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Abstract: In this paper we show how new techniques of topological fluid mechan-
ics and physical knot theory can be applied to estimate magnetic energy levels in
solar physics. In particular, we show that magnetic energy stored in complex con-
figurations of plasma loops present on the Sun can be quantified by geometric and
topological information. These studies find important applications in the energetics
of solar and stellar physics and in laboratory plasmas.
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1. SOLAR CORONAL STRUCTURES AND THE PHYSICS OF MAG-
NETIC KNOTS

Most of the energy emitted by the Sun that reaches us in the form of visible and
invisible light and heating is generated by the intense activity of solar magnetic
fields. Near the solar surface, and possibly in the entire convection zone just below
the photosphere, these fields structure the plasma into coherent regions in the shape
of giant arches, loops and flux tubes rooted in the solar surface and projected into
the corona (see figure 1; Spruit & Roberts, 1983; Bray et al., 1991). Twisted and
braided magnetic loops are indeed basic structural elements of solar and stellar
atmospheres. On the Sun, more than 90% of the magnetic flux outside sunspots is
concentrated into intense flux tubes, which are responsible for a great part of energy
emission from the solar corona. Many phenomena associated with solar activity,
such as formation of sunspots, prominences and flares, are directly related to the
presence of these structures. Solar loops, which are made visible through density
and temperature inhomogeneities aligned with the field, have typical thickness of the
order of 100-1500 km and can rise up to 400000 km in the corona, at temperatures
of millions of degrees.

Direct observation of these structures reveals braided configurations with com-
plex topology of the magnetic field. The magnetic lines of force appear to be highly
tangled, and this makes it much more difficult to estimate the magnetic energy
stored in the structure. In recent years, an alternative approach based on topolog-
ical techniques borrowed from knot theory and applied to magnetohydrodynamics
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Figure 1. Eruptive prominence as seen at the solar limb on the 13th of March,
1970. The full high of the prominence is estimated to be 370000 km
and to rise at 160 km/s (from Giovanelli, 1984).

(see Ricca & Berger, 1996; Ricca, 1998a; 1998b) has'made it possible to provide new
information on some important aspects of the energetics of astrophysical flows.

Mathematical models of coronal loops consider a collection of magnetic fila-
ments, knotted and linked together to form arched braids (as in figure 2) embedded
in a perfectly conducting plasma (i.e. in ideal conditions). Magnetic filaments inter-
act with the surrounding medium through the Lorentz force and, as elastic strings,
experience a tension proportional to their curvature. The curvature force is respon-
sible for the dynamics of each filament in the medium. In ideal conditions, then,
the topology of the magnetic field is ‘frozen’ in the fluid: this means that there are
no reconnections of magnetic field lines taking place, and therefore knot and link
types (and physical quantities, such as total energy and helicity) of the magnetic
field distribution do not change with time. These quantities guide the magnetic
relaxation of the structure towards states of minimum energy. Hence, two aspects
influence the energetics of magnetic loops: a dynamical action of a curvature force
(essentially related to the geometry of the magnetic field), and the type of knot and
link of the magnetic configuration.

2. FROM MAGNETIC KNOTS TO BRAIDS

Knots and links are classified according to their topology. A useful measure of knot
complexity is given by the minimum number of crossings cmin of a knot type, that
is a topological invariant of the knot: its value does not change as the knot changes
shape; cmin is determined by counting the number of crossings in the knot diagram,
obtained by projecting the knot onto a plane so as that it shows the minimum
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Figure 2. Coronal loops in an active region (from Bray et al., 1991; on the left)
and a sketch of the corresponding magnetic pattern (on the right). These loops
are anchored to sunspots, whose locations (shown in the drawing below the
picture on the left) are established with the aid of auziliary data.

possible number of crossings. The three knot types in the first row of figure 3, for
example, are shown in their minimal projection (standard representation).

Of course a knot can be drawn to take any shape. Particularly interesting
geometries are obtained when we take a standard knot and, by a series of continuous
deformations, we change its shape to a closed braid with the least possible number
¢, of crossings (minimal braids), as shown by the knots in the second row of figure
3. It is known (cf. Ricca, 1998) that ¢, is bounded by

Cmin < Co Scnﬂn+(cznjn_l)(cxnjn_2} - (]-J

Minimal braids have interesting features: the curve goes around a centre as in an
orbit-like pattern and without inflexions. An inflexion point (in isolation) is present
when the intrinsic curvature of the knot vanishes: in a planar, S-shaped curve, for
example, this point is visible at the change of concavity. The standard knots in the
first row of figure 3 exhibit inflexional configurations, whereas their minimal braid
configurations have none.

A geometric quantity useful to measure the average amount of coiling of a knot
is the writhing number Wr. The writhe can be measured by the sum of the signed
crossings of the knot diagram (not necessarily the minimal diagram) onto some
projection plane, averaged over all projections, that is

Wr =<ni(v) —n_(v)>, (2)

where < -> denotes averaging over all directions v of projection, and n. denotes the
number of apparent + crossings, from the direction of projection v. For a nearly
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Figure 3. Different knot types in standard representation (first row) can be trans-
formed by a series of continuous deformations to minimal braids (second row).

plane curve (except small indentations to allow crossings, as in the diagrams of
Figure 3) the writhe can be directly estimated by the sum of the signed crossings.
For a physical knot a change in writhe has physical implications and it is therefore
a useful information.

Magnetic knots are dynamical objects that spontaneously tend to minimize
their energy by re-arranging their shape. In a recent analysis (Ricca, 1997) it has
been shown that twisted magnetic flux tubes are in disequilibrium in inflexional
configurations (which are ubiquitous in astrophysical flows). Since the topology of
the magnetic field is frozen and the Lorentz force drives the lines of force to an
inflexion-free state, magnetic knots tend to remove inflexion points from their ge-
ometry to form closed braid configurations. Moreover, as the knot changes shape,
the writhe value changes as well (remember that Wr is a geometric quantity that
depends on the shape). Since in ideal conditions magnetic helicity is conserved, an
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Figure 4. A magnetic braid of 8 crossings (on the left) can relaz to a minimal
configuration (on the left) with co = cmin = 6.

increase in writhe is always accompanied by a decrease in the field lines twist, a
mechanism that is favoured by the natural relaxation of the magnetic system.

3. MINIMAL BRAIDS AND ENERGY ESTIMATES

Is it possible to measure energy levels according to magnetic knot complexity? Re-
cent studies on knot energy (Moffatt, 1990; Freedman & He, 1991; Berger, 1993)
show that energy levels can be indeed related to crossing numbers, hence to knot
complexity. Bounds on energy levels of magnetic knots are given by relations of the
kind

Ewin 2 Eo = F(®,V, N; cin) ®3)
where Eqy is the minimum energy level, Ey is the ground state energy and F()
gives the relationship between magnetic quantities such as total flux @, volume V,
number of filaments N, and knot topology given by cmi. Typically energy increases
with ¢min and therefore with knot complexity. The inequality sign, though, allows
ample margin for error.

These estimates are based on calculations that provide limit values for global
minima of energy, without taking into account any dynamic feature associated with
the magnetic field. The competition between magnetic field distribution and the
geometry of the structure may actually prevent the physical knot from reaching
these limit values. We should remember that in ideal conditions magnetic knots
relax their energy by moving according to the Lorentz force (a curvature force),
that makes the lines of force shrinking. Since inflexional magnetic knots are forced
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to remove inflexions, there is a possibility that they simply cannot relax to minimal
knots, if these exhibit inflexions. In this case they are forced to move to inflexion-free
braids first, and then, by removing redundant crossings so as to reduce as much as
possible their potential energy, to take the shape of minimal braids (that represent
local minima for magnetic energy; see figure 4). Since minimal braids have ¢, > cmin,
eq. (3) suggests that the least possible energy stored in these braids (Eomin) is
likely to be higher than the theoretical limit given by Ep, i.e. Eomin > Fmin > Eo.
Considerations based on application of the upper bound of inequality (1), then,
makes us believe that the minimum amount of energy actually embodied in solar
magnetic structures can be well above the theoretical limit Eq.

These considerations have important implications for astrophysical and terres-
trial applications. Accurate estimates of minimum magnetic energy levels are useful
to quantify the energy that can be released into heat during flares, microflares, and
mass ejections from the Sun, and are also important for space applications and fu-
sion physics in laboratory plasmas.
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