability.

In the considered Petri net models, only some transitions are observable, and only a

subset of these can be controlled by a user. Observable transitions represent the outputs

(services) a user can get whereas the controllable transitions represent the actions that

the user can control, i.e., user can choose which one to perform or even choose not to

perform any. Intuitively, a system is observably live, if all the observable actions can be

forced to eventually fire by choosing and performing the right controllable actions on the

basis of the observed behavior. Section 3.1 formally defines the new liveness notion and

explores its properties. It also compares observable liveness with traditional liveness and

shows that the new notion generalizes traditional liveness in various ways. In particular,

liveness of a 1-safe Petri net implies observable liveness, provided the only conflicts that

can appear are between controllable transitions. This assumption refers to applications

in which the uncontrollable part models a deterministic machine (or several deterministic

machines), whereas the user of the machine is modeled by the controllable part and can

behave arbitrarily. In general, observable liveness does not imply traditional liveness

and traditional liveness does not imply observable liveness. In Section 3.2, we introduce

weak observable liveness and show that observable liveness of a transition implies weak

observable liveness of it.

Section 3.3 discusses a game theoretic method for checking weak observable liveness.

The problem of checking if a transition is weakly observably live can be translated

into a game. In particular, it can be translated into an infinite game that is played

on finite graph with two players. These kind of games are described in [38, 50]. Weak
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observable liveness can be considered as a game between a user and a system. Intuitively,

a transition is weakly observably live if the user has a winning strategy for the game.

We discuss this idea on a concrete example by using Streett games.

1.3 Security and Non-interference

Chapter 4 is dedicated to the formal notion of non-interference. There is a rich liter-

ature which studies information flow in distributed systems. One of the formalizations

of information flow is non-interference. Several notions of non-interference have been

proposed in the literature to study the problem of confidentiality in nondeterministic

and concurrent systems. The definition of non-interference is based on some observa-

tional semantics: assuming the system is composed of two distinct parts, classified as

high (hidden) and low (observable), the high part of the system is non-interfering with

the low part if whatever is done at the high level part produces no visible effect on the

low part of the system. The original notion of non-interference was defined in [36] us-

ing trace semantics, for deterministic programs. Generalized notions of non-interference

were then designed to include (non-deterministic) labeled transition systems and finer

notions of observational semantics such as bisimulation. Busi and Gorrieri brought this

approach in the field of Petri nets [19]. In Section 4.1, we discuss the general notions

of information flow and non-interference, followed by a brief survey on the existing non-

interference notions in the Petri net literature.

Similar to Busi and Gorrieri [19], this thesis analyzes systems that can perform high and

low level actions and checks if deducing information about the high actions is possible

by observing low actions. However, the new notions introduced in this thesis consider

the information flow both about the past and future actions whereas the other existing

notions mainly deal with deducing information about past occurrences of hidden actions.

In addition, the new notions introduced in this thesis are formalized on unfoldings and

can be checked on finite prefixes of unfoldings. In fact, the unfolding based approach

is gaining interest for its efficiency comparing to the methods based on reachability

graphs. In recent research, new approaches have been explored for checking the existing

non-interference notions on unfoldings.

Non-interference deals with two kinds of information flow: positive and negative. The

thesis introduces two main relations and their variants in order to deal with positive

and negative information flow and to build the new non-interference notions on: reveals

and excludes. These two new relations are introduced in Section 4.3 and Section 4.4

respectively.
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A transition reveals another transition if the occurrence of the first means that the sec-

ond one has already occurred or will inevitably occur in the future. The thesis analyzes

and formalizes this relation between transitions of a Petri net and introduces two more

parametric reveals relations: extended-reveals and repeated-reveals. In [39], reveals and

extended-reveals are defined for events of processes and in [40] they are used for fault-

diagnosis. In this thesis, reveals and extended-reveals relations are adapted to Petri

nets by defining them for transitions in order to use in non-interference. In addition, a

new parametric reveals relation based on repeated occurrence of a specific transition is

introduced, i.e., repeated-reveals. On the basis of reveals relation and its variants, the

thesis introduces new non-interference notions to catch positive information flow: Re-

veals based Non-Interference, k-Extended Reveals based Non-Interference and n-Repeated

Reveals based Non-Interference. These new non-interference notions catch positive in-

formation flow both about the past and future occurrences of hidden transitions.

In order to deal with negative information flow, a new relation called excludes is intro-

duced in the thesis. A transition excludes another transitions if they can never occur in

the same run. A transition can exclude another transition only if it excludes the other in

the past and in the future. By using excludes relation together with reveals relation, a

new non-interference notion is introduced in this thesis which catches both positive and

negative information flow both in the past and in the future. This new non-interference

notion is called Positive/Negative Non-Interference.

Section 4.5 introduces the new non-interference notions on the basis of reveals and

excludes relations with their variants, discusses examples and compares them with each

other. In Section 4.6, the new non-interference notions are compared with some known

non-interference notions existing in the Petri net literature.

Checking a net for the non-interference notions which are introduced in this thesis re-

quires to compute reveals and excludes relations which are defined on unfoldings of Petri

nets. Unfoldings are possibly infinite acyclic nets which express all possible behavior of

a Petri net. They are preferred in model checking because they are more efficient as

compared to reachability graphs. In Section 4.7, two methods have been proposed for

checking reveals/excludes based non-interference notions. The first method is to trans-

late reveals and excludes relations to Linear Temporal Logic (LTL) in order to express

non-interference properties in LTL and to use LTL model checking methods. In the

literature there are efficient LTL model checking techniques on the unfoldings such as

the one introduced in [28]. The second method that we propose adapts the diagnosis

algorithm introduced in [40] to the problem of checking non-interference. This method

requires to compute only a finite prefix of the unfolding in order to compute all reveals
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and excludes relations. The method is based on translating reveals and excludes prob-

lems to diagnosis problem and with the help of this method it is possible to check the

reveals/excludes based non-interference notions on a finite prefix of unfolding.

In Section 4.8, reveals and excludes relations and the new non-interference notions based

on these relations are generalized to formal languages.

Chapter 5 concludes the thesis and discusses some open problems and possible improve-

ments.





Chapter 2

Basic Definitions

In this section we collect preliminary definitions and set the notation which will be used

in the rest of the thesis.

Let R ⊆ I × I be a binary relation, the transitive closure of R is denoted by R+; the

reflexive and transitive closure of R is denoted by R∗.

A net is a triple N = (B,E, F ), where B and E are disjoint sets, and F ⊆ (B ×
E) ∪ (E ×B) is called the flow relation. The pre-set of an element x ∈ B ∪E is the set

•x = {y ∈ B∪E : (y, x) ∈ F}. The post-set of x is the set x• = {y ∈ B∪E : (x, y) ∈ F}.

An (ordinary) Petri net N = (P, T, F,m0) is defined by a net (P, T, F ), and an initial

marking m0 : P → N. The elements of P are called places, the elements of T are called

transitions. A net is finite if the sets of places and of transitions are finite.

A marking is a map m : P → N. A marking m is safe if m(p) ∈ {0, 1} for all p ∈ P .

Markings represent global states of a net.

A transition t is enabled at a marking m if, for each p ∈ •t, m(p) > 0. We write m[t〉
when t is enabled at m. A transition enabled at a marking can fire, producing a new

marking. Let t be enabled at m; then, the firing of t in m produces the new marking

m′, defined as follows:

m′(p) =


m(p)− 1 for all p ∈ •t \ t•

m(p) + 1 for all p ∈ t• \ •t

m(p) in all other cases

We will write m[t〉m′ to mean that t is enabled at m, and that firing t in m produces

m′.

7



8 Chapter 2. Basic Definitions

If m1[t1〉m2[t2〉m3[t3〉m4 · · · , then σ = t1 t2 t3 t4 . . . is called occurrence sequence, enabled

at the marking m1. If an occurrence sequence σ is finite, i.e., σ = t1 . . . tn, then we

write m1[σ〉mn+1 and call mn+1 reachable from m1. This includes the case n = 0, i.e.,

each marking is reachable from itself.

The set of markings reachable from m will be denoted by [m〉.The set of reachable

markings of the Petri net N is the set of markings reachable from its initial marking

m0. If all the markings reachable from m0 are safe, then N = (P, T, F,m0) is said to be

1-safe (or, shortly, safe). N is called 1-live iff ∀t ∈ T ∃m ∈ [m0〉 such that m[t〉.

A Petri net is bounded if its set of reachable markings is finite. Equivalently, it is bounded

if and only if there exists a bound b such that each reachable marking m satisfies, for

each place p, m(p) 6 b. It is called 1-bounded if this condition holds for b = 1.

A Petri net is live if, for each reachable marking m and each transition t, there exists a

marking m′ reachable from m that enables t. Equivalently, it is live if and only if, for

each transition t and each finite occurrence sequence σ enabled at the initial marking

m0, there exists a transition sequence τ containing an occurrence of t such that σ τ is

an occurrence sequence enabled at m0. Notice that in order to append two sequences,

the left hand one is supposed to be finite; when writing σ τ we implicitly express that σ

is finite.

Two transitions t1 and t2 of a Petri net are in structural conflict if they share an input

place, i.e., if •t1 ∩ •t2 6= ∅. t1 and t2 are in behavioral conflict for a given marking

m ∈ [m0〉, if they are both enabled at marking m and the firing of one disables the

other.

Let N = (B,E, F ) be a net, and x, y ∈ B ∪ E. If there exist e1, e2 ∈ E, such that

e1 6= e2, e1F
∗x, e2F

∗y, and there is b ∈ •e1 ∩ •e2, then we write x#y.

A net N = (B,E, F ) is an occurrence net if the following restrictions hold:

1. ∀x ∈ B ∪ E : ¬(xF+x)

2. ∀x ∈ B ∪ E : ¬(x#x)

3. ∀e ∈ E : {x ∈ B ∪ E : xF ∗e} is finite

4. ∀b ∈ B : |•b| 6 1

The set of minimal elements of an occurrence net N with respect to F ∗ will be denoted

by ◦N . The elements of B are called conditions and the elements of E are called events.

If in an occurrence net x#y , then we say that x and y are in conflict. Let e ∈ E be
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an event in an occurrence net; then the past of e is the set of events preceding e in the

partial order given by F ∗: ↑ e = {t ∈ E : tF ∗e} and the future of e is the set of events

succeeding e in the partial order given by F ∗: ↓ e = {t ∈ E : eF ∗t}.

Two elements of an occurrence net, x and y, are concurrent, denoted by x co y, indicating

that x and y may occur at the same time in some reachable marking, if they are not

causally dependent or in conflict with each other, defined as: x co y iff ¬(x#y) and

¬(xF ∗y) and ¬(yF ∗x). A subset of nodes X ⊆ B pairwise concurrent will be called a

co-set : ∀x, y ∈ X, x co y. A co-set formed by elements of B will be called a B-co-set.

A maximal co-set with respect to set inclusion is called a cut.

An occurrence net represents the alternative histories of a process; therefore its under-

lying graph is acyclic and paths branching from a condition, corresponding to a choice

between alternative behaviors, never converge.

A run of an occurrence net N = (B,E, F ) is a set R of events which is closed with

respect to the past, and it is free of conflicts: (1) for each e ∈ R, ↑ e ⊆ R; (2) for each

e1, e2 ∈ R, ¬(e1#e2). A run is maximal if it is maximal with respect to set inclusion.

Let Ni = (Pi, Ti, Fi) be a net for i = 1, 2. A map π : P1 ∪ T1 → P2 ∪ T2 is a morphism

from N1 to N2 if:

1. π(P1) ⊆ P2; π(T1) ⊆ T2

2. ∀t ∈ T1 the restriction of π to •t is a bijection from •t to •π(t)

3. ∀t ∈ T1 the restriction of π to t• is a bijection from t• to π(t)•

In the rest of the thesis, we will consider only 1-live Petri nets, in which all transitions

have non-empty presets, i.e., all have input places. Moreover, except for occurrence nets,

the considered Petri nets will have finite underlying nets. Of course, Petri nets may have

infinite behavior.

A branching process of a Petri netN = (P, T, F,m0) is a pair (O, π), whereO = (B,E,G)

is an occurrence net, and π is a morphism from O to N such that:

1. ∀p ∈ P m0(p) = |π−1(p) ∩ ◦O|

2. ∀x, y ∈ E, if •x = •y and π(x) = π(y), then x = y

A branching process Π1 = (O1, π1) is a prefix of Π2 = (O2, π2) if there is an injective

morphism f from O1 to O2 which is a bijection when restricted to ◦O1, and such that

π1 = π2f .
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Any finite Petri net N has a unique branching process which is maximal with respect

to the prefix relation. This maximal process, called the unfolding of N , will be denoted

by Unf(N) = ((B,E, F ), λ), where λ is the morphism from (B,E, F ) to N [27]. In

Figure 2.1, a Petri net with its infinite unfolding is illustrated.

Figure 2.1: A Petri net and its unfolding

The following definition will be used in the rest of the thesis to denote the set of events

of an unfolding corresponding to a specific transition of a given Petri net.

Definition 2.0.1. Let N = (P, T, F,m0) be a Petri net, Unf(N) = ((B,E, F ), λ) be

its unfolding and t ∈ T , the set of events corresponding to t is denoted Et = {e ∈ E :

λ(e) = t}.

An alphabet is a finite set X, whose elements are called letters.



Chapter 3

Liveness and Serviceability

In this chapter we will considers systems in which users can interact with the system

through an interface. Some actions are observable to the users whereas some other

actions are hidden internal actions of the system. Among the observable actions, some

are controllable by the users. The traditional liveness property for Petri nets guarantees

that each transition of a Petri net can always occur again, whereas observable liveness

requires that, from any reachable marking, each observable transition can be forced

to fire by choosing appropriate controllable transitions. Hence, it is defined for Petri

nets with distinguished observable and controllable transitions. Section 3.1 introduces

observable liveness, examines its properties, compares it with the traditional liveness

notion in Petri net theory. Some results on observable liveness are published in [25, 26].

Section 3.2 introduces weak observable liveness discusses the intuition on the basis of

examples and show that observable liveness implies weak observable liveness. The last

section of the chapter discusses a game theoretic method for checking weak observable

liveness.

3.1 Observable Liveness for Serviceability

Liveness and boundedness have turned out to be the most prominent behavioral proper-

ties of Petri nets; a Petri net is considered to behave well if it is live and bounded. This

claim is supported by many publications since decades, and, in particular, by the nice

correspondences between live and bounded behavior of a Petri net and its structure; see

e.g. [23, 51]. Nowadays workflow (Petri) nets receive a particular interest, and with

them the behavioral soundness property. As shown in [69], soundness of a workflow net

is identical to the combination of liveness and boundedness of the Petri net obtained by

adding a feedback place between the final and the initial transition of the workflow net.

11



12 Chapter 3. Liveness and Serviceability

This way, these behavioral properties are also applied to models of processes that have

a start and an end action, such as business processes.

Observable liveness expresses serviceability of a distributed system. This means that,

having a machine producing observable and unobservable actions, a user (or controller)

can always get the expected services (observable actions) by using the buttons (con-

trollable transitions) on the machine. The buttons on the machine form an interface

(controllable part of the machine) to the user to request service. Observable liveness

guarantees that the machine will respond with the requested service, if the right buttons

are pressed.

This chapter concentrates on liveness, but looks at yet another scenario: we consider

Petri nets with transitions that can be observable or unobservable (silent transitions),

and can be controllable or not. These nets are inspired by Petri net applications in

control theory [22, 43, 66], but can also be seen as a generalization of Petri nets with

silent transitions. We provide a notion of liveness which is tailored to Petri nets with

observable and controllable transitions, or to the systems modeled by these nets.

The traditional definition of liveness is as follows: A transition t of a Petri net is live if,

for each reachable marking m, there is a marking m′ reachable from m that enables t.

A Petri net is live if all its transitions are live.

A characterization of liveness is based on the view that the system can be controlled,

i.e., that someone can choose which activities to perform once they are enabled. In such

a setting, liveness means that, no matter which state was reached, we can construct a

run, i.e., an occurrence sequence of activities, that ends with a given desired activity.

Thus, instead of asking for the existence of such a run, we take the view that we can

enforce such a run by performing its activities.

However, what happens if not each activity is controllable, i.e., if some activities can be

controlled and others occur autonomously? What if, moreover, the assumed user does

not have knowledge about the current state because he can observe only a part of the

activities? In this contribution, we study a liveness notion for such an environment.

As usual for models of Discrete Event Systems (DES), we distinguish observable and

unobservable activities and, among the observable ones, controllable and uncontrollable

activities. Therefore, we consider Petri net models where only some transitions are

observable, and only a subset of these can be controlled.

The new introduced liveness notion is still in accordance with the idea that, for a given

transition t, no matter which marking m was reached, an occurrence sequence can

be constructed which includes t. However, in contrast to the traditional definition of

liveness,
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• we only consider observable transitions t (i.e., if a transition t cannot be observed

then it does not have to be live),

• we assume that instead of constructing the entire sequence, the user can just

control the net by choosing controllable transitions whenever they are enabled,

whereas the net is always free to fire uncontrollable transitions,

• the net is weakly fair with respect to all uncontrollable transitions, i.e., once an

uncontrollable transition is enabled, it either eventually occurs or a transition in

structural conflict with this transition occurs.

If a controllable transition is in structural conflict with an uncontrollable transition,

the user cannot prevent the occurrence of the uncontrollable one. However, if the user

decides not to fire the controllable transition, then, by weak fairness, the uncontrollable

one eventually fires (provided no other conflicts are involved).

3.1.1 The setting

When defining observable liveness, several design decisions have to be made. We have

a particular setting of a modeled system in mind, which motivates our choices. This

section aims at explicating this setting and thus justifying our design decisions.

The generic system to be modeled consists of a machine (or several machines), a user

interface to this machine, and perhaps of activities and conditions which do not belong

to the machine. The user can observe and control all activities outside the machine,

but he can neither control nor observe any activities inside the machine. Concerning

the user interface, there are activities that the user can only observe but not control,

whereas other interface activities might be both observable and controllable.

One might argue that, instead of activities, only local states of machines are observable,

for example a light which can be on or off. Then, instead of observing this state, in our

setting we observe the activities that cause the changes of the state. In terms of Petri

nets, instead of observing a place, we observe the (occurrences of) transitions in the pre-

or post-set of the place.

A controllable activity can be unconnected to the machine, or it can be an activity of the

machine’s interface. Whereas a controllable activity outside the machine is clearly also

observable, one might argue that this is not obvious for controllable interface activities.

In fact, if the activity can be caused by pressing a button, the user cannot be sure that

with every use of this button the activity takes place. An additional prerequisite is that

the activity is enabled by the machine, whereas buttons can always be pressed. So we
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implicitly assume that the user sees whether a controllable transition is enabled or not

and can thus distinguish activities from non-activities caused by buttons.

Assume that a user wants to enforce an observable activity a after some previous run of

the system. Then, depending on what he has observed so far, he should have a strategy to

control activities in such a way that eventually he can observe a. By translating activities

to transitions, the same holds for the Petri net model. The strategy is formalized

by a function that maps a sequence of observable transitions to a set of controllable

transitions: if the sequence was observed, then any of these controllable transitions

can be chosen and fired by the user. Since the domain of this function is infinite in

general, and its co-domain finite (theoretically exponential in the number of controllable

transitions, but usually linear), different sequences are mapped to the same set. We

assume that the user can effectively compute this function by using, e.g., only a finite

history or an automata based approach. For generality of our approach, we nevertheless

consider a strategy to be an arbitrary function as above.

There might be states in which controllable activities and uncontrollable ones are en-

abled, i.e., both the machine and the user can do something. In such a state, we cannot

expect that the user is able to do his controllable activity first. This means that, in the

case of competition between activities, the user only has full control if only controllable

activities are involved.

For each observably live activity, we demand that the user can enforce its occurrence.

Therefore, we provide an appropriate behavioral model of Petri nets. Clearly, the user

can only enforce any reaction from the machine if the machine obeys some progress

assumption: we do not consider runs in which an enabled uncontrollable transition,

which is not in structural conflict with any other occurring transition, does not occur.

However, progress is not assumed for controllable transitions.

Throughout the chapter, a controllable transition is illustrated as a black filled rectangle

of a Petri net, an uncontrollable observable transition is illustrated as a bold rectangle,

while unobservable ones are drawn by plain rectangles. Incoming and outgoing arcs,

which are not connected to any place or transition, are used when only a part of a Petri

net is shown.

Example 3.1.1. The net shown in Figure 3.1 models a vending machine with coffee

and tea options. The user can operate the machine by inserting a coin and using three

buttons (insert coin, choose coffee, choose tea and take money back are controllable

transitions). The transitions output coffee, output tea and output money are observable,

but not controllable. However, the user can force these transitions to occur by firing

the controllable transitions. In other words, each observable transition of the net is
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Figure 3.1: An observably live net which represents a vending machine.

observably live, and so the entire net is observably live. If there is no more coffee or tea,

the machine needs a refill operation. In this case, the user has to wait until the refill

operation is done. Due to the progress assumption, the transitions refill coffee and refill

tea, both being not in conflict with any other transition, will fire eventually once they

are enabled.

The entire net is not live because the unobservable part includes a transition which

can only fire once (init machine). However, this behavior does not affect our notion of

observable liveness, since all the observable transitions can be forced to occur.

Considering such a machine, observable liveness is a useful notion to express the ser-

viceability of a machine via an interface. In this sense, observable liveness expresses the

liveness of a system from the user’s point of view.

In this chapter we consider Petri nets where transitions can be observable or non-

observable, and can be controllable or non-controllable. If T is the set of all transitions
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of a Petri net, we denote by O ⊆ T the set of observable transitions and by C ⊆ O

the set of controllable ones. Given an occurrence sequence σ of the Petri net, its pro-

jection σ to the observable transitions is called observable occurrence sequence. In turn,

a sequence t1 t2 t3 . . . of observable transitions is an observable occurrence sequence if

and only if there are finite sequences σ1, σ2, σ3, . . . of unobservable transitions such that

σ1 t1 σ2 t2 σ3 t3 . . . is an occurrence sequence of the Petri net.

A finite or infinite occurrence sequence σ = t1 t2 t3 . . . enabled at some marking m is

called weakly fair with respect to some transition t if, whenever an occurrence sequence

t1 t2 . . . tk t is enabled at m (where t1 t2 . . . tk is a prefix of σ), then either t or a transition

u in structural conflict with t appears in tk+1 tk+2 . . . (once t is enabled, it either occurs,

or a transition in conflict with t occurs). Notice that this definition is slightly weaker

than the usual definition of weak fairness which demands that transition t eventually

occurs once it is persistently enabled, even if transitions in conflict with t occur. There

are many different fairness notions for Petri nets (and previously for other models). The

one we adapt here - often called progress assumption - was first mentioned in [57].

A run of a Petri net with observable and controllable transitions is an observable oc-

currence sequence σ where σ is an occurrence sequence, enabled at the initial marking,

which is weakly fair with respect to all uncontrollable transitions.

3.1.2 Observable liveness

Throughout the rest of this chapter, let N be a Petri net with initial marking m0, T

its set of transitions, O its set of observable transitions, and C its set of controllable

transitions. In order to define observable liveness, we first stick to observable liveness

of a single transition, which has to be observable, and later define observable liveness of

the Petri net N as observable liveness of all its observable transitions.

Consider a single observable transition t which might be moreover controllable or not.

Let m be a marking reached from m0 by the occurrence of an occurrence sequence σ0.

Assume that, from m, a user wants to enforce transition t by selecting appropriate con-

trollable enabled transitions. If this is always (for each reachable marking m) possible,

then we call t observably live.

From the marking m, the net first proceeds arbitrarily and autonomously, i.e., some

occurrence sequence σ1 without controllable transitions occurs. We assume that this

occurrence sequence is either

a) finite and leads to a deadlock, or



Chapter 3. Liveness and Serviceability 17

b) finite and leads to a marking that enables at least one controllable transition, or

c) infinite and weakly fair with respect to all uncontrollable transitions.

Notice that, after a proper prefix of σ1, a controllable transition might be enabled, but

then σ1 continues with an uncontrollable transition. This includes the case where a

controllable and an uncontrollable transition are in conflict relation. In case b), the

obtained marking might also enable uncontrollable transitions which, however, do not

fire after the sequence.

In case b), the user fires a controllable transition t1 after σ1, and then the net proceeds

as before with a next autonomous sequence σ2, and so on. This either yields an infinite

sequence σ1 t1 σ2 t2 . . ., or eventually leads to a deadlock (case a)), or to an infinite

sequence σi (case c)).

Our liveness notion should express that, in case of observable liveness, after any sequence

σi of uncontrollable transitions, there is (at least one) suitable enabled controllable tran-

sition that can be fired, such that eventually t occurs. If, after a sequence σi, controllable

and uncontrollable transitions are enabled, the user cannot avoid that the uncontrollable

one fires. However, if a controllable transition is enabled after a σi and no transition in

conflict with this controllable transition occurs in the sequel, then an additional fairness

constraint demands that the user is able to fire this transition eventually.

To formalize this, and to avoid an infinite alternation of ∀ and ∃, we introduce a response

function ϕ which delivers a set of controllable transitions as possible responses of the user

to the sequence he has observed so far. Notice that an observed sequence does neither

determine the actual occurrence sequence nor the reached marking because unobservable

transitions might have occurred as well, affecting the marking but not the observed

sequence.

Definition 3.1.1. Let ϕ : O∗ → 2C be a function, called response function, and let

m0[σ0〉m be an occurrence sequence. We call an occurrence sequence σ, enabled at m,

ϕ-fair if it is

1. weakly fair w.r.t. all transitions in T \ C,

2. weakly fair w.r.t. all controllable transitions t ∈ ϕ(σ0σ), if σ is finite,

3. weakly fair w.r.t. all controllable transitions t satisfying t /∈ ϕ(σ0σ′) for only finitely

many prefixes σ′ of σ (after some finite prefix, t is persistently responded by ϕ), if

σ is infinite, and
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4. an infinite composition σ = σ1 t1 σ2 t2 σ3 t3 . . ., or a finite composition σ =

σ1t1σ2t2 . . . σktkσk+1, where k > 0, such that, for i > 1, the sequence σi contains no

controllable transitions and ti ∈ ϕ(σ0σ1t1σ2t2 . . . σi) (ti is a controllable transition

and a possible response to the sequence observed so far).

Each σi in the above definition can be empty. If the sequence σ ends with σk+1 then this

sequence σk+1 can be infinite or finite; in the latter case, the marking reached either is

a deadlock or only enables controllable transitions which are not in ϕ(σ0σ).

Lemma 3.1.1. Let σ be a ϕ-fair occurrence sequence enabled at a reachable marking m

of N . If σ = σ1 σ2 and m[σ1〉m1 then σ2 is a ϕ-fair occurrence sequence enabled at m1.

Proof. The claim follows immediately from the definition of ϕ-fair occurrence sequences.

Definition 3.1.2. An observable transition t of N is observably live if there is a response

function ϕt : O
∗ → 2C such that, for each m0[σ0〉m, each ϕt-fair occurrence sequence

enabled at m contains an occurrence of t. The Petri net N is observably live if all its

observable transitions are observably live.

In this definition, “an occurrence of t” can be replaced by “infinitely many occurrences

of t” like in the definition of traditional liveness, as shown next.

Theorem 3.1.2. An observable transition t of N is observably live if and only if there is

a response function ϕt : O
∗ → 2C such that, for each m0[σ0〉m, each ϕt-fair occurrence

sequence enabled at m contains infinitely many occurrences of t.

Proof. We only have to prove⇒ because each occurrence sequence with infinitely many

occurrences of t has at least one t-occurrence.

So assume observable liveness of t, i.e., a response function ϕt : O
∗ → 2C such that, for

each m0[σ
′
0〉m′, each ϕt-fair occurrence sequence enabled at m′ contains an occurrence

of t (notice that we replaced σ0 by σ′0 and m by m′).

Let m0[σ0〉m and let σ be a ϕt-fair occurrence sequence enabled at m. We will show that

σ contains infinitely many occurrences of t. By assumption, we know that σ contains at

least one occurrence of t. Let σ1 be the prefix of σ that ends after the first occurrence of

t and let σ = σ1 σ2. Then m0[σ0σ1〉m1 for some marking m1. This marking m1 enables

the ϕt-fair occurrence sequence σ2 by Lemma 3.1.1. Again using the assumption, σ2

contains an occurrence of t. The arbitrary repetition of this argument yields arbitrarily

many occurrences of t in σ.
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Figure 3.2: Some example nets

Example 3.1.2. Figures 3.2.a, 3.2.b, and 3.2.c illustrate the weak fairness notion em-

ployed in the definition of ϕ-fair occurrence sequences.

In the net shown in Figure 3.2.a, after the controlled occurrence of t1, the system can

choose between t2 and t4. It can even always prefer t2, and then t4 never occurs. Only

strong fairness would imply that eventually t4 can be observed, but our chosen notion

of weak fairness does not. So t4 is not observably live.

In Figure 3.2.b, the net of Figure 3.2.a is extended by a concurrent sequence. Our weak

fairness assumption implies that the left branch proceeds even if the right stays in an

infinite loop. So transition t7 is observably live.

Figure 3.2.c illustrates the difference between our weak fairness and a similar notion

often used in the literature (e.g. in [58]). We do not expect that t4 eventually occurs

although it remains enabled at each marking reached after the occurrence of t1. Since

t2 and t4 share the input place p2, we have a conflict here. So, again, t7 is observably

live, and t4 is not.

In the net fragment shown in Figure 3.3.a, there is conflict between t3 and t4. After

the occurrence of transition t1 or t2, both t3 and t4 are enabled. In this situation, even

if the response function ϕ tells us to fire t4, we cannot be sure that t4 actually fires

because the unobservable transition t3 might fire. Therefore, we also cannot force t5 to

fire, whence t5 is not observably live.
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Figure 3.3: Example nets

3.1.3 Properties of observable liveness

In this section, we provide some properties of observable liveness and relations between

observable liveness and traditional liveness.

Lemma 3.1.3. For each response function ϕ and each m0[σ0〉m, there is a ϕ-fair oc-

currence sequence enabled at m.

Proof. In order to construct a ϕ-fair occurrence sequence, we proceed iteratively. Assume

that we constructed a finite occurrence sequence σ′, enabled at m, and let m[σ′〉m′. If

m′ enables an uncontrollable transition t or a controllable one which is in the current

response set ϕ(σ0σ′), then we append t to σ′. If there is more than one such candidate, we

choose one which has not been chosen yet (if such a transition exists) or the least recently

chosen one (otherwise) in order to ensure weak fairness. This is either always possible and

leads to an infinite sequence, or it is eventually not possible, in which case no transition

is appended to σ′. In both cases, the obtained sequence satisfies all fairness requirements

formulated in Definition 3.1.1. The decomposition of this occurrence sequence required in

Definition 3.1.1 is obtained by separating controllable and uncontrollable transitions.

Proposition 3.1.4. Each observably live transition of N is live.

Proof. Let t be an observably live transition. Then there is a response function ϕt such

that, for each m0[σ0〉m, each ϕt-fair occurrence sequence enabled at m includes t. By

Lemma 3.1.3, there exists a ϕt-fair occurrence sequence. This implies that each reachable

marking m enables an occurrence sequence which includes t, and so t is live.
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Corollary 3.1.5. If N is observably live and all its transitions are observable, then N

is live.

Corollary 3.1.5 does not hold without the assumption that all transitions are observable.

The net shown in Figure 3.3.b is observably live, but it is not live since t1 can occur

only once.

A live transition is not necessarily observable live. Consider that the net in Figure 3.2.a

is changed such that p1 is the post-condition of t4, then the net is live. However, it is

not observably live because the observable transition t4 is live, but not observably live.

If all transitions are controllable, then liveness of a transition t implies its observable

liveness, as shown next:

Proposition 3.1.6. If O = C = T then observable liveness of a transition t coincides

with its liveness.

Proof. By Proposition 3.1.4, we only have to show the implication ⇐.

Assume that t is live. We have to show that there is a response function ϕt : O
∗ → 2C

such that, for each reachable marking m, each ϕt-fair occurrence sequence enabled at

m contains an occurrence of t. So let m0[σ0〉m. Since t is live, there exists a finite

occurrence sequence σ enabled at m which includes an occurrence of t.

Since O = T , σ0 σ = σ0σ. Let σ0 σ = t1t2t3 . . . tk. We choose any response function

satisfying ϕt(t1 t2 . . . ti) = {ti+1} for i = 0, 1, . . . , k − 1, which is possible because C =

T . Again since all transitions are controllable, the unique ϕt-fair occurrence sequence

consists of only controllable transitions. The σi (for i = 1, 2, 3, . . .) of Definition 3.1.1

are thus empty sequences, and so there is only one ϕt-fair occurrence sequence enabled

at m.

Corollary 3.1.7. If O=C=T then N is observably live if and only if N is live.

Proposition 3.1.8. Assume that N is observably live. Let σ be an infinite occurrence

sequence without controllable transitions, enabled at a reachable marking m of N . If

σ is weakly fair with respect to all uncontrollable transitions, then each observably live

transition occurs in σ.

Proof. Let t be an observably live transition. There is a response function ϕt such that

each ϕt-fair occurrence sequence enabled at m contains an occurrence of t. By definition

of ϕt-fairness, this holds in particular for the sequence σ.
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Corollary 3.1.9. Assume that N is observably live and has no controllable transitions.

Let σ be an infinite occurrence sequence, enabled at a reachable marking of N , and

assume that σ is weakly fair with respect to all transitions. Then σ contains occurrences

of all transitions of N .

3.1.4 Conflict-free transitions

As seen before, a live Petri net is not necessarily observably live. The main reason is

that, given a live Petri net, we can always choose an appropriate occurrence sequence

including some transition t, whereas for observable liveness this choice is only possible

for enabled controllable transitions (which are not in conflict with unobservable ones),

and the Petri net behaves arbitrarily elsewhere.

In Section 3.1.5, we will show that the situation is different if the only choices to be made

are among controllable transitions. This is not an unrealistic setting; the automated part

of a system often behaves deterministically (but still concurrently), whereas the user

might have alternatives. Consequently, the only choices in the system’s model concern

its part of the controllable user interface. i.e., its controllable transitions.

Formally, deterministic behavior is given in terms of the conflict-free property, to be

defined next. Intuitively, a transition is conflict-free if it is never in conflict with any

other transition; if both are enabled then they are enabled concurrently. Since “never”

refers to reachable markings, the definition of conflict-freeness applies to a Petri net

with an initial marking and its state space, and not to its structure. So we distinguish

structural conflicts between two transitions, as defined before, and behavioral conflicts.

However, each two transitions that are ever in behavioral conflict necessarily share an

input place and are therefore also in structural conflict. With concurrent behavior we

mean that two transitions do not compete for tokens. If a place carries more than one

token, one could argue that two transitions in its post-set can occur concurrently (see

[70]). We take the stricter view that every two enabled transitions with a common input

place (which can carry one or more tokens) are considered in behavioral conflict and not

concurrent.

This section is devoted to results on conflict-free transitions. These results will be used

in the next section.

Definition 3.1.3. A transition u of N is conflict-free if, for each reachable marking m

enabling u, every other transition v enabled at m satisfies •u ∩ •v = ∅ (i.e., u and v are

not in structural conflict and can therefore occur concurrently).
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Figure 3.3.c on page 20 shows a net fragment where all transitions are conflict-free.

Notice that there is a structural conflict between t3 and t4, but no reachable marking

enables these two transitions.

The following lemma will be used frequently in the sequel. It follows immediately from

the occurrence rule.

Lemma 3.1.10. Let u and v be two distinct transitions of N , both enabled at some

marking m of N , which are not in structural conflict. Then m enables uv as well as vu,

and both occurrence sequences lead to the same marking.

The next lemmas generalize well-known results for conflict-free nets [47], i.e. nets where

all transitions are conflict-free, to nets with some conflict-free transitions.

Lemma 3.1.11. If a transition u of N is conflict-free and some reachable marking m

of N enables u as well as an occurrence sequence σu, where u does not occur in σ, then

m also enables the occurrence sequence uσ, and the occurrences of σu and of uσ lead to

the same marking.

Proof. By induction on the length of σ.

Base: If σ is the empty sequence then nothing has to be shown.

Step: Assume that σ = vσ′. We have u 6= v because u does not occur in σ. By conflict-

freeness of u and since m enables both u and v, these transitions are concurrent. By

Lemma 3.1.10, m also enables the occurrence sequence v u. Let m[v〉m′. The induction

hypothesis can be applied to the marking m′ enabling u and σ′u, yielding the occurrence

sequence uσ′ enabled at m′. So vuσ′ is enabled at m. Again since u and v are concurrent

and by Lemma 3.1.10, m also enables uvσ′, which is identical with uσ.

Since each transition occurs in σu and in uσ the same number of times, and by the

occurrence rule, the occurrences of these sequences lead to the same marking.

Lemma 3.1.12. If a transition u of N is conflict-free and some reachable marking m

of N enables u as well as a finite occurrence sequence σ in which u does not occur, then

m also enables the occurrence sequence σu.

Proof. By induction on the length of σ.

Base: If σ is the empty sequence then nothing has to be shown.

Step: Assume that σ = vσ′. We have u 6= v because u does not occur in σ. By conflict-

freeness of u and since m enables both u and v, these transitions are concurrent. By
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Lemma 3.1.10, m also enables the occurrence sequence vu. Let m[v〉m′. The induction

hypothesis can be applied to the marking m′ enabling u and σ′, yielding the occurrence

sequence σ′u enabled at m′. So vσ′u is enabled at m. Since vσ′ = σ, this finishes the

proof.

Lemma 3.1.13. Let σ and τ be two finite occurrence sequences of N , both enabled at

a reachable marking m of N , such that no transition occurs both in σ and in τ . If all

transitions in σ are conflict-free then m enables the occurrence sequence στ .

Proof. By induction on the length of σ.

Base: If σ is the empty sequence then nothing has to be shown.

Step: Assume that σ = vσ′. Since v is conflict-free and since m enables τ , Lemma 3.1.12

can be applied and yields that m enables τv. By Lemma 3.1.11, m also enables vτ . Let

m[v〉m′. Then m′ enables σ′ as well as τ . By the induction hypothesis, m′ enables σ′τ ,

whence m enables vσ′τ = στ .

Definition 3.1.4. An occurrence sequence σ of N , enabled at a marking m of N , is

called minimal towards t, where t is a transition, if σ = σ′t, t does not occur in σ′, and

σ cannot be divided as σ = µ′uµ′′ for some transition u, u 6= t, such that µ′µ′′ is enabled

at m, too (i.e., σ ends with t, contains no other occurrence of t, and no transition in σ

can be postponed).

It is easy to see that every occurrence sequence enabled at a marking m and containing

a transition t with minimal length is also minimal towards t. However, the converse does

not necessarily hold. As an example, assume occurrence sequences abt and ct enabled

at m. If neither t nor at or bt are enabled at m then abt is minimal towards t, although

it is longer than ct.

A transition u can only occur if its input places carry tokens, and another transition

v might have to occur before transition u because it produces a token consumed by

u. We then call the occurrence of v a causal predecessor of the occurrence of u. A

minimal occurrence sequence towards a transition t contains one occurrence of t, its

causal predecessors, the predecessors of these predecessors etc., and nothing else. In

partially ordered runs, where causal dependencies between transition occurrences are

explicitly modeled by means of a partial order, this corresponds to a run containing

the occurrence of t and all transition occurrences that precede the occurrence of t with

respect to the partial order.

Definition 3.1.5. Given a sequence σ = t1t2t3 . . . with indices I = {1, 2, 3 . . .}, any

(ordered) subset J = {j1, j2, j3, . . . } of I generates a subsequence tj1tj2tj3 . . . of σ. Its
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complementary subsequence is the subsequence generated by the complementary index

set I \ J .

This definition captures the case σ = σ′σ′′ where σ′ is a subsequence and σ′′ is its

complementary subsequence (and vice versa), but is more general. For example, if

σ = t1, t2, . . . , t2n, the sequence t1, t3, . . . , t2n−1 is a subsequence, and t2, t4, . . . , t2n its

complementary subsequence.

Lemma 3.1.14. Let m be a reachable marking of N enabling an occurrence sequence σ =

σ1t such that σ1 contains only conflict-free transitions (the transition t is not necessarily

conflict-free) and moreover does not contain t. Then there exists a subsequence σ′ of

σ, enabled at m, which is minimal towards t. Moreover, if σ′′ is its complementary

subsequence, then m enables the occurrence sequence σ′σ′′, which leads to the same

marking as σ.

Proof. Assume that σ can be divided as σ = µ′uµ′′ such that µ′′ is not the empty

sequence, u does not occur in µ′′ (and thus u 6= t), and µ′µ′′ is enabled at m. Transition

u is conflict-free because σ1 contains only conflict-free transitions. By Lemma 3.1.12, we

can shift u behind µ′′ and thus obtain the occurrence sequence µ′µ′′u which leads to the

same marking as σ. Still t occurs only once in this sequence, now as the last transition

in µ′′.

Let u1 be the rightmost transition occurrence in σ1 for which such a division σ = µ′1u1µ
′′
1

is possible, and let µ′1µ
′′
1u1 be the occurrence sequence obtained by shifting u1 to the

end. Then µ′′1 ends with t. Let σ2t = µ′1µ
′′
1. Let u2 be the rightmost occurrence of

a transition with the above property in σ2, i.e., σ2t = µ′2u2µ
′′
2 and µ′2µ

′′
2 is enabled at

m. The same argument as above yields the occurrence sequence µ′2µ
′′
2u2, leading to the

same marking as σ2t whence u1 can be appended to it.

Exhaustive repetition of this procedure yields smaller and smaller sequences µ′i to be

considered and eventually the occurrence sequence µ′kµ
′′
kukuk−i . . . u1 such that no fur-

ther transition to be postponed can be found in µ′kµ
′′
k. So µ′kµ

′′
k is minimal towards

t. By construction, it is a subsequence of σ, and ukuk−i . . . u1 is its complementary

subsequence. The entire occurrence sequence is a permutation of σ, whence, by the

occurrence rule, it leads to the same marking as σ.

3.1.5 Deterministic uncontrollable behavior

In this section, we require 1-safeness. The main result of this section applies only to 1-

safe Petri nets where behavioral conflicts can occur only between controllable transitions,
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i.e., to Petri nets with all uncontrollable transitions being conflict-free. This restriction

rules out conflicts between two uncontrollable transitions as well as conflicts between

controllable and uncontrollable transitions. Under this restriction, we will prove that

liveness implies observable liveness. As a preparation of this result that will be given in

Theorem 3.1.18, we need a couple of lemmas.

Lemma 3.1.15. Let t be a transition of N , and let m be a reachable marking of N . All

occurrence sequences σt enabled at m such that σ contains only conflict-free transitions

and σt is minimal towards t lead to the same marking and have the same length.

Proof. Consider two occurrence sequences σ1 and σ2, both enabled at m, both containing

only conflict-free transitions, such that both σ1t and σ2t are minimal towards t. We will

show that σ1 and σ2 lead to the same marking and have equal length and proceed by

induction on the length of σ1.

Base: The occurrence sequence σ1 is empty if and only if t is enabled at m. In this case,

σ2 is empty as well.

Step: Assume that t is not enabled at m.

We will first show that there is a transition u, enabled at m and thus satisfying u 6= t,

which appears in σ1 as well as in σ2. We proceed indirectly and assume the contrary.

We decompose σ2t as σ′2σ
′′
2 such that no transition of σ′2 occurs in σ1t and the first

transition in σ′′2 , say v, occurs in σ1t. The occurrence sequence σ′′2 is not empty because

both σ1t and σ2t contain t. If v = t then v is not enabled at m by assumption of the

induction step. If v 6= t then v is not enabled at m by the assumption of the indirect

proof. We decompose σ1t as σ′1σ
′′
1 such that σ′′1 begins with the first occurrence of v in

σ1t.

Since v is not enabled at m, some place s ∈ •v satisfies m(s) = 0. Since v is enabled

after σ′1 and also after σ′2, s carries a token after the occurrence of σ′1, and it carries a

token after the occurrence of σ′2.

The sets of occurring transitions in σ′1 and σ′2 are disjoint by definition of σ′2, and both

occurrence sequences are enabled at m. By conflict-freeness of all transitions in σ′1 and

by Lemma 3.1.13, m enables σ′1σ
′
2. Since both σ′1 and σ′2 add a token to the place s, the

marking obtained by σ′1σ
′
2 assigns two tokens to s, contradicting 1-safeness. So we can

conclude that some transition u is enabled at m and occurs in both sequences σ1 and

σ2.

Now let σ1 = µ′1uµ
′′
1 and σ2 = µ′2uµ

′′
2 such that u neither occurs in µ′1 nor in µ′2. By

conflict-freeness of u (all transitions in σ1 are conflict-free) and by Lemma 3.1.11, the
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marking m enables the occurrence sequences uµ′1µ
′′
1 and uµ′2µ

′′
2. Clearly, the occurrence

sequence uµ′1µ
′′
1t is also minimal towards t, because every transition that could be post-

poned in it could be postponed in σ1t as well, and the same holds for uµ′2µ
′′
2t. Moreover,

if m[u〉m′, both occurrence sequences µ′1µ
′′
1t and µ′2µ

′′
2t are minimal towards t with re-

spect to the marking m′. So we can apply the induction hypothesis to m′ and to µ′1µ
′′
1

and µ′2µ
′′
2 and obtain that both occurrence sequences lead from m′ to the same marking

and have equal length. The result follows by the occurrence rule because σ1 = µ′1uµ
′′
1

and σ2 = µ′2uµ
′′
2.

We aim at proving that liveness of a 1-safe Petri net implies observable liveness, provided

the only conflicts that can appear are between controllable transitions. Although this

result might seem obvious at first sight, its proof is surprisingly involved. The core

argument of the proof is that, in a live Petri net, for each transition t, every reachable

marking m enables an occurrence sequence σm with an occurrence of t. If t is observable,

then observable liveness requires that we can force t to occur by providing a suitable

response function ϕt which controls the behavior whenever there is a conflict. So an

obvious idea is to define ϕt in such a way that, at each reached marking, the next

transition in σm is responded, if this transition is controllable. However, ϕt does not

depend on markings, but on observed sequences. That means, instead of the marking m,

the user only knows the sequence of observable transitions within the initially enabled

occurrence sequence σ0 that leads to m. For this observed sequence, there might exist

many occurrence sequences including unobservable transitions, and hence many different

reached markings m, and so also many different occurrence sequences σm. Therefore,

instead of the unknown marking m or the unknown occurrence sequence σ0, we consider

the set of all occurrence sequences µ0 satisfying µ0 = σ0. Among these sequences we

concentrate on minimal ones, in a sense to be defined more precisely. We will show in

Lemma 3.1.16 that all these minimal occurrence sequences lead to the same marking,

which we will call mσ0 . We will define a response function ϕt in such a way that all ϕt-fair

occurrence sequences enabled at mσ0 eventually contain t. Finally we will use that m,

the marking reached by the occurrence of σ0, is reachable from mσ0 without firing any

observable transition. Therefore, each concatenation of an occurrence sequence without

observable transitions from mσ0 to m and a ϕt-fair occurrence sequence enabled at m

is a ϕt-fair occurrence sequence enabled at mσ0 . So the entire sequence contains an

occurrence of t. Since the prefix from mσ0 to m contains only unobservable transitions,

t occurs in the second part of the sequence, which will establish the result.

We continue with a definition and two technical lemmas which are used in the proof of

Theorem 3.1.18. The first generalizes the notion of minimality towards a transition.
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Definition 3.1.6. Let σ be a finite occurrence sequence of N , enabled at a reachable

marking m1 of N . Assume σ = u1u2 . . . uk and σ = σ1u1σ2u2 . . . ukσk+1. The occur-

rence sequence σ is called minimal towards observable transitions if, for 1 6 i 6 k and

m1[σ1u1 . . . σiui〉mi+1, the occurrence sequence σiui enabled at mi is minimal towards

ui.

Lemma 3.1.16. Assume that all uncontrollable transitions of N are conflict-free. If

a reachable marking m of N enables an occurrence sequence σ then m also enables an

occurrence sequence ττ ′ such that

• τ = σ,

• τ is minimal towards observable transitions, and

• both occurrence sequences σ and ττ ′ lead to the same marking.

Proof. Let σ = u1u2 . . . uk and σ = σ1u1σ2u2 . . . ukσk+1.

For each i, 1 6 i 6 k,

we repeat the following transformation exhaustively:

If a transition in σi can be postponed, i.e., if σi = σ′ivσ
′′
i for some tran-

sition v such that σ′iσ
′′
i ui can also occur after σ1u1 . . . σi−1ui−1, then we

replace σiui in σ by σ′iσ
′′
i uiv. This sequence is enabled at the marking

reached by σ1u1 . . . σi−1ui−1, and it leads to the same marking as σiui,

by Lemma 3.1.14.

Since each instance of this transformation shifts an observable transition to the left,

the transformation can be performed only finitely often. Once it cannot be applied

anymore, the minimal prefix including all observable transitions, τ , is obviously minimal

towards observable transitions. Let τ ′ be the remaining sequence. Since each single

transformation is a simple permutation of the considered sequence, ττ ′ is a permutation

of σ. Therefore, by the occurrence rule, both occurrence sequences lead to the same

marking.

The next lemma roughly states that, if a reachable marking m enables any occurrence

sequence of conflict-free transitions followed by an arbitrary transition t, then, for an

appropriate response function ϕ, every ϕ-fair occurrence sequence enabled at m contains

t.
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Lemma 3.1.17. Assume that all uncontrollable transitions of N are conflict-free. Let

m0[σ0〉m[σ〉m′[t〉m′′ be an occurrence sequence of N such that σ contains only uncon-

trollable transitions and σ does not contain t (t can be controllable or uncontrollable).

Let ϕ be a response function which assigns, for each prefix σ1 of σ, the singleton set {t}
to σ0σ1 if t is controllable, and the empty set to σ0σ1 if t is not controllable. If µ is a

ϕ-fair occurrence sequence enabled at m then µ eventually contains an occurrence of t.

Proof. We proceed by induction on the length of σ.

Base: If σ is the empty sequence then m enables t. Either t is uncontrollable and thus

conflict-free, or t is controllable and the only transition selected by the response function

ϕ. By ϕ-fairness of µ, t occurs in µ.

Step: Assume that σ is not the empty sequence. Then σ begins with an uncontrollable

and hence conflict-free transition u; let σ = uσ′. By ϕ-fairness, u also occurs in µ; let

µ = µ′uµ′′ such that u does not occur in µ′. By Lemma 3.1.11, m also enables u µ′ µ′′.

Now we apply the induction hypothesis to the marking obtained by firing u at m and to

the occurrence sequence σ′ and derive that t occurs in µ′µ′′, and therefore also in µ.

Theorem 3.1.18. Let N be a 1-safe Petri net with observable and controllable tran-

sitions such that all uncontrollable transitions are conflict-free. If N is live then it is

observably live.

Proof. We assume that N is live and have to prove observable liveness, i.e., observable

liveness of all observable transitions. So let t be an observable transition. To show

observable liveness of t, we have to provide a response function ϕt such that, for each

m0[σ0〉m, each ϕt-fair occurrence sequence σ enabled at m eventually contains t.

Since N is live, each reachable marking enables an occurrence sequence µ such that

t occurs in µ. Hence, each reachable marking has a well-defined distance to t, being

the minimal number of controllable transitions that occur in such sequences µ. If t is

controllable, then this distance is at least one for each reachable marking.

We assume an arbitrary fixed total order ≺ on the set of controllable transitions, i.e.,

if u and v are distinct controllable transitions then either u ≺ v or v ≺ u. Let m′ be a

reachable marking with distance k > 1 to transition t. We now consider all occurrence

sequences enabled at m′ with k controllable transitions and an occurrence of t. Let U be

the set of controllable transitions that occur in any of these sequences as the respective

first controllable transition and let u be the smallest (w.r.t. ≺) transition in U . Then

the function Next assigns transition u to the marking m′. Intuitively speaking, once m′

is reached, u is the next controllable transition to be fired.
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Let µ0 be an occurrence sequence enabled at m0. By Lemma 3.1.16, m0 also enables

an occurrence sequence ττ ′ such that µ0 = τ and τ is minimal towards observable

transitions. Let τ = u1 . . . uk. Then τ = τ1 u1 . . . τk uk such that, for 1 6 i 6 k, the

sequence τiui is minimal towards ui. By repeated application of Lemma 3.1.15, the

markings reached after τ1 u1, after τ1u1τ2u2, . . . , and finally after τ only depend on

their observable subsequences. In particular, the marking reached by τ only depends on

τ , which equals µ0. For each initially enabled occurrence sequence µ0, we will denote

this unique marking by mµ0 .

Now we are ready to define ϕt: ϕt(µ0) = {u} if the distance of mµ0 to t is at least 1 and

Next(mµ0) = u, and ϕt(µ0) = ∅ if the distance of mµ0 to t is 0.

If Next(m) = u for a reachable marking m then, by the definition of Next, there is

an occurrence sequence m[τu〉m′ such that only uncontrollable transitions occur in τ .

Assume that m also enables an uncontrollable transition v. If v occurs in τ , i.e., if

τ = τ ′vτ ′′ with no occurrence of v in τ ′, then m also enables vτ ′τ ′′u by Lemma 3.1.11.

If v does not occur in τ then m also enables τuv by Lemma 3.1.12. Therefore, the value

of the Next function does not change by the occurrence of v. As a consequence, the

value of ϕt is also only changed by the occurrence of controllable transitions.

Coming back to the core of the proof, now let m0[σ0〉m. As mentioned before, we have

to show that each ϕt-fair occurrence sequence σ enabled at m contains an occurrence of

t. We proceed in three steps:

(1) We will show that there exists a ϕt-fair occurrence sequence enabled at mσ0 which

contains an occurrence of t and is moreover minimal towards observable transitions.

(2) We will show that each ϕt-fair occurrence sequence enabled at mσ0 contains an

occurrence of t.

(3) We will show that, for each ϕt-fair occurrence sequence σ enabled at m, there is

an occurrence sequence τ which does not contain an occurrence of t, leading from

mσ0 to m, such that τ σ is ϕt-fair as well.

By (2) and (3), each ϕt-fair occurrence sequence σ enabled at m is a suffix of a ϕt-fair

occurrence sequence enabled at mσ0 and contains an occurrence of t, which establishes

the result.

It remains to provide proofs of the three claims above.

(1) Since N is live, mσ0 enables an occurrence sequence µ which contains t. We can

assume that t occurs only once in µ and that it is the last transition that oc-

curs in µ. We moreover assume without loss of generality that µ has a minimal
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number of controllable transitions and that these transitions occur according to

the Next-function, i.e., after each prefix µ1 of µ, the next controllable transition

that occurs in µ is equal to the single element in ϕt(σ0µ1). Recall that, if t is

not controllable, then ϕt returns the empty set after firing the last controllable

transition. We can moreover assume that µ is minimal towards observable transi-

tions according to Lemma 3.1.16 (otherwise we transform the sequence as in the

proof of Lemma 3.1.16). After the occurrence of µ, we continue with an arbitrary

ϕt-fair occurrence sequence. By the definition of ϕt-fairness, the entire occurrence

sequence is ϕt-fair.

(2) Let µ be the occurrence sequence defined in the proof of (1), and let µ = µ1u1µ2u2 . . .

µkukµk+1 such that u1 . . . uk are controllable transitions and µ1 . . . µk+1 are se-

quences of uncontrollable transitions.

If t is controllable then t = uk and µk+1 is the empty sequence. Otherwise, t is the

last transition in µk+1. It is possible that k = 0; then µ contains no controllable

transitions at all and µ = µ1.

Let τ be an arbitrary ϕt-fair occurrence sequence enabled at mσ0 . We claim that

τ also contains t.

First we show that all the controllable transitions u1 . . . uk of µ also occur in τ . If

k = 0, nothing has to be shown. So assume that k > 1.

Since ϕt(σ0) = {u1} and thus ϕ(σ0τ ′) = {u1} for each prefix τ ′ of τ without

controllable transitions, only u1 can be the first controllable transition in τ . By

Lemma 3.1.17, u1 actually occurs in τ . Let τ = τ1 u1 τ2 such that τ1 contains no

controllable transitions. By Lemma 3.1.14, we can decompose τ1u1 in subsequences

τ ′1 and τ ′′1 such that τ ′1 u1 is minimal towards u1 and mσ0 enables τ ′1u1τ
′′
1 τ2. The

occurrence sequence µ is minimal towards observable transitions. So its prefix

µ1u1 is minimal towards u1. By Lemma 3.1.15, the occurrence sequences τ ′1u1 and

µ1u1 lead to the same marking. The same argument can now be applied to τ ′′1 τ2,

enabled at this marking, yielding subsequences τ ′2 and τ ′′2 such that τ ′2u2 leads to

the same marking as µ2u2. Repeating this argument, we eventually obtain the

occurrence sequence τ ′1u1τ
′
2u2 . . . τ

′
kukτ

′′
k τk+1, still a permutation of τ , enabled at

mσ0 . If t is controllable then we are finished because, in this case, t = uk.

So it remains to consider the case that t is not controllable. By the above argu-

ments, the marking reached after τ ′1u1 . . . τ
′
kuk equals the marking reached after

µ1u1 . . . µkuk. We have ϕt(σ0τ ′1u1 . . . τ
′
kuk) = ∅, and the same holds when uncon-

trollable transitions are appended to this occurrence sequence. By Lemma 3.1.17

and since µk+1 contains an occurrence of t, so does τ ′′k τk+1.



32 Chapter 3. Liveness and Serviceability

Figure 3.4: a: a net with a conflict, b: a conflict-free net, c: a net which is conflict-free
w.r.t. its uncontrollable transitions

(3) Let σ be a ϕt-fair occurrence sequence enabled at m. By Lemma 3.1.16, σ0 can

be replaced by a permutation σ′0σ
′′
0 such that σ′0 is minimal towards observable

transitions, σ′′0 contains only unobservable transitions, and σ′0σ
′′
0 also leads to m.

The marking reached by σ′0 is mσ0 because σ′0 contains all observable transitions of

σ. Therefore, since σ′′0 contains only unobservable transitions and by the definition

of ϕt-fairness, σ′′0σ is a ϕt-fair occurrence sequence enabled at mσ0 . Again since

σ′′0 contains only unobservable transitions, σ′′0 does not contain the observable

transition t.

Example 3.1.3. In Figure 3.4, we see one net with a conflict and a conflict-free net.

The net shown in Figure 3.4.a includes a conflict between a controllable transition and

an uncontrollable transition (which is also unobservable). Although the net is live, since

we cannot force t1 to fire, both t1 and t3 are not observably live and so the net is

not observably live. The net shown in Figure 3.4.b has no conflicts. It is both live and

observably live. The net shown in Figure 3.4.c is conflict-free w.r.t. all its uncontrollable

transitions, but there is a conflict between the controllable transitions t4 and t5. We

can choose the related controllable transition in order to observe the occurrence of any

observable transitions. The uncontrollable part of the machine behaves deterministically.

This net is both live and observably live.
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3.1.6 Observable liveness and supervisory control

The introduced approach has many similarities to supervisory control of Discrete Event

Systems (DESs). A DES is discrete in time and (usually) in state space. It is asyn-

chronous or event-driven and it may be nondeterministic: that is, capable of choices

by internal chance or other mechanisms not necessarily modeled by the system ana-

lyst. DESs require control and coordination to ensure they behave well and satisfy

some properties. Being controlled (or potentially controllable) dynamic systems, dis-

crete event systems are a subject for control theory. The most interesting and original

approach to solve the control problem of discrete event systems is Supervisory Con-

trol Theory originated by the work of Ramadge and Wonham [56]. According to the

paradigm of Supervisory Control, a discrete event system is a language generator whose

behavior i.e., its language, is given by a set of traces of events. Given a legal language,

the basic control problem is to design a supervisor that restricts the closed loop behavior

of the plant, by disabling only controllable events. The events whose occurrence cannot

be disabled are called uncontrollable. It is usually required that the closed loop system

satisfies additional properties such as non-blocking. This notion can be considered to be

similar to observable liveness, but the two notions have significant differences. A system

is called non-blocking if a final state (of a given set of final states) is always reachable,

whereas observable liveness refers to observable transitions. If a deadlock state is final,

a non-blocking system can even run in this deadlock state, whereas an observably live

Petri net can not (provided it has at least one observable transition).

Although our liveness notion is defined on systems with distinguished controllable and

observable actions, an important difference with the above approach is that we do not

aim at controlling a system to avoid certain illegal states or to restrict the observable

language. Moreover, the typical approaches of supervisory control are based on a state

space analysis of the unobservable part of a system whereas we do not assume that this

state space is finite in general. Conceptually, the main difference is that we do not aim at

constructing a control such that the composition of the original system and the control

is a composed system with correct behavior, but we rather consider the system without

control and the input-output behavior of its unobservable parts.

3.1.7 Further discussions on observable liveness

We provided a novel liveness notion, called observable liveness for a variant of Petri nets

with observable transitions, where an observable transition can also be controllable. In

analogy to the usual definition of liveness of a Petri net, observable liveness roughly

means that a user can always enforce the occurrence of any observable transition, only
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by stimulating the net by choosing appropriate enabled controllable transition. It is

necessary to assume that the uncontrollable part of a net proceeds, i.e., we assume that

the net behaves weakly fair with respect to uncontrollable transitions.

Our approach has some similarities to T -liveness as presented in [45] which, roughly

speaking, equals to liveness of a subset of transitions, but does not consider observable

or controllable transitions. However, we do not require liveness of (only) observable

transitions, but observable liveness of these transitions.

Observable liveness expresses serviceability of distributed systems. What we call ser-

viceability is related to the responsiveness notion studied in [73]. The difference is that

responsiveness is defined for open systems. It guarantees that an open system and its

environment always have the possibility to communicate.

With observable liveness, we also get a kind of diagnosability property which is related

to – but not the same as – the diagnosability notion in the literature (see [22, 64]). For

explaining our use of diagnosability, we provide a small example. Assume that we have

a machine which is modeled and verified to be observably live. When the machine stops

working, the system administrator can test and find the faulty part by using the buttons

of the machine (controllable transitions). Since the machine is verified to be observably

live, there is always a way to observe each observable transition. The combination

of buttons to be pressed to observe each observable transition only depends on the

previously observed activities. In [64], Sampath et al. require that the system is live and

that additionally there exists no loop of unobservable events. By observable liveness,

we weaken this requirement on loops of unobservable events. Instead, an unobservable

loop is only allowed when it does not prevent firing of any observable transition.

Figure 3.5: a net fragment with an unobservable loop.
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Example 3.1.4. In Figure 3.5, the net fragment is observably live because the unob-

servable loop in the right part does not affect any of the observable transitions, while

the existence of the unobservable loop in Figure 3.2.a on page 19 violates weak fairness

and observable liveness.

Our notion of observable liveness is based on occurrence sequences, i.e., on a sequential

view of the behavior of concurrent systems. This has the advantage of a simple defini-

tion of behavior, and it is justified because concurrency of events plays no particularly

important role for liveness of single transitions. However, a concurrent view also has

several advantages. For example, a partial order view would have obvious advantages to

capture the progress assumption (that we called weak fairness) in a natural way [24, 42];

a maximal process net models a weakly fair net by definition because even an infinite

process net can be extended by a persistently enabled transition. For liveness, as it is

considered in this thesis, we need to consider also the branching structure of behavior.

Therefore, a partial order view of single runs, as provided e.g. by the well-known notion

of Petri net processes, would not be sufficient. To additionally capture the branching

structure of behavior, Petri net unfoldings (see [27] and [46]) are considered. Formally,

an unfolding is an acyclic graph with nodes representing transition occurrences and to-

kens, where the single elements are either sequential, concurrent or in conflict. Using

this notion, our admittedly cumbersome notion of a ϕ-fair occurrence sequence would

be translated to a maximal unfolding starting with a given marking and respecting the

respective response function. As mentioned before, the concurrent view also helps to

understand the concepts in the section on deterministic uncontrollable behavior. Actu-

ally, determinism itself, i.e., lack of conflicts between uncontrollable transitions, is very

easy to define for unfoldings: no forward branching condition contains an event in its

post-set representing the occurrence of an uncontrolled transition.

We will consider generalizations of Theorem 3.1.18 in the future work. It still holds

when there is some limited nondeterminism in the uncontrolled part; for example, if two

alternative uncontrollable transitions cause the same marking transformation, the result

is not spoiled. More generally, we aim at defining an equivalence notion on nets, based on

the respective observed behavior, which preserves observable liveness. Reduction rules,

as defined e.g. in [12], [42] and [23] but also in many other papers, could be applied to the

uncontrollable part, leading to simpler but equivalent nets. However, there are obvious

additional rules. For example, a rule that deletes an unobservable dead transition is

sound with respect to the equivalence because dead uncontrollable transitions do not

contribute to the observable liveness or non-liveness of the considered net.
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Finally, equivalence notions on (arbitrary) models are frequently evaluated with respect

to certain relevant properties in the following sense: if a model is replaced by an equiv-

alent one, then the property should either hold for both models or for none. This is

particularly relevant for models which are part of other models, i.e., in compositional

settings. Then the requirement is that replacing a sub-model by an equivalent one

respects the property of the entire model. If this holds, the equivalence is called con-

gruence with respect to the considered property. Among these congruences, one is often

interested in the coarsest one, which canonically corresponds to the property under con-

sideration. An example of this kind of result is given in [72], which proves that the

equivalence provided by Failure Semantics preserves deadlock-freeness. In our context,

we aim at an equivalence between observable nets such that two equivalent nets are

either both observably live or both not observably live. An example of [55] shows that

to this end we need at least Testing Equivalence (defined for classical 1-bounded nets in

[55]) which distinguishes loops of unobservable sequences (which often spoil observable

liveness) from absence of these loops.

3.2 Weak Observable Liveness

One might argue that observable liveness notion is too strong in some cases such as the

one explained in the example below.

Example 3.2.1. In the net in Figure 3.6, u is not observably live since there exists

a reachable marking, m0[σ0〉m from which u cannot fire. However, if the user chooses

to fire t1 then u fires infinitely often. And since t1 is in conflict with a controllable

transition (not an uncontrollable one), this choice is really up to the user.

Figure 3.6: A not observably live net
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In observable liveness, we consider that a user can decide to fire an observable transition

t at any reachable marking, thus we have to consider the possibility of forcing the system

to fire t from each reachable marking. The net in Figure 3.6 is not observably live because

the user might decide to fire u after he/she reaches the marking {p4} from which there

is no possibility to fire u. However, it can be the case that the user knows that he/she

wants to fire t at the beginning. So, given a net N and t ∈ O, the user decides to fire t

at the beginning (at m0), and whenever the user can make a choice he/she makes the

right choice in order to fire t eventually. Thus, with this assumption, a marking which

does not respect the response function is never reached. In this case, we do not have to

consider each reachable marking as we do for deciding observable liveness of t.

We relax the observable liveness notion for such cases by defining a weaker notion assum-

ing that one can be interested in observable liveness of a transition under the assumption

of knowing the aimed transition at the beginning and always respecting to the response

function. Here we introduce weak observable liveness which relies on the assumption

that the user knows at the beginning that he/she wants to fire t and always respects to

the response function. In this case, we will only consider the markings that are reached

by the sequences with respect to the response function.

Let N = (P, T, F,m0) be a 1-safe Petri net, such that O ⊆ T is the set of all observable

transitions and C ⊆ O is the set of all controllable transitions. Let ϕ : O∗ → 2C be the

response function which formalizes the strategy of a user who aims to force the net to

fire a specific observable transition.

Definition 3.2.1. Let σ = u0u1 . . . ui . . . be an infinite sequence of transitions, enabled

at m0, with m0[u0〉m1[u1〉 . . .mi[ui〉 . . .. Let t be a transition. We say that t is finally

postponed in σ if, from some point on, it is always enabled, but never fires:

∃j > 0 : ∀k > j : mk[t〉 and uk 6= t

Let σk = u0u1 . . . uk be the finite prefix of σ of length k+ 1. We say that t ∈ C is finally

eligible in σ if

∃j > 0 : ∀k > j : t ∈ ϕ(σk)

Define σ as the projection of σ on the set C of controllable transitions.

Definition 3.2.2. A transition sequence σ is consistent with a response function ϕ if it

satisfies the three following clauses:

1. σ is weakly fair with respect to T \ C

2. for each prefix σkt of σ, if t ∈ C, then t ∈ ϕ(σk)
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3. if σ is finite, then no controllable t is finally postponed and finally eligible in σ

Definition 3.2.3. An observable transition u ∈ O is weakly observably live iff there

exists a response function ϕ such that in each maximal transition sequence that is

consistent with ϕ, u appears infinitely often. N is weakly observably live iff each u ∈ O
is weakly observably live.

Example 3.2.2. Transition u in Figure 3.6 is not observably live, whereas it is weakly

observably live. Let ε be the empty transition sequence. There is a response function

ϕ such that ϕ(ε) = {t1} such that each transition sequence that is consistent with it

includes infinitely often u. In this example there is only one maximal transition sequence

that is consistent with ϕ and it is t1(ut4)
ω. So u is weakly observably live. Let us consider

Figure 3.7: A not observably live net with a weakly observably live transition

the same net but change the controllability of transition t2 as in Figure 3.7. Now u is

not weakly observably live anymore since t2t3 is a consistent transition sequence and it

does not include u.

Theorem 3.2.1. Let σ be an infinite transition sequence enabled at m0 and let ϕ be a

response function. If σ is consistent with ϕ then σ is ϕ-fair at m0.

Proof. Let σ be consistent with ϕ. We will show that σ satisfies clauses (1)-(4) of

Definition 3.1.1. Condition (1) is satisfied by the definition of “consistent”.

Suppose σ is finite. σ = σbtfσa where tf is the last observable transition in σ. Then

σa = ε. This implies that also σa = ε. Let t ∈ σ = σbtf . By clause (3) of Definition 3.2.2

σ is weakly fair with respect to any t ∈ ϕ(σ). This proves clause (2) of Definition 3.1.1.

Suppose σ is infinite and let t be finally eligible in σ. By clause (3) of Definition 3.2.2

t is not finally postponed which implies that σ is weakly fair with respect to t. This

proves clause (3) of Definition 3.1.1.
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Considering condition (4) let σ be an infinite composition σ1t1σ2t2 . . . such that no σi

includes any controllable transitions and ti ∈ C for i > 1. Since σ is consistent with ϕ,

ti ∈ ϕ(σ1t1σ2t2 . . . σi); let now σ be a finite composition σ1t1σ2t2 . . . tkσk+1 such that no

σi includes any controllable transitions and ti ∈ C for i > 1. Again since σ is consistent

with ϕ, ti ∈ ϕ(σ1t1σ2t2 . . . σi).

Corollary 3.2.2. If t is weakly observably live starting from any m ∈ [m0〉 then t is

observably live.

Figure 3.8: An example net for weak observable liveness

Example 3.2.3. Let us consider the observable transition u in the net in Figure 3.8. u

is observably live and thus also weakly observably live. There is a response function ϕ

such that for each reachable marking m0[σ0〉m, each ϕ-fair occurrence sequence enabled

at m includes u infinitely often. In other words, from each reachable marking, user can

force the system to fire u by using controllable transitions. This fact already implies

that there exists a response function ϕ such that each maximal transition sequence that

is consistent with ϕ includes u infinitely often. More intuitively, for weak observable

liveness we only consider the markings reached by the transition sequences that are

consistent with ϕ.

Let us consider the observable liveness (as it is defined in Section 3.1) and weak observ-

able liveness of u for the case in which t12 is deleted from the net. When t12 is deleted,

there are reachable markings in the net from which the user cannot force the occurrence

of u. However, u is still weakly observably live, since those markings which violate the
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observable liveness are not consistent with u and hence it is not required that they must

include occurrence of u infinitely often. Since the transition sequences starting with t2

are not consistent with ϕ the user will not choose to fire t2, and then, whatever the

system does, u will occur infinitely often.

3.3 Checking Observable Liveness

In the previous section two new notions, observable liveness and weak observable live-

ness, are introduced. These notions allow one to express serviceability of partially ob-

servable/controllable distributed systems. Intuitively, a system is observably live if, no

matter what marking is reached, all the observable actions can be forced to eventually

fire by choosing and performing the right controllable actions on the basis of the ob-

served behavior. In other words, a system is observably live, if the user has a strategy,

from each reachable marking, for forcing each observable transition to eventually fire by

using the controllable transitions. In weak observable liveness, we weaken the require-

ment of having a strategy from each reachable marking, and we consider the cases in

which the user decides to fire an observable transition at the beginning and respects

the strategy from the beginning, i.e. he/she never chooses to fire any transition which

is not consistent with the response function. Thus, we do not consider each reachable

marking, but only the ones reached by the transition sequences which are consistent

with the response function. So having a strategy that leads an observable transition t

to fire eventually is enough to say that t is weakly observably live. In this section, we

describe a potential application of infinite games that are played on finite graphs for

checking weak observable liveness. The method only applies to a restricted class of Petri

nets which is closer to the setting of two-person infinite games. In the following we will

first give a basic background for two-person infinite games and ω-automata on which

these games are formalized. Later we will discuss the idea of using two-person infinite

games for checking weak observable liveness on a concrete example. The discussion will

be informal and it is not fully developed yet.

3.3.1 Infinite games on finite graphs

The definitions in this section are adapted from [38].

Streett games are infinite games that are played on finite graphs with two players [38, 50].

The game is based on Streett automata which are non-deterministic ω-automata [17].

An ω-automaton is a type of finite automaton that runs on infinite strings as input. ω-

automata have a variety of acceptance conditions, they are useful for specifying behavior
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of systems that are not expected to terminate, such as hardware, operating systems and

control systems. They are well suited for specifying properties in the form: for each

request, eventually an acknowledgement is given.

Here we fix some notation that will be used in the sequel. Σ denotes a finite alphabet.

Σ∗ denotes the set of all finite words over Σ whereas Σω denotes the set of infinite words

(ω-words). A set of ω-words over a given alphabet is called ω-language.

Classes of ω-automata include Rabin automata, Streett automata, parity automata,

Büchi automata and Muller automata. For each, deterministic or non-deterministic

types exist. These classes of ω-automata differ only in terms of the acceptance condition

(acceptance component). In this section, we will examine only non-deterministic Streett

automata.

Definition 3.3.1. An ω-automaton is a quintuple (Q,Σ, δ, q0, Acc) where Q is a finite

set of states, Σ is a finite alphabet, δ: Q × Σ → 2Q is the non-deterministic state

transition function, q0 ∈ Q is the initial state and Acc is the acceptance component. The

acceptance component varies according to the type of automata.

Definition 3.3.2. Let A = (Q,Σ, δ, q0, Acc) be an ω-automaton. A run on an ω-word

α = a1a2... ∈ Σω is an infinite state sequence % = %(0)%(1)%(2)... ∈ Qω, such that the

following conditions hold:

• %(0) = q0,

• %(i) ∈ δ(%(i− 1), ai) for i > 1 if A is non-deterministic,

Inf(%) denotes the set of infinitely often visited states during the run %.

Figure 3.9: Example for a run on a ω-automaton.

Example 3.3.1. Let’s consider the automaton in Figure 3.9 and the ω-word, α1 =

aac(ba)ω. The run on α1 is %1 = q0q1q2q2(q1q2)
ω and the infinitely often visited states

during %1 are Inf(%1) = {q1, q2}.

Another example run is %2 = q0q1q2q1q2(q2)
ω which corresponds to the ω-word α2 =

aaba(c)ω. The only infinitely often visited state during %2 is q2, Inf(%2) = {q2}.
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Definition 3.3.3. An ω-automaton A = (Q,Σ, δ, q0, Acc) with acceptance component

Acc = {(E1, F1), . . . , (Ek, Fk) with Ei, Fi ⊆ Q} is called Streett automaton if it is used

with the following Streett acceptance condition:

A word α is accepted by A if there exists a run % of A on α such that

∀(E,F ) ∈ Acc, Inf(%) ∩ F 6= ∅ =⇒ Inf(%) ∩ E 6= ∅

Example 3.3.2. In Figure 3.10, an ω-automaton A is given. Let Acc = {({q1}, {q0}),
({q0}, {q1})} be the acceptance component. If A is used with Streett acceptance condi-

tion, it recognizes the ω-language L over alphabet A = {a, b} which consists of infinite

words that include infinitely many a’s and infinitely many b’s.

Figure 3.10: An ω-automaton

In order to define Streett games, we first briefly recall what is a game and how it is

played formally. A game is composed of an arena and a winning condition.

Definition 3.3.4. An arena is a triple A = (V0, V1, E), where V0 ∩ V1 = ∅. Elements

of V0 are called 0-vertices and elements of V1 are called 1-vertices. V = V0 ∪ V1. Edges

represent possible moves: such that E ⊆ V ×V . The set of successors of v ∈ V is defined

by E(v) = {v′ ∈ V : (v, v′) ∈ E}.

In this section, we focus on games with two players. In the sequel we will refer to the

two players as Player-0 and Player-1.

A play of a game on an arena A is played in the following way:

Let σ = {0, 1}

• A token is placed on an initial vertex v ∈ V

• Let v be a σ-vertex,

1. Player-σ moves the token from v to v′ ∈ E(v)
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2. v′ can be a 0-vertex or a 1-vertex. In each case the corresponding player

moves the token from v′ to v′′ ∈ E(v′)

3. Repeated

– either infinitely often

– or until a dead end is reached (v is a dead end if E(v) = ∅)

Note that the same player can make several (even infinite) consecutive moves.

A play on arena A can be:

1. an infinite path π = v0v1v2... ∈ V ω with vi+1 ∈ E(vi) for all i ∈ N (infinite play)

or

2. a finite path π = v0v1v2...vl ∈ V + with vi+1 ∈ E(vi) for all i < l, and E(vl) = ∅
(finite play)

Let A be an arena and Win ⊆ V ω be the winning set ; G = (A,Win) is called a game.

Player-0 is the winner of a play π in the game G iff

• π is a finite play π = v0v1...vl ∈ V + and vl is a 1-vertex where Player-1 can’t move

anymore or

• π is an infinite play and π ∈Win

Player-1 wins if Player-0 does not win π.

In general, an arena might consist of an infinite number of vertices. Hence, in order

to use the acceptance conditions for ω-automata, we have to map the vertices of the

arena to a finite set. These previously mentioned acceptance conditions only make sense

when they are used with finite state automata since a run of an infinite state automaton

might have no recurring state. For this reason, the vertices of an arena are colored by

a coloring function which is defined as χ : V → C where V is the set of vertices of

arena A and C is a finite set of colors. Let π = v0v1v2... be a play, its coloring, χ(π) is

χ(π) = χ(v0)χ(v1)χ(v2).... When C is viewed as the state set of a finite ω-automaton

and Acc is an acceptance condition for this automaton, then Wχ(Acc) is the winning set

consisting of all infinite plays π where χ(π) is accepted according to Acc.

Several winning conditions are defined based on acceptance conditions of finite ω-

automata, here we will recall only Streett condition. Streett winning condition is defined

as:
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Acc = {(E1, F1), . . . , (Em, Fm)} such that

π ∈Wχ(Acc) iff ∀k ∈ {1, . . . ,m}, Inf(χ(π)) ∩ Fk 6= ∅ =⇒ Inf(χ(π)) ∩ Ek 6= ∅.

Definition 3.3.5. Let A be an arena, σ ∈ {0, 1} and fσ : V ∗Vσ → V a partial function.

A prefix v0v1...vl of a play is said to be conform with fσ if ∀i such that 0 6 i < l and

vi ∈ Vσ, the function fσ is defined at v0v1...vi and we have vi+1 ∈ fσ(v0v1...vi). This

implies vi+1 ∈ E(vi).

A play is conform with fσ if each of its prefixes is conform with fσ.

Definition 3.3.6. Let A be an arena, σ ∈ {0, 1} and fσ : V ∗Vσ → V a partial function.

fσ is a strategy for Player-σ on U ⊆ V if it is defined for every prefix of a play which is

conform with it, starts in a vertex from U , and does not end in a dead end of Player-σ.

When U is a singleton {v}, we say fσ is a strategy for Player-σ in v.

Definition 3.3.7. Let G = (A,Win) be a game, and fσ a strategy for Player-σ on U .

The strategy fσ is said to be a winning strategy for Player-σ on U if all plays which are

conform with fσ and start in a vertex from U are wins for Player-σ.

3.3.2 Checking weak observable liveness by Streett games

In the previous section we recalled ω-automata, Streett automata and above them Streett

games. In this section, a method for checking observable liveness is proposed. The

method is based on transforming weak observable liveness problem to a Streett game in

which the two players are the system and the user.

ω-automata are well known and widely used for description of systems that are expected

to run continuously. They are powerful for specifying properties like “for each request,

eventually an acknowledge is given”. Observable liveness property also requires that a

system continues to run without termination. Moreover, in an observably live system,

each request of service must be eventually satisfied. Since observable liveness property

is based on the existence of a strategy for a user to control the system in order to force

the occurrence of observable transitions, it is natural to think that observable liveness

can be expressed by means of an infinite game on a finite graph with two players i.e.,

the system and the user.

As it has been mentioned in the previous section, there are several acceptance conditions

defined for ω-automata which are later adapted to games as winning conditions. Among

those, Streett games seem to be the closest translation of weak observable liveness prob-

lem as a game.

Consider a 1-safe Petri net with distinguished controllable and observable transitions as

described in Section 3.1.1. We will assume progress for the behavior of uncontrollable



Chapter 3. Liveness and Serviceability 45

transitions, whereas for controllable transitions we do not assume progress, i.e., a user

can choose not to fire an enabled controllable transition. Moreover, the user can decide

which controllable transition occurs among the enabled ones. Of course, we cannot

assume that the user will be fast enough to fire a controllable transition if it is in

conflict with an uncontrollable one. An observable transition t is weakly observably live

if there exists a strategy for the user to force the system starting from the initial marking

in order to fire t by choosing the right controllable transitions. We assume that the user

will always respect the strategy while choosing controllable transitions.

Here we propose a method for translating the problem of checking weak observable

liveness of an observable transition into a Streett game.

Let N = (P, T, F,m0) be a 1-safe Petri net where O ⊆ T is the set of observable

transitions and C ⊆ O the set of controllable ones. Let [m0〉 be set of all reachable

markings of N. Let m ∈ [m0〉, Tm denotes the set of all transitions that are enabled at

m, Tm = {t ∈ T : [m〉t}. Let N be such that ∀m ∈ [m0〉, Tm∩C = ∅ ∨Tm∩ (T \C) = ∅,
i.e., at each reachable marking, enabled transitions are either all controllable or all

uncontrollable. The idea is to create an arena from the marking graph ofN , MG(N), and

on this arena encode the problem of deciding whether a transition is weakly observably

live as a Streett game.

The notions of observable liveness and weak observable liveness are based on observa-

tion of occurrences of transitions. However the considered games are based on moving

between vertices which correspond to the states of an automaton and winning condi-

tions are based on visiting some specific vertices infinitely often. The marking graph of

a Petri net consists of states that are corresponding to reachable markings in the net

whereas an arc from one state to another state corresponds to a transition that changes

the marking. Occurrence of a transition cannot be deduced from the states since there

might be several transitions that yield the same marking. In order to encode weak ob-

servable liveness we need to be able to represent transition occurrences as states. This

can be done by dividing each arc in the marking graph into two by adding an additional

state for each arc as illustrated in Figure 3.11.

After applying the transformation for each arc of MG(N), we get a transformed mark-

ing graph MG(N)′ on which we can see the occurrences of any transition of N . Note

that we assume weak fairness with respect to the uncontrollable transitions in the set-

ting of observable liveness, i.e., each consistently enabled uncontrollable transition will

eventually fire unless another transition which is in conflict fires. We assume the same

behavior for controllable transitions since otherwise the user will lose because of its in-

activity. Consider t in Figure 3.11, it is safe to say if state st is reached then t has fired
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Figure 3.11: Transition transformation

since it cannot pause its occurrence and stay in the middle state forever. We will call a

sequence of states weakly fair if the corresponding transition sequence is weakly fair.

To create an arena from MG(N)′ we do not need coloring because we consider only 1-

safe Petri nets which always have finite marking graphs. However, MG(N)′ still cannot

be an arena because to be an arena the states of MG(N)′ must be divided into two

distinct sets, V0 and V1, which belong to Player-0 and Player-1 respectively. Since in

our restricted class, we only have states in which either the user or the system can

decide, it is easy to distinguish the states in MG(N)′. Let Player-0 be the system, and

Player-1 be the user, in each state either Player-0 or Player-1 can make the move since

we only consider the nets in which at any reachable marking (state of MG(N)’) either

enabled transitions are all controllable or all uncontrollable. So at each state in MG(N)

all outgoing arcs correspond to either all controllable transitions or all uncontrollable

transitions. Any state in MG(N)′ that is added after the transformation, belongs to the

same player as its predecessor state.

Now we have an arena A that is created from N through the marking graph. Let t ∈ O,

it is possible to define a Streett game on A such that t is weakly observably live iff the

user has a winning strategy on the vertex corresponding to the initial marking of N .

For the simplicity, we define winning condition of Player-0 as: Let St be the new added

states during the transformation corresponding to transition t.

Win = {w ∈ V ω : w is weakly fair AND St is not infinitely often visited}.

Transition t is weakly observably live iff Player-1 has a winning strategy for the game

(A,Win).

Example 3.3.3. Let us consider the net in Figure 3.12. Transition E is weakly ob-

servably live. The user has a choice at the initial marking between two controllable

transitions. E will fire infinitely often if the user chooses F . So the strategy of the user
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Figure 3.12: Is E weakly observably live?

should be choosing F , i.e., let ε be the empty transition sequence, ϕ(ε) = {F}. Each

transition sequence that is consistent with ϕ includes E infinitely often.

Now let us consider the problem of deciding “Is E weakly observably live?” as a Streett

game. In order to define a Streett game, we first need to define the arena. For this,

we create the marking graph of the net and apply the transformation explained in

Figure 3.11 for each transition. After the transformation, we get the marking graph

with additional states illustrated in Figure 3.13. Note that occurrence of each transition

is represented with a state on this transformed marking graph. In order to have an arena

we assign each state to a player. Here, each state belongs to Player-0 except the initial

state. So, V1 = {1} and all other vertices belong to V0.

We set the winning component for Player-0 as:

Acc = {(∅, {12, 13}),
({16, 17}, {14}),
({16, 17}, {15}),
({12, 13}, {18}),
({12, 13}, {19}),
({22, 23}, {20}),
({22, 23}, {21})}

We assume that the user will follow the winning strategy and choose F at the initial

marking. So, we do not consider the states reached by choosing G instead of F , since

the user makes the first move and then those states will be never reached.
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Figure 3.13: Transformed marking graph of the net in Figure 3.12

The first condition in Acc says that if Player-0 visits 12 or 13 infinitely often he will

lose. Since 12, 13 correspond to occurrences of E, Player-0 must avoid to infinitely often

visit one or both of them in order to win. The other conditions are to force weakly fair

behavior. For example consider infinitely often visiting 14 (firing transition B of the net

N); this implies that the path goes forever through 14 and 15; then in the net, transition

A is consistently enabled so it must be fired. Indeed in the net we see that A and B are

concurrent transitions.

Player-0 cannot have a winning strategy in this game if Player-1 chooses F at the initial

marking, and thus E is weakly observably live.

In the literature there are algorithms for solving two person infinite games. For example

in [44], two algorithms are presented for computing strategies for both players. [18]

provides a method of strategy construction in infinite games with Streett and Rabin

chain winning conditions. Also [53] provides algorithms for Streett and Rabin games.

Our idea of using two person infinite games for checking weak observable liveness is

restricted to the above explained class of Petri nets for now. We plan to continue to

work on this idea, explore other possible games and generalize to 1-safe Petri nets.
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Non-interference

In this chapter, we study formal notions of unwanted information flow, based on a general

notion of non-interference, within the theory of Petri nets. We compare our approach

with existing approaches and discuss methods for checking non-interference notions.

4.1 Information Flow and Non-interference

In distributed systems, information flows among components. The flow can be used to

rule the behavior of the system, to guarantee the correct synchronization of tasks, to

implement a communication protocol, and so on.

In some cases, a flow of information from one component to another is actually a leakage:

that piece of information should not have passed from here to there. Such unwanted

flows can endanger the working of the system.

Information flow is studied in different areas such as logic, linguistics, information theory,

software engineering, distributed systems, etc.

In [5] it is stated that information flow results from regularities in a distributed system.

By describing a system in which information flows as distributed, we naturally assume

that information flows from a source to a destination. Thus, we are considering a system

which is divided into two main parts. In abstract systems, the relation of whole to part

is also abstract and the metaphor of “flow” is interpreted even more loosely. There is

no restriction on what is considered as part, the choice of parts determines the way

information flows. Presence of regularities links the parts of a system together in a way

that permits the flow of information. Regularities in a distributed system makes the

behavior predictable. However, the behavior of the system does not have to be entirely

49
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predictable for information to flow. Yet, as a general rule, the more random the system

the less information will flow.

From information theoretical point of view, information flow is the transfer of informa-

tion from a variable x to a variable y in a given process. Not all information flow is

desirable. For example, an information flow which leads the system to leak any secret to

public observers is absolutely not wanted. Usually, each variable is assigned a security

level. The basic model consists of two distinct levels: low and high. Low corresponds

to publicly observable information, while high corresponds to secret information. For

the sake of confidentiality, flowing information from high to low variables should not be

allowed.

There are several formal notions concerning information flow such as non-deducibility

[68], opacity [15, 16, 48], anonymity [65] and non-interference.

Non-interference was first defined for deterministic programs [36]. Later, several adap-

tations were proposed for more abstract settings, like transition systems, usually related

to observational semantics [32, 33, 59, 62, 63].

Broadly speaking, these approaches assume that the actions performed in a system be-

long to two types, conventionally called high (hidden) and low (observable). A system is

then said to be free from interference if a user, by interacting only via low actions, can-

not deduce information about which high actions have been performed. This approach

was formalized in terms of 1-safe Petri nets in [19], relying on known observational

equivalences, including bisimulation.

In [61] a special kind of non-interference, called intransitive non-interference, is intro-

duced in which there are not only two kinds of actions but also an intermediate kind

called downgrading. The idea of having downgrading actions is that whenever one of

such actions occurs it declassifies the high actions executed before it. Intransitive non-

interference has been formalized in elementary net systems in [37] and studied in [13, 14]

on Place/Transition nets.

This thesis adapts the first setting with only high and low actions and analyzes systems

that can perform high and low level actions and we check if an observer, who knows the

structure of the system, can deduce information about the high actions by observing

low actions. We rely on a progress assumption which was ignored in non-interference

notions in the literature.

There are mainly two kinds of information flows that non-interference notions deal with.

These are positive information flow and negative information flow. A positive informa-

tion flow arises when the occurrence of a high level transition can be deduced from the
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low level behavior of the system, whereas a negative information flow is concerned with

the non-occurrences of a high transition.

In this chapter, new notions of non-interference for ordinary Petri nets are introduced.

They deal with positive information flow as well as negative information flow, regarding

both past and future occurrences and are based on unfoldings and on reveals and ex-

cludes relations which are formally defined in Section 4.3 and Section 4.4. Reveals was

originally defined as a relation between events of an occurrence net in [39] and applied

in fault diagnosis. Here, we adapt this relation to transitions of Petri nets. Intuitively, a

transition t1 reveals another transition t2 if, by observing the occurrence of t1, it is pos-

sible to deduce the occurrence of t2. Excludes is a new relation between transitions of a

Petri net, which is introduced in order to detect negative information flow. A transition

t1 excludes another transition t2 if, by observing the occurrence of t1, it is possible to

deduce that t2 has not yet occurred and will not occur in the future, i.e., they never

appear together in the same run. We also introduce two variants of the excludes relation,

namely past excludes and future excludes.

The first notion of non-interference we introduce is called Reveals based Non-Interference

(RNI) and it states that a net is secure if no low transition reveals any high transi-

tion. This new notion is introduced in Section 4.5.1. We also propose more restrictive

notions called k-Extended-Reveals based Non-Interference (k-ERNI) and n-Repeated-

Reveals based Non-Interference (n-ReRNI), they are based on observation of multiple

occurrences of low transitions. These two parametric non-interference notions are intro-

duced and discussed in Section 4.5.2 and Section 4.5.3. In Section 4.5.4, Positive/Nega-

tive Non-Interference (PNNI) is introduced on the basis of both the reveals and excludes

relations between low and high transitions capturing both positive and negative infor-

mation flow. In Section 4.5.5, PNNI is improved by using two variants of the excludes

relation. The new notions are discussed and compared with each other while they are

introduced. In Section 4.6, we compare, on the basis of examples, the new introduced no-

tions with the ones already introduced in the literature and mentioned at the beginning

of Section 4.2. Section 4.7 is devoted to the methods for checking non-interference. After

briefly investigating some methods used for checking the most popular non-interference

notions in the literature, we explore two approaches for checking the non-interference

notions based on reveals and excludes relations introduced in this thesis.

4.2 Non-interference Notions with Petri Nets

In this section, before introducing the new notions, we briefly recall the most used non-

interference notions in the literature and discuss our motivation for introducing new



52 Chapter 4. Non-interference

non-interference notions based on reveals and excludes relations. The notions recalled

in the following are based on some notion of low observability of a system. It is what

can be observed of a system from the point of view of low users.

In the following, we will use acronyms to denote the set of nets satisfying the corre-

sponding security notion.

The less restrictive notion, introduced in [32, 33] and also studied on 1-safe Petri nets in

[19], is Strong Nondeterministic Non-Interference (SNNI). It is a trace-based property

(trace as sequence of event occurrences), that intuitively says that a system is secure if

what the low part can see does not depend on what the high level part does. If a net

system N is SNNI secure, then it should offer, from the low point of view, the same

traces as the system where the high level transitions are prevented. In SNNI secure

systems, information can flow from low to high but not from high to low. A different

characterization of the same notion, called Non-Deducibility on Composition (NDC), is

given in [19].

Figure 4.1: Relation between some existing interference notions in the literature

While SNNI is based on trace equivalence, the more restrictive notions Bisimulation

based Strong Nondeterministic Non-Interference (BSNNI) and Bisimulation based Non-

Deducible on Composition (BNDC) are based on bisimulation.

NDC and BNDC are also defined for unbounded P/T nets in [14] both for the systems

with only high and low transitions and for the systems which also has downgrading

transitions.

Strong Bisimulation based Non-Deducible on Composition (SBNDC) is an alternative

characterization of BNDC [32, 33]. In fact, Busi and Gorrieri in [19] show that BNDC

is equivalent to SBNDC, and it is stronger than BSNNI.

Another non-interference notion called Place Based Non-Interference (PBNI) was in-

troduced in [19]. It is based on the absence of some kinds of specific places in the net,

namely causal and conflict places. A causal place is a place between a low transition and

a high transition such that the low transition consumes the token from the place which
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Figure 4.2: A net modeling paper submission and evaluation.

was produced by the high transition. A conflict place is a place such that at least one

low transition and one high transition consume a token from it. A net is considered to

be PBNI secure in the absence of such places. In [19], it is shown that if a net is PBNI

secure then it is also SBNDC secure.

In [20], a similar notion, called Positive Place Based Non-Interference (PBNI+), is

proposed by introducing the notions of active causal and active conflict places. PBNI+

is weaker than PBNI and it coincides with SBNDC.

The overall relationship between these mentioned notions is illustrated in Figure 4.1. In

[19], the following relation is proved for 1-safe Petri nets: SNNI≡NDC, BSNNI ⊆SNNI,

SBNDC ≡ BNDC ≡ PBNI+ ⊆ BSNNI, PBNI⊆PBNI+ . In the rest of the chapter,

we will refer only to these notions for discussing the similarities and the differences with

our notions we introduce here.

With respect to the above mentioned different kinds of information flow, SNNI, BSNNI

and PBNI+ deal with positive information flow, whereas PBNI deals also with negative

information flow.

All these notions seem to aim mainly at deducing past occurrences of high transitions,

for example they all consider system N6 in Figure 4.11 on page 67 secure, whereas, by

considering progress, after the occurrence of l, a low user deduces that h is inevitable

and therefore N6 is not secure with respect to the ability of deducing information about

the future behavior.

Differently from the previous notions, the ones we are going to propose do not only

capture information flow about past occurrences of high transitions, but also information

flow about inevitable or impossible future occurrences of high transitions.
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In some cases, the mere ability to deduce that some high transition has occurred is not

a security threat, provided the low user cannot know which one occurred.

Let us illustrate this issue with the help of an example. The net in Figure 4.2 represents

a system in which a user can repeatedly submit a paper to a committee, each time

receiving a judgment (accept or reject). The black squares represent high transitions.

The review process can follow either of two paths, and we do not want the user to know

which one was chosen. When the user receives an answer, he knows that some high

transition occurred, however he cannot infer which one.

For this reason, the new notions we are going to introduce in the following will consider

such a system secure, whereas it is not secure with respect to SNNI, and the other above

recalled notions.

4.3 Reveals Relations

This section briefly summarizes a group of relations originally defined on occurrence

nets in [1, 39] and then adapts them to Petri nets as in [9]. Intuitively, an event of

an occurrence net reveals another event, if the occurrence of the latter is inevitable,

i.e., it must have occurred in the past or will eventually occur in the future, once the

first event occurs. Moreover, another relation that will be explored in this section is

extended-reveals. The original notion describes a relation between two sets of events of

an occurrence net. Set A extended-reveals set B if the occurrence at least one of the

elements in set B is inevitable provided that all elements of set A occurred. In this

section these two relations are studied and then adapted to the transitions of a P/T

net. Moreover, a new relation which is based on the fact that repeated occurrence of

a transition can give information about past or inevitable future occurrence of another

transition is introduced.

4.3.1 Reveals relations on occurrence nets

Definition 4.3.1. [39]Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set of its

maximal runs, and e1, e2 be two of its events. Event e1 reveals e2, denoted e1 � e2, iff

∀σ ∈ Ω : e1 ∈ σ =⇒ e2 ∈ σ

Example 4.3.1. To give a simple example on the original reveals and extended-reveals

notions, we examine the occurrence net in Figure 4.3. In this occurrence net, e5 reveals

e1 since e5 cannot occur if e1 does not occur before. However e1 does not reveal e5 since,

instead of e2, e3 can fire so that e5 cannot fire anymore. Another reveals relation on
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this occurrence net is e2 � e4, because when e2 occurs e3 cannot occur anymore and so

e4 has to occur.

Definition 4.3.2. [1]Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set of its

maximal runs, and A,B two sets of events. A extended-reveals B, denoted A _ B, iff

∀ω ∈ Ω : A ⊆ ω =⇒ B ∩ ω 6= ∅.

In other words, a set of events, A, extended-reveals another set of events B, iff every

maximal run that contains A also hits B. The reveals relation can be expressed as

extended-reveals relation between singletons: a� b can be written as {a}_ {b}.

Example 4.3.2. In the occurrence net given in Figure 4.3, e2 � e4 and e4 � e2.

In the same occurrence net, the occurrence of e1 does not necessarily mean that e5 will

occur, whereas e1 together with e2 extended-reveals e5, denoted as {e1, e2}_ {e5}. The

occurrence of e4 reveals neither e6 nor e7. However, it reveals that either e6 or e7 will

occur, denoted as {e4}_ {e6, e7}.

Figure 4.3: An occurrence net.

Remark 4.3.1. In general, reveals relation is not symmetrical. As an example, e6 � e4

but e4 6� e6 since after e4, e7 can occur instead of e6.

4.3.2 Reveals Relations on Petri Nets

In this section, we define a reveals and an extended-reveals relation on the set of transi-

tions of a Petri net, relying on the corresponding relations on occurrence nets. Moreover,

we introduce a new parametric relation, called repeated-reveals, again on the set of tran-

sitions of a Petri net. Reveals, extended-reveals and repeated-reveals relations will be

used to detect positive information flow, however they can also be applied in other areas,

e.g. fault diagnosis as explored in [39] by using original reveals relation on occurrence

nets.
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In the following, except for the repeated reveals relation, we assume progress in the

behavior of the nets, which means that a constantly enabled transition occurs if it is not

disabled by another transition. This means that we consider only maximal runs in the

unfolding.

For the rest of this section, we fix the notation as in the following. In the sequel,

N = (P, T, F,m0) will denote a Petri net, and Unf(N) = ((B,E, F ),λ) the unfolding

of N . R will denote the set of all runs of N whereas Ω the set of all maximal runs.

Let ti ∈ T and Eti = {e ∈ E : λ(e) = ti} for i ∈ {1, 2, . . .} denotes the set of events

corresponding to the occurrences of transition ti in the unfolding.

4.3.2.1 Reveals

Definition 4.3.3. Let t1, t2 ∈ T be two transitions, t1 reveals t2, denoted t1 �tr t2, iff

∀ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω 6= ∅.

Transition t1 reveals transition t2 if and only if each maximal run which contains an

occurrence of t1 also contains at least one occurrence of t2. This means that for each

observation of t1, t2 has been already observed or will be observed.

Remark 4.3.2. The reveals relation on transitions is reflexive and transitive, i.e., let

t1, t2, t3 ∈ T , then from Definition 4.3.3 it directly follows that t1 �tr t1, and (t1 �tr

t2 ∧ t2 �tr t3) =⇒ t1 �tr t3.

Example 4.3.3. In the net N1, in Figure 4.4, t3 reveals both t2 and t1. It is easy to

notice that to be able to fire t3 we must first fire t1 and t2. In fact, in the unfolding

Unf(N1), for each occurrence of t3 there is at least one occurrence of t2 and similarly,

for each occurrence of t3 there is at least one occurrence of t1. However, t1 does not

reveal t2 or t3, since there is a run in which t1 occurs and neither t2 nor t3 occurs. If an

observer, who knows the structure of N1, can only observe t1 he cannot have information

about t2 or t3, however if he is able to observe t3, he can deduce that both t2 and t1

must have occurred.

Transition t1 also reveals transition t6 because when t1 fires, t5 cannot fire anymore and,

since the net progresses, t6 must fire. Since we do not assume strong fairness, t1 6�tr t4,

after the occurrence of t1, t2 and t3 can loop forever. Reveals relation is not only about

past occurrences but also about future occurrences. Observing t1 does not tell us when

t6 fires. It might have fired already or it will fire in the future. t1 �tr t6 tells us that

when t1 occurs, an occurrence of t6 is inevitable.

Remark 4.3.3. Reveals relation is neither symmetric nor antisymmetric. For example,

in Figure 4.4, t2 �tr t3 and t3 �tr t2 , however t2 �tr t1 and t1 6�tr t2.
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Figure 4.4: A Petri net and its unfolding

Reveals relation between transitions, i.e., �tr can be equivalently redefined by using

the extended-reveals relation between the events of an occurrence net, i.e., _. Intu-

itively, transition t1 reveals transition t2 iff each occurrence of t1 extended-reveals some

occurrences of t2.

Definition 4.3.4. Let t1, t2 ∈ T be two transitions, t1 �̂tr t2 iff ∀e1 ∈ Et1 : {e1} _

Et2 .

Example 4.3.4. In Figure 4.5, t1 �tr t6. In accordance with the Definition 4.3.3, each

maximal run which contains an occurrence of t1 also contains at least one occurrence of

t6. There are two maximal runs in the unfolding which contains an occurrence of t1 that

is e1. One of the runs contains event e6 whereas the other contains e7 both of which are

occurrences of t6. In other words, e1 _ {e6, e7} which satisfies the definition of �̂tr

since e1 is the only event corresponding to transition t1.

Proposition 4.3.4. Let t1, t2 ∈ T be two transitions, t1 �tr t2 ⇐⇒ t1 �̂tr t2.

Proof. Here we prove that Definition 4.3.3 and Definition 4.3.4 are equivalent by showing

the above implication holds in both directions. We first show that if t1 �̂tr t2 then

t1 �tr t2.
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Figure 4.5

Definition 4.3.3 states that ∀ ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω 6= ∅ whereas

Definition 4.3.4 states that ∀ e1 ∈ Et1 : {e1}_ Et2 .

By using the definition of extended-reveals between events, Definition 4.3.2, we rewrite

∀ e1 ∈ Et1 : {e1}_ Et2 into

∀ e1 ∈ Et1 , ∀ω ∈ Ω : {e1} ⊆ ω =⇒ Et2 ∩ ω 6= ∅.

We can move the universal quantifier ∀ω ∈ Ω to the beginning of the statement.

∀e1 ∈ Et1 : {e1} ⊆ ω =⇒ Et1 ∩ ω 6= ∅, so the statement can be rewritten as:

∀ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω 6= ∅.

With this, we have achieved the definition of t1 �tr t2.

To this point, it is shown that if t1 �̂tr t2 then t1 �tr t2. Now we have to show the

implication also works for the other direction, i.e., if t1 �tr t2 then t1 �̂tr t2. Starting

from t1 �tr t2, we write:

∀ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω 6= ∅.
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The above statement can be rewritten equivalently as:

∀ω ∈ Ω, ∀e1 ∈ Et1 : {e1} ∩ ω 6= ∅ =⇒ ∃e2 ∈ Et2 : {e2} ∩ ω 6= ∅.

This means that each occurrence of t1 appears together with at least one occurrence of

t2 in the same maximal run. So the statement becomes:

∀ω ∈ Ω,∀e1 ∈ Et1 : {e1} ∩ ω 6= ∅ =⇒ Et2 ∩ ω 6= ∅.

Note that for each e1 ∈ Et1 it is possible to have different occurrences of t2 for different

runs. This is in accordance with the definition of extended-reveals between events.

Consequently we can write:

∀e1 ∈ Et1 : {e1}_ Et2 .

With this proof we have shown that Defitinion 4.3.3 and Definition 4.3.4 are equivalent

so from now on we can use the same symbol, �tr , for both definitions.

4.3.2.2 Extended-reveals

In some cases, one transition alone does not give much information about the behavior

of the net whereas a set of transitions together can give some information about the

behavior of the net. This relation is defined as in the following.

Definition 4.3.5. Let W,Z ⊆ T . W extended-reveals Z, denoted W _tr Z, iff

∀ ω ∈ Ω : ∧
t∈W

(ω ∩ Et 6= ∅) =⇒
∨
t∈Z

(ω ∩ Et 6= ∅)

We say that a set of transitions W extended-reveals another set of transitions Z, if and

only if each maximal run, which contains at least an occurrence of each transition in W ,

also contains at least an occurrence of a transition in Z.

The reveals relation on transitions, t1 �tr t2, corresponds to the extended-reveals relation

between singletons, {t1}_tr {t2}.

Example 4.3.5. In the net shown in Figure 4.6, t2 alone does not reveal t5, whereas t2

and t3 together tell us that t5 will fire, denoted as {t2, t3} _tr {t5}. In the same net,

the occurrence of t5 tells us that either t8 or t9 will fire, denoted as {t5} _tr {t8, t9}.
Similarly, {t7, t8}_tr {t10}, i.e., there is no maximal run which includes occurrences of

t7, t8 and not t10.
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Figure 4.6

Remark 4.3.5. Let A,B,C ⊆ T . From Definition 4.3.5, it immediately follows: if A _tr

B and B ⊆ C, then A _tr C.

Remark 4.3.6. The extended-reveals relation is neither symmetric nor antisymmetric.

For example: {t2, t3}_tr {t8, t9}, however {t8, t9} 6_tr {t2, t3}; indeed {t8, t9}_tr ∅,
since there is no run containing an occurrence of both t8 and t9, as it will be also

discussed later on. On the other side, {t2, t3}_tr {t5, t6} and {t5, t6}_tr {t2, t3}.

The extended-reveals relation on transitions is not transitive since the left part of the

relation is a conjunction whereas the right part is a disjunction. For example {t2, t3}_tr

{t5, t7, t8} and {t5, t7, t8}_tr {t10}, however {t2, t3} 6_tr {t10}.

Proposition 4.3.7. Let N ′ = (P ′, T ′, F ′,m′0) be a 1-safe Petri net, whose underlying

net is an acyclic graph and t1, t2 ∈ T . If there exists a marking m ∈ [m′0〉 such that t1

is in conflict with t2 at m, then {t1, t2}_tr ∅.

Since the previous proposition considers acyclic 1-safe nets, its proof can be directly

derived from the corresponding one for the events of an occurrence net as given in [2].

4.3.2.3 Repeated-reveals

In some cases, repeated occurrences of the same transition can give more information

about the behavior of a net than only one occurrence of that transition. A relation based

on this fact is defined in the following.

Definition 4.3.6. Let t1, t2 ∈ T be two transitions of N , and n be a positive integer.

Let Rnti = {ω ∈ R : |ω ∩ Eti | = n} and Ωn
ti denotes the set of maximal runs in Rnti with

respect to set inclusion (i.e., Ωn
ti ⊆ R

n
ti such that if u, v ∈ Ωn

ti ∧ u ⊆ v then u = v).
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If Ωn
t1 6= ∅ then t1 n-repeated reveals t2, denoted t1 �n

tr t2, iff ∀ω ∈ Ωn
t1 : Et2 ∩ω 6= ∅.

If Ωn
t1 = ∅ then neither t1 �n

tr t2 nor t1 6�n
tr t2 is defined.

Notation. t1 6�n
tr t2 will denote that there is at least one run in Ωn

t1 such that t1 appears

n times and t2 does not appear. ¬(t1 �n
tr t2) will denote that either t1 �n

tr t2 is not

defined, or t1 6�n
tr t2.

Example 4.3.6. Let us consider N3 in Figure 4.6. Transition t11 does not reveal t12,

however if the occurrence of t11 is observed twice then it is evident that t12 occurred,

therefore t11 2-Repeated reveals t12, denoted t11 �2
tr t12, whereas t11 6�1

tr t12 since after

the first occurrence of t11, t14 can fire instead of t12.

Note that t11 �3
tr t12 and t11 6�3

tr t12 are both not defined since t11 can fire at most

twice, therefore in this case ¬(t11 �3
tr t12).

Proposition 4.3.8. Let t1, t2 ∈ T be two transitions of N ,

t1 �1
tr t2 =⇒ t1 �tr t2

Proof. Let R1
t1 = {ω ∈ R : |ω ∩Et1 | = 1} and Ω1

t1 be the set of maximal runs in R1
t1 . If

t1 �1
tr t2, then Ω1

t1 6= ∅ and ∀ω ∈ Ω1
t1 : ω ∩Et2 6= ∅. Let σ be an arbitrary maximal run

of Unf(N). Suppose that σ ∩ Et1 6= ∅ then we can always take a run ω ∈ Ω1
t1 such that

ω ⊆ σ. Then we know that σ contains at least one occurrence of t2 and so t1 �tr t2.

Figure 4.7

However, the implication of the previous proposition does not hold in the other direction.

In fact, consider the net in Figure 4.7, t1 �tr t2, t1 �tr t3, t1 6�1
tr t2 and t1 6�1

tr t3.

The main difference is that we consider only maximal runs for reveals relation. For this

net there is only one maximal run which contains t1 (twice), t2 and t3. However, there

is a run in Ω1
t1 in which t1 appears and t2 does not appear, as well as a run in which t1

appears and t3 does not appear. All runs in Ω2
t1 , i.e., including t1 twice, contain both t2

and t3, i.e., t1 �2
tr t2 and t1 �2

tr t3.
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Proposition 4.3.9. Let t1, t2 ∈ T be two transitions, if t1 �n
tr t2 and Ωn+1

t1
6= ∅ then

t1 �n+1
tr t2.

Proof. Let Rnt1 = {ω ∈ R : |ω ∩Et1 | = n} and Ωn
t1 be the set of maximal runs in Rnt1 . If

t1 �n
tr t2, then Ωn

t1 6= ∅ and for all ω ∈ Ωn
t1 ω ∩ Et2 6= ∅. Let σ ∈ Ωn+1

t1
, we can always

choose a run ω ∈ Ωn
t1 such that ω ⊆ σ. Then we know that σ ∩Et2 6= ∅, so t1 �n+1

tr t2.

Figure 4.8

Example 4.3.7. In Figure 4.8, t1 reveals neither t3 nor t4, however if the occurrence of

t1 is observed twice then it is evident that either t3 or t4 has occurred or will inevitably

occur. Assume that t3 has occurred, before t1 can occur again, t4 has to occur. In other

words, R2
t1 includes both t3 and t4, i.e., t1 �2

tr t3 and t1 �2
tr t4.

Note that R3
t1 is not empty and so by Proposition 4.3.9, t1 �3

tr t3 and t1 �3
tr t4.

4.4 Excludes Relation

In this section, we introduce a new relation between transitions, called excludes, which

will be used to detect negative information flow, yet there are other possible application

areas such as fault diagnosis.

In the sequel, N = (P, T, F,m0) will denote a Petri net, and Unf(N) = ((B,E, F ),λ) the

unfolding of N . R will denote the set of all runs of N whereas Ω the set of all maximal

runs. Let ti ∈ T , Eti = {e ∈ E : λ(e) = ti} for i ∈ {1, 2, . . .}.
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4.4.1 A new relation: Excludes

The new introduced notion excludes is based on the intuition of the impossibility of the

two transitions to fire together in a run. In other words, a transition excludes another

transition if they can never appear in the same run. Thus, observation of one tells that

the other did not occur and will never occur in the future.

Definition 4.4.1. Let t1, t2 ∈ T be two transitions, t1 excludes t2, denoted t1 ex t2, iff

∀ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω = ∅, i.e., they never appear in the same run.

It is easy to see that excludes is a symmetric relation and it is not transitive as well as

obviously not reflexive.

Figure 4.9

Example 4.4.1. In Figure 4.9, t1 ex t2 since the occurrence of t1 disables t2 as well as

t2 ex t3 whereas ¬(t1 ex t3).

In the case of Petri nets whose underlying net is an acyclic graph, if two transitions are in

conflict at a marking, i.e., they are both enabled and the firing of one disables the other

one, then one excludes the other. However, in general, transitions which are in conflict

can still appear in the same maximal run and therefore they could be in not-excludes

relation.

Example 4.4.2. The transitions t2 and t4 of N1 in Figure 4.4 on page 57 are in conflict

whereas ¬(t2 ex t4). In the unfolding in the same figure, it is possible to see a maximal

run including occurrences of both.

t5 ex t4 although they are not in conflict.

t7 ex t5, t5 ex t1 and ¬(t7 ex t1), indeed the relation is not transitive.

Proposition 4.4.1. Let t1, t2 ∈ T , t1 ex t2 ⇐⇒ {t1, t2}_tr ∅.

Proof. t1 ex t2 means ∀ω ∈ Ω : ω∩Et1 6= ∅ =⇒ ω∩Et2 = ∅. Directly from the definition

of extended reveals, {t1, t2}_tr ∅ implies that ∀ω ∈ Ω : ω ∩ Et1 6= ∅ ∧ ω ∩ Et2 6= ∅ is

false. Thus, either ω ∩Et1 = ∅ or ω ∩Et2 = ∅ for all maximal runs. This means that t1

and t2 can never appear in the same run, i.e., t1 ex t2.
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Considering non-interference, we are interested in capturing the existence of a high and

a low transition in a Petri net that can never appear together in the same maximal

run. Existence of such transitions causes negative information flow, i.e., an observer can

deduce that a high transition did not occur and will not occur in the future by observing

occurrence of a low transition. Excludes relation will be used in this work for catching

negative information flow.

4.4.2 Future/Past excludes

Excludes relation as introduced in Section 4.4.1 is a symmetric relation and it basically

tells that two transitions can never appear in the same maximal run together. This

refers to all past and future occurrences of the two transitions. However, we are not

only interested that two transitions exclude each other in general, but also in situations

like occurrence of a transition guarantees that another transition will never appear in

the future, although it might have occurred in the past, or that it might occur in the

future and it did not occur in the past.

Here, we define two versions of excludes relation, future-excludes and past-excludes. The

first one focuses on future occurrences while the latter focuses on the past occurrences.

Definition 4.4.2. Let e ∈ E, ↓ e = {e′ ∈ E : e < e′}. Let t1, t2 ∈ T be two transitions,

t1 future-excludes t2, denoted t1 exf t2, iff ∀e ∈ Et1 : ↓ e ∩ Et2 = ∅ ∧ @e′ ∈ Et2 such

that e co e′, i.e., t2 never occurs after t1 or concurrently with t1.

Figure 4.10

Example 4.4.3. In Figure 4.10, t2 exf t3 since occurrence of t2 disables t3 forever,

however after occurrence of t3, t2 can still fire in the future, therefore ¬(t3 exf t2).

Similarly, in this net, t2 exf t1. It is easy to see that t1 can occur many times until t2

occurs, and after the occurrence of t2, it can never occur again.
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Note that, unlike excludes, future-excludes is not symmetric.

Definition 4.4.3. Let e ∈ E, ↑ e = {e′ ∈ E : e′ < e}. Let t1, t2 ∈ T be two transitions,

t1 past-excludes t2, denoted t1 exp t2, iff ∀e ∈ Et1 : ↑ e∩Et2 = ∅ ∧ @e′ ∈ Et2 such that

e co e′, i.e., t2 never occurs before t1 or concurrently with t1.

Example 4.4.4. In Figure 4.10, t3 exp t2 since occurrence of t3 means that t2 did not

fire in the past since after t2, t3 can never fire again. However ¬(t2 exp t3). Similarly,

in this net, t1 exp t2. It is easy to see that t1 and t3 can occur many times until t2

occurs, so ¬(t2 exp t1), however after occurrence of t2, they can never occur again, thus

t2 cannot appear in the past of t1 or t3.

Proposition 4.4.2. Let t1, t2 ∈ T .

t1 exf t2 ⇐⇒ t2 exp t1.

Proof. We first prove that t1 exf t2 =⇒ t2 exp t1 by contradiction. For this

we assume that t1 exf t2 and ¬(t2 exp t1). So, ∀e1 ∈ Et1 : ↓ e1 ∩ Et2 = ∅ and

∀e1 ∈ Et1 , ∀e2 ∈ Et2 : ¬(e1 co e2). Since t1 exf t2 implies that ¬(e1 co e2) for all

occurrences of t1 and t2, the unsatisfied requirement for t2 exp t1 is that there exists

e2 ∈ Et2 such that ↑ e2 ∩ Et1 6= ∅. This means that:

∃e′1 ∈ Et1 , ∃e′2 ∈ Et2 : e′1 < e′2,

i.e., there is an occurrence of t1 in the past of an occurrence of t2, which is in contradiction

with:

∀e1 ∈ Et1 : ↓ e1 ∩ Et2 = ∅,

which means that t2 cannot occur after t1. By this we prove that t1 exf t2 =⇒
t2 exp t1.

Now we show that the implication holds also for the other direction. We assume that

t2 exp t1 and ¬(t1 exf t2). So, ∀e2 ∈ Et2 : ↑ e2 ∩ Et1 = ∅ and ∀e2 ∈ Et2 , ∀e1 ∈ Et1 :

¬(e2 co e1). Since t2 exp t1 implies that ¬(e2 co e1) for all occurrences of t1 and t2, the

unsatisfied requirement for t1 exf t2 is that there exists e1 ∈ Et1 such that ↓ e1∩Et2 6= ∅.
This means that:

∃e′1 ∈ Et1 , ∃e′2 ∈ Et2 : e′1 < e′2,

i.e., there is an occurrence of t1 in the past of an occurrence of t2, which is in contradiction

with:

∀e2 ∈ Et2 : ↑ e2 ∩ Et1 = ∅,
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which means that t1 cannot occur before t2. By this we prove that t2 exp t1 =⇒
t1 exf t2.

Proposition 4.4.3. Let t1, t2 ∈ T be two transitions.

t1 ex t2 ⇐⇒ t1 exf t2 ∧ t1 exp t2.

Proof. By Definition 4.4.1 t1 ex t2 means

∀ω ∈ Ω : Et1 ∩ ω 6= ∅ =⇒ Et2 ∩ ω = ∅.

This means that t1 can never be in the same run with t2. So,

∀e1 ∈ Et1 , ∀e2 ∈ Et2 : ¬(e1coe2) ∧ ¬(e1 < e2) ∧ ¬(e2 < e1).

By using Proposition 4.4.2, we can rewrite the above statement as:

t2 exp t1 ∧ t1 exp t2

We can also write the same statement as:

t1 exf t1 ∧ t2 exf t1

Both translation means that the two transitions cannot occur concurrently or one after

the other. So it is easy to see that the statements t1 ex t2 and (t1 exf t2 ∧ t1 exp t2) are

equivalent.

4.5 Reveals and Excludes Based Non-interference Notions

In this section we introduce new non-interference notions based on the reveals and

excludes relations and their variants which are introduced in Section 4.3 and Section 4.4.

Some results of this section are also published in [9]. The new notions aim to catch

positive and negative information flow, about the past and future events. We consider

a system which is modeled by ordinary Petri nets, such that a transition can be high

(hidden) or low (observable). The intuition is that in an ideally secure (interference free)

system, observation of low transitions should not give information about the occurrences

of high transitions.
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In the sequel, N = (P, T, F,m0) will denote a Petri net such that T = H ∪L, H ∩L = ∅,
L,H 6= ∅, where H is the set of high transitions and L is the set of low transitions.

Unf(N) = ((B,E, F ),λ) will denote the unfolding of N . R will denote the set of all runs

of N whereas Ω the set of all maximal runs. Let ti ∈ T , Eti = {e ∈ E : λ(e) = ti} for

i ∈ {1, 2, . . .}.

4.5.1 Non-interference based on reveals

Reveals-based Non-Interference accepts a net as secure if no low transition reveals any

high transition.

Definition 4.5.1. N is secure with respect to Reveals-based Non-Interference (RNI) iff

∀l ∈ L, ∀h ∈ H : l 6�tr h.

Figure 4.11

Example 4.5.1. N4 in Figure 4.2 on page 53 is RNI secure. However, N5 and N6

in Figure 4.11 are not secure with respect to RNI, since in both nets a low transition

reveals a high transition, i.e., l �tr h. An observer who knows the structure of the net

can deduce that h has already fired in N5 by observing l. For N6, again by observing

l, he can deduce that h will fire. N7 in Figure 4.11 is also not secure in this context

because the observation of l1 tells the observer that h has already fired or will fire since

l2 cannot fire anymore.

With RNI, we are able to capture positive information flow. Moreover, we not only

capture past occurrences of high transitions but also future occurrences, and this is

because of the progress assumption.

Although it is useful to capture positive information flow, RNI is not able to capture

negative information flow. N8 in Figure 4.11 is considered to be secure with respect
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to RNI since it cannot capture the flow between h and l. However, an observer could

deduce that h has not fired and will not fire in the future by observing the occurrence

of l. In Section 4.5.4 and Section 4.5.5 we introduce a notion based on both reveals and

excludes relations which deals with this kind of information flow.

4.5.2 Non-interference based on extended-reveals

As explained in Section 4.3.2, in some cases, a transition does not tell much about the

behavior of the net, whereas a set of transitions together gives some more informa-

tion. Extended-reveals deals with this relation between transitions of a Petri net. We

propose to use this relation in order to define a new non-interference notion in which

the occurrences of a set of low transition together give information about some high

transitions.

Definition 4.5.2. Let k be a positive integer such that |L| > k > 1. N is secure with

respect to k-Extended-Reveals based Non-Interference (k-ERNI) iff

∀h ∈ H, ∀A ⊆ L such that |A| 6 k ∧ ∃ω ∈ Ω : A ⊆ λ(ω), it holds A 6_tr {h}.

In other words, a net is secure with respect to k-ERNI iff no subset of L with at most

k elements, such that they can all appear in the same run, extended reveals an h ∈ H.

Therefore, we do not consider the subsets consisting of transitions which can never

appear together in a run.

N is ERNI secure if it satisfies the above condition for k = |L|.

Intuitively, we say that a net is k-ERNI secure, if an attacker is not able to deduce infor-

mation about the hidden part of the net by observing occurrences of k low transitions.

If a net is k-ERNI secure then it is secure with respect to all n-ERNI where 1 6 n 6 k.

Figure 4.12
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Example 4.5.2. N9 in Figure 4.12 is not secure with respect to 2-ERNI. When l2 and

l3 occur, a low level observer can deduce that h will occur, i.e., {l2, l3} _tr {h}. In

this net, the occurrence of only one low transition does not give sufficient information

about any high transitions, whereas the occurrence of two low transitions together does.

In the net in Figure 4.13, no low transition alone reveals a high transition as well as

Figure 4.13

no pair of low transitions reveals a high transition. However, {l2, l4, l6} _tr {h1}, i.e.,

a low user, observing that all these three transitions occurred, can deduce that h1 will

inevitably occur. Thus, this net is 2-ERNI secure whereas it is not 3-ERNI secure.

Obviously, 1-ERNI coincides with RNI, where no low transition alone reveals a high

transition. Moreover, k-ERNI ⊆ RNI, for k > 1. N9 is RNI secure since none of the

low transitions reveals a high transition alone.

4.5.3 Non-interference based on repeated-reveals

Another case can be the one in which an attacker is not able to deduce information by

observing low transitions and this is because only repeated occurrence of a low transition

gives information about the hidden part of the net. Thus, we assume that the attacker

can count the occurrences of low transitions and so he can deduce information about

the high transitions.

Definition 4.5.3. Let n > 0.

N is secure with respect to n-Repeated-Reveals based Non-Interference (n-ReRNI) iff

∀l ∈ L, ∀h ∈ H, ∀m 6 n such that Ωm
l 6= ∅ : ¬(l �m

tr h),

where Ωm
l is the set of maximal runs containing n occurrences of l.

N is ReRNI, iff it is n-ReRNI for all n > 0.
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Proposition 4.5.1. n-ReRNI =⇒ (n− 1)-ReRNI

The proof follows from the definition.

Example 4.5.3. N10 in Figure 4.12 is not 2-ReRNI secure. Although the first oc-

currence of l1 does not reveal a high transition, by observing its second occurrence an

observer can deduce that h2 occurred. However, the net is RNI secure as well as ERNI

secure. In the net in Figure 4.14, an observer cannot infer about the high transitions

Figure 4.14

by observing l1 occurring only once. Also the second occurrence of l1 does not tell the

observer which high transition occurred or will occur. However, the observer can deduce

that h2 has already occurred or will occur inevitably if he observes three occurrences of

l1. Therefore, this net is 2-ReRNI secure but it is not 3-ReRNI secure. Note that if the

transition h3 was absent then every maximal run would include at least one occurrence

of h2 and then, even without observing l1, the occurrence of h2 would be inevitable.

The following proposition is directly derived from Proposition 4.3.8.

Proposition 4.5.2. If a net is RNI secure then it is 1-ReRNI secure.

However, the previous implication does not hold in the opposite direction. Consider the

net in Figure 4.7 on page 61 and let t1 be a low transition, t2 and t3 be high transitions.

This net is 1-ReRNI secure since the first occurrence of t1 does not reveal information

about t2 and t3, as discussed in Example 4.3.6. However, since we consider progress,

i.e., maximal runs, the net is not RNI secure in fact t1 �tr t2 and t1 �tr t3. Note that

this net is not secure with respect to 2-ReRNI since the second occurrence of t1 reveals

both t2 and t3, i.e. t1 �2
tr t2 and t1 �2

tr t3.

k-ERNI and n-ReRNI are in general not comparable since they are parametric notions

which are based on observing different aspects: k-ERNI considers the observation of
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Figure 4.15

occurrences of different low transitions together, whereas n-ReRNI considers the obser-

vation of multiple occurrences of the same low transition. However, there are nets which

are secure with respect to both notions and nets which are secure with respect to only

one of them.

Both k-ERNI and n-ReRNI catch positive information flow about the past or future

occurrences of high transitions, whereas they allow negative information flow. In the

following we will introduce a notion considering both positive and negative information

flow.

4.5.4 Positive/negative non-interference based on reveals and excludes

Until now we explored positive information flow on Petri nets. In order to catch neg-

ative information flow which is related to non-occurrence of high transitions, we need

to consider the excludes relation between low and high transitions, as introduced in

Definition 4.4.1.

Definition 4.5.4. N is secure with respect to Positive/Negative Non-Interference (PNNI)

iff

∀l ∈ L, ∀h ∈ H : l 6�tr h ∧ ¬(l ex h).

If in a Petri net N , no low transition reveals a high transition and no low transition

excludes a high transition, N is considered to be PNNI secure. PNNI is stronger than

RNI, i.e., PNNI ⊆ RNI, and this follows directly from the definitions. In order to be

PNNI secure, a net has to be RNI secure (no low transition reveals a high transition)

and to satisfy an additional requirement (no low transition excludes a high transition).

Example 4.5.4. Both N11 and N12 in Figure 4.15 are not PNNI secure since a low

transition l1 excludes a high transition h. Thus, by observing occurrence of l1, an

observer can deduce that h did not and will not occur.
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Figure 4.16

N13 in Figure 4.16 is not secure with respect to PNNI because of the negative information

flow, i.e., l2 excludes h1 as well as it excludes h2. An observer can deduce that none of

the high transitions occurred and they will not occur in the future by observing l2 or l3.

This net is RNI, ERNI and ReRNI secure.

In the same figure, N14 is a PNNI secure Petri net. No low transition reveals a high

transition as well as no low transition excludes a high transition. However an observer

is able to deduce that h1 will occur inevitably by observing the occurrences of both l2

and l3, i.e., {l2, l3} _tr {h1}. In other words, this net is not 2-ERNI while it is RNI

and ReRNI secure.

As seen in the previous example, PNNI is strictly stronger than RNI.

PNNI and k-ERNI are intersecting for any k, PNNI ∩ k-ERNI 6= ∅, PNNI \ k-ERNI

6= ∅, k-ERNI \ PNNI 6= ∅. None of them is stronger than the other one. The net N15

in Figure 4.17 is both ERNI and PNNI secure, whereas N16 in Figure 4.17 is not PNNI

secure, however it is ERNI secure. N14 of Figure 4.16 is PNNI secure, whereas it is not

secure with respect to 2-ERNI as it is discussed in Example 4.5.4.

PNNI and n-ReRNI are also intersecting for any n. A net which is both PNNI and

ReRNI secure is the one in Figure 4.2 on page 53. The net in Figure 4.14 on page 70

is not secure with respect to 3-ReRNI whereas it is PNNI secure. If we add to the net

another low transition l2 which consumes a token from p5, the net becomes not secure

with respect to PNNI as well as with respect to RNI, since l2 reveals h1 and moreover

l2ex h3.
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Figure 4.17

Figure 4.18

4.5.5 Improved positive/negative non-interference based on reveals

and future/past excludes

Here we show that although PNNI is capable of capturing both positive and negative

information flow, it needs to be improved since there is a certain flow which is ignored.

The intuition is explained on the example below.

Example 4.5.5. Let us consider the net in Figure 4.18. This net is PNNI secure since

none of the low transitions reveals or excludes h1. In fact, a transition excludes another

transition only if they can never occur together in the same run. In this example, l1 can

occur together with h1 as well as l2 can. However, there is a certain flow that is ignored

by PNNI which is a transition can exclude another transition in the future (resp. past)

whereas it does not exclude in the past (resp. future).

As we can see in Figure 4.18, h1 can occur in the past of l2 whereas it cannot occur

in the future. Consequently, an observer can deduce that h1 will never occur in the

future once l2 occurs, although h1 might have occurred in the past. l2 exf h1 whereas

¬(l2 ex h1).
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As explained in the Example 4.5.5, PNNI misses a certain kind of negative information

flow which is due to the fact that:

¬(t1 ex t2) = ¬(t1 exf t2 ∧ t1 exp t2 )

= ¬(t1 exf t2 ) ∨ ¬(t1 exp t2 ).

In order to fix this weakness of PNNI, we must look for non-existence of both exf and

exp between high and low transitions instead of only looking for ex.

Definition 4.5.5. N is secure with respect to Improved-Positive/Negative Non-Interference

(I-PNNI) iff

∀l ∈ L, ∀h ∈ H : l 6�tr h ∧ ¬(l exf h) ∧ ¬(l exf h).

Proposition 4.5.3. I-PNNI =⇒ PNNI.

Proof. The proof is quite straightforward. Let t1, t2 ∈ T , by Proposition 4.4.3 t1 ex t2 ⇐⇒
t1 exf t2 ∧ t1 exp t2. If a net is I-PNNI then, besides the reveals requirement,

∀l ∈ L, ∀h ∈ H : ¬(l exf h) ∧ ¬(l exp h) which implies that ¬(l exf h) ∨ ¬(l exp h) =

¬(l ex h) which is the excludes requirement of PNNI, note that reveals requirements are

the same in PNNI and I-PNNI.

Clearly, the implication does not hold the other direction and I-PNNI is strictly stronger

than PNNI.

Example 4.5.6. The net Figure 4.18 is not secure with respect to I-PNNI whereas it is

PNNI secure. N13 in Figure 4.16 on page 72 is not PNNI and so not I-PNNI secure. On

the other hand, N14 of Figure 4.16 is I-PNNI secure hence it is also PNNI secure.

4.6 Comparison of Non-interference Notions with the Ones

in the Literature

We have introduced new notions of non-interference for Petri nets. These notions are

based on the reveals and the excludes relations and on the progress assumption.

One major difference between these notions with the existing ones, recalled in Section 4.2,

is that the new notions explicitly consider the information flow both about the past and

the future occurrences of high transitions. For example, if a low user can tell that the

occurrence of a high transition is inevitable in the future, such a system is considered to

be not secure according to the notions we have here introduced, whereas it is considered
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secure by the old notions such as SNNI, BSNNI, PBNI+ and PBNI. Similarly, for the

negative information flow, we consider both past and future non-occurrences of high

transitions.

Another important difference is shown by N4 in Figure 4.2 on page 53. This net is not

secure according to SNNI even if a low user cannot infer which high transitions actually

occurred. On the other hand, it is secure with respect to all non-interference notions

based on reveals and excludes, since these require the capability of differentiating among

the high transitions.

Moreover, the notions recalled in Section 4.2 are defined for 1-safe Petri nets, whereas

RNI, k-ERNI, n-ReRNI and PNNI are defined for general Petri nets. Figure 4.19

Figure 4.19

illustrates the relation between our notions and the other notions we have discussed so

far. For the sake of simplicity, we only consider the weakest (SNNI ) and the strongest

(PBNI ) notions from the ones recalled in Section 4.2. with the weakest of the new

notions, i.e., RNI, and with the intersection set, denoted R-E in Figure 4.19, of the new

notions RNI, k-ERNI, n-ReRNI and I-PNNI.

We will examine three examples to discuss the differences of these classes.

A net which is secure with respect to all notions based on reveals and excludes and which

is not secure with respect to SNNI is denoted by X in Figure 4.19 and it is the one in

Figure 4.2 on page 53. We consider this net secure since an observer cannot differentiate

among the high transitions even if he can know some high actions have been performed

(or will be performed). However, this net is not secure with respect to SNNI.

The net denoted by Y in Figure 4.19 is secure with respect to all non-interference notions

based on reveals and excludes as well as with respect to PBNI. This net can be N15 in

Figure 4.17 on page 73. This net is secure since no low transition reveals a high transition

(alone or together with another transition) as well as no low transition excludes a high

transition. Thus there is neither positive nor negative information flow. It is also secure

with respect to PBNI due to the fact that there is no active causal or active conflict

place.
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Two nets which are secure with respect to PBNI but not secure with respect to any of

the non-interference notions based on reveals and excludes, denoted by Z in Figure 4.19,

are for example N6 in Figure 4.11 on page 67 and N12 in Figure 4.15 on page 71.

4.7 Checking Non-interference

In this section, after briefly discussing the methods used for checking the non-interference

notions for Petri nets in the literature, we will introduce two methods for checking

the non-interference notions introduced in Section 4.5. The first method is based on

translating the reveals and excludes relations to Linear Temporal Logic (LTL), and to

use LTL model checking methods for checking reveals/excludes based non-interference

notions. The second method adapts the diagnosis algorithm proposed in [40].

4.7.1 The methods in the literature

In [14], the authors prove the decidability of NDC and BNDC in two settings: with only

high and low transitions and with also downgrading transitions. [13] generalizes results

of [14] by considering “selective declassification”, i.e.: each downgrading transition can

declassify just a subset of high transitions. The paper introduces a notion of Intransitive

Non Interference with Selective Declassification (INISD) on the basis of NDC with

downgrading transitions. Moreover, it proves decidability of this new property INISD

by an algorithm to check this property.

[67] introduces an algorithm for checking BNDC in elementary nets on the basis of some

specific places in the net. The algorithm, which is also implemented as a tool, uses the

fact that PBNI+ and BNDC are proved to be equivalent in elementary nets [21].

In [3, 4], the authors examine BNDC on unfoldings of 1-safe Petri nets and show that it

admits some characterizations in terms of causalities and conflicts between high and low

level events. On the basis of these characterizations, the authors provide an algorithm

and a tool for checking BNDC in 1-safe Petri nets.

4.7.2 LTL model checking

One of the approaches we propose for checking the non-interference notions that are

introduced in Section 4.5 is based on Linear Temporal Logic (LTL) model checking.
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The introduced notions are based on two main relations and their variants. Thus,

deciding whether a net is secure requires computation of reveals and excludes relations

depending on the specific non-interference notion.

A popular technique for system verification is model checking. Given a model of a

system, model checking is based on exhaustively and automatically checking whether the

given model satisfies a given specification. The specification to be checked is expressed

with a logic formula. LTL [54] is one of the widely used propositional logics and there

is a rich literature on model checking with LTL.

[71] introduces an automata theoretic approach to model checking with LTL by pointing

out the relation between LTL and ω-words. In [35] the authors provide a tableau-based

algorithm for obtaining an automaton from a temporal logic formula for being used in

model checking in an “on-the-fly” fashion.

However, the traditional model checking methods, which are based on exploring the

reachable states of a system, face the state space explosion problem.

On the other hand, an alternative method for model checking distributed systems is

based on unfoldings. Unfoldings are well-studied partial order semantics for Petri nets

and in [74] the authors show that the finite complete prefix (as defined in [49]) of an

unfolding is suited for model checking linear-time temporal properties. The method is

based on the so-called automata-theoretic approach to model checking. They propose

a technique based on finite prefixes of unfoldings of 1-safe Petri nets. Unfortunately, as

explained in [28], although the algorithm has been applied with success to a variety of

examples, it is not satisfactory because, after constructing the complete prefix, construc-

tion of an additional graph is required. This graph can be exponentially larger than the

complete prefix itself. In [28], the authors propose an unfolding based LTL model check-

ing method which overcomes the problem. With the new method, the model checking

can be done directly on the prefix without requiring the additional construction of the

possibly exponential graph. The authors propose a new unfolding method for creating

a prefix which is similar to the old algorithm for the complete prefix except with a new

cut-off criterion which is studied in more details in [29]. The new prefix has a larger size

than McMillan’s complete prefix. The theoretical upper bound on the number of events

in the new prefix is O(K2) events where K is the number of reachable states for 1-safe

Petri nets. In practice, the new prefix is much smaller than the state space.

In this section, we will introduce a method for translating our reveals and excludes

relations to LTL, so that the model checking methods can be applied for checking new

non-interference notions introduced in Section 4.5.
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4.7.2.1 LTL translation of reveals and excludes relations

In order to use the existing LTL model checking methods for checking reveals and ex-

cludes relations (and so non-interference notions based on these relations), we propose

a method for translating these relations to LTL formulas.

In the sequel N = (P, T, F,m0) will denote a 1-safe, 1-live Petri net and MG(N) will

denote the marking graph of N .

LTL formulas are based on atomic propositions which correspond to local properties in

a state of a transition system. We will use a standard notation, where � denotes the

always operator, ♦ denotes the eventually operator, and U denotes the until operator.

In order to represent reveals and excludes relations in LTL, we first need to express the

occurrence of a transition as a state. In this way, occurrence of a transition will set the

value of a specific atomic proposition true. For this purpose, we use the marking graph of

the net which represents the reachable markings and their relations with the transitions.

However, one cannot tell if a transition has occurred by looking at a reachable marking

since for example occurrence of different transitions may lead to the same marking.

Here we propose a method for translating reveals and excludes relations between two

transitions of a 1-safe 1-live Petri net to LTL formulas. In other words, we construct an

LTL language for expressing the new introduced relations. This requires a transforma-

tion of the net N for the reason explained above.

Figure 4.20
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As illustrated in Figure 4.20, we replace transition t with two transitions tb and te

which stand for the beginning and end of transition t. In other words, we divide the

occurrence of t into two phases and add a place pt in between which is marked only when

t is being fired. Since t and tb has the exact same preconditions, tb occurs whenever

t occurs. Moreover, considering progress assumption, te will inevitably occur once tb

occurs because the only precondition of te is the only postcondition of tb which is not

used by any other transition except te. In other words, tb reveals te.

Let t1, t2 ∈ T be the two transitions to be checked. From N = (P, T, F,m0) we construct

another 1-safe 1-live Petri net N ′ = (P ∪ {pt1 , pt2}, (T \ {t1, t2})∪ {tb1, te1, tb2, te2}, F ′,m0).

Let F̃ be the set of all arcs that are related to neither t1 nor t2. Let Fnew be the set of

all the arcs from •ti to tbi , from tbi to pti , from pti to tei , and from tei to t•i , for i = {1, 2}.
F ′ = F̃ ∪Fnew. The initial marking m0 is not affected by the transformation. This new

net behaves as N except that t1 and t2 are divided into two phases and the net includes

two additional places.

Let m ∈ [m0〉N ′ be a reachable marking in N ′ (so a state in MG(N ′)). Let A = {pt1 , pt2}
be the set of atomic propositions such that m � pti iff pti ∈ m. After the transformation

explained above, we can translate reveals and excludes relations between two transitions

of a 1-safe 1-live Petri net to LTL formulas as in the following:

t1 �tr t2: ♦pt1 =⇒ ♦pt2

t1 ex t2: ♦pt1 =⇒ �¬pt2

t1 exf t2: ((¬pt1)U(pt1 ∧ �¬pt2)) ∨ �¬pt1

t1 exp t2: �((¬pt2)U(pt1)) ∨ �¬pt1

Now we can check the reveals and excludes relations in N by model checking the corre-

sponding formulas in MG(N ′).

Example 4.7.1. Let N = (P, T, F,m0) be the net in Figure 4.21 such that T = H ∪L,

H ∩ L = ∅, L,H 6= ∅. Let us check if this net is secure with respect to I-PNNI. I-

PNNI requires that ∀l ∈ L, ∀h ∈ H : l 6�tr h ∧ ¬(l exf h) ∧ ¬(l exp h).

N is secure with respect to I-PNNI iff ∀l ∈ L, ∀h ∈ H, setting φr = ♦pl =⇒ ♦ph,

φf = ((¬pt1)U(pt1 ∧ �¬pt2)) ∨ �¬pt1 and φp = �((¬pt2)U(pt1)) ∨ �¬pt1 , MG(N ′) 2
φr ∧ MG(N ′) 2 φf ∧ MG(N ′) 2 φp.

In this example, we can see that MG(N ′) � φf for l1 and h1 which means that l1 exf h1.

So, N is not secure with respect to I-PNNI.
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Figure 4.21

4.7.3 Diagnosis approach

In [40], Haar et al. present a method for fault diagnosis in concurrent, partially observ-

able systems under a weak fairness assumption. The question to be answered in this

diagnosis problem is whether an observable behavior allows to determine that a non-

observable fault will inevitably occur or has already occurred. Their approach is based

on computing a finite compact prefix of the unfolding of a 1-safe Petri net that carries

sufficient information for the diagnosis. This approach can also be applied to checking re-

veals and excludes relations on Petri nets and thus is useful for checking non-interference

on finite prefixes of unfoldings of safe Petri nets. The method captures indirect revealed

dependencies such as inevitable occurrences of concurrent or future events by extending

and generalizing the unfolding-based diagnosis approaches by Benveniste et al. [6] as

well as by Esparza and Kern [30]. In [40], the authors provide an algorithmic solution

to the diagnosis problem by translating it into a SAT instance, which we adapt for our

problem of checking non-interference on finite prefixes of unfoldings. Here, after briefly

recalling their solution, we show how to adapt it to non-interference check.
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4.7.3.1 Fault diagnosis with extended-reveals

We recall the algorithm for the fault diagnosis problem proposed in [40], and include

some essential formal background in order to be self-contained. The algorithm is based

on extended-reveals and finite prefixes of unfoldings.

Definition 4.7.1. [40] Let N = (P, T, F,m0) be a 1-safe Petri net. A spoiler of a

transition t ∈ T is any t′ ∈ T such that •t∩ •t′ 6= ∅, and spoilers(t) denotes the set of all

spoilers of t. Note that t ∈ spoilers(t).

An infinite transition sequence σ = t1t2... ∈ Tω of N is weakly fair if the corresponding

marking sequence m0,m1, ... satisfies that for all i ∈ N and all t ∈ T , if mi enables t,

then there exists j > i such that tj ∈ spoilers(t).

A labelled partial order (LPO) over a finite alphabet X is a tuple α = (S,<, `) where

< ⊆ S × S is an irreflexive and transitive relation on S, and ` : S → X is a labeling

map. The size of α, denoted by |α|, is |S|. Let α′ = (S′, <′, `′) be an LPO over X. A

homomorphism from α to α′ is a function h : S → S′ satisfying

• `(a) = `′(h(a)), and

• a < b implies h(a) <′ h(b) for all a, b ∈ S.

An isomorphism between α and α′ is a bijective homomorphism h from α to α′ where

h−1 is a homomorphism from α′ to α.

α is compatible with α′ if there exists a bijective function f : S → S′ such that

• `(a) = `′(f(a)), and

• a < b implies ¬(f(b) <′ f(a)) for all a, b ∈ S.

compat(α) denotes the set of LPOs compatible with α. Compatibility is a symmetric

relation.

The approach proposed in [40] aims to diagnose whether every weakly fair run 1, that is

compatible with the observations so far, contains a fault occurrence. Thus, they consider

all weakly fair runs that contain an “explanation” (the formal definition of explanation

will be given later) of the current observation as a prefix.

1In [40], what we call run here is called a configuration, whereas ‘run’ stands for an interleaving of a
configuration.
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In the sequel, N = (P, T, F,m0) will denote a finite, 1-safe Petri net with low (observable)

and high (unobservable) transitions such that T = L ∪H, L ∩H = ∅, L,H 6= ∅ where

L denotes the low transitions and H denotes the high transitions. Unf(N) will denote

the unfolding of N : Unf(N) = ((B,E, F, c0), λ), λ : B ∪ E → P ∪ T , and EL = λ−1(L)

will denote the low events whereas EH = λ−1(H) will be the set of high events. Let X
denote a non-empty observation alphabet and ε be a symbol such that ε /∈ X which will

be used to label unobservable transitions. Let ` : T → X ∪ {ε} be a mapping such that

`(H) = {ε} and let φ ∈ H be the unique fault transition. We will denote the set of fault

events by Eφ = λ−1(φ).

Observations are LPOs over an observation alphabet. A finite observation pattern α is

an LPO, α = (Sα, <α, `α) over the observation alphabet X, such that Sα is finite.

The goal is to determine, for a given N and an observation α, whether any weakly fair

execution corresponding to α contains a fault. Thus, all weakly fair runs of Unf(N) that

are compatible with α are needed to be considered. For this purpose, each run ω ∈ R of

Unf(N), where R is the set of all runs, is associated with an LPO lpo(ω) = (S,<′, `′),

where S = ω∩EL are the observable events in ω, <′ is the restriction of < and `′ : S → X
is the restriction of ` to S. Since <′ and `′ are restrictions of < and `, we can use them

interchangeably.

The set of observations of ω is defined as obs(ω) = compat(lpo(ω)). A run ω explains

observation α if α ∈ obs(ω) and the set of explanations of α is defined as expl(α) = {ω ∈
R : α ∈ obs(ω)}.

Definition 4.7.2. [40] An observation pattern α diagnoses φ iff

∀ω ∈ expl(α) : ω _ Eφ.

Example 4.7.2. In the net illustrated in Figure 4.22, let transitions l1, . . . , l6 be observ-

able, h1, . . . , h4 and φ be unobservable where φ is the fault transition. The observation

of l1 and l2 diagnoses the fault φ. Each run which allows to observe l1 and l2 extended-

reveals the fault, e.g., {e1, e2}_ {e3, e4}. Each maximal run in Unf(N) which contains

occurrences of both l1 and l2 must also contain an occurrence of φ.

The diagnosis problem is to decide whether the observation α diagnoses φ in N . Haar

et al. show that if ω ∈ expl(α) is finite, then ω _ Eφ can be verified on a bounded

extension of ω. For our problem of non-interference, ω is always finite, as it will be clear

later on.
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Figure 4.22: A Petri net with its unfolding

Definition 4.7.2 can be equivalently rephrased as:

∀ωmax ∈ Ω : (∃ω ∈ expl(α) : ω ⊆ ωmax) =⇒ Eφ ∩ ωmax 6= ∅.

The algorithm proposed in [40] and recalled here decides the negation of the above

statement. In general, expl(α) can be infinite due to the infinite unobservable loops.

However, this obstacle is solved by showing that it is sufficient for deciding the diagnosis

problem to search for ω within a finite subset of expl(α), instead of the entire set of

explanations. Since the subset is finite, there exists an unfolding prefix, denoted Pα,

which contains the entire subset. The algorithm checks if ω can be extended to a fault-

free weakly fair maximal run, ωmax ∈ Ω, once such ω is found. This is the case iff

two runs of the unfolding ω1 ⊂ ω2 exist such that both reach the same marking, i.e.,

mark(ω1) = mark(ω2), both are fault-free, ω2 disables every event enabled by ω1 and

ω ⊆ ω1. By “ω2 disables every event enabled by ω1” we mean the following: Let #[e] =

{ẽ ∈ E : e#ẽ}. ∀e ∈ E such that •e ⊆ mark(ω1) it holds that e ∈ ω2 ∨ #[e] ∩ ω2 6= ∅.
However, ω2 can be unboundedly large. To fix this, two finite unfolding prefixes, P1

N and

P2
N are defined in a way that P1

N is contained in P2
N , i.e., P1

N v P2
N , and ω1, ω2 exist

iff ω̃1 ∈ R(P1
N ) and ω̃2 ∈ R(P2

N ) exist and satisfy that mark(ω̃1) = mark(ω̃2), both are

fault-free, ω̃2 disables every event enabled by ω̃1 and ω ⊆ ω̃1, where R(P1
N ) and R(P2

N )

are the sets of all runs in P1
N and P2

N .
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Below, a finite subclass of explanations of α which is sufficient for deciding the diagnosis

problem is given.

Definition 4.7.3. A run ω ∈ R is verbose if it contains two events e, e′ such that (1)

e′ < e, (2) mark([e]) = mark([e′]), and (3) obs([e]) = obs([e′]) where [x] = {y ∈ E : y 6

x}, i.e.,[x] is the causal past. If ω is not verbose, it is succinct.

In order to define a finite prefix P2
N that includes P1

N and preserves not only reachable

markings but also the capability of a run to spoil previously enabled events, a cut-off

criterion called sp-cutoff is defined in [40] as below.

Definition 4.7.4. [40] Let P1
N = (B1, E1, F1, c̃0). Event e ∈ E is an sp-cutoff if there

exists e′ ∈ E, e′ < e, such that, setting D = [e] \ [e′], the following holds:

(1) λ(•D \D•) = λ(D• \• D)

(2) B1 ∩ •D = ∅.

The first condition implies that mark([e]) = mark([e′]).

P2
N = (B2, E2, F2, c̃0) is defined as the unfolding prefix whose events are exactly all non

sp-cutoff events, i.e., E2 = {e ∈ E : e is not sp-cutoff} and it is shown in [40] that P2
N is

finite.

The theorem below states a set of necessary and sufficient conditions that characterize

whether or not a given observation α diagnoses a fault φ.

Theorem 4.7.1. [40] Observation α does not diagnose φ iff there exist runs ω, ω′1 ∈ R,

ω1 ∈ R(P1
N ), ω2 ∈ R(P2

N ) satisfying that

1. ω is a succinct explanation of α

2. ω ⊆ ω′1

3. ω1 ⊆ ω2

4. mark(ω′1) = mark(ω1) = mark(ω2)

5. ∀e ∈ E : ω1 enables e =⇒ spoilers(e) ∩ ω2 6= ∅

6. neither ω′1 nor ω2 contains an occurrence of φ.



Chapter 4. Non-interference 85

Given the observation α, in order to decide whether or not α diagnoses φ, all conditions

of Theorem 4.7.1 must be checked. For this, it is enough to construct three unfolding

prefixes: Pα, containing all succinct explanations of α, and P1
N v P2

N to check for the

existence of a weakly fair run starting from a given marking and whether one marking

is reachable from another. Note that Pα depends only on the observation whereas P2
N

depends only on N and can be constructed offline.

Well known algorithms for computing unfolding prefixes such as [31] aim to obtain a

marking-complete prefix. They start with the initial marking of Unf(N), then add events

to the prefix until each branch reaches a cutoff event. Haar et al. in [40] replace the

cutoff criteria with the one in Definition 4.7.4.

The construction must be restricted to the explanations of α and all succinct expla-

nations must be preserved whereas verbose ones are eliminated. Thus, the considered

ω ∈ expl(α) are always finite. For this, N is synchronized with a net representing

α = (S,<, `). Let Smin (resp. Smax) be the elements without predecessor (resp. succes-

sor) in S. α is translated into an occurrence net Oα = (Pα, S, Fα,mα), whose events are

S and whose causal relation is <. Pα = Pmin]Pmid]Pmax is partitioned into three sets,

where Pmax (resp. Pmin) is the postset (resp. preset) conditions of Smax (resp. Smin).

Then N = (P, T, F,m0) and Oα are composed into a net Nα = (P ′, To ∪ Tu, G,m′0),
where:

• P ′ = P ∪ Pα

• To = {(t, s) : t ∈ L, s ∈ S, `(t) = `(s)}

• Tu = H \ {φ}

• ∀(t, s) ∈ To,• (t, s) = •t ∪ •s and (t, s) = t• ∪ s•

• ∀t ∈ Tu,• t and t• remain as in N

• m′0 = m0 ∪mα.

Pα is the finite prefix of Unf(Nα) which is cut at any event e such that there exists e′ < e

such that mark([e′]) = mark([e]). Projecting each event labeled with a tuple (t, s) to t

instead, each run ω of Unf(Nα) is also a run of Unf(N).

For constructing P2
N , first P1

N is obtained by the usual unfolding methods for marking-

complete prefixes. Then it is extended by additional events using the sp-cutoff criterion.

The authors also propose an encoding of the diagnosis problem into SAT in [40]. This

allows one to use a SAT solver to solve the diagnosis problem.
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4.7.3.2 Checking reveals and excludes relations by the diagnosis approach

In Section 4.5, we have introduced and examined new non-interference notions which

are based on two main relations and their variations, i.e., reveals and excludes defined

and studied in Section 4.3.2 and Section 4.4. In this section, we will show how to check

reveals and excludes relations on finite prefixes of unfoldings following the solution of

Haar et al. for diagnosis problem proposed in [40] and recalled in Section 4.7.3.1.

In [40], the authors propose an algorithm for deciding whether observation α diagnoses

fault φ, i.e., ∀ω ∈ expl(α) ω _ Eφ where observation α is an LPO whereas φ is the

fault transition. The reveals relation between transitions can be rephrased as a diagnosis

problem with the help of Definition 4.3.4. Intuitively, transition t1 reveals transition t2

iff each occurrence of t1 extended-reveals some occurrence of t2. If we assume that

all transitions are unobservable except t1 and assume t2 is the fault φ, then to decide

whether t1 reveals t2 will be equivalent to decide if observation of t1 diagnoses t2, i.e.,

each maximal run, in which t1 is observed, contains an occurrence of t2.

The next theorem shows that the statement t1 �tr t2 can be equivalently translated to

“the observation of t1 diagnoses t2” if all transitions except t1 are unobservable.

Theorem 4.7.2. Let N = (P, T, F,m0) be a 1-safe Petri net, and Unf(N) = ((B,E, F ),

λ), be the unfolding of N . Let R be the set of all runs and Ω be the set of all maximal

runs of N . Let t1, t2 ∈ T . Assume that all transitions of N are unobservable except t1.

Then t1 �tr t2 iff α diagnoses t2 for α = ({s0}, <, `) where `(s0) = t1.

Proof. We first show that t1 �tr t2 =⇒ α diagnoses t2. Since t1 �tr t2, directly

from Definition 4.3.4 we get ∀e ∈ Et1 {e} _ Et2 , and by using the definition of _

we write ∀ωmax ∈ Ω ∀e ∈ Et1 : {e} ⊆ ωmax =⇒ Et2 ∩ ωmax 6= ∅. By definition,

“α diagnoses t2” means that ∀ω ∈ expl(α) : ω _ Et2 . The explanation set of

α is defined as expl(α) = {ω ∈ R : α ∈ obs(ω)} where obs(ω) = compat(lpo(ω))

and two observations are compatible if there exists a bijective function as explained

in Section 4.7.3.1. Assuming that all transitions except t1 are unobservable, for α =

({s0}, <, `), `(s0) = t1, the explanation set consists of runs in Unf(N) which contain

exactly one occurrence of t1, i.e., expl(α) = {r ∈ R : |r ∩ Et1 | = 1}. Since each element

ω of expl(α) contains one occurrence of t1, each maximal run extending ω contains

at least one occurrence of t1. We assumed that t1 �tr t2, so ∀ωmax ∈ Ω for which

∃ω ∈ expl(α) such that ω ⊆ ωmax, it holds that ωmax ∩ Et2 6= ∅. This proves that

t1 �tr t2 =⇒ α diagnoses t2.

Now we show that α diagnoses t2 =⇒ t1 �tr t2. Assuming that α diagnoses t2 we get

∀ω ∈ expl(α) : ω _ Et2 . This means that all maximal runs which extend ω include an
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occurrence of t2. As explained above, each ω ∈ expl(α) contains exactly one occurrence

of t1 since α has a single point which corresponds to an occurrence of t1. Since ω is a

run and it is defined as a causally closed conflict free set of events on the unfolding, each

element ω of expl(α) contains exactly one occurrence of t1 and of course this is the first

occurrence of t1 for any extension of ω. Since the occurrences of a given transition are

totally ordered, this implies that t1 �tr t2.

As a result of Theorem 4.7.2, the reveals relation between two transitions of a 1-safe

Petri net N can be checked on a finite prefix of Unf(N). Let us now explain how to adapt

the algorithm presented in [40] for the problem of checking reveals relation between two

transitions on an example.

Example 4.7.3. Let N = (P, T, F,m0) be the net in Figure 4.23, and Unf(N) =

((B,E, F ),λ), be the unfolding of N which is illustrated in Figure 4.24. Let R be the set

of all runs and Ω be the set of all maximal runs of N . In order to check if t0 �tr t1 we

assume that all transitions of N are unobservable except t0. We define α = ({s0}, <, `)
where `(s0) = t0 and φ = t1. If all the properties of Theorem 4.7.1 hold for α and φ, it

means that α does not diagnose φ, i.e., t0 6�tr t1.

We need to calculate three unfolding prefixes, Pα and P1
N v P2

N . Pα contains all succinct

explanations of α and it depends on the observation whereas P1
N v P2

N only depend on

the net.

We construct P1
N v P2

N in two steps: first we construct P1
N which is the marking

complete prefix of Unf(N); then we extend it according to sp-cutoff criterion explained

in Definition 4.7.4. P1
N is shown in Figure 4.24 with a dotted line.

Figure 4.23

P2
N extends P1

N according to the sp-cutoff criterion. Thus, for each run we have to find

an sp-cutoff event. Let us consider e3 and check if it can be an sp-cutoff event.

Let e = e3, e is an sp-cutoff event if there is e′ ∈ E such that, setting D = [e] \ [e′], we

have e′ < e and (1) and (2) of Definition 4.7.4 hold. Assume e′ = e1, then D = {e},
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Figure 4.24

•D = {b2} and D• = {b4}. λ(•D \D• = λ(b2) = p0 and λ(D• \• D = λ(b4) = p1. Since

λ(b2) 6= λ(b4), (1) is violated and so e′ cannot be e1. Of course this does not mean that

e3 is not an sp-cutoff event, unless there is no appropriate e′ satisfying the requirements.

Let us try another event for e′ . Let e = e3 and assume e′ = e0, then D = {e1, e3},
•D = {b1, b2} and D• = {b2, b4}. λ(•D \D• = λ(b1) = p1 and λ(D• \• D = λ(b4) = p1.

(1) is satisfied. However (2) is violated since B1 ∩• D 6= ∅. So also e0 is not suitable for

e′. This shows us that e3 cannot be an sp-cutoff event since there is no e′ in its past to

satisfy the requirements of sp-cutoff criterion.

Let e = e9 and assume e′ = e3, then D = {e5, e9}, •D = {b4, b6} and D• = {b6, b10}.
λ(•D\D• = λ(b4) = p1 and λ(D•\•D = λ(b10) = p1. (1) is satisfied. (2) is also satisfied

since B1 ∩ •D 6= ∅. So also e3 is suitable for e′ for e9 and e9 is an sp-cutoff event. Note

that cutoff events are not included in the prefix.

By computing all sp-cutoff events as explained above, we construct P2
N which is illus-

trated in Figure 4.24, separated with a dotted line. All reveals relations in N can be
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computed on this prefix of the unfolding.

Now let us check if t0 �tr t1 by translating it to the diagnosis problem. For this,

we set α = ({s0}, <, `) where `(s0) = t0 and let t1 the fault φ. All the conditions of

Theorem 4.7.1 are satisfied if t0 6�tr t1. We first translate α to an occurrence net Oα

which in this case consists of only one event corresponding to t0. Then we compose

N and Oα into a net Nα which is illustrated in Figure 4.23. In this way, observable

transitions of N and Oα are synchronized to ensure that no run contradicts α or adds

further observable events, and faults are excluded.

Consider Unf(Nα). If each event is mapped to a transition t instead of a tuple (t, s),

each run ω of Unf(Nα) is also a run of Unf(N). In addition, ω explains α iff mark(ω)

contains Pmax. By Definition 4.7.3, we construct Unf(Nα) by cutting it at any event e

such that there is another event e′ < e with mark([e′]) = mark([e]). This yields a finite

prefix Pα which is illustrated in Figure 4.25, separated with a dotted line. Note that

the corresponding events are labeled with same symbols as in P1
N v P2

N so that Pα can

be seen as a subnet of P1
N v P2

N with two additional places, namely p′0(b
′
0) and p′1(b

′
1).

Figure 4.25

By Theorem 4.7.1, α does not diagnose t1 (so that by Theorem 4.7.2 t0 6�tr t1) iff

there exist runs ω, ω′1 ∈ R, ω1 ∈ R(P1
N ), ω2 ∈ R(P2

N ) satisfying the six conditions in

Theorem 4.7.1. Let ω = {e0}, ω′1 = {e0, e2}. ω is a succinct explanation of α, ω ⊆ ω′1

and ω′1 is fault free i.e., it does not include any instance of t1. We have to find ω1

such that mark(ω1) = mark(ω′1). Let ω1 = {e0, e2} then mark(ω1) = mark(ω′1) = b3.

Now we have to find fault free run ω2 ∈ R(P2
N ) which yields the same marking with

ω1 and ω′1. Let ω2 = {e0, e2, e4, e8}, ω2 is fault free and mark(ω2) = b3. So far all

conditions except number 5 are satisfied. The remaining condition to be checked is if
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∀e ∈ E : ω1 enables e =⇒ spoilers(e) ∩ ω2 6= ∅. There is only one event which is

enabled by ω1 that is e4. e4 is included in ω2 so spoilers(e4)∩ ω2 6= ∅. Consequently, all

six conditions of Theorem 4.7.1 are satisfied which means t0 does not diagnose t1, i.e.,

t0 6�tr t1.

We have shown that reveals problem can be translated to diagnosis problem in The-

orem 4.7.2 and how the algorithm is adapted on an example. The variants of reveals

relation such as extended-reveals and repeated-reveals can also be translated in a sim-

ilar way to the diagnosis problem in order to use the diagnosis algorithm for checking

non-interference notions that are introduced in this thesis.

Another relation we use in the new introduced non-interference notions is excludes rela-

tion, ex. Let N be a 1-safe Petri net, t1, t2 ∈ T , t1 ex t2 means that the two transitions

can never appear in the same run together whereas t1 �tr t2 means that if t1 occurs, t2

has already occurred or will inevitably occur in the future. Thus, proving that ¬(t1 ex t2)

requires to find a run in which t1 and t2 occurs together whereas proving t1 6�tr t2 re-

quires to find a run in which t1 occurs but t2 does not. Setting α = ({s0}, <, `) where

`(s0) = t1 and φ = t2, Theorem 4.7.1 looks for such run for t1 6�tr t2 on a finite

unfolding of N .

Here we propose a method for adapting Theorem 4.7.1 to the problem of checking

¬(t1 ex t2). As in the reveals problem of two transitions, we assume all transitions

except t1 are unobservable. Observation pattern is α = ({s0}, <, `) where `(s0) = t1.

We are interested that ω being a succinct explanation of α, either its extension ω′1 ∈ R
or ω2 ∈ R(P2

N ) includes an instance of t2.

The corollary below follows from Theorem 4.7.1 and the fact explained above.

Corollary 4.7.3. Let N be a 1-safe Petri net and t1, t2 ∈ T . Let α = ({s0}, <, `) where

`(s0) = t1. ¬(t1 ex t2) iff there exist runs ω, ω′1 ∈ R, ω1 ∈ R(P1
N ), ω2 ∈ R(P2

N ) satisfying

that

1. ω is a succinct explanation of α

2. ω ⊆ ω′1

3. ω1 ⊆ ω2

4. mark(ω′1) = mark(ω1) = mark(ω2)

5. ∀e ∈ E : ω1 enables e =⇒ spoilers(e) ∩ ω2 6= ∅

6. either ω′1 or ω2 contains an occurrence of t2.
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Example 4.7.4. In Example 4.7.3, we have shown that t0 6�tr t1. In order to show

that ¬(t0 ex t1) we need to follow the same procedure but this time we have to check

the conditions of Corollary 4.7.3. In the net N in Example 4.7.3, ¬(t0 ex t1) and all the

conditions of Corollary 4.7.3 are satisfied for ω = {e0}, ω′1 = {e0, e1}, ω1 = {e0, e1} and

ω2 = {e0, e1, e3, e5}.

There are two variants of excludes relation: future excludes and past excludes which are

introduced in Section 4.4.2. These two relations can also be adapted to the diagnosis

problem in a similar way.

4.7.3.3 Checking non-interference notions based on reveals and excludes

We have shown how to check reveals and excludes relations on finite prefixes of 1-safe

Petri nets by using the diagnosis approach. Now we continue to apply the solution for

checking the non-interference notions introduced in Section 4.5.

In Section 4.5, several non-interference notions are introduced on the basis of reveals

and excludes relations and their variants. Let us consider the first notion introduced

in Section 4.5 which is Reveals-based Non-Interference, RNI. Deciding if a given net is

secure with respect to RNI is based on checking if any low transition reveals a high

transition in the given net. By Theorem 4.7.2, RNI security problem can be translated

as:

Let N = (P, T, F,m0) be 1-safe Petri net where T = H ∪L and H ∩L 6= ∅. N is secure

with respect to RNI iff ∀l ∈ L, ∀h ∈ H, setting α = ({s0}, <, `) where `(s0) = l, α

does not diagnose h.

As discussed before, given a 1-safe Petri net, the diagnosis, and so the reveals problem,

is solvable on a finite prefix of the unfolding of the given net. In order to check if the

net is secure, we have to compute P1
N and its extension P2

N just once; this computation

depends only on the given net. However, Pα must be computed for each l ∈ L since

Pα depends on the observation α. For each reveals relation l �tr h to be checked, α

corresponds to the occurrence of that specific l. Thus, for each l ∈ L, a new Pα must

be computed. However, Pα is expected to be small in size because it corresponds to the

explanation of occurrence of one transition, namely l.

Considering Positive/Negative Non-Interference, PNNI, given a 1-safe Petri net N =

(P, T, F,m0) where T = H ∪ L and H ∩ L 6= ∅, the net is secure iff ∀l ∈ L, ∀h ∈ H,

setting α = ({s0}, <, `) where `(s0) = l, both Theorem 4.7.1 and Corollary 4.7.3 apply

for all α and h.
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By adapting the diagnosis algorithm to the variants of reveals and excludes, all intro-

duced non-interference notions can be checked for 1-safe Petri nets on finite prefixes of

unfoldings.

4.8 Non-interference with Languages

In Chapter 4, we have introduced new non-interference notions based on reveals and

excludes relations on Petri nets. Although Petri nets are useful for modeling distributed

and concurrent systems, those notions can also be used for detecting information flow in

other models and for designing secure systems. In this chapter, we generalize our non-

interference notions with the underlying relations by carrying them to formal languages.

In [41, 52] Petri nets have been used in the study of formal languages and they are

used to model the flow of information and control of actions in a system. Usually, each

transition of a Petri net is associated with a symbol for naming the transition, i.e.,

labeled. The number of transitions in a Petri net is finite, hence a finite alphabet can be

defined for labeling all the transitions. Let Σ be a finite alphabet, a labeling function λ

maps transitions to symbols of the alphabet, i.e., λ = T → Σ. A labeled marked Petri

net defines a set of words over Σ, each word corresponding to a possible execution of the

net. The set of all possible words corresponding to the possible interleaved executions

of a marked labeled Petri net defines a Petri net language.

Since the notions introduced in Chapter 4 are mostly based on behavioral observations of

Petri nets and closely associated to the executions of nets, it is very natural to consider

carrying these notions to the Petri net languages. Moreover, we are not restricted to

Petri net languages. It is also possible to lift the notions to general formal languages.

Considering the fact that Petri net languages are only a restricted class of languages,

carrying our non-interference and underlying reveals and excludes relations to the general

class of formal languages might lead to a wider application area and give more freedom

for improvement.

In the following sections we will redefine reveals and excludes relations, with their vari-

ants, on formal languages. Later, we will carry the non-interference notions that are

introduced in Section 4.5 to formal languages.

Let A = {a1, . . . , an} be a finite alphabet. A∗ denotes the set of finite words over A.

A∞ = A∗ ∪Aω, where Aω = {φ : N→ A}, is the set of infinite words over A. Consider

a language L ⊆ A∞, the set of maximal words of L is LM = {α ∈ L : ∀β ∈ L β 6=
αγ, γ ∈ Aω}.
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A word α ∈ L can also be seen as a multiset if the order of the letters is ignored.

Hence, in the reveals/excludes based non-interference notions, except I-PNNI we are

not interested in the order of the transitions, we can define our words as multisets. A

multiset on A is a function m : A → N. For each a ∈ A, the multiplicity of a is the

number of its occurrences and is denoted by m(a). For example, let A = {a, b, c} be

a finite alphabet, and L = {a, ab, abc, abca} be a language over A. Each word can be

represented as a multiset whose underlying set is A. Similarly the word abca can be

represented as m(a) = 2, m(b) = 1, m(c) = 1. An ordinary set can be seen as the

special case where the multiplicity of each element of the underlying set is 1. In the

following we consider the languages with infinite words, hence we define an extended

multiset on N as a map µ : A→ N ∪ {∞}.

Given an alphabet A and a word α ∈ A∞, we associate to α an extended multiset

µα : A→ N ∪ {∞} where for each x in A, µα(x) is the number of occurrences of x in α

if it is finite, ∞ otherwise.

Let A be an alphabet, α ∈ A∞ a word, µα : A → N ∪ {∞} its associated extended

multiset, x ∈ A and W ⊆ A. Then,

x ∈ α iff µα(x) > 0 ∧ µα(x) =∞.

W ⊆ α iff ∀x ∈W : x ∈ α.

W ∩ α = {x ∈W : x ∈ α}.

4.8.1 Reveals, extended-reveals and repeated reveals relations on lan-

guages

Reveals and extended reveals relations were formerly defined for events of occurrence

nets in [1, 39]. In Section 4.3 (see also [9]) we have redefined them for transitions of

Petri nets. Here we redefine them between letters in a language.

Intuitively, a letter reveals another letter in a language if whenever the first letter appears

in a maximal word, the second also appears in that word. Hence, it is not possible to

see the first one in a maximal word without the second one.

Definition 4.8.1. Let a, b ∈ A. We say a reveals b, denoted a �l b, in language L, iff

∀α ∈ LM : a ∈ α =⇒ b ∈ α.

In some cases, a set of letters together give information about another letter or again a

set of letters, whereas appearance of only one of them may not give any information.
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Definition 4.8.2. Let W,Z ⊆ A. We say W extended reveals Z, denoted W _l Z, iff

∀α ∈ LM : W ⊆ α =⇒ Z ∩ α 6= ∅. Intuitively, W extended-reveals Z in language L,

if and only if each maximal word in L which includes all letters in W also includes at

least one letter in Z.

For example, let a, b, c, d ∈ A. {a, b} _l {c, d} in L means that if a maximal word

includes both a and b in it, it must also include either c or d. In Section 4.3, we also

introduce a new relation called repeated reveals between transitions of a Petri net. This

new relation focuses on the information about a transition which is given by the number

of occurrences of another transition. Here we redefine it for the letters in a language.

Intuitively, when a letter n-repeated reveals another letter, it means that n occurrences

of the first letter in a maximal word imply that the second letter must also appear in

that maximal word.

Definition 4.8.3. Let a, b ∈ A and n > 0. Let Rna = {w ∈ L such that w includes

exactly n a′s} and Ωn
a denote the set of maximal words in Rna with respect to set inclusion

(i.e., Ωn
a ⊆ Rna such that if u, v ∈ Ωn

a ∧ uis not a proper prefix ofv then u = v).

If Ωn
a 6= ∅ then a n-repeated reveals b, denoted a �n

l b, iff ∀w ∈ Ωn
a b ∈ w.

If Ωn
a = ∅ then a �n

l b is not defined.

Notation. a 6�n
l b will denote that there is at least one word in Ωn

a such that a appears

n times and b does not appear. ¬(t1 �n
l t2) will denote that either a �n

l b is not

defined, or a 6�n
l b.

Example 4.8.1. Let A = {a, b, c} and L be such that LM = {aω, bω, (abc)ω}. In this

language, it is easy to see that a 6�l b since there is a maximal word in which only

a appears but b never appears. Similarly, b 6�l a because there is the maximal word

consisting of only b’s. However, appearance of a and b together implies the appearance

of c, so {a, b} _l {c}. On the other hand, c �l a and c �l b since c never appears

without an a and a b. In this language repeated appearance of none of the letters gives

any additional information.

Example 4.8.2. Let A = {a, b, c, d} and let the set of all maximal words of language L

be LM = {aω, cω, ad, abcc, babd, bbac, bbbd, bbbbd, bababd, abcdω}. The language consists

of both finite and infinite words. Let us consider the relations between the letters. It

is easy to see that neither a nor c reveals any other letter since there are two infinite

words in LM consisting respectively of only a’s and only c’s. Let us consider b and d.

Appearance of b once or twice does not give any information about d whereas b cannot

appear in a maximal word more than two times without a d, i.e., b �3
l d. We can also
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see that neither a nor b reveals c or d whereas {a, b} _l {c, d}. There is no maximal

word in which a and b appear together without any c or d.

4.8.2 Excludes relation on languages

In Section 4.4 we introduce excludes relation on Petri nets. The intuition behind intro-

ducing this relation is to express negative information flow between two transitions. If

two transitions exclude each other, then they can never appear in the same maximal

run. Thus, by observing an occurrence of one of them, an attacker can deduce that the

other transition did not occur and will not occur.

Here we redefine this relation for the letters in a language.

Definition 4.8.4. Let a, b ∈ A. We say a excludes b, denoted a exl b, in language L,

iff ∀α ∈ LM : a ∈ α =⇒ b /∈ α, i.e., they never appear together in the same maximal

word.

Figure 4.26

Example 4.8.3. Let us consider the Petri net in Figure 4.26. Let A = {a, b, c, d, e, f}
be the alphabet which consists of labels of transitions. Let L be the language generated

by the Petri net. The set of maximal words of this language is LM = {(ab)∗d(ab)ω,

a(ba)∗ce, a(ba)∗cf, a(ba)∗d(ba)ω. In this Petri net, there are some transitions that can

never occur in the same maximal run together, indeed in the language formed by this

Petri net we see that the corresponding letters never appear in the same maximal word

together. For example, there is no maximal word in LM that includes both c and d, i.e.,

c exl d. Similarly, e exl f , e exl d and f exl d.
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4.8.3 Non-interference notions based on reveals and excludes relations

with languages

Let A = S ∪ V be a finite alphabet such that S ∩ V = ∅ and S, V 6= ∅ where S

denotes silent/hidden letters and V denotes visible/observable letters. The language L

and the set of maximal words of L, LM , are defined as above. In the sequel, we will

define non-interference notions over an alphabet A and a language L, analogous to those

in Section 4.5. With these notions we aim to tell if an attacker, who knows how the

language is generated (knows the rules/structure of the language), is able to deduce

information about silent letters in maximal words by looking at the visible ones.

The first non-interference notion is based on the reveals relation. It aims to catch positive

information flow.

Definition 4.8.5. Language L is Reveals-based Non-Interference (RNI) secure iff ∀v ∈
V, ∀s ∈ S : v 6�l s.

In other words, L is secure with respect to RNI if it is not possible to deduce information

about silent letters in a maximal word by looking at the visible ones.

The second non-interference notion for catching positive information flow (called k-

ERNI)) considers combinations of visible letters and checks if they together give infor-

mation about some silent letters.

Definition 4.8.6. Let |V | > k > 1. The language L is k-Extended-Reveals based Non-

Interference (k-ERNI) secure iff ∀s ∈ S, ∀V ′ ⊆ V such that |V ′| 6 k ∧ ∃α ∈ LM :∧
v∈V ′ (α ∩ {v} 6= ∅), it holds V ′ 6_l {s}.

Another non-interference notion which aims to catch positive information flow is n-

ReRNI. This parametric notion considers the number of appearances of a visible letter

and checks if the repeated appearance of a visible letter reveals a silent letter.

Definition 4.8.7. Let n > 0. Language L is n-Repeated-Reveals based Non-Interference

(n-ReRNI) secure iff ∀v ∈ V , ∀s ∈ S, ∀m > n, if Ωm
v 6= ∅, then ¬(v �m

l s).

L is ReRNI, if it is n-ReRNI for all n > 0.

The next non-interference notion not only catches positive information flow but it also

catches negative information flow. It considers both reveals relation and excludes relation

between visible letters and silent letters.

Definition 4.8.8. Language L is Positive/Negative Non-Interference (PNNI) secure iff

∀v ∈ V, ∀s ∈ S : v 6�l s ∧ ¬(v exl s).
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Example 4.8.4. Let us consider N13 in Figure 4.16 on page 72. Let the alphabet be T ,

the net generates a language, L, whose set of maximal words is LM = {l1h1, l1h2, l2l3}.
Let T = S ∪ V be such that S ∩ V = ∅ and S, V 6= ∅ where S denotes silent letters and

V denotes visible ones.

We see that l1 6�l h1 and l1 6�l h2; similarly, neither l2 nor l3 reveals any silent letter.

Moreover also the combination of visible letters does not give information about silent

letters: the only combination we observe is {l2, l3} and {l2, l3} 6_l {h1}, {l2, l3} 6_l {h2}.
We do not have any repeated appearances of visible letters hence we cannot see any

repeated reveals relation between visible and silent letters. Consequently language L

which is generated by N13 is secure with respect to RNI, ERNI and ReRNI. Indeed the

net itself is secure with respect to these notions as examined in Example 4.5.4.

However L is not secure with respect to PNNI since there is a negative information flow,

i.e., there exist visible letters which never appear together with any silent letter. For

example l2 exl h1 and l2 exl h2 . Thus, the attacker can tell that a maximal word does

not include any h1 or h2 if l2 appears. Similarly l3 excludes both h1 and h2. Thus L is

not a secure language with respect to PNNI. Indeed, in Example 4.5.4, it is explained

that N13 is not secure with respect to PNNI.
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Conclusions and Future Work

This thesis provides a formal framework for liveness and security of distributed systems.

We propose new approaches for defining secure and serviceable systems, and discuss

associated model checking methods. We examine distributed systems in which there

are observable and unobservable actions that can be performed. An entity of such a

distributed system can be a service provider or a user. A service provider is responsible

for providing a reliable service to the users and protection of sensitive information.

In general, maximizing the security results in minimizing the serviceability and vice

versa. We study the two properties separately yet in a common formal framework.

In the proposed framework the two notions can be put together in order to achieve a

compromise.

For the sake of serviceability, we examine distributed systems in which a user can behave

as an attacker and can try to break down the system. The thesis provides a novel notion

of liveness called observable liveness which guarantees that the service provider will

continue to give the requested services to the users. In the observable liveness setting,

we give the control of some observable actions to the user. Intuitively, a distributed

system is observably live if, whatever state is reached, the user can force the system to

get the requested service by using the controllable actions. Hence, if a system satisfies

observable liveness, it means that, if the model is in accordance with the real system, even

if an attacker tries to break down the system, the users will continue to get the requested

service. We formalize this notion with 1-safe Petri nets and examine its properties. We

also compare it with the classical liveness in Petri nets theory. In general, observable

liveness does not imply the classical liveness as well as the classical liveness does not

imply observable liveness. However, if the net model behaves deterministically in its

uncontrollable part, we prove that liveness implies observable liveness. Some results on

observable liveness are published in [25, 26].
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Observable liveness of an observable transition t requires that at each reachable marking,

a user must be able to force the system to run in a way that eventually t fires. However,

in some cases this requirement can be considered too strong. For example, assume

that a user decides at the beginning which observable transition he/she targets to fire

eventually. If there is a strategy at the initial marking and the user follows it from

the beginning, the system will never reach a state which is not in accordance with the

strategy. Thus, instead of considering each reachable marking, we can consider the ones

that are reached by the transition sequences which respect the strategy. For these cases,

we define weak observable liveness. If an observable transition t is weakly observably

live, it means that a user has a strategy at the initial marking to force the system to fire

t, i.e., if the user respects the strategy starting from the initial marking, t will eventually

fire.

For checking weak observable liveness, we discuss a possible application of Streett games

which are two-player infinite games on finite graphs. We translate the problem of check-

ing whether an observable transition t is weakly observably live to a Streett game be-

tween the user and the system. If the user has a winning strategy it means that t is

weakly observably live. However, the proposed approach deals with a restricted class

of 1-safe Petri nets in which, at each reachable marking, enabled transitions are either

all controllable or all uncontrollable. Currently we are working on exploring games and

their relations with Petri nets and finding a game theoretic method for checking weak

observable liveness of general 1-safe Petri nets. We also consider to translate observ-

able liveness and weak observable liveness as LTL properties in order to explore suitable

methods based on LTL model checking.

For the security part, we consider information flow and non-interference. We provide

several new notions of non-interference for Petri nets, and compare them with notions

already proposed in the literature. In the considered setting, the transitions of a Petri

net are partitioned into two disjoint sets: the low (observable) and the high (unobserv-

able/hidden) transitions. The attacker knows the structure of the system and tries to

deduce information about the high transitions by observing the low transitions.

A Petri net is considered secure, or free from interference, if, from the observation of

the occurrence of a low transition, or a set of low transitions, it is not possible to infer

information on the occurrence of a high transition. Our new non-interference notions

rely on net unfolding and on two new relations among transitions with their variants.

The first relation is called reveals and is an adaptation to Petri nets from occurrence

nets. The original reveals notion has been used in fault diagnosis, but had not been

considered in the field of non-interference. In this thesis, we introduce reveals relation

for transitions of Petri nets and two parametrized versions of it, extended-reveals and
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repeated reveals, which are then used for catching positive information flow, i.e., the

possibility for an attacker to deduce the occurrence of a high transition by observing

the low transitions. The second relation is called excludes and it is introduced here

with two variants, past excludes and future excludes, for the aim of capturing negative

information flow, i.e., the possibility of an attacker to deduce the non-occurrence of a

high transition by observing the low transitions.

On the basis of the reveals and the excludes relations with their variants, we introduce

in this thesis several non-interference notions for Petri nets. These new notions deal

with information flow about both past occurrences and inevitable future occurrences

of high transitions. The notion of RNI states that a net is secure if no low transition

reveals any high transition. We show that this notion captures some situations which

are not captured by the existing notions, e.g., a low transition reveals inevitable future

occurrence of a high transition. We also propose more restrictive notions: k-ERNI

and n-ReRNI. In some cases occurrences of different low transitions together can give

information about the occurrence of a high transition. With k-ERNI, which uses the

extended-reveals relation, we are able to catch this kind of information flow. Another

case can be that repeated occurrences of a low transition can give information about a

high transition. n-ReRNI deals with this kind of information flow on the basis of the

repeated reveals relation between high and low transitions.

By adding the excludes relation to the picture, we are able to capture also negative

information flow. By considering reveals and excludes together we define PNNI and I-

PNNI notions that are able to catch both positive and negative information flow about

both past and future occurrences of high transitions. The thesis includes a comparison

between the notions introduced here and those found in the literature on the subject.

Some results on reveals and excludes based non-interference have been published in [9].

The notions proposed in this thesis, and further variants of them, should now be tested

on more realistic cases. We have now a collection of different non-interference properties,

so that a system designer, or a system analyzer, can choose those more appropriate to a

specific case. A generalization could be a non-interference notion based on a parametric

reveals relation between multisets of transitions. The thesis includes a generalization of

the reveals and the excludes relations with the non-interference notions on the basis of

them to formal languages.

We have discussed two methods for checking non-interference. The first method is based

on translating the underlying relations, reveals and excludes, to LTL and then expressing

the reveals and excludes based non-interference notions as LTL properties. With this

proposed method, we are able to use LTL model checking methods for checking non-

interference. The second method we provide is based on computing the reveals and
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the excludes relations on finite prefixes of unfoldings. The method adapts the diagnosis

algorithm given in [40] to the problem of checking the reveals and the excludes relations

between transitions of 1-safe Petri nets. With this approach, non-interference notions

can be checked on finite prefixes by checking the reveals and the excludes relations

between high and low transitions. We are interested in considering other methods such

as game theoretic methods that are explored in [60]. We also consider a different class

of games, namely infinite games on finite graphs, which we also explore for checking

observable liveness.

We plan to explore the possible application of the new transition based reveals relation

in fault diagnosis. Moreover, we are interested in further investigating the excludes

relation and the possibility to apply it in different contexts, e.g., systems biology.

Checking a system for some properties is helpful to make sure that some properties are

satisfied by the modeled system. An alternative approach can be to design the system

from the beginning in a way that the system will satisfy those properties. We consider to

use the proposed notions and methods for designing secure and serviceable systems from

scratch. Compositional approach is one way to design a distributed system [10, 11]. We

aim to develop a compositional method for designing a secure and serviceable system that

will preserve observable liveness and non-interference properties. In [7, 8], we provide

a case study for modeling a cryptographic protocol by using compositional approach,

and we plan to investigate this approach for preserving observable liveness and non-

interference in the future.
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