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ABSTRACT
The datasets that are part of the Linking Open Data cloud
diagramm (LOD cloud) are classified into the following top-
ical categories: media, government, publications, life sci-
ences, geographic, social networking, user-generated con-
tent, and cross-domain. The topical categories were manu-
ally assigned to the datasets. In this paper, we investigate to
which extent the topical classification of new LOD datasets
can be automated using machine learning techniques and the
existing annotations as supervision. We conducted experi-
ments with different classification techniques and different
feature sets. The best classification technique/feature set
combination reaches an accuracy of 81.62% on the task of
assigning one out of the eight classes to a given LOD dataset.
A deeper inspection of the classification errors reveals prob-
lems with the manual classification of datasets in the current
LOD cloud.
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1. INTRODUCTION
The Web of Linked Data offers a rich collection of struc-

tured data provided by hundreds of different data sources
that use common standards such as dereferencable URIs
and RDF. The central idea of Linked Data is that data
sources set RDF links pointing at other data sources – e.g.,
owl:sameAs links – so that all data is connected into a global
data space [3, 8]. In this data space, agents can navigate
from one data source to another by following RDF links,
thereby discovering new data sources on the fly.

Copyright is held by the author/owner(s).
WWW2015 Workshop: Linked Data on the Web (LDOW2015).

Since the proposal of the Linked Data best practices in
2006, the Linked Open Data cloud (LOD cloud) has grown to
roughly 1 000 datasets (as of April 2014) [15]. The datasets
cover various topical domains, with social media, govern-
ment data, and metadata about publications being the most
prominent areas [15].

The most well-known categorization of LOD datasets by
topical domain is the coloring of the LOD cloud diagram.1

Up till now, the topical categories were manually assigned
to the datasets in the cloud either by the publishers of the
datasets themselves via the datahub.io dataset catalog or
by the authors of the LOD cloud diagram. In this paper, we
investigate to which extent the topical classification of new
LOD datasets can be automated for upcoming versions of
the LOD cloud diagram using machine learning techniques
and the existing annotations as supervision.

Beside creating upcoming versions of the LOD cloud dia-
gram, the automatic topical classification of LOD datasets
can be interesting for other purposes as well: Agents navi-
gating on the Web of Linked Data should know the topical
domain of datasets that they discover by following links in
order to judge whether the datasets might be useful for their
use case at hand or not. Furthermore, as shown in [15], it is
interesting to analyze characteristics of datasets grouped by
topical domain, so that trends and best practices that exist
only in a particular topical domain can be identified.

In this paper, we present – to the best of our knowledge –
the first automatic approach to classify LOD datasets into
the topical categories that are used by the LOD cloud di-
agram. Using the data catalog underlying the recent LOD
cloud, we train machine learning classifiers with different
sets of features. Our best classification technique/feature
set combination reaches an accuracy of 82%.

The rest of this paper is structured as follows. Section 2
introduces the methodology of our experiments, followed by
a presentation of the results in Section 3 and a discussion of
remaining classification errors in Section 4. Section 5 gives
an overview of related work. We conclude with a summary
and an outlook on future work.

1http://lod-cloud.net



2. METHODOLOGY
In this section, we first briefly describe the data corpus

that we use for our experiments and the different feature
sets we derive from the data. We than briefly introduce the
classification techniques that we considered and sketch the
final experimental setup that was used for the evaluation.

2.1 Data Corpus
In order to extract our features for the different datasets

which are contained in the LOD cloud, we used the data
corpus that was crawled by Schmachtenberg et al. [15] and
which was used to draw the most recent LOD cloud diagram.
Schmachtenberg et al. used the LD-Spider framework [9]
to gather Linked Data from the Web in April 2014. The
crawler was seeded with URIs from three different sources:
(1) dataset descriptions in lod-cloud group of the datahub.io
dataset catalog, as well as other datasets marked with Linked
Data related tags within the catalog; (2) a sample of the Bil-
lion Triple Challenge 2012 dataset2; and (3) datasets adver-
tised on the public-lodw3.org mailing list since 2011. The
final crawl contains data from 1 014 different LOD datasets.3

Altogether 188 million RDF triples were extracted from 900 129
documents describing 8 038 396 resources. Figure 1 shows
the distribution of the number of resources and documents
per dataset contained in the crawl.

Figure 1: Distribution of the number of resources
(−−−) and documents ( ) (log scale) per dataset
contained in the crawl.

In order to create the 2014 version of the LOD cloud di-
agram, newly discovered datasets were manually classified
into one of the following categories: media, government, pub-
lications, life sciences, geographic, social networking, user-
generated content, and cross-domain. A detailed definition
of each category is available in [15].

Figure 2 shows the number of datasets per category con-
tained in the 2014 version of the LOD cloud. As we can
see, the LOD cloud is dominated by datasets belonging to
the category social networking (48%), followed by govern-
ment (18%) and publications (13%) datasets. The categories
media and geographic are only represented by less than 25
datasets within the whole corpus.

2.2 Feature Sets
For each of the datasets, we created the following eight

feature sets based on the crawled data.

Vocabulary Usage (VOC): As many vocabularies target
a specific topical domain, e.g. bibo bibliographic in-
formation, we assume that the vocabularies that are

2http://km.aifb.kit.edu/projects/btc-2012/
3The crawled data is publicly available: http://data.dws.
informatik.uni-mannheim.de/lodcloud/2014/ISWC-RDB/

Figure 2: Number of datasets per category con-
tained in the LOD cloud.

used by a dataset form a helpful indicator for deter-
mining the topical category of the dataset. Thus, we
determine the vocabulary of all terms that are used as
predicates or as the object of a type statement within
each dataset. Altogether we identified 1 439 different
vocabularies being used by the datasets (see [15] for
details about the most widely used vocabularies).

Class URIs (CUri): As a more fine-grained feature, the
rdfs: and owl:classes which are used to describe
entities within a dataset might provide useful informa-
tion to determine the topical category of the dataset.
Thus, we extracted all the classes that are used by at
least two different datasets, resulting in 914 attributes
for this feature set.

Property URIs (PUri): Beside the class information of
an entity, information about which properties are used
to describe the entity can be helpful. For example it
might make a difference, if a person is described with
foaf:knows statements or if her professional affiliation
is provided. To leverage this information, we collected
all properties that are used within the crawled data by
at least two datasets. This feature set consists of 2 333
attributes.

Local Class Names (LCN): Different vocabularies might
contain synonymous (or at least closely related) terms
that share the same local name and only differ in their
namespace, e.g. foaf:Person and dbpedia:Person.
Creating correspondences between similar classes from
different vocabularies reduces the diversity of features,
but on the other side might increase the number of
attributes which are used by more than one dataset.
As we lack correspondences between all the vocabu-
laries, we bypass this, by using only the local names
of the type URIs, meaning vocab1:Country and vo-

cab2:Country are mapped to the same attribute. We
used a simple regular expression to determine the lo-
cal class name checking for #, : and / within the type
object. By focusing only on the local part of a class
name, we increase the number of classes that are used
by more than one dataset in comparison to CUri and
thus generate 1 041 attributes for the LCN feature set.

Local Property Names (LPN): Using the same assump-
tion as for the LCN feature set, we also extracted the
local name of each property that is used by a dataset.



This results in treating vocab1:name and vocab2:name

as a single property. We used the same heuristic for
the extraction as for the LCN feature set and generated
3 493 different local property names which are used by
more than one dataset, resulting in an increase of the
number of attributes in comparison to the PUri feature
set.

Text from rdfs:label (LAB): Beside the vocabulary-level
features, the names of the described entities might
also indicate the topical domain of a dataset. We
thus extracted all values of rdfs:label properties,
lower-cased them, and tokenized the values at space-
characters. We further excluded tokens shorter than
three and longer than 25 characters. Afterward, we
calculated the TF-IDF value for each token while ex-
cluding tokens that appeared in less than 10 and more
than 200 datasets, in order to reduce the influence of
noise. This resulted in a feature set consisting of 1 440
attributes.

Top-Level Domains (TLD): Another feature which might
help to assign datasets to topical categories is the top-
level domain of the dataset. For instance, govern-
ment data is often hosted in the gov top-level domain,
whereas library data might be found more likely on
edu or org top-level domains.4

In & Outdegree (DEG): In addition to vocabulary-based
and textual features, the number of outgoing RDF
links to other datasets and incoming RDF links from
other datasets could provide useful information for clas-
sifying the datasets. This feature could give a hint
about the density of the linkage of a dataset, as well
as the way the dataset is interconnected within the
whole LOD cloud ecosystem.

We were able to create all features (except LAB) for 1 001
datasets. As only 470 datasets provide rdfs:labels, we
only use these datasets for evaluating the utility of the LAB
feature set.

As the total number of occurrences of vocabularies and
terms is heavily influenced by the distribution of entities
within the crawl for each dataset, we apply two different
normalization strategies to the values of the vocabulary-level
features VOC, CUri, PUri, LCN, and LPN: On the one hand
side, we create a binary version (bin) where the feature vec-
tors of each feature set consist of 0 and 1 indicating presence
and absence of the vocabulary or term. The second version,
the relative term occurrence (rto), captures the fraction of
vocabulary or term usage for each dataset.

The following table shows an example of the two different
feature set versions for the terms ti:

Feature Vector
Feature Set Version t1 t2 t3 t4
Term Occurrence 10 0 2 8
Binary (bin) 1 0 1 1
Relative Term Occurrence (rto) 0.5 0 0.1 0.4

4We restrict ourselves to top-level domains, and not public
suffixes.

2.3 Classification Approaches
We evaluated the following three classification techniques

on our task of assigning topical categories to LOD datasets.

k-Nearest Neighbor: k-Nearest Neighbor (k-NN) classifi-
cation models make use of the similarity between new
cases and known cases to predict the class for the new
case. A case is classified by its majority vote of its
neighbors, with the case being assigned to the class
most common among its k nearest neighbors measured
by the distance function. In our experiments we used a
k equal to 5 with Euclidean-similarity for non-binary
term vectors and Jaccard-similarity for binary term
vectors.

J48 Decision Tree: A decision tree is a flowchart-like tree
structure which is built top-down from a root node and
involves some partitioning steps to divide data into
subsets that contain instances with similar values. For
our experiments we use the Weka implementation of
the C4.5 decision tree [12]. We learn a pruned tree,
using a confidence threshold of 0.25 with a minimum
number of 2 instances per leaf.

Naive Bayes: As a last classification method, we used Naive
Bayes (NB). NB uses joint probabilities of some evi-
dence to estimate the probability of some event. Al-
though this classifier is based on the assumption that
all features are independent, which is violated in many
use cases, NB has shown to work well in practice [14].

2.4 Experimental Setup
In order to evaluate the performance of the three classifi-

cation methods, we use 10-fold cross-validation and report
the average accuracy in the end.

As the number of datasets per category is not equally dis-
tributed within the LOD cloud, which might influence the
performance of the classification models, we also explore the
effect of balancing the training data. We used two different
balancing approaches: (1) we down sample the number of
datasets used for training until each category is represented
by the same number of datasets; this number is equal to
the number of datasets within the smallest category; and
(2) we up sample the datasets for each category until each
category is at least represented by the number of datasets
equal to the number of datasets of the largest category. The
first approach, reduces the chance to overfit a model into the
direction of the larger represented classes, but it might also
remove valuable information from the training set, as ex-
amples are removed and not taken into account for learning
the model. The second approach, ensures that all possible
examples are taken into account and no information is lost
for training, but by creating the same entity many times
can result in emphasizing those particular data points. For
example a neighborhood based classifier might look at the
5 nearest neighbors, which than could be one and the same
data point, which would result into looking only at the near-
est neighbor.

3. RESULTS
In the following, we first report the results of our exper-

iments using the different feature sets in separation. After-
ward, we report the results of experiments combining at-
tributes from multiple feature sets.



Table 1: Results of different single feature sets. Best three single and average results are marked in bold.
Classification VOC CUri PUri LCN LPN
Approach bin rto bin rto bin rto bin rto bin rto LAB TLD DEG

Major Class 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 51.85 33.62 51.85 51.85

k-NN (no sampling) 77.92 76.33 76.83 74.08 79.81 75.30 76.73 74.38 79.80 76.10 53.62 58.44 49.25
k-NN (down sampling) 64.74 66.33 68.49 60.67 71.80 62.70 68.39 65.35 73.10 62.80 19.57 30.77 29.88
k-NN (up sampling) 71.83 72.53 64.98 67.08 75.60 71.89 68.87 69.82 76.64 70.23 43.97 10.74 11.89
J48 (no sampling) 78.83 79.72 78.86 76.93 77.50 76.40 80.59 76.83 78.70 77.20 63.40 67.14 54.45
J48 (down sampling) 57.65 66.63 65.35 65.24 63.90 63.00 64.02 63.20 64.90 60.40 25.96 34.76 24.78
J48 (up sampling) 76.53 77.63 74.13 76.60 75.29 75.19 77.50 75.92 75.91 74.46 52.64 45.35 29.47
Naive Bayes (no sampling) 34.97 44.26 75.61 57.93 78.90 75.70 77.74 60.77 78.70 76.30 40.00 11.99 22.88
Naive Bayes (down sampling) 64.63 69.14 64.73 62.39 68.10 66.60 70.33 61.58 68.50 69.10 33.62 20.88 15.99
Naive Bayes (up sampling) 77.53 44.26 74.98 55.94 77.78 76.12 76.02 58.67 76.54 75.71 37.82 45.66 14.19

Average (no sampling) 63.91 66.77 77.10 69.65 78.73 75.80 78.35 70.66 79.07 76.53 52.34 45.86 42.19
Average (down sampling) 62.34 67.34 66.19 62.77 67.93 64.10 67.58 63.38 68.83 64.10 26.38 28.80 23.55
Average (up sampling) 75.30 64.81 71.36 66.54 76.22 74.40 74.13 68.14 76.36 73.47 44.81 33.92 18.52

3.1 Results for Single Feature Sets
Table 1 shows the accuracy that is reached using the three

different classification algorithms with and without balanc-
ing the training data. Majority Class is the performance
of a default baseline classifier always predicting the largest
class: social networking.

As a general observation, the vocabulary-based feature
sets (VOC, LCN, LPN, CUri, PUri) perform on a similar
level, where DEG and TLD alone show a relatively poor
performance and in some cases are not at all able to beat
the majority class baseline. Classification models based on
the attributes of the LAB feature set perform on average
(without sampling) around 20% above the majority base-
line, but predict still in half of all cases the wrong category.
Algorithm-wise, the best results are achieved using the deci-
sion tree (J48) without balancing (maximal accuracy 80.59%
for LCNrto) and the k-NN algorithm, also without balanc-
ing for the PUribin and LPNbin feature sets. Comparing
the two balancing approaches, we see better results using
the up sampling approach for almost all feature sets (except
VOCrto and DEG). In most cases, the category-specific ac-
curacy of the smaller categories is higher when using up
sampling. Using down sampling the learned models make
more errors for predicting the larger categories. Further-
more, when comparing the results of the models trained on
unbalanced data with the best model trained on balanced
data, the models on the unbalanced data are more accurate
except for the VOCbin feature set. Having a closer look at
the confusion matrices, we see that the balanced approaches
are in general making more errors when trying to predict
datasets for the larger categories, like social networking and
government.

3.2 Results for Combined Feature Sets
For our second set of experiments, we combine the avail-

able attributes from the different feature sets and train again
our classification models using the three described algorithms.
As before, we generate a binary and relative term occurrence
version of the vocabulary-based features. In addition, we
create a second set (binary and relative term occurrence),
where we omit the attributes from the LAB feature set, as
we wanted to measure the influence of this particular set
of attributes, which is only available for less than half of
the datasets. Furthermore we created a combined set of at-
tributes consisting of the three best performing feature sets
from the previous section.

Table 2 reports the results for the five different combined
feature sets:

ALLrto: Combination of the attributes from all eight fea-
ture sets, using the rto version of the vocabulary-based
features.

ALLbin: Combination of the attributes from all eight fea-
ture sets, using the bin version of the vocabulary-based
features.

NoLabrto: Combination of the attributes from all feature,
without the attributes of the LAB feature set, using
the rto version of the vocabulary-based features.

NoLabbin: Combination of the attributes from all feature,
without the attributes of the LAB feature set, using
the bin version of the vocabulary-based features.

Best3: Includes the attributes from the three best perform-
ing feature sets from the previous section based on
their average accuracy: PUribin, LCNbin, and LPNbin.

We can observe that when selecting a larger set of at-
tributes, our model is able to reach a slightly higher accuracy
of 81.62% than using just the attributes from one feature set
(80.59%, LCNbin). Still the trained model is unsure for cer-
tain decisions and has a stronger bias towards the categories
publications and social networking.

4. DISCUSSION
In the following, we look at the best performing approach

(Naive Bayes trained on the attributes of the NoLabbin fea-
ture set using up sampling). Table 3 shows the confusion
matrix of this experiment, where on the left side we list the
predictions by the learned model, while the head names the
actual category of the dataset. As observed in the table,
there are three kinds of errors which occur more frequently
than 10 times.

The most common confusion occurs for the publication
domain, where a larger number of datasets are predicted to
belong to the government domain. A reason for this is that
government datasets often contain metadata about govern-
ment statistics which are represented using the same vocab-
ularies and terms (e.g. skos:Concept) that are also used
in the publication domain. This makes it challenging for
a vocabulary-based classifier to distinguish those two cate-
gories apart. In addition, for example the http://mcu.es



Table 2: Results of combined feature sets. Best three results in bold.
Classification Accuracy in %
Approach ALLbin ALLrto NoLabbin NoLabrto Best3

k-NN (no sampling) 74.93 71.73 76.93 72.63 75.23
k-NN (down sampling) 52.76 46.85 65.14 52.05 64.44
k-NN (up sampling) 74.23 67.03 71.03 68.13 73.14
J48 (no sampling) 80.02 77.92 79.32 79.01 75.12
J48 (down sampling) 63.24 63.74 65.34 65.43 65.03
J48 (up sampling) 79.12 78.12 79.23 78.12 75.72
Naive Bayes (no sampling) 21.37 71.03 80.32 77.22 76.12
Naive Bayes (down sampling) 50.99 57.84 70.33 68.13 67.63
Naive Bayes (up sampling) 21.98 71.03 81.62 77.62 76.32

Table 3: Confusion matrix for the NoLabbin feature
set, with Naive Bayes classification model, balanced
by up sampling.
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social networking 489 4 5 10 2 4 11 1
crossdomain 1 10 3 1 1 0 1 1
publications 8 10 54 9 4 4 2 2
government 3 4 14 151 1 2 0 2
lifesciences 5 3 12 0 72 2 5 5
media 6 3 4 1 1 7 2 0
usergen. content 6 1 1 2 0 2 26 0
geographic 1 5 1 5 1 0 0 8

dataset – the Ministry of Culture in Spain – was manu-
ally labeled as publication within the LOD cloud, whereas
the model predicts government which turns out to be a
borderline case in the gold standard. A similar frequent
problem is the prediction of life sciences for datasets in the
publications category. This can be observed, e.g., for the
http://ns.nature.com/publications/, which describe the
publications in Nature. Those publications, however, are of-
ten in the life sciences field, which makes the labeling in the
gold standard a borderline case.

The third most common confusion occurs between the
usergenerated content and the social networking domain.
Here, the problem is in the shared use of similar vocabular-
ies, such as foaf. At the same time, labeling a dataset as ei-
ther one of the two is often not so simple. In [15], it has been
defined that social networking datasets should focus on the
presentation of people and their interrelations, while user-
generated content should have a stronger focus on the con-
tent. Datasets from personal blogs, such as www.wordpress.com,
however, can convey both aspects. Due to the labeling rule,
these datasets are labeled as usergenerated content, but our
approach frequently classifies them as social networking.

In summary, while we observe some true classification er-
rors, many of the mistakes made by our approach actually
point at datasets which are difficult to classify, and which
are rather borderline cases between two categories.

5. RELATED WORK
Topical profiling has been studied in the data mining,

database, and information retrieval communities. The re-
sulting methods find application in domains such as docu-
ments classification, contextual search, content management
and review analysis [1, 11, 2, 16, 17].

Although topical profiling has been studied in other set-
tings before, only a small number of methods exist for profil-
ing LOD datasets. These methods can be categorized based
on the general learning approach that is employed into the
categories unsupervised and supervised. Where the first cat-
egory does not rely on labeled input data, the latter is only
applicable for labeled data.

Ellefi et al. [5] try to define the profile of datasets using
semantic and statistical characteristics. They use statistics
about vocabulary, property, and datatype usage, as well as
statistics on property values, like string lengths, for char-
acterizing datasets. For classification, they propose a fea-
ture/characteristic generation process, starting from the top
discovered types of a dataset and generating property/value
pairs. In order to integrate the property/value pairs they
consider the problem of vocabulary heterogeneity of the datasets
by defining correspondences between features in different vo-
cabularies. The authors have pointed out that it is essen-
tial to automate the feature generations and proposed the
framework to do so, but do not evaluate their approach on
real-world datasets. In our work, we draw from their ideas of
using schema-usage characteristics as features for the topical
classification, but focus on LOD datasets.

An approach to detect latent topics in entity-relation-
ship graphs is introduced by Böhm et al. [4]. Their ap-
proach works in two phases: (1) A number of subgraphs
having strong relations between classes are discovered from
the whole graph, and (2) the subgraphs are combined to
generate a larger subgraph, which is assumed to represent
a latent topic. Their approach explicitly omits any kind of
features based on textual representations and solely relies on
the exploitation of the underlying graph. Böhm et al. used
the DBpedia dataset to evaluate their approach.

Fetahu et al. [6] propose an approach for creating dataset
profiles represented by a weighted dataset-topic graph which
is generated using the category graph and instances from
DBpedia. In order to create such profiles, a processing
pipeline that combines tailored techniques for dataset sam-
pling, topic extraction from reference datasets, and relevance
ranking is used. Topics are extracted using named-entity-
recognition techniques, where the ranking of the topics is
based on their normalized relevance score for a dataset.

While the mentioned approaches are unsupervised, we em-
ploy supervised learning techniques as we want to exploit the
existing topical annotation of the datasets in the LOD cloud.

6. CONCLUSION AND FUTURE WORK
In this paper, we investigate to which extent the topical

classification of new LOD datasets can be automated using
machine learning techniques. Our experiments indicate that



vocabulary-level features are a good indicator for the topical
domain, yielding an accuracy of around 82%.

The analysis of the limitations of our approach, i.e., the
cases where the automatic classification deviates from the
manually labeled one, points to a problem of the categoriza-
tion approach that is currently used for the LOD cloud: All
datasets are labeled with exactly one topical category, al-
though sometimes two or more categories would be equally
appropriate. One such example are datasets describing life
science publications, which can be either labeled as publica-
tions or as life sciences. Thus, the LOD dataset classifica-
tion task might be more suitably formulated as a multi-label
classification problem [18, 10].

A particular challenge of the classification is the heavy
imbalance of the dataset categories, with roughly half of the
datasets belonging to the social networking domain. Here, a
two-stage approach might help, in which a first classifier tries
to separate the largest category from the rest, while a second
classifier then tries to make a prediction for the remaining
classes. When regarding the problem as a multi-label prob-
lem, the corresponding approach would be classifier chains,
which make a prediction for one class after the other, taking
the prediction of the first classifiers into account as a feature
for the remaining classifications [13].

In our experiments, RDF links have not been exploited
beyond dataset in- and out-degree. For the task of web
page classification, link-based classification techniques, that
exploit the contents of web pages linking to a particular
page, often yields good results [7] and it is possible that
such techniques could also work well for classifying LOD
datasets.
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