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Chapter 1

Introduction

1.1 Introduction

Crowds of pedestrians can be considered as complex entities from different points
of view: the variety individual and collective behaviours that take place in a
crowd, the composite mix of competition for the space shared by pedestrians
but also the collaboration due to the not necessarily explicit but often shared (at
least in a given scenario) social norms, the possibility to detect self-organization
and emergent phenomena they are all indicators of the intrinsic complexity of a
crowd. The relevance of human behaviour, and especially of the movements of
pedestrians, in built environment in normal and extraordinary situations (e.g.
evacuation), and its implications for the activities of architects, designers and
urban planners are apparent, especially considering dramatic episodes such as
terrorist attacks, riots and fires, but also due to the growing issues in facing
the organization and management of public events (ceremonies, races, carni-
vals, concerts,parties/social gatherings, and so on) and in designing naturally
crowded places (e.g. stations, arenas, airports). The phenomena of crowd like
sports, festivals, concerts, political gatherings etc, are mostly observed in urban
areas, which attracts hundreds of thousands people. Pedestrian and crowd mod-
elling research context regards events in which a large number of people may
be gathered or bound to move in a limited area; this can lead to serious safety
and security issues for the participants and the organisers. The understanding
of the dynamics of large groups of people is very important in the design and
management of any type of public events. In addition to safety and security con-
cerns, also the comfort of event participants is another aim of the organisers and
managers of crowd related events. Large people gatherings in public spaces (like
pop-rock concerts or religious rites participation) represent scenarios in which
crowd dynamics can be quite complex due to different factors (the large number
and heterogeneity of participants, their interactions, their relationship with the
performing artists and also exogenous factors like dangerous situations and any
kind of different stimuli present in the environment. Such crowding phenom-
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2 CHAPTER 1. INTRODUCTION

ena poses serious challenges to public safety and crowd management. Therefore
analysis of crowd is crucial for solving real world problems. Researchers from
different communities like sociology, civil, physics and computer science are
studying crowding phenomena from different angles. Besides these efforts, com-
puter vision research community developing algorithms that can automatically
understand the crowd dynamics in the real-world scenes. Despite these efforts,
computer vision research community have not achieved the desired level of ap-
plicability and robustness. This is due to the fact that the algorithms are based
on particular assumptions which are often violated in real-world environment.

From the computer vision’s point of view, there are three traditional prepro-
cessing step for performing crowd analysis automatically. i) object detection,
ii) tracking iii) behaviour understand based on the analysis of extracted trajec-
tories. In real world, a crowd is more than sum of the few individuals; the task
for computer vision become more complex when the number of individuals in
the scene increases. This can be observed from the fact that human response to
high density crowd image is much slower than to a non-crowded image. For ex-
ample, a human can easily detect, count and track few individuals in the scene
but when presented with an image containing hundreds of thousands people,
will need large amount of time to count. This highlights the fact that a simple
extension of computer vision’s algorithms that are designed to detect and track
few individuals in the scene can be be applicable to complex scene. Therefore,
for analysis crowded scenes, holistic approaches mostly based on the optical
flow,e.g, finding motion flow patterns, segmentation of crowd flows are adopted.

In this thesis, i select some of the challenging problems regarding understand-
ing crowd dynamics and i develop some methods to address those problems. The
methods propose in this thesis out perform the state-of-the-art methods and i
rigorously evaluated the propose methods by considering complex and challeng-
ing scenarios of the real world scenes.

1.2 Motivation

As the population of world is increasing and ever more located in urban areas,
public safety is becoming a problem in most crowded areas of the big cities. Mass
events like those related to sports, festivals, concerts, and carnivals attract thou-
sands of people in constrained environments, therefore adequate safety measures
must be adopted. Some of the examples of mass events are illustrated in Figure.
Despite all safety measures, crowd disasters still occur frequently. Summary of
different incidents of crowd disaster can be found in Table 1.1

The reason of these disasters is different and conflicting motion patterns that
influence the crowd. One of the eye witness of recent Mina’s incident reported
in a newspaper, ”Because those returning in opposite direction of the surging
crowd, there was a stampede” A crowd is composed of small groups of people
and these small groups arise due to interdependence among its members. This
interdependence among the members may be as result of social relationship
or motivated by a common goals. The examples of group that arise due to
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Figure 1.1: Examples of crowd

Table 1.1: Crowd disaster
Year Place Deaths
2015 Mina, Saudi Arabia > 750
2011 Stadium, Bamako(Mali) > 36
2011 Pilgrimage, Kerala(India) 102
2010 Loveparade, Germany 21
2010 Water festival, Combodia > 375
2006 Stadium, Yemen > 51
2005 Religious procession, Iraq > 640
1990 Pilgrimage, Saudi Arabia 1426
1982 Stadium, Russia 340

social relationship are member of family or friends; these groups can be called
long term coherent groups because they maintain the structure for long period
of time. There are, however, other types of groups essentially motivated by a
common goal, like reaching a certain point of the environment; these groups can
be called short term coherent groups because they discontinue their cohesion
after completing the goals (e.g. reaching an exit, completing a movement).
Detecting the second kind of group, essentially associated to a certain flow of
pedestrians in the environment, can be important to be able to prevent conflict
situations.

Due to the complex dynamics of the crowd, crowd management is becoming
a daunting job where huge effort from the security staff is required to manage
the potentially problematic situations. For example, During Hajj, every year
government of saudia arabia deployed more than 100,000 security personnel.
In high density crowded areas, surveillance cameras are generally installed in
different locations that can even cover the whole crowd scene. Detecting specific
activities in real-time videos is the task of analysts sitting in surveillance room
and watching over multiple Tv screens. Such manual analysis of high density
crowds is a tedious job and usually prone to errors. For instance, more than
5,000 surveillance cameras are mounted on different locations in Mina. Still it
could not help in preventing the disaster. Therefore we need automatic analysis
of the crowd which can reliably estimate the density of the crowd and detect
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specific activities. Creating such kind of virtual analyst has become the focus
of many researchers. This research has a wide range of application domain in
crowd management, public space design, underwater fishes analysis (and animal
behaviour studies in general), and cell population analysis.

In video surveillance, “detection and tracking” of pedestrians are the core
technologies. The main concern of the state-of-the-art methods is to localise the
moving objects, track the objects for some duration and understand the scene
semantics. Understanding the scene semantics together with tracking help in
detecting abnormal behaviours in the scene. The application of these methods to
high density crowded scenes is limited because when the crowd density increases,
these methods likely to fail detecting and tracking the moving objects and hence
unable to understand the behaviour of the crowd. Limited research has been
reported in literature that can provide good models for high density crowded
scenes that ultimately provide useful information for crowd management. One
of the reason for the lack of interest and efforts in this direction is the complexity
and challenges inherent in high density crowded situations. I discuss some of
these complexities and challenges in the following section

1.3 Challenges

Most important challenges that need to be addressed for understanding the
dynamics of high density crowds are:

1. In high density crowded scenes, detection of individual becomes very hard
due to less number of pixels/person. The number of pixels/person have an
indirect relationship with the density of crowd. The larger the crowd den-
sity, the few will be the pixels/person, that makes the tasking of detecting
and tracking people in such situations very hard. The information about
the appearance of individual further disturbed due to the constant interac-
tions among the individuals. Therefore, instead of detecting and tracking
individuals in such situations, researchers adopted holistic approaches to
understand the crowd dynamics.

2. Physical characteristics of a scene can become the source of occlusion re-
sulting in the loss of information about the considered object. Moreover,
complex interactions among the individuals in the scene cause both tem-
poral and spatial occlusions.

3. The individuals in the crowds exhibits different behaviours and usually
goal directed. This makes very challenging to figure out an appropriate
level of granularity to model crowd dynamics.

4. Another challenge in crowded scene analysis is to detect specific crowd
behaviours. One can learn these behaviours but it may be possible that
in other surveillance cameras these behaviours have limited instances and
we have to learn more behaviours.
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1.4 Contributions

In this thesis, I developed algorithms for (i) Crowd Flow Segmentation and
Crowd Counting, (ii) Crowd Behaviour understanding , and (iii) Social Group
Detection in Crowd. In the first two approaches, we considered high density
scenarios with more than hundreds of thousands people per frame, while our
third algorithm is applicable to low density situations, where the crowd density
is 50-60 people per frame. I briefly introduce each of our proposed method and
our contributions in the following.

Crowd Flow Segmentation and Crowd Counting

The first algorithm proposed in this thesis automatically segment the crowd in
different segments based on their orientations and estimate the number of peo-
ple in each flow segment. I carried out this analysis by considering very high
density crowds where it is very hard to detect and track the individuals. Unlike
the traditional methods of video surveillance, I employed holistic approach that
captures both the dynamics and structure of the scene. Such holistic approach
eliminates the need of localizing the individuals. The proposed approach is ap-
plicable in many different situations and it is independent of local conditions
and camera viewpoints. Moreover, the proposed method does not require detec-
tion and identification of individuals, hence preserving the privacy of the people.
The proposed framework consists of four processing blocks, Foreground extrac-
tion, segmentation, counting and blob size optimization. The approach starts
with generating two foreground masks, one by computing the dense optical flow
between two consecutive images, fhs(x,y,t) and one by Gaussian background sub-
traction, fg(x,y,t). Both these foreground masks serve different purpose. Since
the optical flow vector of each pixel has the magnitude and direction values,
therefore, we use orientation information of optical flow vectors for crowd flow
segmentation by clustering all optical flow vectors by employing K-means clus-
tering algorithm. For the counting framework, we use fg(x,y,t). After generating
foreground masks, the next step is the computation of motion field followed by
motion field segmentation. After motion field segmentation some small blobs
appear representing the small clusters at the boundaries of two opposite flows.
We propose blob absorption method in order to get rid of these small clusters.
After segmenting the crowd in different segments, we estimate the number of
people in each cluster (flow segment) by employing our proposed blob analysis
and blob size optimization methods .

Crowd Behaviour Understanding

The second framework developed in this thesis perform crowd behaviour analy-
sis and understanding. In this framework, I developed two novel algorithms, the
first able to generate long, dense, reliable and accurate pedestrian trajectories
and the second clustering them to generate long term reliable and abstract in-
formation describing flows in the whole video. The final results provide directly
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information characterizing flows but they also represent a starting point for fur-
ther high-level analyses of crowd behaviour. The approach starts by dividing
the input video into multiple segments of equal length and duration, consid-
ering videos with a constant frame rate. The initial frame of each segment is
overlaid by a grid of particles initializing a dynamical system defined by optical
flow. Time integration of the dynamical system over a segment of the video
provides particle trajectories (tracklets) that represent motion patterns in the
scene for a certain time interval associated to the analyzed segment. We detect
sources, sinks and main flows in the segment (for sake of brevity sometimes
we will refer to this information as segment local track) by analyzing motion
patterns followed by clusters of tracklets, obtained using an unsupervised hier-
archical clustering algorithm, where the similarity is measured by the Longest
Common Sub-sequence (LCS) metric. Results achieved so far are intrinsically
related to a single segment of the analyzed video, associated to a relatively short
time frame. To achieve final global tracks, covering all the video, we cluster the
achieved local tracks through the same hierarchical clustering algorithm. Our
main contributions are:

1. generating dense and long trajectories,

2. identifying sources and sinks,

3. understanding behavior of the crowd in the scene by considering full length
video,

4. achieve the above results without requiring object detection, tracking, nor
training, targeting employment in naturalistic conditions.

Social Groups Detection in Crowds

In the above two proposed frameworks, I focus on the overall crowd by consid-
ering a large set of pedestrians without taking into account the importance of
social interactions among pedestrians. In many situations, pedestrians do not
really walk alone, and researchers observed in most situations pedestrians actu-
ally walk in groups. Some interesting forms of social interaction and adaptive
behaviours can be observed at the group level and they are growingly investi-
gated in the area of pedestrian and crowd modelling and simulation. Therefore,
keeping in view the growing importance of this problem, I proposed an algo-
rithm in this thesis that can automatically detect the social groups in crowds.
The approach presented in this thesis starts by extracting trajectory informa-
tion from the whole video and building an Association Matrix that captures the
joint probability distribution of start and stop locations of all pedestrians to all
other pedestrians in the scene and it adopts a bottom-up hierarchical clustering
approach to discover social groups. The main contributions of the work are:

1. instead of considering whole trajectories, we consider only two points
(start and stop) making the overall group detection process computation-
ally less expensive and more suitable for real-time operation,
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2. our approach does not require training,

3. the usage of Association Matrix for discovering couples and Adjacency
Matrix for discovering groups,

4. our approach requires only one parameter setting..

1.5 Organization of Thesis

The thesis are organized as follows: Chapter 2 discusses the demography of
Hajj. Chapter 3 discusses the integrated approach of crowd analysis and crowd
synthesis for understanding crowd dynamics and the efforts made in this direc-
tion. This chapter also discusses classification of crowd studies with particular
attention to crowd analysis. Moreover, this chapter discuss different state-of-
the-art methods focusing on dealing with similar aspects of crowd as proposed by
this thesis. Chapter 4 presents the crowd flow segmentation and crowd count-
ing framework and intermediate steps involved. Chapter 5 introduces novel
algorithms for extracting correct and reliable point trajectories, that helps in
identifying semantic regions in the scene and provide a useful input for crowd be-
haviour understanding. Chapter 6 highlights the importance of social groups
in understanding overall crowd dynamics and presents novel algorithm for de-
tecting social groups in crowds. The thesis is concluded in Chapter 7 with
summery of contributions and description of future work.
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Chapter 2

Demography of Hajj

2.1 Introduction to Hajj

Hajj is fifth pillar of Islam, where more than two million muslims from various
ethnic groups of more than 180 countries worldwided perform a series of ritual
activities every year. This is the religious duty for the adult muslims that are
physically and financially capable of performing hajj rituals. It is a journey
whose goal is to connect the pilgrim with the sacred:it is a moment of transfor-
mation from the continuity of the ordinary life (structured) of the persons to
a non-structure rituals, that take the risks and the efforts, both spiritual and
material, of the pilgrimage.

As any other case of pilgrimage, the Hajj has a dimension of communitas
in the sense of Turner communitas that prevails on ’societas’ where on the
contrary the ordinary, everyday dimension dominates. Hajj pilgrims form an
unstructured community where all members are equal. Following Van Gennep’s
passage model, Turner identified a process of ritual organized in phases deter-
mining the transition of an individual from one state to another. Turner noted
that in the context of the states of the ritual subjects are often secluded from
everyday life and have to spend some time in an inter-structural, liminal situ-
ation. In these anti-structure phases there is a preponderance of behavioural
attitudes tending to a detachment to some social barriers and norms. In fact,
the week before the the beginning of the Hajj, international and regional pil-
grims usually in organized groups, start arriving at Makkah. The pilgrims have
precise stations and places called Miqat were they ‘enter the state of Ihram’,
which is the sacred state they must enter in order to perform the pilgrimage.

Miqat separates the external and profane space from the internal and sacred
area of the Hajj. The first step of every pilgrim is to go through this “passage”
by performing the cleansing rituals and wearing the prescribed clothing. Male
pilgrims must wear a white seamless garment made up of two pieces of cloth or
towels, one covering the body from waist to ankle and the other is thrown over
the shoulder; their head must also be uncovered. Women are not prescribed to

9
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have a unusual dressing and thus they generally wear a simple dress and a head
covering. The pilgrims have to abstain from quarrelling, committing violence
to humans or animals, performing specific body care activities (e.g. shaving,
cutting nails) and having conjugal relations. The state of Ihram puts the pilgrim
in a condition of suspension between the profane world and the sacred one,
which will be definitively approached only after having passed through a series
of ceremonies, after which the pilgrim will be purified. The Hajj is an act of
faith but also an act of peace. In fact the prohibitions tied to the rituals are all
related to the promotion of peace. Peace with God, with ones soul, peace with
one another and with every other creature. Everyone performing the pilgrimage
dresses in the same simple way, observes the same regulations, utters the same
supplications at the same time in the same way, for the same end. Once the
pilgrims reached the Holy Mosque, they must perform Tawaf and Sa’ay. During
Tawaf, the pilgrims walk seven times around the Kaaba in counterclock wise
direction. After finishing Tawaf, the pilgrims must walk seven times between
hills of Safa and Marwah, located near Kaaba.

2.1.1 Precise days of Hajj

The Hajj takes place on five specified days each year between the 8th and the
12th day (optionally the 13th) of the twelfth month of the islamic calendar,
known as Thul-Hijjah. Because of the difference between the islamic calendare
which is a lunar calendar and the gregorian calender, used in the western world,
the gregorian dates of the Hajj change from year to year. The pilgrimage com-
prises a precise sequence of rituals conducted at various Holy Sites: Makkah,
Mina, Arafat, Muzdalifa and Jamarat.

2.1.2 Rituals of Hajj

After ‘entering the state of Ihram’ the pilgrims perform the Tawaf and the Sa’ay
in Masjid al-Haram, the Sacred Mosque, in Makkah, the pilgrims walk seven
times around the Kaaba in counterclock wise direction. After finishing Tawaf,
the pilgrims must walk seven times between hills of Safa and Marwah, located
near Kaaba.

The first day of the Hajj, after Tawaf and Sa’y, the pilgrims go to Mina.
They perform five prayers, starting with the noon prayer (Zuhr) and ending
with dawn prayer (Fajr) and they collect some of the seventy small pebbles
they will need for the ”stoning” ceremony.

On the second day of the Hajj pilgrims leave Mina after Dawn Prayer, moving
towards the plain of Arafat, where they spend the whole night. The permanency
here is also called the Wuquf (i.e. “being and standing” – implicitly meaning
before God), which is the central rite of the Hajj. Pilgrims can stay everywhere
they want in the plain area of more than 1000 hectares in which Arafat is
situated, which also includes the Mountain of Mercy, where it is believed the
Prophet Muhammad delivered his Farewell Sermon. When the sun has set
pilgrims leave Arafat for Muzdalifah. The pilgrims will stay here from the after
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sunset of the second day till after the down prayer on the third day. While they
stay in Muzdalifah, they have to make sure they have all the pebbles they need
for the stoning ceremony and if not they have to collect more. At dawn they
offer Fajr (the dawn prayer) and then, before the sun has risen, they set off for
Mina.

The third day pilgrims are in Mina for the stoning ceremony called Ramy
in which they stone seven times the pillar that represent the devil. The stoning
is followed by the animal sacrifice; some pilgrims also cook and eat the killed
animal. After this step, they leave the state of Ihram, by shaving and cutting of
hair and change into normal clothes. The pilgrims now proceed to the al Masjid
al Haram in Makkah to perform Tawaf al-Ifadha. They again circumambulate
the Kaaba seven times and then The third day pilgrims are in Mina for the
stoning ceremony called Ramy in which they stone seven times the pillar that
represent the devil. The stoning is followed by the animal sacrifice; some pil-
grims also cook and eat the killed animal. After this step, they leave the state
of Ihram, by shaving and cutting of hair and change into normal clothes. The
pilgrims now proceed to the al Masjid al Haram in Makkah to perform Tawaf
al-Ifadha. They again circumambulate the Kaaba seven times and then offer
prayers. After performing again the Sa’ay the pilgrims return to Mina where
they spend the night.

Figure 2.1: Rituals of Hajj

On the afternoon of the fourth day and again the following day the pilgrims
must again throw seven pebbles at each of the three Jamarat in Mina. Pilgrims
can decide to return to al Masjid al Haram to perform the farewell Tawaf after
Ramy on the fifth day (12th day of Thul-Hijjah), or stay till the sixth day,
performing Ramy for the third time, before returning to al Masjid al Haram for
the farewell Tawaf. Farewell Tawaf marks the end of the Hajj. The pilgrims
spend whatever time they can within the precincts of al Masjid al Haram and
they make the prayers and acts of devotion as they wish.
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2.2 Demography of Hajj

Demography is the statistical study of human population. Usually this study
involves the measurement of fertility, mortality and migration. Once the data
about the these so-called demographic components are gathered, then different
sophisticated statistical tools can be used to predict these components of the
population. Since we discuss talk about the population of hajj where some
components of the demography like fertility rate, etc are not important and we
will discuss other important related components like, population size, population
diversity, and to some extent, mortality rate in the context of different incidents
during Hajj.

Muslims representing 23% of the world’s population, and according to re-
port1, the percentage of muslim population will increase to 29.7%. Figure 2.2
shows that muslims are the only major religious group expected to increase
faster. With the possible increase in the muslim population, there will be in-
crease in the population of people performing hajj. The growth of pilgrims
population during the past years is illustrated in Figure 2.3. The growth of
pilgrims population reported in Figure seems to be inconsistent and could not
clearly reflect yearly growing population of the pilgrims. For example, the pop-
ulation of pilgrims in the last three years is lower than previous years. There are
couple of reasons that may explain the decrease in the growth, i) The population
data in the Figure 2.3 is based on the official data provided by the government.
Government has the record of the pilgrims who made the registration for the
hajj, and for each country they have establish a quota system, that limits the
participation of pilgrims from different countries. Ideally, the quota system is
based on the percentage of muslim population of a country. The more muslims
population in a country, the higher will be the quota. But the current quota
system to some extent is a political. The muslims population in Iran is higher
than the quota assigned. The assigned limited quota to Iran, due to possible
threat to kingdom and Makkah itself. In 1987, a clash between the pilgrims from
Iran and Saudi Arabia security forces occurred, which lead to the deaths of over
400 people. ii)There are many muslims inside and outside the kingdom who
travelled secretly through different routes to reach Makkah in order to perform
hajj. These out numbered people are unregistered and the government have
no record about their count. Therefore, the counts reported in Figure 2.3 are
under estimated ignoring the count of unregistered pilgrims. In order to prevent
the the flow of un-registered pilgrims, the security personnel deployed at differ-
ent entry locations of makkah. iii) Saudi Arabian government has started an
expansion project 2020 and due to the on-going construction, the government
decrease the quota for each country.

1The Future of World Religions: Population Growth Projections, 2010-2050
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Figure 2.2: Growth rate of different religious groups

Figure 2.3: Number of pilgrims per Year

2.2.1 Hajj Mortality Rate

The number of pilgrims are increasing every year and since hajj involves unique
migration of large number of people moving from one place to another in ex-
treme hot weather within a constraint environment. Such huge migration of
people from one place to another while performing rituals often leads to acci-
dents.i.e, stampedes and failures of crowd control. In most of the cases stampede
occurs due to movement of conflicting flows (moving in opposite directions), for
example, the group of people after finishing stoning the devil ritual return and
come in conflict with the group of people going to perform the same ritual.
Hence panic spreads among the pilgrims in order to avoid being trampled, and
many pilgrims died as a result. The number of pilgrims per year died during
stampedes is shown in Figure 2.6. Beside stampedes the rate of natural deaths
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Figure 2.4: Distribution of hajj population per country

Figure 2.5: Distribution of hajj population per gender

among pilgrims is high, since most of the pilgrims are from developing countries
are aged and with poor health. Most deaths are due to the cardiovascular and
respiratory diseases. Over the past few years, cardiovascular disease become an
significant cause of deaths of most of pilgrims. For example, more than 60% of
the Intensive care units (ICUs) of hospitals in Mina, Arafat came from cardio-
vascular reasons. The percentage of pilgrims admitting to hospitals during hajj
specific days is higher as illustrated in Figure 2.7. The percentage of cardiovas-
cular diseases was very high during the hajj 2002, 13.8% admitted to hospitals
due to respiratory problems as shown in Table 2.1.

Analysis of the age distribution revealed that admission to hospitals is often
dominated by the pilgrims older than 40 years2. This is obvious from the fact
that cardiovascular diseases are more common in old people and since most of
pilgrims are aged people more prone to these diseases.

2Khan N.A., Ishag A.M., Ahmad M.S., El-Sayed F.M., Bachal Z.A., Abbas T.G. Pattern
of medical diseases and determinants of prognosis of hospitalization during 2005 Muslim pil-
grimage Hajj in a tertiary care hospital. A prospective cohort study, Saudi Medical Journal.
2006;27(9):1373-1380
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Figure 2.6: Mortality Rate because of stempeds

Figure 2.7: Patients admitted to hospitals

2.2.2 Ageing and the hajj

The presence of over two million pilgrims naturally implies the presence of large
number of elderly persons that are however carrying out this religious duty with
great enthusiasm. Ageing of population is currently one of the most relevant
demographic component in industrialized nations, where it is going to produce
significant modifications from the economic, social and cultural perspective.
This phenomena should not be considered as the cause of negative consequences,
but invested to highlight relationships, needs and potentialities that an ageing
society is able to express. In particular, it is necessary to reflect on how the social
inclusion of elderly people will be guaranteed in future and how to improve their
mobility. Mobility is essential for general independence as well as ensuing good
health and quality of life, and one of the most relevant and important activities
of daily living for maintaining independence. Although Saudia Arabia is not
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Table 2.1: Significant causes of death
Diseases Mortality

Cardiovascular 45.8%
Respiratory 13.8%

Traffic accidents 6.4%
Cerebrovascular 3.4%

Table 2.2: Pilgrims age vs Mortality
Age(years) Mortality
Less than 20 0.0%

20-39 3.5%
40-59 2.02%
60-79 67.5%

Greater than 80 8.8%

facing the problems of ageing society but every year they have huge gathering
of aged people during hajj. There are couple of reasons of aged people coming for
hajj. The first reason is that, most of the pilgrims came for performing hajj from
developing countries like egypt, pakistan, india, etc as evident from Figure 2.5.
The per capita income of these countries is very low and most of population is
living below poverty level. The population of these countries is very high and
usually there is only one bread winner, supporting 5 to 6 members of the family.
Under these circumstances, people are not financially stable enough to go for
the hajj at the early stages of their lives. They usually safe the money for whole
of their lives, so at the end, they could go for the hajj. The second reason is that
most of them think, although not true from religious point of view, that if they
die during performing hajj, which normally happened due the health problems
related to ageing discussed above, they would go the heavens.

Figure 2.8: Distribution of age
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2.3 Transportation in Hajj

Public transportation is the movement of people from one place to another.
Usually transportation is base on fixed infrastructure like roads, waterways,
railways, station etc. Means of transport is a term used to distinguish different
ways to perform transport. In today modern world, the most dominant means of
transportation are aviation (by air), ship transport, and land transport. Other
traditional means of transportation include, pipelines, cable transport, human
and animal powered transport. The modern means of transportation like air,
water and land are fastest ways that covers thousands for miles distance in less
time. Each means of transportation has fundamentally different infrastructure
and require a separate environment. Each means of transportation has sepa-
rate subsystems. All means of transportation have six subsystems: propulsion,
suspension, control, guidance, structural, and support.

Transportation is considered an important subject during hajj, where more
than two million people move from place to place performing different rituals.
We categorise the transportation in hajj into two; (i) Global transportation (ii)
Local transportation. Pilgrims from different parts of the world, in order to
reach Holy City adopt different means of transportation, we call this as a global
transportation. Once the pilgrims arrive in the Holy City, they adopted different
means of transportation like, buses, vehicles, bikes, trains etc to move in the
city and also during hajj. A brief summary of this categorization is illustrated
in Figure 2.9.

2.3.1 Global Transportation

Air

Transportation by air is the modern and second fastest means, after space travel.
Commercial aeroplanes reach speeds of up to 955 kilometre per hour and longer
distances are easily covered in one or a few days. Air transportation is the fastest
mean among other public means of transportation but it costly and consumes
energy more than others. Moreover, aviation effect the climate and particularly
global climate 2-4 times more than other means of transportation. During hajj
period, most of the pilgrims reach to the Holy city by using air transportation

Land

Land transportation is the movement of people from one location to another on
land usually by road. A road is identifiable path between two or more places.
Roads are typically smoothed, paved in order to allow easy travel. The most
common road vehicles are auto mobiles, buses, motorcycles and pedestrians.
Auto mobiles offer high flexibility and with low capacity, but with high energy
use. This means of transportation are the main source of noise and air pollution
in urban areas. During hajj period, the pilgrims from middle east countries who
share borders with Saudi arabia adopt this mean of transportation. Since this
means of transportation is cheaper than aviation.
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Water

Ship transport has been the largest means of transport since last many centuries.
Due to the availability of modern means of transportation like aviation, the
importance of sea travel for passengers has decreased. Transportation by water
is cheaper than air. During the early part of previous century, pilgrims used to
reach the Holy city by ships sailing through the Red sea. But the popularity
of aviation reduce the use of water transportation not only for hajj but in
general. Following table shows the percentage of people using different means
of transportation to reach Makkah during hajj. As evident from the Table 2.3,
almost all pilgrims uses aviation while very small portion of pilgrim uses other
means.

Figure 2.9: Categorization of Transportation in Hajj

Table 2.3: Means of Transportation
Videos Male Female Total

Air 51.60% 43.12% 94.73%
Land 2.44% 1.81% 4.26%
Sea 0.51% 0.49% 1.00%

2.3.2 Local Transportation

Once the pilgrims arrived in the Holy City, they use different means of trans-
portation for different purposes. Usually, most of the pilgrims stay in hotels,
and the government and administration of hotels provide buses that take the
pilgrims from their residence to the Holy mosque and vice versa. They adopt
other means like vehicles to visit around different places (Holy places) of the
city. During the hajj days, the common means of transportation are buses, ve-
hicles. But due to extreme crowded situations, these means of transportation
get jammed as depicted in Figure and pilgrims either adopt to go by themselves
or hire bikes, so that they can easily take them to their destination in order to
avoid jam. In order to avoid jam of massive proportions, the government has
constructed Mashaer rail line.
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Figure 2.10: Scenario of Traffic Jam

The newly developed Mashaer rail line is a rapid rail transit system that
connects the Holy sites of Mina, Muzdalifah and Arafat; it is aimed at drastically
reducing traffic congestion at the Holy Sites. It is designed to help accommodate
the continuously growing number of pilgrims and to improve their comfort. In
2010, the year of its opening, it operated at about 35% of the full capacity but
already replacing about 4000 buses previously used to transport about 150000
pilgrims. The line and the comprised stations are involved in very different
types of transport movements in different days of the Hajj. The line includes 9
stations: 3 in Mina (the first of which is called Jamarat), 3 in Muzdalifah and 3
in Arafat as picture 3 depicts. The rail system will remain in operation all year
round and it will be used to access the Haram and Makkah Central Area.

The flows of pilgrims to and from the stations have to be organized to re-
duce congestion:some parts of these places represent constrained spaces, that
can contain only a certain number of persons, as opposed to other areas (e.g.
the Arafat plain) that can accommodate more easily a large number of pilgrims.
To this end, the area around the stations must be organized (waiting areas, ac-
cess control, emergency routes, etc.), to organize the flow of pilgrims in order
to prevent the arrival of additional pedestrians in the constrained areas, but
allowing the pilgrims to stand and wait in other nearby areas that can accom-
modate them safely. It is important that the personnel responsible for pilgrim
guidance and access control is aware of the different types of “movements” and
cooperates with station managers.

The Arafat I station is the farthest from central Makkah in the whole
Mashaer line; the station lies very close to the southwestern border of the Arafat
plain. The area around the station is divided into blocks and lots, which are ser-
viced with car parks on both platform sides. The campsite between the station
and Mount Arafat is very structured, while the other side faces an area on the
border of the Arafat plain and it is not characterized by an equally dense pres-
ence of tents and other accommodation structures. Pilgrims enter the station
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by means of ramps, elevators and escalators (the latter were not operational
during the 2010 Hajj). Also footbridge access have been created: these bridges
pass under the platform but above the road that lies under the station and
they allow pilgrims to move from one side of the station to the other. This is
particularly important during the movement in which all pilgrims must travel
from Arafat to Muzdalifah, since both of the platforms must be used to assure
an efficient transportation of pilgrims.

One of the most demanding movements that the infrastructure of the Mashaer
Rail line must be able to sustain is the one that takes place after the sunset
of the second day of the pilgrimage, which involves the transport of pilgrims
from Arafat to Muzdalifah. The pilgrims that employ the train to proceed to
the next phase of the process must be able to move from the tents or other
accommodation to the station in an organized flow that should be consistent
with the movement of trains from Arafat to Muzdalifah stations. Since pilgrims
must leave the Arafat area before midnight, the trains must continuously load
pilgrims at Arafat, carry them to Muzdalifah, and come back empty to trans-
port other pilgrims. Trains move in a coordinated process to assure a consistent
flow of pilgrims: when a train loaded with pilgrims leaves the Arafat I station
heading to Muzdalifah I on one of the lines, on the other line a different train
moves back empty to allow other pilgrims boarding it on the other platform.
Since the western side of the station is far from the tent and accommodation
area, pilgrims mostly reach it by means of the previously introduced footbridge
access.

The size of the platforms was determined to allow hosting in a safe and
comfortable way a number of pilgrims also exceeding the potential number of
passengers of a whole train. Each train is made up of 12 wagons, each able to
carry 250 passengers for a total of approximately 3000 persons.

In order to achieve an organized and manageable flow of people from outside
the station area to the platforms the departure process was structured around
the idea of waiting–boxes: pilgrims are subdivided into groups of about 250
persons that are led by specific leaders (generally carrying a pole with signs
supporting group identification by pilgrims). The groups start from the tents
area and flow into these fenced queuing areas located in immediately outside the
station, between the access ramps. Groups of pilgrims wait in these areas for an
authorization by the station agents to move towards the ramps or elevators. In
this way it is possible to stop the flow of pilgrims whenever the number of persons
on the platforms (or on their way to reach it is using the ramps or elevators)is
equal to the train capacity, supporting thus a smooth boarding operation. The
planning of group arrival at the station but also the coordination of group leaders
with the station managers and other managing officers, is crucial to assure a
safe, smooth and comfortable overall process of departure from Arafat for the
pilgrims performing the Hajj.

Arafat 1 is a modern station but due to its position and role in the context
of the Hajj rituals some particularities have been taken into account and they
caused some particular design choices.

First, of all Arafat 1 it is an elevated station and has many types of access.
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It has been designed to be a rapid transit station, so that no kind of service
is hosted in it. The observation of the station has highlighted some aspects
which could not be foreseen in the design phase. The really hot climate of
Saudi Arabia produce some unexpected distribution of the pilgrims outside the
station. This distribution appears to be non homogeneous and concentrates on
the shady areas offered by the structure of the station and by the sparse trees.

The positioning of the waiting boxes, with respect to the close tent areas
and related roads should be considered, especially given the probable increased
usage of the station during the next Hajj. Groups of pilgrims coming from the
tents area could find relatively narrow the passage towards the waiting boxes,
especially if the groups arrival plan is characterized by a schedule that is too
dense or in case of early/late arrivals due to errors of group leaders. During
the observations carried out in the context of Hajj 2010, in one case a group
moved directly from the tents area towards one of the ramps. At the same time,
another groups from a waiting area was already approaching the ramp. This
conflict caused a longer than average waiting time of other groups, due to the
fact that more pilgrims than usual were climbing the ramp (or waiting to do
that).

The Arafat I station does not provide facilities for pilgrims like toilets, chairs
and so on. The rationale of this design choice is to support relatively quick
boarding and alighting operations, but it could be problematic in case of long
waiting times for elderly people. According to observation carried out during
the Hajj in 2010 it was possible to identify situations in which pilgrims were
looking for places and objects to sit down, like short walls, chairs for the station
personnel and so on. On the other hand, it is apparent how in case of saturation
of the alighting/waiting or boarding area on the station platform the presence
of such kind of facilities could represent an obstacle to the flow of pilgrims.

Other considerations could be made on the access ways to the station from
outside: these are mainly ramps and elevators. During the observations, eleva-
tors were not reserved to groups including people with disabilities or walking
problems, like aged people: this leads to longer waiting times that could rep-
resent an issue in very hot days. Moreover it must be noticed that the future
construction of escalators will represent a serious improvement simplifying the
management of people having problems in climbing the ramp, whose length and
slope represent a problem for people with disability or walking problems.





Chapter 3

State of the Art

3.1 Crowd Dynamics: Integrated Approach

Crowd studies represent successful applications of researches carried out in the
context of computer simulation and computer vision. In fact, comprehensive
studies require the synthesis of pedestrians and crowd behaviour but the devel-
oped models must be (i) properly calibrated and validated by means of data
acquired on the field and (ii) informed by the specific contextual conditions of
the simulated environment (e.g. number and positions of pedestrians in the
area). Synthesis requires thus the results of analysis. In turn, the analysis of
crowding phenomena can benefit from results on the side of synthesis: researches
on the latter often produce formalization of phenomena, lead to the definition
of metrics and indicators to evaluate the generated dynamics. These concepts
and mechanisms can represent a useful contribution towards the automation
of the analysis techniques that, thanks to the development of computer vision
techniques, can actually produce useful information even from cluttered scenes
like those taken from security cameras in public spaces. The overall resulting
cycle of integrated synthesis and analysis of pedestrian and crowd dynamics is
depicted in Figure 3.1.

Since the aim of this thesis is to understand pedestrian and crowd dynamics
by employing computer vision technology, therefore we will focus on the details
of different techniques aim at solving different problems of crowds using com-
puter vision. Computer vision researches have produced significant results on
the automated analysis of pedestrian and crowd behaviour, but before provid-
ing a detailed discussion of the results, we provide a qualitative classification of
crowds that considers high and low density situations, as shown in Figure 3.2,
which was inspired by [1].

Although there is not a common approach that can differentiate high den-
sity crowds from low density crowds, from the analysis point of view, in low
density situations there is a clear visibility of individuals with little occlusions;
in these situations we can detect and track the individuals in the scene. This,

23
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Figure 3.1: An integrated cycle of pedestrian and crowd dynamics synthesis and
analysis

on the other hand, is not usually possible in high density crowds in which de-
tection and tracking of individuals is very challenging for a number of reasons:
(i) with increasing density, the number of pixels per individual decreases; (ii)
severe occlusions result in the loss of observation of the target individual; (iii)
discerning individuals from one another is hindered by the constant interaction
among individuals in a crowd.

High density crowded scenes, in turn, can be divided into categories, struc-
tured and unstructured [2], with some examples shown in Figure 3.3. In struc-
tured crowds, pedestrians moves coherently in a common directions that motion
does not change over time. For example, the pedestrians doing Tawaf in Hajj, or
pedestrians participating in marathon race, represent structured crowds because
the direction of motion is fixed and does not change over time. The motion of
the pedestrians in unstructured crowds appears to be not immediately char-
acterizable, with flows of pedestrians changing direction with the passage of
time. Road crossings, railway stations, expos, airports are some examples of
unstructured crowds.

A survey about the crowd analysis methods employed in computer vision is
presented in [3]. An interdisciplinary framework for crowd analysis to improve
simulation models of pedestrian flows is also presented in [4]. The research
on crowd analysis can be classified on the basis of the specific problem that
reseachers are trying to solve. The researchers adopted combination of different
traditional techniques or developed new techniques in order to solve different
crowd problems. We categorise these problems as follows:
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Figure 3.2: A classification of crowd studies with particular attention to analysis

1. Crowd counting and crowd density estimation,

2. Detection of individuals in crowd

3. Crowd flow segmentation,

4. Crowd behaviour understanding ,

5. Social groups in crowds.

The relevant literature of each of these categories is discussed below in de-
tails.

3.1.1 Crowd Counting and Crowd Density Estimation

The goal of this problem is to develop algorithms that can automatically localize
the individuals in the crowded images and videos. Most of the research in this
areas focus on estimating crowd density estimation. Crowd density is estimated
by employing either segmentation of people or head counts, or by texture anal-
ysis or wavelet descriptors. Crowd counting or density estimating algorithms
are generally classified into two groups: holisticapproach and localapproach. In
holistic approach, global features of image,i.e, textures, edges, foreground pixels
are extracted from the image or video sequence and a classifier or regression
model is then employed to map between the extracted feature space and the ac-
tual crowd size. In contrary, local approach utilizes the local features of image
which are specific to individuals or group of people. These groups of people are
independently analysed and the total crowd estimate is the sum of its parts.

Holistic approaches

Holistic approaches estimate the crowd size by utilizing the global image fea-
tures. Features used by these methods include textures [5], foreground pixles [6]
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Figure 3.3: Examples of structured and unstructured crowds

and edge features [7]. The methods proposed in [5, 8] utilizes gray level cooccur-
rence matrix (GLCM) for crowd density estimation. Minkowski fractal dimen-
sion also proposed in [9] for extracting texture featuers. [10] showed classifica-
tion accuracy of 95% when crowd density is classified into four classes by using
wavelet descriptors. Classification is done by support vector machine. Their
method is good for estimation of crowd density for moderate crowd density. [11]
proposed Translation Invariant Orthonormal Chebyshev Moments (TIOCM). It
is observed in [11] that superior performance is achieved on afternoon dataset,
because the due to less variations in illumination when compared to the morn-
ing dataset. This highlights the limitation of texture features when employed in
real time situations. Other approaches utilises foreground pixels and edges to
estimate the crowd size. [12] proposed a number of edge features, such as vertical
edges for detecting legs and arms of the individuals. [6] found the relationship
between the foreground pixels and crowd size and establish a principle that
number of people are linearly proportional to number of foreground pixels and
that of number of edges. These features are also used by [13, 14, 15] and crowd
size is estimated by employing a fast training algorithm for feedforward neural
network. The mentioned approaches relied on the static background with scenes
relatively at high camera angle. The total number of foreground pixels is less
likely to be a good indicator because the objects in the distance appear smaller
and will contribute less pixels to the foreground. Therefore as a solution [16]
argues that the perspective distortions in images for pixel based crowd estima-
tion are either incorrect or not done well, they propose a geometric correction
technique, and they argue that the correction depends on y-axis only. Hence if
a human is standing upright, pixels on his feet have a scale, and all the pixels
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on his body has the same scale as his distance from the camera is same. They
use a simple foreground pixel detection technique using some masks and adap-
tive area growing as well. They integrate the GC into their pixel count using
a lookup table. They assume each person as a rectangle changing in size with
y value, and then consider all positive pixels in that rectangle as that person.
The authors point out many flaws in past research works but this approach may
fail when dealing with high crown density when people occlude others partially
and completely. [17]uses the fore ground pixels and finds them using a Median
Background computing technique. Foreground pixels are found by applying a
threshold and then morphological operations are done to smooth the results.
They ignore zones by masking area that have motion but not interesting like
road (cars) etc. They apply classification algorithms like SVM, k-nearest, PNN,
BPNN to classify the images in 2 categories first, zero persons and one and more
persons. On more than zero people’s categories it again applies the classification
techniques to find the number of people in the scene. They train these classi-
fiers on 70% of the images and test them on the 30% of the remaining images.
The median filters are applied on the sequence of image results to get rid of
the spiky errors. Also they use assorted grid to see if the accuracy increases.
A very large number of features are extracted from each image by employing
holistic algorithm proposed in [18, 19, 20, 21] to account for occlusion and other
non-linearities.

In summary, holistic approaches tend to estimate the crowd size by ex-
ploiting global features of image. However, due to high variations in crowd
behaviours, distribution and density, crowd size is difficult to estimate. There-
fore,as a solution, local approaches are proposed to overcome the limitations of
global approaches.

Local approaches

Local approaches use head detectors or features that are associated to individu-
als or group of individuals with an image. These approaches are categorised into
two: i) Detection based approaches use head, face etc to localise the individual
in an image. Once the localization is done, then crowd counting is performed.
ii) Localisation based method divide image into overlapping blocks and then
features are extracted from each block and then crowd is estimated by applying
regression model.

Detection based approaches are suitable to the scenes where the crowd is
spare, i.e, the people in the scene are well separated and their bodies are
fully visible. Therefore human detector or head detector is employed to get
the crowd count. Detection based crowd counting approaches are reported
in [22, 23, 24]. A survey of pedestrian detection methods are reported in citedol-
lar2012pedestrian,enzweiler2009monocular. Since in the real time environment,
pedestrians are always occluded and their bodies are not visible enough that
can be detected by pedestrian detection methods. Therefore as alternative,
localisation based methods are proposed in which image is divided into num-
ber of subregions and counting is done in each region by employing regression.
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Group localisation is performed by employing key points clustering method
in [25, 26, 26, 26]. In this approach, SURF features were used to detect key-
point in an image. Stationary points are removed by taking the mask of features
points with optical flow. The remaining points are clustered int groups by using
K-means algorithm. The group size is then estimated. The shortcoming of these
approaches is that they are restricted to moving objects and could not count
the people who are stationary in the scene. A number of approaches is proposed
in literature [27, 28, 29, 30] that divide the image in sub-regions and classify
discrete density level.

3.1.2 Detection of individuals in crowd

The goal of this task is to develop algorithms that can automatically localise the
individuals in the scene. A number of different approaches to solve this problem
are reported in literature [31, 32, 33, 34]. In [31], segmentation scheme for local-
izing the people is proposed. The problem was modelled in Bayesian framework
where each person was localized by maximizing the posterior probability with
foreground blobs. In [32], the proposed method localize the individuals by us-
ing part based detectors of edge features. Detecting individuals using interest
points has also been proposed in literature. [33] proposed a global annealing
framework for localizing individuals in crowd using clustering of interest points
based on the geometric association with each other. [34] proposed a Bayesian
clustering method to group trajectories on basis of space-time proximity. Simple
image features are tracked and group them probabilistically into clusters that
represent independent moving persons.

Stero-based head detection approach is reported in [35]. The algorithm is
based on the notion that in public places like airports, railways, stations etc,
the camera is mounted at large angle, isolating each individuals head from one
another. The proposed algorithm is based on three stages: i), an adaptive
filtering is performed to extract head like objects; ii), a perspective correction
is then performed and iii), a mean-sift used to locate human heads in likelihood
map. [36] proposed a different method based on Haar-Wavelet feature for head
detection. Their algorithm is based on notion that heads of pedestrians form a
texture which can be distinguished from the background using wavelet features.
An algorithm reported in [37] that detect individuals from a foreground blob
after applying background subtraction. In crowded scenes, such foreground
blob contain more than one person since in many cases they are occluded. The
algorithm used Fourier descriptor for explaining the shape. [38] localize the
objects by using multiple lasers. The background modelling of image scan by
laser was used to detect foreground blobs. Similar work by employing a laser
scanner at the ground level for detection and tracking is reported in [39, 40].

The main limitation of these methods is that these methods are applica-
ble to low density situations, where the people are sparsely distributed in the
environment. But these approaches become impractical when applied to high
density situations, where the people are highly occluded and have less pixels per
person.
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3.1.3 Crowd Flow Segmentation

In video surveillance,“detection and tracking” are the core technologies but these
technologies are likely to fail in high density crowded scenarios. An important
contribution that automated analysis tools can give to pedestrians and crowd
safety is the detection of conflicting large pedestrian flows: this kind of move-
ment pattern, in fact, may lead to dangerous situations and potential threats
to pedestrians’ safety. Therefore,segmenting typical flow patterns of crowd and
estimating the number of people in crowd are important steps to understand
overall crowd dynamics. Most algorithms developed for object detection and
tracking work well with pedestrians in low density crowds where the number
of people is generally less than twenty individuals in a single frame, but with
higher densities (where the number of people in a frame can be in the order of
hundreds), detection and tracking of individuals are almost impossible due to
multiple occlusions.

Therefore, the research has focused on gathering global motion information
at higher scale. Global analysis of dense group of moving people is often based
on optical flow analysis. [41] proposed particle dynamic segmentation of crowd
flows by detecting the lagrangian coherent structures over the phase space. But
their proposed method is computationally expensive because of the calculation
of FTLE and also could not detect small flows. [42] used SIFT features to
detect dominant motion flows. Flow vectors of SIFT features are calculated
and then motion flow map is divided into small regions of equal size. In each
region, dominant motion flows are estimated by clustering flow vectors. [43]
proposed spectral clustering method for crowd flow segmentation by computing
sparse optical flow field. Crowd flow is estimated using multiple visual features
reported by [44] where flow is estimated by the number of persons passing
through a virtual trip wire and accumulate the total number of foreground
pixels. Min-cut/max flow algorithm is used by Ullah et al. [45] for crowd flow
segmentation. In all of above four methods, we can not find clear boundaries
among different flows. Crowd flow segmentation by using histogram curves is
reported by [46] where angle matrix of foreground pixels is segmented instead
of optical flow foreground. The derivative curve of histogram is used to segment
the flow. Since this method only looks to the peaks of histogram curve, therefore
it loses information about the crowd flow.

The above mentioned technique segments the crowds flows into different
segments depending on the basis of different directions. Such analysis are very
useful in detecting and predicting conflicting flows but these analysis lack infor-
mation about the start or stop location of different flow segments. Therefore, in
the next sub-section we discuss techniques that can automatically detect source
and sink points of different complex flows in the scene. These analysis help
us in crowd behaviour understanding and also have many applications for the
researchers working on crowd synthesis.
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3.1.4 Crowd Behaviour Understanding

Traditionally, crowd analysis is performed by the analyst who manually identi-
fies and detects different relevant behaviours in the scene. A portion of video is
given to each analyst together with a list of events (behaviours) and objects to
look for. The analyst informs the concerned authorities if any of the given events
or objects are detected. Such kind of manual analysis of video is labour inten-
sive, time consuming and prone to errors due to weak perceptive capabilities of
humans, but also to the repetitiveness of the activity.

In video surveillance, scene modelling and understanding is also an important
research area. Important tasks of scene modelling and understanding are (i)
extracting motion information (e.g. trajectories), (ii) identification of entry
and exit points of trajectories in the analyzed scene, (iii) characterization of
the interaction of trajectories (highlighting, for instance, crossings or potential
conflicts).

With the advancement in computer vision technology, researchers developed
tracking methods that in certain conditions can automatically detect, track and
identify specific activities in the scene. [47] developed a tracking algorithm by
modeling human shape and appearance as articulated ellipsoids and color his-
togram respectively for crowded scenes. [48] use Markov chain Monte Carlo
based particle filter to handle interaction between multiple targets in crowded
scene. [49] detects interest points in each frame by tracking pedestrians, and this
activity is performed by finding correspondence among points between frames.
[34] developed an unsupervised bayesian clustering method to detect individ-
uals in crowd: for each frame, detection of individuals is performed ignoring
the relationship between frames. [50] detect individual objects on the basis of
assumption that objects move in different directions. [51] develop a tracking
system by solving data association problem by utilizing Generalized Minimum
Clique Graph (GMCP) in order to detect an individual in different frames of a
video. Intuitively, detection and tracking of individuals rely on the performance
of detection and tracking algorithms. However, in crowded scenes, where the
number of objects is often in the order of hundreds, these tasks usually fail
due to (i) the variable and potentially low number of pixels per object and (ii)
frequent and severe occlusions related to the constant interaction among the
objects (pedestrians) in the scene. These challenging characteristics of the ana-
lyzed videos can be at least partly avoided in laboratory situations: for instance,
in [52] the authors successfully gather pedestrians’ trajectories and gather useful
data about their behavior but they employ a manual or automatic but facilitated
form of identification. Moreover, as we will discuss in the experimental evalu-
ation that the adopted tracking algorithm (Lucas-Kanade tracker - KLT [53])
does not provide sufficiently accurate results in naturalistic conditions.

Intuitively, detecting sources and sinks (as introduced above) implies detec-
tion and tracking of objects, potentially followed by an analysis of the trajec-
tories: this kind of approach was adopted by [54], which analyses low density
situations and essentially relies on the performance of the tracking algorithm,
which is low in crowded situations. Research in this area has therefore instead
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assumed that raw data about pedestrian paths should be considered as noisy
or unreliable: [55], for instance, employ a so-called weak tracking system and
they aggregate raw tracklets through a mean-shift clustering technique allowing
them to identify entry and exit zones in the scene. More recently, in order to
overcome the limitation of traditional tracking methods, research has focused
on gathering global motion information at higher level, often based on optical
flow analysis.

Trajectories capture the local motion information of the video. Long and
dense trajectories (that is, trajectories representing a large number of paths
followed by different pedestrians, reaching a significant length) provide good
coverage of foreground motion as well as of the surrounding context. There
are two types of representations for characterizing motion information from
the video: space-time local features (like corner points, SIFT features etc.) and
dense optical flow [56]. In the first type, features are detected in one frame which
are then tracked through rest of the frames of a video, whereas the second type
is based on dense optical flow, where a flow vector is estimated for every pixel.
Since dense optical flow estimates a change for every pixel it provides a better
representation of motion in video. A large number of approaches for extracting
feature trajectories from video exist:

• the work described in [57] extracts feature trajectories by tracking Har-
ris3D interest points; [58] used KLT for extracting trajectories represented
as a sequence of log-polar quantized velocities which later on used for ac-
tion classification;

• a different approach [59] also used KLT for extracting trajectories, that are
then clustered and affine transformation matrix representing trajectories
is computed for each cluster;

• other researchers extract trajectories by matching SIFT descriptors be-
tween two consecutive frames [60];

• the work described in [61] combine both KLT tracker and SIFT descriptor
matching to extract long-duration trajectories, and random points are
sampled for tracking within the region of existing trajectories in order to
assure dense coverage;

• another approach [62] extracts feature point trajectories in the regions of
interest; in this work, authors compute histogram of gradient (HOG) and
histogram of optical flow (HOF) descriptors along the trajectories.

• KLT method is also used in [63] for extracting sparse trajectories: the au-
thors propose Random Topic Model (RTM) for learning semantic regions
from the motions of pedestrians in crowds. A variant of this approach [64]
employs KLT trajectories and proposes Mixture model of Dynamic pedes-
trian Agents (MDA) that analyse the collective behavior of pedestrian in
crowds after learning from the real data.
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Resulting trajectories from the above approaches are effectively long dura-
tion but they are typically sparse and can not capture whole motion information
of the video because only few feature points are detected.

On the other hand, dense optical flow captures whole motion information of
the video, as we estimate a flow vector for every pixel of a frame; but due to the
unpredictable nature of the pixel (due to its sensitivity to the illumination), we
can not extract reliable long duration trajectories. There is limited literature
about dense trajectories:

• an approach described in [65] extracts long range trajectories using dense
optical flow;

• a different approach [66] extracts objects from video using dense optical
flow trajectories;

• video is represented as set of particles and their trajectories are computed
using variational optical flow in [56];

• in [67], particle trajectories are obtained by overlying a grid of particles on
the initial frame of video, initializing a dynamical system. Time integra-
tion of this dynamical system provides particle trajectories that represent
motion in the scene. This method represents a very useful starting point
for our goals, especially for generating robust local movement trajectories,
although it is not aimed at providing global pedestrian motion information
but just for identifying specific crowding situation or movement patterns.

Generally, these techniques are quite reliable when so called structured crowds [68]
are analyzed: this is mostly due to the nature of this kind of situations, when
flows of pedestrians can include a very large number of individuals that, how-
ever, follow relatively stable flows that are generally well separated and not
conflicting (e.g. people in a marathon, pilgrims performing Tawaf during the
Hajj). Achieved particle trajectories in high density unstructured crowds are,
instead, normally not accurate and unreliable due to (1) severe occlusions that
occur frequently, (2) ambiguities arising at the boundary of the conflicting flows
as reported in [69]. In these cases, a particle can drift to the side of another mo-
tion boundary and it can mix with different motion. Other approaches like, [70]
and [71], which extract motion trajectories using KLT and adopt hierarchical
clustering algorithms for detecting dominant flows in scene. These methods do
not consider the whole video, but they rather consider a portion of it; moreover
they do not actually try to identify sources and sinks of different flows but rather
capture information about a low number of frames which provide inadequate
information for understanding the overall behavior of the scene. In this thesis,
we adopted a similar approach as [67] for extracting motion information, but
we overcome the limitations of the previous approaches by employing rules for
extracting highly accurate and reliable particle trajectories.
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3.1.5 Social Groups Detection in Crowds

In thesis, we investigate another important problem of crowd dynamics,i.e, so-
cial group detection. As we understand from our knowledge that crowded scenes
are composed of large number of people exhibiting different behaviors in a con-
strained environment. The analysis of the behavior of pedestrians and crowds in
video surveillance systems is a topic of growing interest supporting an improved
understanding of human behavior and decision making activities through sev-
eral functions like activity recognition [72], automated analysis of the flow of
large crowds, for example through crowd flow segmentation and crowd count-
ing [73], the discovery of frequent pathways [74], the identification of crowd be-
haviors [67] and abnormal event detection [75, 76]. All these studies either focus
on individuals or on the overall crowd, considered as large set of pedestrians,
not considering the importance of some social interaction among pedestrians:
most pedestrians do not really walk alone [77], and researchers observed in most
situations pedestrians actually walk in groups. Some interesting forms of social
interaction and adaptive behaviors can be observed at the group level and they
are growingly investigated in the area of pedestrian and crowd modeling and
simulation [78, 77]. On the other hand, detecting and analyzing social groups
of people is still a less studied topic.

A few recent works [79, 80] are aimed at the detection of groups without
using future information about the dynamics of the scene. [79] employed De-
centralized Particle Filtering (DPF) for group detection while [80] employed un-
supervised group detection method based on Dirichlet Process Mixture Model
(DPMM) which exploits proxemics to determine group formation. Other ap-
proaches like [81, 82, 83] use social forces to analyze motion patterns and recog-
nize groups. These social forces based methods are based on pairwise similarity
between trajectories of pedestrians followed by a clustering phase. An approach
described in [84] extracts trajectory information from the whole video, then tra-
jectories are temporally analyzed in order to determine the affiliation of each
pedestrian to a particular group. Pedestrians are grouped in a bottom-up fash-
ion by employing hierarchical clustering using pairwise proximity and velocity.
In [85], both spatial locations and velocities are used within a modified Haus-
dorff distance to compute trajectory similarities. In [86], Euclidean distance
metric is used to cluster vehicle trajectories. [74] measures trajectory similari-
ties using Longest Common Sub-Sequence. [87, 88] use Hausdroff and Dynamic
Time Warping metric to measure trajectory similarities. The problems with em-
ploying all above pairwise similarity measures are that they are computational
expensive and lack probabilistic explanation. On the other hand, instead, re-
cent works are focusing on modeling the distribution of trajectories locations
and velocity observations [89, 90].





Chapter 4

Crowd Flow Segmentation
and Crowd Counting

4.1 Overview

As the population of world is increasing and ever more located in urban ar-
eas, public safety is becoming a problem in most crowded areas of the big cities.
Mass events like those related to sports, festivals, concerts, and carnivals attract
thousands of people in constrained environments, therefore adequate safety mea-
sures must be adopted. Despite all safety measures, crowd disasters still occur
frequently. The reasons of these disasters is mostly the presence of different
and conflicting motion patterns that influence the crowd. A crowd is composed
of small groups of people, for instance due to social relationships (families or
friends) or a common goals, like reaching a certain point of the environment.
The latter groups can be called short term coherent groups because they discon-
tinue their cohesion after completing the goals (e.g. reaching an exit, completing
a movement). Detecting the second kind of group, essentially associated to a
certain flow of pedestrians in the environment, can be important to be able to
prevent conflict situations.

Due to the complex dynamics of the crowd, crowd management is becoming
a daunting job where huge effort from the security staff is required to manage
the potentially problematic situations. In such high density crowded areas,
surveillance cameras are generally installed in different locations that can even
cover the whole scene. Detecting specific activities in real-time videos is the
task of analysts sitting in surveillance room and watching over multiple Tv
screens. Such manual analysis of high density crowds is a tedious job and usually
prone to errors. Therefore we need automatic analysis of the crowd which can
reliably estimate the density and detect specific activities. Creating such kind
of virtual analyst has become the focus of many researchers. This research has
a wide range of application domain in crowd management, public space design,
underwater fishes analysis (and animal behaviour studies in general), and cell
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Figure 4.1: Overview of proposed framework

population analysis. In video surveillance, “detection and tracking” are the core
technologies but these technologies are likely to fail in high density crowded
scenarios. In this paper, we propose a framework that tackles problems of
crowd flow segmentation, crowd counting and consists of three parts: foreground
extraction, crowd flow segmentation, and crowd counting. In the next section i
discuss the framework for crowd flow segmentation and crowd counting.

4.2 Proposed Framework

Our proposed framework is composed of four processing blocks, Foreground
extraction, segmentation, counting and blob size optimization block, but this
block only executes in the beginning for few initial frames. In this section,
we will discuss each processing block in detail. For sake of description of the
proposed approach we will employ videos taken from a crowd related data set
from UCF [41].
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4.2.1 Foreground Extraction

Foreground extraction is the most important pre-processing step for detect-
ing the moving objects from the video and therefore forms the basis of our
framework. Foreground extraction is useful for detection, tracking and under-
standing the behavior of the object. A survey on motion detection techniques
can be found in [91]. Traditionally, in video surveillance with a fixed camera,
researchers use background subtraction method, where foreground objects are
extracted from video if the pixels in the current frame deviate significantly from
the background. In this paper, we use two foreground masks as in [92], one
generated by optical flow, fhs(x,y,t) and will be used by crowd flow segmenta-
tion framework and other is Gaussian background subtraction, fg(x,y,t) used by
counting framework as shown in Figure 5.1. Two consecutive frames f(x,y,t)
and f(x,y,t+1) are applied to foreground extraction block. First, we compute
Horn and Schunk (HS from now on) optical flow between adjacent frames, then
Median filter and Gaussian filter are used to remove noises. We then set a
threshold to get foreground mask fhs(x,y,t). In the same way, Gaussian Back-
ground Subtraction (GBS from now on) is used to get another foreground mask
fg(x,y,t), after applying scale filter. Usually crowded objects move in wide areas,
and for crowd flow segmentation, we need to detect change in every pixel, so
optical flow methods reported in literature to compute sparse optical flow using
the interest points (Lucas-Kanade optical flow) [93] or dense optical flow for all
pixels (HS optical flow) [94] in each frame can be used. Since, we want to detect
change in every pixel, we compute dense optical flow. Since the optical flow
vector of each pixel has the magnitude and direction values, we use magnitude
information to extract foreground, all the pixels which have higher magnitude
than Tth will be classified as foreground. Direction information of optical flow
vectors can be used in crowd flow segmentation by clustering all optical flow
vectors having similar orientations. Such methods are usually prone to errors
due to unpredictable behavior of the pixels which change due to fast/slow mov-
ing objects and illumination. A small change in illumination can be detected as
foreground objects even in the static background. Such methods can be useful in
extracting region of interest (ROI) in the scene but can not be used in separating
individuals in high density scenarios. As shown in Figure 4.2, fhs(x,y,t) can not
provide information about the group of foreground pixels (blobs) related to the
people in the crowd. Therefore, for counting framework, we generate another
foreground mask fg(x,y,t) by Gaussian background subtraction method. GBS is
a kind of background subtraction method [95] and is very good in separating
objects from the background. GBS method is effective in suppressing noise and
robust to change in illumination. fg(x,y,t) is also a binary image, where blobs
represents the objects of different sizes. Small blobs are related to parts of ob-
ject, medium blobs related to objects and large blobs represent group of objects,
appeared due to occlusions. Optimal foreground mask fout(x,y,t) is obtained by
logical product of fg(x,y,t) and fhs(x,y,t). Later on, we apply morphological pro-
cesses like morphological opening and closing on the binary image fout(x,y,t).
The morphological open operation is erosion followed by dilation, eliminates
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Figure 4.2: Foreground extraction framework

smooth contours and protrusions. While morphological close is dilation fol-
lowed by erosion, smooths the section of contours, eliminates small holes and
fills gaps in contours. These operations are dual to each other. Segmentation
block segments the crowd flows into different clusters, C ′j(x,y,t), by employing K-
means clustering followed by blob absorption method. To estimate the number
of people in each flow segment, we take logical product of each cluster C ′j(x,y,t)
and foreground mask fout(x,y,t) and count the number of people by blob analysis
and blob size optimization methods.

4.2.2 Motion Flow Field Computation

After foreground extraction, the objects in the foreground move in different
directions as shown in first row of Figure 4.3. It can be seen that in each video,
foreground objects have multiple flows. Since we use dense HS optical flow that
computes movement of every pixel, we call it motion flow field. The motion flow
field is a set of independent flow vectors in each frame and each flow vector is
associated with its respective spatial location. This instantaneous motion field
of the video contains temporal information and can be used for the learning
motion pattern of the video. Consider a feature point i in Ft, its flow vector
Zi includes its location Xi = (xi, yi) and its velocity vector Vi = (vxi , vyi), i. e.
Zi = (Xi, Vi) where θi is the angle or direction of Vi, where 0◦ ≤ θ ≤ 360◦.Then
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Figure 4.3: First Row: sample frames from videos of the Hajj, a marathon,
pedestrian crossing, and road section; second row: corresponding optical flow;
third row: corresponding direction map

{Z1, Z2, . . . , Zk} is the motion flow field of all the foreground points of an image.

Motion Flow Field Segmentation

The motion flow field {Z1, Z2, . . . , Zn} is a n x 4 matrix where each row repre-
sents flow vector i and columns represents its spatial location Xi and velocity
vector Vi. n represents total number of flow vectors (foreground points). Each
flow vector represents motion in specific direction as shown in Figure 4.3, third
row. Figure 4.3, (third row) does not show dominant motion patterns, so we
can not infer any meaningful information about flows. Therefore, we need a
method that automatically analyses the similarity among the flow vectors and
cluster them in multiple groups. We use K-means clustering algorithm(widely
used in data analysis and image segmentation) to segment motion flow field
into different groups. This process of grouping vectors that represent specific
motion pattern is called segmentation. After segmentation process, motion field
is divided into multiple segments. We denote K as the initial number of cluster
centroids. Commonly used initialization methods are Forgy and Random Parti-
tion [96]. We initialize cluster centroids as (K−1) x 360◦/K. let C = {1, 2, ..j}
is the set of initial cluster centroids. ε = 360◦ /2K and δ = 360◦/K.

This approach can be applied to the images where the objects moves in
every direction. For such kind of complex movements in images, we assign
larger value of K while we assign lower value to the images where objects move
in regular directions. In this paper, we assign lower value of K = 4 because
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Figure 4.4: Results of 4-means clustering in a Hajj video frame

in our benchmark videos, objects move in regular directions. Figure 4.4, shows
that the objects in sample frame are clustered into different groups by applying
4-means clustering. We use different colors to differentiate clusters. Let C =
{1, 2, ...,K} is the set of clusters found in sample frame.
Step 1 Clustering with initial K-centroids

for 1 ≤ i ≤ n do
for 1 ≤ j ≤ K do

if ‖ θi - cj ‖ ≤ ε then,where cj ∈ C
zi(xi, vi) → cj
nj ← nj + 1

end if
end for

end for

Step 2 New centroids calculation

for 1 ≤ j ≤ K do
c′j =

∑nj
i=1 θi/nj , Update C with new centroids c′j

end for

Step 3 Clustering of similar clusters

if ‖ c′l - c′m ‖ ≤ δ then

c′l =
∑nl+nm
i=1 θi/nl + nm

c′m ← c′l
end if

Step 4 Return to step 1

Blob Absorption

We noticed that after K-means clustering, some small blobs appear: these small
blobs represent small clusters as shown in Figure 4.4 and resulted due to fol-
lowing reasons. First, if the objects move slowly, the inside and outside flow
vectors of the objects are not same and as a result are classified into two different
flows. Second, if the two opposite optical flow intersect, the optical flow at the
boundaries is ambiguous. Third, small blobs represents small groups of people
and are not the part of dominant motion flows and they are not relevant to the
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aims of our analysis. Therefore, we adopt blob absorption approach (mimicking
a “big fish eats small fish” process), where these blobs are either absorbed by
dominant cluster or by the background. The algorithm is as follows:

1. Compute weights for all clusters, i.e. Cwj =
∑K
j=1 nj / T . where nj is

number of features points z(x, v) in cluster Cj and T is total number of
foreground points.

2. Select cluster Cj and perform blob analysis and find area of each blob in
Cj .

3. Use threshold area L and find blobs whose areaA≤ L. LetB = {b1, b2, ...bn}
set of blobs represents small clusters and needs to be absorbed.

4. Select blob bi from set B, find its edges points by using canny edge detec-
tor [97].

5. For each edge point, look at its neighborhood points, find neighborhood
cluster ids and store ids of neighborhood points in array S. Remove those
points from S that have same cluster id j, because bi can not be absorbed
by itself.

6. From remaining points in S, compute blob weight bwi =
∑N
j=1 nj / Ts.

where N is the total number of cluster ids found in S. nj is total number
of points with cluster id j and Ts is total number of points in S.

7. Compute wt= cwi + bwi and cluster id j with maximum weight wt is
selected and id j is assigned to all points of blob bj .Hence blob is absorbed.

8. Repeat steps 4 to 7 until B is empty.

9. Repeat step 2. Here background is also considered as cluster with id and
cluster weight cw = 0.

After blob absorption, as shown in Figure 4.5, small clusters (C3 and C4) are
removed leaving behind large clusters (C1 and C2) representing dominant flows
with clear boundaries, by setting up threshold area L = 500. Let C ′={1, 2, ..j}
is set of large clusters.

4.2.3 Counting People in High Density Crowds

This section describes the methodology for counting people in high density
crowds. In this step, we count the number of people in each cluster C ′j . In
low density crowds, due to clear visibility of individual with little occlusions,
we can detect, track and count the number of individuals in crowd, but in high
density crowds, it is hard to extract and count the individuals due to (i) with
increasing density, the number of pixels/individual decreases (ii) severe occlu-
sions result in the loss of observation of the target individual (iii) discerning
individuals from one another is caused by constant interaction among individ-
uals in a crowd. Therefore, as a solution, we perform blob analysis and blob
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Figure 4.5: Results of the Blob Absorption method applied to a frame of the
Hajj video

size optimization techniques on foreground image and estimate the number of
people in high density crowds.

Blob Analysis and Blob Size Optimization

For extracting foreground, belonging to each dominant flow (or cluster C ′j),
we take logical conjunction of each cluster C ′j and foreground mask fg(x,y,t),
generated by Gaussian background subtraction and shown in Figure 4.7. First
row of Figure 4.7, shows that sample frame of marathon video is segmented into
three dominant flows while second row shows foreground elements belonging to
each of three segments. After foreground extraction, small blobs appear which
represent moving objects. Blobs are the connected regions of variables “areas”
in the binary image. Since there are many blobs of different areas representing
different moving objects we need to find an optimal area that will serve as a
threshold. The blob with areas above this threshold will not be taken into
account (for instance, when counting pedestrians in road videos, these large
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blobs might be related to cars). For computing threshold area we devised blob
size optimization algorithm discussed below.

1. Select the blob’s size randomly.lets blob’s size is A.

2. ci = blobAnalysis(A); will return count of blobs whose size ≤ A for frame
i.

3. errorj = ‖ ci - gthi ‖. where gthi is the ground truth count for frame i.

4. Vary the blob size A by some constant k and repeat step 2 to 4 for N
iterations.

5. Select blob’s size A for which errorj is minimum.

Note that for finding optimum blob size, we used only four or five initial frames
whose ground truth is available. These frames are selected randomly. For each
initial frame we compute optimum blob size by using the method discussed
above. We take the mean A′ of all four or five optimum sizes computed for
each initial frame and use A′ for counting people in rest of frames. Average and
standard deviation of the error between people count using the blob area and
the actual number of people (Ground Truth) is plotted in Figure 4.6 versus blob
area. In Figure 4.6, mean and standard deviation of the counting error is plotted
for a road video. It can be seen from the figure that the error is minimum for
the blob area 17, resulting therefore context dependent. It must be stressed that
the optimal blob size depends on the video, especially on the point of vantage
determining the size in pixels of people to be counted (in other videos analysed
in Sect. 6.4 the optimal blob size is as small as 2 pixels). Through experiments,
we observed that for small blob areas, the count of people will be higher as
the noise will also be counted as people. For large blob areas, instead, some
people might be missed in the count. Hence selection of optimal blob size is
very important to minimize the error in people count.

4.3 Experimental Results

This section presents the quantitative analysis of the results obtained from ex-
periments. We carried out our experiments on a PC of 2.6 GHz (Core i5) with
4.0 GB memory and data set from UCF [41]. The data set covers two types
of crowded scenarios: the first scenario consists of videos involving high den-
sity crowds i.e. videos from Hajj and a marathon, where the number of people
is higher than 150 in a single frame. The second scenario covers low density
crowds where the number of people in a frame is lower than 70, i.e. road cross-
ing video, where people are moving over zebra crossing in different directions,
and road video, where vehicles and people are moving in different directions on
road. Since our framework consists of two major parts,crowd flow segmentation
and crowd counting, our experiments are carried out in two steps.
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Figure 4.6: Blob size optimization for Road video: notice that the optimal blob
size for error minimization is different for different videos.

Table 4.1: Hajj Video people counting in sequence of frames

F.n. G.T.(E) G.T(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
12 151 159 170 154 12,58% 3,14%
20 153 161 167 154 9,15% 4,35%
29 185 185 195 194 5,41% 4,86%
37 176 187 192 201 9,09% 7,49%
45 187 186 200 191 6,95% 2,69%
55 187 187 195 188 4,28% 0,53%
63 189 185 194 194 2,65% 4,86%

Average Error 7,16% 3,99%

4.3.1 Segmentation Results

We selected 65 frames from each video. After computing optical flow, we apply
K-means clustering algorithm that cluster all the similar flow vectors.In this
paper, we use K = 4 for all the videos,so after segmentation, we detect four
different flows in video frame as shown in second column of Figure 4.8. We
then apply blob absorption method to remove small clusters as shown in third
coumn of Figure 4.8. For blob absorption we use different threshold L values.
Small clusters can not be aborbed completely by using smaller values of L
while we lost some portions of dominant cluster by using larger values of L.
Therefore, we determined value of L experimentally and is different for different
videos. After blob absorption, image of cross video is segmented into three flows,
red(west),green(east) and cyan(south). While image of road video is segmented
into two flows, red and green as shown in third column of Figure 4.8.
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Figure 4.7: People Counting Framework highlighting results of intermediate
steps in one frame of the marathon video

We compared our approach in Figure 4.9 with multi-label optimization [45],
histogram curve [46], dynamic segmentation [41] and spectral clustering [43]. In
the first row of Figure 4.9, we compare our method with multi-label optimization
method. We see that crowd flow segmentation using multi-label optimization
could not segment the crowd into dominant flows. Moreover, it could not find
clear boundary due to small blobs appeared after segmentation. In the sec-
ond row of Figure 4.9, we compare our results with histogram curve method.
Segmentation by using histogram curve is fastest than existing methods but it
lost much information about the crowd flows, since this method only looks to
the peaks of histogram curves. In the third row of Figure 4.9, we compare our
results with dynamic segmentation and spectral clustering approach. Dynamic
segmentation is not able to detect small flows in the crowd, while spectral clus-
tering carries out segmentation on sparse optical flow and give the approximate
segmentation where we can not find clear boundaries between flows. All the
above shortcomings are resloved by our proposed approach. Our proposed ap-
proach not only detects dominant flows but can also detects small flows without
the loss of crowd flow information. Moreover, our proposed approach finds clear
boundaries among different flows.
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Figure 4.8: First column: sample frames; Second Column: K-means clustering
results; Third Column: Blob absorption results

Table 4.2: Crossing video people counting in sequence of frames

F.n. G.T.(E) G.T.(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
10 30 30 30 29 0,00% 3,33%
16 34 35 30 39 11,76% 11,43%
22 37 36 25 38 32,43% 5,56%
28 35 33 29 32 17,14% 3,03%
30 38 35 37 43 2,63% 22,86%
35 38 34 35 41 7,89% 20,59%
40 37 36 36 39 2,70% 8,33%
47 35 36 35 30 0,00% 16,67%
55 37 38 38 34 2,70% 10,53%
64 37 40 31 28 16,22% 30,00%

Average Error 9,35% 13,23%

4.3.2 Crowd Counting Results

After crowd flow segmentation, we count the number of people in each flow
segment. Each video consists of sequence of 65 frames and our proposed method
automatically counts the number of people in each frame as shown in Tables 1,
2, 3, 4. Tables show counting results of random frames taken from each analysed
video, where F.n. represents frame number of the analysed sequence. The rise
and fall in people count in different frames represents the fact that people are
entering or leaving the scene affecting people count at different time. To check
the counting accuracy of the proposed framework, ground truth (G.T) for each
direction (East(E), West(W), North(N), South(S)) is found for the frames after
random intervals and count error (Err) is computed by comparing results with
the ground truth data. Count error is shown in details in tables 4.1, 4.4, 4.2, 4.3
for all analyzed video sequences. The first column of each table shows the
frame number, G.T. shows grouth truth found for each direction and Cnt. is
counting results of our proposed approach. Average error is less than 12% for
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Figure 4.9: Comparing Results

all analyzed video sequences. For some frames, however, count error is higher
due to the fact that some people in that frame are missed in count or noise
(resulted after motion segmentation) is counted as people. As obvious from
tables, our proposed framework works better in high density scenarios like Hajj
and marathon. It is matter of the fact, that in high density scenarios, people
covers much of the scene’s area in comparison to low density scenarios. After
motion segmentation, foreground extracted in high density scenarios contains
less background noise (foreground noise generally moves with people and it is
not causing significant errors) in comparison to foreground extracted in low
density scenarios. From the experimental results, it is clear that our proposed
approach count the people in each video sequence with 90% accuracy.

To study the time complexity of our proposed framework, we utilize 65
frames of each of four analysed videos and time is recorded as average frame
processing time and recorded in Table 4.5. The latter shows time complexity
of crowd flow segmentation and crowd counting frameworks. Rows of table
shows the analysed videos and column represents time complexity of each of
processing block. It is obvious that clustering takes much time as compare to
blob absorption method and crowd counting framwork. It is matter of the fact
that K means clustering is computationally expensive and can be very slow
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Table 4.3: Road Video people counting in sequence of frames

F.n. G.T.(E) G.T.(W) Cnt.(E) Cnt.(W) Err(E) Err(W)
11 45 67 33 44 26,67% 34,33%
20 38 65 45 58 18,42% 10,77%
30 42 62 46 69 9,52% 11,29%
35 41 61 40 62 2,44% 1,64%
43 39 64 36 53 7,69% 17,19%
50 40 65 48 67 20,00% 3,08%
55 40 65 36 55 10,00% 15,38%
62 39 63 39 67 0,00% 6,35%

Average Error 11,84% 12,50%

Table 4.4: Marathon Video people counting in sequence of frames

F.n. G.T.(E) G.T.(N) G.T.(S) Cnt.(E) Cnt.(N) Cnt.(S) Err(E) Err(N) Err(S)
11 145 192 187 134 176 199 7,59% 8,33% 6,42%
15 150 186 193 138 187 216 8,00% 0,54% 11,92%
20 148 193 200 126 178 190 14,86% 7,77% 5,00%
27 155 200 211 151 244 225 2,58% 22,00% 6,64%
33 150 195 220 145 223 219 3,33% 14,36% 0,45%
39 160 205 210 151 199 222 5,63% 2,93% 5,71%
45 158 210 205 145 215 210 8,23% 2,38% 2,44%
49 156 207 210 145 189 197 7,05% 8,70% 6,19%
55 162 215 215 164 210 196 1,23% 2,33% 8,84%
59 158 220 220 162 210 202 2,53% 4,55% 8,18%
62 167 225 224 158 185 198 5,39% 17,78% 11,61%

Average Error 6,04% 8,33% 6,67

to converge in worst case scenarios, i.e. high resolution videos, and high ratio
of foreground to background pixels. In this paper, we use videos of the same
resolution, 360x480. Although the resolution of all analysed videos is same, yet
time complexity is different. The ratio of foreground to background pixels of
different videos is different and usually the ratio is higher if the large part of
the scene is covered by foreground pixels. It is also obvious from table that
Hajj video takes more computational time than other videos. It is matter of the
fact that most of scene of a Hajj video frame is covered by foreground pixels
than background pixels. The computational time can be reduced and proposed
framework can be employed in real time, if implemented in openCV. The current
implementation is in Matlab.

Table 4.5: Time Complexity of our proposed framework in (seconds)

Videos Crowd Flow Segmentation Crowd Counting
Clustering Blob Absorption Seg # 1 Seg # 2 Seg # 3

Marathon 6 2.77 0.006 0.007 0.005
Hajj 9.88 2.93 0.009 0.008 NIL
Road 7.02 1.67 0.005 0.004 NIL

Crossing 5.12 1.03 0.003 0.005 NIL



Chapter 5

Crowd Behaviour
Understanding: Identifying
Sources and Sinks and
Characterizing Main Flows

5.1 Introduction

Crowded scenes are composed of a large number of people, exhibiting different
behaviors in a relatively constrained space. The vagueness of this definition is
strictly related to the difficulties in defining what a crowd of pedestrian is; we
will not try here to be more specific or precise, but rather highlight the growing
need to consider the presence and behaviors of pedestrians in the environment by
designers, planners and decision makers (see, e.g., a recent report commissioned
by the U.K. Cabinet Office on this subject [98]). In particular, public safety
in crowded situations (e.g. concerts, religious or political gatherings) has be-
come an important research area in the last years, with relevant contributions
from physics, psychology, computer science and, of course, civil engineering.
Acquiring data for this kind of study is obviously absolutely crucial for sake
of understanding the implied phenomena and evaluating developed solutions
for analysis, decision support, prediction. In video surveillance, scene modeling
and understanding is also an important research area. Important tasks of scene
modeling and understanding are (i) extracting motion information (e.g. trajec-
tories), (ii) identification of entry and exit points of trajectories in the analyzed
scene, (iii) characterization of the interaction of trajectories (highlighting, for
instance, crossings or potential conflicts).

Pedestrians in videos taken from fixed cameras tend to appear and disap-
pear at relatively precise and recurring locations, such as doors, gateways or
particular portions of the edges of the scene. Moreover, pedestrian behavior in
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a given scene might imply waiting at a certain location then moving whenever
certain conditions are met or given events happen. We refer to locations where
pedestrians appear or start moving as sources (potential origins of a trajec-
tory) and the locations where they disappear or stop moving as sinks (potential
destinations). Traditionally, crowd analysis is performed by the analyst who
manually identifies and detects different relevant activities in the scene. A por-
tion of video is given to each analyst together with a list of events (behaviors)
and objects to look for. The analyst informs the concerned authorities if any of
the given events or objects are detected. Such kind of manual analysis of video
is labor intensive, time consuming and prone to errors due to weak perceptive
capabilities of humans, but also to the repetitiveness of the activity.

In this paper, we propose an approach for crowd behavior analysis (and, to
a certain extent, understanding in the acceptation of the term adopted by [1])
adopting two novel algorithms, the first able to generate long, dense, reliable
and accurate pedestrian trajectories and the second clustering them to generate
long term reliable and abstract information describing flows in the whole video.
The final results provide directly information characterizing flows but it also
represents a starting point for further high-level analyses of crowd behavior.
The approach starts by dividing the input video into multiple segments of equal
length and, considering that the frame rate of the video is constant, duration.
The initial frame of each segment is overlaid by a grid of particles initializing a
dynamical system defined by optical flow, as discussed by [67]. Time integration
of the dynamical system over a segment of the video provides particle trajec-
tories (tracklets) that represent motion patterns in the scene for a certain time
interval associated to the analyzed segment. We detect sources, sinks and main
flows in the segment (for sake of brevity sometimes we will refer to this informa-
tion as segment local track) by analyzing motion patterns followed by clusters
of tracklets, obtained using an unsupervised hierarchical clustering algorithm,
where the similarity is measured by the Longest Common Sub-sequence (LCS)
metric. To achieve final global tracks, covering all the video, we cluster the
achieved local tracks through the same hierarchical clustering algorithm. Our
main contributions are: (1) Generating dense and long trajectories, (2) identi-
fying sources and sinks, (3) understanding behavior of the crowd in the scene
by considering full length video, (4) achieve the above results without requiring
object detection, tracking, nor training, targeting employment in naturalistic
conditions. The paper breaks down as follows: the following Section presents
the current state of the art in the identification and characterization of pedes-
trian flows in crowded scenes, while Section 5.2 presents the overall proposed
approach. Section 5.2.1 focuses on the algorithm to extract long, dense, accu-
rate and reliable trajectories and Section 5.2.4 describes in details the clustering
algorithm applied to generate local and global tracks. Section 6.4 describes the
achieved experimental results, also by comparing the proposed approach with
the most relevant existing alternatives. Conclusions and future developments
end the paper.
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5.2 Proposed Framework

In this paper, we propose an approach for crowd behavior understanding adopt-
ing two novel algorithms, the first able to generate long, dense, reliable and
accurate pedestrian trajectories and the second clustering them to generate
long term reliable and abstract information describing flows in the whole video.
The final results provide directly information characterizing flows but they also
represent a starting point for further high-level analyses of crowd behavior. As
shown in Figure 5.1, the approach starts by dividing the input video into mul-
tiple segments of equal length and duration, considering videos with a constant
frame rate. The initial frame of each segment is overlaid by a grid of particles
initializing a dynamical system defined by optical flow, as discussed by [67].
Time integration of the dynamical system over a segment of the video provides
particle trajectories (tracklets) that represent motion patterns in the scene for
a certain time interval associated to the analyzed segment. We detect sources,
sinks and main flows in the segment (for sake of brevity sometimes we will re-
fer to this information as segment local track) by analyzing motion patterns
followed by clusters of tracklets, obtained using an unsupervised hierarchical
clustering algorithm, where the similarity is measured by the Longest Common
Sub-sequence (LCS) metric. Results achieved so far are intrinsically related to
a single segment of the analyzed video, associated to a relatively short time
frame. To achieve final global tracks, covering all the video, we cluster the
achieved local tracks through the same hierarchical clustering algorithm. Our
main contributions are:

1. generating dense and long trajectories,

2. identifying sources and sinks,

3. understanding behavior of the crowd in the scene by considering full length
video,

4. achieve the above results without requiring object detection, tracking, nor
training, targeting employment in naturalistic conditions.

5.2.1 Achieving Reliable Descriptive Motion Information

The input to our framework is a sequence of frames and, as summarized in
the previous section, a first phase of the overall approach is aimed at achieving
reliable descriptive motion information that will be then further processed to
obtain local and global tracks. As already mentioned, we adopt an overall divide-
and-conquer approach, splitting the overall frame sequence into n segments,
each containing k frames. We then perform a segment local analysis to achieve
tracklets that will be clustered later.

The first step to achieve tracklets is the computation of dense optical flow
between two consecutive frame of every segment. We employ the method pro-
posed by [99] where gray value constancy, gradient constancy, smoothness, and
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multi-scale constraints were used to compute highly accurate optical flow. Con-
sider a feature point i in the frame associated to time t of a segment: its flow
vector Zi,t = (Xi,t, Vi,t) includes its location Xi,t = (xi,t, yi,t) and its velocity
vector Vi,t = (vxi,t, vyi,t) (i.e. the velocity vector is made up of the change in
the horizontal and vertical positions); moreover, for each feature point, we can
compute θi, that is the angle or direction of Vi, where 0◦ ≤ θ ≤ 360◦. Then
{Z1, Z2, . . . , Zm} is the motion flow field of all the foreground points of an image.

We can thus initialize a continuous dynamical system in which the velocity
of a point at time t is essentially related to the optical flow of the same point,
which is given by equation 5.1

Vi,t = F (Xi,t) (5.1)

5.2.2 Particle Advection

The next step is to advect a grid of particles over the optical flow field, that
corresponds to the time interval 1 to T for each segment. We launch a grid
of particles over the first optical flow field of every segment and each initial
position of the particle represents the source point. Ideally, the grid should
have the same resolution of the frame and size of the particle is same as size of
the pixel; nonetheless this would imply huge computational costs. To avoid this
problem, we reduce the resolution of the grid by dividing it by a non negative
constant: consider resx × resy the resolution of the image and c > 1; the
resulting grid G will have a size gx × gy where gx = resx/c and gy = resy/c.

Considering the initial location Xi,t = (xi,t, yi,t) of particles with i ∈ G,
their next location Xi,t+1 at time t+ 1 can be computed by numerically solving
the system of equations achieved by considering equation 5.1 for all the particles
in G by using following approximation:

X(i,t+1) = F (X(i,t)) +X(i,t) (5.2)

To achieve a trajectory Ωi for every particle i ∈ G, taking the form Ωi =
{Xi,1, . . . , Xi,T }, where T is the integration time, with T = k (we will use time
and frame number interchangeably), we need to compute a pair of flow maps
ψx and ψy. These maps contain the initial position of each particle and all the
subsequent positions computed according to the above equation, as discussed
in [67].

The trajectory achieve by means of this process represents a movement from
the initial position through time (and through frames) according to the optical
flow. However, when this kind of analysis is carried out on an unstructured
crowded scene (e.g. a subway corridor with pedestrians getting out and in a
platform), where people move towards different and potentially changing direc-
tions, in many cases the particle trajectory could drift from a flow of pedestrians
characterized by a certain direction to a spatially close but distinct and different
flow, moving towards a significantly different direction. In this case, the trajec-
tory is erroneous, since pedestrians do not actually change direction so quickly,



54 CHAPTER 5. IDENTIFYING SOURCES AND SINKS

Figure 5.2: Flow associated to different particles: the first one is considered
legitimate throughout the whole segment, whereas the second and third are
trimmed due to significant changes in the flow direction in intermediate frames.

and this can effect the final outcome. Consider, for instance, Figure 5.2: each
row shows the flow information at a given time for a given particle; the first row
exemplifies a normal and legitimate trajectory, whereas the second and third
rows show a situation that we consider an error, since the direction of the op-
tical flow associated to the particle violently changes in too little time. The
second and third particles, therefore, according to our approach will generate
much shorter tracklets than those generated by current approaches (such as [67])
in which these changes are accepted.

More precisely, to avoid the above introduced defect, we modify equation 5.2
in the following way:

X(i,t+1) = X(i,t) + F (X(i,t)) ∗Bi (5.3)

Bi =

{
1, if ‖ θi,1 - θi,t ‖2 < λ
0 otherwise

The particle, therefore, continues moving forward if circular distance [100]
between its initial direction θi,1 computed initially and its direction at time t,
θi,t is less than a specified threshold λ.

This approach, avoids errors due to particles drifting from a pedestrian flow
to a different one, however the achieved trajectories are in general shorter in
length than those extracted by [67]. In the previously mentioned Figure 5.2,
the length of the extracted tracklets is equal to T frames only for the first
particle whereas the other approach would always lead to tracklets of T frames:
the number of frames of a tracklet is not necessarily an indicator of the actual
length of the associated trajectory, but limiting the number of tracked frames
inevitably leads to achieving shorter trajectories.

After particle advection, short duration particle trajectories called tracklets
are obtained as shown in Figure 5.3. Some of these tracklets correspond to the
background of the scene or noise and they are not actually part of our analysis.
Therefore, in order to remove these tracklets, we estimate their actual length by
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Figure 5.3: Tracklets achieved after particle advection.

Figure 5.4: Example situation of generation of a long track from small tracklets.

computing the euclidean distance between the start and end points (remind that
abrupt changes in direction of the particles block the trajectory construction, so
most of the tracklets are very close to straight lines). We discard those tracklets
for which ‖ (x1i , y

1
i ) - (xTi , y

T
i ) ‖2 < δ (i.e. those tracklets whose length is very

likely lower than a given threshold δ).

5.2.3 Clustering Tracklets to achieve Local/Global Tracks

Tracklets extracted through particle advection fail to represent important char-
acteristics of the overall motion and they provide inadequate information for
identifying source and sink points of the dominant flows and also for under-
standing behavior of the scene. To achieve these goals, we need dense and long
trajectories which we can obtain thanks to the following assumptions: (i) a large
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number of tracklets corresponding to dominant flows is identified by the previ-
ous phase; (ii) source and sink points of tracklets associated to a common flow
are often spatially close to each other. Our goal is to combine these accurate but
generally short tracklets into longer trajectories. This induces a combinatorial
matching problem that we define and solve recursively for all tracklets detected
for each segment of the video sequence. The example frame shown in Figure 5.3
intuitively supports the claim that, for most scenes including a relatively large
number of moving pedestrians, these two assumptions generally hold.

Let us now focus on the implications of the second assumption. Some of
the achieved tracklets corresponding to single movements can be quite similar
(in orientation), but their sources and sinks can be spatially different. Our goal
is to combine similar tracklets into longer trajectories. For example, consider
three tracklets Ωi with source point (x1i , y

1
i ) and sink point (xTi , y

T
i ), Ωj with

source point (x1j , y
1
j ) and sink point (xTj , y

T
j ), and Ωk with source point (x1k, y

1
k)

and sink point (xTk , y
T
k ) as shown in Figure 5.4. These tracklets start and end at

different locations but the sink of one of them is spatially very close to the source
of a different one: for instance, tracklet Ωj starts very close to the sink point
of Ωi and the source of Ωk is close to sink point of Ωj . We exploit this spatial
closeness of the tracklets in order to obtain longer trajectories. The similarity
among the tracklets is computed by employing longest common sub-sequence
algorithm, which will be discussed in details in the next section. The rationale
of the approach, however, is that similar tracklets are identified and combined
by means of kth order least square polynomial regression as exemplified by the
red line in Figure 5.4 (computed with k = 3). The outcome of the process, the
red track, is therefore a long trajectory with source point (x1i , y

1
i ) and sink point

(xTk , y
T
k ).

Let us now more formally define the above intuitive approach to achieve
long tracks from shorter tracklets. First of all, we call a tracklet for which we
would like to extract a longer trajectory a query tracklet. Let us now consider the
analyzed scene: we have already overlaid a grid for particle advection, organizing
the scene in “cells”. The query tracklet will be positioned in a cell c, and we can
define neighbor tracklets those ones positioned in the the Moore neighborhood
of c. Finally, we call candidate tracklets those ones that we are considering for
extending the query tracklet. The pseudo-code of the proposed algorithm is
presented in Algorithm 1 and its description is reported here below.

The input to the algorithm is the query tracklet and output is the long tra-
jectory; we also assume that the overall grid including the other tracklets is
available as global information. The function LongTrajectory is divided into
two steps: first of all, we collect all the tracklets that, due to to spatial arrange-
ment, represent a plausibly connected path, but we also filter out tracklets
that are not sufficiently similar to the starting one, because the resulting track
would present an abrupt change of direction. This operation is executed by the
CompleteTrajectory function that operates on an array L initialized by the call-
ing environment (lines 2 and 3 of LongTrajectory) as containing only the query
tracklet Ωq. The function considers the tracklets present in the neighborhood of
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the query tracklet, and evaluates if they could represent a plausible continuation
of the related path (line 4), inserting them into an array of candidate tracklets.
If this array is not empty, the candidate tracklet that best matches the query
one (line 9) is selected, inserted in the array L and then the CompleteTrajectory
is recursively called considering the added query as next starting point (line 13).
When the candidate tracklets array is empty the algorithm ends, returning the
array L containing the tracklets that were added during the recursive execution.
Finally, the resulting set of tracklets is then combined by means of kth order
least square polynomial regression (line 5 of LongTrajectory).

This function is applied to tracklets positioned in every cell of the grid. Some
of them will basically not be extended at all; moreover some of the achieved
tracks will be actually very similar to portions of larger ones: by definition of
the algorithm, in fact, the existence a track spanning across k > 2 cells makes
it very likely that additional k− 2 shorter (but not atomic) tracks are achieved
later on, considering cells explored during the first computation.

The set of achieved tracks still contains also short tracklets, for which no
extension was possible. The goal of this step, however, is to obtain dense and
long trajectories covering all the scene and representing the most significant
motion patterns, therefore we can filter out tracks that are shorter than a given
threshold, analogously as we did to remove noise in the particle advection step
(in this case the euclidean distance estimation of the actual length of the track
is even more plausible since the considered tracks are, by construction, quite
smooth).

Figure 5.5 shows the achieved long and dense tracks with increasing thresh-
olds: the number of tracks decreases with growth of the threshold, but trajec-
tories are still dense enough to represent whole motion of the scene even at
the higher thresholds. Even though it is of course important to avoid setting a
threshold so high that tracks representing important flows are filtered, it must
be noted that the reduction of the number of tracks simplifies the computa-
tion associated to subsequent steps of the overall approach without suppressing
important information.

After achieving dense tracks, the next step is to combine similar tracks into
local tracks by adopting novel hierarchical clustering algorithm. The classical
supervised clustering algorithms can not be used as the number of flows (and
therefore desired clusters) are unknown. Therefore, we propose a novel hierar-
chical clustering algorithm, based on the following procedure.

1. We sort the tracks in descending order on the basis of their length; in
particular, let TL = {t1, t2, . . . , tk} represent the sorted list of tracks and
{l1, l2, . . . , lk} the respective length of tracks, we have than li < lj with
1 ≤ i < j ≤ k.

2. We set up a list of tracks to be considered TR, which initially is the com-
plete list of tracks excluding first track t1; we also set up a list of clusters
LC , initially containing first track t1 (the longest one) that is also used as
initial cluster center;
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Algorithm 1 Generating long tracks starting from tracklets

Input: tracklet Ωq
Output: track Lt

1: function LongTrajectory(Ωq)
2: initialise array L as empty
3: insert Ωq in first position of L
4: L = completeTrajectory(Ωq,L)
5: return polynomial regression on L
6: end function

Input: tracklet Ωq, array of tracklets L
Output: array of tracklets L

1: function CompleteTrajectory(Ωq, L)
2: initialise array C
3: for all tracket t in neighborhood of Ωq do
4: if ‖XT

q −X1
t ‖ ≤ ε then

5: insert t in C
6: end if
7: end for
8: if C is not empty then

9: bestCandidate = arg maxc∈C
LCS(L[0],c)

min(Len(L[0]),Len(c))

10: match = LCS(L[0],bestCandidate)
min(Len(L[0]),Len(bestCandidate))

11: if match > mt then
12: insert bestCandidate in tail of L
13: return CompleteTrajectory(bestCandidate,L)
14: end if
15: else
16: return L
17: end if
18: end function
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(a) Tracks achieved with threshold δ = 1. (b) Tracks achieved with threshold δ = 10.

(c) Tracks achieved with threshold δ = 20. (d) Tracks achieved with threshold δ = 50.

Figure 5.5: Tracks achieved after the application of the algorithm to generate
long tracks from shorter tracklets with increasing length thresholds.

3. We select the shortest track ts from the list TR, and compare it with cluster
LC using longest common sub-sequence metric, that will be described
in the following Section, to compute similarity measure. If this value is
greater than a threshold ϕ, then track ts is assigned to the cluster and we
delete the track ts from the list TR.

4. If the cluster’s size exceeds a positive value of S we consider that sufficient
information about the associated flow has already been achieved; therefore
we identify source and sink location and update the center of the cluster
by using Kth order least square polynomial regression. We used S = 30
in our experiments. The source and sink of cluster are selected according
to a simple procedure: the selected pair is made up of the source point
of a tracks and the sink point of (generally another) track that are part
of the cluster and, in particular, the pair for which the euclidean distance
between source and sink is maximum. The updated cluster LC is assigned
to list of global tracks TG, which is initialized to be empty initially.

5. We repeat the previous step until TR is not empty.
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A pseudocode of the above clustering algorithm is described in Algo-
rithm 2.

Algorithm 2 Clustering Local Tracks into Global Tracks

Input: list of local tracks TL
Output: list of global tracks TG

1: function ClusterTracks(TL)
2: sort TL according to length in descending order
3: cluster LC = first element of TL
4: list of remaining tracks TR = TL - LC
5: TG = 0
6: repeat
7: for all each track t in TR do
8: if matching ratio between t and LC > ϕ then
9: add t to LC

10: if size of LC > S then
11: update cluster center for LC
12: end if
13: remove t from TR
14: end if
15: end for
16: update cluster center for LC
17: add LC to TG
18: LC = largest track t in TR . next largest track in TR
19: remove t from TR . remove track assigned to LC
20: until TR is not empty
21: add LC to TG . TG = 0 in final step
22: end function

5.2.4 Longest Common SubSequence Computation

At this stage, we define similarity measure for comparing and clustering sim-
ilar trajectories. There are number of approaches for measuring similarity of
the moving object trajectories, such as [101] and [102]. A survey of different
similarity measures for trajectory clustering is reported by [103]: Euclidean and
Dynamic Time Warping (DTW) approaches are more sensitive to noise whereas
Longest Common Sub-Sequence is efficient for series of unequal lengths and it is
more robust to noise and outliers than DTW, as discussed by [104] and by [105].

The key idea of LCS is to match two time-series of tracklets by not con-
sidering all points of the tracklets, that can, to a certain extent, have different
lengths. The following procedure allows verifying to which extent two trajec-
tories can be considered similar (or matching, according to a certain similarity
measure) and therefore what is the longest portion they have in common.
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Let T1 and T2 represent two tracklets with size n and m respectively: T1
= {(xt, yt), t = 1, ...., n} and T2 having analogous structure but m elements;
with T1(i) we denote (xi, yi) with 0 ≤ i ≤ n and analogously for T2. We
compute the similarity among two tracklets by recursively finding a matching
M between portions of these trajectories using a dynamic programming proce-
dure that we will only briefly introduce for sake of space. Two constants are
needed, respectively Φ controlling matching sequences in time, determine as Φ

= max(Length(T1),Length(T2))
2 and Ω which is the spatial matching threshold. For-

mally the matching matrix M comparing T1 and T2 can be computed recursively
as follows:

Mi,j =

 0, if i or j are 0
1 +Mi−1,j−1, if ‖ T1(i) - T2(j) ‖2 < Ω and | i − j | < Φ
max(Mi−1,j ,Mi,j−1), otherwise

The similarity measure between two tracklets T1 and T2 is therefore S(T1, T2)

= LCS(T1,T2)
min(n,m) , where LCS is the number of matching points between T1 and T2,

according to the above matching matrix.

5.3 Experimental Results

This section presents qualitative and quantitative analyses of the results ob-
tained from experiments on the application of the proposed approach to video
sequences made available from other research groups and acquired through
field observations. In particular, we carried out our experiments on a PC of
2.6 GHz (Core i5) with 4.0 GB memory, running a Matlab implementation of
the presented algorithms; the analyzed data set includes videos made available
from other research groups and described in [106, 70], in addition to videos we
acquired in past researches described in [107, 108]. The overall set of video
includes situations including both the so called structured and unstructured
crowds [42](i.e. situations with respectively stable and varying flows in the
scene), and very different density conditions.

The analyzed videos we will discuss in the remainder of the section are the
following:

• airport video, Figure 5.6(a) [106]: this sequence shows a portion of an
airport, including stairs and escalators, with relatively stable pedestrian
flows in medium-low density conditions;

• Hajj video, Figure 5.6(b) [106]: this sequence was taken in the context of
the yearly pilgrimage to Makkah, Saudi Arabia, and it shows a very high
density situation in which the overall velocity of pedestrians is very low
but characterized by three main and relatively stable movement directions;

• station video, Figure 5.6(c) [70]: this footage shows a platform in which
pedestrians try to get on and off of a train; flows change in time due to
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(a) Airport video and ground truth. (b) Hajj video and ground truth.

(c) Station video and ground truth. (d) Escalator video and ground truth.

(e) University video and ground truth. (f) Gallery video and ground truth.

Figure 5.6: Dataset of analysed videos and associated manually defined ground
truth.

the congestion that arises near one of the entrances of the wagon, and the
density conditions are very different in distinct areas of the scene;

• escalator video, Figure 5.6(d) [70]: this is a footage of a portion of a plat-
form in which two main flows lead to and from an escalator; the density
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conditions are medium-low and the flows are quite stable, although occlu-
sions due to the presence of a column and other infrastructural elements
are present in the scene;

• university video, Figure 5.6(e) [107]: this sequence shows the arrival of
students that are going to undertake an admission test to a bachelor course
at the University of Milano-Bicocca; the density conditions are medium-
low but the number of pixels per person is quite low and many occlusions
are possible also due to the presence of infrastructural elements;

• gallery video, Figure 5.6(f) [108]: this footage was taken in a commer-
cial/turistic gallery in Milan’s city center, in a Saturday afternoon; the
density conditions are medium-high and the point of vantage causes a very
high number of occlusions, also due to the irregular and varying nature of
pedestrian flows.

All of the above figures also report a manual annotation describing the dom-
inant flows identified by a human observer, that can be qualitatively compared
to the achieved results, that will be presented later on. Different color codes
are used for representing different flows while source points are always marked
with yellow circles.

Since our framework consists of two major parts, the first aimed at gener-
ating dense long trajectories from short and accurate ones, the second able to
detect sources and sinks of dominant flows, we describe two types of experi-
ments. In the following subsection, we compare our method for the extraction
of long and dense trajectories with baseline tracking techniques, in particular
we consider KLT and SIFT based trajectories by analyzing all of the above
mentioned videos. In this case, we adopt both a qualitative and quantitative
approach, by showing the generated trajectories and also by comparing the num-
ber of trajectories extracted employing different thresholds for their length, to
evaluate the capability of the approach to generate sufficiently long trajectories.

In subsection 5.3.2, instead, we describe the overall results about the detec-
tion of sources and sinks of dominant flows and we discuss them considering
results achieved in those situations by state-of-the-art methods.

5.3.1 Comparison with Baseline Trajectories Extraction
Approaches

In order to evaluate improvement obtained with our proposed framework, we
compare our method of generating long and dense trajectories with state of the
art trackers considered as a baseline: in particular, we consider KLT trajectories
adopted by [70, 71, 59, 61], SIFT trajectories adopted by [61, 42], approach
described by Solmaz et al. in [67].

Due to the unavailability of consolidated ground-truth data for this kind
of application, it is difficult to evaluate and compare the precision and, more
generally speaking, quality of the results achieved by the proposed approach and
baseline trackers. We propose here a combination of different quantitative and
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(a) Temporal Plot of Trajectory. (b) Histogram of Trajectory.

Figure 5.7: Trajectory in Error.

(a) Temporal Plot of Trajectory. (b) Histogram of Trajectory.

Figure 5.8: Stable Trajectory.

qualitative measurements both in the above mentioned videos and in additional
situations.

Quantitative Analysis

In particular, we first examine the performance of the above approaches when
analyzing a synthetic rendered video. High quality rendered videos should in-
corporate deforming objects, complex light reflectance, camera motion, optical
artifacts which make mimicking the real world videos very hard and challeng-
ing. However, our intention with this test is to evaluate the ability of the above
approaches to consider some background considerations and knowledge about
pedestrian movement employing an extremely simple video including a parti-
cle following different trajectories, to isolate the conceptual analysis the related
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paths from technical issues of trackers. In fact, trajectories extracted from com-
plex videos in crowded environments imply errors and noise due to the severe
occlusions and we want to be able to filter out erroneous paths.

Trajectories belonging to one motion pattern (e.g. the trajectory of the head
of a pedestrian) may drift and become the part of different motion patterns
(e.g. the trajectory of a body part of another pedestrian moving in a different
direction). We call these trajectories as erroneous or occluded. The effect of this
kind of occlusion is schematized in Figure 5.7: in particular, Figure 5.7(a) plots a
trajectory extracted from a 25 frames synthetic video of a simple particle moving
in the captured area, while Figure 5.7(b) shows the orientation histogram of the
trajectory. Since the frame rate of the video is 25 frames per second, this
trajectory is associated to just one second and therefore, considering normal
human locomotion, it should not present a wide variety of orientations, but
rather a main direction with relatively little changes. The orientation histogram
in Figure 5.7(b) instead reports a wide range of orientations, highlighting the
fact that the trajectory either belongs to noise or occluded with different motion
patterns. In contrast, a more stable trajectory is shown in Figure 5.8, and it is
characterized by a limited range of orientations as shown in Figure 5.8(b). On
the basis of these considerations, we defined a plausibility test for each individual
trajectory extracted from the proposed approach and other baseline methods.
For computing this plausibility factor for a given trajectory T{X, θ}, where X
represents the spatial locations and θ represents orientations of the trajectory,
with T containing k points, we perform following steps

1. Compute circular mean, i.e, θµ of θ as in [109] for the given trajectory T .

2. Compute circular distance from the mean for all trajectory points, i.e,
CircDist i = (θµ − θi), with 0 ≤ i < k and where θi is ith point of the
trajectory.

3. Compute an indicator of smoothness

Smoothi =

{
1, if ( θµ - θi ) < Ψ where Ψ is set to 0.7854
0 otherwise

4. Compute the overall trajectory smoothness indicator

Smooth =

∑k−1
i=0 Smoothi

k

We consider a trajectory T as accurate if its smoothness indicator Smooth ≥
γ, where γ is set to 0.5 in all the following experiments. This kind of test, for
instance, would label as accurate the trajectory in Figure 5.8 but not the one
in Figure 5.7.

By following this procedure we performed plausibility tests on all other tra-
jectories extracted from the real world analyzed videos. We then compute an
overall plausibility rate by computing the ratio between the number of accurate
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trajectories and the total number of extracted trajectories. The mean plausibil-
ity rate, mean length, minimum and maximum lengths of extracted trajectories
for all methods using all the analyzed videos is summarized in Table 5.3.1. Re-
sults show that the sparse methods, i.e, KLT and SIFT , produce a relatively
low number of trajectories compared to other particle based dense methods.
KLT trajectories have approximately the same mean length as the dense meth-
ods but the plausibility is relatively lower. In case of SIFT , the mean precision
rate is high but the mean length of the trajectories is too small as compared to
other methods, and therefore, the trajectories extracted by this method could
not be able to capture the whole motion of the scene. We also run Solmaz et.
al [67] and our algorithm with the same configuration and by initializing the
same number of particles for all the analyzed videos. The plausibility rate of
trajectories extracted by our Short Dense Trajectories (SDT) method discussed
in section 5.2.1 is very high relative to other methods but with approximately
the same mean length, that would also be insufficient to describe the whole
motion in the scene. We improve the mean length of trajectories by employing
our Long Dense Trajectories (LDT) method discussed in section 5.2.3 by pay-
ing a small cost in terms of plausibility. In fact, plausibility rate for LDT is
reduced because the tracks are clustered based on the similarity measure 5.2.4,
which implies the potential connection of tracklets leading to a change in the
flow direction and therefore to a less smooth but still plausible trajectory.

We further investigate the variation of performance of our and baseline meth-
ods with a changing segment size of the analyzed videos. We divide each an-
alyzed video into five segments of different size, ranging from 10 to 50 frames.
For each segment, we extract features (in case of SIFT and KLT ) or initialize
particles (in case of other methods) in the first frame and tracked through last
frame. In case of LDT, we extract tracks for each segment and then apply al-
gorithm 2. The results of this analysis on the mean plausibility rate are shown
in Figure 5.9(a): we observe that it generally drops with the growth of the seg-
ment size for all approaches but DLT whose plausibility decreases only slightly.
As we already discussed, the plausibility rate of DLT is lower then DST but
still higher than other methods. The mean length plot for the same analysis is
shown in Figure 5.9(b): we observe that mean length slightly increases with the
growth of segment size, but for DLT it remains almost constant. This means
that this method is able to capture global motion information in the scene also
with relatively small segments.

Table 5.1: Summary of mean plausibility and mean length of different methods
Methods # of traj. plausib. mean length max length min length

KLT 2576 0.4973 23.2686 73.0258 2.0142

SIFT 3636 0.7268 4.9273 58.7974 2.0031

Solmaz et al 7633 0.6027 26.0615 86.8846 2.0104

SDT 7633 0.9876 24.9281 87.0447 2.0075

LDT 7633 0.8173 98.0238 320.8929 2.2279
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(a) Mean Plausibility Rate Plot.

(b) Mean Length Plot.

Figure 5.9: Evaluation of mean plausibility and length of trajectories with dif-
ferent segment size.

Qualitative Analysis

The qualitative analyses will translate into understandable examples the impli-
cations of the above quantitative analysis.

In order to obtain KLT trajectories, we first identify low-level features (cor-
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(a) KLT in university scenario. (b) SIFT in university scenario.

(c) Solmaz et al. in university scenario. (d) Proposed approach in university sce-
nario.

Figure 5.10: Comparison between state of the art trackers (KLT and SIFT) and
the proposed approach in the university scenario.

ner points) in the initial frame using standard Shi-Tomasi-Kanade detector [110].
These corner points are tracked over time by using [93].

On the other hand, in order to extract SIFT trajectories, we first extract
SIFT interest points from the initial frame; these points are then tracked through
multiple frames by matching euclidean distance between SIFT descriptors within
a neighborhood. More details about SIFT feature tracking can be found in [111].

Finally, trajectories generated by the application of [67] are more aimed
at supporting crowd behavior understanding rather than implementing a tra-
ditional tracking system; due to this perspective, they represent the closest
approach to the one we are proposing.

Before providing a quantitative analysis of the performances of the above
approaches, a qualitative comparison in the university and gallery videos is
provided in Figures 5.10 and 5.11: in the university scenario, SIFT is actually
unable to generate trajectories in good accordance with the ground truth, and
it generates even noticeable false positives, whereas KLT is able to generate
plausible but short trajectories, due to the fact that features that are used for



5.3. EXPERIMENTAL RESULTS 69

(a) KLT in gallery scenario. (b) SIFT in gallery scenario.

(c) Solmaz et al. in gallery scenario. (d) Proposed approach in gallery scenario.

Figure 5.11: Comparison between state of the art trackers (KLT and SIFT) and
the proposed approach in the gallery scenario.

tracking are not visible in every frame. The approach of Solmaz et al. [67],
instead, produces results that are relatively similar to the trajectories generated
by the proposed approach, although the trajectories are generally shorter and
sometimes erroneous (i.e. continuous but associated to paths that are not really
associated to real pedestrian flows). This difference is due to additional rules in
our approach that avoid the generation of long tracks when base tracklets have
different orientation, and it is even more apparent in the gallery scenario. In
this situation both SIFT and KLT fail, since this video is extremely problematic
for feature–based approaches due to dynamic occlusions and clutter, whereas
Solmaz et al. [67] produces an extremely high number of tracks basically due
to the fact that optical flow in the walkable area of the gallery is dense and
in a large number of varying directions. The additional rules for filtering non
plausible trajectories we included in the proposed approach are instead able to
consistently reduce this noise.

As above two trackers produce trajectories based on feature points extracted
from the initial frame of video segment, therefore these trajectories are sparse.
Another problem with feature base trajectories is that in high density situations,
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(a) Track density in the analyzed videos.

(b) Track survival with threshold 10 in the analyzed videos.

Figure 5.12: Quantitative analyses about track density and survival comparing
the proposed approach and state-of-the-art tracking approaches.

due to complex movement of people, and due to severe inter and intra object
occlusions, feature points can not be tracked for long period of time. Therefore,
in high density situations, feature base trajectories are short. These short and
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sparse feature based trajectories are inadequate to capture crowd dynamics.
For a quantitative comparison of the results of these approaches, we report

in Figure 5.12(a) a graphs describing the track density in different scenarios,
that is, the raw number of tracks generated by the different approaches after
removing noise and tracklets whose length is less than 2. Per se, this metric
is not actually an indicator of success of the approach, nonetheless the very
low number of tracks generated by the SIFT approach is an indicator that it
is simply unable to grasp the fundamental motion information of the scene. In
Figure 5.12(b), instead, we show the percentage of the above tracks that are
longer that a threshold set to 10: once again, SIFT is not adequate to this task
since even if the produces tracks are few, most of the produced ones are not even
long. The other approaches perform similarly in most of the scenarios, in case
of medium-low density and/or structured crowds (i.e. with flows of pedestrians
that are neatly separated and generally stable), whereas some difference can
be highlighted in the university and gallery videos. In these cases, flows of
pedestrians actually mix and cause occlusions (generating problems to KLT)
and a very high number of possible ways of connecting optical flow tracklets
(for Solmaz et al. [67]).

To further characterize these differences, we also report in two extremely
different scenarios, station and gallery, the variation in the survival rate of
generated tracks with the growth of the length threshold. Results of this analysis
are shown in Figure 5.13: while for the station video Solmaz et al. [67] produce
a percentage of surviving tracks that is very similar to our approach, and quite
higher than both SIFT and KLT, in the gallery scenario the difference between
the survival tracks ratio is already significant for a length threshold set to 10.

5.3.2 Identification of Sources and Sinks, and Character-
ization of Dominant Flows

In this section, we present results of our proposed framework with reference
to the capability to identify sources, sinks (as defined in the introduction) and
in general to characterize pedestrian flows in the scene. We analyze different
videos to highlight different features and discuss the performance of the proposed
approach also with reference to current approaches to this problem present in the
literature. Once again, we propose both quantitative and qualitative analyses.

Quantitative Analysis

The input to our framework is represented as a sequence of frames and we
divide each video sequence into different temporal segments. The length of each
analyzed video is 350 frames and we set the length K of each segment equal to
50 frames.

We extract global flows by using the trajectories extracted by using our
approach and other baseline methods and finally applying our clustering algo-
rithm 2. In order to quantify the accuracy of each method after employing our
clustering algorithm, we compare the achieved results with ground truth global
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(a) Percentage of remaining tracks with growing thresholds in the station video.

(b) Percentage of remaining tracks with growing thresholds in the gallery video.

Figure 5.13: Quantitative analyses comparing the survival of trajectories with
varying length threshold in station and gallery videos for the proposed approach
and state-of-the-art tracking approaches.

flows. We obtained ground truth data for each analyzed video by manual iden-
tification of global flows: the visual plot of manually detected global flows for
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(a) Similarity Metric.

(b) Source/Sink Locations Error Metric.

Figure 5.14: Similarity and source/sink error metrics comparison between pro-
posed approach and baseline methods.

each analyzed video is shown in Figure 5.6.

Since to the best of our knowledge there is no agreed upon mechanism for
evaluating the accuracy in the detection of sources and sinks, and in the char-
acterization of main flows in a scene, we introduced and computed two metrics
and in particular: (1) flow similarity metric and (2) source/sink error metric.
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Figure 5.15: Total number of global tracks found for each method by our clus-
tering algorithm.

We define and compute flow similarity metric by comparing global flows
Gtrack detected by each tracks generation method followed by our clustering
algorithm with ground truth Gth. The similarity is measured exploiting LCS
and by using the following equation:

Sim =

(∑N
i=1 arg maxj∈[1,M ]

LCS(Gtrackj ,Gthi)
Length(Gthi)

)
N

(5.4)

In particular, N represents total number of ground truth tracks while M
represents total number of global tracks detected by method for the analyzed
video. The equation considers all the actual N global tracks inn the ground
truth data and selects the extracted track that is most similar to the ground
truth.

We observe that, in this experimentation, N ≤ M uniformly for all ap-
proaches; this is likely caused by the fact that our clustering approach works
very well with long and dense tracklets but cannot merge into a single cluster
tracklets that are too short and not similar according to LCS. We also observe
this kind of situation in clustering tracks achieved with baseline methods, since
these methods generally produce small and implausible tracks in contrast to
DLT that is generally able to capture each dominant motion and to produce
almost the same number of global tracks present in the ground truth as shown
in Figure 5.15.

We computed mean similarity Sim for each analyzed video adopting the
different track generation techniques and results are shown in Figure 5.14(a),
which supports both a quantitative and qualitative evaluation: darker blocks,
in fact, show that global tracks identified by our proposed method is closer to
the ground truth than the lighter blocks, associated to the baseline techniques.

The second metric simply measures how far the source/sink locations of
extracted global tracks from the source/sink locations of ground truth data. The
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simplest way to compute this metric would be to calculate euclidean distance
between the source/sink locations of global tracks and source/sink location of
ground truth tracks for the analysed video. However, this is implausible for
mostly two reasons: first of all, distance expressed in pixels is dependent on the
type of scene and not necessarily proportional to actual errors in the real world,
due to perspective; second, it is very hard to provide a way to normalize in a
sensible way this kind of metric.

Therefore, in order to alleviate this problem, we build an Association Matrix
that captures the joint probability distribution of source and sink locations of
all the trajectories in the analyzed video. Actually, we build two matrixes, one
constructed employing the ground truth data and another employing the global
trajectories extracted automatically that present the best match to ground truth
ones, as for the similarity metric.

In order to build this matrix, we assume two discrete jointly distributed
random variables X, representing “source” locations of the trajectories and Y
representing “sink” locations. An Association Matrix for n trajectories is shown
below.

P (X,Y ) =


p11 p12 p13 . . . p1n
p21 p22 p23 . . . p2n
...

...
...

. . .
...

pn1 pn2 pn3 . . . pnn


Each row/column of an Association Matrix shows the probability distribu-

tion of the source and sink points of single trajectory Pk over all other n trajecto-
ries in the analyzed video. Let Pk is the distribution of sources and sinks of tra-
jectory k with all other n trajectories and represented as {pk1, pk2, pk3, . . . , pkn},
where p(k, j), is the joint probability of start and stop locations for trajectories
k and any trajectory j. We use a Gaussian likelihood model [112] to compute
the probability of a trajectory k to start (or stop) from the initial (or final)
location of a (potentially different) trajectory j in the scene as equation 6.1:

px(k, j) = e−‖
xk−xj
σ ‖ (5.5)

Where xk and xj are the source (or sink) locations respectively of trajec-
tory k and j. Assuming independence among the trajectories, we multiply the
above values for start and sink points to calculate joint probability p(k, j) for
trajectories k and j. In the same way, we compute joint probabilities of all other
trajectories and after normalization, we obtain an Association Matrix.

Following this procedure, we computed Association Matrixes for ground
truth tracks (AMGth) and the selected global tracks produced by the compared
methods (AMGtrack), in all the analyzed videos. Finally, we computed the
difference between the Association Matrices by using Kullback-Leibler (KL) di-
vergence, also known as relative entropy, denoted by DKL(AMGth||AMGtrack),
computed by using equation 6.4. The value DKL(AMGth||AMGtrack) is associ-
ated to the loss of information caused by using Gtrack instead of ground truth
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data Gtrack, and it should be considered, therefore, an indicator of how distant
the results are from the ground truth.

DKL(AMGth||AMGtrack) =
∑
i

AMGth(i) ln
AMGth(i)

AMGtrack(i)
(5.6)

Figure 5.14(b) reports the values of the above metric for evaluating the
distance between the source/sink locations achieved with the proposed method
and other baseline approaches from ground truth. This metric is associated to
an error, so the low values indicate that source/sink of the global tracks lie close
to the ground truth. Results are in line with those related to the flow similarity
metric.

Finally, we also compare our method with most relevant state of the art
techniques, i.e, [105] and [70], in a quantitative way. Both these methods use
KLT method for extracting trajectories from the crowded scene followed by
clustering algorithm. Since KLT is a sparse method the extracted trajectories
are unreliable and short enough to cover just essential parts of the motion in
the scene. Another limitation with [105] is that during clustering phase, instead
of updating the cluster center, the long trajectory among the set of clustered
trajectories is selected as new cluster center. In this way, several trajectories
representing the single true flow appeared at the end of clustering. The cluster-
ing algorithm is improved in [70] by updating the cluster center, however, the
trajectories produced at the end of clustering are still short and they appear as
different parts of a single unique actual flow. As shown in 5.16(a), methods [105]
and [70], produce very low similarity values. The reason is that the trajectories
produced by these methods are short and hence equation 5.4 gives very low
values, and [70] does not provide significant improvement over [105].

Qualitative Analysis

Local tracks can be considered as a by-product of the overall process, but they
can represent useful indications of changes in the situation between different
time slices associated to the different segments. For instance, Figure 5.17 shows
different local tracks associated to different segments of the station video as well
as the overall global detected tracks: the overall flows are detected correctly
(qualitatively comparing Figure 5.18(c) with Figure 5.6(c)), moreover during
the analysis, some flows detected in a given segment (i.e. Figure 5.17) are not
detected in a following one. This kind of event, beyond the specific situation,
could be a signal that could be interpreted by a higher-level module, performing
semantic analysis of the results, indicating that an area is changing from free
flow to a congested state.

Other situations, similarly characterized by medium-low density situations
and relatively stable flows, yield similar results: Figure 5.18(a) shows that in the
airport video the main flows are correctly detected in a multi-floor scenario; some
of them are actually correlated, as one merges into another: pedestrians climbing
two staircases actually merge into a single flow in a T-junction, but they are



5.3. EXPERIMENTAL RESULTS 77

(a) Comparison of Similarity Metric.

(b) Comparison of Source/Sink Locations Error Metric.

Figure 5.16: Comparison with state of the art source and sink identification
methods.

detected as two flows. In an analogous way, the university video is also correctly
analyzed, in terms of detection of main flows, as shown in Figure 5.18(e), but in
this case one of the detected flows is actually generated as a split from another
larger one. These considerations also call for a subsequent phase of semantic
analysis after the algorithm, in addition to a quantitative characterization of
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Figure 5.17: Local tracks resulting from analysis of segments and final global
tracks in the station scenario.
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the flows that would be necessary to actually define an O/D matrix.
The university video analysis also shows the fact that the proposed approach,

if properly configured (i.e. with thresholds’ values adequate to the specific
scenario that is being analyzed), is robust to occlusions due to infrastructural
elements that interrupt the visibility of a given flow of pedestrians: poles and
tree branches, in fact, do not avoid the completion of tracklets into proper global
trajectories. The escalator video analysis, though, shows that this robustness
has limits: overall flows are in fact detected but the large obstacle (i.e. a
column) combined with the value of the thresholds cause the upper flow to be
split into two motion patterns. Adjusting the thresholds, in this case, could solve
the problem but there could be downsides, such as the acceptance of incorrect
trajectories representing implausible completions of short tracklets.

Finally, the gallery video 5.18(f) represents a rather extreme scenario that
is being mostly reported to show how the proposed approach is robust to occlu-
sions, difficult lighting conditions, high pedestrian density and lack of apparent
dominant motion patterns. The scenario, in fact, should be analyzed for a
longer time-frame for more interesting and substantial results, that could lead
to an improved understanding of the attractiveness of shops and other potential
interest points in the area.

In conclusion we can stress the fact that the proposed approach can uni-
formly provide very interesting results, from the perspective of characterizing
dominant pedestrian flows, in all the considered crowding conditions. In the sta-
tion and escalator videos the approach described in [70] accurately detects the
flows but the detected tracks are not long enough to capture the whole motion
information, leading to an incomplete characterization of the overall flows.

Similar considerations can be done considering the approach described in [71],
in particular for the airport footage: this approach identifies small tracklets but
complete information about the motion is missing while our results completely
describe flows with their respective sources and sinks. In the Hajj video, more-
over, the approach introduced in [71] detects redundant flows while our method
correctly summarizes horizontal flow, although both approaches miss the verti-
cal flow that the human annotator detected, as shown in Figure 5.6(b).

5.3.3 Parameters of Algorithms

Here we discuss parameters setting for proposed algorithms 1 and 2. Since both
algorithms use different parameters therefore we describe parameter setting for
each algorithm separately. Parameters setting for algorithm 1 is described in
table 5.3.3. step is the first parameter, though not the actual parameter of
algorithm 1, specifies the resolution of grid of particles to be overlaid on the
scene. We fix the value of step to 10 for all the analyzed videos. The resolution
of grid of particles for a given image of size 300x400 with step 10 is 30x40. It
implies that we drop the particle at every 10th pixel location while scanning
from left to right (row wise) or top to bottom (column wise) of an image.
We can also increase the resolution of the grid by lowering the value of step,
but this will make the algorithm computational expensive ending up with the
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(a) Airport video results. (b) Hajj video results.

(c) Station video results. (d) Escalator video results.

(e) UniMiB video results. (f) Gallery video results.

Figure 5.18: Crowd flow characterization results of the proposed approach in
the different scenarios.

similar results. ε controls the euclidean distance between the sink point of query
tracklet and source point of neighbor tracklet. We set this value to 7.5 for all
analyzed videos. mt controls the matching ratio. We fix this value to 0.4 for all
the analyzed videos, that implies that our algorithm accepts candidate tracklet
which is at least 40% similar to that of query tracklet.



5.3. EXPERIMENTAL RESULTS 81

The description of parameter settings for algorithm 2 is shown in Table 5.3.
Ω controls the spatial matching of any two input trajectories. Tuning of Ω is
required in order to obtain semantically useful results for a given sequence, since
it depends on the video frame resolution, crowd density, crowd type, i.e struc-
tured or unstructured. We set a low threshold value for gallery sequence, since
it involve complex movement of people. We use higher value of Ω for structured
crowds. This parameter is determined experimentally. Before running the al-
gorithm 2 on a long video sequence, an analyst can tune this parameter to an
appropriate value by observing the video for a short time. Parameter ϕ is the
same as mt and we set it to 0.5 for all video sequences.

Table 5.2: Parameter Setting for Algorithm 1
Variable Description Value

step Control the resolution of grid 10

ε allowed distance between tracklets in Algorithm 2 step( 3
4
)

mt Matching ratio 0.4

Table 5.3: Parameter Setting for Algorithm 2
Hajj Station Unimib Airport Escalator Gallery

Resolution 384x576 360x480 360x480 360x480 480x480 360x480

Ω 120 90 90 90 120 70

ϕ 0.5 0.5 0.5 0.5 0.5 0.5

Some considerations must be done, finally, on the fact that the passage
between local results, related to a single video segment, and final overall global
motion flow description does not employ temporal information associated to the
local flows (which would probably be necessary for a proper tracking algorithm).
The example shown in Figure 5.17 shows that the clustering technique devised
and adopted for this final passage actually allows considering all flows that, even
just temporarily (i.e. not in all segments), represented a relevant and noticeable
flow of pedestrians. Moreover, the proposed approach actually exploits the fact
that pedestrians tend to follow similar paths in the environment, sometimes
imitating the movement of other pedestrians: the trajectory completion function
described in Algorithm 2, in fact, supports the detection of an overall pedestrian
flow even in a single video segment, even though a single pedestrian would not
be able to cover it, as long as other pedestrians are moving along a similar path.





Chapter 6

Detection of Social Groups
in Pedestrian Crowds

6.1 Introduction

Crowded scenes are composed of large number of people exhibiting different
behaviors in a constrained environment. The analysis of the behavior of pedes-
trians and crowds in video surveillance systems is a topic of growing interest
supporting an improved understanding of human behavior and decision mak-
ing activities through several functions like activity recognition [72], automated
analysis of the flow of large crowds, for example through crowd flow segmen-
tation and crowd counting [73], the discovery of frequent pathways [74], the
identification of crowd behaviors [67] and abnormal event detection [75, 76].
All these studies either focus on individuals or on the overall crowd, consid-
ered as large set of pedestrians, not considering the importance of some social
interaction among pedestrians: most pedestrians do not really walk alone [77],
and researchers observed in most situations pedestrians actually walk in groups.
Some interesting forms of social interaction and adaptive behaviors can be ob-
served at the group level and they are growingly investigated in the area of
pedestrian and crowd modeling and simulation [78, 77]. On the other hand,
detecting and analyzing social groups of people is still a less studied topic.

A few recent works [79, 80] are aimed at the detection of groups without
using future information about the dynamics of the scene. [79] employed De-
centralized Particle Filtering (DPF) for group detection while [80] employed un-
supervised group detection method based on Dirichlet Process Mixture Model
(DPMM) which exploits proxemics to determine group formation. Other ap-
proaches like [81, 82, 83] use social forces to analyze motion patterns and recog-
nize groups. These social forces based methods are based on pairwise similarity
between trajectories of pedestrians followed by a clustering phase. An approach
described in [84] extracts trajectory information from the whole video, then tra-
jectories are temporally analyzed in order to determine the affiliation of each

83
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Figure 6.1: Proposed Methodology for Group Detection.

pedestrian to a particular group. Pedestrians are grouped in a bottom-up fash-
ion by employing hierarchical clustering using pairwise proximity and velocity.
In [85], both spatial locations and velocities are used within a modified Haus-
dorff distance to compute trajectory similarities. In [86], Euclidean distance
metric is used to cluster vehicle trajectories. [74] measures trajectory similari-
ties using Longest Common Sub-Sequence. [87, 88] use Hausdroff and Dynamic
Time Warping metric to measure trajectory similarities. The problems with em-
ploying all above pairwise similarity measures are that they are computational
expensive and lack probabilistic explanation. On the other hand, instead, re-
cent works are focusing on modeling the distribution of trajectories locations
and velocity observations [89, 90].

The approach presented in this paper starts by extracting trajectory infor-
mation from the whole video and building an Association Matrix that captures
the joint probability distribution of start and stop locations of all pedestrians to
all other pedestrians in the scene and it adopts a bottom-up hierarchical clus-
tering approach similar to the one adopted in [84] to discover social groups. The
main contributions of the work are: (i) instead of considering whole trajectories,
we consider only two points (start and stop) making the overall group detection
process computationally less expensive and more suitable for real-time opera-
tion; (ii) our approach does not require training; (iii) the usage of Association
Matrix for discovering couples and Adjacency Matrix for discovering groups;
(iv) Our approach requires only one parameter setting.

The paper is organized as follows: in the following we present the overall pro-
posed approach, while Sect. 6.3 describes the clustering algorithm. Section 6.4
describes the achieved experimental results, also by comparing the proposed
approach with the most relevant existing alternatives. Conclusions and future
developments end the paper.

6.2 Proposed Methodology

The overall framework for automatic detection of pedestrian social groups in
crowds is described in Fig. 6.1; the input is a video sequence in which individual
pedestrians are detected: we adopted a semi-automated approach for detecting
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pedestrians, however, any detector could be used. The second phase is asso-
ciated to the tracking of the detected pedestrians: once again, we adopted a
specific approach, but in principle any tracker could be used. Pedestrians de-
tected in first frame are tracked through multiple frames using the Generalized
Minimum Clique Graphs (GMCP) [51] method, which is aimed to solve the
data association problem by exploiting both motion and appearance in a global
manner. The input to GMCP is a graph, in which all the detections in each
frame are connected to all other detections in all other frames. The output
is the set of several subgraphs, in which the detections belonging to common
entities are connected. The trajectory of pedestrian in the scene is a set of
tuples (x, y, t), where x and y are the horizontal and vertical coordinates of
the location at time t. Therefore, the trajectory of pedestrian is represented
by {(x1, y1, t1), . . . (xn, yn, tn)}, where n is total length of the trajectory of a
pedestrian over a time window T . Once the trajectories are extracted, the next
step is to construct an Association Matrix, that captures the joint distribution
of source and sink locations of all pedestrians to all other pedestrians in the
scene.

The first intuition behind this approach is that pedestrians appear and dis-
appear at relatively precise and recurring locations, such as doors, gateways
or particular portions of the edges of the scene in videos taken from the fixed
camera. We refer to locations where pedestrian appear as sources (potential
origin of a trajectory) and locations where they disappear as sinks (potential
destinations of a trajectory). The second consideration is that pedestrian crowd
motion is driven by adaptive processes based on local interactions among pedes-
trians; the latter are more stable and stronger when they move in a group, such
as friends or family members, since these individuals exhibit more coherent
movements. There are two key characteristics of the members of group: (i) the
spatio-temporal relationships of members of group tend to remain stable over
time, with members preserving a small distance from one another and avoiding
separation unless an obstacle comes in a way; (ii) the velocities of group mem-
bers are also correlated. We capture the above two characteristics by building
an Association Matrix. The key notion of our approach is to cluster pedestrians
having similar distributions across the source and sink locations.

In order to build an Association Matrix, we assume two discrete jointly dis-
tributed random variables X, representing “source” locations of the trajectories
and Y representing “sink” locations, where X ∈ Ω and Y ∈ Ω and set Ω rep-
resents all the possible scene locations. Let X and Y take values in the sets
{x1, x2, . . . , xn} and {y1, y2, . . . , yn} respectively, where xk and yk are the start
and stop locations of pedestrian’s trajectory k. An Association Matrix for n
trajectories is shown below.

P (X,Y ) =


p11 p12 p13 . . . p1n
p21 p22 p23 . . . p2n
...

...
...

. . .
...

pn1 pn2 pn3 . . . pnn


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Each row/column of an Association Matrix shows the probability distribution
of the source and sink points of single pedestrian Pk over all other n pedes-
trians in the scene. Let Pk is the distribution of sources and sinks of pedes-
trian trajectory k with all other n pedestrian trajectories and represented as
{pk1, pk2, pk3, . . . , pkn}, where p(k, j), is the joint probability of start and stop
locations for pedestrian trajectories k and any pedestrian trajectory j. For
pedestrian trajectory k, we use a Gaussian likelihood model [112] to compute
its probability of its starting from start location of other trajectory j in the
scene as equation 6.1

px(k, j) = e−‖
xk−xj
σ ‖ (6.1)

Where xk is the source location of trajectory k and xj is the source location
of trajectory j. Similarly, probability of stopping for trajectory k from stop
location of trajectory j in the scene as equation 6.2

py(k, j) = e−‖
yk−yj
σ ‖ (6.2)

Where yk is the sink location of trajectory k and yj is the sink location of tra-
jectory j. Assuming independence among the trajectories, we multiply px(k, j)
and px(k, j) to calculate joint probability p(k, j) for pedestrian trajectories k
and j. In the same way, we compute joint probabilities of all other trajectories
and after normalization, we obtain an Association Matrix. With the detection
of new pedestrians, new trajectories are extracted and matrix is updated in the
same way.

Association matrix help us in capturing the walking behavior of pedestrians.
A single pedestrian (not member of a group) tends to move or stop freely in the
environment, changing his/her speed and keep a distance from other pedestri-
ans or obstacles, pursuing is/her own goals. This behavior uniquely identifies
his/her source and sink locations. Member of a group generally move and stop
together following the notion of group entitativity [113], which defines Gestalt
psychology of common fate, similarity in appearance and behavior, proximity,
and pregnance (patterning). In other words, to a certain extent, a group can
be considered as a single entity, as a whole in the environment like, other single
pedestrians. Therefore, members of group produce similar distributions and this
could be easily detected by looking at the above defined Association Matrix. In
the next step, we illustrate clustering algorithm that take Association Matrix
as input.

6.3 Bottom up Hierarchical Clustering

We adopt a bottom-up hierarchical clustering approach which is a three step
process. In the first step, we assign distinct cluster identifiers by treating
each pedestrian as a separate cluster. In the second step, our clustering al-
gorithm discovers couples by measuring the difference between distribution of
each pedestrian with the distribution of all other pedestrians in the scene by



6.3. BOTTOM UP HIERARCHICAL CLUSTERING 87

using Kullback-Leibler (KL) divergence, also known as relative entropy, denoted
by DKL(Pr||Pk), computed by using equation 6.4 and selects the one that min-
imizes equation 6.3. For example, to find a group partner for a pedestrian with
distribution Pr, we select a pedestrian with distribution Pk that minimizes the
equation 6.3.

n
argmin
k=1

(DKL(Pr||Pk)) (6.3)

DKL(Pr||Pk) =
∑
i

Pr(i) ln
Pr(i)

Pk(i)
(6.4)

This process always proposes for each pedestrian the best possible partner
to form a couple, although this candidate partner might even be a bad partner,
since the pedestrians do actually not follow similar paths in terms of source and
sink in their trajectories. The next step is thus to prune these bad couples. Cou-
ples are labeled as bad if the joint probability p(r, k) (computed in section 6.2),
is greater than a specified threshold τs.

After pruning, an adjacency matrix is generated which captures the con-
nectivity information among all pedestrians. In order to illustrate the situation
with an example, consider the 6 x 6 matrix below that captures the connectivity
information among six pedestrians. In matrix A ‘1’ represents an edge between
two pedestrians while ‘0’ shows that there is no edge exits between them. As
shown in matrix, pedestrian p1 is adjacent to p2, p2 is adjacent to p4 and p1, p3
to p5, p4 to p2 while p6 is not connected with any other pedestrian.

A =



p1 p2 p3 p4 p5 p6

p1 0 1 0 0 0 0
p2 1 0 0 1 0 0
p3 0 0 0 0 1 0
p4 0 1 0 0 0 0
p5 0 0 1 0 0 0
p6 0 0 0 0 0 0


In the third step of the algorithm, group of couples, those having strong

intergroup closeness are merged into a larger group e.g, G(p1, p2) have a strong
intergroup closeness with G(p2, p4) because these two group of couples have one
member in common i.e, p2. Pseudocode of the third step (algorithm 3) auto-
matically discovers groups of pedestrian by taking adjacency matrix as input.

One could take a top-down approach by considering the entire crowd as one
group and iteratively splitting into subgroups. We choose the bottom-up ap-
proach because it is more efficient in the situations where the crowd is composed
of small groups (and this represents the most frequent situation, according to
empirical observations [77]). Our clustering algorithm does not require a prede-
fined number of clusters as compared to other traditional clustering algorithms
e.g, K-means or spectral clustering. Our algorithm automatically discovers the
number of groups by constructing a connectivity graph among pedestrians hav-
ing similar distributions.
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Algorithm 3 Discovering intergroup closeness and agglomerating couples from
adjacency matrix

Input: Adjacency Matrix A
Output: Groups G

1: initialize discovery vector D equal to number of pedestrian to zeros
2: initialize group G cluster.
3: idx = 1 . ID of the group(cluster)
4: for all pedestrians n do
5: if n is not discovered then
6: D(n) = 1
7: insert n in G[idx]
8: ptr = 1
9: while ptr ≤ length(G[idx]) do

10: find neighbor n̂ of n in A
11: if D(n̂)= 0 then
12: D(n̂)= 1
13: insert n̂ in G[idx] . insert n̂ in group(cluster)ID idx
14: n = n̂ . update n
15: end if
16: increment ptr by 1
17: end while
18: end if
19: increment idx by 1
20: end for



6.4. EXPERIMENTAL RESULTS 89

Table 6.1: Details of datasets: Key-ppf: people per frame
ETH HOTEL GALLERY SU2-L SU2-H

Total number of people 360 390 685 639 2678
Number of groups 74 59 85 127 410

Average number of ppf 6 8 12 17 50
Number of Frames 1448 1168 1002 600 600

6.4 Experimental Results

This section presents both quantitative and qualitative analyses of the results
obtained from experiments. We carried out our experiments on a PC of 2.6 GHz
(Core i5) with 4.0 GB memory, running a Mathlab implementation of the pre-
sented algorithm. We validate our proposed group detection approach on video
sequences made available from other research groups and acquired through field
observations. The overall set of video includes situations including both the
so called structured and unstructured crowds with different density conditions.
The videos named as eth and hotel from [114] are recorded in low density sit-
uations, su2 from [84] consists of two 15 minutes sequences, su2l and su2h.
The first sequence, su2l has 10-20 pedestrians per frame and covers low density
situations, while the second sequence, su2h, has more than 50 pedestrians per
frame and covers high density situations. The dataset, gallery from [108] is
recorded in a relatively high density situations. Table 6.1 shows the summary
of each analyzed video.

In order to evaluate our proposed approach, we obtain ground truth of all
video sequences: a human observer watched a version of video with IDs overlaid
on individuals in the scene. For quantitative evaluation of our proposed grouping
method, we first compare ground truth and auto-estimated group size for each
pedestrian.

Some considerations must be done about the application of the presented
group detection approach before discussing results. The overall workflow de-
scribed in Fig. 6.1 intrinsically implies a time window in which the pedestrians
are identified and tracked, in which their sources and sinks are identified and in
which all the group detection mechanisms are applied. Therefore, the presented
approach produces results that are to be considered valid within a time window.
The length of the time window, with respect to both general pedestrian dynam-
ics and the overall travel time within a given scene, significantly influences the
performance of the group detection: in particular, too short time windows make
it difficult to actually perceive differences between genuine groups and simple
pedestrians that, for a short time, move in a very similar way, that would rep-
resent false positives. A larger time window, close to the length of the average
travel time of pedestrians in the scene, would intuitively improve group detec-
tion, but it would also reduce the frequency of the detection of groups in the
scene. While facing this problem is object of current and future works, we will
discuss the effect of the choice of a time window size on the precision of group
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Figure 6.2: Effect of Time window on accuracy

detection.
As previously mentioned, the trajectories were extracted by means of a semi

automatic pedestrian detection mechanism; this fact should not hinder or favor
the proposed approach compared to existing ones, but this is subject to further
analyses. To better discuss the accuracy of the group detection we categorize a
member of a group under two coding schemes: Dichotomous coding scheme and
Trichotomous coding scheme. In the former, we checked whether a pedestrian
is alone or in group while in the trichotomous coding scheme we determine the
size of the group. We compare these coding schemes with the ground truth
and from the experiments, we observe that our proposed grouping algorithm
achieves 93.6% accuracy in dichotomous while 88.2% accuracy in trichotomous
coding scheme on average for all the analyzed videos. As shown in Table 6.2, the
performance of our proposed approach for the first two videos, i.e, eth and hotel ,
under dichotomous and trichotomous coding scheme is very high, since these
videos covers low density situations, where pedestrians are relatively distant
one from another, while in the other videos, where the density is relatively
high and pedestrians are moving at a short distance, the performance of our
algorithm decreases. Further investigations on video sequences reveals that the
performance of our proposed approach gradually decreases with the increase in
crowd density in general, irrespectively of the adopted video: in high density
situations, the available space around the group is reduced and this forces the
configuration of the group to change to adapt to the contextual situation, voiding
the assumptions behind our approach1.

From the experiments, we also analyzed how the accuracy of the proposed
approach is influenced by the size of the time window. If the time window is
shorter than maximum travel time of pedestrian in the scene, this implies that
pedestrian trajectories are analyzed for a short duration and the algorithm may
lead to false positives. In such situations, two pedestrians walking close to each
other for a short period will be detected as couple, although they cease to move

1It must be noted that, however, empirical data about the proxemic behavior of groups
in relatively high density situation is still lacking, therefore we do not have clear idea of how
groups behave in this kind of situation.
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Table 6.2: Dichotomy and Trichotomy on different video sequences
Videos τs Dichotomoy Trichotomy

ETH 10−10 100.0% 95.0%
HOTEL 10−15 100.0% 92.0%

GALLERY 10−19 96.3% 89.9%
SU2-L 10−12 90.70% 86.70%
SU2-H 10−12 81.06% 77.24%

together if analyzed for a longer duration. Figure 6.2, shows the accuracy of
dichotomous and trichotomous coding scheme with varying time window for
the gallery video sequence. In this video sequence, maximum travel time of
pedestrian is 200 frames. As it is obvious from Figure that accuracy of our
grouping algorithm increases with the increase in duration of time window.
Since in general this value is unknown, we can consider a reasonable initialization
value to be set according to known data such as the average pedestrian walking
speed and the dimension of the observed area

Comparison with state-of-the-art

We compare our proposed grouping algorithm with the ones that are closest
to the present approach, respectively described in [84] and [115]. In [84], the
researchers identify small group of pedestrians by combining spatial proximity
and velocity cues into a pairwise distance computed for the whole trajectory.
Intergroup closeness between two groups of pedestrian is measured by symmetric
Hausdorff distance. They construct a connectivity graph and adopted bottom-
up hierarchical clustering approach that start by treating each individual as
separate cluster and gradually discovers large groups by merging two clusters
that satisfy intergroup closeness. In contrast, our proposed algorithm does not
compute pairwise distance measure for the whole trajectory, instead, we consider
only the source (start point of trajectory) and sinks (stop point of trajectory)
points of any two trajectories. In order to show the effectiveness of our proposed
approach under dichotomous and trichotomous, we compare our approach with
[84] using su2 video sequence as shown in Table 6.3.

In order to further discuss the quality of the achieved results, we quantita-
tively compare our approach with [84] in terms of time complexity and shown in
Figure 6.3. The horizontal axis of the Figure shows the increasing mean length
of two trajectories belonging to pedestrian couples. Pedestrian couple with

Table 6.3: Comparison with state-of-the-art method
Data set Proposed [84]

Dichotomy Trichotomy Dichotomy Trichotomy
SU2-L 90.70% 86.70% 84.00% 75.00%
SU2-H 81.06% 77.24% 75.00% 72.00%
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mean length of 200 have longer trajectories than pedestrian couple with mean
length of 50. The vertical axis of the Figure shows total computational time.
The overall computational time is significantly less than [84], for which the cost

Figure 6.3: Time Complexity

increases linearly with the increase in length of trajectories, since method [84]
computes pairwise distance between all points of the trajectories while in our
case the computational time is constant, since we consider only the source and
sink point of the trajectories. Our approach is also based on bottom-up hi-
erarchical clustering that also starts by treating each pedestrian as a separate
cluster. In the second step, our algorithm tries to find couples and construct
a connectivity graph. In the third step, instead of measuring symmetric Haus-
dorff distance as in [84] (which is widely used for shape matching and trajectory
analysis) for merging two groups, we merged two groups of couples into larger
group by adopting Algorithm 3.

In [115], instead, the authors proposed a structural SVM-based learning
framework that extract Hall’s proxemics and Granger’s causality as main fea-
tures from trajectories of pedestrians, then a supervised bottom-up hierarchical
clustering approach to discover groups of pedestrians was adopted. This method
is very effective and it implied the adoption of an original machine learning
method characterized by a plausible model of pedestrian behavior, but it is
also computationally expensive, requiring off-line data for learning and train-
ing. In contrast, our approach is a relatively simple three step process, it does
not require off-line training and learning which makes it suitable for real-time
applications, granted that proper pedestrian detection and tracking algorithms
are adopted. Figure 6.4 reports visual examples of our proposed algorithm.
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(a) Eth Sequence (b) Hotel Sequence

(c) Gallery Sequence

Figure 6.4: Qualitative results of different video sequences





Chapter 7

Summary and Future Work

The main theme of this thesis is two fold,i.e, understanding crowd dynamics in
videos of (i), high density crowds and (ii) low density crowds. Typical examples
of high density crowds include marathons, religious festivals while malls, air-
ports, subways etc covers low dense situations. In this thesis, I adopt different
approaches in order to deal with different kinds of problems coming from these
two categories of crowd. This thesis highlights the problems of crowd flow seg-
mentation, counting and crowd behaviour understanding problems originating
from the first category and social group detection from the other category.

In particular, first part of the thesis, I adopt holistic approach to generate
a global representation of the scene that captures both dynamics of the crowd
and structure of the scene. This was achieved by extracting global features,
i.e optical flow from the scene. For the crowd flow segmentation problem, the
optical flows vectors are clustered by using K-means clustering followed by the
blob absorption approach. Using the segmentation information, we continue to
estimate the number of people in each segment by carrying out the blob analysis
and blob size optimization approach.

In the second part of the thesis, I use trajectory information by building an
association matrix that captures the joint probability distribution of the source
and sink of one trajectory with all other trajectories of pedestrians in the scene.
In particular category, we extract the pedestrian trajectory by using detection
and tracking approach.

I summarize the main contribution of this thesis in the following section

7.0.1 Summary of Contributions

Crowd Flow Segmentation and Crowd Counting

In this framework, we have considered both high and low density crowds and
proposed a framework that automatically detects dominant motion flows and
counts the number of people in each flow. Such kind of analysis provides a useful
input to pedestrian simulation models. A first employment of the our analysis is
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related to the actual initial configuration of the simulation scenario. Second way
to exploit data resulting from automated video analysis is represented by pedes-
trian counting and density estimation: the indication of the average number of
pedestrians present in the simulated portion of the environment is important
in configuring the start areas. Finally, we can use the above analysis in the
validation of simulation results. Our approach is applicable in many different
situations and it is independent of local conditions and camera viewpoints.

1. Combining crowd flow segmentation and crowd counting in one framework,

2. Adoption of global features, optical flow, to segment the crowd,

3. Blob absorption approach that improve the state-of-the-art results

4. Estimating number of people in each segment

5. Proposed framework does not require local features like detection and
tracking

6. No training is required

Crowd behaviour understanding

The framework presents automated analysis of videos in naturalistic conditions
and the identification of points of entrance (sources) and exit (sinks) of the
most significant pedestrian flows. The approach adopts optical flow for the
identification of pedestrian movements, and it considers the analyzed video as
a set of sequences. The latter are analyzed separately, producing tracklets that
are then clustered to produce global trajectories, defining both sources and
sinks, but also characterizing the movement of pedestrians in the scene. The
algorithms work according to geometric considerations essentially considering
the plausibility of extending tracklets associated to optical flow by connecting
them when they represent a smooth continuation one of another, and then
clustering those sharing a significant subsequence.

The approach has been presented in details, also setting it in the current state
of the art. Results of its application to the analysis of videos made available by
other researchers and by our research group have been discussed mainly with
reference to two aspects: (i) the capability of producing long and dense tracks
associated to pedestrian movements, also with reference to the most relevant
approaches present in the computer vision literature, and (ii) the capability of
summarizing pedestrians’ movements, identifying at the same time sources and
sinks. For both aspects, the considered videos cover a wide range of crowding
situations, from medium-low to relatively high crowding conditions, in cases of
structured and unstructured crowds.

1. generating dense and long trajectories,

2. identifying sources and sinks,
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3. understanding behaviour of the crowd in the scene by considering full
length video,

4. achieve the above results without requiring object detection, tracking, nor
training, targeting employment in naturalistic conditions.

5. introduction of new metric systems for evaluating the proposed and other
like frameworks

Social group detection

In this framework, We propose a novel approach for automatic detection of so-
cial groups of pedestrians in crowds by considering only start (source) and stop
(sink) locations of pedestrian trajectories. We build an Association Matrix that
captures the joint probability distribution of starts and stops locations of all
pedestrian trajectories to all other pedestrian trajectories in the scene. Pedes-
trians exhibiting similar distribution are combine in a group, where as similarity
among the distributions is measuread by Kullback−Leibler(KL)divergence. We
adopt bottom-up hierarchical clustering approach, which is three step process.
In first step, we treat all the individuals as independent clusters, In the second
step, couples are detected and after pruning of bad couples, AdjacencyMatrix
is generated. Later on, in step three, using the AdjacencyMatrix , groups of
couples, those have strong intergroup closeness (similarity) are merged into a
larger group.

1. instead of considering whole trajectories, we consider only two points
(start and stop) making the overall group detection process computation-
ally less expensive and more suitable for real-time operation,

2. our approach does not require training,

3. the usage of Association Matrix for discovering couples and Adjacency
Matrix for discovering groups,

4. our approach requires only one parameter setting..

7.0.2 Future Work

The methods developed in this thesis can be improved and extended in the
following ways

Crowd flow segmentation and crowd counting

For detail understanding of crowd behaviour, the method proposed in this thesis
can be extended by labelling different segments with one of commonly observed
behaviours. The common type of behaviours observed in these situations are:
lane formation, bottlenecks, fountain ( people spreading in different direction
from one point), merging and splitting etc. Once the labels are assigned to
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different segments will generate a much higher representation of the scene that
will be much easier for the human operator to understand and react to the
situation.

Another extension to current the crowd counting framework is to rely less
on motion information and rely more on image content. Because motion infor-
mation is extracted by computing optical flow which will affect the accuracy
of crowd counting framework in case of severe changes in lightening conditions.
This could be performed by segmenting the image content into crowd and non-
crowd regions. This can be achieved by extracting appearance base features like
SIFT and utilization of SIFT words or by texture analysis by using local binary
pattern, GLCM, or Fourier spectrum analysis of the image.

Crowd behaviour understanding

The present framework can be improved and extended in four directions:

1. extensions of the approach to produce information that can be more di-
rectly used by modelers for the configuration of simulation scenario, that
is, origin destination matrices and traffic assignments: this point will
require a quantitative characterization of the sources, sinks and main
flows, and it will also imply a different form of experimentation analyz-
ing longer videos, but the quantitative evaluation of this development is
rather straightforward;

2. extension of the approach to consider multi-camera scenarios: the present
approach is very promising but so far we did not analyze large scenarios
in which the analyzed area can only be covered by more cameras and
scenes; this will require a higher level of correlation among results of the
application of the same approach to different videos, a higher level that is
also related to the next point;

3. extension of the approach to perform a semantic analysis of the results, for
the identification and treatment of situations essentially characterizable as
(i) confluence of different flows in a single one, (ii) separation of initially
joint flows; these situations, as well as the previous one, will likely require
the adoption of some form of knowledge representation and reasoning on
graph-like structures associated either to static spatial representations or
to the results of the application of the proposed approach.

4. extension of the approach to multi-target object tracking as in [116] but
the target data set used comprise low density scenarios. Our target is to
extend the approach to more dense and complex videos.

Social group detection

The present framework for the group detection on one side, can be extended by
improving the accuracy of the group detection and, on the other, at clarifying
the overall possibility to apply this method (i) respecting real-time constrains
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or simply (ii) for providing significant data supporting pedestrian modelling
and simulation within an integrated approach. Th accuracy of the present
framework is coupled with performance of pedestrian detection and tracking,
which in many real time cases, difficult due to severe occlusions and clutter. The
present framework can be extended by extracting features trajectories instead
of detecting and tracking individuals, i.e , KLT from the scene. The KLT
trajectories related to a group can be clustered by adopting source and sink co-
clustering algorithm. The co-clustering algorithm will cluster trajectories which
follows the similar distribution across the source and sink locations.
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