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Introduction

This thesis deals with the problem of localization for the Riesz means for

eigenfunction expansions of the Laplace-Beltrami operator. The classical Rie-

mann localization principle states that if an integrable function of one variable

vanishes in an open set, then its trigonometric Fourier expansion converges to

zero in this set. This localization principle fails in Rd with d ≥ 2. In order to

recover localization one has to use suitable summability methods, such as the

Bochner-Riesz means.

In Chapter 1 we focus on the compact rank one symmetric spaces case. While

in Chapter 2 we show how some of the results obtained in the �rst chapter can

be generalize to smooth compact and connected Riemannian manifolds.

Bochner-Riesz means and compact rank one symmetric

spaces

LetM be a d-dimensional compact rank one symmetric space and denote by

0 = λ2
0 < λ2

1 < λ2
2 < . . . the eigenvalues and by Hn the corresponding eigenspaces

of the Laplace-Beltrami operator ∆, the spherical harmonics of degree n. To

every square integrable function, and more generally tempered distribution, one

can associate a Fourier series:

f(x) =

+∞∑
n=0

Ynf(x) ,

where Ynf(x) is the orthogonal projection of f(x) on Hn. These Fourier series

converge in the metric of L2(M) and in the topology of distributions, but in

general one cannot ensure the pointwise convergence. For this reason we introduce

the summability method of Bochner-Riesz means:

SαRf(x) =
∑
λn<R

(
1− λ2

n

R 2

)α
Ynf(x) .

v



INTRODUCTION vi

In the de�nition of Bochner-Riesz means, the index α gives the degree of

smoothness of the multiplier and this is related to the decay of the associate

kernel. In particular, when α = 0 one obtains the spherical partial sums, which

are a natural analogue of the partial sums of one-dimensional Fourier series in the

Euclidean space R. There are examples of the failure of localization in Hölder,

Lebesgue and Sobolev spaces. See [3], [4], [7], and [8], [29], [35] for the role of

antipodal points for spherical harmonic expansions. See also the examples in

Chapter 1. Despite the negative results, it has been proved in [5] and [36] that

there is an almost everywhere localization principle for square integrable functions

onM; that is, if a function in L2(M) vanishes almost everywhere in an open set,

then
∑+∞

n=0 Ynf(x) = 0 for almost every x in this open set. See also [11], [12], [19]

and [46] for the corresponding result on the Euclidean spaces. The works of Bastis

and Meaney deal with almost everywhere localization of Bochner-Riesz means of

order α = 0 for square integrable functions. On the other hand, it is known that

for square integrable functions localization holds everywhere above the so-called

critical index α = (d − 1)/2, while for integrable functions the critical index is

α = d − 1. See [8] and Theorem 1.6 below. In [2] Ahmedov studies the almost

everywhere convergence of Bochner-Riesz means at critical line α = (d−1)(1
p−

1
2)

for functions in Lp(Sd). Finally, in [13], [15] and [21] the dimension of sets for

which localization fails is studied.

In this work we continue this line of research in the area of exceptional sets in

harmonic analysis. In particular we prove that for Bochner-Riesz means of order

α of p integrable functions on compact rank one symmetric spaces localization

holds, with a possible exception in a set of point of suitable Hausdor� dimension.

More generally we consider localization for distributions in Sobolev spaces. The

Bessel potential Gγf(x), −∞ < γ < +∞, of a tempered distribution f(x) =∑+∞
n=0 Ynf(x) is the tempered distribution de�ned by

Gγf(x) =

+∞∑
n=0

(
1 + λ2

n

)−γ/2
Ynf(x) .

Our Sobolev spaces are the spaces of potentials of functions in Lp(M).

Main localization results

Our �rst result is an analogue for Bochner-Riesz means of the pointwise lo-

calization result of Meaney in [36] for spherical sums.

Assume that f(x) is a tempered distribution on M, with spherical harmonic
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expansion
∑+∞

n=0 Ynf(x). Also assume that f(x) = 0 for all x in a ball {|x− o| <
ε}, with radius ε > 0 and centre o. Then

lim
R→+∞

{SαRf(o)} = 0 ⇐⇒ lim
n→+∞

{
n−α Ynf(o)

}
= 0 .

This means that, in order to understand the localization properties of the

Bochner-Riesz means when f(x) is in a particular space of functions onM, it is

enough to study the pointwise behaviour of the terms n−αYnf(x) as n → +∞
and f(x) ranges over the space of functions.

As shown by Bochner in [7], see also [46], the critical index for pointwise

localization of Bochner-Riesz means on Euclidean spaces of dimension d is (d −
1)/2. On the other hand, as shown by Kogbetlianz in [29] and Bonami and Clerc

in [8], spheres and projective spaces are di�erent, since antipodal points come

into play. See also the paper of Hörmander [27] for the study of asymptotic

properties of the spectral functions and summability of eigenfunction expansions

for elliptic di�erential operators. In our second result we revisit this problem

of pointwise localization. In particular, we determine the critical index for each

compact rank one symmetric space for the pointwise localization when f(x) is in

Lp(M), 1 ≤ p ≤ +∞.

Let α ≥ 0, −∞ < γ < +∞ and 1 ≤ p ≤ +∞. Assume also that:

(1) M is the sphere Sd and αp = d/p− 1;

(2) M is the real projective space P d(R) and αp = (d− 1)/2;

(3) M is the complex projective space P d(C) and αp = (d− 4)/2 + 2/p;

(4) M is the quaternionic projective space P d(H) and αp = (d− 6)/2 + 4/p;

(5) M is the Cayley projective space P 16(Cay) and αp = 3 + 8/p.

Then max{(d− 1)/2, αp} is the critical index for the pointwise localization of the

Bochner-Riesz means of Gγf(x) when f(x) is in Lp(M).

This result, in the case of the sphere Sd, is slightly better than the corre-

sponding in [8], where only the case γ = 0 is considered and the condition for

localization is α ≥ (d − 1)/2 and α > d/p − 1. We use a di�erent technique: in

[8] Bonami and Clerc use estimates on the kernel, while we estimate its Fourier

transform. Observe also that whenM = Sd the antipodal manifold is composed of
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only one point and the singularities concentrate more than in the projective case.

Finally, when p = 1, the critical index for α+ γ has a geometric interpretation:

{dimension of the space} − 1

2
{dimension of the antipodal manifold} − 1 .

Our third result revisits and extends the almost everywhere localization result

of Bastis [5] and Meaney [36].

Assume that ε > 0, −∞ < γ < +∞, α ≥ 0 and 1 ≤ p ≤ 2. If f(x) ∈ Lp(M)

and Gγf(x) = 0 in an open set Ω, then the following hold:

(1) α+ γ = (d− 1)
(

1
p −

1
2

)
, then for almost every point in Ω,

lim
R→+∞

{SαRGγf(x)} = 0 ;

(2) If α+ γ > (d− 1)
(

1
p −

1
2

)
, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in this open set Ω, with possible exceptions in a set with Haus-

dor� dimension at most δ = d− p
(
α+ γ − (d− 1)

(
1
p −

1
2

))
.

The case α = γ = 0 and p = 2 of this theorem is the above quoted result on

the almost everywhere localization for spherical partial sums of square integrable

functions. Indeed when p = 2 a more precise result holds.

Assume that α ≥ 0 and 0 ≤ α + γ < (d − 1)/4. If f(x) ∈ L2(M) and

Gγf(x) = 0 in an open set Ω, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in the open set Ω, with possible exceptions in a set with Hausdor�

dimension at most δ = d− 2(α+ γ).

Extension to compact Riemannian manifolds

In Chapter 2 we shall generalize some of the above results. In particular,

with the notation {λ2} for the eigenvalues of the Laplace-Beltrami operator on

the compact and connected Riemannian manifoldM and {ϕλ(x)} for the related
eigenfunctions, we prove that pointwise one obtains the following result.
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Let f(x) be a tempered distribution onM. If α ≥ 0 and f(x) = 0 for all x in

a ball {|x− y| < ε}, with radius ε > 0 and centre y, then

lim
R→+∞

R−α sup
0≤h≤1

∣∣∣∣∣∣
∑

R≤λ≤R+h

f̂(λ)ϕλ(y)

∣∣∣∣∣∣
 = 0 =⇒ lim

R→+∞
{SαRf(y)} = 0 .

This result extends a result of Meaney in [33], in particular it gives an alter-

native proof when α = 0. When f(x) is a square integrable function on M, a

partial result for almost everywhere localization holds.

If f(x) = 0 in an open set Ω of M and Rj − Rj−1 > δ > 0 for every

j = 1, 2, . . . , then for almost every x in Ω,

lim
j→+∞

{|S0
Rjf(x)|} = 0 .

The full result of Bastis [5] and Meaney [36] occurs when one considers a

manifold M with eigenvalues that group together. Finally, we state the partial

analogous of the last result seen for compact rank one symmetric spaces for the

almost everywhere localization for the Bochner-Riesz means of Gγf(x) when f(x)

is in L2(M).

If f(x) ∈ L2(M), α ≥ 0, 0 ≤ α+ γ < d/2, δ = d− 2(α+ γ) and Gγf(x) = 0

in an open set Ω, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in the open set Ω, with possible exceptions in a set with Hausdor�

dimension at most δ.



Chapter 1

Localization for Riesz Means on

compact rank one symmetric

spaces

This chapter deals with spherical harmonic expansions on spheres and projec-

tive spaces. In particular, we determine su�cient conditions for the pointwise and

almost everywhere localization for Riesz means for eigenfunction expansions of the

Laplace-Beltrami operator on compact rank one symmetric spaces. Furthermore,

we also estimate the Hausdor� dimension of the divergent set.

1.1 Harmonic analysis on compact rank one symmetric

spaces

In what follows we shall denote by |x − y| the geodesic distance between the

two points x and y in M. A two-point homogeneous space is a Riemannian

manifold with the property that for every two pairs of points x1, x2 and y1, y2

with |x1 − x2| = |y1 − y2|, there is an isometry g of M such that x1 = gy1 and

x2 = gy2. Birkho� has called this property two-point homogeneity. Wang in

[50] has shown that any compact two-point homogeneous space is isometric to a

compact rank one symmetric space, that is:

i) the sphere Sd = SO(d+ 1)/SO(d)

d = 1, 2, 3, . . . ;

1
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ii) the real projective space P d(R) = SO(d+ 1)/O(d)

d = 2, 3, 4, . . . ;

iii) the complex projective space P d(C) = SU(l + 1)/S(U(l)× U(1))

d = 4, 6, 8, . . . and l = d/2;

iv) the quaternionic projective space P d(H) = Sp(l + 1)/Sp(l)× Sp(1)

d = 8, 12, 16, . . . and l = d/4;

v) the Cayley projective plane P 16(Cay).

Here d denotes the real dimension of any one of these spaces, O(d), U(d), Sp(d)

denote the orthogonal, unitary and symplectic groups of order d, and S(·) denotes
the formation of a subgroup of matrices of unit determinant. Without loss of

generality, one can renormalise the metric and the measure so that the total

measure ofM is 1 and the diameter ofM is π. If o is a �xed point inM, then

M can be identi�ed with the homogeneous space G/K, where G is the maximal

connected group of isometries ofM andK is the stabilizer of o in G. The measure

dx is induced by the normalised left Haar measure dg on G: for any �xed point

o inM and any function f(x) integrable onM,∫
M

f(x) dx =

∫
G
f(go) dg .

In particular, the convolution on the group G induces a convolution on the ma-

nifoldM.

For what follows we need the concept of radial functions and antipodal points.

We say that a function f(g) on the isometry group G is right K-invariant if, for

every g in G and k in K,

f(gk) = f(g) .

A function f(g) on G is bi-K-invariant if, for every g in G and k in K,

f(kg) = f(gk) = f(g) .

Functions and distributions onM = G/K can be identify with right K-invariant

functions and distributions on G. It su�ces to put f(g) = f(x) whenever go = x.

A function is radial around o if f(x) only depends on |x − o|. Radial functions

on M correspond to bi-K-invariant functions on G. Indeed, by the two-point

homogeneity,K �xes o and acts transitively on the set of points at a given distance

from o. The points with distance from o equal to the diameter of M are the

antipodal points of o and they form the so called antipodal manifold of o onM.
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If one denotes by A(t), 0 ≤ t ≤ π, the surface measure of a sphere of radius t

inM, then

A(t) = C

(
sin

t

2

)M
(sin t)N ,

where the constant C > 0 is chosen so that
∫ π

0 A(t)dt = 1. In particular, M is

the dimension of the antipodal manifold, M + N + 1 is the dimension d of the

manifoldM, and these parameters are as follows (see [26], p.168):

M M N M M N

Sd 0 d− 1 P d(H) d− 4 3

P d(R) d− 1 0 P 16(Cay) 8 7

P d(C) d− 2 1

If f(t) is integrable on [0, π] with respect to the measure A(t)dt then, for any

o ∈M, ∫
M

f(|x− o|) dx =

∫ π

0
f(t)A(t) dt .

1.1.1 The zonal spherical functions

The compact rank one symmetric spaces admit an isometry invariant second

order di�erential operator, the Laplace-Beltrami operator ∆. The spectrum of

this operator is discrete, real and non-negative. One can arrange the eigenvalues

in increasing order: 0 = λ2
0 < λ2

1 < λ2
2 < . . . . More precisely:

λ2
n = sn (sn+ a+ b+ 1) .

The index n ranges over all non-negative integers and s = 1 if M = Sd, P d(C),

P d(H) or P 16(Cay), while s = 2 ifM = P d(R). The parameters a and b and the

eigenvalues λ2
n are given by the following table:
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M a b λ2
n

Sd (d− 2)/2 (d− 2)/2 n(n+ d− 1)

P d(R) (d− 2)/2 (d− 2)/2 2n(2n+ d− 1)

P d(C) (d− 2)/2 0 n(n+ d
2)

P d(H) (d− 2)/2 1 n(n+ 1 + d
2)

P 16(Cay) 7 3 n(n+ 11)

The eigenspacesHn corresponding to the eigenvalues λ2
n are �nite-dimensional, in-

variant and irreducible under the group action, and they are mutually orthogonal

with respect to the inner product

〈f, g〉 =

∫
M

f(x) g(x) dx .

Moreover, if L2(M) denotes the space of square integrable functions on M,

L2(M) =
⊕+∞

n=1 Hn.

Now, for each integer n ≥ 0 let dn = dimension{Hn} and {Yn,j(x)}dnj=1 be an

orthonormal basis of Hn. The dimensions of the eigenspaces Hn can be computed

explicitly, but here it su�ces to say that there exist two positive constants c and

C such that, for every n,

c (1 + n)d−1 ≤ dn ≤ C (1 + n)d−1 .

The Fourier expansion of a square integrable function, and more generally of a

tempered distribution, is given by

f(x) =

+∞∑
n=0

Ynf(x) =

+∞∑
n=0


dn∑
j=1

f̂(n, j) Yn,j(x)

 ,

with

f̂(n, j) =

∫
M

f(x) Yn,j(x) dx .

It is convenient to rewrite the orthogonal projection Ynf(x) of f(x) onto Hn as a
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convolution:

Ynf(x) =

dn∑
j=1

f̂(n, j) Yn,j(x)

=

∫
M

f(y)


dn∑
j=1

Yn,j(x) Yn,j(y)

 dy

=

∫
M

f(y) Zn(x, y) dy .

De�nition 1.1. The functions Zn(x, y) de�ned above, i.e.

Zn(x, y) =

dn∑
j=1

Yn,j(x) Yn,j(y) ,

are the zonal spherical functions of degree n and pole x.

It is an important feature of rank one symmetric spaces that the zonal spherical

functions are given in terms of Jacobi polynomials: If t = |x− y|, then

Zn(x, y) =

dn∑
j=1

Yn,j(x) Yn,j(y) = dn
P

(a,b)
n (cos(t/s))

P
(a,b)
n (1)

. (1.1)

For all these properties of symmetric spaces and Jacobi polynomials see, for ex-

ample, [26], [30] and [46].

The following lemma gives an estimate for the size of the zonal spherical

functions, and plays a crucial role in the problem of localization.

Lemma 1.1. With the notation Zn(x, y) = Zn(cos t), if |x− y| = t, the following

estimates hold:

(1) For every x and y,

|Zn(x, y)| ≤ Zn(x, x) = dn ≤ C (1 + n)d−1 ;

(2) If 0 ≤ t ≤ π/2, then

|Zn(x, y)| ≤ C (1 + n)d−1 (1 + nt)−(d−1)/2 ;

(3) If π/2 ≤ t ≤ π, then

|Zn(x, y)| ≤



C (1 + n)d−1 (1 + n(π − t))−(d−1)/2 if M = Sd ,
C (1 + n)(d−1)/2 if M = P d(R) ,

C (1 + n)d/2 (1 + n(π − t))−1/2 if M = P d(C) ,

C (1 + n)(d+2)/2 (1 + n(π − t))−3/2 if M = P d(H) ,

C (1 + n)11 (1 + n(π − t))−7/2 if M = P 16(Cay) .
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Proof. The proof of (1) follows from (1.1).

The Jacobi polynomials P (a,b)
n (cos t) have an asymptotic expansion, as n → ∞,

in terms of the Bessel functions:(
sin

t

2

)a(
cos

t

2

)b P (a,b)
n (cos t)

P
(a,b)
n (1)

=
Γ(a+ 1)

(n+ (a+ b+ 1)/2)a

(
t

sin t

) 1
2

Ja ((n+ (a+ b+ 1)/2) t)

+

{
ta+2 O (1) if 0 < t ≤ cn−1 ,

t1/2 O
(
n−a−3/2

)
if cn−1 ≤ t ≤ π − ε .

Here c, ε > 0 are �xed and Ja(x) is the Bessel function of order a. See [47], p.197.

On the other hand, the Bessel functions satisfy the estimate (see [31]):

|Ja(x)| ≤ C min
{
|x|a, |x|−1/2

}
.

In particular, if 0 ≤ t ≤ π/2,∣∣∣∣∣P (a,b)
n (cos t)

P
(a,b)
n (1)

∣∣∣∣∣ ≤ C (1 + nt)−a−1/2 .

This gives the estimate for 0 ≤ t ≤ π/2 in (2). Observe that this estimate depends

only on the dimension of the symmetric space.

The estimates when π/2 ≤ t ≤ π in (3) are similar and they follow from the

symmetry relation

P (a,b)
n (−x) = (−1)n P (b,a)

n (x)

and the estimate∣∣∣∣∣P (a,b)
n (cos t)

P
(a,b)
n (1)

∣∣∣∣∣ ≤ C (1 + n)b−a (1 + n (π − t))−b−1/2 .

A couple of observations: In the estimate of Zn(x, y), the exponent of n when

x = y is equal to

{dimension of the space} − 1 .

While, when y is in the antipodal manifold of x, the exponent of n becomes

{dimension of the space} − 1

2
{dimension of the antipodal manifold} − 1 .
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1.1.2 Bessel potentials and Sobolev spaces

We conclude this section by recalling the de�nition and some properties of the

Bessel potential and the associated Bessel kernel.

De�nition 1.2. Let f(x) be a tempered distribution. The Bessel potential of

f(x) of order γ, −∞ < γ < +∞, is de�ned as

Gγf(x) =

∫
M

Gγ(x, y) f(y) dy ,

where

Gγ(x, y) =
+∞∑
n=0

(
1 + λ2

n

)−γ/2
Zn(x, y)

is the associated Bessel kernel.

Of course, when γ ≤ 0 or when f(x) is not a function, write Gγf(x) as an

integral is an abuse of notation. The Bessel potentials on Euclidean spaces are

presented in [45]. The properties on a manifold are essentially the same.

Lemma 1.2. If γ > 0, then the Bessel kernel Gγ(x, y) is positive and integrable,

and it is smooth in {|x − y| 6= 0}. Moreover, if 0 < γ < d, then Gγ(x, y) ≈
|x− y|γ−d when |x− y| → 0.

Proof. It follows from the de�nition of the Gamma function that, for γ > 0,(
1 + λ2

)−γ/2
=

1

Γ(γ/2)

∫ +∞

0
t
γ
2
−1 e−t(1+λ2) dt .

Therefore Gγ(x, y) can be subordinated to the heat kernel:

Gγ(x, y) =
+∞∑
n=0

(
1 + λ2

n

)−γ/2
Zn(x, y)

=
1

Γ(γ/2)

∫ +∞

0
t
γ
2
−1 e−t

(
+∞∑
n=0

e−λ
2
nt Zn(x, y)

)
dt .

The heat kernel is smooth and positive and it satis�es some Gaussian estimates.

More precisely, there exists smooth functions uk(x, y) such that, if t is small,

0 <
+∞∑
n=0

e−λ
2
nt Zn(x, y) = (4πt)−d/2 e−|x−y|

2/(4t)

(
N∑
k=0

tk uk(x, y) +O(tn+1)

)
.

See [16]. The estimates for the Bessel kernel follows by integrating these estimates.
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Our treatment will concern localization for distributions in Sobolev spaces.

One way of de�ning the Sobolev spacesW γ,p(M) is as the image of Lp(M) under

the action of the Bessel potentials (I −∆)−γ/2. Then, our Sobolev spaces are the

spaces of potentials of functions in Lp(M).

1.2 Decomposition of the Bochner-Riesz kernel

In what follows we consider operators of the form

Tf(x) =
+∞∑
n=0

dn∑
j=1

m(λn) f̂(n, j) Yn,j(x) .

We shall always assume that m(λ) is an even function on −∞ < λ < +∞ with

tempered growth, i.e. |m(λ)| ≤ C(1 + λ)k for some k. The multiplier m(λ) is the

Fourier transform of a tempered distribution and, formally,

Tf(x) =

∫
M

(
+∞∑
n=0

m(λn) Zn(x, y)

)
f(y) dy .

Hence, the convolution of a zonal kernel T (x, y) =
∑+∞

n=0 m(λn) Zn(x, y) with a

tempered distribution f(x) is that tempered distribution whose Fourier transform

is the pointwise product between the Fourier transform of T (x, y) and f(x). The

Bochner-Riesz means are an example of such operators.

De�nition 1.3. Let f(x) be a tempered distribution. The Bochner-Riesz means

of f(x) of complex order α are de�ned as

SαRf(x) =

+∞∑
n=0

(
1− λ2

n

R 2

)α
+

 dn∑
j=1

f̂(n, j) Yn,j(x)


=

∫
M

SαR(x, y) f(y) dy ,

where

SαR(x, y) =

+∞∑
n=0

(
1− λ2

n

R 2

)α
+

Zn(x, y)

is the associated Bochner-Riesz kernel.

Then, with the above notations,

mR(λn) =

(
1− λ2

n

R 2

)α
+

.
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The main tool in our localization result is a decomposition of SαR(x, y) into a

kernel with small support plus a remainder. A natural decomposition is

SαR(x, y) = SαR(x, y)χ{|x−y|<ε}(x, y) + SαR(x, y)
(
1− χ{|x−y|<ε}(x, y)

)
.

This decomposition has been exploited for example in [23]. Here we exploit a sort

of smoothed version of the one above, and we decompose SαR(x, y) into a kernel

with small support {|x− y| ≤ ε} and a kernel with small Fourier transform.

Let ε > 0 and let ψ(λ) be an even test function with cosine Fourier transform{
ψ̂(τ) = 1 if |τ | ≤ ε/2 ,
ψ̂(τ) = 0 if |τ | ≥ ε .

This implies that ∫
R
ψ(λ) dλ = 1

and ∫
R
ψ(λ) λn dλ = 0 n = 1, 2, . . . ,

namely ψ(λ) has mean one and all other moments are zero. Then, if we denote

by mR ∗ ψ(λ) the convolution on R, i.e.

mR ∗ ψ(λ) =

∫
R
mR(λ− τ)ψ(τ) dτ ,

one has that mR ∗ ψ(λ) is a good approximation of mR(λ) when |λ − R| > 1/ε

and we can write

SαRf(x) =
+∞∑
n=0

dn∑
j=1

mR(λn) f̂(n, j) Yn,j(x)

=
+∞∑
n=0

mR ∗ ψ(λn)

 dn∑
j=1

f̂(n, j) Yn,j(x)


+

+∞∑
n=0

(mR(λn)−mR ∗ ψ(λn))

 dn∑
j=1

f̂(n, j) Yn,j(x)


= ARf(x) + BRf(x) .

The operators AR and BR are associated to the kernels

AR(x, y) =

+∞∑
n=0

mR ∗ ψ(λn) Zn(x, y) ,

BR(x, y) =

+∞∑
n=0

(mR(λn)−mR ∗ ψ(λn)) Zn(x, y) .
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The kernel AR(x, y) has small support.

Lemma 1.3. The kernel AR(x, y) has support in {|x− y| ≤ ε}. In particular, if

a tempered distribution f(x) vanishes in an open set Ω then, for all x ∈ Ω with

distance {x, ∂Ω} > ε,

ARf(x) = 0 .

Proof. Let cos(τ
√

∆)f(x) be the solution of the Cauchy problem for the wave

equation in R×M,
∂2

∂τ2
u(τ, x) + ∆u(τ, x) = 0 ,

u(0, x) = f(x) ,
∂

∂τ
u(0, x) = 0 .

Solving the wave equation by separation of variables, one obtains

cos
(
τ
√

∆
)
f(x) =

+∞∑
n=0

dn∑
j=1

cos(τλn) f̂(n, j) Yn,j(x) .

Hence, in the distribution sense,

ARf(x) =
+∞∑
n=0

dn∑
j=1

mR ∗ ψ(λn) f̂(n, j) Yn,j(x)

=

+∞∑
n=0

dn∑
j=1

( ∫ +∞

0
m̂R ∗ ψ(τ) cos(τλn) dτ

)
f̂(n, j) Yn,j(x)

=

∫ +∞

0
m̂R ∗ ψ(τ)

+∞∑
n=0

dn∑
j=1

cos(τλn) f̂(n, j) Yn,j(x)

 dτ

=

∫ +∞

0
m̂R(τ) ψ̂(τ) cos

(
τ
√

∆
)
f(x) dτ .

By assumption ψ̂(τ) = 0 if |τ | ≥ ε. Moreover, by the �nite propagation of waves

(see [17]), if f(x) = 0 in Ω, then also cos(τ
√

∆)f(x) = 0 for every x ∈ Ω and

τ < distance {x, ∂Ω}. Then the lemma follows.

The Fourier transform of the kernel BR(x, y) is small.

Lemma 1.4. If mR(λ) = (1 − λ2/R2)α+, then for every k > 0 and A > 0 there

exist C > 0 and h > 0 such that for every complex α with 0 ≤ Re(α) ≤ A and

every R > 1,

|mR(λ)−mR ∗ ψ(λ)| ≤ C (1 + |α|)h R−Re(α) (1 + |R− λ|)−k .
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Proof. First observe that for every τ ,

R − |λ− τ | ≤ |R− λ| + |τ | .

So we can write

|mR(λ− τ)| = R−2 Re(α) (R+ |λ− τ |)Re(α) (R− |λ− τ |)Re(α)
+

≤ 2Re(α) R−Re(α) (|R− λ|+ |τ |)Re(α) .

Since ψ(λ) is a test function, if |R− λ| ≤ 1 then

|mR(λ)−mR ∗ ψ(λ)| ≤ |mR(λ)| + |mR ∗ ψ(λ)|

≤ 2Re(α) R−Re(α)

{
|R− λ|Re(α) +

∫
R

(|R− λ| + |τ |)Re(α) |ψ(τ)| dτ
}

≤ 2Re(α) R−Re(α)

{
1 +

∫
R

(1 + |τ |)Re(α) |ψ(τ)| dτ
}

= C R−Re(α) .

Now consider the case |R− λ| ≥ 1. Observe that for every l ∈ N there exists a

polynomial Pl(λ) of degree l such that

∂l

∂λl

(
1− λ2

R 2

)α
+

= R−l Pl

(
λ

R

) (
1− λ2

R 2

)α−l
+

.

The coe�cients of Pl(λ) are dominated by (1 + |α|)l, therefore∣∣∣∣ ∂l∂λl mR(λ)

∣∣∣∣ ≤ C (1 + |α|)l R−Re(α) |R− λ|Re(α)−l .

By assumption ψ(λ) has mean one, so

|mR(λ)−mR ∗ ψ(λ)| =

∣∣∣∣ ∫
R

(mR(λ− τ)−mR(λ)) ψ(τ) dτ

∣∣∣∣ .
Since the positive moments of ψ(λ) are zero, for this last integral we can write∫
R

(mR(λ− τ)−mR(λ))ψ(τ)dτ =

∫
R

(
mR(λ− τ) −

L−1∑
l=0

(−τ)l

l!

∂l

∂λl
mR(λ)

)
ψ(τ)dτ,

where L is independent of R and will be speci�ed later. Splitting the integration

on R into {|τ | ≤ |R− λ|/2} and {|τ | ≥ |R− λ|/2}, one gets

|mR(λ)−mR ∗ ψ(λ)| ≤
∫
{|τ |≥|R−λ|/2}

|mR(λ− τ)| |ψ(τ)| dτ

+
L−1∑
l=0

1

l!

∣∣∣∣ ∂l∂λl mR(λ)

∣∣∣∣ ∫
{|τ |≥|R−λ|/2}

∣∣∣τ l∣∣∣ |ψ(τ)| dτ

+
1

L!
sup

{|τ |≤|R−λ|/2}

{ ∣∣∣∣ ∂L∂λL mR(λ− τ)

∣∣∣∣ } ∫
{|τ |≤|R−λ|/2}

∣∣τL∣∣ |ψ(τ)| dτ .
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We have the following estimates:∫
{|τ |≥|R−λ|/2}

|mR(λ− τ)| |ψ(τ)| dτ

≤ 2Re(α) R−Re(α)

∫
{|τ |≥|R−λ|/2}

( |R− λ|+ |τ | )Re(α) |ψ(τ)| dτ

≤ 6Re(α) R−Re(α)

∫
{|τ |≥|R−λ|/2}

|τ |Re(α) |ψ(τ)| dτ

≤ C R−Re(α) |R− λ|−k ,

∣∣∣∣ ∂l∂λl mR(λ)

∣∣∣∣ ∫
{|τ |≥|R−λ|/2}

∣∣∣τ l∣∣∣ |ψ(τ)| dτ

≤ C (1 + |α|)l R−Re(α) |R− λ|Re(α)−l
∫
{|τ |≥|R−λ|/2}

|τ l| |ψ(τ)| dτ

≤ C (1 + |α|)l R−Re(α) |R− λ|−k ,

sup
{|τ |≤|R−λ|/2}

{ ∣∣∣∣ ∂L∂λL mR(λ− τ)

∣∣∣∣ } ∫
{|τ |≤|R−λ|/2}

∣∣τL∣∣ |ψ(τ)| dτ

≤ C (1 + |α|)L R−Re(α) |R− λ|Re(α)−L
∫
R

∣∣τL∣∣ |ψ(τ)| dτ

≤ C (1 + |α|)L R−Re(α) |R− λ|Re(α)−L .

The thesis follows by taking L ≥ Re(α) + k and h = L+ 1.

Our �rst result is an exact analogue for Bochner-Riesz means of the result of

Meaney in [36] for spherical sums.

Theorem 1.5. Assume that f(x) is a tempered distribution onM, with spherical

harmonic expansion
∑+∞

n=0 Ynf(x). Also assume that f(x) = 0 for all x in a ball

{|x− o| < ε}, with radius ε > 0 and centre o. Then the following are equivalent:

(1) limR→+∞ {SαRf(o)} = 0,

(2) limn→+∞ {n−α Ynf(o)} = 0.

Proof. A necessary condition for the pointwise Bochner-Riesz summability of

SαRf(o) =
∑
λn<R

(
1− λ2

n

R 2

)α
Ynf(o)
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is that {λ−αn Ynf(o)} → 0 when n → ∞. See [53], Theorem 1.22 of Chapter III,

for the corresponding result for Cesàro means. Hence (1) implies (2).

Conversely, assume that f(x) = 0 in {|x−o| < ε}. By Lemma 1.3, ARf(o) =

0. By Lemma 1.4,

|BRf(o)| ≤ C

+∞∑
n=0

R−α (1 + λn)α (1 + |R− λn|)−k
∣∣(1 + λn)−α Ynf(o)

∣∣ .
Observe that

∑+∞
n=0R

−α (1 + λn)α (1 + |R− λn|)−k < C < +∞, with C indepen-

dent on R. If {(1 + λn)−αYnf(o)} → 0, then also {BRf(o)} → 0. Hence (2)

implies (1).

1.3 Pointwise localization

In the Euclidean case the critical index for pointwise localization of Bochner-

Riesz means of function in Lp(Rd) is α = (d − 1)/2 for every 1 ≤ p ≤ +∞.

This was proved by Bochner in [7]. The di�erence between the Euclidean case

and the compact rank one symmetric spaces case is in the antipodal manifolds.

Antipodal points play an important role in determining the critical indices. In

the next theorem we compute the critical index for each space when f(x) is in

Lp(M), 1 ≤ p ≤ +∞, using the fact that

Ynf(x) =

∫
M

Zn(x, y) f(y) dy

and that the zonal spherical functions Zn(x, y) are polynomials.

Theorem 1.6. Assume that:

−∞ < γ < +∞, α ≥ 0, 1 ≤ p ≤ +∞ .

Also assume that

(1) M = Sd and 
α+ γ ≥ d/p − 1 if p < 2d/(d+ 1) ,

α+ γ > (d− 1)/2 if p = 2d/(d+ 1) ,

α+ γ ≥ (d− 1)/2 if p > 2d/(d+ 1) .

(2) M = P d(R) and, for every p,

α+ γ ≥ (d− 1)/2 .
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(3) M = P d(C) and
α+ γ ≥ (d− 4)/2 + 2/p if p < 4/3 ,

α+ γ > (d− 1)/2 if p = 4/3 ,

α+ γ ≥ (d− 1)/2 if p > 4/3 .

(4) M = P d(H) and
α+ γ ≥ (d− 6)/2 + 4/p if p < 8/5 ,

α+ γ > (d− 1)/2 if p = 8/5 ,

α+ γ ≥ (d− 1)/2 if p > 8/5 .

(5) M = P 16(Cay) and
α+ γ ≥ 3 + 8/p if p < 16/9 ,

α+ γ > 15/2 if p = 16/9 ,

α+ γ ≥ 15/2 if p > 16/9 .

Under the above assumptions, if f(x) is in Lp(M) and if Gγf(x) = 0 in an open

set Ω, then for every x ∈ Ω

lim
R→+∞

{SαRGγf(x)} = 0 .

Proof. Fix x ∈ M, ε > 0 and assume that Gγf(y) = 0 if |x − y| ≤ ε, and

decompose SαRG
γf(x) into ARGγf(x) +BRG

γf(x) as in the previous section. By

Lemma 1.3, ARGγf(x) = 0. Since BRGγf(x) converges to zero when f(x) is a

test function, in order to prove the theorem it then su�ces to show that these

linear functionals are uniformly bounded on Lp(M). Recall that

BRG
γf(x) =

∫
M
f(y)

(
+∞∑
n=0

(mR(λn)−mR ∗ ψ(λn))
(
1 + λ2

n

)−γ/2
Zn(x, y)

)
dy.

The norms of the functionals on Lp(M) are the norms on Lq(M), 1/p+ 1/q = 1,

of the associate kernels. In particular, if Gγf(y) = 0 when |x− y| ≤ ε,

|BRGγf(x)|

≤ ‖f‖Lp
{ ∫

|x−y|≥ε

∣∣∣∣∣
+∞∑
n=0

(mR(λn)−mR ∗ ψ(λn))
(
1 + λ2

n

)−γ/2
Zn(x, y)

∣∣∣∣∣
q

dy

} 1
q

≤ ‖f‖Lp
+∞∑
n=0

|mR(λn)−mR ∗ ψ(λn)|
(
1 + λ2

n

)−γ/2 { ∫
|x−y|≥ε

|Zn(x, y)|q dy

} 1
q

.
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By Lemma 1.4,

|mR(λn)−mR ∗ ψ(λn)|
(
1 + λ2

n

)−γ/2 ≤ C R−α (1 + |R− λn|)−k (1 + λn)−γ .

This implies that in the above sum only a �nite number of terms come into

play, the ones with λn ≈ R. Then the theorem follows from the estimates for{ ∫
|x−y|≥ε |Zn(x, y)|q dy

}1/q
in Lemma 1.7 below.

Lemma 1.7. Let ε > 0 and de�ne

Zε,q(x) =

{ ∫
|x−y|≥ε

|Zn(x, y)|q dy

} 1
q

.

(1) IfM = Sd, then

Zε,q(x) ≤ C


(1 + n)d−1−d/q if q > 2d/(d− 1) ,

(1 + n)(d−1)/2 (log(2 + n))(d−1)/(2d) if q = 2d/(d− 1) ,

(1 + n)(d−1)/2 if q < 2d/(d− 1) .

(2) IfM = P d(R) then, for every q,

Zε,q(x) ≤ C (1 + n)(d−1)/2 .

(3) IfM = P d(C), then

Zε,q(x) ≤ C


(1 + n)d/2−2/q if q > 4 ,

(1 + n)(d−1)/2 (log(2 + n))1/4 if q = 4 ,

(1 + n)(d−1)/2 if q < 4 .

(4) IfM = P d(H), then

Zε,q(x) ≤ C


(1 + n)(d+2)/2−4/q if q > 8/3 ,

(1 + n)(d−1)/2 (log(2 + n))3/8 if q = 8/3 ,

(1 + n)(d−1)/2 if q < 8/3 .

(5) IfM = P 16(Cay), then

Zε,q(x) ≤ C


(1 + n)11−8/q if q > 16/7 ,

(1 + n)15/2 (log(2 + n))7/16 if q = 16/7 ,

(1 + n)15/2 if q < 16/7 .
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Proof. The zonal spherical functions Zn(x, y) are radial around x and, with the

notation |x− y| = t and Zn(x, y) = Zn(cos t), an integration in polar coordinates

gives { ∫
|x−y|≥ε

|Zn(x, y)|q dy

} 1
q

=

{ ∫ π

ε
|Zn(cos t)|q A(t) dt

} 1
q

.

If M = Sd, then A(t) = C (sin t)d−1. Moreover, if 0 < ε ≤ t ≤ π, by parts (2)

and (3) of Lemma 1.1,

|Zn(cos t)| ≤ C (1 + n)d−1 (1 + n(π − t))−(d−1)/2 .

Hence { ∫ π

ε
|Zn(cos t)|q A(t) dt

} 1
q

≤ C (1 + n)
d−1− d

q + C (1 + n)
d−1
2

{ ∫ π−ε

1/n
t−

d−1
2
q+d−1 dt

} 1
q

≤ C


(1 + n)d−1−d/q if q > 2d/(d− 1) ,

(1 + n)(d−1)/2 (log(2 + n))(d−1)/(2d) if q = 2d/(d− 1) ,

(1 + n)(d−1)/2 if q < 2d/(d− 1) .

This proves the lemma for Sd. The proof for projective spaces is similar.

Examples. The indices in Theorem 1.6 are best possible whenM is the sphere

Sd or the real projective space P d(R) for every p. When p = 1, this indices are

best possible also for P d(C), P d(H) and P 16(Cay). As shown by Bochner [7], the

critical index for pointwise localization of Bochner-Riesz means of functions in

Lp(Rd) is α = (d− 1)/2 for every 1 ≤ p ≤ +∞. The Bochner-Riesz kernel in Rd

is a Bessel function,

SαRf(x) =

∫
Rd

π−α Γ(α+ 1)Rd/2−α |y|−α−d/2 Jα+d/2 (2πR|y|) f(x− y) dy .

Hence, by the asymptotic expansion of Bessel functions, SαRf(x) is approximated

by

π−α−1 Γ(α+1)R
d−1
2
−α
∫
Rd
|y|−α−

d+1
2 cos

(
2πR|y| − (2α+ d+ 1)π

4

)
f(x−y)dy .

From this approximation it easily follows that a necessary condition for local-

ization is the boundedness of the term R(d−1)/2−α, that is α ≥ (d − 1)/2. This
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result of Bochner has been extended by Il'in [3] to spectral decompositions of

self-adjoint elliptic operators: If α + γ < (d − 1)/2, then for any point x ∈ M
there exists a function �nite and in the Hölder class Cα(M), which vanishes in a

neighbourhood of x, and such that lim supR→+∞ {|SαRGγf(x)|} = +∞. In par-

ticular, for every 1 ≤ p ≤ +∞ the assumption α + γ ≥ (d − 1)/2 is necessary

for pointwise localization. By Theorem 1.5, another necessary condition for the

pointwise Bochner-Riesz summability of SαRf(x) is that {λ−αn Ynf(x)} → 0 when

n→∞. Fix 0 < ε < d, o ∈M, and de�ne

f(x) = Gε(x,o) =

+∞∑
n=0

(
1 + λ2

n

)−ε/2
Zn(x,o) .

By Lemma 1.2, this function is smooth onM−{o} and it behaves as |x− o|ε−d

when x → o. In particular, this function is in Lp(M) for every p < d/(d − ε).
Finally observe that, when |x− o| = π,

∣∣∣(1 + λ2
n)−ε/2 Zn(x,o)

∣∣∣ ≈


(1 + n) d−1−ε if M = Sd ,
(1 + n)(d−1)/2−ε if M = P d(R) ,

(1 + n)d/2−ε if M = P d(C) ,

(1 + n)(d+2)/2−ε if M = P d(H) ,

(1 + n) 11−ε if M = P 16(Cay) .

The problem of convergence of eigenvalue expansions on compact Riemannian

manifolds has also been studied in [9], [10], [40], [41], [42] and [49]. In these papers

it is proved that localization for spherical sums may fail for piecewise smooth

functions on three dimensional manifolds, the so-called Pinsky phenomenon, while

it is proved that a su�cient condition for the pointwise Bochner-Riesz summability

of order α for piecewise smooth function is α > (d− 3)/2.

1.4 Localization and Hausdor� dimension

The following theorem concerns the almost everywhere localization. It revisits

and extends the almost everywhere localization result of Bastis [5] and Meaney

[36].

Theorem 1.8. Assume that:

ε > 0, −∞ < γ < +∞, α ≥ 0, 1 ≤ p ≤ 2, 0 ≤ β ≤ α+γ−(d−1)

(
1

p
− 1

2

)
.
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Then there exists a positive constant C with the following property: If f(x) is

in Lp(M) and if Gγf(x) = 0 in an open set Ω, then there exists F (x) with

‖F‖Lp ≤ C‖f‖Lp and such that for all x ∈ Ω with distance {x, ∂Ω} > ε,

sup
R>0
{|SαRGγf(x)|} ≤ GβF (x) .

First observe that from Lemma 1.3 we know thatARGγf(x) = 0 if distance {x, ∂Ω} >
ε. Then we only need to control BRGγf(x), which can be factorized as

BRG
γf(x) = Gβ BRG

γ−βf(x) .

When β ≥ 0 the operator Gβ is positive, and this gives

sup
R>0
{|BRGγf(x)|} ≤ Gβ

(
sup
R>0

{∣∣∣BRGγ−βf ∣∣∣} ) (x) .

Then, in order to prove the theorem, it su�ces to prove that the maximal operator

supR>0

{
|BRGγ−βf(x)|

}
is bounded on Lp(M). It su�ces to consider two cases:

(1) p = 1 and Re(α)− β + γ ≥ (d− 1)/2;

(2) p = 2 and Re(α)− β + γ ≥ 0.

The intermediate cases will follow by Stein's interpolation theorem for analytic

families of operators (see [46], Chapter V).

Lemma 1.9. If f(x) is in L1(M) and Re(α)− β + γ ≥ (d− 1)/2, then∫
M

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣} dx ≤ C (1 + |α|)h

∫
M
|f(x)| dx .

Proof. Let BRGγ−β(x, y) be the kernel associated to the operator BRGγ−β ,

BRG
γ−β(x, y) =

+∞∑
n=0

(
1 + λ2

n

)(β−γ)/2
(m(λn)−m ∗ ψ(λn)) Zn(x, y) .

The maximal operator supR>0

{∣∣BRGγ−βf(x)
∣∣} is dominated by

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣} ≤ ∫

M
sup
R>0

{∣∣∣BRGγ−β(x, y)
∣∣∣} |f(y)| dy .

By Lemma 1.4,∣∣∣BRGγ−β(x, y)
∣∣∣ ≤ C (1 + |α|)h R−Re(α)

+∞∑
n=0

(1 + λ2
n)(β−γ)/2 |Zn(x, y)|

(1 + |R− λn|)k
.
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By part (2) of Lemma 1.1, with t = |x− y| and 0 ≤ t ≤ π/2,∣∣∣BRGγ−β(x, y)
∣∣∣

≤ C (1 + |α|)h R−Re(α)
+∞∑
n=0

(1 + λn)β−γ (1 + λn)d−1 (1 + λnt)
−(d−1)/2

(1 + |R− λn|)k

= C (1 + |α|)h R−Re(α) t−(d−1)/2
+∞∑
n=0

(
t+ λnt

1 + λnt

)(d−1)/2 (1 + λn)β−γ+(d−1)/2

(1 + |R− λn|)k

≤ C (1 + |α|)h R−Re(α) t−(d−1)/2
+∞∑
n=0

(1 + λn)β−γ+(d−1)/2

(1 + |R− λn|)k

≤ C (1 + |α|)h R−Re(α)+β−γ+(d−1)/2 t−(d−1)/2 .

This implies that, if Re(α)− β + γ ≥ (d− 1)/2 and 0 ≤ |x− y| ≤ π/2,

sup
R>0

{∣∣∣BRGγ−β(x, y)
∣∣∣} ≤ C (1 + |α|)h |x− y|−(d−1)/2 .

Similarly, by part (3) of Lemma 1.1, if Re(α) − β + γ ≥ (d − 1)/2 and π/2 ≤
|x− y| ≤ π,

sup
R>0

{∣∣∣BRGγ−β(x, y)
∣∣∣} ≤



C (1 + |α|)h (π − |x− y|)−(d−1)/2 if M = Sd ,
C (1 + |α|)h if M = P d(R) ,

C (1 + |α|)h (π − |x− y|)−1/2 if M = P d(C) ,

C (1 + |α|)h (π − |x− y|)−3/2 if M = P d(H) ,

C (1 + |α|)h (π − |x− y|)−7/2 if M = P 16(Cay) .

By these estimates, supR>0

{∣∣BRGγ−β(x, y)
∣∣} is integrable with respect to x for

every y, and ∫
M

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣} dx

≤
∫
M

(∫
M

sup
R>0

{∣∣∣BRGγ−β(x, y)
∣∣∣} dx

)
|f(y)| dy

≤ C sup
y∈M

{∫
M

sup
R>0

{∣∣∣BRGγ−β(x, y)
∣∣∣ dx}} ∫

M
|f(y)| dy .

Actually this proof shows that supR>0

{∣∣BRGγ−βf(x)
∣∣} can be controlled by a

fractional integral of order (d−1)/2 of f(x). In particular, if f(x) ∈ L1(M), then

supR>0

{∣∣BRGγ−βf(x)
∣∣} is in Lp(M) for all p < 2d/(d+ 1).
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Lemma 1.10. If f(x) is in L2(M) and Re(α)− β + γ ≥ 0, then∫
M

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣2} dx ≤ C (1 + |α|)2h

∫
M
|f(x)|2 dx .

Proof. By Lemma 1.4, ∣∣∣BRGγ−βf(x)
∣∣∣

=

∣∣∣∣∣∣
+∞∑
n=0

dn∑
j=1

(1 + λ2
n)(β−γ)/2 (mR(λn)−mR ∗ ψ(λn)) f̂(n, j) Yn,j(x)

∣∣∣∣∣∣
≤ C (1 + |α|)h R−Re(α)

+∞∑
n=0

(1 + λ2
n)(β−γ)/2

(1 + |R− λn|)k

∣∣∣∣∣∣
dn∑
j=1

f̂(n, j) Yn,j(x)

∣∣∣∣∣∣
≤ C (1 + |α|)h R−Re(α)

{
+∞∑
n=0

(1 + λ2
n)β−γ

(1 + |R− λn|)2k

} 1
2


+∞∑
n=0

∣∣∣∣∣∣
dn∑
j=1

f̂(n, j) Yn,j(x)

∣∣∣∣∣∣
2

1
2

≤ C (1 + |α|)h R−Re(α)+β−γ


+∞∑
n=0

∣∣∣∣∣∣
dn∑
j=1

f̂(n, j) Yn,j(x)

∣∣∣∣∣∣
2

1
2

.

Hence, if Re(α)− β + γ ≥ 0,

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣} ≤ C (1 + |α|)h


+∞∑
n=0

∣∣∣∣∣∣
dn∑
j=1

f̂(n, j) Yn,j(x)

∣∣∣∣∣∣
2

1
2

,

and ∫
M

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣2} dx ≤ C (1 + |α|)2h

+∞∑
n=0

dn∑
j=1

∣∣∣f̂(n, j)
∣∣∣2 .

Lemma 1.11. If f(x) is in Lp(M), 1 ≤ p ≤ 2, and α−β+ γ ≥ (d− 1)
(

1
p −

1
2

)
,

then ∫
M

sup
R>0

{∣∣∣BRGγ−βf(x)
∣∣∣p} dx ≤ C (1 + |α|)ph

∫
M
|f(x)|p dx .

Proof. The lemma follows from the previous two lemmas via Stein's interpolation

theorem for analytic families of operators.
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By Theorem 1.8, since the set where a potential GβF (x) = +∞ has Hausdor�

dimension at most d − βp, the set of point where localization fails has a small

dimension.

Corollary 1.12. Under the assumptions on p, α and γ in Theorem 1.8, if

Gγf(x) = 0 in an open set Ω, then the following hold:

(1) If α+ γ = (d− 1)
(

1
p −

1
2

)
, then for almost every point in Ω,

lim
R→+∞

{SαRGγf(x)} = 0 ;

(2) If α+ γ > (d− 1)
(

1
p −

1
2

)
, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in this open set Ω, with possible exceptions in a set with Haus-

dor� dimension at most δ = d− p
(
α+ γ − (d− 1)

(
1
p −

1
2

))
.

Proof. The Bessel (β, p) capacity of a Borel set E inM is de�ned as

Bβ,p(E) = inf
{
‖f‖pLp : Gβf(x) ≥ 1 on E

}
.

See [52], Section 2.6, for the de�nition on the Euclidean spaces Rd and the Ap-

pendix below. The de�nition and properties of Bessel capacity in a manifold are

similar. For ε > 0 and t > 0, let

E =

{
x ∈ Ω ∩ {distance {x, ∂Ω} > ε} : lim sup

R→+∞
{|SαRGγf(x)|} > t

}
.

Theorem 1.8 and an approximation of f(x) with test functions show that the

(β, p) capacity of E is zero for every ε > 0 and t > 0. On the other hand, if a set

has (β, p) capacity zero, then it also has d − βp + η Hausdor� measure zero for

every η > 0. This implies that the d − βp Hausdor� dimension of the divergent

set is zero.

Examples. In [35] it is shown that there exists radial functions in L2d/(d+1)(M),

vanishing on half of M, with spherical harmonic expansions diverging almost

everywhere onM. Actually a small modi�cation of the argument gives divergence

everywhere. See [20] for the two dimensional case of the expansion in Legendre

polynomials. On the other hand, by an application of the Rademacher-Menshov

theorem on orthogonal series, in [33] it is shown that the spherical partial sums

of functions in L2 Sobolev spaces of positive order converge almost everywhere.
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As mentioned at the end of the proof of Lemma 1.9, we suspect that some of

the indexes in Theorem 1.8 and Corollary 1.12 can be improved.

1.5 Localization for square integrable functions

Theorem 1.13. Assume that one of the following conditions holds:

(1) α ≥ 0 , 0 ≤ α+ γ < d/2 , δ = d− 2(α+ γ);

(2) α ≥ 0 , (d− 1)/4 ≤ α+ γ ≤ (d− 1)/2 , δ = d− 2(α+ γ)− 1;

(3) α ≥ 0 , α+ γ ≥ (d− 1)/2 , δ = 0.

Assume that f(x) is in L2(M) and that Gγf(x) = 0 in an open set Ω, and let

dυ(x) a non-negative Borel measure with support in Ω ∩ {distance {x, ∂Ω} > ε}
for some ε > 0. Then there exists a positive constant C such that∫

M
sup
R>0
{|SαRGγf(x)|} dυ(x) ≤ C ‖f‖L2

{ ∫
M

∫
M

dυ(x) dυ(y)

|x− y|δ

} 1
2

.

If Gγf(x) vanishes in an open set Ω and if α+ γ ≥ 0, by the positivity of the

Bessel kernel, for every x in Ω ∩ {distance {x, ∂Ω} > ε} one has

sup
R>0
{|SαRGγf(x)|}

= sup
R>0
{|BRGγf(x)|} = sup

R>0

{∣∣Gα+γBRG
−αf(x)

∣∣}
≤ Gα+γ

(
sup
R>0

{∣∣BRG−αf ∣∣}) (x) .

By Lemma 1.10, if α ≥ 0, then∫
M

sup
R>0

{∣∣BRG−αf(x)
∣∣2} dx ≤ C

∫
M
|f(x)|2 dx .

Then part (1) of Theorem 1.13 follows from the following lemma and the estimate

G2(α+γ)(x, y) ≤ C |x− y|2(α+γ)−d in Lemma 1.2.

Lemma 1.14. For every F (x) ∈ L2(M), for every non-negative �nite Borel

measure dυ(x), and for every η > 0,∫
M
|GηF (x)| dυ(x) ≤ ‖F‖L2

{ ∫
M

∫
M

G2η(x, y) dυ(x) dυ(y)

} 1
2

.
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Proof. Since the Bessel kernel is positive, it follows that

|GηF (x)| ≤ Gη|F |(x) .

Then it su�ces to assume F (x) ≥ 0. We get

∫
M

GηF (x) dυ(x) =

∫
M

 +∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−η/2
F̂ (n, j) Yn,j(x)

 dυ(x)

≤


+∞∑
n=0

dn∑
j=1

∣∣∣F̂ (n, j)
∣∣∣2


1
2


+∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−η ∣∣∣∣∫
M

Yn,j(x) dυ(x)

∣∣∣∣2


1
2

= ‖F‖L2


∫
M

∫
M

+∞∑
n=0

(
1 + λ2

n

)−η dn∑
j=1

Yn,j(x) Yn,j(y)

 dυ(x) dυ(y)


1
2

= ‖F‖L2

{ ∫
M

∫
M

G2η(x, y) dυ(x) dυ(y)

} 1
2

.

To prove part (2) and (3) of Theorem 1.13 it su�ces to replace the maximal

operator supR>0 {|SαRGγf(x)|} with a linearised version g(x)BR(x)G
γf(x), where

g(x) and R(x) are arbitrary Borel functions with |g(x)| ≤ 1 and R(x) ≥ 1.

Moreover, possibly splitting the measure dν(x) into a �nite sum of measures with

small support, one can assume that the diameter of the support of the measure

is smaller than half of the diameter of the manifoldM. In particular, if a point

x is in the support of the measure, then the antipodal points are far from this

support. Set

g(x) =
BR(x)Gγf(x)∣∣BR(x)Gγf(x)

∣∣ .
Then, with the notation B̂R(λ) = mR(λ)−mR ∗ ψ(λ),∫

M

∣∣BR(x)G
γf(x)

∣∣ dυ(x)

=

∫
M

g(x)

 +∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−γ/2
B̂R(x)(λn) f̂(n, j) Yn,j(x)

 dυ(x)

≤ ‖f‖L2


+∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−γ ∣∣∣∣ ∫
M

g(x) B̂R(x)(λn) Yn,j(x) dυ(x)

∣∣∣∣2


1
2

.
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Lemma 1.15. Assume that dυ(x) is a nonnegative measure with support smaller

than half of the diameter of the manifoldM, and that

δ =

{
d− 2(α+ γ)− 1 if (d− 1)/4 ≤ α+ γ ≤ (d− 1)/2 ,

0 if α+ γ ≥ (d− 1)/2 .

Also assume that |g(x)| ≤ 1. Then

+∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−γ ∣∣∣∣ ∫
M

g(x) B̂R(x)(λn) Yn,j(x) dυ(x)

∣∣∣∣2 ≤ C ∫
M

∫
M

dυ(x) dυ(y)

|x− y|δ
.

Proof. By the addition formula Zn(x, y) =
∑dn

j=1 Yn,j(x)Yn,j(y), we can write

+∞∑
n=0

dn∑
j=1

(
1 + λ2

n

)−γ ∣∣∣∣ ∫
M

g(x) B̂R(x)(λn) Yn,j(x) dυ(x)

∣∣∣∣2 =

∫
M

∫
M

(
+∞∑
n=0

(
1 + λ2

n

)−γ
B̂R(x)(λn) B̂R(y)(λn) Zn(x, y)

)
g(x) g(y) dυ(x) dυ(y) .

De�ne

I(x, y) =

∣∣∣∣∣
+∞∑
n=0

(
1 + λ2

n

)−γ
B̂R(x)(λn) B̂R(y)(λn) Zn(x, y)

∣∣∣∣∣ .
Using the estimates for Zn(x, y) in part (2) of Lemma 1.1 and the estimate on

B̂R(λ) in Lemma 1.4, if t = |x− y| with 0 ≤ t ≤ π/2,

I(x, y) ≤ C
+∞∑
n=0

(1 + λn)d−2γ−1 (1 + λnt)
−(d−1)/2

∣∣∣B̂R(x)(λn)
∣∣∣ ∣∣∣B̂R(y)(λn)

∣∣∣
≤ C R(x)−α R(y)−α

+∞∑
n=0

(1 + λn)d−2γ−1 (1 + λnt)
−(d−1)/2

(1 + |R(x)− λn|)k (1 + |R(y)− λn|)k
.

Observe that in the last sum only a �nite number of terms come into play, the

ones with |R(x)− λn| . C and |R(y)− λn| . C. This gives

I(x, y) ≤ C R(y)−α R(x)d−α−2γ−1 (1 +R(x)t)−(d−1)/2 (1 + |R(x)−R(y)|)−k

+ C R(x)−α R(y)d−α−2γ−1 (1 +R(y)t)−(d−1)/2 (1 + |R(x)−R(y)|)−k .

If k is large and if R(x) and R(y) are close to each other, R(x) ≤ R(y) ≤ 3R(x),

then (1 + |R(x)−R(y)|)−k can be bounded by one and this gives

I(x, y) ≤ C R(y)−α R(x)d−α−2γ−1 (1 +R(x)t)−(d−1)/2

+ C R(x)−α R(y)d−α−2γ−1 (1 +R(y)t)−(d−1)/2

≤ C R(x)d−2α−2γ−1 (1 +R(x)t)−(d−1)/2 .
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IfR(x) andR(y) are far from each other, 3R(x) < R(y), then (1 + |R(x)−R(y)|)−k

can be bounded by R(y)−k and this gives

I(x, y) ≤ C R(x)d−α−2γ−1 R(y)−α−k (1 +R(x)t)−(d−1)/2

+ C R(x)−α R(y)d−α−2γ−1−k (1 +R(y)t)−(d−1)/2

≤ C R(x)d−2α−2γ−1 (1 +R(x)t)−(d−1)/2

+ C R(y)d−2α−2γ−1 (1 +R(y)t)−(d−1)/2 .

In both cases, when (d− 1)/4 ≤ α+ γ ≤ (d− 1)/2,

I(x, y) ≤ C sup
R≥1

{
Rd−2α−2γ−1 (1 +Rt)−(d−1)/2

}
≤ C t−d+2α+2γ+1 sup

R≥1

{
(Rt)d−2α−2γ−1 (1 +Rt)−(d−1)/2

}
≤ C t−d+2α+2γ+1 .

A similar computation shows that, if α+ γ ≥ (d− 1)/2, then I(x, y) ≤ C.

This concludes the proof of Theorem 1.13. By this theorem, the Bochner-Riesz

means cannot diverge on the supports of measures with �nite energy. Hence, by

the relation between energy, capacity, and dimension, these means cannot diverge

on sets with large dimension. This implies the following.

Corollary 1.16. Under the above assumptions on p, α, γ and δ, if Gγf(x) = 0

in an open set Ω, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in the open set Ω, with possible exceptions in a set with Hausdor�

dimension at most δ.

Proof. It su�ces to show that the maximal function supR>0 {|SαRGγf(x)|} cannot
be in�nite on subset of Ω with Hausdor� dimension greater then δ. Consider

τ, σ, η ∈ R and recall that the τ -energy of a �nite Borel measure υ on a metric

spaceM is de�ned by ∫
M

∫
M

dυ(x) dυ(y)

|x− y|τ
.

If σ < η, it follows directly from the properties of the Hausdor� measure that every

set of dimension η has in�nite σ-dimensional measure. Besides, by Frostman's

Lemma (see [32], Theorem 8.17), there is a �nite and nontrivial Borel measure

supported on one of these sets with υ{|x − p| < r} ≤ rσ for each p ∈ M and

r > 0. In particular, this measure has �nite τ -energy for every τ < σ. To obtain

the corollary it then su�cient to apply Theorem 1.13 with δ < τ < σ < η.
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The above Theorem 1.13 and Corollary 1.16 extend to compact rank one

symmetric spaces the results in [21] for the Euclidean spaces Rd. It is likely that

some of the above results can be further extended to eigenfunction expansions of

elliptic di�erential operators on Riemannian manifolds.

Finally, we want to point out that while the �rst two theorems on pointwise

localization are sharp, we do not expect that in the other theorems the indexes

on the dimension of sets where localization may fail are best possible.



Chapter 2

Localization for Riesz Means on

compact manifolds

2.1 The Laplace-Beltrami operator on compact mani-

folds

LetM be a smooth connected and compact Riemannian manifold of dimension

d ≥ 2. Assume that the Riemannian metric g = (gij) is of class C∞ and indicate

the canonical measure with dµ(x) =
√
|det g| dx. With respect to this measure,

the Lebesgue space L2(M) contains all those measurable functions on M for

which ∫
M
|f(x)|2 dµ(x) < +∞ .

On L2(M) one can de�ne the usual inner product and the induced norm, given

by

〈f, g〉L2 =

∫
M

f(x)g(x) dµ(x) ,

and

‖f‖L2 =
√
〈f, f〉L2 .

With this inner product, L2(M) is an Hilbert space. We shall denote by |x− y|
the Riemannian distance between the two points x and y inM.

The Laplace-Beltrami operator ∆g associated with the metric g ofM is given,

in local coordinates (x1, x2, . . . , xd), by

∆g = − 1√
| det g|

d∑
i,j=1

∂

∂xi

(
gij
√
|det g| ∂

∂xj

)
,

27
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where the matrix (gij) is the inverse matrix of g. ∆g is a symmetric, self-adjoint

and positive de�nite elliptic operator. Furthermore, it follows from the compact-

ness ofM and the theory of elliptic partial di�erential equations that ∆g has pure

point spectrum. This means that L2(M) admits an orthonormal basis consisting

of eigenfunctions ϕλ(x) of ∆g with associated eigenvalues λ2:

∆gϕλ(x) = λ2 ϕλ(x) .

The set of eigenvalues is an in�nite sequence {λ2} whose only accumulation point

is at in�nity and each eigenvalue occurs with �nite multiplicity. It turns out that,

in general, the spectrum and the eigenfunctions cannot be computed explicitly.

The very few exceptions are manifolds like round spheres and �at tori (see [16]

for some classical examples where the spectrum is known). However, it is possible

to get estimate of the spectrum, and these estimation are related to the geometry

of the manifold (M, g) we consider.

Asymptotically, we know how the spectrum of ∆g behave. Let N(R) be the

number of eigenvalues, counted with multiplicity, less than R: N(R) = #{λ2 ≤
R}. Then Weyl's asymptotic formula says that (see [28]):

N(R) ∼ V ol(M) wd
(2π)d

R d/2 ,

as R → +∞, where wd denotes the volume of the unit ball in Rd. This was �rst
proved by Weyl [51] for a bounded domain Ω ⊂ R3. Written in a slightly di�erent

form it is known in physics as the Rayleigh-Jeans law. Raleigh [43] derived it for a

cube. Garding [22] proved Weyl's law for a general elliptic operator on a domain in

Rd. For a closed Riemannian manifold this law was proved by Minakshisundaram

and Pleijel [39].

Hörmander in [28] gives a sharp estimate for the remainder in Weyl's law.

Suppose that ϕλ(x) is an eigenfunction of ∆g with associated eigenvalue λ2 6= 0. If

one scales the metric by gij → λ2gij , an elliptic equation with bounded coe�cients

is obtained. Also, a geodesic ball of radius Cλ−1 scales to a ball of radius C.

Elementary local elliptic theory shows that the L∞-norm of ϕλ(x) is bounded by

its L2-norm relative to a scaled metric. Rescaling back to the original problem

yields the estimate

‖ϕλ‖L∞ ≤ C λd/2 ‖ϕλ‖L2 .

Remarkably, Hörmander [28] proved that for eigenfunctions on compact manifolds

one has

‖ϕλ‖L∞ ≤ C λ(d−1)/2 ‖ϕλ‖L2 . (2.1)
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In Hörmander's proof, one constructs a parametrix for the fundamental solution

of the wave equation. In particular, (d− 1)/2 is the optimal power of λ. In fact,

rotationally symmetric spherical harmonics on Sd illustrate the sharpness of (2.1).

2.2 Eigenfunction expansions and the Bochner-Riesz

means

As in the previous chapter, we de�ne the Fourier expansion of a square inte-

grable function, and more generally of a tempered distribution, as

f(x) =
∑
λ

f̂(λ) ϕλ(x) ,

with

f̂(λ) =

∫
M

f(x) ϕλ(x) dµ(x) .

These Fourier series converge in the metric of L2(M) and in the topology of

distributions. However, if f(x) is merely in Lp(M), 1 ≤ p < 2, we can only

expect that
∑

λ f̂(λ)ϕλ(x)→ f(x) pointwise after a suitable summation method

has been applied. In this chapter, as in Chapter 1 and in most of the literature

on eigenfunction expansions, only Riesz means will be considered.

De�nition 2.1. The Bochner-Riesz means of order α of functions in M are

de�ned by

SαRf(x) =
∑
λ

(
1− λ2

R 2

)α
+

f̂(λ) ϕλ(x) =

∫
M
SαR(x, y) f(y) dµ(y) ,

where

SαR(x, y) =
∑
λ

(
1− λ2

R 2

)α
+

ϕλ(x) ϕλ(y)

is the Bochner-Riesz kernel.

We also recall the de�nition of the Bessel potentials and sum up the related

properties.

De�nition 2.2. Let −∞ < γ < +∞ and f(x) =
∑

λ f̂(λ)ϕλ(x) be a tempered

distribution onM. The Bessel potential Gγf(x) of f(x) is that tempered distri-

bution de�ned by

Gγf(x) =
∑
λ

(
1 + λ2

)−γ/2
f̂(λ) ϕλ(x) .
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As before, with an abuse of notation we write Gγf(x) as an integral:

Gγf(x) =

∫
M

Gγ(x, y) f(y) dy ,

with

Gγ(x, y) =
∑
λ

(
1 + λ2

)−γ/2
ϕλ(x) ϕλ(y) .

Indeed, if γ > 0 then Gγ(x, y) is an integrable kernel, but when γ = −2n, with n

integer, then Gγ is the di�erential operator (1 + ∆)n.

Lemma 2.1. If γ > 0, then the Bessel kernel Gγ(x, y) is positive and integrable,

and it is smooth in {|x − y| 6= 0}. Moreover, if 0 < γ < d, then Gγ(x, y) ≈
|x− y|γ−d when |x− y| → 0.

Proof. The same proof of Lemma 1.2 in Chapter 1 applies.

The Rademacher-Menshov theorem plays an important role in the theory of

orthogonal series. Suppose that we have a series in an arbitrary orthonormal

system {ϕn(x)}+∞n=1 on a �nite measure space. The Rademacher-Menshov theo-

rem states that the sequence {log2 n} is a Weyl multiplier for the almost every-

where convergence with respect to the Lebesgue measure of this series, that is, if∑+∞
n=1 |c(n)|2 log2(n) < +∞, then

∑+∞
n=1 c(n)ϕn(x) converges for almost every x.

As consequence of the Rademacher-Menshov theorem and of Weyl's estimates for

the spectral function, Meaney in [33] proved the theorem below.

Theorem 2.2 (Meaney). Let f(x) be a square integrable function of M and

assume that ∑
λ

|f̂(λ)|2 log2(1 + λ) < +∞ .

Then, for almost every x inM,

lim
R→+∞

{∑
λ<R

f̂(λ) ϕλ(x)

}
= f(x) .

Another result concerning the almost everywhere convergence of the Bochner-

Riesz means, is the following theorem.

Theorem 2.3. Let α > 0 and assume that∑
λ

|f̂(λ)|2 < +∞ .
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Then, for almost every x inM,

lim
R→+∞

{∑
λ<R

(
1− λ2

R 2

)α
+

f̂(λ) ϕλ(x)

}
= f(x) .

This is a classical result whenM is the Euclidean torus Td (see [46]). For the
general case see Hörmander [27], Theorem 6.4. In what follows we are looking for

localization results that are somehow better than the above theorems.

2.3 Decomposition of the Bochner-Riesz kernel

As it was seen in Section 1.2, the main tool in our localization results is a

decomposition of SαR(x, y) into a kernel with small support plus a remainder with

small Fourier transform.

Let ε > 0 and let ψ(λ) be an even test function with cosine Fourier transform{
ψ̂(τ) = 1 if |τ | ≤ ε/2 ,
ψ̂(τ) = 0 if |τ | ≥ ε .

Let mR = (1− λ2/R 2)α+, then

SαRf(x) =
∑
λ

mR(λ) f̂(λ) ϕλ(x)

=
∑
λ

mR ∗ ψ(λ) f̂(λ) ϕλ(x) +
∑
λ

(mR(λ)−mR ∗ ψ(λ)) f̂(λ) ϕλ(x)

= ARf(x) + BRf(x) .

The associated kernels are given by

AR(x, y) =
∑
λ

mR ∗ ψ(λ) ϕλ(x) ϕλ(y) ,

BR(x, y) =
∑
λ

(mR(λ)−mR ∗ ψ(λ)) ϕλ(x) ϕλ(y) .

We can rewrite Lemma 1.3 and Lemma 1.4 in order to obtain the following

properties: AR(x, y) has small support and the Fourier transform of the kernel

BR(x, y) is small. For reasons that will be clearer in what follows, it is convenient

to write some estimates also for the derivative of the quantity mR(λ)−mR ∗ψ(λ).
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Lemma 2.4. The kernel AR(x, y) has support in {|x− y| ≤ ε}. In particular, if

a tempered distribution f(x) vanishes in an open set Ω, then for all x ∈ Ω with

distance (x, ∂Ω) > ε,

ARf(x) = 0 .

Proof. One proceeds as in the proof of Lemma 1.3.

Lemma 2.5. Let α > −1 real. For every k > 0 there exists C > 0 such that for

every R > 1,

(1) If α ≥ 0, then

|mR(λ)−mR ∗ ψ(λ)| ≤ C R−α (1 + |R− λ|)−k ;

(2) If −1 < α < 0, then

|mR(λ)−mR ∗ ψ(λ)| ≤

{
C R−α |R− λ|−k if |R− λ| ≥ 1

C R−α |R− λ|α if |R− λ| ≤ 1
;

(3) If α ≥ 1, then∣∣∣∣ ddλ {mR(λ)−mR ∗ ψ(λ)}
∣∣∣∣ ≤ C R−α (1 + |R− λ|)−k ;

(4) If 0 < α < 1, then∣∣∣∣ ddλ {mR(λ)−mR ∗ ψ(λ)}
∣∣∣∣ ≤

{
C R−α |R− λ|−k if |R− λ| ≥ 1

C R−α |R− λ|α if |R− λ| ≤ 1
.

Moreover,

(5) For every α ≥ 0,∫ R+1

R−1
|d {mR(λ)−mR ∗ ψ(λ)}| ≤ C R−α .

Proof. (1) One proceeds as in the proof of Lemma 1.4, with α real.

(2) When |R− λ| ≥ 1 we proceed as in the proof of (1). For |R − λ| ≤ 1 we use

the estimate:

|mR(λ)| = R−2α (R+ λ )α (R− λ )α+

≤ R−α (R− λ )α+ .
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Furthermore, if |λ−R| ≤ 1,

|mR ∗ ψ(λ)| ≤
∫
R
R−α [R− (λ− τ)]α+ |ψ(τ)| dτ

≤ C R−α .

(3) First observe that

d

dλ
{mR(λ)−mR ∗ ψ(λ)} =

d

dλ

{(
1− λ2

R 2

)α
+

− ψ ∗
(

1− λ2

R 2

)α
+

}
= −2αλR−2

{(
1− λ2

R 2

)α−1

+

− ψ ∗
(

1− λ2

R 2

)α−1

+

}

− 2αR−2 (λψ(λ)) ∗
(

1− λ2

R 2

)α−1

+

.

If α ≥ 1, then (1− λ2/R2)α−1
+ is integrable. By part (1), for any k > 0, with the

abuse of notation k − 1 = k, since k can be arbitrary large,

2αλR−2

∣∣∣∣∣
(

1− λ2

R 2

)α−1

+

− ψ ∗
(

1− λ2

R 2

)α−1

+

∣∣∣∣∣
≤ CλR−2

(
R−(α−1) (1 + |R− λ|)−k

)
≤ C R−α (1 + |R− λ|)−k .

Since ψ(λ) is even, tψ(t) has mean value zero. Hence

(λψ(λ))∗
(

1− λ2

R 2

)α−1

+

=

∫
R
τψ(τ)

{(
1− (λ− τ)2

R 2

)α−1

+

−
(

1− λ2

R 2

)α−1

+

}
dτ.

Then, arguing as in part (1), one obtains the desired estimate.

(4) We can argue as in (3) and use part (2) to get the estimates for the two terms

of the derivative of mR(λ)−mR ∗ ψ(λ).

(5) When α > 0 the last part of the lemma immediately follows from (3) and

(4). While if α = 0 it su�ces to note that the function mR(λ) has bounded total

variation and∫ R+1

R−1
|d {mR(λ)−mR ∗ ψ(λ)}| ≤

∫ R+1

R−1
|dmR(λ)| +

∫ R+1

R−1
|d (mR ∗ ψ(λ))|

≤ 1 +

∫
R
|ψ(λ)| dλ .
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2.4 Pointwise and almost everywhere results

The following Theorem 2.7 generalizes to Bochner-Riesz means on a compact

manifoldM an analogue result of Meaney for spherical partial sums. Meaney in

[38] showed the following.

Theorem 2.6 (Meaney). Suppose that Ω is an open set inM and f(x) ∈ L2(M)

has support disjoint from Ω. If y ∈ Ω and

sup
0≤h≤1

∣∣∣∣∣∣
∑

t≤λ≤t+h
f̂(λ)ϕλ(y)

∣∣∣∣∣∣ −→ 0

as t→ +∞, then the spherical partial sums of the eigenfunction expansion of f(x)

converges to zero at y:

lim
R→+∞

{∑
λ<R

f̂(λ)ϕλ(y)

}
= 0 .

The analogous theorem for compact symmetric spaces of rank one has been

proved once again by Meaney in [36]. Observe that in this case, the eigenvalues

are concentrated around an integer, hence the supremum in not necessary. The

following theorem is a generalization to Bochner-Riesz means of order α ≥ 0 of

Theorem 2.6, furthermore it gives an alternative proof when α = 0.

Theorem 2.7. Let α ≥ 0 and assume that f(x) is a tempered distribution onM,

with eigenfunction expansion
∑

λ f̂(λ)ϕλ(x). Also assume that f(x) = 0 for all x

in a ball {|x− y| < ε}, with radius ε > 0 and centre y. If the following condition

holds,

lim
R→+∞

R−α sup
0≤h≤1

∣∣∣∣∣∣
∑

R≤λ≤R+h

f̂(λ)ϕλ(y)

∣∣∣∣∣∣
 = 0 ,

then

lim
R→+∞

{SαRf(y)} = 0 .

Proof. Since f(x) = 0 in {|x− y| < ε}, by Lemma 2.4, ARf(y) = 0.

Let {Λj}+∞j=0 be an increasing sequence tending to in�nity and such that Λ0 = 0

and j − 1/3 < Λj < j + 1/3 for j = 1, 2, . . . . Furthermore assume that no Λj is

an eigenvalue of the Laplace-Beltrami operator ∆. Then one can write

BRf(y)

= (mR(0)−mR ∗ ψ(0)) f̂(0) +
+∞∑
j=0

 ∑
Λj<λ≤Λj+1

(mR(λ)−mR ∗ ψ(λ)) f̂(λ) ϕλ(y)

 .
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The �rst term tends to zero, because of mR(0) −mR ∗ ψ(0) → 0 as R → +∞.

De�ne

F (t) = mR(t)−mR ∗ ψ(t) ,

Gj(t) =
∑

Λj<λ≤t
f̂(λ) ϕλ(y) .

Observe that F (t) is also a function of R and Gj(t) is also a function of y, but y

is �xed. Writing the above sums as a Riemann-Stieltjes integrals, one obtains:

∑
Λj<λ≤Λj+1

(mR(λ)−mR ∗ ψ(λ)) f̂(λ) ϕλ(y) =

∫ Λj+1

Λj

F (t) dGj(t)

= F (Λj+1)Gj(Λj+1) −
∫ Λj+1

Λj

Gj(t) dF (t) .

Recall that for every k > 0, by Lemma 2.5,

|F (t)| ≤ C R−α (1 + |R− t|)−k

and, by hypothesis,

j−α |Gj(t)| −→ 0 if j → +∞ .

Putting these facts together, for every δ > 0 there exists T > 0 such that for

every j = 1, 2, . . . and for every R > T ,

|F (Λj+1)Gj(Λj+1)| ≤

{
C jα R−α−k if j ≤ R/2 ,
δ jα R−α (1 + |R− j|)−k if j ≥ R/2 .

Then, for the boundary terms,

+∞∑
j=0

|F (Λj+1)Gj(Λj+1)|

≤ C R−α−k
∑
j≤R/2

jα + 2α δ
∑

R/2<j≤2R

(1 + |R− j|)−k + 2k δ R−α
∑
j>2R

jα−k

≤ C
(
R1−k + δ + δ R1−k

)
.

In particular, if R is su�ciently large, R1−k < δ, the above quantity is dominated

by Cδ . Now we have just to estimate

+∞∑
j=0

∫ Λj+1

Λj

|Gj(t) dF (t)| .
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First consider α ≥ 1. In this case dF (t) is absolutely continuous with respect to

the Lebesgue measure, then∫ Λj+1

Λj

|Gj(t)| |dF (t)| =

∫ Λj+1

Λj

|Gj(t)|
∣∣∣∣ ddtF (t)

∣∣∣∣ dt
≤ sup

Λj≤t≤Λj+1

{|Gj(t)|}
∫ Λj+1

Λj

∣∣∣∣ ddtF (t)

∣∣∣∣ dt .
By part (3) of Lemma 2.5, for every j = 1, 2, . . . , and with the abuse of notation

k − 1 = k, since k can be arbitrary large,

sup
Λj≤t≤Λj+1

{|Gj(t)|}
∫ Λj+1

Λj

∣∣∣∣ ddtF (t)

∣∣∣∣ dt
≤ C sup

Λj≤t≤Λj+1

{
j−α |Gj(t)|

}
(j/R)α (1 + |R− j|)−k .

Splitting the sum over j into three parts, one gets

+∞∑
j=0

∫ Λj+1

Λj

|Gj(t) dF (t)|

≤ C

+∞∑
j=0

sup
Λj≤t≤Λj+1

{
j−α |Gj(t)|

}
(j/R)α (1 + |R− j|)−k

≤ C R−α−k
∑
j<R/2

jα + C δ
∑

R/2≤j≤2R

(1 + |R− j|)−k + C δ R−α
∑
j>2R

jα−k

≤ C R1−k + C δ + C δ R1−k .

In particular, if R is su�ciently large, R1−k < δ, the above quantity is dominated

by Cδ.

When 0 < α < 1 one can use part (4) of Lemma 2.5 to get a similar estimate.

Finally, when α = 0, dF (t) is no more absolutely continuous, but part (5) of

Lemma 2.5 applies.

Now recall that in Chapter 1 we proved the following result.

Theorem 2.8 (Bastis - Meaney). Suppose that M is a compact rank one sym-

metric space. If f(x) ∈ L2(M) is zero almost everywhere on an open set Ω ⊂M,

then the spherical partial sums of its eigenfunction expansion converges to zero

almost everywhere on Ω:

lim
R→+∞

{∑
λ<R

f̂(λ)ϕλ(x)

}
= 0 a.e. in Ω .
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When M is a smooth connected and compact Riemannian manifold we are

unable to give a complete generalization, but we can prove a sightly weaker result:

If {Rj}+∞j=1 is an increasing sequence which tends to in�nity discretely, the almost

everywhere localization for S0
Rj
f(x) holds when f(x) ∈ L2(M). Note that, if the

eigenvalues group together, as in the compact rank one symmetric space case, one

obtains the full result of Bastis and Meaney.

Theorem 2.9. Assume that f(x) is in L2(M) and that f(x) = 0 in an open set

Ω ofM. If Rj −Rj−1 > δ > 0 for every j = 1, 2, . . . , then for almost every x in

Ω,

lim
j→+∞

{|S0
Rjf(x)|} = 0 .

Proof. It su�ces to show that for every ε > 0 the almost everywhere localization

holds in Ωε = {x ∈ Ω : distance(x, ∂Ω) > ε}. As we have seen in Section

2.3, SαRjf(x) can be decomposed into the sum of ARjf(x) and BRjf(x). By

Lemma 2.4, ARjf(x) = 0 if distance(x, ∂Ω) > ε. It then su�ces to show that

BRjf(x)→ 0 almost everywhere as j → +∞. Replace the usual maximal operator

sup
R>0
{|BRf(x)|}

by the discrete maximal operator

sup
j≥1

{∣∣BRjf(x)
∣∣} .

Then, ∫
M

sup
j≥1

{∣∣BRjf(x)
∣∣2} dx ≤

∫
M

 +∞∑
j=1

∣∣BRjf(x)
∣∣2 dx

=

+∞∑
j=1

( ∫
M

∣∣BRjf(x)
∣∣2 dx)

=
+∞∑
j=1

(∑
λ

∣∣mRj (λ)−mRj ∗ ψ(λ)
∣∣2 |f̂(λ)|2

)

=
∑
λ

|f̂(λ)|2
 +∞∑

j=1

∣∣mRj (λ)−mRj ∗ ψ(λ)
∣∣2 .

Rememberer that α = 0. By Lemma 2.5 and by the hypothesis Rj − Rj−1 > δ,

for all j = 1, 2, . . . , there exists C > 0 such that, for every k > 0,

+∞∑
j=1

∣∣mRj (λ)−mRj ∗ ψ(λ)
∣∣2 ≤ C

+∞∑
j=1

(1 + |Rj − λ|)−k ≤ C .
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Then we can conclude that∫
M


+∞∑
j=1

∣∣BRjf(x)
∣∣2 dx ≤ C

∑
λ

|f̂(λ)|2 .

2.5 Hausdor� dimension of divergent set in L2-Sobolev

spaces

Beurling and then Salem and Zygmund (see [53], Chapter XIII) studied the

capacity of sets of divergence of one dimensional Fourier series of functions in

Sobolev classes, and these results have been extended to multidimensional Fourier

expansions on Eucledean spaces by Carbery and Soria in [13] and [14]. In partic-

ular, in [13], [14] and [15] it is stated that at the indices α = γ = 0 localization

may fail on sets of measure zero but of full dimension. The following result is an

analogue of part (1) of Theorem 1.13 in the previous chapter.

Theorem 2.10. Assume that the following conditions hold:

α ≥ 0 , 0 ≤ α+ γ < d/2 , δ = d− 2(α+ γ) .

Assume that f(x) is in L2(M) and that Gγf(x) = 0 in an open set Ω, and let

dυ(x) a non-negative Borel measure with support in Ω ∩ {distance (x, ∂Ω) > ε}
for some ε > 0. Then there exists a positive constant C such that∫

M
sup
R>0
{|SαRGγf(x)|} dυ(x) ≤ C ‖f‖L2

{ ∫
M

∫
M

dυ(x) dυ(y)

|x− y|δ

} 1
2

.

Proof. The proof of Theorem 2.10 is similar to that of Theorem 1.13, but a bit

more delicate. Decompose SαR as AR + BR as said before, the operator AR is

localized, then it su�ces to consider BR. We shall prove that, for every ε > 0

there exists F ∈ L2(M) such that

(1) sup
R>0
{|BRf(x)|} ≤

∫
M
|x− y|α+γ−ε−d F (y) dy , (2.2)

(2) ‖F‖L2 ≤ C

∫
M

∣∣G−γf(z)
∣∣2 dz . (2.3)
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Lemma 2.11. Fix ε > 0. If 0 < ε < α+ γ, then there exists C > 0 such that

sup
R>1
{|BRf(x)|} ≤ C Gα+γ−ε sup

R>0

{∣∣(S0
R ◦Gε−γ

)
f(x)

∣∣} .
Proof. De�ne

P (λ) =
(
1 + λ2

)α/2
(m(λ)−m ∗ ψ(λ))

Q(t) =
(
S0
t ◦Gα

)
f(x) =

∑
λ<t

(
1 + λ2

)−α/2
f̂(λ) ϕλ(x) .

Observe that P (λ) is also a function of R and Q(t) is also a function of x. Using

the Riemann-Stieltjes integrals we can write

BRf(x) =
∑
λ

(m(λ)−m ∗ ψ(λ)) f̂(λ) ϕλ(x)

=
∑
λ

P (λ)
(
1 + λ2

)−α/2
f̂(λ) ϕλ(x)

=

∫ +∞

0
P (τ) dQ(τ)

= −
∫ +∞

0
Q(τ) dP (τ) .

In particular,

sup
R>1
{|BRf(x)|} ≤ sup

τ>0
{|Q(τ)|} sup

R>1

{ ∫ +∞

0

∣∣∣∣ ddτ P (τ)

∣∣∣∣ dτ } .

The integral of dP (τ)/dτ can be bounded independently on R. Indeed

d

dτ
P (τ) =

d

dτ

{(
1 + τ2

)α/2
(m(τ)−m ∗ ψ(τ))

}
= ατ

(
1 + τ2

)α/2−1
(m(τ)−m ∗ ψ(τ))

− 2ατR−2
(
1 + τ2

)α/2 [(
1− τ2

R2

)α−1

+

− ψ ∗
(

1− τ2

R2

)α−1

+

]

− 2αR−2
(
1 + τ2

)α/2
(τψ(τ)) ∗

(
1− τ2

R2

)α−1

+

.

Observe that if α > 0 then (1 − τ2/R2)α−1
+ is integrable. Using Lemma 2.5, for

any k > 0, we have the following estimates:

α

∫ +∞

0
τ
(
1 + τ2

)α/2−1 |m(τ)−m ∗ ψ(τ)| dτ

≤ C R−α
∫ +∞

0
τ
(
1 + τ2

)α/2−1
(1 + |R− τ |)−k dτ ≤ C R−1 ,
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2αR−2

∫ +∞

0
τ
(
1 + τ2

)α/2 ∣∣∣∣∣
(

1− τ2

R2

)α−1

+

− ψ ∗
(

1− τ2

R2

)α−1

+

∣∣∣∣∣ dτ ≤ C ,

and, similarly,

2αR−2

∫ +∞

0

(
1 + τ2

)α/2 |τψ(τ)| ∗
(

1− τ2

R2

)α−1

+

dτ ≤ C R−1 .

Finally write Gα(x, y) = (Gα+γ−ε ◦Gε−γ) (x, y). Under our assumptions α+ γ −
ε > 0, then Gα+γ−ε(x, y) is positive and we have

sup
τ>0
{|Q(τ)|} = sup

R>0

{∣∣(S0
R ◦Gα

)
f(x)

∣∣} ≤ Gα+γ−ε sup
R>0

{∣∣(S0
R ◦Gε−γ

)
f(x)

∣∣} .

The following Lemma is due to C. Meaney (see [33]).

Lemma 2.12. Fix ε > 0. Then there exists C > 0 such that, for every tempered

distribution f(x),∫
M

sup
R>0

{∣∣(S0
R ◦Gε

)
f(x)

∣∣}2
dx ≤ C ‖f‖2L2 .

Proof. The proof follows from the Rademacher-Menshov theorem on convergence

of orthogonal expansions together with Weyl's estimates on the eigenvalues of

elliptic di�erential operators.

Lemma 2.13. For every F (x) ∈ L2(M), for every non-negative �nite Borel

measure dυ(x) and for every η > 0∫
M
|GηF (x)| dυ(x) ≤ ‖F‖L2

{ ∫
M

∫
M

G2η(x− y) dυ(x) dυ(y)

} 1
2

.

Proof. The proof of Lemma 1.14 applies.

Now take 0 < ε < α+ γ, η = α+ γ + ε and

F (x) = sup
R>0

{∣∣(S0
R ◦Gε−γ

)
f(x)

∣∣} .
Recalling that for 0 < 2η < d the Bessel kernel G2η(x, y) blows up as |x− y|2η−d

and using Lemma 2.11, Lemma 2.12 and Lemma 2.13, we have demonstrate (2.2)

and (2.3). So we get the proof of Theorem 2.10.
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By Theorem 2.10, the maximal function supR>0 {|SαRGγf(x)|} cannot be in-
�nite on the support of a measure of �nite energy, and this implies the following.

Corollary 2.14. Under the above assumptions on p, α, γ and δ, if Gγf(x) = 0

in an open set Ω, then

lim
R→+∞

{SαRGγf(x)} = 0

at all points in the open set Ω, with possible exceptions in a set with Hausdor�

dimension at most δ.

We are unable to give a complete extension of Theorem 1.13. This because we

do not know precise estimates for the analogue of the zonal spherical functions

on compact rank one symmetric spaces, i.e.∑
Λ≤λ<Λ+ε

ϕλ(x) ϕλ(y) .

When f(x) ∈ Lp(M) with p < 2 the pointwise localization is more di�cult

to study. Just to illustrate the problem, we recall that in [25] Hebisch has proved

that in a general compact manifold the Bochner-Riesz means of order α > d/2

of functions in L1(M) converges pointwise almost everywhere. We don't know

if the critical index for the almost everywhere convergence or localization is d/2

as proved by Hebisch, or (d− 1)/2 as suggested by the case of compact rank one

symmetric spaces or the torus.



Chapter 3

Appendix: Bessel capacity and

Hausdor� dimension

In this appendix we recall the notion of Bessel capacity which is critical in

describing the appropriate class of null sets for the treatment of our problems of

localizations. We refer to [52], Section 2.6, for more details.

The concept of capacity, as a theoretic measuring device, is one of the corner-

stones of potential theory and it is intimately associated to the idea of a Sobolev

function space, in much the same way that Lebesgue measure is related to the

classical Lp spaces. The sets of capacity zero are the exceptional sets for repre-

sentatives of the function spaces.

The notion of capacity has its origins in physics, where it measures the maxi-

mum amount of positive electric charge which can be carried by conductor while

keeping the potential generated by the charge below a �xed threshold. The no-

tion of capacity has been extended to nonlinear potentials, to various metric space

settings, to the theory of stochastic processes and more.

For the purposes of this thesis we are interested in the Bessel capacity. As

shown by Calderon's theorem (see [1], pg.13), every function F (x) in a classical

Sobolev space W γ,p(M) can be represented as a Bessel potential F (x) = Gγf(x),

with f(x) ∈ Lp(M). Gγ , −∞ < γ < +∞, is the Bessel operator presented in

Section 1.1 for the rank one symmetric spaces and in Section 2.2 for the general

case. It is interesting to observe that the associated Bessel kernel Gγ(x, y) is a

positive and integrable function and Young's inequality for convolutions gives

‖Gγf‖Lp ≤ C ‖f‖Lp , 1 ≤ p ≤ +∞ .

42
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The behaviour of Gγ(x, y) when y → x is of particular interest. We have as

|x − y| → 0 that Gγ(x, y) ≈ |x − y|γ−d. See Lemma 1.2 and Lemma 2.1 for the

proof.

We now introduce the notion of capacity, which we develop in terms of the

Bessel potentials.

De�nition 3.1. Let β > 0 and 1 ≤ p < +∞. The Bessel (β, p) capacity of a

Borel set E inM is de�ned as

Bβ,p(E) = inf
{
‖f‖pLp : Gβf(x) ≥ 1 on E

}
.

In case β = 0, we take Bβ,p as the Lebesgue measure.

Suppose p > 1 and βp < d. Then it is essentially a consequence of Sobolev's

inequality that there exists a constant C depending only on p, β and d such that

C−1 rd−βp ≤ Bβ,p(B(x, r)) ≤ C rd−βp ,

for all balls B(x, r) with x ∈ M and r > 0. This suggest that Bβ,p and Hd−βp,

the Hausdor� measure of dimension d−βp, are related. An important connection

between the Bessel capacity Bβ,p and Hr, the Hausdor� measure of dimension r,

is given by the following theorem.

Theorem 3.1. If p > 1 and 0 < β ≤ d/p, then Bβ,p(E) = 0 if Hd−βp(E) < +∞.

Conversely, if Bβ,p(E) = 0, then Hd−βp+ε(E) = 0 for every ε > 0.

One can reads the proof for Euclidean spaces in [24], Theorem 7.1. The proof

for the general case of a smooth, compact and connected Riemannian manifold

is similar. See also [1]. As a consequence the Hausdor� dimension of sets with

Bβ,p = 0 is at most d− βp.

From the de�nition of capacity it easily follows some elementary properties.

The �rst is the weak type inequality: for any f(x) ≥ 0 a.e. onM

Bβ,p({Gβf(x) > t}) ≤ t−p
∫
M

f(x)p dx .

Lemma 3.2. For 0 ≤ β < d and 1 < p < +∞, the following hold:

(1) Bβ,p(∅) = 0;

(2) If E1 ⊂ E2, then Bβ,p(E1) ≤ Bβ,p(E2);
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(3) If Ek ⊂M, k = 1, 2, . . . , then

Bβ,p

(
+∞⋃
k=1

Ek

)
≤

+∞∑
k=1

Bβ,p(Ek) .

A useful characterization of capacity is the following:

Bβ,p(E) = inf
f

{
inf
x∈E

Gβf(x)

}−p
=

{
sup
f

inf
x∈E

Gβf(x)

}−p
,

where f(x) ∈ Lp(M), f(x) ≥ 0 and ‖f‖Lp ≤ 1.
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