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This work presents a modified version of Hasse diagram technique, theweighted Regularized Hasse (wR-Hasse),
which aims to reduce the number of incomparabilities and derive weighted rankings of the objects.
These objectives are accomplished by (a) introducing a mathematical threshold on the definition of incompara-
bility and (b) weighting criteria according to their relevance.
In order to test the new approach, we used eight data sets from literature, aiming at extensively investigating the
effect of thresholds and weighting schemes on the outcome.
Results showed how (a) wR-Hasse effectively reduces the number of incomparabilities with respect to the orig-
inal Hasse and (b) weighting schemes tune the contribution of relevant criteria to the final outcome. Moreover,
this approach allows to obtain statistics useful to further investigate data structure and relationships between
object ranks.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hasse diagrams (HD) [1], named after Helmut Hasse, are a useful
technique to perform partial order ranking, which consists in defining
an order between different alternatives on the basis of their criteria
values. Ordering techniques are of great importance for multi-criteria
decision-making (MCDM) issues, which aim to rationally identify the
best candidate among several alternatives, described by multiple (and
often conflicting) criteria [2]. In this context, multi-criteria ordering
techniques allow to deal with widely diverse and often very complex
decision-making problems.

The rationale of HD ordering is very simple: when one alternative
has better (or equal) values for all its criteria than another one, the
two alternatives are comparable and an order can be set. On the con-
trary, if at least one pair of criteria is in conflict, the objects are incompa-
rable and the ordering is not possible. In this way, partial ordering
techniques differ from total ordering techniques (e.g., simple average
ranking [3], Copeland score [4], and weighted Power–Weakness Ratio
[5]), which always set an ordering. Once a partial order is established,
relations between alternatives are represented as graphs in the so-
called Hasse diagrams, in which elements are vertices and ordering re-
lationships are edges. The potential of HD approach lays in its ability
of logically sorting objects and giving them a structure. For this reason,
HD find successful application to MCDM purposes in many fields, such
and Environmental Sciences,
20126, Italy.
schini).
as chemistry and environmental sciences [6], biotechnology [7],
computer [8], and social sciences [9]. However, an Achilles' heel of HD
is toward data sets with many criteria, where often a large number of
incomparabilities are observed [10]. Such cases lead to a less effective
representation and often to no ordering at all. Moreover, Hasse theory
considers all criteria as equally relevant in determining the final data
structure. However, in data analysis and MCDM issues, criteria not
always have the same relevance for the problem under analysis, and
the possibility to give more relevance to some of them allows for a
more feasible and rational application of the technique. Several
solutions to these issues have been proposed, such as the iterative
application of fuzzy methods and Monte Carlo simulations to reduce
the number of incomparabilities ([11, 12]), or the creation of weighted
aggregated indicators ([13, 14]).

In the present work, we propose a novel approach, the weighted
regularizedHasse (wR-Hasse), which aims (a) to smoothen the number
of incomparabilities through a mathematical threshold acting on the
definition of incomparability and (b) to weight the criteria according
to previous knowledge. This approach is based on a simple algebraic
data transformation and allows (a) to obtain more interpretable Hasse
diagrams, by reducing the number of incomparabilities, (b) to give
more importance to relevant criteria, and (c) to obtain statistics about
the objects ordering from a family of weighted regularized Hasse
matrices.

After introducing wR-Hasse theory, we use eight literature-based
MCDM data sets to discuss in depth its ability to reduce incompara-
bilities, the effect of weighting schemes on the outcome, and how
the statistics help gathering insights about data structure and object
ranks.
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2. Theory

2.1. Weighted regularized Hasse theory

Let X be a data matrix comprising n objects described by p criteria. A
weighted count matrix (TW) can be obtained by defining its elements
(tijW) as follows:

tWi j ¼
Xp

k¼1

wk � δi j;k where δi j;k ¼
1 if xik ⊳ xjk

0:5 if xik ≜ xjk
0 if xik ⊲ xjk

8<
: and

Xp

k¼1

wk ¼ 1

ð1Þ

where wk is the weight given to the kth criterion and xik is the value of
the kth criterion for the ith object.

In other words, for each k criterion (1 ≤ k ≤ p), each ith element will
dominate against the jth if its value is better than that of j (i.e., xik⊳ xjk).
If the contrary happens (xik ⊲ xjk), the jth element will dominate over i.
Finally, if the values are equal (xik ≜ xjk), the two objects “tie the
comparison” for the kth criterion and half a credit is given to both.
This weighting scheme was already introduced in our previous
work [5], as it is a very simple and efficient way to weight criteria
and compare objects. Note that all the values of TW range from 0 to 1
and tij

W + tji
W = 1.

The transition from TW to a weighted regularized Hasse matrix
(HR) is obtained by introducing a mathematical threshold on the
definition of incomparability. In particular, by means of a threshold
Fig. 1. General scheme of how to obtain the weighted regularized Hasse matrix (HR(t*)) or the
used to draw Hasse diagrams and obtain partial orders or to obtain total orders through the Co
t*, a weighted regularized Hasse matrix HR(t⁎) can be obtained as
follows:

HR t�ð Þ
h i

i j
¼

þ1 if tWi j ≥t
�

−1 if tWi j ≤1−t�

0 otherwise

8><
>:

0:55 ≤ t� ≤ 1 ð2Þ

where t⁎ can be chosen in the range of 0.55 and 1. The meaning of t*
is very intuitive: it corresponds to the fraction of criteria for which
an object j has to be better than an object i (or vice versa) in order
to set an ordering between the two. For instance, when t* = 0.75
and the criteria are equally weighted, i dominates over j if it has bet-
ter values for the 75% of the criteria. When a different weighting
scheme is adopted, i dominates over j when the weights of the
criteria for which i is better than j sum up to 0.75.

In case of no draws, t*=1 provides the original Hasse matrix, while
in case of some draws, a more restrictive Hasse matrix is obtained. In
fact, according to wR-Hasse approach, when t* = 1, i has to be better
than j for all its criteria (or vice versa) in order set an ordering between
the two, while original Hasse also allows some case of draws.

By progressively decreasing t⁎, i.e., by loosening up the definition of
incomparability, also the number of incomparabilities tends to decrease.
In this way, the efficiency of HD technique can be tuned by varying t*,
moving to themost restrictive case (t*=1) to cases where the number
of incomparabilities is significantly reduced.

Seldom, it could happen that the number of incomparabilities is
constant above the whole range of t*, for what we here define as strong
original Hasse matrix (HH) starting from data matrix. The obtained matrices can be then
peland-like scores (Eq. (3)).

Image of Fig. 1
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irreducibility. More often, the number of incomparabilities decreases
when decreasing t* but without reaching zero. In this case, we can
speak of weak irreducibility.

The set of all possible t* values allows to obtain a family of wR-
Hasse matrices (HR), whose cardinality depends on the number of
criteria and the chosen set of weights. The total number (T) of
weighted regularized Hasse matrices can be obtained a posteriori di-
rectly from TW (rounded to the second decimal place) after analysing
howmany different values greater to or equal than 0.55 are present;
these values constitute the optimal set of thresholds. By varying t*
across the whole set, one can also obtain statistics that reflect the rel-
evance of the each object ordering and gain information about data
structure. This will be discussed in details in the next Section 2.2.
Fig. 2. Exemplificative scheme of the proposed approach and comparison between the obtaine
plained in Fig. 1. TWcontains two values greater than 0.55,which are usedas thresholds: 0.67 (d)
From TH, the original Hasse matrix can be obtained with t* = 1 (f) with the corresponding Ha
From each member of the HR family, also a total ordering can be
obtained. In particular, one can calculate scores that are conceptually
similar to those of the Copelandmethod [4],which compares the alterna-
tives in a pairwise manner and sorts them according to their number of
victoriesminus the number of defeats against the remaining ones. In our
case, Copeland-like scores can be obtained as matrix row sums:

Ci HR t�ð Þ
h i

¼
Xn
j¼1

HR t�ð Þ
h i

i j
ð3Þ

where Ci is the Copeland-like score of the ith object obtained from the
HR(t*) matrix with the chosen t* threshold. This score, as the original
d HD. Data were data taken from [6]. From X, both TW (b) and TH (c) are calculated, as ex-
and 0.83 (e), to obtain the correspondingmatrices and diagrams (d1 and e1, respectively).

sse diagram (f1).

Image of Fig. 2


Table 3
Data sets under analysis. ID, criteria type, number of objects (n), and criteria (p) are
reported.

Table 2
Weights given to 5 criteria according to different vectors of relative importance (v).

Criteria

v 1 2 3 4 5

2 1 1 1 1 0.333 0.167 0.167 0.167 0.167
3 1 1 1 1 0.429 0.143 0.143 0.143 0.143
3 3 3 1 1 0.273 0.273 0.273 0.091 0.091
5 3 3 3 1 0.333 0.200 0.200 0.200 0.067
5 5 2 2 1 0.333 0.333 0.133 0.133 0.067

Fig. 3.Differentweighting schemes according to thedegree of knowledgeabout theproblem.
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Copeland does, ranks objects according to their proportion of pairwise
victories anddefeats against the remaining ones for all the criteria. A con-
ceptual flow diagram can be found in Fig. 1, which also shows how the
original Hasse matrix (HH) is obtained through a modified weighted
count matrix TH, assigning a full credit instead of half a credit to the
equality condition of Eq. (1) (i.e., xik ≜ xjk → δij,k = 1).

In order to better clarify the procedure, a simple example with 6
objects and 3 criteria is discussed in Fig. 2; for the sake of simplicity,
all the criteria were equally weighted (i.e., wj = 1/p = 0.33).

Fig. 2 shows how, from X, the weighted count matrix (Tw) (Fig. 2b)
and the modified weighted count matrix TH (Fig. 2c) are calculated. In
this case, TW contains only two values greater than 0.55 (0.67, 0.83),
which are used to obtain a two-memberedHR family (d, e)with the cor-
responding diagrams (d1, e1). Similarly, from TH, the corresponding
original Hasse matrix HH (t* = 1) and diagram are obtained (f, f1). It
can be noted that the maximum possible threshold t* = 0.83 leads to
a larger number of incomparabilities than the original Hasse diagram
(f1). In fact, in the original Hasse approach, the objects e and d are com-
parable, since draws are allowed to set an ordering between object
when the remaining criteria are not in conflict. On the contrary, in the
wR-Hasse approach, the draws only score half a credit, resulting in
tW=0.63 and leading to an incomparability for t*=0.83. This situation
changes for t* = 0.67, which leads to a significant reduction of the
number of incomparabilities with respect to the original Hasse diagram
(see d1 versus f1).

2.2. Statistics from weighted regularized Hasse family

As already mentioned, from each HR(t*), a Copeland-like score can
be obtained for each object along with the corresponding ranks. This
corresponds to a set of ranks for theHR family, fromwhich useful statis-
tics can be derived, such as minimum/maximum ranks, arithmetic
mean, and standard deviations. Arithmetic mean gives the average
ranking of objects, while the standard deviation gives the ranking vari-
ability across the set of t*. For instance, objects that are ranked always to
the same position independently from t* (e.g., invariant to the regulari-
zation procedure) will have a standard deviation equal to zero. On the
contrary, those having a large standard deviation will be characterized
by high rank variability within the HR family. Moreover, the coefficient
of variation (CV%) can be also calculated in order to obtain a measure
independent of the average rank.
Table 1
Weights given to 5 criteria when their rankings and α parameter vary (Eq. (5)).

Criterion 1 2 3 4 5

α\ Rank 1 2 3.5 3.5 5
0.5 0.310 0.219 0.166 0.166 0.139
1.0 0.440 0.220 0.126 0.126 0.088
1.5 0.572 0.202 0.087 0.087 0.051
2.0 0.688 0.172 0.056 0.056 0.028
2.3. Choosing weights

Criteria weighting is often perceived as an arbitrary decision and it
can also become a source of controversy when weights have to be
chosen by a group of decision makers. However, the possibility to
weight criteria (when transparent and based on knowledge about the
problem), is an opportunity that should not be neglected.

On the basis of the knowledge about the problem, different
approaches can be used to define weights (Fig. 3):

1. Criteria can be weighted according to their relevance (rj) (moderate
knowledge). Amethod for this calculation has been already proposed
[16], as the following:

wj αð Þ ¼
Q=rαj

Xp

j¼1

Q=rαj

ð5Þ

where rαj ¼ exp½α � lnðr jÞ� and Q ¼ ∏
p

j¼1
rαj .wj(α) is the normal-

ized weight for the jth criterion, and α is a smoothing parameter,
which influences the differences between the weights of high-
ranked criteria and those of low-ranked ones. In particular, when
α = 0, criteria are equally weighted, i.e., they are independent of
their ranks, while when α increases, also the differences between
weights increases (Table 1).

2. By assigning a relative importance (vj) to the criteria, the greater the
importance, the larger the corresponding weight (moderate-to-high
knowledge). Theweightwj is then obtained by dividing vj by the sum
of all the p importance values (Table 2); Eq. (5) can be also used, by
replacing ri with 1/vj.

3. By directly assigning weights, when the degree of knowledge is very
high.

4. When no a priori knowledge is available, the p criteria should be
equally weighted as 1/p.

Moreover, in ref. [16], it was observed how for some ranges of
weights, the same rankings/diagrams are obtained. Therefore, the
discussion should only regard those value regions where small changes
of the assigned weights can lead to very different outcomes.
Data set ID n p Criteria type Reference

Perfluoroalkyl acids PFA 7 10 Bioaccumulation properties [17]
Benzamide derivatives Benz 72 3 Receptor inhibition [18]
Anilines Anil 45 4 Environmental impact

properties
[19]

Pesticides Pest 17 6 Algal toxicity [20]
Bibliometric index BI 26 27 Bibliometric indices [21]
Analytical chemistry
journals

JAC 86 9 Journal metrics [22]

Classification methods CMeth 10 32 Non-error rate (NER) [23]
Cities Cit 10 3 Communication media [24]

Image of Fig. 3


Table 4
HR families for CMeth, JAC, Pest and Benz data sets; HH is the original Hasse matrix.
Threshold values (t*), the percentage of incomparabilities (IT%), and the percentage of
objects with at least one incomparability (IO%) are also reported.

H family t* IT% IO% H family t* IT% IO%

CMeth JAC

H1 0.55 13.3 70.0 H1 0.56 0.2 20.9
H2 0.56 20.0 80.0 H2 0.61 13.7 98.8
H3 0.58 22.2 80.0 H3 0.67 14.0 98.8
H4 0.59 31.1 90.0 H4 0.72 30.0 100.0
H5 0.61 37.8 100.0 H5 0.78 30.4 100.0
H6 0.63 40.0 100.0 H6 0.83 41.4 100.0
H7 0.64 44.4 100.0 H7 0.89 41.7 100.0
H8 0.67 51.1 100.0 H8 0.94 63.1 100.0
H9 0.69 60.0 100.0 H9 1.00 63.3 100.0
H10 0.72 62.2 100.0 HH 1.00 63.1 100.0

H11 0.73 68.9 100.0 Pest

H12 0.75 73.3 100.0 H1 0.67 2.9 29.4
H13 0.80 75.6 100.0 H2 0.83 8.1 64.7
H14 0.81 82.2 100.0 H3 1.00 11.0 64.7
H15 0.83 86.7 100.0 HH 1.00 11.0 64.7

H16 0.86 88.9 100.0 Benz

H17 0.89 91.1 100.0 H1 0.67 0.7 31.9
H18 0.92 95.6 100.0 H2 0.83 54.0 100.0
HH 1.00 100.0 100.0 H3 1.00 55.0 100.0

HH 1.00 54.2 100.0
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3. Data sets

In order to test wR-Hasse approach, eight data sets of different type
were used (Table 3): four of chemical and environmental interest
(PFA, Benz, Anil, Pest), two regarding scientific research evaluation
(BI and JAC), and two about comparison of classification methods and
cities (CMeth and Cit, respectively). Data sets are entirely provided as
Supplementary Material of this work.
Fig. 4.Decrease of the incomparabilities when the threshold (t*) decreases: (a) percentage of to
(IO%). Data sets with more than 4 values of t* are depicted on the left (a1,b1) while the others
4. Results and discussion

4.1. Incomparability analysis

For each data set, we obtained the family of T weighted regularized
Hasse matrices, as explained above. In addition, also the original Hasse
matrix (HH) was considered. For each of these matrices, we calculated
(a) the percentage of incomparabilities (IT%.), i.e., the ratio of the num-
ber of incomparabilities over the theoretical maximum (n ⋅ (n − 1)/2)
and (b) the percentage of objects having at least one incomparabil-
ity (IO%). Note that, when the greatest t* value is equal to 1,
IT % (HH) ≤ IT % (HR(1)). In Table 4, the obtained HR families for
CMeth, JAC, Pest, and Benz are shown. Fig. 3 depicts the graphical
trends of IT% (Fig. 4a) and IO% (Fig. 4b) for all data sets when t* is
varied.

From Fig. 4, the effect of reduction of incomparabilities when de-
creasing t* values is visible, with different trends for each data set. The
percentage of incomparabilities (IT%) decreases monotonically, often
sharply, while, as expected, IO% decreases in a less pronounced way.
In this last case, for some data sets, percentages of objects having at
least one incomparability with one or more objects still remain high
for low t* values.

The data set CMeth,whichhas the biggest variation of IO%within the
family, was used as example to graphically show the effect of the
threshold on wR-Hasse diagrams and number of incomparabilities
(Fig. 5). In this case, the original Hasse diagram (not reported) would
lead to all objects being incomparable. This is one of those cases
where the large number of criteria (32) reflects in a high degree of in-
comparability. One can see how data structure progressively re-
arranges, with some objects that always occupy similar positions in
the orderings (e.g., 10, 7). Note, for example, how objects 5 and 7 are
incomparable for t* ≥ 0.73, but when t* decreases, the ordering is set
(5→ 7) and remains stable.
tal incomparabilities (IT%) and (b) percentage of objects with at least one incomparability
on the right (a2,b2).

Image of Fig. 4


Fig. 5. Different wR-Hasse diagrams for CMeth data set, obtained by six threshold (t*) values. Original Hasse diagram (not reported) has 100% of incomparable objects.
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4.2. Statistics and multivariate analysis

Once the set of T thresholds and the correspondingHR family are ob-
tained, one has the opportunity to gather some statistical insights about
objects ranks across the range of t* values. In this work, in particular, for
each data set, we calculated the ranks from Copeland-like scores of
(a) all the matrices of the HR family, (b) the original Hasse (HH), and
(c) the weighted count matrix TW (Cop). For the sake of comparison,
also wPWR ranks were taken into account since they derive from an ei-
genvector–eigenvalue decomposition of TW [5]. In this way, for each
data set, each of the n objects was described by T + 3 ranks obtained
by the approaches listed above, where T is the number of theHR family.
We firstly calculated the Kendall concordance (W) [25] for all data
sets, which is the appropriate univariate measure for concordance be-
tween rankings. The largest W, the greater the concordance. One can
note that while the ranks of Pest, Benz, and Cities data sets are almost
invariant to the approach used, those of Anil are strongly dependent
on the ranking approach (W = 0.715). The other data sets show
intermediate behaviour (Table 5).

A multivariate exploration of ranks was also performed using a
Principal Component Analysis (PCA). In all cases analysed, the first
Principal Component (PC1) explains the average ranking of each ob-
ject obtained by all the approaches, while the second (PC2) high-
lights objects whose rankings vary among the approaches. The

Image of Fig. 5


Table 5
Kendall W concordance, percentage of explained variance of PC1, PC2, and complementa-
ry explained variance of PC1 (100-PC1).

Data set W
Explained variance %

PC1 PC2 100 – PC1

Anil 0.715 80.19 12.40 19.81
Pest 0.994 99.87 0.10 0.13
JAC 0.961 96.16 3.31 3.84
BI 0.938 95.57 2.72 4.43
CMeth 0.821 93.48 3.25 6.52
PFA 0.861 93.36 2.69 6.64
Benz 0.989 98.92 0.99 1.08
Cities 0.981 98.73 1.06 1.27
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remaining PCs (only explaining a small residual variance) give fur-
ther information about pairwise comparison between objects. It
can be observed that there is a correlation between W and the
variance explained by PC1, since they encode the same type of
information (Table 5).

In the next paragraphs, three examples with high, intermediate, and
low W values are used to further discuss wR-Hasse technique. In
particular, we chose Pest (W = 0.994), PFA (W = 0.861) and Anil
Fig. 6. PCA performed on the rankings of the Copeland-like scores on theHR family (H1-HT), th
two PCs; (b) score plots of thefirst two PCs. Data sets: Pest (a1,b1), PFA (a2, b2), and Anil (a3, b3
(W = 0.715), which are all application of MCDM techniques to
environmental risk assessment of chemicals. For each data set, loadings
and scores on the first two PCs are depicted in Fig. 6 and results are
discussed in depth separately for each of them.

4.2.1. Pest data set
Pest data set comprises 17 pesticides described by 6 levels of algal

toxicity. This is an example of the advantages offered by MCDM tech-
niques, which allow to account for the whole toxicity profile of
chemicals without relying on a single value. The considered statistics
(paragraph 2.3) are reported in Table 6. Ranks obtained with wR-
Hasse and total ordering methods (i.e., Cop, PWR) are very similar.
This is probably because all criteria have the same meaning and the
compounds have coherent trends in their toxicity. This reflects in a
low explained variance by PC2 (0.1%), while PC1 explains almost the
total variance (99.9%) (Fig. 6a1, b1). PC1 highlights the global ranking:
objects with large PC1 scores (10, 7, 17, 9) have the highest average
ranks, while those with the smallest PC1 scores (e.g., 12, 2, 8, 4) have
the lowest average ranks. As it can be easily noted, all the objects
having zero standard deviation (2 – 8, 10, 12, 16) are perfectly
aligned along PC1 with null PC2 scores. These objects are always
ranked at the same position by all methods; thus, they can be
e original Hasse (HH), the TWmatrix (Cop) and by PWR ranks: (a) loading plots of the first
). Objects are coloured according to the average ranking: the darker, the lower the position.

Image of Fig. 6


Table 7
Sets of weights (w1–w25) generated for Anil criteria (C1–C4).

ID
Weighting scheme

C1 C2 C3 C4

w1 0.25 0.25 0.25 0.25
w2 0.12 0.16 0.24 0.48
w3 0.12 0.16 0.48 0.24
w4 0.12 0.24 0.16 0.48
w5 0.12 0.24 0.48 0.16
w6 0.12 0.48 0.24 0.16
w7 0.12 0.48 0.16 0.24
w8 0.16 0.12 0.24 0.48
w9 0.16 0.12 0.48 0.24
w10 0.16 0.24 0.12 0.48
w11 0.16 0.24 0.48 0.12
w12 0.16 0.48 0.24 0.12
w13 0.16 0.48 0.12 0.24
w14 0.24 0.16 0.12 0.48
w15 0.24 0.16 0.48 0.12
w16 0.24 0.12 0.16 0.48
w17 0.24 0.12 0.48 0.16
w18 0.24 0.48 0.12 0.16
w19 0.24 0.48 0.16 0.12
w20 0.48 0.16 0.24 0.12
w21 0.48 0.16 0.12 0.24
w22 0.48 0.24 0.16 0.12
w23 0.48 0.24 0.12 0.16
w24 0.48 0.12 0.24 0.16
w25 0.48 0.12 0.16 0.24

Table 6
Ranks and summary statistics for the compounds of Pest data set. Ranks correspond to the
Copeland-like scores of theHRmatrices, the original Hasse (HH), the TWmatrix (Cop), and
by PWR ranks.

Object H1 H2 H3 HH Cop PWR Mean Std.dev. CV% min max

1 12 12 11.5 11.5 12 12 11.8 0.29 2.4 11.5 12
2 2 2 2 2 2 2 2.0 0.00 0.0 2 2
3 10 10 10 10 10 10 10.0 0.00 0.0 10 10
4 4 4 4 4 4 4 4.0 0.00 0.0 4 4
5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 0.00 0.0 5.5 5.5
6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 0.00 0.0 5.5 5.5
7 16 16 16 16 16 16 16.0 0.00 0.0 16 16
8 3 3 3 3 3 3 3.0 0.00 0.0 3 3
9 14 14.5 14 14 14 14 14.2 0.29 2.0 14 14.5
10 17 17 17 17 17 17 17.0 0.00 0.0 17 17
11 8 8 8.5 8.5 8.5 8.5 8.2 0.29 3.5 8 8.5
12 1 1 1 1 1 1 1.0 0.00 0.0 1 1
13 8 8 8.5 8.5 8.5 8.5 8.2 0.29 3.5 8 8.5
14 8 8 7 7 7 7 7.7 0.58 7.5 7 8
15 11 11 11.5 11.5 11 11 11.2 0.29 2.6 11 11.5
16 13 13 13 13 13 13 13.0 0.00 0.0 13 13
17 15 14.5 15 15 15 15 14.8 0.29 1.9 14.5 15
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considered as reference objects, whose ranks do not depend on the
approach used. The opposite occurs for object 14, having high PC2
scores: it corresponds to high ranks obtained by H1 and H2 and
small by the remaining methods (Fig. 6a1). The opposite happens for
objects 11 and 13, which are ranked to lower positions by H1–H2 and
to higher by the remaining methods.

4.2.2. PFA data set
A second example of how the analysis of theHR family can be used to

derive insights about data ordering and structure is given through PFA
data set. PFA comprises 7 Perfluorinated acids, a class of emerging
contaminants, described by 10 parameters of bioaccumulation in
environment. In analogy with Pest, PC1 corresponds to the average
rank of objects when all the ranking methods are considered: com-
pound 1 is ranked on average at top positions, while compounds 5, 4,
and 7 tend to be ranked at low positions (Fig. 6b2). In this case, the
value ofW is smaller than that of Pest and PC2 explains a larger variance
(2.7%). By observing the loading plot (Fig. 6a2), one can notice that all
the HR matrices obtained with thresholds lower than 0.95 (H3 to H8)
have positive loadings on PC2, while the remaining methods have neg-
ative loadings. This means that PC2, when comparing the members of
the HR family, explains the difference between low and high threshold
values, corresponding to negative and positive PC2 scores, respectively.
Number 5 is on average ranked on the bottom (low PC1 scores) by all
the methods (low PC2 scores). In addition, compound n.5 has near-
null PC2 values, meaning that its rank is independent from the method
and should be regarded as reliable.

4.2.3. Anil data set
The Anil data set comprises 4 indicators of environmental fate and

hazard with different meaning, namely, octanol-water partitioning,
vapour pressure, biodegradability, and ecotoxicity (predicted no effect
concentration). This is probably why, unlike Pest and PFA cases
(which comprise very similar criteria), the variability between the ob-
tained ranks is high. This reflects in a variance explained by PC2
(10.7%) larger than the previous cases. In particular, PC2 mainly ex-
plains the difference between H4 (i.e., t* = 1) and the remaining
methods (Fig. 6a3, b3). Interestingly, the ranks obtained by H4 classify
objects 1, 4, and 10 at the top position, and objects 5, 21, 22, and
36 at the last position, while all the remaining compounds are
assigned the (same) middle position. This is clearly visible by ob-
serving the loading plot (Fig. 6b3). Objects with null or near-null
PC1 and PC2 scores (e.g., 30, 25, 39) are ranked at similar positions
by all methods and, thus, their rank does not depend from the
threshold value chosen.
4.3. Weighting criteria

In all the previous cases, results were discussed assuming equal
weights for all criteria (i.e., w = 1/p). In order to evaluate the effect
of weighting scheme variation on the outcomes, we chose Anil data
set, composed by four criteria of different meaning. The set of
weights was arbitrarily defined by assigning all the possible combi-
nation of ranks to the criteria and then calculating the corresponding
weights according to Eq. (5) (α=1). For the sake of comparison, also
the case with equal weights (w = 1/p = 0.25) was used (Table 7).
For simplicity, we chose t* = 0.75, a reasonable threshold when
4 criteria are present. For each of the obtained HR matrices,
Copeland-like scores and corresponding rankings were then calcu-
lated, as already explained.

Similarly to the previous examples, a PCA allowed the multivariate
analysis of the ranks obtained by each weighting scheme (Fig. 7). Even
in this case, PC1 is quantitatively related to themean rank of each object
across the whole set of weighting schemes (Fig. 7a): objects with high
PC1 scores are, on average, ranked in last positions, while those with
small PC1 scores are ranked at top positions. This allows to immediately
identify a global ordering between objects. PC2 and PC3 (explaining the
12.3% and the 10.0% of the variance, respectively) are related to the
ranking variation when different weighting schemes are adopted. In
other words, objects with near-null PC2 and PC3 scores will always be
ranked at similar positions, independent of the chosen weighting
scheme (e.g., 5, 31, 40, 44, 45), while those far from zero values in at
least one of the components 2 and 3 (e.g., 14, 19, 20, 21, 24, 36, 37,
41) will be much influenced by criteria weights.

When observing the loading plots (Fig. 7b), one can notice a cluster-
ing according towhich criterionwas assigned the largestweight. For ex-
ample, when the third criterion (C3) is weighted 0.48, independent of
the other weights, the obtained ranks are all the same. In other cases,
e.g., when C2 is given the largest weight, two clusters can be observed
on both the components, according to the high ranks (3 or 4) given to
the remaining criteria.

The previous observations confirm: (1) the effect of the weights on
the obtained outcome and (2) how, for some ranges of weights, the
same rankings are obtained. This approach allows to have a global
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Fig. 7. PCA performed on the Copeland-like ranks obtained by the 25 weighting schemes of Table 7. (a) Score plots: objects are coloured according to their mean ranking (the darker, the
lower). (b) Loading plots: symbols represent the criterion with the highest assigned weight (0.48) and labels represent the IDs of Table 7.
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overview of data structure and criterion/weight influence on the out-
come and to identify those object having a “robust” ranking, indepen-
dent of the adopted set of weights. Moreover, the selection of one
weighting scheme for each cluster of weights can sensibly reduce the al-
ternatives to analyze and the debate could only regard those weighting
schemes which greatly influence the object ranks.

5. Conclusions

This paper presented a new technique (wR-Hasse) to weight Hasse
diagrams and to reduce the number of incomparabilities, on the basis
of the following: (a) a weighting procedure applied to original data
and (b) on a threshold to define the incomparability between objects
(t*). To test our new approach,we used 8 data sets taken from literature.
This work showed how, by progressively decreasing t*, the number of
incomparabilities of Hasse diagrams tends to decrease. In some cases,
it varied from the 100% of total incomparabilities of original HD, to
only the 0–10% for the smallest t* values. In addition, in this work we
showed how, when an appropriate set of t* values is chosen, a family
of weighted regularized Hasse matrices can be obtained, from which
one can gather statistics insights about data structure and object order-
ing. Finally, the effects of weighting schemes on the outcome were
analysed and discusses. The proposed weighting approach resulted to
effectively re-shape the final Hasse diagrams and to be robust to small
weights variations.

Appendix A. Supplementary data

Data sets along with calculated TW matrices, HR families, rankings,
and PCA are provided as Supplementary Material. Supplementary data
associated with this article can be found, in the online version, at
http://dx.doi.org/10.1016/j.chemolab.2015.08.006.
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