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Abstract This paper describes a new procedure to unbiasedly estimate the propor-
tions of ¢ population groups, which at least one is very small and then it can be
considered a rare group. This procedure guarantees the privacy protection of the
interviewees, as it is based on an extension of the Warner randomized response
model. As the estimation regards rare groups, the sampling design considered is the
inverse sampling. Some characteristics of the proposed estimators are investigated.
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1 Introduction

Sample surveys are fundamental to better understand the society we live in, and
the reliability on the results is a crucial point of the whole process. The surveys
regarding sensitive issues, stigmatizing attributes, or in general behaviors which
are not accepted by the majority of the population, can sometimes embarrass the
interviewees, and therefore they can be difficult to perform. When dealing with such
personal information, the refusal to respond or even worse, intentional incorrect
answers must be taken into account by the researcher, since it is evident that the
non-sampling error induced can bear unreliable estimates (for instance, see Cochran
1963).

Warner (1965) introduced an ingenious method that overcomes this issue. He
proposed a randomized response technique, which provides an unbiased estimator
for the unknown proportion 74 of the persons bearing a stigmatizing characteristic
A, with no privacy violation of the interviewee. There is no privacy violation in
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the sense that the interviewer receives an answer (“yes” or “no”) to the question
“Is the statement on the card you drew, true for you?”, but he does not know what
the statement says. Even if one can believe that nowadays such technique has to
be considered overcome, for example, by the computer-assisted self-interview, in
the literature there are some studies which prove the contrary (see, for example,
Van der Heijden et al. 2000; Van der Heijden and Bockenholt 2008). From the
innovative paper of Warner (1965) a lot of improvements have been implemented
and a lot of more refined techniques have been developed. Multiple randomized
response devices (see Mangat and Singh 1990; Singh 2002; Gjestvang and Singh
2006), modified randomized response techniques (see Mangat 1994; Kuk 1990),
models taking into account the probability of lying (see Mangat and Singh 1995),
models with one or more scrambled variables (see Gupta et al. 2002; Gjestvang
and Singh 2006) and models with unrelated questions (see Singh and Mathur 2006;
Pal and Singh 2012)—just to report some examples—are all models or techniques
originated by the intuition of Warner. In particular, an interesting extension to
the case where the aim is the estimation of the proportions of #-related mutually
exclusive population groups, with at least one and at most # — 1 of which exhibit
sensitive characteristics, is due to Abul-Ela et al. (1967).

The procedure suggested by Warner and the extension of Abul-Ela et al. are
based on the “sample proportion” estimator, within a framework where the sample
size is fixed a priori. The use of such estimator can have some drawbacks. The
first is that, drawing an “unlucky” sample, it can happen that the sample proportion
estimator assumes a value equal to zero: in this case the proportion estimate of
the group bearing the sensitive attribute depends only on the parameter settings of
randomized response device and does not depend on the empirical results. Another
situation where the sample proportion estimator can have some troubles is when
the sampling costs are expensive, since the drawing of a sample with no elements
with the sensitive attribute implies a discard of the sample and a new drawing:
this can cause a relevant increasing of the total cost of the survey. The last point
is that if the investigated proportion is small (meaning that the survey deals with
rare populations) the literature provides more performant estimators: one of these
is based on the inverse sampling technique, introduced by Haldane (see Haldane
1945a,b). In such technique, the sample size is not fixed a priori, since the sampling
continues until a certain quantity, say k, of elements with the considered attribute
are drawn from the population. Many papers in the literature developed the inverse
sampling (for further details, see Finney 1949; Best 1974; Mikulski and Smith 1976;
Sathe 1977; Sahai 1980; Prasad and Sahai 1982; Pathak and Sathe 1984; Mangat and
Singh 1991; Singh and Mathur 2002b; Chaudhuri 2011; Chaudhuri et al. 201 1a, just
to mention some references).

The aim of this paper is to use the randomized response technique and the inverse
sampling together. More in detail, this paper proposes a method to estimate the
t proportions of related mutually exclusive population groups, with at least one
rare group. This method is based on the inverse sampling technique. Indeed in the
literature the randomized response technique and the inverse sampling have been
already used together, but as far as the authors know, only to approach the case
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where one proportion has to be estimated (refer to Singh and Mathur 2002a for
further details).

In order to simplify the explanation, the present paper will describe the case
where ¢ = 3, that is the trinomial case, since the generalization to the case t > 3
straightforwardly follows.

The plan of the paper is the following: the next section provides a brief
explanation of the randomized response technique of Warner, and the extension of
Abul-Ela et al. to the trinomial case. In Sect.3 the new procedure based on the
inverse sampling, for obtaining the proportion estimators is described, and three
propositions about their features are stated and proved in detail. Section 4 provides
an efficiency comparison with the estimators proposed by Abul-Ela et al. Section 5
is devoted to the estimation of the variances and the covariance of the proposed
estimators. In order to improve the proportion estimates, three shrinkage estimators
are proposed in Sect. 6. The last section describes some final remarks.

2 The Randomized Response Model of Warner
and the Extension to the Trinomial Case of Abul-Ela et al.

Let S; be a population, consisting of two mutually exclusive groups. The persons
in the first group, say A, bear a sensitive attribute. The aim of the survey is the
estimation of the proportion 4 of the group A. Since the direct question “Are you
in group A?” can be embarrassing for the interviewee, Warner (1965) proposed
a procedure equivalent to the following one. A deck of cards is given to each
interviewee. On each card is reported only one of these two statements:

(1) Statement I: “I belong to the group A”.
(2) Statement II: “I do not belong to the group A”.

The proportion p (with p # 1/2) of cards with the statement I is known and fixed
before the beginning of the survey by the researcher. Obviously, the proportion of
cards with the statement II is then 1 — p. The interviewee is requested to shuffle the
deck, to draw a card, and to answer “yes” or “no” if the statement on the card is
true or no for him/her, respectively. Since the interviewer does not see the card, he
does not know the statement on it, and therefore the privacy of the respondent is not
violated. Using this setting, the proportion ;4 can be unbiasedly estimated by

)
s - T 5 4
2p—1
where A is the sample proportion estimator of “yes” answers.
As aforementioned, Abul-Ela et al. extended the Warner procedure, in order to
estimate the proportions of ¢ groups: in Abul-Ela et al. (1967) they described in
detail the case + = 3. Here, a summary of such procedure is reported.
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Let S, be a population with three exhaustive and mutually exclusive groups (say
A, B, and C). Let m; (i = 1,2,3) be the true unknown proportions of the three
groups, that is:

1 = the true proportion of group A in the population;
1, = the true proportion of group B in the population;

m3 = the true proportion of group C in the population;

with

3
7 €[0,1], and Zm:l. (1)

i=1

Since the independent parameters to be estimated are two, from the population
two independent non-overlapping random samples with replacement are drawn: the
first one with size m, the second one with size m,.

Remark 1. Tt is worth underlining that here the two sample sizes m; and m, are
fixed a priori by the researcher before the beginning of the survey.

The randomized devices are two decks of cards, one for each sample. There are
three kinds of cards in each deck. For the deck i, (i = 1,2), let

pi1 be the proportion of cards with the statement: “I belong to group A”;

pi2 be the proportion of cards with the statement: “I belong to group B”;

pi3 be the proportion of cards with the statement: “I belong to group C”.

Obviously it holds that

3
pi€0.1], and Y py=1.i=12. 2)
j=1

Merely for a technical reason that will be evident in the following, the proportions
pij of the cards in the two decks must satisfy the restriction:

(p11 — p13)(p22 — p23) # (P12 — p13) (P21 — P23). 3)

Abul-Ela et al. (1967) proposed to consider the random variables X;, (i = 1,2),
defined by

__ | 0 if the r-th interviewee in sample i says “no”

Xir = . . . . .
o 1 if the r-th interviewee in sample i says “yes”
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wherer € {1,2,...,m;}ifi = l,andr € {1,2,...,my}if i = 2. The probabilities
of “yes” answer for the r-th interviewee in the two samples are

P(Xi, = 1) = P(X), = 1|A)P(4) + P(X1r = 1|B)P(B) + P(X,, = 1|C)P(C)
= pum + pi2m + p13ns,

and

P(Xar = 1) = P(Xzr = 1]A)P(4) + P(X2, = 1|B)P(B) + P(X5 = 1|C)P(C)
= PuTi + Ppnmr + pans,

where P(X;, = 1|A) denotes the probability that the r-th interviewee in the sample

i (i = 1,2) says “yes”, given that he/she belongs to group A and P(A) is the

probability that a person selected belongs to the group A. For the restrictions (2)
and (1), the above probabilities become

P(Xi, =1) = (pu — pi3)m + (P12 — p13)m2 + pis,

and

P(Xy, = 1) = (pa1 — p23)m1 + (P22 — pa3) 2 + po3.
Denoting P(X;, = 1) by A; and P(X,, = 1) by A,, from the equations
A= (pi1— pi3)m + (pi2 — pi3)m + pi3

Ay = (p21 — p3)m1 + (P22 — p3)m2 + p23 “4)
w3 =1—(m + m)

it derives that

w1 = C - [(A&1 — p13) (P22 — p23) — (A2 — p23) (P12 — p13)]
my = —C - [(A&1 — p13) (p21 — p23) — (A2 — p»3) (P11 — p13)] ()
73 = 1—C [(A1 — p13) (p22 — p21) — (A2 — p23) (P12 — p11)],

where the constant C is given by

C =[(pn— p13)(p22 — p23) — (P12 — P13)(pa1 — p23) 7" (6)

Remark 2. The restriction (3) guarantees that the constant C is well defined.

The equations in (5) describe the unknown proportions 71, 7, and 73 in terms
of the quantities A; and A,, which can be estimated using the sample proportion
estimators. Then, denoting by Y; the number of “yes” answers in the first sample,
and by Y, the number of “yes” answers in the second sample, the random variables
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. Y, R
==L and M= €
mi ny

can be used to estimate the probabilities A; and A,. Since the sampling is with
replacement, the random variables Y; and Y, have binomial distribution, with
parameters (A, m) and (A,, my), respectively. Replacing these estimators in (5),
Abul-Ela et al. obtained the following estimators for the proportions w; (i =
1,2,3):

C- [(if’ - PlS) (p22 — p»3) — (if - st) (P12 — Pls)]
[(i 13) (P21 — p23) — (if - P23) (pu1— P13)] (8)
g =1- [( 13) (P22 — p21) — ( - P23) (p12 — pn)] ,

where the last equation is obtained from ;' = 1 — (#{' + #5!). Such estimators
are unbiased and they have some interesting features (see Abul-Ela et al. 1967;
Chaudhuri 2011 for further details). It is worth noting that the variances of the
estimators in (8) can be directly evaluated by

var({') = C*[(p2 — p23)* @1 + (P12 — P13)* ¥3 ]
var(ft3') = C*[(pa1 — p23)* @1 + (P11 — P13)* @3 ] )
var(3') = C*[(p2 — p21)’ei + (P12 — p11)*93 ] .

where ¢? denotes the variance of the sample proportion estimators i;" defined in (7):

A Ai(1—4; )
o2 =var(ify = =2 ) (10)

3 The Introduction of the Inverse Sampling Technique

This section describes a procedure to estimate the proportions 7r; (i = 1,2,3). As
far as the authors know, there is no mention in the literature of such procedure, then
it can be considered innovative.

As stated in the introduction, such procedure is based on the inverse sampling
technique, where the sample size is not fixed a priori. The needed setting is the
same one illustrated in the previous section: the population, the two decks with
proportions of the cards, and the randomized response technique are exactly the
same ones previously described.

The crucial difference from the procedure of Abul-Ela et al. is that, here, the
sizes of the two samples are not fixed a priori. The drawing (with replacement) of



A Multi-proportion Randomized Response Model Using the Inverse Sampling 205

persons in the first sample continues until that k; “yes” answers are obtained, and
the drawing (with replacement) of persons in the second sample finishes when k;
“yes” answer are reported. The values of the parameters k; and k, are decided by
the researcher before the beginning of the survey: the most interesting situations are
when ki and k; are greater or equal to 2. In such cases, the sample sizes, say N;
and N, are random variables with negative binomial distribution, with parameters
(A1, k1) and (A3, k,), respectively. In the proposed procedure, only the sampling
with replacement is examined. The case where only distinct units are considered
poses further difficulties, and hence it will not be treated in this paper (for further
details, see Chaudhuri 2011; Chaudhuri et al. 2011b).

The criterion for fixing the value of the parameter k; (i = 1,2) depends on many
aspects, for example, the population size, the sampling costs, the time and resources
needed for the sampling procedure. For this reason, the determination of these
parameters is an important issue and it varies from case to case. A possible criterion,
using data from previous surveys (if available) is to select the value of the parameter
ki (i = 1,2) as the product between a reasonable (and cost-bearable) expected
sample size and the previous estimate of A; (i = 1,2). In such way the sample size
is random, but at least the expected sample size can be kept under control, since the
expectation of the size for the sample i is given by k; /A; (i = 1,2).

Using the notation of the previous section, in order to obtain estimators for the
proportions 7r; (i = 1,2, 3), two estimators of A; and A, are needed.

In the literature, when dealing with the inverse sampling scheme, the most used
estimator for the proportion of a group in the population is given by the ratio
between the prefixed number of “successes” that concludes the sampling minus one
and the sample size minus one. This estimator is unbiased and its variance can be
evaluated as the sum of a series. These and further important and useful features are
discussed and proved in Haldane (1945a,b), Best (1974), and Chaudhuri (2011).

In the present framework dealing with the inverse sampling, the sample pro-
portion estimators used by Abul-Ela et al. cannot be utilized. Instead of them, the
following two estimators can be used:

ki —1 A ky—1
! and Ay = 2 ,
N —1 Ny, —1

A= (1)

where k| and k, are the fixed numbers of “yes” answers which conclude the
samplings and N; and N, are the random variables representing the sizes of the
two samples. Following the same approach of Abul-Ela et al., the plug-in estimators
of the unknown proportions 7; (i = 1,2, 3) can then be obtained as:

m=C- I:(il - pls) (P22 — p23) — (iz - st) (p12 — Pls)]
1, =—C- [(;\1 - P13) (P21 — p23) — (;\2 - st) (p11 — P13)] (12)

m=1-C [(;\1 - Pls) (P22 — p21) — (;\2 - st) (p12 — Pn)] ,
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where the estimators A I ;\2 are defined in (11), and the third estimator 773 is derived
as 3 = 1 — (7] + m2).

These estimators have several interesting characteristics: some of them are stated
in the following propositions.

Proposition 1. The estimators defined in (12) are unbiased for the unknown
proportions 7w; (i = 1,2,3).

Proof. For the first estimator 7 it holds that
E(m) =E [C [(il - P13) (P22 — p23) — (iz - P23) (P12 — P13)]]
=C [(1722 — P23) [E (il) - 1713] —(p12—p13) [E (;\2) - P23]] .
Since )Akl and )ALZ are unbiased (as proved in Haldane 1945b), it follows:
E(m1) = C [(p22 — p23) A1 — p13) — (P12 — p13) (A2 — p23)].,
hence, using (4) and (6):
E(1) = C [(p22 — p23)[(p11 — p13)m1 + (P12 — p13)mal+

—(p12 — pi3)[(p21 — p23)mi + (P22 — p23) 7]
= mC [(p22 — p23) (P11 — P13) — (P12 — P13) (P21 — P23)]

= T.

Through an analogous procedure it can be shown that also 7, is unbiased:
E(7,) = -C [(le — p23) [E (il) - 1713] —(pu—p13) [E (iz) - P23]] = m,
while for the last estimator 73 it holds:
E(m) =E[l —(m + 7)) =1 —m —m = m3.

Remark 3. By construction, the two estimators /A\l and )ALZ are independent, as the
first one is referred to the first sample, while the latter is referred to the second
sample and the two samples are independent and non-overlapping. On the contrary,
the two estimators 77; and 7, are not independent since each of them depends on
both il and iz.

Now, the variance of the estimators defined in (12) can be evaluated, as the following
proposition states.
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Proposition 2. The variances of the estimators defined in (12) are:

var(7r1) = C*[(p2 — p23)* 87 + (P12 — p13)* &3]
var(fty) = C*[(pa1 — p23)* 8 + (p11 — p13)* 83] (13)
var(#3) = C* [(p2 — p21)*8 + (P12 — p11)*83] .

where §? denotes the variance of the estimator )Aki definedin (11):

+o0o -1
. ki 4r—1 .
5i2zvar(ki):/\?§:< +r ) =Y. i=12 (4
r

r=1

Proof. For the first estimator 71, from the definition (12) it follows that
var(ft)) = C’var [(il - p13) (p22 — p23) — (iz - p23) (P12 — p13)] :
As stated in the Remark 3, since )Akl and iz are independent, it holds that
var(f;) = C? [(Pzz — p23)’var (;\1) + (p12 — p13)’var (iz)] . (15)

As briefly mentioned, Best (1974) proved that the variances §? of the estimators
A; defined in (11) are given by the formula (14), therefore replacing of such

expressions in (15) concludes the proof for 77;. With a similar procedure the variance
of 7, and 73 can be evaluated as in (13).

In order to have a graphical overview on the behaviour of these variances when
the parameters are modified, in Figs. 1 and 2 some graphs are drawn. In such graphs,
the variance of 71; is considered, but the analogous remarks hold for 7,. In all the
figures, the settings of the randomized response devices (that is, the proportions of
the cards in the two decks) are equal and given by

pnn=0.1 pa1 =02
pi2 =02 pn =05
p13 =0.7 p23 = 0.3.

Figure 1 shows how the variance of the estimator 77; changes as the values of the
parameters k; (on the left) and k, (on the right) are modified. In both the graphs, the
value of m; is fixed and equal to 0.3, while the value of m; is reported in the legenda,
and the value of 3 equals 1 — (77 4 m2). The difference between the two graphs is
that in the one on the left, the value of k; is fixed and equal to 5, while in the other
one k; is fixed and equal to 5.
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Fig. 1 The behaviour of the variance of 77, when k; (a) and when k, (b) varies, for different value
of my
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Fig. 2 The behavior of the variance of 771, when 7| (a) and when 7, (b) varies, for different value
of k 1

The graph on the left in Fig. 1 shows that as k| increases, the variance of 7,
decreases: such behaviour is not surprising, since a large k; means a large size of
the first sample and then, at least intuitively, less variability of the estimators. The
same arguments can be applied for the graph on the right side: here, moreover it
is evident that not only 7, but also 7, as aspected, depends on the value of the
parameter k. The different rate of decrease of var(7;) in the two graphs can be
explained by the different settings of the two decks of cards. Figure 2 shows how
the variance of 7; depends on the true values of the proportions 7; and 7. In the
graph on the left 7, is set equal to 0.3, while in the other one the value of ; is 0.3.
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Remark 4. The variances in the Proposition 2 are not easy to manage and for some
values of the parameters, they are difficult to be evaluated, even only numerically. To
overcome this issue, the finding of an upper bound for the variances may be useful,
especially in the applications.

In Singh and Mathur (2005) eleven upper bounds for the variance of the
estimators defined in (11) are compared: the main result is that the following upper
bound proposed in Sahai (1983)

A
—_ —— 2— J—
Wilk) = = [«/A 12k 1B A]
where

A is the unknown proportion of the “successes”;

k is the number of “successes” that concludes the sampling procedure;

12

A:kuk(sx—l)—%(l—*)‘%;
~ (1-Mk-1)

B—(l—k)[T_(kJrz)]

is the closest to the exact variance for smaller size for k (i.e. k < 7). For large k (i.e
k > 8), the following upper bound, due to Pathak and Sathe (1984),

Wa(k) =

RA=N)T. 201-2)
k [1+ k=2 *

61
1_
* ( k—3(1—A)+1+\/(k—5(1—1)+1)2+16A(1—A))]

is the best choice.
Applying such result to the estimators defined in (12), the three upper bounds U;
for their variances can be obtained, since:

var(f1) < Uy = C*[(paa — p23)> W(k1) + (pia — p13)> W(k2)]
var(fy) < Uy = C* [(p21 — p)” W(ky) + (p11 — p1a)> W(ka)]  (16)
var(fiz) < Us = C* [(pna — p21)> W(ki) + (pia — p1)> W(k2)] .

where

Wi(k) fork <7

Wik = W(k) fork > 8.
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As described in the Remark 3 the two estimators 77; and 7, are not independent
since each of them depends on both A; and A,: for this reason the evaluation of the
covariance between 711 and 71, needs an investigation.

Proposition 3. The covariance between the estimators 1 and 7, defined in (12) is

cov(#t1, 12) = C*[(p2 — p23) (P23 — p21)87 + (P12 — p13) (P13 — p11)3l.

Proof. In the previous proposition it has been proved that
var(ft3) = var(fty + 7) = C* [(pa2 — p21)*81 + (p12 — p11)*83 ]

where Siz denotes the variance of the estimator A i (i =1,2),defined in (11). By the
definition of the variance of the sum of two random variables, it holds that

C? [(p22 — P21)*81 + (p12 — p11)*83] = var(#1) + var(#) + 2 cov(7y, 7).
Recalling from the previous proposition that
var(t)) = C*[(p2 — p23)* 87 + (P12 — p13)* 83]

and

var(f2) = C*[(pa1 — p23)* 87 + (p11 — p13)* 83].

after some algebra it follows that

cov(#t1, 12) = C*[(p2 — p23) (P23 — p21)87 + (P12 — p13) (P13 — p11)3l.

Remark 5. As before with the variances, the expression of the covariance can be
difficult to manage. However, using the aforementioned upper bounds U; and U, and
the Cauchy—Schwartz inequality, it is possible to determinate the following interval,
where the covariance lies in:

[~V0iT : VOITS).

The estimators 77; (i = 1,2, 3) proposed in this section have beyond the features
stated in the previous propositions at least two other important characteristics.
The first one is that the values of these estimators always depend on the sample
information: this basic issue is not true for the estimators proposed by Abul-Ela et
al., since if a sample contains no “yes” answers, the associated estimators sample
proportion AI-A assumes value zero, and therefore the estimators 7; (i = 1,2,3)
capture no information from this sample. A possible solution to this drawback can
be the discard of such “unlucky” sample, but if the sampling costs are not negligible,
such operation can largely increase the total cost of the survey, and therefore in
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particular situations cannot be performed. Using the procedure proposed in this
paper, such situation cannot occur, since the estimators ii (i = 1,2) cannot be
equal to zero.

The last remark is about the impression that the proposed estimators 77; (i =
1,2,3) do not really differ so much from the ones introduced by Abul-Ela et al.
From the formal point of view such idea can arise, as the expressions (12) look very
similar to the ones in (8), but indeed the two procedures deal with two very different
experiments: the one of Abul-Ela et al. is based on sample sizes prefixed, while the
procedure proposed in this paper has random sample sizes.

4 An Efficiency Comparison

Since the proposed procedure provides three new estimators for the proportions
w; (i = 1,2,3), a comparison with the ones proposed by Abul-Ela et al. (1967)
should be interesting. All of these estimators are unbiased, therefore they can be
compared, through an analysis of their variances. The expressions of Var(fr,.A) (=
1,2, 3) are reported in (9), while the var(s;) (i = 1,2, 3) are described in (13).

This section compares the estimators frlA and 71, but the same investigation can
be performed for the other estimators, obtaining analogous results.

Since the estimators leA and 7 refer to two different sample designs, a reason-
able comparison of their variance can be performed, assuming that the expected
sample size is the same in the two sample designs.

Figure 3 shows on the left the variance of the estimator frlA, and on the right, the
variance of the estimator 7y, in function of the true value of the proportion 7.

In both the figures, the setting of the randomized response devices (i.e. the cards
in the two decks) is the same one used for the figures in the previous section, and 7,
is equal to 0.3.

In the figure on the right, each curve corresponds to a particular choice of the
parameters. The value of the parameter & is fixed and equal to 6, while k; assumes
three values: 3 (solid line), 10 (dashed line) and 100 (dotted line). As noted in the
previous section, the variance curves are ordered: the curve corresponding to a large
k1 lies below the curve corresponding to a small k;.

The variance of the estimator frlA of Abul-Ela et al. does not depend on k and k3,
but it depends on the two sample sizes m; and m;. In order to design three curves
comparable to those of 71, the values of m; and m, have been set, applying the
following rule:

ki k>

= d ==, 17
mi e an my P (17

In other words, the values of m; in the first curve (in solid) on the left side are
calculated as the ratio between k; = 3 and the value of A, obtained using formula
(4), which varies in function of ;. In such way, as mentioned in the previous
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Fig. 3 The behaviour of the variance of leA (a) and of 71 (b), for different values of the parameters,
when 71 varies

sections, for a fixed m;, the parameters of two corresponding curves in the two
figures guarantee that the expectations of the sample size in the two experiments
are equal.

The comparison of the curves makes clear basically two points: first, the variance
of frlA is always smaller than the variance of 7;; second, the behaviour of the
variance curves of 7| and {1, as the true proportion 7y varies, is quite similar.

The first point is not surprising: the estimators proposed in this paper are based
on the inverse sampling, which outperforms other sampling designs in particular
situations, but it does not reduce the uncertainty and therefore the variability of the
estimators.

Also the second point can be explained. The relationship between the variance
of i,- (denoted by §7) and the variance of ilA (denoted by ¢?) for (i = 1,2) can be
made explicit by
82 = var(;)

+o00 -1
ki+r—1
:Az I—Air
D3 (1= 2)

r=1

-1
A2(1 = A)) R (ki +r—1
= MU T g2 ’ 1= A
P ; . (1= 4)

-1
A Aim; = ki+r—1
var(QH = a2y (T (1= %)

i r=2

/\,-mi
%27 + ki, o). (18)
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Using the formula (18), the variance of 77; becomes:
var(#t1) = C*[(p2 — p23)*87 + (P12 — p13)783]

=C? |:(P22 — )’ (9012 + E(lﬁ,kl)) +

Alml
ki

+(p12 — p13)? (‘P% Az?z + E(ka, Az))}

Am Aom
=C? [(pzz — px)? (rpf }q 1) + (P12 — p13)? (%2 22 2)} +

+C? [(p22 — p23)*E (k1. M) + (P12 — p13)*E (k2. A2)]

If the parameters m; and m, are chosen using the rule (17), then the var(7;) assumes
the form

var(7y) = var(7{') + C? [(p22 — p23)*E (k1. A1) + (P12 — p13)*6 (k. A2)] .

It is worth noting that the quantity £ introduced in (18) is the sum

+00 -1
g(khki) = AIZZ (kl +rr — 1) (1 —Ai)r

r=2
21— 4y)? 331 - 4,)3
 kitki + 1) ki(ki + D) (ki +2)
N 402(1 = A)*
ki(ki + 1)(k; +2)(k;i + 3)

which decreases as k; increases. This behaviour of £ is the reason why in Fig. 3 the
difference between var(7;) and var(7{') reduces, as k| increases.

The comparison highlights that the proposed estimators can be a valid alternative
to those introduced by Abul-Ela et al., in sample surveys dealing with rare groups.

5 Unbiased Estimators for the Variances and the Covariance

In some cases, it is useful to have at disposal an estimator for the variances of
#; (i = 1,2,3). The following formula provides an unbiased estimator of the
variance 5? (i = 1,2) of the estimators defined in (11) (see Sukhatme et al. 1984
for further details):
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— 5 L=k
var(A;) = 8} = u, with N; > 2, i=1,2.

N; =2

Using this result, the following estimators are therefore unbiased estimators for the
variances var(;) (i = 1,2,3):

VEEfT\l) =C? [(Pzz — px)? g? + (P12 — p13)? %]
var() = C2[(pan = p)? 8 + (p11 = pr)* 8] (19
va/r(fr\3) =C? [(Pzz - 1721)25? + (p12 — pu)erA%] .

Analogously, an unbiased estimator for the cov(7my, 712) is instead given by:

cov(@t1, 12) = C*(p2 — p23)(pas — p21)82 + (P12 — p13) (P13 — p11)83]. (20)

A detailed analysis of the features of the estimators defined in (19) and (20) is an
interesting and promising subject, but it is out of the scope of the present paper.

6 A Shrinkage Estimator

This section provides three shrinkage estimators for the proportions 7y, 7, and 73
described in the previous sections. The basic idea is to reduce the support of the
estimators defined in (12), discarding the inadmissible values. Since the considered
estimators are estimators of proportions, the values outside of the interval [0, 1] have
to be removed. A drawback of such kind of shrinkage is that it transforms unbiased
estimators in estimators that can be biased: the balance between such defect and
the advantage deriving by the modification of the range has to be evaluated by the
researcher, taking into account the final scope of the survey.

The shrinkage method presented in this section provides three new estimators

a5, 75 and 75 such that:

s The range of each 7 is the interval [0, 1].
3

* They sumto 1: Zﬁis =1

i=1
To simplify the notation, according to the definitions in (12) the following five sets
are defined:

Ly = {(A1, 45) €]0, 1 : (A1, o) < O}
L, = {(il,iz) €]0.1)*: ﬁz(il,iz) < 0};
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Z = {(il,iz) €]o, 1]* ﬁl(il,iz) > 1}
Zy = {1, h2) €10, 112 : 72 (Ai, An) > 1
R = {(A1,42) €]0, 11 : #1(A1, A2) + A2 (A1, o) > 1.

As in the previous sections, the value of the last estimator 773 is obtained at the end,
using the values assumed by the others.

The shrinkage procedure is based on the assumption that the first group is the
most relevant or significant, therefore the corresponding proportion estimator 7, has
a more important role than the others. For this reason, as importance as possible is
given to the empirical evidence regarding the first unknown proportion ; of group
A. This is realized by the shrinkage, which does not modify the value of 77; whether
it is admissible, hence:

0 for (il,iz) e L
AP A2) =4 1 o for (A1, L) € Z;
w1(A1,A;)  otherwise.

The value of 7, is not modified in only one case, otherwise it changes as indicated
below:

1 for (11312) elinNZz,

ﬁg(il,iz) _ frz(/h,kg) R for (%1,,}2) € (RUL,U Zz)c
1= 7501 Ay for (A1, Ay) € (REUL U Z))E
0 otherwise.

Finally, the estimator 73 follows:
s =1—[7 + 7).

This shrinkage can be applied when the estimation of the proportion 7| of the first
group is more important and more sensible than the others. It is hence crucial to
utilize in the estimation procedure all the information conveyed in the two samples
about it. Figure 4 shows the values of the shrinkage estimator frf , as function of the
values assumed by 7, and 7;.

Remark 6. In the case where the most important proportion is related to the second
group (group B), a different shrinkage procedure can be applied, giving more
importance to the empirical result for the unknown proportion m, of group B. This
new procedure can be performed, by the replacement of 7; with 7,. Therefore, if
needed, the first estimator to be shrunk is 7,:
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Fig. 4 The values of 7§ for o |
different values of the couple S
(71, 72) 1 1 —7’%1 0
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A
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© 3
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A5 (A, da) = {1

fOI'(Al s Az) (S] Zz

T (il , )Akz) otherwise.

After that, just in case, the value of 7; changes as follows:

1
it dy)
1— 75 (A1, A2)
0

75, da) =

for(il,iz) el,NZ
for(il,iz) S (R UL, u Zl)c
for(il,iz) S (RC UL,U Zz)c
otherwise.

As before the value of 73 is then computed by:

A= 1—[70 + 73]

7 Conclusions

This paper describes a new procedure to obtain the estimators of the proportions of
¢t population groups, which at least one is rare. As mentioned in the introduction,
the description proposed in Sect. 2 deals with the trinomial case, but the extension
to the case of more than three groups straightforwardly follows. The characteristics
stated and proved in the previous sections highlight the potential of the estimators
proposed and confirm that they can be successfully utilized in particular situations.
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Indeed, this has to be considered a preliminary work, because further investiga-
tions are needed. A detailed comparison with other estimators and the comparison
with other randomized response models are two examples of possible directions that
must be explored in order to complete the analysis of these estimators, which look
like very interesting and very useful in real situations.
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