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Introduction

The development of cutting-edge opto- and micro-electronic devices requires increasingly high

standards on material quality and novel fabrication techniques. In this context, epitaxial het-

erostructures represent noteworthy systems, as they allow for a high degree of customization

exploiting the properties of different materials and their fine tuning. Therefore, they offer vi-

able paths for the achievement of important technological improvements.

Since the fabrication of the first microelectronic devices, group-IV semiconductors have

represented the most suitable materials to get full control of electric currents thanks to the pe-

culiar electronic structure, easily tunable by doping. The first transistor (Shockley, Bardeen,

and Brattain - Bell Laboratories - 1947 [1]) was made of Germanium, but Silicon immediately

became the backbone of electronics. Indeed, Si devices account for more than 90% of all micro-

electronics despite other semiconductors have higher carrier mobility, ensuring better charge

transport, or larger band gap, yielding to semiconductor properties in a larger range of working

temperatures. In addition to its abundance, one important property favored the choice of Si,

i.e. the possibility to form good interfaces with its native oxide, SiO2, that allows for selective

deposition and etching processes [2].

Ge/Si heterostructures revealed to be very effective in the integration of many applications

in the Si-based technology, such as high-performance transistors [3], memories [4], thermo-

electrics [5], solar cells [6, 7] and photodetectors [8]. Indeed, Ge has superior optoelectronic

properties and it allows for a high hole mobility [9]. This holds true also for Si1−cGec al-

loys, even mentioned in the original patent of the bipolar transistor [2]. The use of Ge/Si

heterostructures is somehow consolidated in technology. However, some important integra-

tion issues concerning the control of the growth morphology, the lattice- and thermal-misfit

strain, and the related extended defects are still to be fully solved in order to extend their use

to more demanding devices [10, 11]. Moreover, the improvement of performances related to

the miniaturization of electronic components, depicted by the Moore’s law, is approaching the

limit in size of the current technology (whose node is expected to be 10 nm in 2016, according to

the International Technology Roadmap for Semiconductors [12]). Possible further lowering of

sizes is then tentatively assigned to new pioneering devices [13–15], far from the consolidated

technology used nowadays. In light of this, “More than Moore” approaches based on func-

tionalization, diversification and optimization of the physical phenomena in standard systems,

without strictly providing a lowering of dimensions, seems to be an alternative and feasible

solution for the future developments of electronics.

It is worth mentioning here that the integration of ”More than Moore” modules in Si tech-
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2 Introduction

nology, based in general on high-quality materials and novel device concepts, is a complex task.

Indeed, it requires knowledge and expertise from many different research fields, with contribu-

tions ranging from theoretical studies up to the most advanced fabrication and characterization

techniques. According to this, it appears clear that material science research plays a key role in

understanding the present technology to optimize and design the future devices [16]. In par-

ticular, theoretical models and simulations with predictive character are highly needed to fully

understand the growth at the micro- and nano-scale, and tailor semiconductor heterostructures

for specific applications.

Recently, vertical heterostructures (VHEs) have been introduced. The adjective “vertical” is

here meant to indicate the large height-to-base aspect ratios (AR) of the structures (AR≥1), at

variance with planar systems and typical three-dimensional structures obtained in the standard

heteroepitaxy (e.g. 3D-islands [17]). These VHEs represent a convenient way to solve most of

the issues usually affecting the crystalline quality in Ge on Si standard heteroepitaxy. Indeed,

nanometer-wide VHEs, e.g. the so-called nanowires or large aspect-ratio Ge dots, have been

proved to be dislocation-free under certain lateral sizes, thanks to the significant relaxation

induced by the free surfaces [18]. At the micron scale, instead, VHEs allow for the full relaxation

of the thermal stresses [19, 20] and for the removal of dislocation threading arms at crystal tops

by controlling the faceted morphology with the growth temperature [21, 22]. In this thesis, a

detailed investigation of the main features of these structures is carried out with the aid of a

continuum modeling. The general aim is to provide a deep understanding of their properties

and to face the investigation of unexplored configurations, in order to suggest new solutions

for the achievement of heterostructures with unprecedented material quality.

The choice of a continuum modeling is driven by the strong need to describe systems in a

wide range of sizes, roughly from∼10 nm to 10 μm. These sizes are typical of the mesoscale sci-

ence, where phenomena occurring at the atomic-scale influence global properties of the system

[23, 24]. Coarse-grained models are adopted here to describe defects of the crystal structure

or the diffusion of adatoms at the surface of solids. In particular, the plasticity onset in VHEs

is deeply investigated with the aid of the linear elasticity theory [25] taking into account the

explicit elastic fields yielded by the presence of extended defects, i.e. dislocations [26, 27].

Finite Element Method (FEM) simulations are performed to describe the exact strain field in

the presence of free surfaces in VHEs, and a quasi-3D model is introduced in order to opti-

mize the required calculations [28]. Moreover, we focus our attention on the morphological

evolution of VHEs during high-temperature treatments by means of a Phase Field (PF) model

[29, 30], whose equations are solved with the FEM toolbox AMDiS [31] (which allows three-

dimensional PF simulations to be efficiently managed). Some dedicated developments of the

method [32], which involved the collaboration with Prof. A. Voigt and his research group at

the Technische Universität Dresden, are illustrated. The morphological evolution of micrometer-

wide VHEs is discussed using the PF approach. In particular, the effect of annealing processes

is investigated by means of PF simulations, providing an effective description of the diffusion

of thermally-generated adatoms on surfaces [33]. The modeling required to account for a fine

description of the growth kinetics is also introduced.
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As it will be clear by reading the present manuscript, being aware of the physical properties

through an accurate modeling allows one to explain and assess experimental evidences [34–38],

and also to design new device concepts and processing. Indeed, the predictions provided with

the modeling presented in this work have been eventually confirmed by targeted experiments

[34, 39–41]. These comparisons provide striking evidences of the model capabilities, also offer-

ing interesting information from the technological point of view.

This thesis is organized as follows. In the first two chapters, we introduce the theoretical

framework and the main system of interest of the work. In particular, in Ch. 1 we introduce

the basis of elasticity/plasticity description using the linear elasticity theory, the morphological

evolution, and the numerical approach used in this work. In Ch. 2 we recall the main aspects of

Ge/Si heteroepitaxy and vertical heterostructures are introduced, pointing out their peculiar

properties. Then, the models and their applications to real systems are discussed. For the

sake of readability, the description of the original theoretical methods and the applications are

separated in different chapters. In Ch. 3 we describe the modeling of elasticity and plasticity

carried out in VHEs, discussing the formulation of a quasi-3D model and the theoretical results.

The application of such a modeling to real systems is shown and discussed in Ch. 4, where even

further developments of the method are introduced according to the specific applications. In

Ch. 5 we introduce the modeling of the morphological evolution of crystals, describing the

details of the PF method developed and implemented to investigate the evolution of VHEs.

This modeling allowed us to predict the effect of the annealing process on isolated and closely-

spaced VHEs as discussed in Ch. 6, where some results involving the growth kinetics are also

reported. Finally, the outcomes resulting from this work are summarized in the Conclusions.
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1
Theoretical framework

In the first chapter, we provide the theoretical basis for the investigations reported in this thesis.

The main aspects of the Linear Elasticity Theory are introduced along with its application to the

modeling of plastic relaxation. Then, the main mechanisms contributing to the morphological

evolution of heteroepitaxial systems are discussed, focusing on surface diffusion and crystal

growth. The Finite Element Method (FEM), adopted to numerically solve the partial differential

equations present in this work, is also briefly introduced. This chapter is not meant to be

exhaustive. Indeed, only the main concepts and tools explicitly used in the following chapters

are reported. Further details about the topics covered here are left to specific textbooks and

references within the text.

1.1 Basis of the linear elasticity theory
The elasticity theory deals with the study of elastic media, whose shape can be deformed by a

generic load [25]. It describes elastic deformations, but it is also very useful to model inelastic

behaviors such as plasticity.

1.1.1 Displacement and strain

Let us consider a continuous medium in an undeformed state (reference configuration), where

x denotes the coordinates of a generic point. After a deformation, the point previously in x is

in another position X. The displacement of points within the solid is

u(x) = X− x. (1.1)

Point coordinates in the deformed solid are then given by X = x + u(x), so that an elastic

deformation is fully determined once u(x) is known for each position x. For infinitesimal dis-

placements, deformations can be described by the Linear Elasticity Theory, where superposition

principle holds. Under such an approximation, transformation of the solid coordinates are

described by means of the Jacobian matrix J of u, where Jij = ui,j with ui,j = ∂ui/∂xj . In par-

ticular, a convenient choice for this matrix is to make explicit its symmetric and antisymmetric

part as

Jij =
1

2
(ui,j + uj,i) +

1

2
(ui,j − uj,i) ≡ εij + ωij , (1.2)

where 2εij = (ui,j + uj,i) (symmetric as εij = εji) and 2ωij = (ui,j − uj,i) (antisymmetric

as ωij = −ωji). Notice that a nonzero displacement field does not necessarily deform the

5



6 Theoretical framework

solid. Indeed, for u(x) equal to a constant vector, a rigid-body translation is obtained and

εij = ωij = 0. Moreover, for a rigid-body rotation the relative position in the solid are conserved

with ωij 6= 0 and εij = 0. Indeed, deformations in the system are described by ε, namely the

strain tensor, while ω is defined as rotation tensor describing the eponymous transformation.

Notice that the definition of ω corresponds to the curl of u(x).

1.1.2 Stress and Hooke’s law

Once displacement and/or the strain field are defined, also the forces acting on the solid due

to the deformation can be considered. They are described by means of the so-called stress
tensor σ, defined as the force per unit area along the j-th direction, acting on the i-th face of

an infinitesimal cubic volume in the solid. This quantity can be related to the strain tensor by

means of a constant tensorC. Since both the strain and the stress are second-order tensor, C is

a fourth-order tensor1 (Cijkl, with 34 components):

σij = Cijklεkl. (1.3)

C is called Stiffness tensor, while Eq. (1.3) is often referred to as the Hooke’s law. By exploiting

the symmetries of stress and strain tensors it can be shown that the independent components

in Cijkl are only 21 [25]. Moreover, the convenient Voigt notation may be adopted

xx→ 1, yy → 2, zz → 3, xy → 4, xz → 5, yz → 6 =⇒ σi = Cijεj i, j = 1, .., 6

allowing to depict C as a symmetric 6×6 matrix. By considering the symmetries of a specific

crystal lattice, other relations can be exploited producing a further lowering of the number of

independent constants in the stiffness tensor. The materials investigated in this thesis have a

cubic lattice. In this case, the independent constants are only 3, namely C11, C12 and C44, in the

following form:

C =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (1.4)

The isotropic condition can also be considered, leading to the additional equation C11 = C12 −
2C44, which lowers the number of the independent constant in C to 2. The components of the

elastic constant tensor can then be expressed by C12 and C44, also called Lamé constants λ and

µ, as

Cijkl = λδijδkl + µ (δilδjk + δikδjl) . (1.5)

Alternatively, quantities corresponding to some measurable values can be considered as the

Young modulus E, which quantifies the ratio of the stress and the strain along the same direc-

tion, and the Poisson ratio ν, which quantifies the effect of a uniaxial deformation on perpen-

1The summation over repeated indices is adopted hereafter.



1.1 Basis of the linear elasticity theory 7

dicular directions [25]. They are related to µ and λ by the following equations:

E = µ
3λ + 2µ

λ + µ
ν =

λ

2 (µ + λ)
. (1.6)

The energy stored in the system due to the deformations, namely the elastic energy Gε [25], is

Gε =

∫
V

1

2
CijklεklεijdV =

∫
V

1

2
σijεij =

∫
V
ρεdV, (1.7)

where V is the solid volume and ρε is the elastic energy density. For an isotropic media it is

given by

ρε = µ
∑
i

ε2
ii + 2µ

i<j∑
i,j

ε2
ij +

λ

2

(∑
i

εii

)2

. (1.8)

Notice that the elastic energy is related only to the strain tensor, i.e. only to the deformation

of the solid, and not to ω. Indeed, rotations do not contribute to the elastic energy as relative

position in the medium are not changed by such a transformation.

1.1.3 Mechanical equilibrium

At the equilibrium, the net force at each point in the elastic body must be zero. Let us consider

a generic three-dimensional domain Ω as an elastic medium, bounded by a surface Γ. For a

given i-th direction we can observe forces acting per unit volume fi and tractions at the surface

Ti = σijnj . At the equilibrium, ∫
Ω
fidV +

∫
Γ
σijnjdS = 0, (1.9)

and applying the divergence theorem∫
Ω

(
fi +

∂σij
∂xj

)
dV = 0. (1.10)

This equation must be valid for any arbitrary volume at the equilibrium, even in the limit of

a vanishingly small volume, i.e. it must hold point-wise (for each component). Therefore, the

equilibrium condition generally reads

f +∇ · σ = 0. (1.11)

External forces, applied to the surface of the body, can be included as boundary conditions.

At the equilibrium, where an external force P defined on the infinitesimal surface area dS is

present, we must have a force balance described by PidS − σikdSk = 0 where dSk = dSn̂k is

the surface element multiplied by the k-th component of n̂, i.e. the outer-pointing normal. So

that, by explicitly writing the expression for dSk in terms of dS, the condition at the boundary

of the elastic medium is

σ · n̂ = P. (1.12)

In the absence of forces per unit volume, the mechanical equilibrium equation reads

∇ · σ = 0, (1.13)
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and the free surface boundary condition (Pi = 0) is

σ · n̂ = 0. (1.14)

Notice that all the equations where σ appears, also hold when considering ε by exploiting Eq.

(1.3), provided that elastic constants are known. Other boundary conditions will be adopted in

the following, concerning fixed surfaces (Dirichlet boundary condition for the displacement)

ui = 0 ∀i, (1.15)

and gliding boundary condition

ui = 0 ∀i 6= j, (1.16)

with j the index of the direction along which no displacement constraint is imposed, actually

allowing for the gliding of points along the direction parallel to the j-th axis.

As widely used in the calculations of Chs. 3 and 4, we can take into account a reference state

for the deformations by means of the eigenstrain formalism, defined in the Eshelby’s theory of

inclusion [42]. Let us consider a permanent deformation of an elastic medium. A given point

has an eigenstrain ε∗ij if the stress vanishes for εij = ε∗ij . So that the stress tensor can be rewritten

as

σij = Cijkl(εkl − ε∗kl). (1.17)

Moreover, the eigenstress can be defined as

σ∗ij = Cijklε
∗
kl. (1.18)

Solving Eq. (1.13) by imposing an eigenstrain (or eigenstress) consists of determining the equi-

librium stress/strain distribution when an initial deformation is imposed by ε∗ij (or σ∗ij), in

agreement with the selected boundary conditions. In general, an elastic medium is not able to

reach the state of zero stress in every point. So that both the initially deformed regions, and also

nearby domains in the medium with a vanishing eigenstrain, will exhibit further deformations

which lower the elastic energy. This formulation will be used to account for the heteroepitax-

ial elastic field, originating from the misfit between the epilayer and the substrate, and for the

elastic field induced by the presence of dislocations.

1.2 Dislocations by linear elasticity theory
Dislocations are linear, extended defects of the crystals lattice [26, 27]. They can be formally

defined by means of two vectors: the dislocation line ` and the Burgers vector b. The former

is defined as the unit vector parallel to the line that identifies the linear defect. The latter

represents the displacement induced by the dislocation in the crystal lattice, defined as the

difference in the length of a closed circuit along crystal lattices with and without the dislocation.

Such a quantity is illustrated in Figs. 1.1(a) and 1.1(b) (for the simple case of the so-called edge

dislocation, defined in the following) where it corresponds to the difference in the length of the

closed polygonal chains SF and S’F’. Notice that the dislocation, marked by the symbol⊥, must

be inside the selected closed circuit.



1.2 Dislocations by linear elasticity theory 9

Figure 1.1: Illustration of the dislocation properties. (a) Closed circuit along crystal sites in an unde-
formed crystal. (b) Path of panel (a) in a lattice with an edge dislocation. The difference between SF and
S’F’ quantifies the Burgers vector b. (c) Schematic representation of a screw dislocation. (d) Schematic
representation of an edge dislocation.

In a continuous medium, the Burgers vector is given by the line integral (taken in a right-

handed sense relative to `) of the displacements u from the perfect lattice position, around the

dislocation [26], i.e.

b =

∮
∂u

∂l
dl. (1.19)

The main dislocation types are the edge dislocation, where b ⊥ `, and the screw dislocation,

where b ‖ `. These types are illustrated in Figs. 1.1(c) and 1.1(d), respectively. Such characters

are rarely observed in real crystals. Generic, mixed dislocation are usually present. However,

the latter can be described by means of a combination of edges and screw dislocations. Some-

times, dislocations are also referred to by means of the dislocation character which is the angle

between b and ` (90◦ for edges dislocations, 0◦ for screw dislocations, and between 0◦ and 90◦

for a mixed dislocation).

By means of the linear elasticity theory, introduced in Sect. 1.1, it is possible to describe the

elastic field induced by the presence of a dislocation in a bulk material in terms of stress and/or

strain tensor [26, 27]. Let us consider a dislocation line ` parallel to the ẑ axis. In the case of a

screw dislocation, the stress components have the following expressions:

σxz = −σ0b(1− ν)
y

x2 + y2
, σyz = σ0b(1− ν)

x

x2 + y2
, (1.20)

while σxx = σyy = σzz = σxy = 0. σ0 is a constant equal to µ/(2π(1 − ν)). For an edge
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Figure 1.2: Stress components of a screw dislocation (left) and an edge dislocation (right), from Eqs.
(1.20) and (1.21), respectively. Stress values are shown in σ0 units with |b| = 1.

dislocation with b parallel to x̂ axis they result

σxx = −σ0b
y(3x2 + y2)

(x2 + y2)2
, σyy = σ0b

y(x2 − y2)

(x2 + y2)2
,

σxy = σ0b
x(x2 − y2)

(x2 + y2)2
, σzz = ν(σxx + σyy),

(1.21)

and σxz = σyz = 0. Notice that in both Eqs. (1.20) and (1.21) the stress tensor should be

considered symmetric, i.e. σij = σji. The nonzero stress field components generated by Eqs.

(1.20) and (1.21) in the xy-plane, i.e. the plane perpendicular to the dislocation, are shown2 in

Fig. 1.2, where the stress values are plotted in σ0 units, with unitary Burgers vector for both

edge and screw dislocations.

The elastic field of a mixed dislocation, with b = bx î + by ĵ + bzk̂ can be obtained by the su-

perposition of the screw stress/strain components with b = bz (as ` || ẑ) and edges components

with b = bx and b = by. Notice that a change of coordinates y → x and x → −y is required to

account for the elastic field of the edge components related to by. It can be noticed that stresses

cannot be evaluated at the dislocation line as a singularity is present at (x, y) = (0, 0). A cut-off

radius r0 for the distance to the singular point is then introduced to avoid such a contribution,

and it may be considered as the radius of the dislocation core. Indeed, under such a distance

from the dislocation line, the continuum description fails, and elastic fields should not be eval-

uated. The elastic energy associated to dislocations can be computed directly from the integral

of equation (1.8) by considering the deformation field described by Eqs. (1.20) and (1.21) and

the r0 parameter. It is often referred to as dislocation self-energy. Its expression, obtained by

writing the elastic field in polar coordinates and integrating on a plane perpendicular to `,

2The singularity at the dislocation core has been removed exploiting the non-singular formulation reported in
Sect. 1.2.1
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with r0 as lower integration limit for r, reads

Gε =
µb2(1− ν cos2 α)

4π(1− ν)
ln

(
R

r0

)
, (1.22)

where α is the dislocation character, b = |b| and R the distance from (0, 0).

Equations reported so far are valid when a straight dislocation in a bulk system is consid-

ered. It should be noticed that energy computed as in Eq. (1.22) is infinite when evaluated for

R → ∞. This leads to the conclusion that a single straight dislocation cannot be present in a

bulk system. Indeed, dislocation loops are usually present, which have a finite energy also in

bulk [26]. Actually, the energy of a dislocation when (at least) one free surface is present results

always finite, recalling the physical meaning of a straight dislocation. When considering a sys-

tem with a single free surface, the equilibrium elastic field changes and analytic solutions still

exist as discussed in Refs. [43–45]. They are obtained by the superposition of the elastic fields

originating from a bulk dislocation, an image dislocation (i.e. mirrored with respect to the free

surface with opposite Burgers vector) and a further correction [43] in order to recover the free

surface boundary condition described by Eq. (1.14). It is worth mentioning that for screw dis-

locations, with a line parallel to the surface (i.e. perpendicular to n̂ with a constant distance

from the surface), Eq. (1.14) is satisfied just by considering the image dislocation (without any

correction), which is not enough if any edge component is present [26]. When more than one

free surface is present, analytic solutions are not available and the solution of both Eqs. (1.13)

and (1.14) should be computed numerically [28, 46, 47].

1.2.1 Non-singular continuum theory of dislocations

As discussed above, the singularity at the dislocation core is usually healed by evaluating all

the elastic field components and the energy outside a cutoff radius r0. An exact evaluation

of the elastic field within the core radius is not possible for continuum approaches as a few

atoms are present and a finer description should be adopted. However, a formulation has been

developed by Wei Cai et al [48] in order to remove the singularity at the dislocation core. This

approach provides finite stress values everywhere, recovering the standard bulk elastic field

far from the dislocation core. An additional parameter ζ is introduced (∼ 0.1-0.15 nm in our

systems). It quantifies the region where the regularization is active and can be tuned in order to

adapt energies to match independent atomistic calculations. Bulk expressions (1.20) and (1.21)

are recovered for ζ = 0 and they always coincide to the regularized one for r � ζ. In this

work, we always exploited such a non-singular formulation for the elastic field, particularly

convenient when integrals over the whole volume are computed, such as for the evaluation of

the total elastic energy.

In Ref. [48] the stress field components for dislocation segments are derived. Here we report

the non-singular stress field in the 2D xy-plane for an infinite straight dislocation obtained by
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computing the limit for dislocation-segment endpoints z1,2 at ±∞:

σxx =
σ0

[
byx

(
ζ2 + x2 − y2

)
− bxy

(
3ζ2 + 3x2 + y2

)]
(ζ2 + x2 + y2)2 ,

σyy =
σ0

[
byx

(
3ζ2 + x2 + 3y2

)
− bxy

(
ζ2 − x2 + y2

)]
(ζ2 + x2 + y2)2 ,

σzz =
2νσ0

(
2ζ2 + x2 + y2

)
(byx− bxy)

(ζ2 + x2 + y2)2 , (1.23)

σxy =
σ0

[
bxx

(
ζ2 + x2 − y2

)
− byy

(
ζ2 − x2 + y2

)]
(ζ2 + x2 + y2)2 ,

σxz =
bz(ν − 1)σ0y

(
2ζ2 + x2 + y2

)
(ζ2 + x2 + y2)2 , σyz = −

bz(ν − 1)σ0x
(
2ζ2 + x2 + y2

)
(ζ2 + x2 + y2)2 .

The expressions reported here correspond to the stress field components of dislocations used

for 2D and quasi-3D (see Sect. 3.1) simulations. When full 3D systems are considered (see for

instance the results of Fig. 3.4), the explicit regularized stresses for dislocation segments from

Ref. [48] are used.

1.2.2 Fracture mechanics

The accumulation of a tensile strain in crystalline materials can lead to the mechanical failure

with the formation of cracks, i.e. fractures that partially relieve the elastic load. They can be

considered as planar defects and their occurrence in materials is described by means of the so-

called Griffith theory [26, 49]. The basics of fracture mechanics deeply exploit the concepts of

the elasticity theory introduced in Sect. 1.1 in terms of the stress field in an elastic medium and

of the relaxation mechanism when extending free surfaces within the material.

Let us consider a generic system under a tensile stress σp in x̂ direction. Cracks may form

along a perpendicular-to-x̂ direction ŷ to relieve the stress by introducing free surfaces with

normal along x̂ (mode I crack). The energy of creating the free surfaces in the xy-plane, i.e. per

unit depth, can be expressed as 2γl, where l is the length of the crack (along ŷ direction). The

factor 2 is needed to account for the two free surfaces formed by the crack insertion and γ is the

surface energy density corresponding to the exposed free surfaces. The elastic energy release

induced by the elongation of the crack can be quantified as G = πlσ2
p/E [26]. The quantity

Gdl is the total change in the elastic energy, released by an increase in the length of dl. The

amount of surface energy (per unit depth) related to this elongation is 2γdl and a crack would

propagate spontaneously if Gdl ≥ 2γdl with the critical condition given by the equality of the

right- and left-hand side. By considering the explicit expression of G, such a critical condition

is
πlσ2

p

E
= 2γ, (1.24)

where the critical stress for the propagation of a crack with length l is

σ̄p =

(
2γE

πl

)1/2

. (1.25)
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1.3 Surface energy
When considering a finite solid, an excess of energy is expected due to the presence of surfaces

with respect to the bulk material. It derives from the presence of broken chemical bonds at the

surfaces, and it can be quantified as the work required to create two infinitely extended surfaces

by separating the bulk material. This energy cost per unit area is defined as the surface energy

density γ [50, 51]. In solids, this quantity may also depend on the local strain values [52, 53].

The total surface free energy Gγ is

Gγ =

∫
Γ
γdS, (1.26)

where Γ is the surface of the solid and dS the infinitesimal surface element. The γ function may

be affected by several factors such as the proximity of the surface to other interfaces/materials,

polarity effects (i.e. with III-V compounds) and the specific orientation of the lattice [50]. The

latter directly reflects crystal properties such as symmetries within the lattice or surface recon-

struction by atom rearrangement. When such a dependance on the local surface orientation n̂

is present, the surface energy density γ(n̂) is anisotropic. Its determination is far from trivial

and both theoretical, ab-initio calculation [54, 55] and experimental methods [56] have been

proposed to provide reliable values.

In the absence of strain, the γ(n̂) function determines the equilibrium configuration, i.e. the

equilibrium crystal shape (ECS). This shape can be derived by the so-called Wulff construction

[51, 57, 58]. Let us consider a polar representation of the surface energy density, i.e γ(n̂)n̂. The

Wulff construction consists in taking the convex hull of all the planes tangential to γ(n̂)n̂. Such

a construction is equivalent to consider the polar representation of the so-called Cahn-Hoffman

vector ξ [59–61] defined by

ξ = ∇ [rγ(θ, φ)] = γêr +
∂γ

∂θ
êθ +

1

sin θ

∂γ

∂φ
êφ, (1.27)

with êr = r/|r| and r = rn̂ a generic vector. êθ and êφ are unit vectors in the direction along

which θ and φ increase, respectively. Notice that ξ is not affected by the magnitude of r but

depends only on its orientation êr = n̂. For isotropic surface energy, ξ = γn̂ and the ECS

corresponds to a sphere (or a circle in 2D). Two different conditions can be identified for one

anisotropic γ(n̂): weak anisotropy when the ECS contains all the possible orientations n̂, and

strong anisotropy when sharp corners appear and some orientations are missing in the ECS. A

general criterion to distinguish among these conditions is based on the convexity of ξ [62].

When the product of the two principal curvatures K1K2 of the 1/γ-plot (i.e. the gaussian cur-

vature of 1/γ) is always positive, the anisotropy is weak. If it is negative for certain orientations

the anisotropy is strong. The critical condition between these two regimes is defined by

K1K2 = 0. (1.28)

K1K2 can be determined as [62]

K1K2 =

(
γ

ξ

)4
[
v2 + vu+ n2

z

(
∂2γ

∂n2
x

∂2γ

∂n2
y

−
(

∂2γ

∂nx∂ny

)2
)]

, (1.29)
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Figure 1.3: From the surface energy density to the ECS. Columns show γ(n̂)n̂-plot, the construction
obtained by tangent-to-γ(n̂) planes, the polar representation of ξ(n̂) and the resulting ECS, respectively.
Rows show the outcomes of different anisotropy strength.

with

v = γ − nx
∂γ

∂nx
− ny

∂γ

∂ny
,

u =
∂2γ

∂n2
x

(
1− n2

x

)
+
∂2γ

∂n2
y

(
1− n2

y

)
− 2nxny

∂2γ

∂nx∂ny
,

ξ =

√(
vnx +

∂γ

∂nx

)2

+

(
vny +

∂γ

∂ny

)2

+ (vnz)
2,

and γ ≡ γ(nx, ny). The third component nz is implicitly defined from the normalization condi-

tion nz =
√

1− n2
x − n2

y.

In order to inspect the ECS derivation by the aforementioned constructions and the anisotropy

regimes, let us consider a simple 2D γ function, corresponding to

γ(θ) = 1− α cos(Nθ). (1.30)

In particular, let us focus on N = 4. In Fig. 1.3, three different γ(n̂) polar plots are shown,

obtained with different values for α, i.e. the anisotropy strength. Then, the Wulff construction

obtained by tangent-to-γ(n̂)n̂ planes and the polar representation of ξ(n̂) are illustrated. The

latter has been computed from Eq. (1.27) by neglecting dependence on φ with r = n̂. The ECS

associated to each γ(n̂) in Fig. 1.3 actually corresponds to the inner convex hull of tangential

planes. According to the α values, different qualitative results are obtained. For α = 0.05 the ξ

vector is always convex and weak anisotropy is present. For α = 0.2 and α = 0.4, the anisotropy

is strong and unphysical ears appears for the ξ plot. In this case the ECS is the shape bounded by
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convex value of ξ excluding such ears, whose orientations are actually missing in the expected

equilibrium configuration. The critical anisotropy strength ᾱ, representing the α value at which

sharp corners appear, can be obtained by solving Eq. (1.28). In a two-dimensional system it is

obtained by solving

γ(θ) +
∂2γ(θ)

∂θ2
= γ̃(θ) = 0, (1.31)

where γ̃(θ) is called surface stiffness. For the surface energy density used in Eq. (1.30) the

critical value is ᾱ = 1/(N2 − 1).

1.4 Thermodynamic material transport at the surface

Let us consider a crystal with a shape far from the ECS, with no material deposition. In close-

to-equilibrium conditions, e.g. at high temperatures, material transport is mainly driven by

the tendency to recover the equilibrium condition. This means that the evolution leads to an

increase of the entropy S or, similarly, to the minimization of the free energy3 G = U − TS +

pV =
∑

i µiNi, where U is the internal energy, V the total volume, T the temperature, Ni

the number of the i-type particles with a chemical potential defined by µi = ∂G/∂Ni|p,T,Nj 6=i

[63]. For N particles of the same type, at constant T and p the dynamics is then driven by the

chemical potential only.

Let us consider the evolution of a generic surface profile Γ, where µ is defined pointwise,

for a single-component system. By assuming a constant density n = 1/Va with Va the atomic

volume andN = nV , the chemical potential can be written as µ = VaδG/δV , i.e. it is the change

in the free energy induced by a local variation of the volume of the solid phase (bounded by Γ).

For the sake of simplicity, Va will not appear explicitly in equations, but it will be incorporated

in the constant coefficient multiplying the chemical potential. Changes of Γ morphology are

described here by the local normal velocity vn̂, defined as n̂[(dx/dt) · n̂] with x a generic point

on Γ and n̂ the outer-pointing normal. Such a velocity describes the local increase/decrease of

the solid volume (i.e. dV/dt = vn̂dS with dS the infinitesimal surface element and vn̂ = |vn̂|),
and should obey a dynamics determined by µ inhomogeneities. The material transport along

the surface can mainly occur by means of two different mechanisms: evaporation-condensation
and surface diffusion. In principle, even bulk diffusion can contribute to the morphological evo-

lution, but only to a minor extent with respect to surface mechanisms, and it is here neglected.

If the temperature is sufficiently high and the vapor phase surrounding the solid has an

appreciable density, evaporation/condensation of adatoms at the surface is favored [50]. In

particular, evaporation is expected in each point where µ > µ0, with µ the chemical potential

of the solid phase (at the surface) and µ0 the chemical potential of the vapour phase, the latter

assumed to be constant in the approximation of fast evaporation/condensation (or at least

when chemical potential can be considered constant in a thin layer surrounding the solid).

Vice versa, if µ < µ0 condensation occurs. The evolution law describing such an evaporation-

3Notice that experimental condition usually consists of constant temperature T and pressure p, so that the Gibbs
free energy G should be considered. However, under the assumption of very low pressure, no appreciable pressure-
volume work is present and G coincides with the Helmholtz free energy F .
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condensation mechanism in terms of vn̂ is

vn̂ = −k(µ− µ0), (1.32)

with k a generic constant. Notice that equation (1.32) does not inherently conserve the volume

of the solid phase. Indeed, if µ > µ0 everywhere, a loss of material is expected. In order to

describe a material redistribution at the surface, obeying an evolution law as in Eq. (1.32) with

volume conservation, the µ0 term is replaced by 〈µ〉 =
∫

Γ µdx/
∫

Γ dx.

If the vapour phase has a low density, or when the solid is considered under vacuum, the

constant k in Eq. (1.32) is very small and the dominating transport mechanism consists of a

material redistribution along the surface by means of surface diffusion [33]. In the absence of

evaporation, changes in the surface profile are given by the conservation equation

vn̂ = −∇Γ · j, (1.33)

i.e. by the divergence at the surface of the material current j, determined, in turn, by the On-

sager Linear law [64, 65]

j = −M∇Γµ. (1.34)

M is the mobility coefficient describing the motion of the adatoms at the surface and ∇Γ is

the gradient evaluated along the surface profile. Diffusion is a thermally activated mecha-

nism, so that the mobility coefficient is expected to be defined by the Arrhenius law as M ∼
exp(−A/kbT ) with A an effective energy barrier and kb the Boltzmann constant. From the Eqs.

(1.33) and (1.34) the surface diffusion equation can then be derived as

vn̂ = ∇Γ · [M∇Γµ] . (1.35)

An illustration of the material transport by surface diffusion, reporting the main quantities of

Eqs. (1.33), (1.34) and (1.35), is shown in Fig. 1.4(a). The material transport by surface diffusion

can occur only along a continuous profile. If separated crystals are present, their evolutions are

totally independent. It is worth mentioning that surface diffusion strictly holds only for vicinal

surfaces, where steps are present and the surface can be described by means of a continuous

profile. On singular surfaces, i.e. surfaces corresponding to perfect planes for the lattice crystal

(as (001) for Si and Ge), profiles with discrete thicknesses accounting for step dynamics should

be considered. However, a continuum description is always well-posed in real systems due

to deviation from ideal conditions. This is even enforced when external material fluxes (Φ in

Fig. 1.4(a)) are present providing a constant perturbation of equilibrium configurations (see a

dedicated discussion in Ref. [66]).

The equations reported so far hold for a generic form of the free energy that may include

different contribution such as the surface energy Gγ from (1.26) and the elastic energy Gε from

(1.7). As it will be discussed in the following, the morphological evolution in our systems of

interest is mainly driven by the surface energy minimization, so that we will take into account

only the chemical potential related to Gγ . However, notice that a general continuum modeling

of heteroepitaxial systems, in particular when considering thin films, must account for the

elastic energy contribution to the evolution (mainly provided by lattice misfit).
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Figure 1.4: Surface diffusion mechanism. (a) Illustration of the main quantities involved in the transport
along the surface described by Eqs. (1.33), (1.34) and (1.35). (b) Chemical potential at the surface of a
generic profile with isotropic surface energy, i.e. proportional to the local curvature. The arrows illustrate
the material flow from regions of high chemical potential toward regions of low chemical potential.

For a single crystal, in the absence of strain, the free energy corresponds to the surface

energy of Eq. (1.26). Therefore, following the previous discussion, µ = δGγ/δV . The three-

dimensional formulation for µ can be written using the ξ vector [59, 60], i.e.

µ = ∇Γ · ξ. (1.36)

Notice that for isotropic surface energy density (i.e. no differences in γ among different orienta-

tions), according to Eq. (1.27), µ = ∇Γ ·(γn̂) = γκwhere κ is the sum of the two (local) principal

curvatures as κ = ∇ · n̂ = κ1 + κ2. For a two-dimensional profile, the orientation can be repre-

sented by means of an angle θ and µ = γκwhere κ is here the curvature of the profile in 2D. This

can be also demonstrated by considering a 2D perturbation z(x) with isotropic surface energy

γ. Indeed, the surface element in Eq. (1.26) can be written as dS = dx/ cos(θ) = dx/
√

1 + z′2,

δGγ/δV corresponds to δGγ/δz, and

µ =
δGγ
δz

= γ

[
− z′′

(1 + z′2)3/2

]
= γκ. (1.37)

The chemical potential is then proportional to the surface energy density and to the local cur-

vature κ. Notice that for a small variation in the z(x) profile, we have κ ∼ z′′(x). When

considering an anisotropic surface energy density in 2D, the chemical potential reads

µ =
[
γ(θ) + γ′′(θ)

]
κ = γ̃(θ)κ, (1.38)

where γ̃(θ) is the surface stiffness introduced in Eq. (1.31).

In Fig. 1.4(b) the chemical potential, with isotropic surface energy (i.e. µ = γκ), is shown for

a three-dimensional profile made of a generic island. High values of µ are present at the top,

as high curvature values are obtained in such a convex region. The concave region around the

island shows, in turn, smaller µ values. According to Eq. (1.34), material fluxes are expected as

illustrated by the black arrows. When the surface energy density is isotropic, the evolution law

describing the surface diffusion is well-posed and the same also applies for anisotropic γ(n̂)
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which lies in the weak anisotropy regime. For strong anisotropy regimes, the surface diffusion

equation becomes backward-parabolic for any missing orientations and the evolution law is

ill-posed. In order to describe the evolution of sharply faceted profiles, a method accounting

for the evolution of shapes made of segments have been introduced by Carter et al in Ref. [67].

Despite it allows to well describe the dynamics of 2D completely faceted surfaces, it requires

the definition of a large number of rules to face the production and disappearance of facets and

its extension in 3D is far from trivial. In order to describe the evolution of a generic surface

(not made of segments) also in the strong anisotropy regime, a proper regularization is, hence,

required.

1.4.1 Surface energy regularization

Regularization procedures are usually adopted in order to investigate the evolution of systems

also in the strong anisotropy regime. Indeed, they allow one to remove the instabilities in the

evolution law, arising from the orientations which are missing in the ECS and from infinite cur-

vatures at sharp corners. Some constructions can be adopted, forcing the orientation excluded

from the ECS to be present in a small region close to corners [68, 69]. Similar procedures are of-

ten referred to as Frank’s convexification and they generally require explicit modifications of the

surface energy density. A different regularization approach, deeply exploited in Ch. 5, consists

of adding an energy contribution to γ proportional to the local surface curvature κ [51, 70]

γreg(n̂) = γ(n̂) + βκ2, (1.39)

where β is a positive constant, corresponding to a corner energy parameter. It can be considered

as a higher order approximation of the surface energy density as function of n̂ [51, 71, 72], i.e.

γ(n̂,∇ · n̂, ...) = γ(n̂) + β (∇ · n̂)2 + ... (1.40)

When the dynamics is driven by the surface energy with such a regularized γreg(n̂), the ten-

dency toward the formation of sharp corners, driven by the γ(n̂) term, is balanced by the energy

contribution proportional to βκ2. As a result, rounded shapes are formed at the corners and

edges of the ECS. Such a corner rounding is found to have an extension proportional to ∼
√
β.

For β → 0 the limit of the ECS as obtained by the Wulff construction (or by ξ) is recovered [70].

1.5 Crystal growth
In Sect. 1.4, we described the material transport at the surface driven by the minimization of

the surface energy. The growth of the solid phase can be described in such a framework as a

condensation mechanism using Eq. (1.32). When the deposition of material is present, crystal

growth can be also modeled by accounting for an external material source, describing a growth

velocity proportional to the material flux Φ. This holds true, in particular, when the deposition

in ballistic regimes is considered such as with Molecular Beam Epitaxy (see also Sect. 2.2.3), but

can be also adopted for other growth techniques such as Chemical Vapor Deposition, provided

that a proper flux distribution is considered. Such a contribution can be modeled by consider-

ing the accumulation and redistribution of adatoms at the surface delivered by the deposition

flux. Let us consider the adatom density at the surface as Ntot(x) = N(x) + Neq(x). Neq(x) is
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the equilibrium density at a given temperature while N(x) is the density of excess adatom due

to the deposition. The growth velocity of the surface depends onN(x) and on the average time

before crystallization τc. At a given point x it reads

vn̂ =
N

τc
. (1.41)

The exceeding adatom densityN at the surface can be obtained by the following rate-equation:

∂N

∂t
= Φ− N

τ
+∇Γ · [D∇ΓN ], (1.42)

where τ−1=τ−1
c +τ−1

d with τd the lifetime before desorption. The last term of Eq. (1.42) cor-

responds to the adatom diffusion along the surface according to the Fick’s law with D the

diffusion coefficient.

For high deposition rates (or low temperatures, leading to small D values), the adatom

diffusion at the surface can be neglected leading to a kinetic regime where each facet grows in-

dependently. By considering an initial condition N = 0, a stationary adatom density Nst = τΦ

is obtained after a transient stage. By substituting Nst in Eq. (1.41) the velocity at the stationary

state reads

vn̂ =
1

1 + τc/τd
Φ = χΦ, (1.43)

where χ = 1/(1 + τc/τd) is defined as incorporation rate. This equation can actually be gener-

alized as

vn̂(n̂,x) = χ(n̂)Φ(x), (1.44)

where χ(n̂) represents an anisotropic function accounting for orientation-dependent incorpo-

ration and/or desorption rate, and Φ(x) is the amount of material reaching the surface. The

latter may be affected by the geometry of the growing profile itself, resulting in a function of

the spatial coordinates.

With a generic anisotropic growth velocity (for which we omit the subscript n̂ hereafter), the

shape in the steady state can be described by the Wulff construction by replacing γ(n̂) with v(n̂)

as introduced in Refs. [73, 74]. The same also applies when negative, anisotropic velocities are

considered for dissolution or etching processes [75]. Such a shape is often referred to as kinetic
Wulff shape, and it is fully determined by the growth velocity along the unit vectors normal to

the facets. However, in order to describe the growth of crystals with a continuum approach, a

continuous v(n̂) function should be considered, with values for any orientation. A method to

recover such a velocity distribution is illustrated in the next section.

1.5.1 Continuum description of faceted growth

A continuum approach for the evolution of faceted crystals is reported in Ref. [76]. It is based

on the definition of a discrete set of velocities wi, oriented along the outer-pointing surface

normal in the growing faceted profile. These vectors wi are then used to construct a continuous

v(n̂) function which recover the corresponding kinetic Wulff shape during the growth. An

illustration of the procedure is reported in Fig. 1.5. For a given point at the surface, let us
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Figure 1.5: Definition of a continuous growth velocity [76]. (a) Schematic representation of the fully-
faceted growth defined by discrete velocities w1 and w2. Parameters used to define the continuous
v(n̂) function by the procedure in Sect. 1.5.1 are shown. (b) Illustration of a growing continuous profile
recovering the fully faceted profile by means of the continuous v(n̂) function.

consider first the index k of the facet which is closest in direction to the local orientation n̂,

given by

k = arg max
m

(n̂ · ŵm). (1.45)

The velocity of such a point is then defined as

v(n̂) = |wk|n̂ + uτ̂ , (1.46)

with τ̂ the tangential direction

τ̂ =
n̂− (n̂ · ŵk)ŵk

[|n̂− (n̂ · ŵk)ŵk|2 + δ2]1/2
. (1.47)

δ is a (small) numerical parameters which ensures that τ̂ smoothly vanishes when the numer-

ator goes to zero. The scalar value u is the tangential velocity, which should be set in order to

keep sharp corners in the growing profile. It can be derived from geometrical considerations

about the angle formed by the two nearest wi for a given orientation n̂. For the simple, 2D case

of Fig. 1.5(a) it reads

u12 =
|w2| − |w1| cosα

sinα
. (1.48)

By using this procedure, starting from an initial generic profile, the kinetic Wulff shape is

recovered after a certain tw. The evolution for t < tw has not particular physical meaning

as it results from the construction adopted to recover the desired shape [76]. Notice that this

approach is expected to deliver, by means of a continuous v(n̂) function, the feature of the

fully-faceted profile evolution during growth described by the Borgstrom construction [77].

This v(n̂) would produce, indeed, the enlargement of the facet with the lowest velocity for

convex profile or with the highest velocity for concave profiles. The illustration in Fig. 1.5(b)

shows this behavior, as the velocity at the round corner of the (convex) profile are higher than

the others and the corresponding orientations disappear. As a result, the orientations with low

velocity extend.
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1.6 Numerical integration of PDEs
In order to find the solution for generic PDE systems, defined on a complex domain and with

nontrivial boundary conditions, numerical techniques are usually adopted. Several different

methods exist such as the Finite Difference Method (FDM), the Spectral Method (SM) and the

Finite Element Method (FEM). In the FDM, the differential operators are approximated, and

the solution is computed on a discrete set of points (or generally on a grid). The SM mainly

consists of approximating the solution by using a set of basis function, often corresponding to

Fourier series (with cosines or sines as basis functions). The FEM is based on the partitioning of

the whole simulation domain in smaller, simpler parts, i.e. the Finite Elements, and allows the

exact operators to be considered with an approximation of the solution using basis function on

each element (and not on the whole domain such as with the SM). This latter approach allows

differential equations to be solved with a high accuracy also with complex boundary condi-

tions, unmanageable with other approaches. It is widely used in this thesis and an overview

of its main concepts is provided in this section. Fine details and extended treatments can be

found elsewhere in the literature [78].

1.6.1 Finite element method

In order to describe the basis of the FEM approach, let us begin with the definition of a PDE

problem in a d-dimensional space Ω, with Dirichlet boundary condition on ΓD ⊂ ∂Ω and Neu-

mann boundary condition on ΓN = ∂Ω\ΓD. It consists of a differential problem in the strong
form

−∇ · (A∇u) + b · ∇u+ cu = f on ΩD (1.49)

u = g on ΓD (1.50)

A∇u · n̂ = h on ΓN (1.51)

where c, f , g, h are generic function, b a d-dimensional vector, A a d × d matrix, and n̂ the

normal of ΓN . The problem should be now reformulated in the so-called weak form. It consists

of the integration of equation (1.49) against a test function φ

−
∫

Ω
∇ · (A∇u)φdx +

∫
Ω
b · ∇uφ+

∫
Ω
cuφ =

∫
Ω
fφdx. (1.52)

φ can be chosen arbitrarily and, in order to describe the current PDE problem, it is set to satisfies

homogeneous boundary conditions, i.e the Dirichlet boundary conditions (given by φ = g on

ΓD). Therefore, the space where φ is defined is the Hilbert spaceX :=
{
H1(Ω) : φ = g on ΓD

}
.

Exploiting the integration by part of the first term in Eq. (1.52) and applying the divergence

theorem we obtain

−
∫

Ω
∇ · (A∇u)φdx =

∫
Ω
A∇u · ∇φdx−

∫
∂Ω

A∇u · n̂φdx, (1.53)

so that, as far as the last integral corresponds to the integral on the boundary of the left-hand

side of Eq. (1.51), the Neumann boundary conditions are automatically satisfied in Eq. (1.52)

∀x ∈ ΓN with h(x) = 0. For a generic h function the boundary condition can be included by
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adding its integral against φ on ΓN at the right-hand side of Eq. (1.52). This equation corre-

sponds to a weaker formulation of the problem (1.49)-(1.51) (a solution of the strong form is

always solution of the weak form but not vice versa).

Once the problem is defined in the weak form the Finite Elements should then be defined,

solving the whole problem in simpler domains. Let us consider first a discretization of the

PDE in the weak form. A finite set of basis {φi}Ni=1 ∈ X is considered such as the test function

can be written as φ(x) =
∑N

i=1 viφi(x), where vi are arbitrarily chosen. Then, we consider an

approximation u? of the solution u, defined by u?(x) =
∑N

j=1 Ujφj , whereUj are the unknowns.

By substituting the expressions for u? in the weak form formulation (1.52) together with the

discretization of the test function, and rearranging the equation to cancel vi coefficients (for the

sake of simplicity Neumann BC are not considered here)

N∑
j=1

Uj

∫
Ω
A∇φj · ∇φidx +

∫
Ω
b · ∇φjφidx +

∫
Ω
cφjφidx︸ ︷︷ ︸

Mij

=

∫
Ω
fφidx︸ ︷︷ ︸
Fi

, (1.54)

The same discretization introduced for u applies to all the functions in Eqs. (1.49)-(1.51) as g,

which is discretized as g? =
∑N

j=1Gjφj and the Dirichlet boundary condition is considered by

imposing Uk = Gk if k is the label of a basis function located on ΓD. As directly illustrated in

Eq. (1.54), the N equations resulting from the discretization can then be written as one matrix-

vector equation

M ·U = F, (1.55)

where this is the linear system of equations that has to be assembled. The solution for the

coefficient vector U can be computed with several approaches dealing with matrix equations.

In order to apply the FEM method, the domain and its discretization should be explicitly de-

fined. In the FEM approach, it is usually performed by considering a simple space tessellation,

obtained by exploiting a geometric object with flat sides, namely a simplex, which corresponds

to intervals in 1D, triangles in 2D and tetrahedra in 3D. Local basis functions can be defined

on the simplexes, defining the Finite Elements. A suitable choice for φ functions consists of the

so-called Lagrangian basis. They consist in localized functions at points called nodes such as

φi(xj) = δij , i.e. φi = 1 on the i-th node and zero on the other nodes. Basis functions can be

constructed by first or higher-degree polynomials degree, satisfying the condition mentioned

above. In the case of a first-order polynomial, i.e. with linear elements, the nodes correspond to

the d+ 1 vertexes of the simplex. Higher order elements are characterized by a larger number

of nodes within the simplex.

In this work, we exploited two FEM codes. For static evaluation of elastic and plastic relax-

ation (see Chs. 3 and 4) we used the commercial FEM package Comsol Multiphysics as it was

suited to perform standard calculations concerning the solution of mechanical equilibrium.

For the solution of time-dependent PDEs related to Phase-Field Modeling (see Chs. 5 and 6),

the open-source FEM toolbox AMDiS [31, 79] has been deeply exploited as this topic required

an original implementation of the differential operators and custom numerical methods.
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Overview on Ge/Si heteroepitaxy

Heteroepitaxy has been a topic of intense research for several decades. Indeed, its deep knowl-

edge is key to fabricate engineered electronic components, realize heterojunctions for electronic

applications, and integrate devices in the mainstream technology [11]. It consists in the growth

of a crystalline material A on a substrate made of a different crystalline material B. The result

of such a process is the formation of heterostructures, whose morphologies are related to the

differences between the physical properties of the materials. In this chapter, an overview on

the main features of Ge on Si heteroepitaxy is presented. It will introduce all the main fea-

tures of Ge/Si heterostructures which represent the essential background for the investigations

reported in the next chapters. The specific choice of Ge/Si systems is twofold. First, they

form prototypical systems for the investigation of heteroepitaxial structures with lattice and

thermal misfit, thanks to the complete miscibility of Ge and Si (offering the possibility to tune

the lattice mismatch) along with the absence of bond-polarity effects (as, for instance, in III-V

compounds). Second, the modeling reported in this thesis has been mainly applied to Ge/Si

systems due to their relevance for technological applications. Ge/Si heterostructures with large

aspect-ratios (i.e. VHEs), obtained by peculiar growth condition and substrate patterning, are

then introduced at the end of the chapter, pointing out their differences with respect to the

standard heteroepitaxial systems grown on planar substrates.

2.1 Heteroepitaxial growth modalities

The heteroepitaxial growth on planar substrates usually occurs with three different modalities:

layer by layer 2D-growth (Frank van der Merve; FM), 3D islands formation on the substrate

(Volmer-Weber; VB) or 3D island formation on a thin wetting layer, (Stranski-Krastanov; SK) [11].

These growth modalities are illustrated in Fig. 2.1. From the energetic point of view the main

Figure 2.1: Schematic representation of heteroepitaxial growth modalities.

23



24 Overview on Ge/Si heteroepitaxy

contributions playing a role in the heteroepitaxial growth are the surface energies per unit area

of both the epilayer γe and the substrate γs, the energy per unit area of the epilayer-substrate

interface γi and the elastic energy per unit volume ρε. The latter results from the deformation

of the lattice parameter in the epilayer to match the one of the substrate. The FM and VB

growth modality can be easily described by considering only surface and interfacial energies.

The energy balance corresponding to the covering of the substrate with the epilayer is

∆γ = γe + γi − γs. (2.1)

If ∆γ < 0, the wetting of the substrate is favored and layer-by-layer growth (FM) occurs while,

if ∆γ > 0, 3D growth (VM) is expected. The SK growth can be understood by explicitly ac-

counting for the volumetric contribution related to the misfit strain in the epilayer. In particu-

lar, such a modality is observed when the balance of Eq. (2.1) is negative with a non-zero elastic

energy in the film. In the first stages of the growth, the epilayer tends to wet the substrate as

the volume is small and surface contributions dominate. So that a wetting layer is formed.

When increasing the volume of the epilayer, elastic energy increases and the growth of islands

is favored, as the free surfaces in 3D structures allow the in-plane deformations in the epilayer

to be partially relieved. In this regime, for relatively small strains, this elastic relaxation is effec-

tive after a few monolayers and the growth of islands occurs on a wetting layer (SK). For larger

strain, the total energy can be lowered by the formation of 3D structures before the formation

of the first mono-layer, and this would result again in the direct 3D-growth on the substrate

(VM).

The energy balance which describes the aforementioned growth modalities can be quanti-

fied by means of the formation energy for a 3D-island with respect to the flat film configuration

as

∆G(V ) = Gisland(V )−Gfilm(V ) = k1V + k2V
2/3, (2.2)

where V is the volume of the deposited material, Gisland(V ) the total energy when arranging

the material in 3D islands while Gfilm(V ) the total energy when considering a flat-film configu-

ration. k1 = ρisland−ρfilm is the difference between the averaged elastic energy density between

an island and a film with the same volume. k1 < 0 as ρisland is typically lower than the one of

the film. k2 = γ(sisland − sfilm), where sisland and sfilm are the ratio between exposed surface S

and V 2/3 of an island and a film, respectively. k2 > 0 as a larger exposed surface is expected for

islands. The behavior of Eq. (2.2) is illustrated in Fig. 2.2(a), where the formation energy for is-

lands with two different height-to-base aspect ratio (AR) is shown. For small volumes (V < V1),

the V 2/3 term dominates the energy balance, so that ∆G > 0 and the film configuration is fa-

vored. For larger volumes (V1 < V < V2), the contribution proportional to V (multiplied by

the negative coefficient k1) become more important and ∆G < 0, i.e. the free energy is low-

ered when forming islands. The formation energy becomes negative for shallow islands first

(i.e. the one with the lower AR). Steep islands generally expose larger area so that their surface

energy is higher than the shallow islands. However, they show a better relaxation of the mis-

fit strain and for large volumes (V > V2) they become the favorite configuration. In general,

by increasing the total volume, islands with higher and higher aspect ratio are expected (until
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Figure 2.2: 3D heteroepitaxial growth. (a) Energy balances described by Eq. (2.2) as function of V , with
parameters extracted from Ref. [84]. The dashed and solid (black) lines report ∆G(V ) for AR = 0.1 and
AR = 0.3, respectively. The solid, red-line marks the minimum energy configuration, corresponding to
the WL for small volumes (V < V1), to the shallow island for intermediate volumes (V1 < V < V2) and
eventually to steep islands for large volumes (V > V2). (b) Images of Ge on Si heteroepitaxial islands
from Ref. [17]. (c) Increase of island aspect ratio with peculiar faceted morphologies during the growth
from Ref. [85]: the transition from pyramid- (left) to dome-shaped (right) islands is reported.

reaching the plasticity onset as discussed in the following). This qualitative discussion is based

only on a comparison between different equilibrium configurations. In fact, only the energy of

different states is considered without taking into account the real kinetic pathway towards the

formation of islands during the growth. This description of the SK growth is actually available

in literature and its basis can be found in the so-called Asaro-Tiller-Grienfield (ATG) stability

analysis [80–82], leading to the same conclusions reported above.

It is worth mentioning that, the close-to-equilibrium conditions which lead to the mech-

anism discussed so far, can be frustrated by growth kinetics. Despite mismatched semicon-

ductors are expected to undergo SK or VM growth, by means of high external fluxes or low

temperatures it is possible to obtain different growth morphologies [83]. For instance, a pla-

nar film can be obtained, also when 3D structures are expected according to the free-energy

minimization.

2.2 SiGe/Si Stransky-Krastanov growth

Ge and Si have the same diamond crystal structure, i.e. a Face Centered Cubic (FCC) lattice.

However, they have different lattice parameters, aGe = 5.658 Å and aSi = 5.432 Å, so that the

epitaxial growth of Ge or SiGe alloys on Si is characterized by the presence of a misfit strain

and elastic energy is then accumulated in the system. The misfit strain in a pure Ge epilayer,

whose lattice parameter is adapted to the one of the Si substrate, is

εm =
aSi − aGe

aGe
= −0.0399. (2.3)
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For a SiGe alloy, the lattice parameter of the epilayer can be effectively described according to

the Vegard’s law

aSiGe(c) = aGec+ aSi(1− c), (2.4)

where c is the Ge content. In this work, we always use this assumption, adopting linear inter-

polation as in Eq. (2.4) also for elastic constants of alloys. A linear dependance of the misfit

strain on the Ge content is also assumed, i.e. εm(c) ∼ εmc.

By exploiting the linear elasticity theory equations introduced in Sect. (1.1), the volumetric

contribution of the elastic energy in the Si1−cGec/Si films can be easily determined. In a bulk

system, the deformation of the lattice parameter is given by an hydrostatic stress σ, related to

the strain swith respect to the undeformed lattice paramerer by σij = sCijklδkl. In an infinite Ge

layer on Si, with ẑ the outer-pointing normal of the free surface, the deformation corresponds

to such a condition for in-plane directions x̂ and ŷ, with s = εm. In the out-of-plane direction,

the free surface boundary conditions has to be considered. According to Eq. (1.14) it reads

σ · ẑ = σxz + σyz + σzz = σzz = 0. (2.5)

where σxz = σyz = 0 due to the aforementioned definition of the stress. Being σxx and σyy uni-

form, the mechanical equilibrium condition reads ∂σzz/∂z = 0. In agreement with condition

(2.5) at the surface, it is satisifed by σzz = 0 within the whole film. Then, εzz is determined by

exploiting the Hooke law (1.3) and it results

εzz = −C12

C11
(εxx + εyy) = −2C12

C11
εm. (2.6)

It can be noticed that the deformation along the ẑ axis has an opposite sign with respect to the

misfit strain εm. Indeed, the relaxation of the film consists of a tetragonal distortion of the cubic

cells. Since both σ and ε are known, the elastic energy in the film can be determined by Eq.

(1.7). The elastic energy density results

ρfilm =

(
C11 + C12 −

2C2
12

C11

)
ε2

m = Y ε2
m. (2.7)

Y =
(
C11 + C12 − 2C2

12/C11

)
is the Young modulus under biaxial stress [86]. The isotropic

elastic constants adopted in this work, for Ge and Si, are: EGe = 103 GPa, νGe = 0.26, ESi = 130

GPa, νSi = 0.27. By exploiting such values for a pure Ge epilayer in Eq. (2.7), with the proper

change in the constants following Eq. (1.6), we obtain ρfilm = 2.85×108 J/m3 = 1.3849 eV/nm3.

The presence of the elastic energy per unit volume ρfilm is the main driving force for the

SK growth modality in Ge/Si systems. It has been shown that γGe is generally lower than

γSi and the interfacial energy is negligible compared to the other terms [54, 55], so that the

surface energy balance in Eq. (2.1) is negative and Ge tends to wet the Si substrate. In the early

stages of the growth, this layer is actually energetically favored and it usually consists of a few

monolayers (ML), 2-3 ML for pure Ge. Then, the epilayer undergoes the transition towards 3D

structures [17, 87–91]. Examples of Ge/Si islands are shown in Fig. 2.2(b). The increase of the

aspect ratio during the deposition with the changes in the morphology is shown in Fig. 2.2(c).

Other details about the energy balance of Eq. (2.2), for the specific case of the Ge/Si SK growth,

can be found in Ref. [84].
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The argument mentioned above well describes the qualitative features of close-to-equilibrium

Ge/Si SK growth and recall some important basis for the following investigations. However,

further phenomena involved in heteroepitaxy have not been explicitly considered. The surface

energy and the compression within the field actually depend on the distance from the Si sub-

strate, and this is found to play a role in the stability of the early stages of the SK growth [92].

Moreover, the surface energy density for Ge and Si crystals depends on strain (if present) and

it is usually anisotropic, leading to the faceting of islands. Intermixing effects between Ge and

Si are also found to take place. Eventually, even if the growth of 3D islands leads to elastic

relaxation, after certain volumes the onset of plasticity is expected.

2.2.1 Islands morphology

Faceted morphologies are usually observed for three-dimensional, epitaxial heterostructures

[17]. Some examples are reported in Figs. 2.2(b) and 2.2(c). The presence of the facets is related

to the lattice structure and, in thermodynamic regimes, the exposed surfaces are the ones with

a minimum in the surface energy density γ, which can be also affected by local strain (see also

Sect. 1.3 for a discussion on the theoretical basis of crystal morphologies). On Si(001) substrates,

the first Ge islands formed on the WL are pyramids exposing {105} facets, reported as first

morphology in Fig. 2.2(c). They have been demonstrated to be a stable configuration when a

compressive strain is present [93, 94]. Then, with further Ge deposition, the resulting increase

of the aspect ratio produces a dome-like shape with the appearance of {113} and {15 3 23}
facets, as shown by the last morphology in Fig. 2.2(c). A barn-like shape is eventually formed

with the addition of {20 4 23} and {23 4 20} facets together with the {111} facets, followed

by the formation of a cupola-like shape with {715}, {12 1 5} and {322} facets. The addition

of new facets occurs from the base of the islands while the top grows with the morphology

recognized for lower aspect-ratio (except for {105} facets as they are stabilized by compressive

strain, which is relieved at later stages). An overview on the whole mechanism is shown in

Ref. [95]. The same set of facets are found to be present also on other substrate orientations [96]

and in other heteroepitaxial systems made of FCC crystals as InAs/GaAs [97], revealing the

generality of the reported observations.

In order to provide an accurate evaluation of Eq. (2.2), or in general to evaluate properties

related to the surface energy, an anisotropic γ(n̂) function should then be considered, including

a reliable dependance on the surface orientation and including all the facets whose appearance

is expected when the aspect ratio increases. Choosing the right values for the surface energy

density is actually far from trivial and it generally requires some care. For Ge/Si systems,

theoretical calculations are available [98], but they deal with infinite surfaces and, for nano- and

micro-structures, finite sizes are present. Experiments can be also useful in order to determine

surface energy density values. However, it is worth mentioning here that the extrapolation of

such values from experiments, usually performed by exploiting the Wulff construction [51, 57]

(see also Sect. 1.3), is well-posed only if the equilibrium is reached. More general approaches

should then be used when out-of-equilibrium morphologies are observed [32], accounting for

the explicit kinetic pathway towards the equilibrium. With the modeling provided in Ch. 5

we will also face this problem providing a general tool able to investigate morphologies of
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out-of-equilibrium nano- and micro-structures.

2.2.2 Intermixing

Heteroepitaxy, by definition, involves more than one material which may show intermixing

effects leading to their alloying. In Ge/Si systems this phenomenon is found to occur and it

is mainly driven by entropic effects [99]. Moreover, the alloying of the epilayer with the sub-

strate material, leads to the reduction of the misfit strain, resulting in an enthalpic contribution

[100, 101]. The general mechanism consists mainly in atomic exchange, occurring in the first

few monolayers (∼2-3 ML) from the surface. Bulk inter-diffusion is also possible, but it is kinet-

ically limited at the usual time scale and temperatures of the growth processes [102]. Several

experimental results report about intermixing effect. It is found to occur from the first few

monolayers of the growth corresponding to the formation of the wetting layer [103]. Then it

becomes stronger in islands, yielding to non-uniform Ge (or Si) distributions, as seen by se-

lective etching experiments [104]. Low Ge contents in islands of ∼ 50% can be observed even

when pure Ge deposition is performed [105].

Several theoretical studies have been performed to investigate such a process, involving

Atomistic [106] and Monte Carlo (MC) [107, 108] simulations, the latter also combined with

FEM calculations of the elastic field [46]. Then, also the evolution in time of the growth by

including in standard ATG simulation the contribution of intermixing has been proposed [109,

110], yielding to a complete description of the SK growth dynamics for Ge/Si systems, also

when considering patterned substrates [111].

In this work, we mainly neglect the explicit Ge content distribution given by the intermix-

ing effects, and when reported in experimental measurements, typically in nanostructures, we

consider uniform Si1−cGec alloys with the resulting average Ge content. The only exception

is given in the modeling of the structures in Sect. 4.2, as the non-uniformity of the Ge content

in the nanostructure is found to play a key role and its explicit modeling has been required.

Conversely, at the micron scale, intermixing effects are not taken into account as they usually

involve very small length scales compared to the size of the whole structures.

2.2.3 Growth techniques

The techniques adopted for the growth of heteroepitaxial systems generally determine the

growth regime and, in turn, the morphology of the final structure. When a low deposition

flux is considered, the growth is close to the thermodynamic equilibrium as atoms reaching the

surface are free to explore a wide area, allowing for a dynamics driven by the total energy min-

imization. Moreover, diffusion at the surface is an activated process, which is then enhanced

at high T . Low fluxes and high-temperature processes, indeed, lead to a close-to-equilibrium

growth. Conversely, with high deposition rates, adatoms at the surface strongly interact each

other leading to a short mean free path and surface diffusion is not effective. The result, in this

case, is a growth process mainly related to out-of-equilibrium, kinetic effects. In the following,

we briefly describe the common techniques used for Ge/Si systems, focusing on the ones used

to grow the structures analyzed in the present work.

Two main techniques are used to grow Si1−cGec on Si: the Molecular Beam Epitaxy (MBE)
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and the Chemical Vapor Deposition (CVD). The latter is a more generic term, which applies

also to non-crystalline films, and it is also referred to as Vapour Phase Epitaxy (VPE). Other

names are used to specify the chemical nature of the vapor phase such as organometallic vapor

phase epitaxy (OMVPE) or chemical vapor deposition (OMCVD - MOCVD), always referring

to the same general process. A detailed overview on such growth techniques can be found in

Ref. [11] and in the references therein.

MBE consists of the deposition under ultra-high-vacuum (UHV, p < 107 Pa) of atoms (or

molecules) on a heated substrate generally made of a single-crystal phase. Atom beam is gen-

erated in the proper evaporation cells and interactions of the deposited atoms are not present

until they reach the substrate. This technique allows for very low deposition rates, and the

resulting mean free path of atoms is large. Due to these features, the growth by MBE is gener-

ally in the thermodynamic regime, where diffusion process can lead to material rearrangement

up to the equilibrium condition during the deposition. According to this, the SK growth is

achievable. SiGe alloys with any Ge (or Si) content may be obtained by MBE, usually in the

temperature range of 500-900 ◦C. The growth at lower temperatures is also possible and, when

T < 600 ◦C, a significant modification of the kinetics is achieved, even suppressing the ten-

dency to 3D structures of the SK growth modality for high Ge contents.

The CVD technique is characterized by the presence of a gaseous phase, where chemicals

containing the material to deposit, namely the precursors, are transported by a carrier gas.

When the precursors reach the substrate, usually heated, they react. If the deposition involves

more species, as for binary semiconductors, different chemicals are present. The most used pre-

cursors for Ge and Si are usually germane (GeH4) and silane (SiH4), respectively, but also com-

pound with Cl can be used. In order to realize the deposition, chemicals should react and this

happens at the surface of the substrate. Also with CVD, various Ge content alloys can be ob-

tained, by using mixtures of the different precursors. With these techniques, deposition fluxes

higher than MBE can be achieved and they are related to the partial pressure of the precursors

in the growth chamber. Notice that, focusing on the growth by means of silane/germane, the

effective flux is determined by the desorption rate of H at the surface. This is proportional to

the temperature, but an upper limit exists in order to preserve the structural properties of the

material. In order to enhance the growth rate, other hybrid techniques have been developed

such as the Plasma Enhanced Chemical Vapor Deposition (PECVD). By means of a Plasma re-

actor, reactive species as radical and/or ions are directly formed in the gaseous phase and they

are more reactive when reaching the surface. In order to avoid material damaging due to the

high kinetic energy acquired in the plasma, Low-Energy PECVD may be exploited [112, 113].

The micrometer-wide VHEs discussed in this work have been first obtained thanks to this LEP-

ECVD technique [19, 20] (see also Sect. 2.5.2).

2.3 Plastic relaxation

The first stages of the heteroepitaxial growth have been introduced in Sects. 2.1 and 2.2, with

a focus on the growth of a few nanometer thick, coherent layers or islands. However, if later

stages are considered another important relaxation mechanism is observed, consisting in the
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plastic relaxation given by the nucleation of dislocations [26, 27]. Such extended defects are

detrimental for the performances of electronic devices and they are found to occur always

in standard heteroepitaxy. For close-to-equilibrium conditions and high Ge content they are

found to nucleate after the formation of 3D structures [114], while at low Ge contents and/or

under strong out-of-equilibrium growth conditions, dislocations directly nucleate in the flat-

film configuration [86, 105]. Thanks to the elastic relaxation, the onset during the deposition is

delayed for three-dimensional growth with respect to planar growth. A convenient quantity

used to investigate the onset of plasticity during the deposition is the so-called critical thickness
h̄ [115], which consists of the thickness at which the insertion of a dislocation is favored. In

this section, the main features of the dislocation present in SiGe systems are illustrated, also

introducing the determination of the critical thickness for plasticity.

2.3.1 Dislocations in Ge/Si crystals

In the diamond crystal structure of Si and Ge, {111} planes have the higher density of lattice

sites while the shortest lattice vectors correspond to a/2〈110〉. Therefore, the latter is expected

to be the most favored Burgers vectors, while the former represent the so-called glide planes,

i.e. the planes on which dislocation may glide within the lattice structure [26, 27]. Pairs made

of a Burgers vector and a glide plane are often referred to as slip systems. The glide planes may

be formally defined as the vector product between the Burgers vector and the dislocation line

(b × `). Dislocation lines ` are typically found to be oriented along 〈110〉 directions in (001)

film. They may be also oriented along 〈112〉 directions, for instance when (111) substrates

are used. In this work, we mainly deal with (001) substrates, so that dislocation lines along

〈110〉 are taken into account (except for the system discussed in Sect. 4.3, where a dedicated

discussion is reported). Due to the symmetry of the crystal structure, the possible combinations

of b and glide planes are 12. They are illustrated in Fig. 2.3 where the so-called Thompson

tetrahedron is shown in the actual FCC structure and in a two-dimensional representation,

where the triangular facets of the tetrahedron are reported on a plane. The facets correspond

to the {111} glide-planes. The edges of the tetrahedron correspond to all the possible Burgers

vectors and also the 〈110〉 dislocation lines. 〈112〉 possible directions for ` are also reported.

In SiGe thin films, also including three-dimensional structures, dislocations usually form at

the surface as half loops. Then, they move along their glide plane in order to deposit the misfit

segment, i.e. the part of the loop which relieves the strain in the epilayer, at the interface with

Si. Indeed, this position generally corresponds to a minimum in energy as it maximizes the

induced relaxation. A few dislocation types are observed in SiGe systems. The most favorite

is the one having b and ` along 〈110〉 directions, forming a 60◦ angle in between. They can

nucleate and propagate along the {111} glide planes. This kind of dislocation will be explicitly

considered when evaluating the plasticity onset in the following chapters. It will be referred to

as 60◦ dislocation. Pure screw dislocations are also observed, which show parallel b and `, along

〈110〉 directions. They are usually present in the threading arms of the half-loops connecting the

segment at the Ge/Si interface to the free surfaces. Another dislocation is also found, showing

perpendicular orientation for b and `. It is a pure edge dislocation, which is actually not pre-

dicted by the Thompson tetrahedron. Indeed, the possible glide planes for such a dislocation
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Figure 2.3: Thompson tetrahedron. (a) FCC lattice with the Thompson thetrahedron (red lines). (b)
2D representation of the red tetrahedron in panel (a). Thetraedron facets represents the slip systems
formed by Burgers vectors along the red edges, and dislocation lines along all the reported solid lines
(adapted from Refs. [116] and [117]).

are the {100}, which do not appear in Fig. 2.3. So that the motion of these dislocations within

the FCC crystal structure is not favorite. However, they are found to offer a better relaxation

than the 60◦ dislocations and are observed in experiments [105]. It has been demonstrated that

they can be obtained by a reaction of two different 60◦ dislocations when an activation barrier,

allowing for different motions with respect to gliding along planes (i.e. climbing mechanisms

[26]), is overcome. A detailed investigation of their formation mechanism, reporting experi-

ments, continuum modeling by means of the linear elasticity theory and molecular dynamics

simulation is shown in Ref. [44].

All the investigations reported in this work will deal with the modeling of the misfit seg-

ment at the equilibrium, i.e. the dynamics of dislocation is not explicitly considered. In order

to evaluate the dislocation elastic field as introduced in Sect. 1.2, a plane perpendicular to `

should be considered. Therefore, a π/4 rotation around the ẑ axis is adopted. The following

directions are then considered as coordinate system: x̂ = [110], ŷ = [11̄0], ẑ = [001].

2.3.2 Critical thickness

As mentioned before, an important quantity in Ge on Si heteroepitaxy, which allows the onset

for plastic relaxation to be evaluated, is the critical thickness for dislocation insertion. This

quantity was first investigated by elastic energy minimization leading to an estimation of the

thermodynamic limit for plasticity onset. Both general approaches and direct applications to

the materials with diamond crystal structure have been reported [118–121]. These works are

mainly based on the balance between the elastic energy release by the dislocations and their

self-energy. In particular, by focusing on the energetics of the misfit segment and neglecting

threading arms, the following expression for the critical thickness has been introduced [122]

h̄ =
b(1− ν cos2 θ)

8π|εm|(1 + ν) cosφ

[
ln

(
hc

b

)
+ 1

]
, (2.8)
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with θ the angle between the dislocation line ` and its Burgers vector b (i.e. the dislocation

character), and φ the angle between b and the line at the interface perpendicular to `. For the

heteroepitaxial film considered here, the 60◦ dislocation would lead to cos θ = cosφ = 1/2 and

b = aepi/
√

2, i.e. the in-plane component of the Burgers vector. The derivation of h̄ has been

provided also by means of a force-based criterion [115]. In this approach, the force acting on

the dislocation loop are considered and h̄ is the thickness at which the misfit segment begins

to elongate. Notice that, as will be also discussed in Ch. 3, the energy criterion evaluated in

a plane perpendicular to the straight dislocation would lead to an estimation of the tendency

to elongate the misfit segment analogously to a force criterion. Despite the assumption under

the derivation of Eq. (2.8), it well describes h̄ at high temperatures, where behaviors close to

equilibrium (i.e. driven by thermodynamics) is expected. Conversely, the estimation of the

thermodynamic critical thickness is generally found to underestimate the experimental criti-

cal thickness, at low temperatures. This is mainly due to the lack of kinetic contributions ac-

counting for nucleation or motion barriers which may lead to far-from-equilibrium conditions.

Alternative approaches have been also considered in order to account for additional energy

contribution required for the nucleation of dislocations [123]. The thermodynamic estimation

of h̄ will be deeply exploited in Ch. 3 in order to evaluate the plasticity onset in our system of

interest.

2.4 Thermal strain
At the growth temperature, Ge/Si heteroepitaxial systems are mainly relaxed, due to the elastic

and plastic relaxation mechanisms discussed in the previous sections. However, these mate-

rials have different thermal expansion coefficients α and, when the system is cooled down to

the room temperature, they show a different variation of their lattice parameter. Therefore,

an additional mismatch is expected between the epilayer and the substrate, resulting in the

so-called thermal strain εth. In particular, αSi = 2.7 · 10−6 K−1 and αGe = 5.9 · 10−6 K−1. There-

fore, αGe > αSi and, with decreasing of temperature, Ge would shrink more than Si. A tensile

strain of Ge is then expected. According to the usual temperature ranges, the theoretical ther-

mal strain is ∼ 0.2%. Notice that it is more than one order of magnitude lower than the misfit

strain, and it is usually neglected when strong misfit strains are present. However, when the

system is relaxed (via elastic or plastic relaxation) at the growth temperature, the thermal strain

may be an important contribution and in SiGe system it is responsible for crack propagation,

leading to the mechanical failure of the materials [10, 124] (see also Sect. 1.2.2). In general, the

rise of thermal stress, when cooling the sample in systems where dislocations are present, may

involve their motion and a change in the residual misfit stress [105].

In order to better quantify the strain induced by differences in α and temperature varia-

tions, let us consider a generic Ge/Si planar system. For a given lattice parameter a1 at high

temperature T1, one can write the correspondent low temperature T2 values a2 via the thermal

expansion coefficient as

a2 = a1

(
1 +

∫ T2

T1

α(T)dT
)
. (2.9)

Notice that α generally depends on the temperatures [125, 126]. Following the definition of
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Eq. (2.3), the heteroepitaxial strain at a generic temperature T can be defined by means of the

effective lattice parameter provided by Eq. (2.9), both for Ge and Si. Moreover, by considering

that the integral in Eq. (2.9) is � 1 (typically in the order of 10−3) and aGe/aSi ≈ 1, it can

be shown that the thermal strain corresponds to the difference between the lattice-misfit at

high temperature (which is around zero if plastic relaxation occurs), and the one at the room

temperature. Its well-known expression [10] is given by

εth =

∫ T2

T1

[αGe(T )− αSi(T )] dT. (2.10)

2.5 Vertical heterostructures
The features described so far refer to the growth of Si1−cGec structures on planar Si, where the

formation of three-dimensional structures occurs as a self-assembled process and thermody-

namic/kinetic driving forces determine the evolution. However, the outcomes of the growth

process can be generally controlled by exploiting top-down techniques as, for instance, the

substrate patterning. This would allow for a lot of important improvements of materials prop-

erties, required to close the gap between pioneering experiments and applications. Examples

of the features achievable by patterning are selective deposition, ordering of three-dimensional

structures and tuning of sizes [127, 128].

In this section, we focus our attention on specific systems, resulting by both peculiar growth

condition and patterning. They consist of structures with large height-to-base aspect ratio

compared to the usual systems obtained by the Stranski-Krastanov growth. As stated in the

introduction, they will be generally named Vertical Heterostructures (VHEs). Such VHEs, can be

realized at different length scales, and exhibit peculiar properties according to their size. In this

section, a few specific examples are introduced, corresponding to the structures investigated in

the following chapters.

2.5.1 Nanometer-wide VHEs

In Ref. [133], then recalled and expanded in Refs. [129], [134] and [135], the growth of nanometer-

wide VHEs was proposed as a new way to lower the misfit between an epilayer and its sub-

strate. In turn, by lowering the main driving force for the insertion of dislocations, a significant

improvement of the material quality was expected. The main idea investigated in such works

consisted in the growth of heterostructures on substrates with lateral free surfaces, in order to

maximize the compliance effects in the elastic relaxation as illustrated in Fig. 2.4(a). This effect

is peculiar of patterned, vertical substrates as nano-pillars, at variance with planar substrates.

By increasing the thickness of the deposited material, the epilayer lattice parameter can be re-

covered, i.e. full relaxation is achieved. This opened the possibility to obtain relaxed crystals

at the top of patterned substrates and it was also proposed as a way to form elastically relaxed

suspended film by exploiting the merging of crystals at later stages [129, 133, 135], as illustrated

in Fig. 2.4(b). Such a layer formation from separated Ge nano-crystals was firstly named Nano-
Heteroepitaxy [129]. From the experimental point of view, the main challenge of this approach

consists in the vertical growth of the deposited material. Despite a pillar-patterned substrate

can be easily obtained by lithographic techniques, self-assembled growth is usually far from
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Figure 2.4: Nanometer-wide VHEs. (a) Schematic representation of the relaxation mechanism in ver-
tical heterostructures (left) with respect to planar systems (right) [129]. (b) Coherent film formation by
merging of ideally relaxed crystals [129]. (c) Nanometric Ge crystals grown on top of Si pillars from
Ref. [130]. (d) Nanometric Ge on Si nanopillars with a SiGe buffer island in between from Ref. [34].
Examples of Ge/Si nanowires: (e) from Ref. [131] and (f) from Ref. [132].

vertical, especially at the nanoscale (where also short mean free path are generally enough to

give close-to-equilibrium shapes). However, even before the formation of a suspended layer,

the growth of dots which exploit an enhanced lateral relaxation of vertical systems would be

an appealing system. Indeed, the presence of lateral free surfaces produces an enhancement of

elastic relaxation which leads to a significant delay in plastic relaxation with respect to films.

This has been observed for islands [46, 136, 137] and such an effect is expected to be even more

effective if the substrate can contribute to the accommodation of the misfit strain. Coherent, i.e.

not dislocated, systems can be very useful for optoelectronic devices, allowing for an almost

perfect crystal structure where the usual non-radiative recombination at dislocations would be

suppressed. The growth of isolated Ge crystals on ∼50 nm Si nano-pillars has been recently

proposed in Ref. [130, 138]. In Ref. [139] similar systems were proven to have high material

quality and a strong indication of coherency has been reported. Representative images of such

structures are shown in Figs. 2.4(c) and 2.4(d). The assessment of the delay in plastic relaxation

in such systems will be illustrated by exploiting the model discussed in Ch. 3 and will be re-

ported in Ch. 4. It is worth mentioning that the investigations of these systems inspired the

study of VHEs with grading in the Ge content which will be illustrated in Sect. 3.3.

The mechanism discussed so far is an important feature of another prominent example of

vertical heterostructures, i.e. the so-called nanowires. They consist of very high aspect-ratio

structures with a diameter of a few tens of nanometers. Examples of Ge nanowires [131, 132]

are reported in Figs. 2.4(e) and 2.4(f). They are known in the scientific community for the ex-

cellent properties related to quantum confinement, transport, and optical properties [140]. A

crucial role in these structures is played by the high-quality of their crystalline structures en-

sured by the small sizes. In the remarkable work by F. Glas [18], the lateral size of a coherent

system is determined according to the misfit between the epilayer and the substrate. Such an
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investigation demonstrates that for a given mismatch, under a certain basis value, dislocations

are not favored for any epilayer thickness. Then, when increasing the size, a critical condition

is always present, after which dislocations are inserted but with a critical thickness of the epi-

layer increased with respect to planar films. The main physical contributions behind this delay

of plastic relaxation are the same as the ones introduced for nanoheteroepitaxy, investigated in

Ref. [18] for nanowires (originally referred to as nanowhiskers). An analytic model leading to

similar conclusions can be found in Ref. [141]. After these works, other approaches have been

developed to better investigate the relaxation mechanism and provide more accurate predic-

tions as in Ref. [142] where the critical thickness for nanowires is determined by FEM simula-

tions, showing also a very good agreement with experimental data about nanowires coherency.

The method introduced in Ch. 3 can be considered as an alternative approach with respect to

the one in Ref. [142]. As discussed in Ch. 4, this method allows us to investigate and assess

several experimental systems where nanoheteroepitaxy is directly exploited to obtain coherent

structures.

2.5.2 Micrometer-wide VHEs

Micrometer-wide, self-aligned vertical heterostructures have been recently proposed as a so-

lution for most of the issues typically affecting heteroepitaxial growth [19, 20]. This result

was made possible by the out-of-equilibrium growth condition of the Low-Energy Plasma En-

hanced Chemical Vapor Deposition (LEPECVD) technique (see Sect. 2.2.3) combined to peculiar

deeply-patterned substrates made of Si pillars. Indeed, such a vertical growth was determined

by both the orientation-dependent incorporation rate and the mutual shielding of the incoming

material flux by the growing crystals. Typical growth conditions consisted in deposition fluxes

of∼4 nm/s and relatively low temperatures (400◦C-600◦C). The growth of crystalline materials

at these conditions is possible thanks to the formation of radical within the plasma and no need

to activate precursors at the crystal surface [112, 113]. A typical Si pillar-patterned substrate is

shown in Fig. 2.5(a), where 8 μm tall, 2×2 μm2 wide Si pillars, spaced by 2 μm trenches, are re-

ported [19]. This patterned substrate is shown in Fig. 2.5(a) and it is fabricated by deep reactive

ion etching (DRIE) based on the Bosch process [143]. The crystals obtained by the technique

mentioned above are shown in Fig. 2.5(b) and consists of 8 μm tall Ge crystals grown at 500 ◦C.

The VHE obtained by such a method show a peculiar faceting [20] which is strongly affected

by the deposition temperature. Scanning electron microscopy (SEM) images of the crystal top

obtained by deposition at two different temperatures are shown in Fig. 2.5(c) [20].

Despite misfit dislocations are inherently present in these VHEs due to the large sizes [18],

some important properties are achieved. They have been proved to allow for thermal strain

relaxation thanks to lateral free surfaces avoiding, in turn, the crack insertion. This mechanism

can be related to the one discussed in Sect. 2.5.1, acting on the thermal strain which is, at least,

one order of magnitude lower than the misfit strain relieved by dislocations. Moreover, X-

Rays measurements assessed the crystal quality which is comparable to the one of the bulk-

like material [19] and they can be arranged in order to exploit peculiar photoluminescence

features [144]. These systems also allow for defect managing in order to avoid the presence

of the dislocation threading arms reaching the top surface [21, 22]. Indeed, according to the
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Figure 2.5: Micrometer-wide VHEs. (a) Perspective SEM image of Si pillars prior to deposition and (b)
color-enhanced perpective SEM image of 8 µm tall Ge crystal grown on 8 µm tall, 2×2 µm2 wide Si
pillars (adapted from [19]). (c) Typical top-morphologies as resulting by the out-of-equilibrium growth
process by LEPECVD at low temperature (LT), i.e. T = 450 ◦C, and at high temperature (HT), i.e.
T = 500 ◦C (adapted from Ref. [20]). (d) AFM scan of the top of Ge crystals, after etching procedure to
highlight the presence of defect at the surface. Pyramidal morphology (top) is found to have no surfacing
dislocations while they are observed for crystals with a flat top surface (bottom) (adapted from Ref. [21]).

growth temperature, the faceting of the crystal top can be finely tuned [20], as also shown

in Fig. 2.5(c), and dislocations may be forced to bend towards lateral surfaces. The proof of

this concept is given in Ref. [21] and it is shown in Fig. 2.5(d) by atomic force microscopy

(AFM) images. All the properties mentioned here, in particular for what concerns thermal

strain relaxation, are proved to hold also for multilayer systems, allowing for the integration of

other semiconductors such as GaAs [35, 38] (see also Sect. 4.5).

Despite the good properties of VHEs at the micron scale, the presence of misfit dislocations

still represents an important limitation for applications. The investigation on how it is possible

to remove such defects, mainly exploiting the concept of Sect. 2.5.1, is the main motivation of

the modeling reported in Ch. 3 [28]. The experimental proof of the theoretical results is also

discussed in Sect. 4.4 [40].

For many applications to electronic systems, the use of planar layers would be preferred

with respect to isolated crystals arranged in VHEs. However, Ge/Si film grown with standard

techniques have poor quality and VHEs offer a viable path towards a significant improvement

of material quality. The realization of a suspended film with the peculiar properties of microm-

eter VHEs would then be the solution. This represents the main subject of the investigation

reported in Ch. 6 [39, 41], provided thanks to the modeling reported in Ch. 5.
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Modeling of elasticity and plasticity

onset in VHEs

The micrometer-wide VHEs introduced in Sect. 2.5 show peculiar properties in terms of mor-

phology and elastic relaxation. However, despite these structures have been widely inves-

tigated both theoretically and experimentally, some important questions are still open. An

important challenge consists in the design of VHEs where, not only a vanishing threading dis-

location density is obtained at the top [21, 22], but also misfit dislocations are missing at the

interface with Si. In the work by F. Glas reported in Ref. [18], it has been demonstrated that,

under certain lateral sizes dependent on the misfit between the epilayer and the substrate, it

is possible to avoid the presence of misfit dislocations. However, such a condition is usually

reached at the nanoscale and different concepts, exploiting the finite lateral sizes combined

with other effects, should be inspected in order to further extend the sizes of fully-coherent

structures.

In this chapter, we illustrate the detailed modeling of the competitive relaxation mecha-

nisms in Ge/Si VHEs, presented in Ref. [28]. In particular, a quasi-3D method is introduced,

allowing us to provide a wide investigation of the coherency limits for Ge on Si VHEs. The anal-

ysis of a single Si1−cGec layer is discussed and then extended to multilayered configurations

with increasing Ge content from the Si pillar towards the epilayer. The results are explicitly ob-

tained for a few hundreds of nanometer-wide structures. However, they are also generalized

in order to design coherent structures for larger sizes (see in particular Sect. 3.3.1). Finally, a

model is also proposed for the investigation of thermal strain relaxation in planar systems, as

it exploits the developed framework for the evaluation of plasticity onset and delivers general

information on Ge/Si systems (also recalled in Ch. 6).

The application of the theoretical modeling to some real, nanometric VHEs will be reported

in Ch. 4 along with the design of micrometer-wide VHEs and their assessment by means of

dedicated experiments.

37
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Figure 3.1: Modeling of single-layer VHEs for the investigation of elastic properties. (a) Schematic
representation of the whole structure. (b) Cross-section reporting the main parameters and the boundary
conditions for the mechanical equilibrium. (c) Illustrative map of the hydrostatic stress field, in the case
of a coherent, Ge on Si VHE with B = 25 nm. The regions with σxyz > 1 GPa (red) and σxyz < −1

GPa (blue) are shown. (d) Elastic field obtained after inserting a straight 60◦ misfit segment in the VHE,
at the Ge/Si interface. The total (misfit+dislocation) hydrostatic stress is shown in four representative
transversal sections of the VHE.

3.1 Model description
The modeling of the elastic relaxation in three-dimensional structures has been considered by

exploiting the linear elasticity theory introduced in Sect. 1.1. For the sake of simplicity we con-

sider here a simplified VHE, with a parallelepipedal shape, made of a Si1−cGec epilayer on a

Si pillar, as depicted in Fig. 3.1(a). A ”large” Si substrate underlying the Si pillar is then con-

sidered. This choice of a structure with a simplified shape allows the physics of the system to

be investigated, focusing on main features such as the lateral size, the thickness of the epilayer

and the Ge content of Si1−cGec alloys. This is justified as details of the surface morphology are

not found to play a significant role in the elastic strain relaxation of VHEs [145]. However, pos-

sible refinements of the model will be discussed with the investigation of specific real systems

in Ch. 4.

The competition between pure elastic and plastic relaxation is investigated by following

an energy criterion, similar to the one mentioned in Sect. 2.3.2 for the derivation of the critical

thickness. It consists in the evaluation of the formation energy ∆G for the dislocation insertion

∆G = Gdislo −Gcoh, (3.1)

where Gdislo and Gcoh are the total elastic energy of the VHE with (not coherent) and without

(coherent) the dislocation, respectively. When ∆G < 0, the presence of the dislocation is fa-

vored, so that plasticity sets in. On the contrary, if ∆G > 0 the insertion of the dislocation

would increase the total energy, i.e. the dislocation is not expected and the structure results

coherent. ∆G = 0 represents the critical condition for the insertion of dislocations. We define

critical parameter each value p̄ at which ∆G(p̄) = 0. If p̄ = h, the condition ∆G(h = h̄) = 0

defines the critical thickness h̄. An explicit expression for a flat film can be found in Eq. (2.8).
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In order to compute the formation energy in Eq. (3.1), the elastic field within the structures

should be determined. The stress originating from the misfit between the epilayer and the Si

pillar σhet can be computed from Eq. (1.13) by considering an initial eigenstress, defined by

Eqs. (1.17) and (1.18), as:

[σ∗het]ij = −cεmCijklδkl (3.2)

with εm the misfit strain from Eq. (2.3) and c is the Ge content. Notice that such an eigen-

stress vanishes in the Si pillar as c = 0, and corresponds to an eigenstrain ε∗ij = −cεmδij . The

elastic constant tensor is assumed to be isotropic as defined in Eq. (1.5). The Vegard’s law is

adopted when considering Si1−cGec alloys, with a linear interpolation for the elastic constants:

E(c) = cEGe + (1− c)ESi and ν(c) = cνGe + (1− c)νSi. According to the presence of many free

surfaces, the solution of the mechanical equilibrium is computed by FEM, imposing the bound-

ary conditions (BCs) as illustrated in Fig. 3.1(b): Dirichlet BC with ui = 0 from Eq. (1.15) at the

bottom of the Si substrate (i.e. fixed BC), gliding BC from Eq. (1.16) for the lateral sidewalls

of the silicon substrates, and free-surface BC from Eq. (1.14) for all the other boundaries of the

geometry. An illustration of the stress field resulting from the FEM simulations is reported in

Fig. 3.1(c). In this figure, the hydrostatic stress σxyz = σxx+σyy+σzz is shown forB = 25 nm by

means of the regions where σxyz > 1 GPa (red) and σxyz < −1 GPa (blue). Notice that the stress

is localized at the interface between the epilayer and the Si substrate. Moreover, a symmetric

redistribution of deformation with the substrate is achieved.

When a dislocation is present, the elastic energy can be evaluated as proposed in Ref. [146].

The mechanical equilibrium is considered by adding to σ∗het an additional eigenstress σ∗dislo =

−σ? with σ? the elastic field of a dislocation in bulk (as defined in Sect. 1.2.1), i.e.

σ∗tot = σ∗het + σ∗dislo. (3.3)

In particular, a 60◦ dislocation is considered as its nucleation is always favored in Si1−cGec/Si

systems with respect to other dislocation types (as discussed in Sect. 2.3.1). A dislocation line

along ` = [110] direction is considered, with Burgers vector of the type b = a/
√

2〈101〉 [146] as

discussed in Sect. 2.3.1. In all the calculations, we selected a coordinates system with one axis

parallel to the dislocation line and the vertical axis along the [001] direction.

In order to carefully describe the presence of a dislocation in the full 3D geometry of the

VHE, a complete, 3D description of the dislocation line should be, in principle, required. This

is a complex task as the elastic field in the heterostructure varies a lot from the center of the

structure towards the sidewalls, as shown in Fig. 3.1(c), and the proper dislocation geometry

is not generally known. We consider first a prototypical full-3D straight dislocation at the in-

terface, and the resulting elastic field is shown in Fig. 3.1(d) where the central cross-section

perpendicular to the dislocation line is reported, together with other representative transversal

sections. It can be noticed that the superposition of the heteroepitaxial and the dislocation elas-

tic field varies a lot according to the distance to the lateral free surfaces. Moreover, the larger

plastic relaxation is provided in the central cross-section. This results in a lower formation en-

ergy at the center with respect to the regions close to the sidewalls. Therefore, even if in the

central section a negative formation energy is obtained, ∆G may be positive when consider-
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Figure 3.2: Investigation of the plasticity onset. Quasi-3D approach illustrated by means of hydrostatic
stress maps shown in the central section of the 3D parallelepipedal shape: (a) σdislo computed in the 2D
section, (b) σhet extracted from the 3D calculation, (c) superimposition of elastic fields reported in panels
(a) and (b). ∆G defined in Eq. (3.1) is the difference in energy between the deformation observed in
panels (c) and (b). B is set here to 80 nm. (d) Curves of the critical base values with quasi-3D approach
(red circles) and with a full 3D dislocation segment (blue squares), as function of c.

ing the entire volume. The energy for a full dislocation segment crossing the whole structure,

hence, may be too high also when a small dislocation segment is favored within the structure.

So that the full treatment of the dislocation may lead to an underestimation of the tendency

towards plasticity. In addition, it is worth mentioning that the description of a full disloca-

tion line within a three-dimensional structure is computationally demanding and this does not

allow to perform a large number of calculations to determine the most probable configuration.

In order to overcome such a theoretical and numerical limitations, we focused our attention

on the central cross-section perpendicular to the dislocation line. Indeed, evaluating the ∆G in

this region corresponds to inspect the lower formation energy within the structure, thus pro-

viding information about the very first plasticity onset without considering the full geometry

of the first dislocation. The main steps of the method, summarized in Figs. 3.2(a)-3.2(c), are:

1. Calculate the elastic field resulting from the misfit stress relaxation in the full-3D VHE, as

in Fig. 3.1(c).

2. Extract the elastic field in the 2D central slice, as in Fig. 3.2(b), and compute the corre-

sponding Gcoh per unit length.

3. Calculate the exact elastic field in the 2D slice for an infinite dislocation perpendicular to

the plane. Its line is set to be at the center position as shown in Fig. 3.2(a).

4. Compute the elastic energy Gdislo as resulting from the superposition of σhet and σdislo,

as in Fig. 3.2(c).

5. Compute ∆G from Eq. (3.1).
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The ∆G obtained by this quasi-3D procedure is defined in a 2D domain corresponding to

the central cross-section and its values are expressed in terms of an energy per unit length, i.e.

negative values for this ∆G actually corresponds to the tendency of an infinitesimal misfit seg-

ment to elongate. From this point of view, this method can be considered as a direct extension

of the classical approaches to evaluate critical parameters for planar structures [86, 115].

3.1.1 Interpretation of simulation results

Dislocation segments, even if localized at the center of the structure, have always finite dimen-

sions. Therefore, being limited to the central slice actually leads to an overestimation of the

tendency towards plasticity. Indeed, if ∆G . 0 in the central slice of the VHE, it may happen

that a small elongation of the misfit segment toward the sidewalls would bring the dislocation

in a region with lower stress value (see Fig. 3.1), where ∆G > 0, and host a linear defect within

the structure may result not convenient. However, as previously discussed, the full 3D prob-

lem, where a straight 60◦ dislocation segment is put at the interface with a total length equal

to the VHE base value, is known to overestimate the critical size B̄(c). The latter approach

likely represents the final configuration of a loop nucleated at the center of the structure, which

deposited its misfit segment up to completely expel the threading arms.

Let us consider what should happen in real systems. Both the two approaches would rep-

resent two limiting cases, as dislocations are not formed by an infinitesimal misfit segment at

the center of the structure and, at the same time, they can hardly be present as full straight seg-

ments, exactly placed at the center of the structure. According to this, the real plasticity onset

should be expected within the two limiting cases. The curves in Fig. 3.2(d) report the critical

B values obtained with the two approaches as function of c. Notice that their values differ by

a factor 1.2 − 1.5. Moreover, the quasi-3D approach leads to lower estimations for B̄(c) with

respect to the calculation with the full 3D modeling of the dislocation. In the following, to pro-

vide estimations of the plasticity onset, we solely use the faster quasi-3D approach. Being an

underestimation, it will allow to determine with a high degree of reliability the coherency of

heterostructures. It is worth mentioning here that we are generally interested in systems with

high misfit, i.e. high Ge content, where a good agreement between experimental data and ther-

modynamic predictions is usually obtained [115]. When misfits are low, the thermodynamic

estimation is weaker, as nucleation mechanisms and kinetic barriers for dislocation insertion

are expected to play an important role, further delaying the plasticity onset [86, 123]. However,

quantitative lower values of B̄(c) are interesting also in this case, providing the indication of

the worst scenario in order to achieve the growth of coherent structures.

3.1.2 Computational details

The domain adopted for FEM calculations consists of an ideal infinite substrate under the pillar

structure made of the silicon support and the overlayers. The substrate, illustrated as a small

parallelepiped under the VHE in Fig. 3.1(a), was chosen five times wider and higher than the

pure Si pillar. The aspect-ratio of the latter is set in order to ensure the limit of infinitely-tall Si

pillar, i.e. no significant deformation reaches the Si substrate. In particular, an aspect ratio equal

to five is used (we directly verified that for hSi/B & 1.5 the results are already independent of
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the Si pillar height, in agreement with Ref. [18]).

A strongly non-uniform space discretization has been adopted. Finer mesh has been con-

sidered close to the dislocation line with respect to other regions, in order to better describe

the strong inhomogeneity of the elastic field induced by the linear defect. For all the simula-

tions, the mesh has been selected by checking the convergence of the numerical method. When

considering an eigenstress σ∗dislo corresponding to the bulk elastic field for a dislocation, a spu-

rious contribution may appear due to the presence of fixed and gliding boundary conditions.

Indeed, dislocations in bulk are found to have a long-range elastic field (see Sect. 1.2). To avoid

such contributions, σ∗dislo is set to be the elastic field of a dislocation dipole where an image

dislocation is considered, mirrored with respect to the upper free surface [28].

In order to provide h̄ values, the epilayer thickness has been sampled ensuring an height-

to-base aspect-ratio range, AR = h/B, from AR ∼ 0 up to AR = 1.5. Beyond such a value,

indeed, any further material added on top is fully relaxed and does not contribute to the elastic

energy (see also Ref. [18]). If ∆G > 0 when AR = 1.5, we consider that the plastic relaxation

is not favored by further increasing the epilayer thickness. B̄ values are instead evaluated by

varying the base fromB ∼ 0 up to the value which satisfies ∆G(B) = 0 with an epilayer aspect

ratio equal to 1.5 as well. This sampling of the parameter space is adopted also for the epilayer

in multilayered VHEs (see Sect. 3.3). In all the calculations, isotropic elastic constants are used

as in Sect. 2.2. Solutions of the equations defined by (1.13) and by boundary conditions (1.14),

(1.15) and (1.16) were calculated by using the commercial FEM package Comsol Multiphysics.

3.2 Single-layer heterostructures

The first target for the evaluation of the coherency limits in VHEs is the investigation of the

plasticity onset in single, Si1−cGec epilayers on a Si(001) pillar. In particular, the critical thick-

ness of the epilayer is evaluated by varying B and c. Moreover, the critical base B̄ at which

∆G(h) is always positive for any thickness of the epilayer is determined. Fig. 3.3 summarizes

all the information obtained by such calculations and can be seen as a phase diagram for the

VHE as a function of the lateral size and the Ge content in the epilayer. The solid red curve

shows the critical base values as a function of c. Under such a curve, the VHE is predicted to be

always coherent. Over the B̄(c) curve, the formation energy shows negative values provided

that h ≥ h̄, i.e. once the critical thickness is reached. Isolines of h̄ values are shown by dashed

curves.

In order to appreciate all the information reported in Fig. 3.3, let us focus our attention on

a fixed value of c. For small values of B, the system is always coherent. Then, by increasing

the base value, the B̄(c) curve is reached. Over such a curve, the critical thickness has a larger

value than the film configuration. Indeed, the relaxation provided by lateral free surfaces is not

sufficient to prevent dislocation insertion but it still induces a delay of plastic relaxation. For

large B values in the limit of B →∞, the critical thickness of the film is recovered.

The same discussion applies to the Ge content influence in a structure at a fixed B value.

For small Ge content, the misfit is low and dislocation insertion is not favored. Then, the critical

base curve is reached, here considered as c̄(B). For c > c̄ a critical thickness is obtained and it
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Figure 3.3: Critical parameters for dislocation insertion as function of the Ge content c and of the pillar
base B. The solid red curve represents the critical base values B̄(c). A dislocation-free VHE is predicted
for any point under such a curve. Critical thickness h̄(c,B) isolines are shown by means of dashed lines,
their values are expressed in nm.

decreases for higher Ge content up to the c = 1 case.

The results discussed here, well reproduce the behavior discussed by Glas in Ref. [18] and

by Ertekin et al in Ref. [141]. However, some differences can be noticed, especially for what

concerns the quantitative estimations. For instance, the critical base predicted here for coherent

pure-Ge VHEs is ∼40 nm, which is about a factor 2 smaller than the value reported in Ref. [18].

Actually, in such a work, a semi-analytical approach was developed and some differences can

be easily recognized. First, the shape of the VHE is modeled with a different geometry (par-

allelepipedal here and cylindrical in Ref. [18]). Second, different elastic constants are used,

but this difference is expected to play only a very marginal role. It is worth to recall that the

quasi-3D method adopted here is known to provide underestimation of critical parameters.

However, an important improvement of this method with respect to the literature is that we

are treating free surfaces exactly and their influence on both heteroepitaxial and the dislocation

elastic field is carefully accounted for. In Ref. [142], a similar approach exploiting FEM sim-

ulations is reported, yielding to a similar critical curve for a different system (InGaAs/GaAs

nanowires). Dedicated simulations including material parameters similar to the one adopted

in Ref. [142] led, indeed, to very similar results, assessing the reliability of our FEM approach.

In order to provide an easy way to extract results from Fig. 3.3, concerning in particular the

B̄(c) values, we fitted the numerical results with interpolating curves. An almost perfect fit is

obtained using the following expressions, yielding the dependence of the critical base B̄ on the

Ge content c:

B̄(c) =
k1

c
+
k2

c2
+ (B̄c=1 − k1 − k2), (3.4)
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with k1 = (55.2 ± 0.3) nm and k2 = (2.52 ± 0.06) nm as best-fit parameters. B̄c=1 = (35.6 ±
1.0) nm is the critical base for a Ge-pure epilayer, as directly calculated by simulations. On the

other hand, also the critical Ge content c̄ (beyond which plasticity sets in for an assigned base

value B) can be written by a similar semi-analytical expression as

c̄(B) =
B̄c=1k

′
1

B
+

(B̄c=1)2k′2
B2

+ (1− k′1 − k′2), (3.5)

where k′1 = 1.31± 0.01 and k′2 = −0.38± 0.01.

3.3 Multilayered heterostructures

From the investigation reported in Sect. 3.2, it can be noticed that VHEs made of pure Ge on

Si are likely to be plastically relaxed above a lateral size of B̄ ∼ 40 nm. This is an intrinsic

limit which can hardly be overcome in the single-layer configuration. Looking to the results

shown in Fig. 3.3, however, it is clear that the key in order to increase the h̄ or B̄ values is to

provide a lowering of the effective misfit across the interface. In single-layer VHEs, it can be

obtained only by means of the lowering of the Ge content. However, the elastic fields provided

in Figs. 3.1(c) and 3.2(b) shows that for an AR of the epilayer larger than 1-1.5, full relaxation

is achieved at the top of the structure, as also stated in Ref. [18]. Therefore, for a given base

values B, a Ge content c < c̄(B) can be grown providing a coherent first layer, which reaches

full relaxation for large thicknesses. Then, another layer can be added, ensuring a coherent

structure provided that each change in the Ge content between layers is lower than the critical

value c̄(B). Notice that, in this discussion the differences in the elastic constants are neglected,

as they are found to play only a minor role. In this section, exploiting the method and the main

concepts discussed above, we investigate the plasticity onset in VHEs made of multilayers with

increasing Ge content.

Let us start with the structure illustrated in Fig. 3.4(a), where all the parameters setting the

geometry of the VHE with a single buffer layer are illustrated. c represents the Ge content in

the buffer while ARBL is its height-to-base aspect-ratio. Selecting an epilayer with pure Ge

content allows us to focus on the structure where the highest misfit should be accommodated

by the buffer insertion. In Figs. 3.4(b)-3.4(d), we show the hydrostatic stress field of a pure Ge

epilayer on Si with a Si0.5Ge0.5 layer in between (no B values are specified here as the elastic

field is self-similar). Different ARBL are considered. The presence of a buffer layer modifies the

stress field within the structure and, for thick enough buffers, two interfaces appear showing

tensile and compressive lobes. Notice that such lobes are independent with ARBL = 0.8 while

they interact for ARBL = 0.4.

In order to evaluate the plasticity onset, we compute the formation energy ∆G putting a

dislocation at the center of the structure as made for the single-layer VHE. Now, two interfaces

are present with also a non-trivial elastic field superposition in the buffer layer. Our aim is to

provide the limit for coherency of such a two-layer structure so that the Ge content of the buffer

layer is chosen in order to be coherent according to the results shown in Sect. 3.2 and described

by Eq. 3.5. To obtain a coherent structure with B = 75 nm, for instance, c can be chosen lower

than c̄(75) = 0.6 while, if B = 150 nm, c should be lower than c̄(150) = 0.36. Therefore, the
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Figure 3.4: Single buffer-layer configuration. (a) Schematic representation and parameters. The hy-
drostatic stress field in Ge/Si0.5Ge0.5/Si structures is shown for (b) ARBL = 0, (c) ARBL = 0.4, (d)
ARBL = 0.8. The color map shows σxyz in the central cross-sections of the full 3D structures.

plasticity onset will be investigated in the details at the interface between the epilayer and the

buffer, as sketched in Fig. 3.4(a), exploring configurations with c < c̄(B).

In Fig. 3.5, the critical thickness h̄(c) for a pure Ge epilayer on a BL with Ge content c is

shown, as a function of ARBL. It is worth mentioning here that with dislocations, the self-

similarity is broken and the results in terms of critical parameters also depend on the base

size, at variance with elastic field distribution in coherent structures as in Figs. 3.4(b)-3.4(d).

In order to make clear the information in Fig. 3.5, let us focus first on Fig. 3.5(a). The base

is set to B = 75 nm so that, as mentioned before, c < 0.6 to ensure coherency at the first

interface. In the limit of ARBL → 0 the critical thickness of the pure Ge epilayer is unaffected

by the buffer Ge content and it corresponds to the value of h̄(B, 1) which can be read from

Fig. 3.3. For ARBL → ∞, well represented with ARBL > 1, the h̄ corresponds to the one of an

alloy Si1−c′Gec′ where c′ = 1 − c (the values do not match exactly due to different the elastic

constants with respect to the Si1−c′Gec′ on Si case). So that the higher is c the lower is the misfit

to relieve between the epilayer and the buffer. Moreover, for c > 0.3 the formation energy is

always positive so that the structure is coherent. A more complex behavior is recognized for

intermediate ARBL values. h̄ slightly increases for low values of c, while a strong increase is

observed for higher c values also leading to coherent structure even for c = 0.3. This behavior

can be explained by looking at the elastic field in Fig. 3.4(c). For ARBL ∼ 0.4 the lobes with

opposite sign tend to cancel within the BL. Therefore, the buffer layer is partially relaxed with

a lowering of the elastic energy gain in the introduction of a misfit dislocation at the interface.

For c > 0.4 the effect is also present but it is hidden as for large aspect ratio the structure is still

found to be coherent as mentioned before. This behavior for intermediate ARBL values can be

very helpful as it ensures that the condition for high ARBL is satisfied without growing a thick

buffer layer, with an important save of material.

For larger basis, the behavior is qualitatively the same, with the features observed in Fig. 3.5(a)

occurring at different values of c. In Fig. 3.5(b), h̄ as a function of AR is shown for B = 100 nm.
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Figure 3.5: Critical thickness of Ge epilayer grown on Si with a buffer layer. h̄ values are plotted as a
function of ARBL: (a) B = 75 nm, (b) B = 100 nm, (c) B = 150 nm. Different curves are obtained by
varying the Ge content c in the BL, as illustrated in the panels.

The buffer layer Ge content is chosen lower than 0.5 according to the coherency limit c̄(100) ∼
0.49. Notice that in this case a fully coherent Ge epilayer can be obtained only with c = 0.4

and ARBL ∼ 0.4. So that this base represents a limit in order to obtain coherent Ge epilayer in

a two-layer structure. The same calculation performed for B = 150 nm (with c < c̄(150) and

c̄(150) ∼ 0.36) are reported in Fig. 3.5(c). It is evident that the critical thickness of the pure Ge

epilayer can be raised only up to ∼ 5 nm. All the effects mentioned before are present, but the

full coherency is never reached. Notice that the maximum in the critical thickness is always

located at ARBL ∼ 0.4 in Fig. 3.5 and this value seems to be not affected by the size of the

structure and by the Ge content of the buffer layer. This suggests that it consists of a geometri-

cal effect at which the most efficient interaction between elastic lobes within the buffer layer is

realized.

From the results reported so far we can conclude that with a single buffer layer we can

extend the limit of coherency for pure Ge epilayer from .40 nm (see Fig. 3.3) to ∼100 nm (see

Fig. 3.5).

3.3.1 Recipe for coherent, multilayered VHEs

The effect induced by the presence of a buffer with an intermediate SiGe alloy can be general-

ized by the insertion of further BLs. The aim here is to provide a recipe for the achievement of

coherent structures at any arbitrary width of the VHEs. In particular, we focus our discussion

on a constant increase of the Ge content moving from the Si pillar toward the pure Ge epilayer.

So that, for a given Ge content c of the first buffer layer, the n-th layer should have a Ge con-

tent nc. A simple three-layer structure including two buffer layers and the pure Ge epilayer

is sketched Fig. 3.6(a). Let us consider the last case discussed in Fig. 3.5 where B = 150 nm,

i.e. a lateral size which does not allow the growth of coherent Ge to be achieved with only one

buffer layer. For this size, c̄(150) ∼ 0.36 from Eq. (3.5). By setting two buffer layers with a Ge

content equal to c = 0.35 and 2c = 0.7 respectively, the final misfit between the pure Ge layer

and the last buffer layer should be equivalent to the one of a c = 0.3 alloy on Si, ensuring, in

turn, coherency.

In order to confirm such an argument, in Fig. 3.6(b) the formation energy ∆G for a dislo-
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Figure 3.6: Multilayered configuration with two buffer layers. (a) Schematic representation and param-
eters. (b) Formation energy for a dislocation in the Ge epilayer is shown as function of the Ge content
parameter c with B = 150 nm. Two different values of ARBL are considered: 0.4 (solid line) and 1.5
(dashed line).

cation at the last interface (as sketched in Fig. 3.6(a)) is reported for different values of c. Two

curves are considered corresponding to the limit of infinitely thick buffer layer, ARBL = 1.5,

and to the aspect ratios which ensured an enhancement of critical thickness, i.e. ARBL = 0.4 as

discussed for the results in Fig. 3.5. The thickness of the pure Ge epilayer is set to achieve the

infinite thickness limit (hepi/B ∼ 1.5), in order to investigate the critical condition in terms of

∆G(c) = 0. Our prediction about coherency for the pure-Ge epilayer is confirmed as positive

formation energy is obtained with c = 0.35, for both the ARBL values. Moreover, the value

of c at which ∆G = 0, is approximately halved with respect to the single-buffer configura-

tion. Selecting ARBL = 0.4 allows the critical Ge content to be still lowered, confirming that

the enhancement mechanism, due to elastic lobes compensation, is still present in multilayered

structures. However, its effect on the shift of c is weak.

It can be easily inferred that beyond a certain B value, two buffer layers are not enough to

provide full coherency. However, a different number of buffer layers with arbitrary Ge contents

can be selected. In order to design a coherent structure with an arbitrary base B, we should

ensure that the increase of the Ge content between consecutive layers is lower than c̄(B). This

is actually valid by assuming ARBL > 1 and it is a conservative criterion for ARBL > 0.4. The

number of buffer layers nBL required to reach a pure Ge epilayer (c = 1) is then

nBL(B) =
1

c̄(B)
− 1, (3.6)

The ceiling function dnBL(B)e should actually be considered as we are dealing only with dis-

crete values of nBL. The previous results indicate that with ARBL ∼ 0.4 the number of buffer

layers can also be lowered. A similar effect should be present when considering the change in

the elastic constants, softer when increasing the Ge content. Despite the main physics is already

contained in the present discussion, such refinements of the results may be an interesting work

of optimization, really helpful for the realization of such a structures.
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Figure 3.7: Elastic fields during the growth of a pure Ge epilayer. The hydrostatic stress field is reported
for different AR values of the Ge layer: (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, (e) 1.0.

3.4 Ideal dislocation positioning

In Sect. 3.1 we introduced the quasi-3D approach with the assumption on the dislocation posi-

tion at the center of the structure. In general, the global energy minimization for the dislocation

insertion would require a sampling of different position at the interface in order to determine

the lowest formation energy. However, we recall that the calculation of each h̄ value, as shown

for instance in Fig. 3.3, required several evaluations of ∆G. For any fixed value of c and B,

different h values should be sampled to solve ∆G(h ≡ h̄) = 0, and also with optimized algo-

rithms (as, for instance, with bisection procedures) the addition of another parameter would

significantly limit the sampling of the parameter space. So that we fixed the position at the

interface in the central position (CP, xdislo = 0). In this section, the minimum-energy position

(MP) for the dislocation is discussed, focusing on the interesting case of B = 75 nm, analyzed

in Fig. 3.5(a). In particular for any thickness sampled for the evaluation of h̄, MP is searched by

moving the dislocation along the interface.

In order to begin our analysis, let us look more in the details at the equilibrium elastic

field within the considered VHEs. In Fig. 3.7(a) the hydrostatic stress σxyz is shown for various

height-to-base pure-Ge epilayer (AR). Notice that, finding a stress/strain distribution which

satisfies the mechanical equilibrium equation is a self-similar problem. The field in the epilayer

region strongly depends on the distance from the top free surface. For ARepi ∼ 0.3 − 0.7,

a tensile region is also present in the upper portion of the epilayer. This will be key for the

following discussion.

In Fig. 3.8(a), the MP is shown by filled circles (and a solid guideline) as a function of AR.

For very small AR values CP∼MP∼0, i.e. the central position also provides the minimum

energy for the dislocation at the interface. This is due to the film-like structure obtained for

thin epilayers and every position at the interface, far enough from free surfaces, leads to similar

energy values. For ARepi & 1 the correspondence CP∼MP is still obtained but for a different

reason. Fig. 3.7(e) clearly shows compressive and tensile lobes of σxyz which are symmetric.

The higher stress values are located exactly at the center of the structure so that in order to

maximize the relaxation the dislocation is favored in CP. Intermediate AR values show the
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Figure 3.8: Insights on the ideal dislocation positioning. (a) Minimum energy position MP (expressed
as relative position with respect to the central position CP), as function of AR. The base value is set to
B = 75 nm. Filled circles (with a solid guideline) show the single-layer case with a pure Ge epilayer.
Open circles show the case of a pure Ge on a BL with ARBL = 1.5 and c = 0.3. Open squares show the
case of a pure Ge on a BL with ARBL = 0.25 and c = 0.3. Comparison between the ∆G values obtained
for a dislocation in CP (solid curve) and in MP (open circles with guidelines) are shown for a pure Ge
layer with B = 75 nm on: (b) pure Si pillar, (c) BL with ARBL = 1.5 and c = 0.3, (d) BL with ARBL = 0.4

and c = 0.3, (e) BL with ARBL = 0.25 and c = 0.3, (f) BL with ARBL = 1.5 and c = 0.5.

most intriguing behavior. A shift of the MP with respect to the CP is clearly evidenced towards

the right sidewall (the direction of this shift is actually related to the specific choice of the 60◦

dislocation, considered here as in Fig. 3.2(a)). This can be interpreted by using stress maps of

Fig. 3.4(b) together with dislocation stress shown in Fig. 3.2(a). With intermediate AR values,

the stress lobes due to the misfit are not symmetric. A central position for the dislocation would

lead to an expansion also in the upper part which is mostly relaxed even with a slightly tensile

region. A shift to the right side lowers this effect while assuring even a better relaxation of the

strong tensile region below the Ge/SiGe interface.

In Fig. 3.8(b) the solid line represents ∆G as a function of AR for the central position. The

stress distribution and its evolution with the thickness of the epilayer (see Fig. 3.7) leads to

a non-monotonous behavior with an increase of ∆G when the tensile stress is present for in-

termediate AR. The curve reporting the formation energy obtained with dislocation in MP is

also shown with open circles. When this position coincides to CP (see above) at low and high
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AR values, ∆G curves overlap. As expected, a difference is seen for intermediate AR values.

Notice that the h̄ estimation remains unaltered. Most of the calculation concerning the critical-

thickness reported in Fig. 3.3 actually corresponds to very low AR values (i.e., h̄/B values).

Therefore, most of the results reported in the previous sections for the single-layer heterostruc-

ture fall in the regime where CP and MP (almost) coincide. The disagreement between CP and

MP can be appreciated for a thin region very close (practically coincident) to the critical base

(where the thickness rapidly goes to ∞ also exploring the intermediate AR values), thus not

affecting the reported results.

Let us now consider a multilayered VHE with a single BL. In this case, the analysis be-

comes more complex, as we need to check the role of both ARBL and AR. In Fig. 3.8(a), we also

reported the MP obtained for a pure Ge epilayer put on a buffer layer. Two different ARBL

values, ARBL = 0.25 (open circles) and ARBL = 1.5 (open squares), are considered as these

values leads to qualitatively different stress distributions as shown in Fig. 3.4(b)-3.4(d). For the

thick BL, results in terms of MP coincide with the single-layer case as the elastic field are still

symmetric. Instead, for ARBL = 0.25 (chosen as it was the case showing the most interesting

evidence) a more complex behavior appears with two shifts occurring in opposite directions,

depending on AR. Moreover, the one observed for large AR is expected to be permanent for

larger thicknesses. This behavior can be explained by considering the effect of the buffer layer

on the elastic field at different thicknesses of the epilayer. For low AR, with or without the BL,

a top film-like configuration is obtained (see Fig. 3.7), and MP∼CP as mentioned before. For

intermediate AR values, the effects of the elastic relaxation become important, inducing a shift

in a positive direction, as previously discussed as well. By increasing AR further, the tensile

stress at the upper surface vanishes as shown in Figs. 3.7(d) and 3.7(e) but the elastic field at the

interface is still affected by the buffer layer contribution, dominated by the superposition of the

lobes with opposite sign, as discussed in the main text and qualitatively shown in Fig. 3.4(c).

Here the symmetry breaking is induced by the stress state within the buffer. Indeed, a dislo-

cation in CP would induce a compressive lobe in a region which is significantly relaxed within

the buffer layer (see again Fig. 3.4(c)). A shift to the left leads to a reduction of this effect, also

yielding a better relaxation of the tensile heteroepitaxial field in the epilayer (with a mirrored

situation with respect to the effect for the single layer at intermediate AR).

In Figs. 3.8(c)-3.8(f) the deviation in the formation energy due to these shifts is analyzed as

in Fig.3.8(b). Although the ∆G results different in MP and CP for some AR, we are however

interested in the evaluation of h̄, i.e. the condition ∆G = 0. The curves with dislocation in

CP and MP show a good agreement with such a condition, except for ARBL = 0.25. In this

case by considering the ∆G(h) = 0 intercept, we obtain the plasticity onset at AR ∼ 0.6 for

CP and at AR ∼ 0.15 for MP which means, in terms of explicit critical thickness values for the

considered B = 75 nm structure, a shift from h̄ ∼ 45 nm (CP) to h̄ ∼ 11.25 nm (MP). This

is a significant shift in the absolute values. However, it should be noticed that this difference

occurs in the proximity of the critical transition (not-coherent - coherent). Any variation of

other parameters, e.g. ARBL, would lead to a shift of both the curves in Fig. 3.8(e), delivering

again a good agreement between the ∆G = 0 condition with dislocation in CP and MP.
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We can actually conclude that the choice of a fixed dislocation in CP, only affects configu-

rations very close to critical transition, which represent a very limited portion of the sampled

cases. Moreover, all the conclusions in terms of the delay in plastic relaxation and managing of

buffer layer configurations hold as discussed in the previous section.

3.5 Modeling of crack insertion

As discussed in Sect. 1.2.2 the crack formation in films can be generally related to the balance of

two energy contributions: the surface energy cost in creating free surfaces within the film and

the elastic energy release, the latter widely investigated for the evaluation of the plasticity onset

in VHEs reported above. Here, exploiting the theoretical tools introduced so far, we provide

a simplified investigation of this energy balance delivering some general, useful trends (also

used for the discussion about the material quality of merged VHEs in Sect. 6.3.4).

Let us consider a regular crack net with spacing L in an infinite film as shown in Fig. 3.9(a),

as the fractures usually occur with some degree of periodicity across the surface [124]. This

is an approximation, as it is observed after a certain thickness above the critical one for cracks

insertion. Indeed, the nucleation of cracks is known to be heterogeneous and in close-to-critical

conditions an asymmetric distribution can be observed [147]. The single crack is considered as

an infinitesimally wide gap occurring from the upper free surface of a (001) film to the Ge/Si

interface and we assume that it generates perfect {110} planar surfaces, as recognized in a

few experiments for similar crystal structures [148, 149]. It corresponds to an ideal through-

thickness failure mechanism, without substrate failure or delamination, typical for a crystalline

film under tensile strain [124]. For symmetry reasons, we can restrict our investigation to the

L × L region bounded by cracks themselves. The L × L × (h + hsub) domain is illustrated in

Fig. 3.9(b).

According to the presence of free-surface boundary conditions induced by cracks, dedicated

3D FEM simulations are required. The thermal strain (see Sect. 2.4) has been considered by

imposing an initial eigenstrain ε∗ij = −δijεth in the film and ε∗ij = 0 in the substrate, with

εth is the thermal strain from Eq. (2.10). The presence of cracks is modeled by means of the

boundary conditions for elasticity equations. Free surface boundary condition, from Eq. (1.14),

are imposed at the lateral surfaces of the film, mimicking the free surfaces introduced by cracks.

Moreover, such a condition is considered to model the upper free surface of the film. The

substrate is modeled as in Sect. 3.1. Indeed, the Si domain has been considered five times higher

than the L value, obtaining the limit of an infinite thick substrate. Fixed BC, from Eq. (1.15), is

imposed at the bottom of the substrate while gliding condition, from Eq. (1.16), is imposed at

its lateral surfaces. A finer spatial resolution has been required close to the lateral free surface

to careful describe the strongly inhomogeneous elastic field at the ideal tip of the crack. Also

in this case, the convergence of the mesh is checked for all the reported simulations.

In Fig. 3.9(c) we show the elastic field in terms of σ||/σ0, where σ0 is the thermal stress in

the film and σ|| = 0.5(σxx + σyy) is the resulting in-plane stress with cracks, in two represen-

tative slides of the simulated domain with an epilayer aspect-ratio AR = h/L of 0.3. These

stress maps show the relaxation at the center of the considered domain and close to a fracture,
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Figure 3.9: Modeling of the crack insertion. (a) Illustrative cross-section and top view of the 3D ge-
ometry. (b) FEM-simulation domain, consisting in a L × L × (h + hsub) parallelepiped where Ge lateral
boundaries (indicated by the wavy pattern) correspond to crack sidewalls. (c) Elastic field in two rep-
resentative sections (A and B) of the simulation domain in panel (b). They show the elastic field in the
central slice and in a close-to-crack slice, respectively. Color maps show the ratio between the resulting
in-plane stress σ|| and the thermal stress of an unrelaxed film σ0. (d) Elastic relaxation provided by two
different crack densities in a film, i.e. with different AR values. The same color map of panel (c) is used.

respectively. At the crack tip, a high tensile strain is recognized in the substrate. On the other

hand, a significant relaxation is obtained in the film close to the boundaries, i.e. the crack side-

walls, and it decreases moving toward the central region where a relaxation is still observed

but with lower intensity. A slightly compressive stress appears in the substrate at the center of

the simulated domain. From the stress map of such a figure, some degrees of similarity appear

with the typical heteroepitaxial film obtained for VHEs. Indeed, cracks bound a portion of the

film where the relaxation given by free surfaces is present. Here, we focused our attention on

cracks which do not propagate into the substrate so that compliance effects are minimized (as

can be noticed by comparing Fig. 3.9(c) to Fig. 3.1(c)). In Fig. 3.9(d) we also show a compari-

son of the thermal strain relaxation in films with the same thickness but different AR values,

0.1 and 0.3 respectively. This corresponds to consider different crack densities. Stress maps

are obtained with the procedure discussed above and with a proper shift and repeating of the

resulting elastic field. As we can notice the higher is the density the more significant is the

relaxation.

By exploiting the calculated elastic field, we can evaluate the energy contributions when

a crack net is present. The elastic energy of the considered portion of the film under thermal

strain is

Gfilm =

∫
V
ρfilmdx = Y ε2thhL

2, (3.7)

where Y is the biaxial modulus [86], adopted also in Eq. (2.7). ρfilm is the elastic energy density,

which is uniform in the film and equal to Y ε2th in our case. hL2 corresponds to the Ge volume.

When the strain is relaxed by cracks, the elastic energy is modified by the action of free surfaces,
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as shown in Fig. 3.9(c). Such a variation can be described by considering a new elastic energy

density ρel(x, h, L) = ρfilmf(x, h, L), where f is an auxiliary positive-defined function, which

assumes values equal to zero where there is no strain. Notice that, when cracks are present, it

assumes non-zero values also in the substrate. The resulting elastic energy is then given by

Gel =

∫
V
ρfilmf(x, h, L)dx = Y ε2thhL

2F (AR). (3.8)

F (AR) is the average of the f function on the whole domain normalized by the volume of the

stressor, i.e. the Ge volume. Notice that, being the elastic differential equations self-similar,

average quantities can be considered depending only on AR. From FEM simulations we can

determine a semi-analytic function for such a term as

F (AR) =
1

hL2

∫
V
f(x, h, L)dx =

1

2

[
exp(−p1AR) +

1

1 + p2AR

]
, (3.9)

where a good fit is given by p1 = 6.42± 3% and p2 = 5.26± 3%. With such a result, exploiting

the same arguments of Sect. 1.2.2, we can define the total energy for the system described in

Fig. 3.9 as

Gtot = Gel +Gsurf = Y ε2thhL
2F (AR) + 4γhL, (3.10)

where γ is the surface energy density of the crack sidewalls. For a given film thickness h

and within our assumptions, the most favored crack configuration in terms of the spacing L

should be the one which minimize Eq. (3.10). In order to consider a feasible crack net we must,

however, ensure that the insertion of a crack decreases the total energy with respect to the film

without cracks. Following the modeling introduced in Sect. 3.1 for the insertion of dislocations,

we can define a formation energy of the crack as

∆G = Gtot −Gel = Gtot − ε2Y hL2, (3.11)

and we should check that the ∆G < 0 condition is verified. The minimization of (3.10) is a

global evaluation of the system tendency to host a crack net, corresponding to the thermody-

namic limit of the system. The crack density estimated by this approach should be the highest

possible (under the considered assumptions) and a larger number of cracks per unit area should

not be observed.

The balance between the energy cost and gain can also lead to a local condition for the

propagation of cracks as discussed in Sect. 1.2.2. As far as a fracture occurring from the upper

surface to the Ge/Si interface is considered here, we assume the length l of Eq. 1.25 equal to

h. In order to compare a meaningful quantity to the critical stress for crack propagation in Eq.

(1.25), we evaluate the average of the in-plane stress along the [110] slice at the center of the

L × L region, i.e. slice A in Fig. 3.9(b). We define this quantity as σA. For a given value of L

and h, this is representative of the maxmimum stressed region in the film, corresponding to the

position where a further crack may form. As performed in Eq. (3.9), we can provide a fit of

FEM simulation for σA(AR) as

σA(AR) =
σ0

2

[
exp(−p′1AR) +

1

1 + p′2AR

]
, (3.12)
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Figure 3.10: Crack densities and spacing predicted by the model as function of the height of the film.
Dashed line is obtained by the minimization of Eq. (3.10). Solid line shows the net spacing which satisfies
criterion in Eq. (3.13). γ = 7.12 eV/nm2 and εth = 0.15%.

with p′1 = 5.16± 5% and p′2 = 4.50± 5% and σ0 = Y εth, representing the stress of the film with

no elastic relaxation. If σA is bigger than σ̄ from Eq. 1.25, the propagation of an additional crack

within the L×L region along the A plane in Fig. 3.9 may occur. The expected spacing L is then

given by

σA = σ̄, (3.13)

that is a condition representative of the critical stress for the addition of a further crack.

3.5.1 Crack density in Ge/Si films

By using the criteria introduced above, we can provide predictions about crack density and/or

spacing. In Fig. 3.10 we report the spacing L and the relative crack density d = 1/L for a Ge

film as a function of the thickness h. With the dashed line, we report the values resulting from

the minimization of the total energy (3.10) also checking ∆G < 0 constraint from Eq. (3.11)

while the solid curve shows the results obtained from the criterion of Eq. (3.13). We selected

for the thermal strain a typical value measured in Ge/Si films of εth = 0.15% [150] and γ =

7.12 eV/nm2 corresponding to the surface energy of 〈110〉 facets [98].

The curve obtained by means of the energy minimization (dashed curve in Fig. 3.10) shows

a critical thickness for crack insertion of ∼2.5 μm, as under such a value, no negative ∆G is

obtained for any AR value. Then, by increasing the film thickness above the critical one, we

obtain a deep raise of the crack density (and lowering of the crack spacing) until a maximum

value at h ∼ 8 μm. Then, the crack density slightly decreases. This is related to the fact that

the energy cost related to the extension of crack sidewalls always increases by increasing the

thickness of the film while the elastic strain release saturates for large ARs, as described by

Eq. (3.9). So that after a certain thickness we expected to have an increasingly importance of the

surface energy term in the energy balance of (3.7), i.e. the relative cost of crack insertion, leading

to a consequent lowering of the density. This behavior is related to assumption of the model as

other configurations, e.g. cracks shorter than the thickness h or other crack geometries, may be
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Figure 3.11: Investigation of the onset for crack insertion in a wide parameter space. (a) Crack spacing
as function of the εth and h. (b) Crack spacing as function of γth and h. Isolines show the spacing
expressed in µm.

present reducing the cost per unit area.

A similar behavior is obtained for the crack density calculated by means of the stress cri-

terion of Eq. (3.13) (solid curve in Fig. 3.10). This approach does not include the information

about the global state of the system as described by the minimization of the total energy in

Eq. (3.10), but it involves a local stress condition. This produces lower densities as shown in

Fig. 3.10. However, the qualitative behavior is similar to the one discussed for the curve ob-

tained with the total energy minimization. It shows a critical thickness of∼4μm corresponding

to the thickness which satisfy Eq. (3.13) for AR = 0 (L→∞). The crack density above the crit-

ical thickness rapidly increases until reaching a maximum value and then it slightly decreases

as well for larger h values.

Notice that no details are introduced about the nucleation process and about kinetic effects

as our analysis is based only on thermodynamic arguments. Despite this, we can consider that

the local criterion based on stress values better describes the real crack spacing as it evaluates if

locally a crack propagation is favored, once the critical stress condition is reached. Conversely,

the energy criterion would deliver the information about the best relaxation of the system by

means of an ordered net of cracks, without including any stress condition. However, the results

obtained by means of the total energy minimization describe the higher limit in terms of crack

density and consists in a theoretical limit which cannot be overcome. In the following the

stress criterion is considered in order to show how our predictions vary with changes in γ and

εth values. This allows to widen the range of the investigated Ge/Si systems, also by using

such parameters as an effective way to account for more complex crack configurations.

3.5.2 Extended results

According to the specific process, εth can be different as the temperature of the growth can

vary significantly and also can show different interaction with the compressive residual strain

[150]. Moreover, if the film is made of a SiGe alloy, the thermal strain is proportional to the
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Ge content c so that εth(c) = cεth and the thermal strain should be rescaled. In principle, also

the surface energy should account for the different Ge content, but such a dependence is here

neglected. In Fig. 3.11(a) we show the isolines for spacing L, obtained with the stress criterion

of Eq. (3.13), by varying the thickness and also the initial thermal strain values. Under the

curve with L ∼ ∞we predict a crack-free system. It can be noticed that for small thermal strain

no crack is present, as only small elastic energy (zero when εth = 0) should be released, and for

a given thickness the crack spacing decrease by increasing the thermal strain. It can be easily

seen that for each value of the thermal strain, the variation of the crack spacing as a function of

the film thickness h is similar to the discussion reported for Fig. 3.10. Once the thermal strain is

determined, from calculations or from a specific measurement in an experimental system, one

can read an estimation of the expected (thermodynamic) crack net spacing at each thickness up

to 50 μm directly from figure 3.11(a).

The surface energy density considered so far is the one of an ideal [110] Ge surface. Different

configurations involving several kinds of surfaces can, however, appear with more complex

crack geometries. In these cases, γ can be interpreted as a free parameter which can be tuned in

an effective way in order to represent the generic cost per unit area related to crack formation

(assuming that elastic relaxation is not thereby modified). In Fig. 3.11(b) we show a similar

analysis to the one shown in Fig. 3.11(a), this time by keeping constant the thermal strain and

by varying the surface energy density of the crack sidewalls, i.e. the energy cost of creating

the free surfaces induced by the fractures. When γ → 0 we obtain the theoretical limit of

σA(AR) = σ̄ = 0, producing AR→ ∞ and consequently L → 0. In this regime also h̄ tends to

zero, but it can be considered as an unphysical condition. By increasing γ, the critical thickness

increases as the cost is higher. The same behavior is shown for the spacing values observed

at a given γ values and by increasing the film thickness, above the region where no crack are

expected (corresponding to the area under the L ∼ ∞ curve). The qualitative variation of the

crack spacing for a fixed value of the surface energy density is similar to Fig. 3.10, with different

values according to the considered γ.

In order to discuss the results obtained in this section, we can compare the estimation of

crack density with well-known experiments present in the literature. In Ref. [149] the investi-

gation of an heterostructure made of ∼5.2 μm thick GaAs/Ge layers grown on Si is reported.

Being the thermal expansion coefficients very similar between GaAs and Ge this system closely

resembles the one considered here (by neglecting instead the differences in the elastic constants

and in the surface energy density). The measured crack density in such a system, after a proper

thermal treatment in order to let cracks nucleate as much as possible, is almost 10-15 mm−1

(spacing of 66-100 μm) with a measured thermal strain of ∼ 2.0 × 10−3. This is in good agree-

ment with the resulting density obtained by our model (see figure 3.11(a)). Similar systems

were analyzed in Ref. [148], also showing a good agreement with the analysis reported here.

So that we provided here a model able to give estimations for the onset of mechanical failure

and the spacing of the cracks. It has been obtained by directly applying the concept developed

for the investigation of plasticity onset in VHEs, and, despite the several approximations, it

gives results compatible with the ones present in the literature. As far as a more accurate mod-
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eling of this relaxation mechanism would require more sophisticated approaches, this may

represent a convenient tool to provide early predictions as a support for the experimental ac-

tivities.
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4
Competitive relaxation mechanisms in

real VHEs

The modeling introduced in Ch. 3 allowed for a general investigation of the plasticity onset in

single-layer and multilayered vertical heterostructures. Despite it was developed by consid-

ering simplified geometries with a parallelepipedal shape, it can be easily applied to systems

with a more realistic morphology. In particular, this holds true when a representative 2D sec-

tion of the whole structure can be extracted for the evaluation of the formation energy, in order

to apply the quasi-3D procedure described in Sect. 3.1.

In this chapter, we report the investigation of realistic VHEs. First, the nanometric structures

introduced in Sect. 2.5.1 are discussed providing both an assessment of the theoretical modeling

and a detailed investigation of specific experimental systems [34, 36, 37]. Then, the validity of

the results reported in Sect. 3.3, concerning the delay of plastic relaxation when grading the Ge

content in VHEs, is demonstrated at the micron scale, delivering an unprecedented result for

the growth of high-quality heterostructures [40]. An extension of the study about the thermal

strain relaxation, originally provided in Ref. [19], is also shown for what concerns multilayered

VHEs [35, 38].

The investigation of the different structures is shown by briefly introducing the main fea-

tures of the experiments and dedicated sections on the modeling are also reported. Notice that

further details and refinements of the method are introduced in order to account for some fine

details of the real systems. The work reported in this chapter has been carried out in collabo-

ration with several group that provided the experimental data: Prof. Schröder, Prof. Capellini

and their research group at the Leibniz Institute for Innovative High-Performance Microelectron-
ics (IHP) for experiments of Sects. 4.1 and 4.2; Prof. Sanguinetti, Prof. Isella and their research

groups at the Laboratory of Epitaxial Nanostructures on Silicon and Spintronics (L-NESS) for exper-

iments of Sects. 4.3 and 4.4, respectively; Prof. Von Känel and his research group at Eidgenössis-
che Technische Hochschule (ETH) Zürich for experiments in Sects. 4.4 and 4.5. The missing details

concerning the experiments provided by these universities and research centers can be found

in the specific references within the sections.

59
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4.1 Coherent Ge on Si with a SiGe buffer layer

The main features of nanoheteroepitaxy have been introduced in Sect. 2.5.1. By following this

concept, the first attempts to grow fully-coherent structures with sizes exceeding the limit of ∼
40 nm, have been reported in Refs. [130, 138, 151]. However, a clear indication of the presence of

dislocations is reported as the extra-relaxation provided by the presence of free surfaces in these

systems is not enough to prevent the onset of plastic relaxation. Exploiting the mechanism

outlined in Ch. 3, the possibility to grow coherent, Ge dot on a 50 nm wide Si nanopillar thanks

to the insertion of a SiGe buffer was explored by dedicated experiments, and it is assessed here

by dedicated modeling and simulations of strain relaxation [34].

4.1.1 Experiments

Figure 4.1: Ge on Si nano-islands [34]. (a) Cross-section TEM image of the structure made by pure
Ge on ∼50 nm wide Si island. White arrows indicate the presence of misfit dislocation at the Ge/Si
interface. (b) Cross-section scanning tunneling electron microscopy (STEM) image of the Ge/SiGe-
buffer/Si structure (Covered by SiO2 for sample preparation). (c) EDX composition of a structure grown
as in panel (b) illustrating the abundance of Ge (blue) and Si (red).

The substrate on which the growth of Ge and SiGe alloys have been performed is made of

50 nm wide and 27 nm thick Si islands on top of a ∼100 nm wide and 40 nm thick SiO2 mesa.

They are prepared by a lithographic process, involving structuring via hard mask made by

Si3N4 layers and subsequent dry etching, from a SOI wafer featuring 29 nm-thick Si(001) top

layer on a 145 nm SiO2 buried oxide layer [34]. Two different samples were grown. The first

results by the direct deposition via reduced-pressure chemical vapor deposition (RP-CVD) of

pure Ge on the Si island in a two-step process: low temperature (T = 300 ◦C) deposition of

a Ge seed followed by standard growth at 550 ◦C. The same procedure has been adopted for

a second sample where a (nominal) Si0.5Ge0.5 buffer layer is deposited at 600 ◦C prior to pure

Ge deposition. The results of both the growth processes are shown in Figs. 4.1(a) and 4.1(b),

respectively.

X-rays analysis of the grown structures has been performed in order to determine the actual

composition of the different layers as well as to provide an estimation of the lattice deformation.

Details about the fitting procedure of the X-rays measurements leading to the determination of

both Ge composition and strain values can be found in Ref. [34] and references therein. From
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such an analysis the structure without buffer layers results made by an almost pure Ge (∼ 95%

in the Ge content) and it is unstrained. The absence of strain is a clear indication of the occur-

rence of plastic relaxation, which was actually confirmed by Transmission electron microscopy

(TEM) images of Fig. 4.1(a). Indeed, such a figure shows the presence of dislocations with

white arrows. For the structure with the buffer layer, a signal compatible with pure Si under

a tensile strain of ∼ 1% is obtained. Moreover, a region with a Ge content ranging from 0.4 to

0.6 is recognized with a slightly compressive strain, while an almost pure Ge layer (again with

a Ge content of ∼ 95%) is observed with a residual compressive strain of ∼ −0.5%. Accord-

ing to the measurement technique, such values should be interpreted as in-plane strain, i.e.

ε|| = 0.5(εxx + εyy), averaged on the domains with the same Ge content, i.e. the pure Si island,

the SiGe buffer and the Ge epilayer, respectively. The composition is also shown by means

of the Energy Dispersive X-Ray (EDX) composition mapping reported in Fig. 4.1(c). All these

measurements strongly suggest that the insertion of the buffer layer allowed compliance effects

to be effective in avoiding the formation of dislocations, at variance with pure Ge deposition

on Si. In the following section an original theoretical analysis, using the method introduced in

Ch. 3, is reported in order to assess such an experimental evidence.

4.1.2 Modeling of the realistic geometry and simulations

Figure 4.2: Modeling and simulations of the plasticity onset in Ge grown on the Si nano-island. (a)
Structure of Fig. 4.1(b) with the outline of the different domains highlighted with colored lines: inner Si
island (red), SiGe buffer (green), Ge epilayer (blue). (b) 3D geometry obtained by a full rotation of the
outlines in panel (a) around the ẑ axis. In plane strain maps as resulting from FEM simulations are
shown: (c) structure with the buffer layer, (d) the same structure of (c) with ∼ 95% of Ge content also in
the buffer layer domain and (e) same structure in (c) without the Ge epilayer. (f) Formation energies for
a 60◦ dislocation along IF and I2F segments in panels (c)-(e).

The model introduced in Sect. 3.1 has been applied to the investigation of both the Ge/Si and

the Ge/SiGe/Si structures reported in Figs. 4.1(a) and 4.1(b). In particular, we focus on the

structure with the buffer layer, demonstrating that the domain with intermediate Ge content is
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key to ensure the coherency of the whole structure. The 2D TEM view of Fig. 4.1(b) has been

considered and the outlines of the domains with a different Ge content are explicitly tracked

as illustrated in Fig. 4.2(a). The 3D structure is modeled by considering a full 3D rotation of

such profiles along the ẑ = [001] axis as reported in Fig. 4.2(b). The ideally infinite substrate

under such a 3D geometry was considered as an additional cylinder underlying the structure,

five times higher and larger than the actual 100 nm wide oxide pedestal. An initial eigenstrain

εij = −cεmδij , with c the Ge content as measured by X-Rays, is considered. The mechani-

cal equilibrium equation (1.13) is then numerically solved by FEM, accounting for the proper

boundary conditions (BCs): fixed BC, from Eq. (1.15), at the bottom of the substrate, gliding BC,

from Eq. (1.16), at its lateral surface and free BC, from Eq. (1.14), at the other surfaces. Elastic

constants are assumed isotropic. The SiO2 substrate is modeled as a continuous medium, with

the isotropic elastic constants ESiO2 = 70 GPa and νSiO2=0.17 [152].

The result of the calculation is shown in Fig. 4.2(c) in terms of the in-plane strain ε|| in the

central cross-section of the whole 3D structure. The Ge layers pull the inner Si island producing

a tensile strain of ∼ 1%. This effect is present also with minor extent in the SiGe buffer while

the external Ge layer is almost relaxed with a slightly compressive region surrounding the SiGe

buffer. A stronger compressive lobe is also found in a small region at the top of the structure.

So that, a strain state which closely resembles the values obtained by X-rays measurement is

observed. The main difference with experiments is found in the comparison of the strain state

in the SiGe buffer, which can be explained by accounting for a more detailed modeling of the

structure as discussed in Sect. 4.1.3.

In order to investigate the difference of this structure with respect to the one without the

SiGe buffer, we repeated the simulation by imposing a Ge content of 0.95 also in the SiGe-buffer

domain and the resulting map of ε|| is shown in Fig. 4.2(d). In such a system, the pulling of the

Si is even higher with the appearance of a strongly compressive lobe at the interface (∼ −1%).

This does not correspond to the experiments, as an array of misfit dislocation is present in

Fig. 4.1(a), providing a full (plastic) relaxation of the heteroepitaxial stress.

These elastic calculations provided a qualitative explanation about the higher tendency to

host dislocations in the structure without a buffer layer, as regions with a higher local defor-

mation are obtained. However, no quantitative data are provided and dislocation should be

explicitly taken into account in order to demonstrate that with a SiGe buffer the plasticity onset

is delayed and eventually prevented.

The coherency of the structure including the buffer is assessed by directly applying our

quasi-3D model described in Ch. 3. The central slice of the full 3D structure is considered to

compute the formation energy ∆G for a 60◦ dislocation in the region where the strain relieved

by the dislocation is maximum. In particular we consider the system with and without the

buffer layer shown in Figs. 4.2(c) and 4.2(d). Moreover, also the structure with the SiGe buffer

island prior to pure Ge deposition is considered as shown in Fig. 4.2(e), to provide indications

about the intermediate structure obtained during the growth of the full system. In this calcu-

lation, the geometry of the buffer is assumed to be the same as observed in the final structure.

In Fig. 4.2(f) ∆G values are shown for the three different cases depicted in Figs. 4.2(c)-4.2(e) as
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function of the distance from the point I (and I2 in Fig. 4.2(e)) at the free surface. Indeed, these

points correspond to the ideal position where dislocations are likely to be nucleated in the form

of half loops in order to reach the higher stressed region at the interface with Si (points F) by

gliding along their glide plane. Therefore, we are focusing on the dislocation which provides

the better strain relaxation i.e. the lower ∆G. The formation energy for the insertion of a dis-

location at the interface with [001] orientation between Ge and SiGe was also investigated as

stress lobes with opposite signs are found. However, an even larger formation energy with

respect to the dislocation placed at the interface considered above is obtained. This holds true

also for several other configurations sampled for the insertion of 60◦ dislocations in the struc-

tures shown in Figs. 4.2(c)-4.2(e), so that we focus on the central position at the SiGe/Si (or

Ge/Si) interface.

As shown in Fig. 4.2(f), the formation energy in the system without the SiGe buffer is sig-

nificantly lower than zero, i.e. the total energy is strongly lowered when inserting a misfit

dislocation. Notice that the formation energy is negative not only at the interface but also in a

finite region over it. When considering the structure with the SiGe buffer layer, ∆G becomes

negative only in a region very close to the interface (∼1 nm) with a significant lowering of the

energy gain, from 28 to 3.1 eV/nm. In addition, if the nucleation of the dislocation would oc-

cur in the final structure including the SiGe buffer, with the selected orientation to provide the

higher relaxation at the SiGe/Si interface, a significant energy barrier should also be accounted

for as shown by the green curve in Fig. 4.2(f). If the insertion of dislocation is evaluated prior

to pure Ge deposition, i.e. in the structure of Fig. 4.2(e) (blue curve of Fig. 4.2(f)), the tendency

towards plastic relaxation is even lowered with ∆G = −1.1 eV/nm at the SiGe/Si interface.

The results discussed above indicate that in the absence of the SiGe buffer, the system is

largely overcritical, while when inserting a buffer layer, it is very close to the thermodynamic

limit for dislocation insertion. So that we can conclude that the insertion of a dislocation is

significantly delayed in the system with the dislocation but the negative formation energy in-

dicates that, in the thermodynamic limit, the plastic relaxation is expected. Being the value of

∆G very small compared to the system without the buffer, it can be possible that dislocations

are not observed due to kinetics limitations, which are instead not enough to prevent plastic-

ity with pure Ge on Si deposition. However, further refinements of the model, which better

describe the features of the real structure would lead to the conclusion that also the thermo-

dynamic limit is expected to indicate a coherent structure. This analysis, discussed in the next

section, provides a more general assessment of the experimental observations.

4.1.3 Deviation from uniform Ge distribution

The results obtained by a direct application of the method in Sect. 3.1 implies the presence of

a uniform Ge composition within the different domains. While for the growth of Ge on Si

an average composition lower than 1 can effectively account for mixing, this assumption is

expected to be weaker for the buffer layer. Indeed, a more important intermixing is present as

experimental measurements indicate a possible variation of the Ge content within ∼ 0.4− 0.6.

According to the elastic-energy minimization, as widely discussed in Ref. [153] for Ge/Si

islands during Stranski-Krastanov growth, the SiGe buffer layer is expected to show an accu-
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mulation of Ge in the top part with a more Si-rich region at the bottom. Indeed, this would lead

to a lattice parameter closer to the one of the epilayer at the Ge/SiGe interface. Moreover, this

holds true for the bottom region which would exhibit an average lattice parameter closer to Si.

In order to take this effect into account, we repeated the calculations leading to the ∆G curves

shown in Fig. 4.2(f) by assuming a more realistic Ge content distribution within the buffer-layer.

A positive ∆G, i.e. an indication of the absence of plasticity even at the thermodynamic limit

is obtained by considering a Ge content distribution with a linear variation along [001] direc-

tion from c = 0.45 at the SiGe/Si interface to c = 0.55 at the Ge/SiGe interface. This indicates

that with a small mixing of Si and Ge, the structure results even above the thermodynamic

onset for plasticity. In turn, even more extreme conditions in terms of elastic deformation can

be exploited as, for instance, by growing larger structures. Notice that the variation in the Ge

content considered here leads also to a better comparison to the experimental values concern-

ing the strain in the SiGe layer. Indeed, with higher Ge content at the top, the tensile strain

observed in Fig. 4.2(c) would vanish, with a resulting slightly negative strain on average in

agreement with the experiments. So that, the modeling provided in this section confirm the

key feature of the proposed structure, which paves the way to the growth of coherent Ge dot

on Si.

According to the results presented here, it was not necessary to consider a more detailed

modeling of the intermixing, as for instance in Ref. [153], to assess the coherency of the system

[34]. A similar approach to the one discussed here will be adopted also for another heterostruc-

ture as discussed in Sect. 4.2, where the measured Ge composition will be explicitly considered,

thus proving the possibility to account also for more complex Ge distributions.

4.2 Coherent Ge on Si Tip

The realization of an efficient strain partitioning between a mismatched epilayer and a pat-

terned substrate has been achieved by including a buffer layer with intermediate Ge compo-

sition, as discussed and demonstrated in Sect. 4.1. As a result, a coherent structure with very

high Ge content has been obtained with a width larger than the critical size for a single layer

heterostructure (∼40 nm). In this section, we investigate the plasticity onset in a Ge island

grown on Si(001) tip-patterned substrates embedded in a SiO2 matrix. This peculiar configu-

ration combined to the local intermixing at the Ge/Si interface, enhanced by the high growth

temperature, is demonstrated to provide coherent structures as well.

4.2.1 Experiments

The growth of Ge dots is performed on Si tips buried in SiO2. This newly developed patterning

technique allows for the highly selective deposition of Ge on Si areas with tunable size and pe-

riodicity. First, a few hundreds-wide and tall Si domains, ending with a few nanometers wide

tip, are fabricated with a prescribed periodicity by advanced lithographic techniques involving

reactive ion etching. A SiO2 layer is then grown by PECVD, burying the tips and filling the

space in between. Then, chemical-mechanical polishing (CMP) is performed to expose the Si

domain, cutting the tip. The average size of exposed Si area can be tuned by the depth of the

CMP. The resulting substrate allows for an extremely selective deposition as the Ge can grow
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Figure 4.3: Ge on Si tip. (a) HRTEM view of a Ge nano-island grown on a Si tip and (b) composition
profile along the yellow line in panel (a) (adapted from Ref. [37]). (c) Geometry modeling for FEM
simulation. The same procedure introduced in Sect. 4.1, involving the selection of the 2D cross-section
and the full rotation along the ẑ axis, has been considered.

on the Si window while on the oxide it desorbs quickly at high temperatures. The structure

obtained by deposition of Ge at 850 ◦C is shown in Fig. 4.3(a). Composition of Ge (blue) and

Si (red) within the grown sample measured by Energy Dispersive X-ray analysis (EDX) along

the yellow line in Fig. 4.3(a) are reported in Fig. 4.3(b). This analysis clearly shows a smooth

variation of the Ge content in a region ∼30 nm thick across the nominal interface between Ge

and the Si tip. These compositions also account for oxygen (black) as also SiO2 region behind

the analyzed structure is measured. The larger value for the Ge content in Fig. 4.3(b) can then

be considered ∼0.9 in position 1 of and ∼ 0 in position 5. Notice that such an extended mixing

of Si and Ge was not present in the samples discussed in Sect. 4.1 due to the lower growth

temperature, here set to 850 ◦C to ensure selective growth. Raman analysis on such a sample

showed an almost relaxed Ge dot with a slightly negative residual strain while no clear indica-

tion of dislocation is observed from analysis of TEM images [37]. This evidence of coherency

is investigated by theoretical calculations in the following section. An important feature of this

experiment is that a size distribution is actually obtained for Ge dots on Si tips, as the lateral

size of the Si tips ranges from 50 to 75 nm.

4.2.2 Modeling and results

The coherency of the Ge grown on Si tips has been investigated by exploiting the model in-

troduced in Sect. 3.1 combined to the approach to real systems described in Sect. 4.1. The 3D

geometry has been reproduced starting from the experimental (2D) profile of Fig. 4.3(a) and

considering a full rotation around the [001] direction as shown in Fig. 4.3(c). The SiO2 is mod-

eled as in Sect. 4.1. The continuity of this oxide with the Si and Ge domains is assumed by

considering that the oxygen diffuses within other materials for a few monolayers, leading to

a continuous medium. However, elastic constants of SiO2 are smaller than Si and Ge as it is

softer, and its deformation contributes to the total elastic energy with a lower extent than the

other materials. The illustration of the considered geometry is shown in Fig. 4.3(c). In such a

structure the elastic field is computed as in Sect. 4.1 accounting for the mismatch between the

high-Ge content epilayer and Si within the tip. In particular, we focus on the larger structure

obtained in the experiments, corresponding to a tip lateral size L equal to 75 nm. The resulting
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Figure 4.4: Modeling and simulations of the plasticity onset in Ge grown on Si tip. (a) Central section
of the Ge on Si tip structure, i.e. the 3D structure sketched in Fig. 4.3(c). The color map shows the
compositional profile obtained by Eq. (4.1) with w = 16 nm, resembling the grading observed in the
experiments. (b) Color map of εxx as obtained by FEM simulation with uniform x = 0.9 composition
(w = 0). (c) Color map of the εxx as obtained by FEM simulation for the compositional profile reported
in (a). (d) same as in (c) with a dislocation segment inserted in the central section of the structure. (e)
Phase diagram describing the onset of plasticity in the Ge on Si-tip system. ∆G values are shown by
isolines as function of w and L (light-blue region ∆G > 0, red region ∆G < 0). The green box highlights
the experimental ranges of L and w. Black circles correspond to the positions in the (L,w) parameters
space of the calculations with A = (75, 16) and B = (75, 0), respectively.

Ge-island base is 120 nm.

The elastic field computed with an abrupt change in the composition between Si and the

Ge rich island, by directly applying the method discussed in the previous section with uniform

Ge distributions, is reported by the color map of Fig. 4.4(b), showing εxx values. Lateral free

surface of the Ge dot, thanks to its high aspect-ratio, allows for a partial relaxation of the misfit

strain. Notice that a tensile strained region is obtained in Si with values around εxx ∼ 1%

and a compressive strain values at the bottom of the Ge dot with εxx ∼ −1%. Such a strain

partitioning is typical of heterostructures with a sharp interface at the nanoscale as shown in

Sect. 3.2 and Sect. 4.1. Actually, as reported in Sect. 4.2.1, the interface at the top of the Si tip

is not sharp and a smooth increase of the Ge content is observed. In order to model such a

behavior, we introduce a distribution of the Ge content c(x) as follows:

c(x) =
cmax

2

[
1− tanh

(
0.5L− d

w

)]
·
[
1− exp

(
− z

0.33L

)2
]
, (4.1)

with x = (x, y, z), cmax the maximum Ge content value in the system, set to 0.9 as revealed

by the experiments of Sect. 4.2.1. L and w are the tip opening-area and the half-width of the

intermixed region, respectively (see Fig. 4.4(a)). d =
√
x2 + y2 + z2 is the distance from the

center of the frame of reference C = (0, 0, 0), set as the center of the hemisphere which forms

the nominal rounded top of the Si tip (see the 3D geometry in Fig. 4.3(c) and the black circle in

Fig. 4.4(a)). Notice that such a formulation provides a reliable 3D Ge content map correspond-
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ing to the observed one in Fig. 4.3(b) by setting w = 16 nm. Such a Ge distribution is shown as a

color map in Fig. 4.4(a). Two main factors can be noticed in Eq. (4.1). The first one corresponds

to a radial term with respect to C, mimicking the effect of the distance from the nominal top

of the Si tip, where the intermixing is assumed to give half of the maximum Ge content. The

second one represents a vertical contribution which smoothly lower the Ge content to 0 when

approaching the Si tip below the point C, i.e. for z ≤ 0).

The same calculation performed to obtain the strain map in Fig. 4.4(b), are then repeated by

explicitly considering the Ge content distribution in Eq. (4.1) with w = 16 (see Fig. 4.4(a)) mim-

icking the variation of the Ge content in the real structure (setting ε∗ij ∝ c(x)). The resulting εxx
distribution is shown by the color map in Fig. 4.4(c). The deformation with a smooth transition

between the Si and the Ge-rich dot is lower than the w = 0 case in Fig. 4.4(b). Then, also higher

uniformity is achieved. This strain state is expected to play an important role in the onset of

plastic relaxation.

In order to evaluate the tendency to host a dislocation in the Ge dot grown on the Si-tip,

the formation energy ∆G for the insertion of a 60◦ dislocation is calculated. The dislocation is

modeled as an ideal misfit segment elongated in the ŷ direction, i.e. perpendicular to the plane

of the central cross-section, and the coherent elastic field of the central section. The outline of

this 2D domain corresponds to the one in Figs. 4.4(a)-4.4(d). Notice that this outline corresponds

to all the sections crossing the center thanks to the construction of the 3D geometry so that it

can be considered as the plane perpendicular to the [110] direction, i.e. perpendicular to the

dislocation line. ∆G is evaluated as described in Sect. 3.1, i.e. as the difference in the elastic

energy between systems with and without the dislocations. The latter is computed from the

elastic field in the 2D section extracted from the 3D geometry (see Fig. 4.4(c)) while the former

by the superposition of the dislocation elastic field with the heteroepitaxial one in the same 2D

section (see Fig. 4.4(d)).

The results of ∆G calculations are summarized in Fig. 4.4(e). Let us focus first on the two

cases discussed above, corresponding with w = 0 and w = 16, respectively, with L = 75 nm

as in the experimental structure of Fig. 4.3(a). When no intermixing is considered, i.e. w = 0,

∆G ≈ −30 eV/nm (point A in Fig. 4.4(e)), indicating that the system would strongly host a dis-

location. By setting w = 16 the ∆G is still negative, but its magnitude decreases significantly

to −6 eV/nm (point B in Fig. 4.4(e)). A lowering of the formation energy is then obtained by

taking into account an effective modeling of the intermixing. So that the presence of a smooth

variation in the Ge content would generally delay the plasticity onset. It is worth mentioning

that, despite ∆G is still negative, the formation energy here calculated corresponds to the larger

structure obtained in the system. So that, smaller sizes may lead to a further lowering of the

formation energy as the elastic budget would decrease accordingly. Moreover, a fluctuation of

the actual transition region, i.e. of thew parameter, is observed. The formation energy obtained

by sampling the parameter space given by w and L are shown by the plot in Fig. 4.4(e). The

island base was scaled proportionally to the lateral size L. The critical parameter curve (L̄,w̄)

corresponds to the solid black line. Isolines show the values of the formation energy which are

positive over the critical curve, indicating a coherent structure, and negative under the critical
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curve, corresponding to plastically relaxed systems. Notice that when a uniform Si0.1Ge0.9 dot

is considered the critical L is ∼30 nm. When considering intermixing, i.e. w > 0, a delay of the

onset for plastic relaxation is obtained. The full range of the sizes L obtained in the experiments

together with the statistical fluctuation of the Ge content is shown within the green box. The

FEM calculations actually predict that this range covers the critical condition for the insertion

of dislocations (black line) and structures are predicted to be coherent for the smaller sizes ob-

tained in the experiments. We can further notice that, as mentioned before, our calculations

are purely based on the energetics and they are expected to overestimate the tendency towards

plastic relaxation. So that we can conclude that the general observation of the absence of dis-

location found by the experiments is supported by the theoretical calculations. While for the

larger size it may be related to kinetic barriers, calculations show that the smaller size should

be coherent also in agreement with the thermodynamic onset. Moreover, this result can be in-

terpreted as resulting from the peculiar geometry of the sample and from the distribution of

Ge in the structure. Preliminary experiments performed at IHP, where smaller dots have been

grown with a better control of the sizes, with (L,w) parameters lying in the region with ∆G > 0

of Fig. 4.4(e), further confirm the coherency of the Ge dots on Si tips, thus further supporting

the results obtained in this section.

4.3 Plastic relaxation in InAs dots on GaAs nanowires

As introduced in Sect. 2.5.1, nanowires (NWs) represent another heteroepitaxial system where

lateral free surfaces play a role in the relaxation of the lattice mismatch. A specific system made

by an InAs dot grown on a GaAs nanowire with a sharply defined interface has been investi-

gated by means of our modeling, assessing the observed features of the plastic relaxation.

4.3.1 Experiments

The growth of the InAs island on a GaAs NW is performed by MBE and mainly consists of

four different steps. The first step is the growth at 580 ◦C of the GaAs NWs on Si(111) substrate

using the self-assisted mode, i.e. with the growth of the NW resulting by the crystallization

of GaAs within a Ga drop on top of the structure. Then, as the second step, a flat [001]-top is

obtained by the consumption of the Ga droplet, just by closing the supply of Ga in the chamber

and decreasing the temperature to 400 ◦C. In the third step, the deposition of In on the flat top

of the NW as a droplet is achieved and the fourth step consists of its arsenization, forming an

InAs island. The result of this procedure is shown in Fig. 4.5(a). It consists of a ∼20 nm tall

and ∼65 nm wide dome-shaped island formed on top of the GaAs nanowire. Further details

of each step including data about pressures in the chamber and growth time as well as other

features of the experimental technique are reported in Ref. [36].

Fig. 4.5(b) shows an image of the strain field, obtained by geometrical phase analysis (GPA)

[154] of the TEM image, at the interface of the sample reported in Fig. 4.5(a). Different strain

state is observed for GaAs and InAs as evidenced by different colors with a sharply defined in-

terface between these two materials. This is also assessed by the line scan provided in Fig. 4.5(d)

which shows a lattice parameter variation of 6.4% when moving from GaAs towards the InAs

(consistent with the expected ∼ 6.7%, calculated from InAs and GaAs lattice parameter). The
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Figure 4.5: InAs dot on a GaAs Nanowire from Ref. [36]. (a) Lateral view TEM image. (b) Strain field
as measured at the InAs/GaAs interface. (c) Analysis of dislocation character with GPA strain map
superposed to HRTEM image (left) and HRTEM image after Fourier transform highlighting the extra
plane typical of an edge dislocation (white circle). (d) Relative variation of the lattice parameter across
the interface, i.e. along black arrow in panel (b). (e) Dislocation-dislocation distance as function of the
dislocation position as observed in panel (b).

transition between these materials is not found to be abrupt, but a smooth variation is confined

within 2-3 nm. Moreover, an array of strain centers is observed at this interface. In Fig. 4.5(c)

these strain centers are demonstrated to be originated by edge dislocations. Indeed, the strain

map over a strain center is overlapped to the HRTEM (left), and it shows almost symmetric

lobes, while the typical extra plane present for edge dislocations is obtained after Fourier filter-

ing (right) [36] (see for instance a comparison with Fig. 1.1(b)). The dislocations are found to

be ordered at the interface. In particular, 11 dislocations are observed, with a spacing which is

minimum at the center of the InAs island and increases moving towards the lateral sidewalls

as reported in Fig. 4.5(e).

4.3.2 Modeling and results

The theoretical modeling developed to investigate elasticity and plasticity in VHEs (see Sect. 3.1)

is here applied in order to assess the features of the elastic and plastic relaxation observed in the

InAs island, grown on the GaAs NW. In Fig. 4.6(a) the modeling of the 3D geometry is shown.

The elastic field in the structures is computed by considering the eigenstrain as ε∗ij = −εm

with εm = −6.7% in the InAs island and zero in the GaAs NW. Then the mechanical equilib-

rium equation is and numerically solved by FEM and it is shown in Fig. 4.6(b). For the sake of

simplicity, isotropic elastic constants are assumed and set as EInAs = 51.4 GPa, νInAs = 0.35,

EGaAs = 85.9 GPa, νGaAs = 0.31 [155, 156]. An almost relaxed InAs island is found by the cal-

culations, with the typical compressive lobe in the epilayer and the tensile lobe in the substrate
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Figure 4.6: Modeling and simulations of plastic relaxation in InAs island grown on GaAs NW. (a) Mod-
eling of the 3D geometry. A dome-like shape is assumed for InAs islands according to Fig. 4.5(a). The
GaAs NW is set as a simple cylinder. σxyz isosurfaces at −1 GPa and 1 GPa in the three-dimensional
geometry are shown. σxyz is also reported in the central section by accounting for different relaxation
states: (b) pure elastic relaxation, (c) superposition of the elastic field from panel (b) and originating by
an edge dislocation at the center of the structure. (d) Formation energy for a single dislocation at the
InAs/GaAs interface. (e) System hosting 11 dislocations at the position which minimize the surface en-
ergy (computed by a steepest descend algorithm with constrained positions at the interface). (f) Spacing
of dislocation in panel (e) as function of the position along the interface (with x = 0 the central position).

pedestal observed for VHEs. The plastic relaxation is inspected first by evaluating the for-

mation energy ∆G obtained by applying the quasi-3D approach. Following the experimental

indications of Figs. 4.5(b) and 4.5(c), we consider dislocations with pure edge character. In the

considered FCC system, where (111) interface is present, the dislocation line must be aligned

on 〈112〉 directions, as imposed by the 〈110〉 {111} slip system (as discussed in Sect. 2.3.1).

The hydrostatic stress originating from the insertion of this dislocation, superposed to the het-

eroepitaxial elastic field (reported in Fig. 4.6(b)), is shown in Fig. 4.6(c). A negative ∆G value

is obtained for the insertion of a single dislocation for any position at the interface, as shown

in Fig. 4.6(d), with a minimum at the center of the structure. This corresponds to the minimum

energy for the dislocation as its elastic field is highly symmetric and the heteroepitaxial stress

is higher in this region (notice that this is peculiar of the system considered here, as more com-

plex situations are observed for a 60◦ dislocation at (001) interfaces as discussed in Sect. 3.4).

The computed formation energy indicates that the system is largely overcritical. Indeed, the

critical base determined by evaluating ∆Gwith a self-similar scaling of the structure is∼15 nm

in agreement with the predictions provided in Ref. [18]. This is confirmed by the experiments

as dislocations are clearly found at the interface (see Fig. 4.5(b)).

In order to investigate the most probable distribution of dislocations in the InAs island on

the GaAs NW, we considered n = 11 dislocations (as in the experiments) at a constant spacing S

of 4 nm with positions along the interface set by xi = iS+(n−1)/2 (with x = 0 corresponding to

the central position). Then, a steepest descend algorithm is applied to minimize the total energy
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allowing only for the motion of dislocations along x̂ direction. In this system, the [111] interface

is also a glide plane for the considered dislocations so that the motion at the interface can be

observed also in the real system. Forces acting on dislocations are calculated as numerical

derivatives of the free energy along the interface by a finite differences approach. In particular,

the force acting on the i-th dislocation is

fi =
G(xi + ∆x)−G(xi −∆x)

2∆x
(4.2)

where G(xi±∆x) are calculated via FEM simulations (with the quasi 3D approach) by shifting

the position xi of the i-th dislocation of a quantity ±∆x and keeping all the other dislocations

fixed. ∆x is here arbitrarily set equal to 0.02 nm. Once forces acting on dislocation are deter-

mined, new position xnew
i are evaluated as

xnew
i = xi + fi∆s (4.3)

where ∆s is an arbitrary parameter which set the amount of the shift along the interface for the

dislocations. It is scaled to ensure an upper limit for the maximum shift corresponding to ∆x.

The procedure described by Eqs.(4.2) and (4.3) is iterated until reaching a minimum of the

free energy, i.e. with fi ∼ 0 ∀ i. Notice that this procedure has an intrinsic error in the equilib-

rium positioning of ∼ ∆x. The stress distribution with dislocations positioning resulting from

this calculation is shown in Fig. 4.6(e). In Fig. 4.6(f) we report the spacing between dislocations

(averaged with respect to the nearest neighbor) as function of the position along x̂. This dis-

tribution qualitative reproduces the experimental one in Fig. 4.5(e), i.e. the distance is lower

at the center of the structure, where the stress is higher while it increases moving towards the

boundaries. Therefore, we can state that the model captures the behavior of the real system.

This allows us to conclude that in this overcritical system, the dislocation distribution in the

InAs island grown on GaAs NW is determined by the strain relaxation, i.e. by the minimiza-

tion of the free energy. Notice that the elastic energy calculated as described above accounts

for the mutual dislocation-dislocation interaction, the effect of the free surfaces parallel to the

dislocation and the interaction between dislocation-induced deformation with the heteroepi-

taxial elastic field. So that, the resulting dislocation distribution results from the simultaneous

presence of these effects. In order to provide a detailed quantitative comparison with the exper-

iments, a full 3D modeling would be needed, especially when several dislocations are present.

Such further extensions would require a more complex modeling which is far from the scope

of the present work.

4.4 Dislocation-free SiGe/Si microstructures
VHEs at the nanoscale are well known to be dislocation free under certain sizes [18]. Structures

discussed in Sects. 4.1 and 4.2 represent important attempts in the increase of the critical sizes

for dislocation insertion but they are still limited to length scales lower than 100 nm. In this sec-

tion, exploiting the results presented in Ch. 3, we describe how these sizes can be significantly

increased. The design of a coherent, μm-VHEs is reported with the dedicated experiments per-

formed to prove the general concept. Dedicated simulations are also shown to further assess

the main findings about the coherency of the final structures [40].
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Figure 4.7: SiGe/Si graded heterostructures (adapted from Ref. [40]). (a) Cross-sectional SEM image
of the SiGe crystal grown on 2×2 µm2 wide, 8 µm tall Si pillars spaced by 4 µm wide trenches. Insets
show different portion of the crystal after defect etching revealing the absence of dislocations. (b) Cross-
sectional SEM image of the SiGe crystal grown on 5×5 µm2 wide, 8 µm tall Si pillars spaced by 4 µm
wide trenches. Insets showing the result of the defect etching, as in panel (a), reveal the presence of
dislocations. (c) Cross-section TEM image of the crystal in Fig. 4.7(a). (d) Schematic representation of
the 2D geometry showing all the parameters used in the simulations discussed in Sect. 4.4.2.

4.4.1 Design of the coherent, micrometer-wide VHE

From Eq. (3.6) one can estimate the number of buffer layers required to achieve a coherent

VHE. The buffers were assumed to have an height-to-base ratio (∼ 1) and the increase in the

Ge content of each layer with respect the previous one is given by Eq. (3.5). The typical pattern

which allows for vertical growth of Ge by LEPECVD at the micron scale is given by 2×2 μm2

wide, 8 μm tall Si pillars, separated by trenches of a few microns. Here we inspect the possibility

to obtain an intermediate Ge content layer, namely c = 0.4, on top of such a structure without

the presence of misfit dislocations. This would represent an important proof for the whole

method, also direclty usable for optoelectronic applications [40].

When the deposition on deeply patterned substrates by LEPECVD (see Sect. 2.5.2) is per-

formed, the vertical growth occurs with an enlargement of crystals up to form a few tens of

nanometers wide channel in between. The patterned substrate on which we are focusing here

is made of 2×2 μm2 wide, 8 μm tall Si pillars spaced by 4 μm wide trenches. The vertical growth

is expected to almost fill the gap between the Si pillars, i.e. to deliver a width of ∼ 6 μm of the

Ge crystals.

By considering a top layer with a Ge content cepi for a structure with B = 6 μm, the number

of buffer layer required to prevent the formation of dislocation is given by the equation

nBL(B) =
cepi

c̄(B)
− 1. (4.4)

obtained by a change of Eq. (3.5) in order to explicitly account for the Ge content of the epilayer

cepi (notice that for cepi = 1 Eq. (3.5) is readily obtained). By evaluating this equation for
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B = 6 μm we obtain nBL(B) ∼ 4. With an aspect ratio of ∼ 1 for each buffer, to ensure

full relaxation of each layer, a total height of ∼ 25 μm is obtained. The averaged grading rate

predicted by theory is then 0.016 μm−1.

The experiments following this receipt has been performed by considering the resulting

grading rate and performing an almost constant Ge content increase during the growth. In

particular, a 0.015 μm−1 grading rate is considered, by means of 333 nm thick layers with a

Ge content increase of 0.005 for each layer, which is the lower detectable increase in the Ge

content of the growth apparatus. The structure obtained by this growth is shown in Fig. 4.7(a).

Notice that the final crystal is significantly enlarged with respect to the Si pillar, with a final

width of 5.5 μm. A Si buffer has been deposited on top of the Si pillar in order to provide an

initial enlargement of the structure without strain and limit the spurious growth of Ge on the

Si-pillar sidewalls. Our theoretical predictions on coherency, are dependent on the base. In

order to proof the validity of the grading recipe, a larger crystal has been grown on 5×5 μm2 Si

pillars with 4 μm trenches (which are expected to be plastically relaxed). The resulting crystal,

reaching a lateral size of 8 μm is shown in Fig. 4.7(b). The resulting quality of the structures

has been evaluated by several experimental techniques. First, an etching procedure, similar

to the ones adopted to evaluate dislocation reaching the top surface in Fig. 2.5(d), has been

adopted. It makes clear the presence of dislocations forming etch-pits at the surface. As shown

in the insets of Fig. 4.7(a), no indications of etch-pits are found on the lateral sizes of 5.5 μm Ge

crystals while they are clearly present on the 8 μm wide crystals (see the insets of Fig. 4.7(b)).

This is a strong indication of the absence of dislocation in the smaller crystals. Finding etch-

pits on larger crystals allows us to be sure about the reliability of the experimental analysis by

means of etching and also to confirm that, for larger crystals, the grading rate to be adopted to

achieve full coherency should be lower. Second, TEM analysis has been performed. As shown

in Fig. 4.7(c), no defect are actually found within the smaller structure (found to be present,

instead, in the larger crystal [40]). According to these evidences, we can conclude that the

receipt provided by the results of Sect. 3.3 can be used to design coherent structure by grading

the Ge content. Moreover, the validity of the predictions is here verified at the micron scale.

Despite the achievement of this remarkable results, the semi-analytical c̄(B) expression has

been directly determined by calculation for B ≤ 300 nm (see Sect. 3.2). Therefore, an extrap-

olation beyond the simulated sizes has been exploited to provide the estimations discussed in

this section. Moreover, an almost constant grading rate is here adopted. Larger sizes cannot be

investigated by the quasi-3D approach as the proper meshing of the full 3D structure requires

a computational effort beyond our possibilities. However, dedicated simulations, dealing with

2D calculations, can be performed in order to assess the reliability of our predictions.

4.4.2 Assessment by dedicated 2D simulations

In order to verify the theoretical predictions of coherency for micrometer-wide VHEs, and to

further consolidate the experimental evidence, we perform 2D calculations based on the linear

elasticity theory. In particular, we consider the formation energy of a dislocation as defined in

Eq. (3.1). At variance with the modeling adopted before, we evaluate also the pure-elastic field

(without the dislocation) in the central 2D section of the structure. This approach allows us
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to inspect larger sizes, still providing an elastic field compatible with the complete crystal re-

laxation achieved for high aspect-ratio vertical structures when 3D calculations are considered

[28].

An illustration of the geometry considered here is depicted in Fig. 4.7(d). A SiGe crystal

made of 333 nm thick buffer layers is considered with a simple parallelepiped shape, by im-

posing a 0.5% increase of the Ge content per layer up to reach the composition of 40% Ge. The

index i labels the interfaces between different layers. A 60◦ dislocation is considered for the

calculation of the ∆G.

According to the experiments in Fig. 4.7(a), the lateral size of the Ge crystals grown on

2×2 μm2 wide Si pillars ranges from B1 = 3.5 μm at the bottom (close to the Si buffer) and

B2 = 5.5 μm at the top of the structure. Similarly, for the crystal grown on 5×5 μm2 wide Si

pillars, B1 = 6.5 μm and B2 = 8 μm are considered. For the evaluation of the elastic field, the

geometry is modeled with a simple parallelepipedal shape. In particular, the geometries with

both the minimum and the maximum width will be investigated as the behavior of the SiGe/Si

system with the real crystal shapes is expected to lie in between.

In Sect. 3.4 we discussed the positioning of a 60◦ dislocation when minimizing the elastic

energy. As far as it may vary along the interface, in particular when buffer layers with small

aspect-ratio are considered, we calculate ∆G by explicitly sampling different dislocation po-

sitions. ∆Gmin is the minimum value for the formation energy obtained at a given interface.

Let us focus on the first interface (i = 1). Fig. 4.8(a) shows ∆Gmin with i = 1 as function of

the number of buffer layer (directly proportional to the total thickness during the Ge deposi-

tion). Notice that N > 40 has not been considered as the formation energy does not change for

further material added on top. The main result of these simulations is that a positive ∆Gmin is

observed for L in between 3.5 and 5.5 μm (light-blue area). For SiGe crystals grown on 5×5 μm2

Si pillars with a size B ranging from 6.5 μm to 8 μm (red area), the ∆Gmin(N) values becomes

negative for N ≥ 7. So that when the deposition reaches a Ge content beyond 3.5%, the sys-

tem should start to relax plastically. This perfectly agrees with the experimental evidences of

Fig. 4.7.

So far we limited the calculations to the configuration of a dislocation at the first interface.

However, other configurations may be present involving the nucleation of dislocations at inter-

faces with i > 1. In order to account for such possible configurations, the calculations described

above are also repeated by considering different interfaces. The resulting ∆Gmin(i) is shown in

Fig. 4.8(b) for both the structures in Figs. 4.7(a) and 4.7(b). Only the maximum sizes B2 are here

considered. It can be noticed that the real minimum is actually shifted to small i larger than

1. However, the variation in the formation energy values is very small. Moreover, we observe

a strong increase of the formation energy for large i values pointing out that the favored con-

figuration for the first dislocation is always close to the interface with the pure Si pillars. This

behavior has been verified also evaluating ∆Gmin(i) as in Fig. 4.8(b) for structures with different

N values, i.e. for structures with different thicknesses obtained during the growth. The result is

shown by the additional curves in Fig. 4.8(c) and are found to have always a larger energy than

the N=80 case, i.e. the final structure. This analysis assessed the results of Fig. 4.8(a) which can
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Figure 4.8: Results of 2D simulations. (a) ∆Gmin(N) at the i = 1 interface for the SiGe crystal with
different values of B, corresponding to the minimum and the maximum size of crystals in Fig. 4.9. Light-
blue and red regions correspond to the values compatible with the crystal grown on 2×2 µm2 and 5×5
µm2 wide Si pillars, respectively. (b) ∆Gmin(i) with N = 80 for the maximum lateral sizes for crystals
grown on both the substrates. (c) ∆Gmin(i) for different N values.

be then considered as representative of the lower formation energy for a 60◦ dislocation within

the SiGe crystals.

The main evidence of the reported calculation is that the tendency towards the plastic re-

laxation is significantly hindered when considering the graded SiGe crystal grown on 2×2 μm2

with respect to the larger crystal. Despite simplified calculation have been performed, the com-

parison with the experiments, and the connection with the more accurate theory by means of

Eq. (4.4), allows us to draw the conclusion that full coherency is here achieved and demon-

strated. This is an unprecedented result showing the general possibility to obtain coherent

VHEs significantly exceeding the nanometer length scale [40]. The results reported in this sec-

tion can be considered as the main application of the theoretical concepts introduced in Ch. 3.

4.5 Thermal strain relaxation in multilayered VHE

One of the most important property of VHEs grown at the micron scale is the possibility to

achieve full relaxation of the thermal stress, as widely discussed in Ref. [19]. However, the

proof of this peculiar property has been provided only for what concerns a single-layer VHE.

Multilayered VHEs have been also proposed in order to achieve the high-quality integration

of GaAs on a small aspect-ratio Ge domain grown on Si pillars. In Figs. 4.9(a)-4.9(c) three
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Figure 4.9: Relaxation of thermal strain in GaAs/Ge/Si VHEs [35]. (a)-(c) Cross-section SEM images
of the multilayered structures grown on 2×2 µm2, 5×5 µm2 and 15×15 µm2 Si pillars, respectively.
(d)-(f) Cross-section of the structures in panels (a)-(c) showing the in plane strain as calculated by
FEM simulations. (g) Averaged in-plane strain in GaAs obtained by both FEM simulations and X-rays
diffraction experiments.

different GaAs/Ge/Si structures are reported. They were grown on 2×2 μm2, 5×5 μm2 and

15×15 μm2 Si pillars, respectively. The substrates were fabricated with a miscut of 6◦ with

respect to the (001) surface. 2 μm thick Ge layer was grown by LEPECVD at 500 ◦C while

∼ 3 μm of GaAs was deposited by MOVPE at 780 ◦C. Details of the growth technique can be

found in Ref. [35]. Dislocations are widely present in these structures, as the critical thickness

for their insertion in Ge layers consists of a few nanometers. The same applies to the GaAs/Ge

interface. So that, during the growth, the structures are fully relaxed by both elastic and plastic

relaxation. As described in Sect. 2.4, the cooling of the system leads to an accumulation of strain

when differences in the thermal expansion coefficient are present. Here the three materials

forming the heterostructures of Figs. 4.9(a)-4.9(c) exhibit these differences and thermal strain is

measured in the structures. Notice that an accurate determination of the thermal strain from

theoretical calculations should account for the motion of dislocations due to the rise of thermal

stress (during the cooling) and also due to the eventual residual strain. Therefore, it may be a

complex task, depending on the specific system.

In order to investigate the thermal strain relaxation in these multilayered structures, we di-

rectly consider the measured strain values on the unpatterned area of the sample, consisting

of a GaAs/Ge/Si film. Indeed, this region follows the same growth process of the multilayer

VHEs, thus accounting for a similar dislocation motion and residual heteroepitaxial strain. The

values of the measured thermal strain, with respect to the Si substrate, are εGaAs
|| = 0.19%

and εGe
|| = 0.14%. The mechanical equilibrium equation are solved by imposing an eigen-

strain ε∗ij = −ε||δij for all the materials, with free surfaces boundary conditions at the sidewalls

and at top surfaces. In order to provide the best quantitative comparison with experiments,

anisotropic elastic constants are selected from Ref. [155, 157]. The elastic fields provided by
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3D FEM simulations reproducing the experimental morphologies are reported in the cross-

sections of Figs. 4.9(d)-4.9(f). A significant relaxation is obtained with respect to the values of

the unpatterned regions. Moreover, a compressive strain lobe is present in the Si along with

a tensile strain both in Ge and GaAs. The elastic field distributions closely resemble the fea-

tures of the elastic field in VHEs discussed for the relaxation of the heteroepitaxial strain (with

opposite sign in agreement with the misfit considered in the calculation), i.e. the free surfaces

significantly contribute to the relaxation and the residual strain is higher at the interfaces. In

Fig. 4.9(g) the in-plane strain of the GaAs, averaged on its volume, is reported as obtained from

FEM simulations and it is compared with the measured values by HRXRD. A good agreement

between experiments and simulations is obtained, showing a decrease of the thermal strain

by increasing the aspect-ratio of the structure with respect to the planar configuration (whose

strain is shown forAR = 0.0). This allows us to conclude that the analysis reported in Ref. [19],

concerning the thermal strain relaxation, is still valid when considering multilayered struc-

tures. From the experimental point of view, this was also confirmed by the presence of cracks

in the unpatterned region, which are actually missing in these structures. Notice that this evi-

dence about cracks can be also inferred by looking at the typical crack spacing obtained by the

modeling provided in Sect. 3.5, with parameters reported in this section, which results larger

than the lateral size of the structures.
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5
Phase field modeling for the

morphological evolution of crystals

When the micrometer-wide VHEs were introduced in Refs. [19, 20], a 2D continuum modeling

was proposed to describe the growth mechanism. The peculiar growth conditions were iden-

tified as the key factor for the achievement of vertical growth. However, a full 3D modeling of

the morphological evolution during the processing was out of the purposes of those works.

In order to go beyond the first preliminary models, a framework able to tackle 3D evolu-

tions and the coupling of different physical phenomena has to be selected. To this purpose,

we consider here the phase-field approach (PF) [29]. Indeed, it has been proven to easily man-

age the evolution of three-dimensional systems also when considering complex behavior such

as the occurrence of topological changes. It also allows for an efficient coupling of different

physical contributions, even when defined on different domains (e.g. bulk and surface proper-

ties). Moreover, it has already been applied to the modeling of physical phenomena typical of

heterostructures such as surface diffusion [29], elastic strain relaxation [158], dewetting mech-

anisms [159] and intermixing [160].

In this chapter, we discuss the main developments of the PF modeling carried out to provide

the three-dimensional morphological evolution of crystals. In particular, in order to describe

the effects induced by high-temperature treatments of VHEs (as will be discussed in Ch. 6) we

address the modeling of the surface diffusion within the PF framework as discussed in Ref. [29]

also introducing a convenient description of surface energy density. This approach, combined

with the strong anisotropy management proposed in Ref. [161], is proven to be effective in tack-

ling the evolution by surface diffusion of three-dimensional, faceted morphologies [32]. Some

extensions of the PF model dealing with the growth processes are also considered. Indeed, we

report a Ray-Tracing Monte Carlo algorithm to compute the incoming material flux on the sur-

face profile, accounting for flux shielding effects. Moreover, the possibility to describe faceted

growth is reported [76].

The theoretical model developed with the aid of the PF framework can be considered of

general interest as it involves properties common to several crystalline systems. It required a

dedicated development of the simulation technique and it is presented here separated from its

applications. The modeling reported in this chapter has been carried out in collaboration with

Prof. A. Voigt and his research group at the Technische Universität Dresden (TU-Dresden).

79
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5.1 Model description

The concept of phase-field (PF) has been mainly introduced in the scientific community within

the standard phase-transition theory [162, 163]. A PF model consists of defining a framework

where the equations are defined by means of an auxiliary analytic function ϕ, describing the

phases of the system. Moreover, it can be used in the modeling of material properties to de-

scribe diffuse interfaces, i.e. the transition between phases within a region of arbitrary thickness

ε (i.e. the interface thickness).

Two different approaches are usually followed in the definition of a PF model. A first ap-

proach consists of using ϕ to conveniently solve equations defined on complex boundaries,

where the discretization of the domain is difficult and/or evolves in time, by following a dif-

fuse domain approximation (DDA) [164]. Let us consider, for instance, a computational domain

Ω and an equation defined on a domain Ω′ ⊂ Ω

F (u) = g, (5.1)

with generic boundary conditions defined on Σ ≡ ∂Ω′. The idea of the DDA consists of ex-

tending the validity of Eq. (5.1) to Ω by exploiting a characteristic function χΩ, which is 1 in Ω′

and 0 elsewhere. This is done by considering the weak formulation (see Sect. 1.6.1) and then

multiplying each term by the characteristic function. The equation is then rewritten as

F̃ (u, χΩ) + BC = gχΩ, (5.2)

defined in Ω with BC a generic boundary condition (included in the weak form), evaluated

thanks to a function δΣ defined by
∫

Ω fδΣdΩ =
∫

Σ fdΣ (with f is a generic function). ϕ can

then be introduced as a continuous definition of χΩ, having a smooth transition between ϕ = 1

and ϕ = 0 within a region of depth ε. This allows for the use of numerical approaches to

solve the equations in Ω, chosen with a simple shape and boundary conditions, and implicitly

describe conditions on Σ. Notice that each feature of the problem can be defined by means

of ϕ. For instance, the δΣ can be approximated by |∇ϕ|. This approach results well-posed if,

in the limit for ε → 0, i.e. for ϕ → δΣ, the solution of the equations defined on the diffused

domain coincides to the original one (i.e. F̃ → F ). This correspondence is usually evaluated by

the method of Matched Asymptotic Expansions [164]. At variance with this diffused domain

approach, the standard definition of the equation is referred to as the sharp interface case. For

instance, the evolution laws reported in Sects. 1.4 and 1.5 represent the sharp interface limit for

the evolution laws for ϕ reported in the following.

A second approach consists of using ϕ as an order parameter, and to determine the appro-

priate energy functional for the multiphase system. It includes the energy of bulk phases and

the energy of the transition region between phases. Then, evolution laws are derived for ϕ.

Also by following this kind of derivation, the geometrical properties of the phases and in par-

ticular of the interface between them can be derived directly from ϕ. Notice that, within this

approach the limit of small interface thickness may be also taken into account, but, according to

the specific energy functional, physics behavior can be also described far from this condition.
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Figure 5.1: Phase-field modeling. (a) Generic 2D surface described by means of ϕ. (b) Plot of ϕ(x)

and B(ϕ) (divided by the B(0) value) along the white arrow in panel (a). (c) Perspective view of a cubic
simulation domain embedding a sphere defined by means of ϕ. A slice of the simulation domain is also
shown, revealing the refined mesh grid at the 0.5 isosurface of ϕ.

Of course, in order to describe a specific phenomenon, both the approaches should give the

same results. Indeed, the evolution law for ϕ obtained as a modification of a sharp-interface

equation, or derived from a reasonable guess of the energy functional should coincide.

In this work we consider a definition for ϕ such to describe the solid phase ϕ = 1 and the

vacuum (or diluted vapor) phase ϕ = 0, with a smooth connection in between. In particular, a

convenient choice for ϕ is [29]:

ϕ =
1

2

[
1− tanh

(
3d(x)

ε

)]
, (5.3)

where ε is the interface width and d(r) is the signed distance from the (sharp) interface profile

(nominally corresponding to the 0.5 iso-surface of ϕ), which consists of the surface of the solid

phase. The geometrical properties of the surface are described by means of ϕ as, for instance,

the outer-pointing surface normal n̂ = −∇ϕ/ |∇ϕ|. In Fig. 5.1(a) the definition of a generic

2D surface profile by means of ϕ is reported. The color map shows the values of ϕ. The line

scan of ϕ(x) along the white arrow is shown in Fig. 5.1(b). Notice that Eq. (5.3) allows for

the definition of geometries with any dimension, provided that a proper signed distance is

adopted. In Fig. 5.1(c) we show the definition of a sphere by means of ϕ, which represent the

initial configuration of some of the simulations reported in the following.

The energy of the system described by the order parameter ϕ can be described by the

Ginzburg-Landau functional [29, 162] accounting for the energy of the bulk phases and for

the interface cost

Gs[ϕ] =

∫
Ω
γ(n̂)

(
ε

2
|∇ϕ|2 +

1

ε
B(ϕ)

)
dV. (5.4)

B(ϕ) = 18ϕ2 (1− ϕ)2 represents the bulk energy term in the form of a double well potential,

promoting ϕ = 0 and ϕ = 1 values. This term tends to shrink the interface as much as possible.
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Conversely, the term proportional to |∇ϕ|2 quantifies the energy cost of having an interface

and the thinner is the thickness the higher is the interface energy. The balance of these two

contributions makes the interface with a finite thickness ε a stable condition for the system.

Eq. (5.4) well represents the surface energy of (1.26) in the PF framework. By comparing this

equation to surface energy in Eq. (1.26), the argument of the integral multiplying γ(n̂), i.e.(
ε/2)|∇ϕ|2 + 1/εB(ϕ)

)
dr, can be interpreted as an approximation of the infinitesimal surface

element. γ(n̂) multiplies both terms to ensure constant interface thickness for any orientation

when considering anisotropic surface energy density [161] (at variance with other approaches

exhibiting an interface thickness dependent on γ(n̂) [165, 166]).

In order to evaluate the dynamics of the surface we have to describe how ϕ evolves in time.

In particular, we focus on the surface diffusion evolution described by Eq. (1.35). The chemical

potential µ can be expressed as the variational derivative of Eq. (5.4) with respect to ϕ [29] (as

the phase-field variable can be actually interpreted as the density of the solid phase)

µ = µs =
δGs

δϕ
≈ −ε∇ · [γ(n̂)∇ϕ] +

1

ε
γ(n̂)B′(ϕ)− ε∇ ·

[
|∇ϕ|2∇∇ϕγ(n̂)

]
, (5.5)

where ∇∇ϕ is the gradient along the direction of ∇ϕ. The surface diffusion evolution then

reads
∂ϕ

∂t
= ∇ · [M(ϕ)∇µ] , (5.6)

with a mobility function set as M(ϕ) = M0(2/ε)B(ϕ) = M0(36/ε)ϕ2 (1− ϕ)2 in order to restrict

the diffusion at the surface. Indeed, as shown in Fig. 5.1(b), B(ϕ) values are non-vanishing

only within the interface region. M0 sets the timescale of the evolution. It can be shown that

the specific choice of ϕ reported in Eq. (5.3) corresponds to the stationary state (i.e. µ = 0) for

an interface between two phases with energy Eq. (5.4) in 1D.

Despite the model discussed so far has been widely used in the literature to describe surface

diffusion by a means of a PF approach, it has been shown that it does not recover the correct

sharp interface limit, i.e. Eq. (1.35), for ε→ 0, as discussed in Refs. [167–169]. However, a more

proper modeling have been introduced by replacing µ with g(ϕ)µ where g(ϕ) = 30ϕ2(1 − ϕ)2

[158] (see also the implementation in Sect. 5.1.1). No asymptotics analysis are shown here,

but they can be found in the literature as for instance in Ref. [167]. Notice that the information

about the surface profile has been explicitly considered only in the definition of d(x) in Eq. (5.3),

which consists of the initial condition for ϕ. Then, the surface is implicitly described and can be

recovered as the 0.5 isosurface of ϕ. This allows for the description of complex evolutions, as

the occurrence of dramatic topological changes, without caring about the explicit description

of the geometry during the simulations.

With an isotropic surface energy, or in the weak anisotropy regime, the evolution described

by Eqs. (5.5) and (5.6) is well-posed. If γ(n) yields to a strong anisotropy condition, a regu-

larization is required as discussed in Sect. 1.4. The so-called Willmore regularization [161] is

considered in this work, by including in the energy functional a term Freg which approximates

the integral of the squared local curvature:

Greg =
β

2ε

∫
Ω

(
−ε∇2ϕ+

1

ε
B′(ϕ)

)2

dV. (5.7)
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This regularization term corresponds to the corner rounding described in Sect. 1.3. It penalizes

regions with high curvatures, thus leading to a local rounding where sharp corners are pre-

dicted in the Wulff shape. As in the sharp interface formulation, the extension of the rounded

region can be controlled by the parameter β and the radius which quantifies the radius is pro-

portional to ∼
√
β [70]. When including such a regularization in the energy functional, an

additional term in the chemical potential appear as δGreg/δϕ leading to

µ = µs + β

(
−∇2κ+

1

ε2
B′′(ϕ)κ

)
, (5.8)

where µs is given by Eq. (5.5) and κ = −ε∇2ϕ + 1
εB
′(ϕ) is the approximation of the curvature

in the PF approach. Notice that, when including this regularization, a 6-th order PDE has to be

solved. This can be easily inferred by considering that the κ expression corresponds to a second

order term for ϕ, as κ = ∇· n̂ = ∇·(−∇ϕ/|∇ϕ|), and a term proportional to∇2(∇2κ) will result

in the explicit derivation of ∂ϕ/∂t (see Sect. 5.1.1 for further details on the implementation).

In order to extend the evolution law to the description of a growth dynamics, an additional

term can be considered in Eq. (5.6) representing an external material flux which also accounts

for the deposition mechanism. Following the discussion of Sect. 1.5, and describing the growth

within the PF framework, such an additional term in ∂ϕ/∂t can be defined as

∂ϕ

∂t
= Φχ(n̂)|∇ϕ|. (5.9)

Φ is the material flux due to deposition, χ(n̂) is the orientation-dependent incorporation rate,

here considered equal to the expression introduced in Eq. (1.46), and |∇ϕ| is included in order

to restrict such an evolution to the interface also accounting for interface thickness. The full

evolution law then results from the coupling between surface diffusion (5.6) and growth (5.9):

∂ϕ

∂t
= ∇ · [M(ϕ)∇µ] + Φχ(n̂)|∇ϕ|. (5.10)

Some refinements of the model, required to describe realistic systems, will be introduced in

Sects. 5.2 and 5.4 in order to account for an arbitrary definition of the surface energy density

and the modeling of possible flux shielding effects within the PF framework.

5.1.1 Integration scheme and computational details

The PDEs describing the evolution using the PF approach are quite demanding from a nu-

merical point of view and accurate space and time discretization are required. In this work,

we adopted the FEM toolbox AMDiS [31, 79], developed and maintained by the Axel Voigt’s

group (TU-Dresden). It consists of C++ libraries able to solve a broad class of PDEs by means

of advanced computational approaches. The efficient implementation of an adaptive mesh is

its main feature. Indeed, it allows for highly inhomogeneous spatial discretization in order to

ensure enough accuracy where required, and save computational cost with coarse resolution

elsewhere (see Fig. 5.1(c)). Moreover, other features make this toolbox very useful to achieve

an efficient integration of PDEs, as standard or custom adaptive time step (i.e. non-uniform,

optimized time discretization), as well as the possibility to use both direct and iterative solvers

with optimized preconditioning. AMDiS outputs can be easily exported in different formats,



84 Phase field modeling for the morphological evolution of crystals

also compatible with advanced visualization tools such as ParaView [170]. In this work, the

output of PF simulations is mostly reported just by exploiting such a software.

In order to integrate the evolution laws, we consider a system of three PDEs for ∂ϕ/∂t,

g(ϕ)µ and κ. In particular, the integration scheme adopted here is semi-implicit. By considering

Eqs. (5.6), (5.8) and the expression for κ, at the n-th time step τ (n), it consists of
1

τ (n)
A 0

B g(ϕ(n−1))
β

ε
C

C 0 1



ϕ(n)

µ(n)

κ(n)

 =


ϕ(n−1)

τ (n)
+ D

E

F

 (5.11)

with

A =−∇ ·
[
M(ϕ(n−1))∇

]
,

B =ε∇ ·
[
γ(n̂(n−1))∇

]
− 1

ε
γ(n̂(n−1))B′′(ϕ(n−1)),

C =

[
ε∇2 − 1

ε
B′′(ϕ(n−1))

]
,

D =Φχ(n̂(n−1))|∇ϕ(n−1)|

E =−∇ ·
[
ε
∣∣∣∇ϕ(n−1)

∣∣∣2∇∇ϕγ(n̂(n−1))

]
+ γ(n̂(n−1))F,

F =
1

ε

[
B′(ϕ(n−1))−B′′(ϕ(n−1))ϕ(n−1)

]
.

Surface normal is defined by

n̂(n−1) = − ∇ϕ
(n−1)

|∇ϕ(n−1)|
. (5.12)

The linearization in time of the double well potential derivative, i.e.

B′(ϕ(n)) = B′(ϕ(n−1)) +B′′(ϕ(n−1))(ϕ(n) − ϕ(n−1)), (5.13)

is adopted as well as the asymptotic limit 1
εB(ϕ)→ ε

2 |∇ϕ|
2 (first term in E).

When anisotropy is weak, the system (5.11) can be reduced to two equations by setting

β = 0 and excluding the third equation for κ. Both sequential and parallel computations (up

to 32 cores), with both iterative and direct solvers, were exploited in this work. When strong

anisotropy is considered the reported PDE system (5.11) works well with direct solvers. In

order to use iterative solvers an exchange of the first and the second rows of the system (i.e.

exchange of the equation of ∂ϕ/∂t and g(ϕ)µ) has been performed, in order to have some of

the second order terms on the diagonal. Moreover, further optimizations can be implemented

by considering specific stabilizing (from the numerical point of view) terms. For instance, a

stabilization can be achieved by adding terms proportional to ϕ on both the right and the left-

hand side of the equation, evaluated at the time (n− 1) and (n), respectively. They would lead

to a vanishing effect for infinitesimal time-step. For finite time step, they would introduce a

controllable error leading, however, to unconditionally stable integration. This would allow

for a larger time step, still ensuring reliable simulation results. A more detailed discussion on

such stabilizing terms can be found in Ref. [171].
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The simulation domain is defined as shown in Fig. 5.1(c). A cubic (or parallelepiped) do-

main is considered with the definition of a surface by means of Eq. (5.3). In particular, Fig. 5.1(c)

shows the definition of a sphere within a cubic domain, obtained by assuming d(x) = x − R,

with R the radius of the sphere. Zero-flux Neumann BCs are set at all the domain boundaries

(faces of the cubic box in Fig. 5.1(c)). For the sake of simplicity, the unit of length is dimension-

less while the timescale is given in 1/(γ0D) units by setting γ0 and D equal to 1. Conversely,

specific units will be also adopted in Ch. 6 to facilitate the comparisons with experiments. This

can be formally obtained by setting the properM0 coefficient, in order to match the desired time

and length scale. The value of the parameters, as ε or β, as well as the sizes of the simulation

domains are reported within the text along with the simulation results.

5.2 Surface energy density: a convenient form
In Sect. 1.3 we introduced the main concepts related to the Wulff shape and to faceted geome-

tries, as resulting from the definition of an anisotropic surface energy density. In this section, we

describe a general formulation for γ(n̂) function, in order to account for arbitrary faceted mor-

phologies. Notice that the formulation here reported does not rely on the phase-field approach

discussed in this chapter, but it provides a general approach that can be exploited within any

other framework dealing with continuous surface energy definition. However, it is discussed

here as it was developed to provide the description of arbitrary anisotropies within PF.

The main idea under the formulation presented here, is to quantify the difference between

the local surface orientation n̂ and the vectors which give minima in the surface energy density

(m̂i) [172]. This is obtained by evaluating the scalar product n̂ · m̂i and providing a surface

energy density parametrized as

γ(n̂) = γ0

(
1−

N∑
i

αi (n̂ · m̂i)
wi Θ (n̂ · m̂i)

)
, (5.14)

where N is the total number of energy minima. αi and wi are positive coefficients. The former

set the depth of the minima. The latter set the width of the minima, i.e. the range of the

orientations n̂ around m̂i where γ(n̂) is lower than γ0. Differentiability of Eq. (5.14) is ensured

by wi ≥ 2. In order to control each facet independently, even when orientations are along

the same direction (i.e. for ±m̂i facets) the Heaviside step function Θ is introduced, excluding

any energy contributions for negative value of n̂ · m̂i. The behavior of Eq. (5.14) can be easily

inferred by focusing on a single minimum along the m̂ direction. γ(n̂) results equal to γ0(1−α)

if n̂ ≡ m̂, increasing up to γ0 when the value of n̂ · m̂i decreases, i.e. when moving away from

m̂. This definition for the surface energy density allows well-known expressions present in

the literature to be recovered as special cases. In particular, cubic symmetry resulting from

γ(n̂) = γ0

[
1 + α̃

(
n4
x + n4

y + n4
z

)]
[62, 161] can be obtained directly from Eq. (5.14) by imposing

six different minima along the orthogonal axes m̂1,2=[±100], m̂3,4 = [0 ± 10], m̂5,6 = [00 ± 1],

with wi = 4 and constant αi for each minimum.

An illustration of how Eq. (5.14) behaves is shown in Fig. 5.2. In particular, Figs. 5.2(a)-

5.2(c) report bidimensional surface energy density functions γ(θ), where θ = − arctan(ny/nx)

is the angle between the normal vector and the [10] direction. The specific case with minima
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Figure 5.2: Surface energy densities from Eq. (5.14). (a)-(c) 2D γ(θ) function with minima at θ∗i = iπ/4,
corresponding to 〈10〉 and 〈11〉 directions, with αi = 0.5 and γ0 = 1. (a) wi = 8 (dotted line), wi = 20

(dashed line) and wi = 100 (solid line). (b) γ(θ) with the same parameters of panel (a) and w0 increased
by a factor 10. (c) γ(θ) with the same parameters of panel (a) and α0 = 0.75. (d) 3D γ(n̂)-plot with
minima along 〈100〉 and 〈111〉 directions, αi = 0.5 and γ0 = 1. Three wi values are selected. γ(n̂) values
are also plotted as color map.

at θ∗i = iπ/4 with i ∈ Z (i.e. 〈10〉 and 〈11〉 directions) is considered. In Fig. 5.2(a), three curves

with different wi and same αi values for each minimum are shown. First, it can be noticed

that the real width of minima is inversely proportional to wi. Moreover, for small values of

such a parameter (see wi = 8 curve) the single minima are not well-resolved and significant

superposition of the contribution in the summation of Eq. (5.14) is recognized, for all the ori-

entations. This condition leads also to γ(θ∗i ) values lower than γ0(1 − αi) at mi. By increasing

wi (see the wi = 20 curve), no effective superposition takes place at θ = θ∗i but it is still present

for orientations in between. For large enough wi (see the wi = 100 curve), a full decoupling

of the energy minima is achieved and orientations with γ(θ) = γ0 appear. This would be the

best condition when the full control of minima is required, leading in turn to the full con-

trol of the energy of single facets. In order to provide such a control on a specific minimum,

other features of Eq. (5.14) can be exploited. This is illustrated in Fig. 5.2(b), where the same

curves as in Fig. 5.2(b) are shown with a value of w0 (width parameter for the θ∗0 minimum)

increased by a factor 10. Furthermore, the energy of a specific minimum can be tuned inde-

pendently by setting a different αi value. This is shown in Fig. 5.2(c) at θ = θ∗0 where lower

surface energy is achieved by setting an higher αi value. Similar arguments can be considered

for three-dimensional γ(n̂) functions. In this case, the tuning of parameters in order to achieve

independent minima definition can be even more complex, but the qualitative discussion re-

ported for the 2D case still holds true. In Fig. 5.2(d), the 3D γ(n̂)-plots are shown for a γ(n̂) with
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minima along 〈100〉 and 〈111〉 directions. Parameters consists of wi = 8, wi = 15 and wi = 30

for the three different plots, respectively, with αi = 0.5. The color map, showing γ(n̂) values,

highlights the superposition and the decoupling effects observed by increasing the value of wi.

5.2.1 Anisotropy regime assessment

The γ(n̂) definition of Eq. (5.14) allows for a full customization of the surface energy density.

According to its parameters, strong anisotropy condition can be achieved, thus requiring a

suitable regularization as reported in Eq. (5.7). Notice that being able to know what is the

anisotropy regime before performing simulations, i.e. once surface energy parameters are set,

allows one to include the regularization, and the related computationally demanding PDEs,

only when strictly necessary. Exploiting the criterion introduced in Ref. [62] and illustrated in

Sect. 1.3 we can determine a priori the anisotropy regime, provided that derivatives of γ(n̂)

with respect to n̂ components are known. Such derivatives, calculated for Eq. (5.14) are:

∂γ

∂nx
= −γ0

N∑
i

αiwip
wi−1
i

(
mx,i −mz,i

nx
nz

)
∂γ

∂ny
= −γ0

N∑
i

αiwip
wi−1
i

(
my,i −mz,i

ny
nz

)
∂2γ

∂n2
x

= −γ0

N∑
i

αiwi

[
(wi − 1)pwi−2

(
mx,i −mz,i

nx
nz

)2

− pwi−1mz,i
n2
x + n2

z

n3
z

]
∂2γ

∂n2
y

= −γ0

N∑
i

αiwi

[
(wi − 1)pwi−2

(
my,i −mz,i

ny
nz

)2

− pwi−1mz,i

n2
y + n2

z

n3
z

]
∂2γ

∂nx∂ny
= −γ0

N∑
i

αiwi

[
(wi − 1)pwi−2

(
mx,i −mz,i

nx
nz

)
·
(
my,i −mz,i

ny
nz

)
− pwi−1mz,i

nxny
n3
z

]

where pi = p (n̂, m̂i) = (n̂ · m̂i) Θ (n̂ · m̂i). The product K1K2 can then be calculated by a nu-

merical evaluation of Eq. (1.28). The critical coefficient ᾱ, as a function ofw, has been calculated

for a single (arbitrary) minimum direction and it is shown in Fig. 5.3. Such a behavior is well

reproduced by

ᾱ(w) =
a1

w
+
a2

w2
(5.15)

where a1 = 2.26± 0.2% and a2 = −2.48± 0.4% deliver the best fit. When the contributions aris-

ing from different minima are decoupled, i.e. no significant superposition effects are present

for a given set of wi values, the anisotropy regime can be directly evaluated by comparing the

αi values with the data in Fig. 5.3 or with Eq. (5.15). On the other hand, if the superposition

of minima is present for some orientations, the explicit numerical evaluation of Eq. (1.28) is

required in order to determine the anisotropy regime and the critical parameter ᾱ.
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Figure 5.3: ᾱ values as function of w for the γ(n̂) defined by Eq. (5.14) with a single minimum orientation.

5.3 Simulations of surface diffusion
In this section, we simulate surface diffusion evolution as resulting from the phase-field ap-

proach described in Sect. 5.1. First, the isotropic evolution is shown, crucial for the assessment

of the model. Second, weak and strong anisotropy regime are considered exploiting the choice

of γ(n̂) introduced in Sect. 5.2.

5.3.1 Isotropic surface diffusion and model assessment

In order to show the evolution by the PF model of surface diffusion, let us consider a simple

2D domain. In particular, we consider the definition of a surface profile as a cosine function

f(x) = h0 cos(qx). (5.16)

The description of this profile with h0 = 0.3 by means of ϕ is shown in the first panel (t = 0.0)

of Fig. 5.4(a). Such a profile is obtained by imposing an initial guess for d(x) of Eq. (5.3) corre-

sponding to y − f(x) and then calculating the actual signed distance by a numerical routine.

The evolution by surface diffusion with isotropic surface energy density is considered by im-

posing γ(n̂) = γ0 = 1 in Eq. (5.4), and it is reported in Fig. 5.4(a). Periodic boundary conditions

along the x̂ direction are considered. The size of the simulation cells is 1×1 with ε = 0.05.

In order to understand the outcome of this simulation, in Fig. 5.4(b) the same evolution is re-

ported showing the chemical potential µ within the interface. Notice that only variation of µ

within the surface play a role in the surface diffusion as the mobility is restricted to the surface

by means of the M(ϕ) function. A constant value is obtained in the normal-to-the-surface di-

rection within the interface, ensured by the choice of ϕ in Eq. (5.3). Conversely, a distribution

of µ is observed along the surface profile, with maxima at the two peaks, and a minimum at

the central valley. This produces a material flux from the peaks toward the valley leading to

the evolution of Fig. 5.4(a), which, in turn, progressively lower differences of µ. The stationary

state, i.e. the final stage of the evolution is reached for the flat surface (t = 10) showing a ho-

mogeneous chemical potential. The volume of the solid phase is conserved, with a numerical

error lower than 0.1%. Moreover, the minimization of the surface energy, corresponding here

to the surface length, is achieved.



5.3 Simulations of surface diffusion 89

Figure 5.4: Evolution of a cosine profile by PF simulation of surface diffusion. (a) Evolution of the initial
profile (t = 0) towards the stationary state, i.e. a flat profile (t = 10). The color map shows the ϕ values.
(b) Same evolution as in panel (a) showing the chemical potential µ at the surface.

In order to test the reliability of the dynamics described by the PF approach, let us consider

a well known analytic solution for the evolution of a cosine perturbation. In the approximation

of small amplitudes for Eq. (5.16) the curvature κ ≈ f ′′(x) is

κ = −h0q
2 cos(qx). (5.17)

Then, by considering the surface diffusion equation, i.e. Eq. (1.35), in the limit of small ampli-

tudes, we have
∂f

∂t
= γ0∇2κ ≈ γ0

d2κ

dx2
= −γ0h0q

4 cos(qx) = −γ0q
4f(x). (5.18)

So that

f(x, t) = h0 cos(qx) exp(−γ0q
4t) = f(x) exp(−γ0q

4t). (5.19)

Therefore, we obtained an equation that describes the evolution of f , which consists of a decay

of the amplitude of the initial cosine profile. A representative quantity to describe the evolution

of the perturbation is the length of surface L =
∫ b
a

√
1 + [g′(x)]2dx with g a generic function. Its

explicit expression for the f(x, t) in Eq. (5.19) is

L(t) =

∫ x2

x1

√
1 + [qh0 exp(−γ0q4t) sin(qx)]2dx, (5.20)

with x1 and x2 the limit of x values. In Fig. 5.5, a comparison between Eq. (5.20), PF simulations

of surface diffusion as in Fig. 5.4(a) with h0 = 0.05 and an explicit integration of Eq. (1.35) (i.e.

the sharp interface limit of Eq. (5.6)) by a finite difference approach, are shown. Notice that a

good agreement is obtained between the two numerical approaches and the analytic function

for L(t). So that, the PF model allows for a reliable description of surface diffusion. Moreover,

the values used for ε allows to numerically recover the sharp interface limit for such a phe-

nomenon. The comparison to the analytic solution cannot be extended to larger values of h0 as

the small-amplitude approximation adopted in Eq. (5.20) would fail. So that the evolution in

time of the profile cannot be described by a simple analytic function. Moreover, the numerical
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Figure 5.5: Comparison of the surface length decrease during the evolution by surface diffusion of a
cosine with a small amplitude, with three different approaches: analytic function from Eq. (5.20) (solid
blue line), finite difference simulation for the sharp interface approach (dashed red line), phase-field
simulation (black squares).

integration by finite difference approach of the sharp-interface equations can be straightfor-

wardly used for simple evolution in 2D only. PF models, indeed, were considered to overcome

the issues of the explicit tracking of the surface in 3D. However, the model considered here is

known to converge to the right sharp-interface behavior for small ε [167]. Moreover, a numeri-

cal check can be always performed by considering smaller and smaller ε until reaching conver-

gence of different simulations to the same behavior. For the simulation reported in Fig. 5.4 we

verified that for ε < 0.1 no changes in the evolution are observed. For all the simulations car-

ried out with the PF approach reported here (and also for the ones illustrated in the following

and in Ch. 6), such a convergence condition with respect to the choice of ε has to be checked.

As mentioned in Sect. 5.1, the PF approach easily allows for the definition of 3D profiles. In

order to provide an example involving a three-dimensional geometry, we consider the evolu-

tion by surface diffusion of an ellipsoidal shape with isotropic surface energy. Such an initial

profile is shown in Fig. 5.6 by means of the 0.5 isosurface of ϕ, along with the color map show-

ing the chemical potential at the surface (as in the simulations reported in Fig. 5.4(b)). Hereafter

the reported surface profiles always correspond to the 0.5 iso-surface of ϕ(x). Notice that µ val-

ues on the surface correspond to κ when isotropic surface energy is considered with γ(n̂) = 1.

This initial configuration shows different µ values on the profile so that the evolution by sur-

face diffusion is expected, as obtained by the PF simulation reported in Fig. 5.6. In contrast to

the evolution reported in Fig. 5.4, this profile consists of a closed surface. This would produce a

different stationary state that corresponds to a sphere, at variance with the flat profile obtained

with an infinitely extended surface perturbation, described by means of periodic boundary

conditions for the profile of Fig. 5.4.

According to the choice of the initial profile, surface diffusion mechanism can lead to com-

plex evolution, even involving topological changes [29]. This mechanism is observed in ex-

periments as for instance for solid-state dewetting phenomena [173–176] where separation in a
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Figure 5.6: Evolution by surface diffusion of an ellipsoidal shape. Color map shows µ values at the
surface. It corresponds to κ as isotropic surface energy is adopted with γ(n̂) = 1.

few subunits occurs, leading to a local energy minimum. An illustrative evolution by surface

diffusion of a parallelepiped with an height-to-base aspect ratio of 10 is reported in Fig. 5.7.

Two separated subunits are obtained, both showing a spherical shape. Notice that the evolu-

tion towards the global equilibrium configuration, corresponding to a single sphere with the

same volume of the initial parallelepiped with isotropic surface energy, is here prevented by

the kinetic pathway towards the equilibrium.

Figure 5.7: Surface diffusion evolution of a parallelepiped shape with isotropic γ(n̂) leading to two
separated subunits.

5.3.2 Evolution toward faceted equilibrium crystal shapes

So far we considered only an isotropic surface energy. By exploiting the formulation for γ(n̂)

introduced in Sect. 5.2, we can deal with surface diffusion also for faceted geometries, which is

key when considering morphologies of real crystals (as will be also shown in Ch. 6).

In this section, we investigate morphologies produced by setting different surface-energy

definitions and by tuning the parameters of the Eq. (5.14). In particular, we consider the de-

scription of the evolution from an initial simple geometry, i.e. a sphere, towards the corre-

sponding ECS. Let us consider a sphere with a diameter of 0.6 as in Fig. 5.1(c) and ε = 0.04.

First, we focus on a γ(n̂) function set in order to describe a tetrahedral ECS, i.e. m̂i are set to:

[1̄1̄1],[1̄11̄],[11̄1̄] and [111]. The other parameters are αi = 1.0, wi = 6. As far as these parameters

lead to strong anisotropy, according to the criterion in Sect. 5.2.1, the Willmore regularization is
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Figure 5.8: PF simulations of surface diffusion evolution toward the ECS. (a) Evolution of a sphere
toward a tetrahedron by imposing minima of γ(n̂) along [1̄1̄1],[1̄11̄],[11̄1̄] and [111] directions with αi = 1.0,
wi = 6, β = 0.002. (b) ECS simulated by considering the evolution of a sphere with minima of γ(n̂) along
〈100〉 and 〈111〉 directions with αi = 0.3, wi = 20 and β = 0.001. (c) γ(n̂) plot as color map at the
surfaces of the ECSs shown in panels (a) and (b).

adopted with β = 0.002. The resulting evolution by surface diffusion is reported in Fig. 5.8(a).

Notice that facets are gradually formed from the initial spherical profile leading to the expected

ECS, as resulting from the dynamics driven by ∇µ. Another result obtained by considering a

different definition of γ(n̂) is shown in Fig. 5.8(b). Here, two different families of minimum

directions are set along 〈100〉 and 〈111〉. In Fig. 5.8(c), we report the surface energy density

map at the surface of the ECSs shown in Figs. 5.8(a) and 5.8(b). Notice that an almost constant

value (blue region) is obtained where the orientation is almost constant, i.e. where facets form.

Smooth fittings between facets, showing high γ(n̂) values (with red colors), are also present.

These correspond to the region where corner regularization of Eq. (5.7) is active.

Once the minimum directions are set, it is also possible to inspect the features of the fi-

nal ECS according to changes of the other parameters in Eq. (5.14). In Fig. 5.9(a) different

morphologies are obtained with different values for αi, set to have the same value for each

minimum direction. The first two cases show the morphology in the weak anisotropy regime,

still exhibiting preferential orientation connected by large rounded regions. By increasing αi

the strength of the anisotropy is higher and higher, thus requiring the corner regularization.

For the choice of γ(n̂) considered here, the strong anisotropy condition is reached for α & 0.06.

The last two morphologies of Fig. 5.9(a) correspond to this condition, obtained with two differ-

ent values of αi and β = 0.001. The morphology of the ECS can be also modified by means of

the β coefficient as it controls the extension of the corner rounding. This concept is shown in

Fig. 5.9(b), where shapes with different values of the β parameter are reported, showing differ-

ent extensions of the rounded regions at the corners, with α = 0.3. In agreement with the work

discussed in Refs. [70, 161] such an extension of the rounding results proportional to
√
β.

As shown in Sect. 1.3, in order to obtain sharp facets, the strong anisotropy regime should

be explored. Moreover, the β factor should be lowered as much as possible to do not affect
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Figure 5.9: Features of the ECS by varying (a) αi, reproducing the weak (left) and the strong (right)
anisotropy regime, (b) β values, (c) the radius of the initial sphere, here considered doubled with respect
to the one in panel (b) with β = 0.01. mi directions are set as in Fig. 5.8(b).

the global shape with the corner rounding. An inferior limit is inherently present due to the

use of a numerical approach. Indeed, the lowest values that can be used for β depends on the

resolution adopted in the numerical method, i.e. it is affected by the interface width and by

the spatial discretization used in the FEM. A trade-off is then required between the description

of sharply faceted geometries and the computational cost. However, notice that at variance

with the choice of parameters in γ(n̂), whose contributions are self-similar when scaling the

crystal volume, the regularization controlled by β is set on an absolute length scale and does

not depend on facet extensions [161]. In Fig. 5.9(c) we prove this concept showing the ECS

obtained with the same parameters of Fig. 5.9(b) with β = 0.01, but with a doubled volume.

The extension of the rounded regions at the corners is the same as with the smaller volume,

but its relative size compared to the global shape is reduced. As a result, sharper facets are

obtained.

The PF approach including our choice of γ(n̂) allows for the description of a wide variety

of faceted geometries by tuning the different parameters as previously discussed. Moreover,

the resulting definition of the surface energy does not include any symmetry, so that it can be

exploited to provide arbitrary shapes. Some examples of what can be obtained by playing with

parameters and minimum directions are illustrated in Fig. 5.10. In particular, in Fig. 5.10(a)

the effect of setting different αi values for different minima is reported. Parameters are set as

in Fig. 5.8(b) but αi for minima along 〈111〉 directions is lowered by a factor 2. The resulting

ECS shows larger {100} facets. Asymmetric ECS can also be obtained as in Figs. 5.9(b) and

5.9(c). The choices of the γ(n̂) reported here have been driven by some experimental shapes

recognized in the literature (see e.g. Refs. [177–179] ) and similar ECS are actually obtained.
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Figure 5.10: Arbitrary shapes by tuning γ(n̂). (a) Minima of γ(n̂) as in Fig. 5.8(b) with αi halved for 〈111〉
directions. A perpective 3D view is shown along with γ(n̂) color maps for two shape orientations. Panels
(b) and (c) show asymmetric ECSs. Perspective 3D views and the central cross-sections compared to
the initial spherical profile are shown. The parameters chosen for such shapes are: (b) [001], [±1± 11],
[±101], [0 ± 11] minima directions with αi = 0.2 and wi = 60, [±1 ± 11̄] minima directions with αi = 0.4

and wi = 30, β = 0.002; (c) minima along [±100] and [0± 10] with αi = 0.4, wi = 10, β = 0.002.

5.3.3 Reproducing a realistic anisotropy: the case of Ge

When considering anisotropic γ(n̂), a discrete set of γ values is typically available in literature

(from experiments of atomistic calculations), corresponding to the energies of preferential ori-

entations. The expected ECS can be constructed by means of such values as a convex hull of

only the planes corresponding to the preferential orientations, accounting for the γ(n̂) values

in agreement with the Wulff construction [57]. Let us focus on the surface energy anisotropy

of Ge crystals, which will be explicitly used in Ch. 6. The shape obtained by considering the

main families of facets for Ge, i.e. {100}, {113}, {111} and {110}, is reported Fig. 5.11(a). This

shape is computed by means of Wulffmaker [180] with the surface energy values reported in

Ref. [181].

In order to integrate the evolution law for ϕ as introduced in Sect. 5.1, a continuous γ(n̂)

showing values for each orientation is required. This can be achieved by tuning the parameters

of Eq. (5.14). In particular, we select m̂i and αi in order to match the orientations of the minima

and the surface energy values for Ge crystals reported in Ref. [181]. As done for the shape

in Fig. 5.11(a), we consider only the main preferential orientations for Ge, corresponding to

{100}, {113}, {111} and {110} facets. We set the energy of the facets with normal along 〈100〉
directions as a reference with α〈100〉 = 0.15. The αi coefficients for the other minima are then

computed as

αi = 1−
(

γi
γ〈100〉

)(
1− a〈100〉

)
, (5.21)

where i = {113}, {111}, {110} and γi are the corresponding surface energy values reported in
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Figure 5.11: Realistic surface energy of Ge crystals. (a) ECS bounded only by the {100}, {113}, {111}
and {110} facets, obtained by Wulffmaker [180] with surface energy density values as in Ref. [181].
(b) n̂γ(n̂) plot of surface energy density as obtained by the tuning of the parameters in Eq. (5.14) as
described in Sect. 5.3.3. The color map shows the values of γ(n̂) as in Fig. 5.2(d). (c) PF simulation of
surface diffusion from a sphere towards the ECS, with the anisotropic γ(n̂) of panel (b). The outline of
the resulting faceting is highlighted by the colored regions.

Ref. [181]. The parameter γ0 does not appear in Eq. (5.21). Indeed, it sets the magnitude of the

surface energy but does not influence the ratio between different minima. In general, it can be

used as a scaling factor to set the proper magnitude of γ(n̂). Here, we set γ0 = 1. To ensure

no superposition of the different contribution in Eq. (5.14) for n̂ = m̂i, wi parameters has been

selected equal to 100 for minima along 〈113〉 directions and to 50 for all the other minimum

directions [32].

The γ(n̂) function obtained by means of this fitting procedure, is reported in Fig. 5.11(b).

Notice that by means of such a construction, γ(n̂) is a continuous function, i.e. it accounts for

each possible orientation of the crystal. This would allow one to tune also the energy for all the

orientations between minima with the possibility to tune also maxima of γ(n̂) or to describe the

energetics of vicinal surfaces. However, these values are generally unknown and difficult to be

determined. So that the γ(n̂) function set by Eq. (5.14) can be considered as a tool to construct

a γ(n̂) based on the energy of preferential orientations, with values for any n̂ recovered as

continuous fittings.

Following the approach of Sect. 5.3.2, we can simulate the evolution by surface diffusion

of a sphere towards the faceted ECS, with the γ(n̂) function shown in Fig. 5.11(b). This evolu-

tion is illustrated in Fig. 5.11(c), where the initial sphere (left) and the final morphology (right)

are reported. To ensure small rounding at corners and edges, the regularization parameter β

is arbitrarily set to 0.003. The final shape resembles the morphology reported in Fig. 5.11(a),

with a surface faceting also involving intermediate orientations with respect to the preferen-

tial ones. Notice that due to the presence of the corner rounding, the facets are not sharply

defined in the ECS of Fig. 5.11(c). Moreover, the more complex γ(n̂) including all the possible

orientation (see Fig. 5.11(b)) leads to a slightly different morphology with respect to the one in

Fig. 5.11(a). However, the equilibrium configuration keeps all the main features obtained by

the Wulff construction, as also shown by the colored areas in Fig. 5.11(c).

5.3.4 Morphologies of out-of-equilibrium structures

The results reported so far proved that the phase-field model of surface diffusion is an efficient

tool, reproducing the evolution towards the equilibrium crystal shape, with tunable features of
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Figure 5.12: Faceted morphologies of structures on surfaces. (a) Evolution by surface diffusion on an
half-ellipsoidal shape intersecting a plane by including minima in γ(n̂) along [001], [±1 ± 11], [±1 ± 13],
[±101] and [0 ± 11] directions [182, 183], αi = 0.3, β = 0.006. wi are set as for the γ(n̂) definition
of Sect. 5.3.3. (b) Perspective, top and lateral view of the last stage in panel (a) showing a morphol-
ogy closely resembling GaAs islands in Ref. [184]. (c) Faceting of a pit-patterned Si substrates as in
Ref. [185] obtained by imposing minima in γ(n̂) at [001], [±1± 11], [±1± 13], [±30 0 46] and [0 ± 30 46]

directions,[98] αi = 0.3, β = 0.006. wi are set as in as in Fig. 5.11(c) and w{30 0 46} = 100.

the final morphologies set by means of the model parameters. In real experiments, shapes that

are different from the ECS are often observed. Indeed, metastable kinetically frozen or out-of-

equilibrium states may appear and they cannot be simply described using the Wulff construc-

tion. The same applies to evolving faceted geometries in thermodynamics conditions, where

the morphology and the facets extension change despite the definition of γ(n̂) is uniquely de-

termined by the materials. In these cases, the actual shape before reaching equilibrium con-

dition is also determined by the dynamics of the evolution. The PF modeling introduced in

Sect. 5.1, as explicitly shown for the evolution with isotropic γ(n̂) in Fig. 5.7, can take into ac-

count the kinetic pathway towards the equilibrium [32], eventually leading to stationary states

that are only local minima of the energy in the phase space. In this section, the faceting and

the evolution of some 3D, non-equilibrium geometries are reported. Notice that the evolution

here provided, dealing with 3D domain and strong anisotropy, are usually not accessible with

standard approaches previously reported in the literature. For instance, the remarkable fully-

faceted approach introduced in Ref. [67] can be applied only to 2D domains. For the sake of

simplicity, we set here the minimum energy directions in γ(n̂) with the same αi (large enough

to obtain sharp facets) and wi. In all the PF simulations of this section, the interface thickness

is set equal to 0.1.

In Fig. 5.12(a) we reproduce the morphology of an island starting from a half-ellipsoidal

shape intersecting a plane below which ϕ = 1. An height-to-base aspect-ratio of 0.35 has

been selected. Surace diffusion is considered with an anisotropic γ(n̂) with minima along

[001],[±1± 11],[±1± 13],[±101] and [0± 11], resembling the surface energy anisotropy of GaAs

crystals [182, 183]. It can be noticed that the facets are gradually formed by surface diffusion as
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Figure 5.13: Morphology of elongated shapes. (a) Ge nanowire grown along [110] direction, including
{100}, {110} and {111} facets as in Ref. [186]. It has been obtained by selecting the energy ratio among
minima as in Sect. 5.3.3. (b) Ag nanowire with pentagonal symmetry [187] obtained by considering
γ(n̂) with minima along [sin(2iπ/5) cos(2iπ/5) 0] and [sin(2iπ/5) cos(2iπ/5) 1] directions with 0 ≤ i ≤ 4,
αi = 0.15, wi = 30, β = 0.002. (c) Evolution by surface diffusion of an elongated parallelepiped as in
Fig. 5.7 with the γ(n̂) function used in Fig. 5.9(a) with αi = 0.2.

in Fig. 5.8(a). The last faceted morphology (t = 4.0) does not correspond to the equilibrium con-

dition, which is represented by a flat surface. However, similar morphologies are observed in

experiments [184] and can be effectively reproduced with the present approach. Such a shape

is also shown more in the details in Fig. 5.12(b) by means of perspective, lateral and top views.

In Fig. 5.12(c) the morphology of a pit-patterned substrate is also shown, with the same views

as in Fig. 5.12(b). The initial profile has been selected as a flat surface with a pit, smoothly con-

nected to the surrounding region. An height-to-base aspect-ratio of 0.3 is selected in order to

reproduce typical morphologies by lithographic techniques involving etching [111]. Si-pit mor-

phology is here reproduced by considering the surface diffusion with minimum orientations of

γ(n̂) set to reproduce the Si surface energy [98]. 〈30 0 46〉 minima directions are considered in

order to mimic neighboring 〈15 3 23〉 facets (e.g. [15 ± 3 23]) observed in experiments (see for

instance Ref. [111, 185]). Notice that the morphology shown here is affected by both the surface

energy definition and the initial profile, as steeper or shallower pits would lead to different

morphologies.

Other examples of faceted, out-of-equilibrium structures consist of low-dimensional sys-

tems with elongated shapes. Their morphology is clearly far from the minimization of the

surface energy. First, such strong elongations cannot be justified by means of non-physical,

extremely anisotropic surface energies. Second, if close-to-equilibrium conditions are reached

for these systems, the shapes during evolution towards the equilibrium will significantly differ

from the ECS.

In Fig. 5.13(a) and 5.13(b) realistic nanowires are reproduced by means of surface diffusion.
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Initial profile is set as a simplified parallelepiped shape, placed with the base in contact with

the domain boundary in order to mimic the continuation of the lateral facets. In particular,

Fig. 5.13(a) shows the morphology of a Ge nanowire grown along the [110] direction and the

faceting of both top and sidewalls is included. The γ(n̂) is selected according the procedure of

Sect. 5.3.3 for the energy minima along {100}, {110} and {111} directions. Another nanowire

geometry is reproduced in Fig. 5.13(b). It deals with pentagonal symmetry recognized for Ag

nanowire [187] resulting from twinning of five single crystal subunits exposing only {111}
facets. This five-fold γ(n̂) minima are not meant to reproduce the anisotropy of a single Ag

crystal, but to effectively model the rotation around the nanowire axis of each subunit. Notice

that the elongation of the morphologies shown in Figs. 5.13(a) and 5.13(b) directly result from

the definition of the initial profiles and not from a tuning of γ(n̂) as done in Fig. 5.10(c).

As shown in Sect. 5.3.2, surface diffusion evolution may lead to topological changes. The

same holds true with an anisotropic surface energy density. An illustrative simulation, starting

from the same initial condition of Fig. 5.7, is shown in Fig. 5.13(c), by setting the same γ(n̂)

as in Fig. 5.9(a) with αi = 0.2. The evolution is characterized by a lowering of the aspect

ratio, with an enlargement of the shape at the ends of the structure while the center undergoes

a thinning. Eventually, two separated, faceted subunits are formed recovering the evolution

shown in Fig. 5.7 with facets.

According to the aforementioned results, the PF model considered here allows for the track-

ing of the evolution towards equilibrium for strongly anisotropic systems, also when account-

ing for topological changes. Moreover, as discussed in Sect. 5.3.3, the description of a realistic

surface energy can be addressed. However, notice that the present model does not include the

possible energy barriers for the diffusion among different facets. Despite they should not af-

fect the prediction of the ECS, they may play a role in the evolution towards the equilibrium.

Indeed, as illustrated in Figs. 5.7 and 5.13(c) kinetics may lead to local minima without reach-

ing the predicted ECS. The description of diffusion barrier or anisotropic diffusion coefficient

requires a dedicated development of the considered PF framework and was not considered in

the present work.

5.4 Flux shielding

The modeling of the deposition included in Eq. (5.10) consists of a function which depends

only on the local properties. However, more detailed deposition models should also take into

account the self-shielding (or shadowing) effects produced by the surface profile on the incom-

ing material flux from material sources. This effect is known to be important in the growth on

patterned substrates and was proven to be crucial in VHEs growth [19, 20]. The more standard

approaches, able to describe such effects, deal with Ray-Tracing algorithms. They consist of

computing the distribution of the impinging flux by evaluating where rays, originating from

the source of the material, hit the surface. However, within diffused interface, the coordinates

of the surface are unknown (except for the initial profile), so that dedicated algorithms should

be developed. Some attempts were introduced in Refs. [188, 189] for level set approaches, ex-

ploiting the so-called fast marching algorithm to identify the surface coordinates. In Ref. [190]
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Figure 5.14: Illustration of the algorithm for the flux shielding calculation, reporting the main steps of the
procedure described in Sect. 5.4. (a) Generic 2D profile defined by ϕ(x) as in Fig. 5.1(a). (b) Uniform
grid U . (c) Reconstructed profile in U by means of solid cell SC (light blue), vacuum cells VC (white) and
interface cells IC (red). This is the dataset on which the MC procedure is applied. (d) Profile as in panel
(c) with the extended interface cells (blue) and the region where S(x) is extended (green) to convert its
values toM.

a Monte-Carlo Ray Tracing approach have been used to describe etching processes. In this

section, a similar algorithm is introduced in order to provide the material flux distribution

within the PF approach. The coordinates of the surface profile are determined and a shielding

(or shadowing) function S(x) is calculated, in order to provide the local impinging flux Φ of

Eq. (5.9) as

Φ = Φ0S(x). (5.22)

Φ0 represents the amount of material per unit time reaching the surface where no shielding is

present (i.e. for S(x) = 1) and 0 ≤ S(x) ≤ 1. The procedure is described in the following for

a generic 3D profile defined by ϕ(x). It is also illustrated in Fig. 5.14 where, for the sake of

simplicity, the 2D profile of Fig. 5.1(a) is considered.

The first step of the procedure which calculates S(x), for a surface implicitly defined by ϕ,

consists of defining a uniform grid U (with coordinates of the points x′), somewhat related to

the (refined) mesh used for FEM calculationsM (with coordinates of the points x). This choice

is mainly driven by the need to explore a large number of ”rays”, i.e. to evaluate S(x) the do-

main must be crossed many times checking properties of the nodes. A uniform mesh allows for

simple and efficient algorithms. Indeed, there is no need to store the coordinates of the nodes,

uniquely defined by means of the (uniform) size of the cell and by the domain boundaries. A

generic three-dimensional system is here considered. The definition of the regular grid U is

obtained by the following parameters:
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• The boundaries of the FEM meshM (assumed to be rectangular):

xmin = [min(x1),min(x2),min(x3)], xmax = [max(x1),max(x2),max(x3)], (5.23)

• Spatial discretization: dx

where x1,x2 and x3 are the three-dimensional coordinates of the system. The uniform mesh is

built by means of cubic cells with edge length dx (see Fig. 5.14(b)). Every generic quantity A in

the uniform mesh is defined as a three dimensional matrix Ai,j,k = A(I) with I = [i, j, k]. These

indices are defined by

i = 1, ..., N1 j = 1, ..., N2 k = 1, ..., N3 (5.24)

with

Nd =
xmax
d − xmin

d

dx
. (5.25)

x′(I), i.e. the coordinates of the cells in U are set by

x′d = xmin
d + dx · (Id − 0.5), (5.26)

with d = 1, ..., 3. This equation defines x′(I) as the center points of the cubic cell indexed by I.

Notice that for a given point x, the indices of its cell in U can be determined as

Id =

⌈
xd − xmin

d

dx

⌉
. (5.27)

Periodic Boundary Conditions (PBC) can be implemented for U by acting on indices as: i = i

mod N1, j = j mod N2, k = k mod N3. In order to evaluate S, ϕ and ∇ϕ should be known

in all the discrete points x′ of U , defined by Eq. (5.26). Their values are obtained by the inter-

polation of such quantities from the values in M at x = x′. This results in the definition of

ϕ(x′) = ϕi,j,k and ∇ϕ(x′) = ∇ϕi,j,k. Every generic quantity A defined in U (formed by a set

of discrete values indexed by i,j,k) can be considered as a continuous function by exploiting a

trilinear interpolation on values defined in x′ points. According to this, hereafter every generic

A(x′) quantity (as ϕ(x′) or ∇ϕ(x′)) is used as a continuous function.

In the second step the cells which correspond to the solid phase, to the vacuum phase or to

the interface in between the two phases are identified. The definition of the cells in U is given

by the following criteria

• Solid cell (SC) if ϕ(x′) ≥ 0.5

• Vacuum cell (VC) if ϕ(x′) < 0.5

• Interface Cell (IC): SCs with at least one of the 6 Nearest Neighbors (NN) given by

[±i, j, k], [i,±j, k], [i, j,±k] that is a VC (check over maximum values of indices or PBCs

are required)

• Extended Interface Cell (EIC): SCs and VCs with at least one of the 26 Neighbors, includ-

ing NN and second-NN given by every combination of±i or i,±j or j,±k or k excluding

[i,j,k], that is a VC or a SC, respectively (check over maximum values of indices or PBCs

are required).
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This classification, correponding to the ϕ distribution of Fig. 5.14(a) is illustrated in Figs. 5.14(c)

and 5.14(d).

Once the cells are identified, the explicit calculation of S represents the third step. A MC

approach is adopted as follows:

1. Random position x0
MC are generated (representing the coordinates of incoming particles),

according to the features of the incoming flux. For instance, for a uniform flux they should

be randomly generated on the entire top boundary. Conversely, they are set to a specific

coordinate vector to model a point source.

2. Ballistic regime is here assumed for incoming particles. A velocity direction v̂MC is as-

signed, and its evolution is tracked according to the following iterative scheme

xtMC = v̂MC
dx

2
+ xt−1

MC. (5.28)

The factor dx/2 is used in order to consider a particle visiting all the cells along the

straight line of motion. Also the distribution of v̂MC reflects the features of the flux. A

random distribution of directions should be adopted for isotropic flux while directional

flux can be selected by choosing specific vectors. Other regimes (at variance from the bal-

listic one) may be considered by changing Eq. (5.28) accordingly. PBC or other conditions

at the boundaries are required.

3. When an IC cell is visited, the trajectory is extended to the boundary of the cell x′b. If

ϕ(x′b) < 0.5 the next iteration of point 2 is considered. If ϕ(x′b) ≥ 0.5 the value of the

discrete shielding function Sī,j̄,k̄ is increased by one, where ī, j̄, k̄ are the unknown indices

of the considered IC obtained by solving Eq. (5.26) with x′ = xMC and I = [̄i, j̄, k̄]. If no IC

are visited and the particle reaches a SC (as may happen when corners are present in the

surface profile in U), the S function is incremented in the nearest IC along the trajectory

xtMC.

When S is incremented in one cell a new position is extracted and this procedure is repeated

NMC times. As a result, a map of Si,j,k is obtained, delivering nonzero values only in ICs. In

order to use a value of such a function ranging from 0 to 1, the normalization by the expected

value of incoming particles on a flat surface should be considered.

The fourth step consists of converting the function S determined in U to the PF framework,

i.e. to the meshM. This requires an extension of its values within the entire interface region of

ϕ along the n̂ direction (see Fig. 5.14(d)). In this algorithm it is performed in two steps.

1. From IC to EIC. For every EIC, which is not IC, the values of Si,j,k is evaluated as the

average of the values in the NN-IC.

2. From EIC to bulk phases. The values in EIC are extended in the direction of∇ϕ.

To perform the operation mentioned in the latter point the values of both ϕ(x′) and∇ϕ(x′) are

used. If a bulk cell has S = 0 and S 6= 0 in one of the NN, then
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Figure 5.15: Test of the flux-shielding algorithm. (a) S(x) distribution on a planar surface for different
NMC with an isotropic material flux. (b) S(x) (left) and S(x)|∇ϕ| (right) values at the surface and in the
solid phase. (c) Comparison between the volume of the solid phase during the growth of a planar sub-
strate with constant Φ0 (dashed line) and from isotropic deposition simulated by means of the approach
of Sect. 5.4 (dots).

• If ϕ > 0.5, the first nonzero S values in direction∇ϕ (or −n̂) is assigned.

• if ϕ < 0.5, the first nonzero S values in direction −∇ϕ (or n̂) is assigned.

This operation is repeated in order to ensure nonzero S values in a region ε∗ larger than the PF

interface thickness ε. The number of iteration for such an operation (N ext) depends on dx and

is given by

N ext = η
ε

dx
(5.29)

where η is the factor ε∗/ε (set to a values larger than 1 to ensure the extension of S values

over a region with a thickness larger than the PF interface ε). Values of ∇ϕ should be usually

regularized (with a smooth connection to zero values outside the interface region) to avoid

spurious contribution of noisy values when ϕ < 0.05 and ϕ > 0.95. Finally, S(x) can be

calculated by the trilinear interpolation of the values obtained in U on the grid point ofM, i.e.

S(x′) with x′ = x, and it can be used in Eq. (5.22).

In order to assess this algorithm, the growth of a planar film accounting for an isotropic

flux of materials has been considered. The points xMC are generated on the top boundary of

the simulation domain with random velocity directions. Periodic boundary conditions are set

for x̂ and ŷ direction. The S(x) distribution is reported in Fig. 5.15(a) for different values of

NMC at the 0.5 isosurface of ϕ. Notice that the higher is the NMC value the more uniform is the

flux distribution on the surface. In Fig. 5.15(b), the distribution obtained for S(x) in the solid

volume is reported (left) along with the term S(x)|∇ϕ| (right) which determines the flux at the

interface as described by Eq. (5.9) and Eq. (5.22). Notice that the former is extended on a larger

area than the interface width (by setting η = 3 here) and constant values are assumed by S(x)

along the normal-to-the-surface direction. The growth of a planar substrate with an isotropic

flux is expected to be uniform, i.e. a translation of the planar surface is expected for a large

number ofNMC. In Fig. 5.15(c) we report the comparison between the volume increase resulting
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from a constant flux Φ0 and the integral over ϕ(x) by considering the procedure described in

this section with NMC = 105. Notice that the V (t) obtained by computing the flux with the

shielding algorithm coincides with the expected variation with a constant flux. So that this

comparison assesses the reliability of the reported procedure.

5.5 Illustrative simulations of crystals growth

The PF model described in Sect. 5.1 can be used to reproduce the growth kinetic for three-

dimensional crystals. In this section, we report some examples of crystal growth simulations

by PF. In particular the deposition on patterned substrates by means of the procedure intro-

duced in Sect. 5.4 is reported. Then, the possibility to describe faceted growth is shown. Such

examples assess the feasibility of the PF modeling considered in this chapter for the description

of crystal growth, providing an improvement of the state-of-the-art technique for the modeling

of such a phenomenon. Simulations reported here are meant to provide the proof of concept

of the method developed and implemented in this thesis to account for material deposition.

Further investigations will be devoted in the future to an extensive investigation of the growth

process within the PF approach.

5.5.1 Growth on patterned substrates

Figure 5.16: Shielding of material flux by patterned substrates. (a) S(x) at the surface of a pillar-
patterned substrate. (b) S(x) at the surface of a pit-patterned substrate. (c) Time evolution of the profile
in panel (b), involving a runtime calculation of S(x).

Let us consider a surface profile with an external flux as in the simulations of Fig. 5.15, i.e.

reproducing the deposition by an isotropic material flux with a material source far from the

sample. Here, we consider two representative patterned substrates in order to evaluate how

their profiles affect the impinging flux distribution at the surface. Moreover, this allows us to

apply the flux-shielding algorithm to non-trivial cases. For the sake of simplicity, an isotropic

χ(n̂) is assumed here. Notice that PBCs are adopted at the lateral boundaries, reproducing the

condition of infinite patterned substrates. The two geometries are reported in Figs. 5.16(a) and

5.16(b) along with the S(x) distribution at the surface, obtained by the flux-shielding algorithm

with NMC = 105. They illustrate the flux distribution on pillar- and pit-patterned substrates,

respectively. In the former the maximum of the impinging flux is obtained at the top of the pil-

lar where S(x) ∼ 1 with small fluctuations. Then, smaller values are obtained on the sidewalls

and the minimum of the impinging flux is present at the bottom. The latter is characterized by
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higher values of S(x) on the flat surface, and a significant flux shielding acting on the region

within the pit.

In Fig. 5.16(c) the time evolution of the pit-patterned profile is reported by means of the

central cross-section of the 3D profile. As described by Eqs. (5.10) and (5.22), the local growth

velocity is proportional to the Φ values, here accounting for the flux shielding by means of

the S(x) variable. A small contribution of surface diffusion is also considered, with M0 =

10−4. The resulting dynamics consists of an anisotropic growth velocity at the surface, which is

higher on the flat surface than within the pit. Notice that fine details can be accounted for with

this description. For instance, the hole at the top surface become smaller and smaller during

the growth while no growth is obtained on its sidewalls. This results directly from the flux

distribution as the material flux on the top part of the pit is significantly larger than zero while

it is negligible at the sidewalls. On the bottom, a small accumulation of material is present

due to the opening of the pit, allowing for particles moving along vertical lines to be collected

therein.

5.5.2 Faceted growth

Figure 5.17: Faceted growth by means of PF modeling. The evolution is obtained from an initial spher-
ical profile with anisotropic growth velocity set by Eq. (1.46). A discrete set of velocities corresponding
to the normal of {100} and {111} facets is considered and described by means of a continuous χ(n̂)

distribution using the procedure in Sect. 1.5.1.

The description of faceted growth can be achieved within continuum approaches by acting

on the growth velocity as described in Sect. 1.5.1. Let us consider the spherical profile used

in Fig. 5.1(c), and adopted as initial condition in Sect. 5.3.2. The material flux is here set to a

constant value Φ0 for all the orientations, without flux shielding. In order to describe a faceted

growth of an isolated crystal, we set an anisotropic incorporation factor χ(n̂) introduced in

Eq. (5.9). Such an anisotropic function is set equal to the modulus of the normal velocity

|v(n̂)|, defined by Eq. (1.46) to account for continuous, anisotropic growth velocity from a set

of directions corresponding to the normal vectors of the facets in the growing profile. Here,

we focus on velocities oriented along 〈100〉 and 〈111〉 directions, with the same magnitude. In

order to avoid the presence of the sharp corners expected between facets (and not compatible

with the present continuum description), a contribution of surface diffusion is considered as

in Sect. 5.5.1. The parameter δ of Eq. 1.47 is set to 10−6. In Fig. 5.17(a) the result of such a

modeling is presented. Starting from the spherical geometry, a faceted shape is recovered.
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After a first transient, where facets are gradually formed, a stationary shape is obtained. This

stationary state is in agreement with the outcomes of anisotropic growth velocities depicted by

the kinetic Wullf Shape. As stated in Ref. [76] the transient phase is directly determined by the

construction of the continuous velocity distribution.

At variance with the evolution by surface diffusion reported in Sect. 5.3, the volume in-

creases during the growth. This leads the extension of the surface to become larger and larger.

If a fixed domain is used this may lead to computational limitation arising when the solid

touch boundaries. A solution may consist in a scaling of the total volume in order to evaluate

only morphology changes, but some care is generally needed if the explicit coupling with other

physical behavior, e.g. the surface diffusion, are taken into account.

The evolution reported in Fig. 5.17 demonstrates that the approach discussed in Ref. [76]

leads to faceted growth also when implemented in the considered framework and represents

an important step to describe continuum faceted growth models with PF approaches.
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6
From VHEs to suspended films

As mentioned in the introduction and reported in Sect. 2.5.2, vertical Ge crystals on Si pillars

are proven to have high material quality [19, 20] and in Ch. 3 we also provided a viable path

toward the achievement of dislocation-free VHEs at any lateral size. This was also proved by

experiments as discussed in Sect. 4.4. So that, vertical crystals represent an interesting sys-

tem provided that its application may comply with, or even profit of, separated crystals, e.g.

for detectors [191]. For many other technological purposes, e.g. for CMOS hetero-integration,

continuous layers are highly demanded. A film, showing the material quality obtained with

vertical growth at the micron scale, would be a very appealing system. The aim of the investi-

gations reported here is to provide a pathway for the fabrication of suspended layers starting

from isolated vertical crystals.

In this chapter, we present the study about the morphological changes induced in VHEs

by annealing, which consists of a standard process usually adopted to improve the material

quality [19, 20]. In order to describe the effects induced by such a processing on the morphol-

ogy of VHEs, we focused our attention on the surface diffusion mechanism (see Sect. 1.4). The

PF model reported in Ch. 5 has been selected to provide reliable 3D evolutions, and the gen-

erality of the presented approach allowed us to investigate different configurations, exploring

the outcomes of ideal experiments. Simulations including both isotropic and anisotropic sur-

face energy are illustrated and allow different details to be considered. From such a theoretical

investigation, a pathway towards the realization of suspended layers starting from isolated

crystals is identified and then confirmed by dedicated experiments [39] performed at L-NESS,

IHP, and ETH-Zürich (as in Ch. 4). Moreover, the coalescence process during the growth at high

temperature [41] is illustrated and explained with the aid of an extension of the model used in

Ref. [19] and preliminary three-dimensional PF simulations. Together with the technology rel-

evant results obtained with the coalescence of vertical crystals, this chapter also delivers some

interesting perspectives originating from this thesis.

6.1 Morphological changes by annealing

Vertical Ge crystals are grown by LEPECVD on deeply patterned Si substrates and a faceted

shape is usually obtained (as introduced in Sect. 2.5.2). A typical as-grown morphology is

shown in Fig. 6.1(a).
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Figure 6.1: Morphological change due to the annealing of an individual crystal. (a) Perspective AFM
image and lateral SEM image of a 8 µm tall Ge crystal grown at 500◦C on 2×2 µm2 wide, 8 µm tall Si
pillars, separated by 3 µm trenches. (b) as in panel (a) after six annealing cycles from 600◦C to 800◦C
(each one lasting for 6 min).

It consists of 8 μm tall Ge crystal grown at 500◦C on a 2×2 μm2 and 8 μm tall Si pillar, sep-

arated from the neighbors by 3 μm trenches. AFM scan of the top morphology and a lateral

SEM image are shown. The top of the crystal is made of a pyramid bounded by {113} facets

with {111} lateral facets and {110} sidewalls. Notice that this elongated shape is peculiar of

the kinetic growth regime as it does not correspond to ECS-like shapes for Ge (see Fig. 5.11).

Annealing experiments are usually performed on such samples in order to improve the mate-

rial quality. In Fig. 6.1(b) the morphology of vertical crystals after such a processing is shown.

In particular, the lateral SEM image and the perspective AFM scan are reported for a sample

identical to the one in Fig. 6.1(a) after six in-situ thermal cycles between 600-800◦C, each one

lasting for 6 min. A clear rounding of the edges between facets is obtained and, from the AFM

scan it can be noticed that the [001] facet appears at the top. Moreover, the global, vertical shape

results slightly enlarged at the half-height of the Ge crystal. Evolution of the surface profile can

also be noticed in the area surrounding the Si pillar. Indeed, a wavy profile is present in the as-

grown sample due to the material deposited within the gap between pillars. After annealing,

even such a surface corrugation results flattened.

6.1.1 2D simulations

In order to investigate the morphological change obtained in Fig. 6.1, we selected the surface

diffusion model proposed first in Ref. [33]. Indeed, surface evolution may only be ascribed

to a material redistribution along the surface as no material deposition is present and the ex-

periment is performed under vacuum (see discussion in Sect. 1.4). As reported in Ref. [19],

and in agreement with the results provided in Ch. 3 and 4, the micrometer-wide VHEs as in

Fig. 6.1 are strain free, as they are plastically relaxed. Moreover, they allow the thermal stresses

to be fully relieved. Therefore, the only contribution to the chemical potential is related to the

minimization of the surface energy with all the features introduced in Sect. 1.4.

Let us consider first a two-dimensional model, where the surface diffusion as described in

Eq. (1.35) is integrated using a finite difference approach, i.e. a discrete set of points is con-
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Figure 6.2: 2D simulations of the morphological change due to surface diffusion. (a) Initial profile. (b)
Full evolution with isotropic γ(θ) illustrated by representative stages. (c) Representative step obtained
with an anisotropic γ(θ) = 1−α cos(16θ) with α = 0.0039, resembling the experimental one in Fig. 6.1(b).
(d) Step of the anisotropic evolution highlighting the preferential orientations at the surface.

sidered to describe the surface of the Ge crystal. We consider an initial profile as in Fig. 6.2(a),

corresponding to the cross-section of real 3D crystals, directly taken from Ref. [19]. In order to

account for the presence of Si, we set vanishing mobility coefficient when surface reaches the Si

pillar. Indeed, at the considered annealing temperatures the mobility of Si is significantly lower

than the Ge one [192]. Intermixing effects between Ge and Si are here neglected as they affect a

region of a few monolayers at the Ge/Si interface, which is negligible compared to the sizes of

microcrystals. We consider the evolution with isotropic surface energy density (γ(θ) = γ0 = 1),

so that µ = κ. The local curvature is evaluated as the reciprocal of the radius of curvature, com-

puted by means of the osculating circle of the surface profile. Periodic boundary conditions

are adopted, simulating a periodic structure made of vertical Ge crystals on Si. The resulting

evolution is reported in Fig. 6.2(b). A global rounding is observed and the evolution ends when

the chemical potential is homogeneous, i.e. when a flat surface is obtained. The main evidence

corresponds to a lowering of the structure, producing at the same time a trench filling. The

rounding in the first stages of the simulation leads also to a slightly enlarged crystal, which is

then flattened.

The same simulation has been repeated by considering an anisotropic surface energy den-

sity, with µ determined by Eq. (1.38). A surface energy density γ(θ) = 1 − α cos(16θ) is con-

sidered with θ the local orientation of the surface, where minimum-energy orientations are

multiples of 22.5◦. This specific function for γ is chosen as it reproduces orientation close to

the typical ones for the cross-sections of Ge crystals, as {113} facets where θ ∼ 22◦. α was set

to 0.0039 which is the rounded critical value ᾱ = 1/(162 − 1) (see discussion in Sect. 1.4) for

the considered γ(θ). Notice that no regularization is needed with such a choice as it is slightly

lower than the critical anisotropy strength. In Fig. 6.2(c) we report a representative stage of the

evolution with faceting, closely resembling the morphology in Fig. 6.1(b). The resulting facet

orientations on the simulated profile are also highlighted in Fig. 6.2(d) in a later stages of the
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Figure 6.3: Phase-field modeling. (a) Outline of the simulation domain with a pillar-like structure implic-
itly defined thanks to the PF approach. The surface of the structure is obtained as the 0.5 isosurface
of ϕ. (b) Cross-section of the simulation cell showing ϕ values. The 3D grey region corresponds to
the immobile Si domain (M0 ∼ 0). (c) Mesh structure in the central cross-section of the simulation cell,
showing local refinement at ϕ = 0.5. The color map, shared between panels (b) and (c), reports the
values of ϕ.

evolution with respect to Fig. 6.2(c). Notice that the presence of facets does not modify the

general behavior as the crystal still results enlarged with a lowering of the aspect ratio. More-

over, even with this simplified 2D simulations, the evolution of the top of the crystal with the

appearance of a flat surface is obtained as in the experiments (see Fig. 6.1).

6.1.2 3D simulations

In order to extend the modeling to three-dimensional systems we deeply exploited the PF

model presented in Ch. 5 (where all the details of the method are reported). In Fig. 6.3, the

modeling of the VHE geometry within the PF framework is shown. In particular, Fig. 6.3(a)

shows a surface profile of a simplified vertical structure. This profile corresponds to the 0.5

isosurface of the initial condition for ϕ. In Fig. 6.3(b) a cross-section of the simulation cell is

reported with a color map showing the ϕ values. The gray region corresponds to the immobile

Si, in agreement with the choice adopted for the simulation in Sect. 6.1.1. In Fig. 6.3(c) we also

report the typical mesh refined at the interface used for the reported FEM calculations. Notice

that, within any phase-field approach, distances lower than the interface thickness ε cannot be

described. For computational reasons, this thickness is always finite and should be set as small

as possible to recover the sharp-interface dynamics (see Ch. 5). In the simulation reported here,

compared to the corresponding experimental systems defined at the micron scale, it can be set

in the order of 200-300 nm.

Let us focus our attention on the evolution with isotropic surface energy. It is shown

in Fig. 6.4(a), where the timescale is provided by using M0 as a scaling factor to match the

timescale of the related experiments (of Fig. 6.1, also adopted for other simulations reported in

the following sections). This can be done as M0 only sets the time and length scales but does

not affect the qualitative evolution, as can be inferred from Eq. (5.6). In Fig. 6.4 we report the
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Figure 6.4: Three-dimensional evolution of a single crystal by surface diffusion. (a) PF simulation
starting from a geometry reproducing the crystal in Fig. 6.1(a). (b) Comparison between the as-grown
profile and the morphology after the evolution by surface diffusion, mimicking the annealing experiment.

PF simulation of surface diffusion, starting from an initial profile closely resembling the shape

of Fig. 6.1(a). A global smoothing of the edges is observed, providing a more realistic 3D evo-

lution including the features already observed with the 2D model. Indeed, the morphology

obtained at 0.5 min closely reproduces the shape reported in Fig. 6.1(b) and a lateral expansion

is observed at later stages (i.e. 100 min and 200 min). A comparison between the as-grown

morphology and the profile after the evolution by surface diffusion in cross- and top-view are

also shown in Fig. 6.4(b) and the lateral expansion can be better appreciated. Notice that the a

material transfer at the bottom of the Si pillar is also obtained but with a lower extent than 2D

simulations (see Fig. 6.2) as the volume to fill within the trenches is significantly higher when

considering the 3D geometry. Red arrows on the simulated profiles illustrate the material flux

along the surface.

In order to assess the evolution discussed so far and to further refine the simulations re-

sults, we also considered the morphological evolution with the γ(n̂) definition for Ge crystals

discussed in Sect. 5.3.3, as shown in the simulation reported in Fig. 6.5. Notice that the timescale

is here expressed in arbitrary units as it is affected also by the choice of parameters in the γ(n̂)

definition, and we aim here to a qualitative comparison. They will be adopted also in the fol-

lowing when illustrating general mechanism with simplified initial profiles. In the first stages,

the top of the as-grown crystal made of a pyramid bounded by {113} facets evolves into a

truncated pyramid with the clear appearance of the (001) facet, recovering a shape closer to

the equilibrium (see Fig. 5.11). The facets which are stable according to the surface energy, and

already present in the initial configuration, are preserved. These features correspond to the

morphological evolution observed in Fig. 6.1 and cannot be reproduced by the evolution with

isotropic surface energy. In Fig. 6.5(c) a comparison between the top morphologies from AFM

scans (EXP) and 3D simulations with anisotropic γ(n̂) (SIM) is also reported. By considering

the surface energy of the Ge, a good agreement is obtained including the aforementioned ap-

pearance of the [001] facet and the nucleation of new facets at the corners. At later stages of the
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Figure 6.5: Evolution by surface diffusion of an isolated faceted crystal. The initial geometry is set to
closely resemble the experimental one obtained at a growth temperature of ∼500◦C [19, 20]. (a) Top
and (b) lateral view of four representative stages are reported. The color map shows the γ(n̂) values.
Dashed arrows mark the families of facets. Time is scaled in arbitrary units. (c) Comparison between
fine details of the morphology between AFM scans and simulations with the anisotropic γ(n̂).

evolution reported in Fig. 6.5, faceted sidewalls are recovered with the formation of (±100) and

(0 ± 10) facets at the vertical edges. Close to the Si pillars, a complex faceting is formed at the

Ge surface, as the initial profile shows unstable orientations. Material transfer from the region

around the Si pedestal towards the substrate is also observed, until exposing the Si. By com-

paring the initial profile and the last stage at t = 15 of the evolution in Fig. 6.5, a lowering of

the crystal is observed along with a lateral enlargement which is, however, lower than the case

with isotropic surface energy. Such an evolution confirms the generality of the overall morpho-

logical changes observed so far, also including specific features related to the thermodynamic

faceting [193]. In particular, an enlargement of the structure is observed despite the presence of

faceted sidewalls. This is in agreement with the evolution reported for strongly anisotropic sys-

tems with large height-to-base aspect ratios [32, 67] and also with the evolution of Fig. 5.13(c).

It is worth pointing out that the experimental profiles after annealing actually show a weaker

faceting than the one imposed in this simulation. However, observing the same qualitative

behavior for the two limiting cases (isotropic and strongly anisotropic γ(n̂)) allows us to infer

that the intermediate case, corresponding to the experiments, follow the same general trend.

6.2 Self-assembling of suspended layers

The results reported in Sect. 6.1.2 allowed for the assessment on the considered modeling and

described the long time evolution which mainly leads to a lateral expansion of the Ge crystals.

However, vertical heterostructures obtained by LEPECVD in Refs. [19, 20] can be grown on dif-
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Figure 6.6: PF simulation of the coalescence process. Initial profile (1 min) resembling the experimental
shape after the initial smoothing of the edges between facets. Representative stages are reported
concerning the onset of the merging process (2 min), the fast zipping of the coalesced region towards
the bottom of the Ge (10 min), the filling of the holes at the top (50 min) and the final flattening of the
suspended layer (100 min).

ferent patterns characterized by a smaller trenches between Si pillars. In particular, a distance

of 2 μm between pillars is often adopted. The resulting structures at the end of the growth

on such patterns are separated by only a few tens on nanometers. So that, the enlargement

mechanism discussed before, would lead to the coalescence of individual crystals. A dedi-

cated simulation reproducing such a mechanism is shown in Fig. 6.6. Isotropic surface energy

is considered here with an initial profile that reproduces the height-to-base aspect-ratio of a

micrometer-wide VHE. A rounded shape is selected, roughly corresponding to a profile where

the smoothing of the edges already occurs. Crystals are arranged in a squared pattern and the

distance is set to be slightly larger than the interface thickness (here set to 200 nm, which corre-

sponds to a computational limit for the present approach). Despite this value is larger than the

experimental distance between crystals, it is not found to play a crucial role in the simulations,

without altering the information delivered therein. Periodic boundary conditions are set along

[110] and [11̄0] directions.

In agreement with the previous discussion, the lateral expansion obtained by the surface

diffusion mechanism leads to coalescence. After the onset of the crystal merging, a fast zipping

is observed, and holes are present in between the merged regions. Then, for longer annealing

times the filling of such holes is achieved and a suspended layer is eventually flattened. Notice

that the evolution reported in Fig. 6.6 involves dramatic topological changes, which are in gen-

eral difficult to be treated with an explicit tracking of the surface. The easy managing of such

a complex evolution is one of the main advantages of the selected PF approach [29] (see also

Ch. 5).

The simulation reported in Fig. 6.6 stimulated dedicated experiments in order to verify

the coalescence mechanism and fabricate the suspended film starting from VHEs. These ex-

periments are reported in Fig. 6.7, where the evolution induced by annealing of closely spaced

crystals is illustrated by means of four different samples corresponding to different post-growth
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Figure 6.7: Annealing experiments leading to coalescence of individual crystals. (a) Top and (b) lateral
SEM images of Ge crystals grown at 450◦C on 8 µm tall and 2×2 µm2 wide Si pillars separated by 2 µm
trenches. The four steps are obtained by in-situ annealing experiments with different duration at 800◦C.

annealing duration. The as-grown profiles were obtained by Ge deposition at 450◦C on 8 μm tall

and 2×2 μm2 wide Si pillars separated by 2 μm trenches (at variance with the 3 μm trenches of

Fig. 6.1). The coalescence onset in the experiments is observed after annealing for 5 min. Then

an extended, fast zipping towards the substrate is obtained after annealing for 10 min. The

global flattening with the formation of the suspended layer on top of the structure is achieved

by annealing for 60 min. Therefore, the experiments confirm the simulation results proving

that the surface diffusion is the main contribution in the considered morphological evolution.

Moreover, a viable pathway for the formation of suspended layers starting from isolated crys-

tals is provided.

A deeper understanding of the coalescence process can be achieved by looking at the chem-

ical potential at the surface during the evolution as shown in Fig. 6.8. Here, for the sake of

simplicity, a cylindrical initial profile is considered with isotropic surface energy. White arrows

illustrate the magnitude of the material flux along the surface in representative regions and

are set proportional to −∇µ. Convex regions, such as the crystal tops, correspond to positive

curvatures (red) and hence to maxima of µ. On the contrary, concave regions with negative cur-

vature (blue), correspond to low values of µ. As indicated by the arrows, material flows from

the convex regions at higher curvature towards concave regions which behave as collectors. At

the beginning of the process, the material is mainly pushed away from the crystal top yielding

to a rounded shape. At the same time, at the substrate level, material moves toward the profile

valleys. The velocity of the evolution decreases until the onset of the crystal coalescence occur

(at around t = 2.0 a.u.). Bridges formed after the contact of crystals significantly attract material

because of their small radius (with large negative curvature) as evidenced by the big arrows
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Figure 6.8: Simulation of the coalescence process, for a simplified initial structure, illustrating the chem-
ical potential and the material flux at the surface. The color map shows the chemical potential, here
proportional to the local curvature of the profile (red for convex regions and blue for concave regions).
Representative arrows indicate the material flow according to the curvature gradients as described by
Eq. (1.34).

converging at the junction. Again, the process velocity drops as the curvature at bridges gets

smaller (see t = 3.4 a.u.). However, holes are still present in between merged regions. Such

concave regions progressively attract material and their radius shrinks with increasing veloc-

ity, up to complete closure (t = 5.3 a.u.). The resulting wavy profile at the top of the crystals

tends finally to flatten moving materials from the hills to the valleys. Notice also that during

the evolution the substrate behaves as a sink attracting material from the pillar sidewalls.

Following a similar discussion to Sect. 6.1.2, we also investigated the coalescence process

with the anisotropic surface energy density of Ge, in order to verify the occurrence of coa-

lescence also when explicitly accounting for realistic preferential orientation [193]. The initial

geometry is set as in Fig. 6.5, recovering the as-grown morphology, with an alignment along

the [110] and the [1̄10] directions and a periodicity equal to 4 μm. The resulting gap between

crystals is ∼ 0.4 μm.

The simulation reproducing the coalescence of faceted crystals is reported in Fig. 6.9. In the

first stages of the evolution, the same morphology as obtained for isolated crystals (t = 1.0, as

in Fig. 6.5) is observed as the vertical structures are not affected by the neighbors. Then, even

with anisotropic surface energy, the coalescence of crystals along [110] and [1̄10] directions is

obtained, with the formation of bridges (as shown for t = 2.5). As discussed in Fig. 6.8, these

regions collect material and the coalesced region extend (see differences between merging at

t = 2.5 and t = 6.0). This material transfer produces a global lowering of the crystal tops.

Moreover, large {111} facets disappear while {113} facets extend. Also {110} facets, which are

favored due to the free surface between bridges (see t = 6.0), grow larger up to the closure of

the holes while (001) facets are formed on top of the coalesced regions. The complete closure of

the holes is achieved at later stages, with the formation of a continuous surface still showing a

faceted profile as shown at t = 9.5. New (001) facets are formed at this stage, and the other flat

regions extend when holes are filled. When such a continuous film is obtained, facet extensions

are reduced while (001) results larger and larger. Eventually, the suspended film flattens and
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a single (001) surface is obtained on top of the structure as the final stage (t = 15). This stage

is shown at the upper right-hand corner of Fig. 6.9. Therefore, we can conclude that the mech-

anism observed in Fig. 6.6 is expected also when accounting for fine details of the anisotropic

surface energy.

Figure 6.9: PF simulation of the coalescence process including surface energy anisotropy. (a) Top view
of the crystals at representative stages of the evolution. The last top view shows the final stage corre-
sponding to the complete flattening of the suspended film. (b) Perspective view of the three-dimensional
evolution. Time is expressed in arbitrary units.

A detailed analysis of the coalescence process can be extracted by considering the values

of the free energy in time, namely G(t), with G defined by Eq. (5.4) [193]. In Fig. 6.10 such a

quantity is shown, normalized with respect to the surface energy of the initial configuration

(at t = 0). Two significant changes of the slope can be easily recognized and correspond to the

topological changes of the structure, i.e. the coalescence of the crystals and the filling of the

holes. In the other stages, an almost smooth decrease of the energy is observed. The end of

the evolution is achieved when G(t) reaches a constant value. Despite this plot is related to

the simulation of Fig. 6.9, all these features are general as they are observed also with isotropic

γ(n̂). Furthermore, they are not affected by the specific choice of the surface energy. This plot

can be adopted to identify the exact timing of topological changes during the evolution.
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Figure 6.10: Surface energy decrease during the evolution by surface diffusion for the simulation of
crystal coalescence reported in Fig. 6.9. Insets show the morphology at representative stages.

6.3 Insights on the coalescence process

In Sect. 6.2 we presented the general mechanism of coalescence induced by annealing closely

spaced crystals. Such a process, originating from the enlargement of individual crystals, is

affected by the features of the crystals arrangement and on the shape of the as-grown structures.

For instance, a trivial dependence is represented by the distance of the vertical crystals after

the growth, as for trenches larger than 2 μm (as in Fig. 6.1 with trenches of 3 μm) the lateral

expansion required to obtain the coalescence is larger and the merging is expected to occur

at later stages with respect to the case of Fig. 6.7 deeply analysed in Sect. 6.2. Notice that, as

shown for instance in the 2D simulation of Fig. 6.2, the lateral expansion is not always sufficient

to close the gap between crystals, so that a maximum distance exists over which coalescence

mechanism is not obtained. In this section, the influences on the coalescence process given by

the initial morphology and substrate features are discussed. Here, for the sake of simplicity,

we focus our attention on evolution with isotropic surface energy. Indeed, the evolution with

an anisotropic γ(n̂) has been proven to deliver the same qualitative evolution as discussed in

the previous sections. Some details about the material quality assessment of the suspended

networks and films originating by the coalescence are also reported in Sect. 6.3.4.

6.3.1 Infuence of the as-grown crystal morphology

The coalescence mechanism discussed so far appears as a general behavior. However, we no-

ticed that the role of the chemical potential is crucial, as it determines the dynamics along the

surface. Different initial profiles, despite are not expected to affect the occurrence of coales-

cence, may influence the timescale of the process as the µ distribution at the surface would be

different. A proof of concept of this is provided in Fig. 6.11 where surface diffusion evolution

is considered for the morphologies obtained by the growth at 450◦C and 500◦C, which are ex-

pected to be slightly different [20]. In particular, a pyramidal top is obtained by the growth at

500◦C while a large [001] facet is observed at 450◦C. Notice that, the section of the morphol-

ogy at 500◦C is closer to a rounded shape, therefore showing smaller curvature gradients than
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Figure 6.11: Influence of the as-grown crystal morphology on the coalescence process. (a) Top-view
morphology of the crystals obtained by Ge deposition on pillar-patterned Si substrate as in Fig. 6.7 at
450◦C (left, green solid line) and surface diffusion evolution (right). (b) Top-view morphology obtained as
in panel (a) with a growth temperature of 500◦C (left, orange dashed line) and surface diffusion evolution
(right).

the profile obtained at lower temperatures. Indeed, slower evolution is observed for such a

morphology, which does not reach the full coalescence achieved for the crystal grown at 450◦C

after a simulation time which reproduce the annealing for 60 min. Notice that, coalescence of

the structures is still observed at later stages, despite it results delayed.

6.3.2 Influence of the substrate pattern

An influence of the size and the arrangement of the Si pattern on the coalescence mechanism

is also expected. In Fig. 6.12 the coalescence of Ge crystals grown on 8 μm tall, 5×5 μm wide

Si pillars separated by 2 μm trenches is shown. In this figure both the experiments and the

corresponding PF simulations are reported. The latter is performed as in Sects. 6.1.2 and 6.2 by

considering initial profile resembling the experimental systems. From Fig. 6.12 it can be noticed

that, despite the coalescence mechanism ends up with a suspended layer, the contact process

is however found to differ from the case with 2×2 μm2 Si pillars. Indeed, as shown by the

experiments in Fig. 6.12(a) after annealing for 10 min, the crystals do not touch at the middle

of sidewalls, but coalescence starts close to the corners. A dedicated simulation is illustrated

in Fig. 6.12(b) and Fig. 6.12(c) with perspective and top views, respectively. It shows that the

experimental evidence is compatible with the surface diffusion evolution which actually forms

two bridges close to the edges of the structure. On larger patterns, indeed, the rounding of

such edges produces an accumulation of the material in their surroundings. On the crystal

grown on 2×2 μm2 Si pillars this accumulation does not involve enough material to close the

gap between crystals while it does when considering large patterns as the one in Fig. 6.12(a).

In order to observe this peculiar enlargement at the vertical edges, we can look to a similar

sample with larger trenches as reported in Fig. 6.12(d). Here, both by experiments (EXP) and
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Figure 6.12: Annealing of Ge crystals grown on large Si pillars. (a) Top SEM images of Ge crystals,
grown at 450◦C on 8 µm tall, 5×5 µm2 wide Si pillars separated by 2 µm trenches, after annealing ex-
periments. Time indicates the durations of the annealing. (b) Representative steps of the PF simulation
of surface diffusion reproducing the features of panel (a). (c) Top view of the PF simulation at t ∼ 10 min.
(d) Outcome of annealing experiment (left) and simulation (right) for crystals grown on Si pillars as in
panel (a) with 3 µm trenches. Red arrows illustrate the material flux.

simulations (SIM), it is possible to observe such an accumulation of material close to the edges.

This localized enlargement is enough to close the gap between crystal where 2 μm trenches

are considered due to the smaller distance between crystals. As shown by the simulations in

Fig. 6.12(b) corresponding to annealing for 20 min, the holes between the two contact points

are filled at later stages, and then the evolution is expected to proceed in a very similar way to

the ones discussed in the previous section as actually observed for experiments in Fig. 6.12(a).

Differences in patterning can also involve a change in the crystal arrangement. In Fig. 6.13

the evolution of two different arrangements of VHEs is shown by PF simulations. Single crys-

tals are modeled with a simplified, cylindrical shape, and arranged in a square and a centered

rectangular pattern. Periodic boundary conditions are assumed as in Sect. 6.2. Coalescence

obtained on such initial structures leads to merged structures with different topology. This be-

havior is again mainly determined by the differences in the distance between crystals. In the

squared-pattern arrangement, each structure has four nearest neighbors and coalescence occurs

at the same time (in the idealized simulation) along four directions. Conversely, in the centered

rectangular pattern, only two nearest neighbor exist and coalescence due to lateral expansion,

i.e. due to the closing of the gaps, starts with these crystals. Notice that an interesting behav-

ior is present for such a pattern. Once the bridges are formed, they attract material from the

crystals because of the strong local curvature (see also Fig. 6.8), thus preventing the formation

of other contact points in the perpendicular direction. This would results in the formation of

suspended ridges-like structures as directly shown in Fig. 6.13(b). More in general, these sim-



120 From VHEs to suspended films

Figure 6.13: Comparison between the evolution by surface diffusion of crystals with (a) squared and (b)
centered-rectangular arrangements. Time is expressed in arbitrary units.

ulations indicate that when a contact point is formed, the coalescence along other directions is

delayed and may be also prevented. This is useful in the interpretation of experiments where,

due to the complexity of the system, asymmetric behavior are always observed. If asymme-

tries are present in the as-grown sample, e.g. for inherent fluctuation in the deposition flux or

imprecisions in the pattern fabrication, and coalescence starts in one specific direction, then all

the other ideally equivalent directions for coalescence may be significantly affected. This is for

instance observed in the early stages of the coalescence in Fig. 6.7.

6.3.3 Coalescence of crystal blocks

The patterns investigated so far have been considered to be periodic in the in-plane directions.

Here we inspect what should be the outcome of the experiments when considering coalescence

on a finite number of VHEs, i.e. by annealing Ge crystals grown on Si pillars arranged in

blocks. In this configuration asymmetries naturally arise also in the idealized conditions of

the simulations. In Fig. 6.14 an arrangement of 6×6 blocks, modeled as simple cylinders, is

considered in a squared pattern. Periodic conditions are assumed but the separation between

different blocks is set to be double with respect the separation of single crystals within the block.

The evolution with a larger substrate surrounding the blocks leads to a symmetry breaking and

coalescence occurs first at the edges between crystals at the boundary (t = 0.6). Indeed, slightly

larger expansion is observed at the edges of the block. Curvatures in the trenches within the

block show larger (negative) values than the region separating different blocks, so that they

recall more material thus delaying the enlargement of the structures with respect to borders.

At later stages, merging is obtained also within the block and a suspended film with cavities

forms (t = 0.8). The holes are then filled as observed in the simulation of Fig. 6.6 but it occurs

in three different stages. First, the hole between the inner crystals are closed (t = 1.42), then the

process is extended to the cavities close to the edges of the block (t = 1.46), and eventually to

those at the corners (t = 2.0). This can be easily explained by considering the early coalescence

at the edges and the material flux at the surface as also discussed for the centered rectangular

pattern of Fig. 6.13(b). Indeed, the formation of bridges at the edges recalls material, producing
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Figure 6.14: PF simulation of the evolution by surface diffusion of a block made of 6×6 crystals. Repre-
sentative stages are reported, illustrating asymmetries in the coalescence process. Time is expressed
in arbitrary units.

an increasing of the distance from the internal rows, and hence leading to larger cavities. The

same effect is even magnified at the corners, where curvatures are higher, producing a more

important material redistribution that leads to a further delay in the filling of the holes. Due to

this transport mechanism, a swelling effect at the edges of the structure is also obtained. Other

simulations of ours indicate that the general trend concerning the onset of the coalescence and

the hierarchy in the filling of surface cavities is independent on the number of pillars so that it

can be considered as a general feature of the system.

6.3.4 Material quality of merged structures

As evidenced by the theoretical analysis reported in previous sections, even supported by ex-

periments, the annealing of vertical Ge/Si structure may be used to fabricate suspended net-

works and films. These represent interesting systems as they originate from single crystals

which are proven to have promising properties in terms of material quality and managing of

extended defects [145] (see also Sect. 2.5.2). The analysis of defects in the merged structures has

been performed by experiments as it is illustrated in Ref. [39] with several techniques. In par-

ticular, the merging of crystals grown at 500◦C has been investigated as, thanks to the peculiar

faceted morphology, it allows to have no dislocations in the top region of the crystal [21]. So

that no defects are present in the region where coalescence occurs. When bridges are formed

between crystals, also the resulting suspended network appears to be dislocation free, deliver-

ing a new solution for the formation of high-quality connected domains of Ge integrated in Si

[39]. This paves the way for all the applications or the integrations of semiconductors which

require dislocation-free surfaces and interfaces.

The analysis of the continuous suspended film, i.e. the final stages of the coalescence pro-

cess discussed so far, was not possible as the experimental apparatus was limited to annealing

of 60 min. This was not sufficient to provide the full coalescence of crystals with the pyramidal

top, as illustrated and explained with simulations of Fig. 6.11. Conversely, the crystals with a
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(001) facet at the top are expected to have dislocation reaching the upper portion of the crys-

tals [21, 22] so that the suspended film originating from such structures shows high defectivity.

Preliminary tests of ours, however, indicate that also when considering other crystals with a

dislocation-free top and the full coalescence is reached, linear defects are formed at the filling

of the holes, despite the suspended networks with holes in between are always found to be

dislocation-free. Further optimization of the process and theoretical investigations are then re-

quired in order to solve this issue. A first attempt which directly originates from this thesis will

consist of annealing the defect-free vertical structures reported in Sect. 4.4, to evaluate what is

the outcome of the merging process where dislocation are not present also in the lower part of

the crystals.

Notice that, when coalescence of vertical crystals occurs, the elastic relaxation provided

by the lateral free surfaces is significantly affected. So that in VHEs where the compliance of

buffer layers is exploited in order to have dislocation-free structures, the coalescence must be

realized after growing a thick epilayer to ensure full relaxation in the merged regions. For

VHEs as in Fig. 6.7 this issue is not present as plastic relaxation at the Ge/Si interface fully

relieves the strain within the structure. Conversely, the formation of connected networks or

layers reintroduces the presence of thermal strain as the cooling to room temperature of the

samples is performed after the merging. This would lead to the presence of crack for thick

layers. However, exploiting the model of Sect. 3.5, we can estimate a critical thickness in the

order of 3-4 μm. Therefore, for a thickness of the merged region under such a size, a crack-free

system is still expected. This feature is actually confirmed by experiments.

6.4 Coalescence during growth

In Sects. 6.1 and 6.2 we focused on Ge crystals grown on 2 μm and 3 μm trenches. Actually,

vertical Ge structures can be grown also on pillar-patterned substrates with thinner trenches.

The morphology of Ge crystals grown at 490◦C on 8 μm tall and 2×2 μm2 wide Si pillars with

1 μm trenches are shown in Fig. 6.15(a). Separated crystals are obtained with a morphology

close to the one of Fig. 6.1(a), exhibiting, in turn, smaller gaps between crystals than the as-

grown sample in Fig. 6.7. A sample obtained with a higher deposition temperature of 550◦C is

shown in Fig. 6.15(b). This growth condition actually yields to a suspended layer where crystals

are directly merged during the Ge deposition, at variance with the self-aligned growth. Despite

the process involves also the growth kinetics, the final structure shows strong similarities to the

ones obtained just by post-growth annealing.

Other growth results, leading to the coalescence directly during the Ge deposition are

shown in Figs. 6.15(c)-6.15(h). Also in these experiments the similarity with the annealing-

driven coalescence is compelling. In particular, Fig. 6.15(c) and Fig. 6.15(d) shows the result of

Ge deposition at 550◦C on 2×2 μm2 Si pillars spaced by 1 μm wide trenches with squared and

centered-rectangular arrangement, respectively. The merged structure is actually well repre-

sented by simulation results of Fig. 6.13, where the evolution by surface diffusion of simplified

pillars have been considered. Figs. 6.15(e) and 6.15(f) show SEM top-view and cross-section

of a suspended Ge film obtained by 8 μm Ge deposition at 600◦C on 2×2 μm2 wide Si pillars,
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Figure 6.15: Coalescence of Ge crystals during growth. Top and lateral SEM images of 8 µm Ge
deposition by LEPECVD at (a) 490◦C and (b) 550◦C on 8 µm tall, 2×2 µm2 large Si pillars, spaced by
1 µm wide trenches. Top SEM image of the structure resulting after 5 µm Ge deposition at 550◦C on
the same Si pillars as in panel (b) with (c) squared and (d) centered-rectangular arrangement. (e) Top
and (f) cross-section SEM images of the suspended Ge film obtained by 8 µm Ge deposition at 600◦C
on blocks of 10×10 Si pillars. Blocks are separated by 4 µm wide trenches. (g) Top SEM image of 8 µm
Ge deposition at 600◦C on 300 µm wide blocks formed by 2×2 µm2 large Si pillars spaced by 1 µm
trenches. Blocks are separated by 8 µm wide trenches. (h) Magnified view of the corner region in panel
(g) highlighting a swelling effect at the sidewalls. After the growth, samples were annealed by six thermal
cycles ranging from 600◦C to 800◦C.

arranged in 10×10 blocks with a spacing of 2 μm. Blocks are separated by 4 μm. Notice that the

same trenches as in Fig. 6.7 are present here, but the temperature is higher (of ∼100◦C). Sus-

pended structures originating by the deposition of Ge are also shown in Figs. 6.15(g)-6.15(h),

where an arrangement of 300×300 pillars has been considered with the same growth condition

of Figs. 6.15(e) and 6.15(f).

It is worth mentioning that all the morphologies reported in Fig. 6.15 closely resemble the

results of the previous sections. This strong similarity suggests the general mechanism is re-

lated to similar driving forces. Moreover, by looking at the result of Figs. 6.15(a) and 6.15(b)

or in Fig. 6.15(f) compared to Fig. 6.7, the key enabling factor to induce coalescence during the

growth can be identified as the increase of the growth temperature.

6.4.1 Analysis and simulations

The coalescence process occurring during the growth has been investigated by a dedicated

experiment and it is here assessed by dedicated simulations. In Fig. 6.16(a) we show the

cross-section SEM image of the structure obtained by the Ge deposition on a Si pattern as in

Fig. 6.15(a). Thin layers (with a thickness of a few nm) of a SiGe alloy with 10% of Si content
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Figure 6.16: Analysis of the coalescence process during growth. (a) Lateral SEM image of crystals
fusion with marker layers made of ∼10 nm Si0.1Ge0.9. The deposition is performed at 675◦C and the
final thickness of the Ge crystals is ∼10 µm. The substrate is made of 8 µm tall, 2×2 µm2 large Si
pillars, spaced by 1 µm wide trenches. The blue region shows the profile when coalescence occurred.
(b) Magnified region showing the onset of the coalescence with enhanced contrast. (c) Detail of the
morphology at the bottom of the coalesced region with enhanced contrast. (d) Simulation of deposition
including surface diffusion. The initial profile is set to match the blue profile in panel (a). The growth
rate is set to 4 nm/s and the profiles are shown every 1 µm. Incorporation factors χ for (001), {113}
and {111} facets are set to 0.91, 0.87 and 0.99 respectively. The diffusion rate is set to 7.5·10−7 cm2/s,
selected to match the experimental results in Fig. 6.15(b). (e) Detail of the simulation in panel (d) at the
bottom of the coalesced region.

has been deposited at regular intervals during the growth of pure Ge. These layers allow the

growing profile to be tracked as they offer a different contrast in the SEM image, without sig-

nificantly affecting the growth dynamics. In order to compensate the lower mobility of the Si

[192], the temperature of the deposition is increased with respect to previous experiments, up

to 675◦C. The facets evolution highlighted by markers in the growing profile is the typical one

usually observed for this process (for a detailed discussion see Ref. [20]).

A deeper analysis of the marker lines permits to identify the transition from individual

crystals to a continuous profile. In particular, this is made evident in Fig. 6.16(b), where the

markers at the coalesced region are highlighted by black-and-white contrast. The transition

between separated markers and a continuous line is highlighted by the blue region both in

Figs. 6.16(a) and 6.16(b). When coalescence occurs, a single growth front is formed with a

faceted outline. Under the merging point, a zipping is recognized producing a smeared region

where the markers are not defined, as shown in Fig. 6.16(c). This is a strong indication of a
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diffusion mechanism and a similarity with the zipping stage discussed in Sect. 6.2 is evident.

In order to investigate this mechanism, we consider the 2D model reported in [19], which

is able to track the evolution of crystals during the deposition by LEPECVD. It consists of an

explicit description of the surface profile during growth as introduced in Sect 1.5. An effec-

tive calculation of the flux shielding by the growing profile exploiting a ray-tracing algorithm

(similar to the one mentioned in Sect. 5.4) is also included. The incorporation factors χ(n̂) are

estimated from the marker sequence to provide the best fit of the experimental evolution, con-

sistently with the values in Ref. [20]. In order to include the description of surface diffusion,

it has been coupled with the calculus of the surface curvature as performed in Sect. 6.1.1 with

a realistic diffusion rate, incorporated in the mobility M of ∼ 10−7. The results starting from

the coalesced profile (blue region in Fig. 6.16(a)) are reported in Fig. 6.16(d). The correspon-

dence between the simulated profiles and the marker lines allows the profile evolution to be

identified as the superposition of growth and surface diffusion. At the top of the structure,

the crystal growth is dominating the dynamics with the formation of {113} facets in agree-

ment with both Figs. 6.15(b), 6.15(c) and 6.16(a). Due to the formation of such {113} pyramids,

which offer a low height-to-base aspect ratio, the shielding effects are not affecting too much

the evolution. Indeed, despite the flux shielding from the lateral facets, the rounding is sup-

pressed also above the bridges and the profile grow almost conformally. Below the coalesced

region, no external material flux is present due to the shielding of the merged layer. Indeed,

the surface diffusion mechanism dominates. An enlarged view of the zipping under the bridge

is shown in Fig. 6.16(e). A rounded region forms immediately and a fast zipping is observed at

the first stage due to the high local curvature occurring at the merging. Then, its velocity drops

as the curvature becomes smaller. Notice that the competition between surface diffusion and

growth kinetics can be generally modified by the growth conditions [41], i.e. temperature and

deposition flux. Therefore, the morphology of the structure can be tuned by such parameters.

According to the 2D simulation of Fig. 6.16(d), the evolution during growth can be effec-

tively described as the superposition of material deposition and surface diffusion. The latter

is thermally activated as it is related to the presence of adatoms at the surface, whose density

increases with temperature [33]. This can be modeled by considering a mobility coefficient for

material fluxes at the surface (see Sect. 1.4) which scales according to the considered tempera-

ture. In Fig. 6.17 the growth on a patterned substrate is reproduced by means of illustrative PF

simulations to cope with three-dimensionality and possible merging of the structure. A sim-

plified vertical flux is considered while two different values of the mobility coefficient are set.

As can be readily observed in Fig. 6.17(a), with a small mobility the surface diffusion mech-

anism is negligible and vertical growth is obtained. Conversely, by increasing the mobility

factor, surface diffusion become more important as reported in Fig. 6.17(b). So that a more

pronounced enlargement of the structure is obtained during the deposition. This results in the

coalescence of crystals and it is qualitatively in agreement with the experimental observation.

It is worth recalling that the annealing at a very high temperatures was necessary to induce

coalescence without deposition flux. Here just a small, but not negligible, contribution of sur-

face diffusion is enough as the gap closure is also facilitated by deposition on a crystal which is
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Figure 6.17: 3D PF simulations involving both surface diffusion and growth kinetics from vertical depo-
sition with Φ = 1. (a) M0 = 10−4 and (b) M0 = 5 · 10−4.

undergoing to a rounded shape. Notice that a careful modeling of the real experiments should

be considered, involving the shadowing algorithm introduced in Sect. 5.4. This would result

in a better description of the timescale for the coalescence as confirmed by preliminary tests of

ours. However, this cannot be considered without taking into account the presence of facets

(see Sect. 5.5.2), achievable with a reliable 3D distribution of χ(n̂) (with a similar approach to

the one reported in Sect. 5.3.3 to determine the γ(n̂) values for Ge). Such an accurate model-

ing is still lacking and may consist of an interesting research topic for the future. Therefore,

we refrained from adding complexity to the PF simulations, including only the main physical

contribution to qualitatively describe the competing mechanisms. In conclusion, as experimen-

tal evidence of Figs. 6.15(a) and 6.15(b) is here reproduced, the role of the temperature in the

merging of crystals during growth is assessed.
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The elastic properties and the evolution of vertical heterostructures were modeled by contin-

uum approaches, in order to provide a deep understanding of the physical mechanisms and

suitable tools for their investigations. The study was focused on the technology relevant Ge/Si

system, looking for new solutions in limiting the plastic relaxation or, at least, allowing for the

confinement of defects at the interface between different materials. Several numerical simula-

tions have been performed to assess the reliability of the models, to explain the outcomes of

targeted experiments and to suggest the design of structures with novel properties. Nanos-

tructures with large aspect ratios were proven to be coherent under certain sizes in agreement

with the well-known properties observed for nanowires [18]. Moreover, the increasing of the

sizes of coherent structures was shown to be possible, providing a lowering of the effective

misfit across interfaces [28, 34, 37]. According to the reported results, when this is achieved by

a proper configuration of buffer layers, the size can be significantly increased. Indeed, the fine

tuning of buffer-layer sizes and Ge contents was demonstrated to allow for coherent structures

up to the micron scale [40]. This result delivers Ge/Si micrometer-wide heterostructures with

unprecedented material quality. Unfortunately, separated crystals, even for sizes of a few mi-

crons, are not suited for all the applications developed for planar films. Therefore, we inspected

under what conditions it is possible to transfer the good properties of VHEs to planar config-

urations. The post-growth annealing of vertical crystals revealed to be effective in inducing

coalescence with the formation of suspended networks and, eventually, layers [39]. Despite

the experimental proof was given on pure Ge pillars, where misfit dislocations are present

at the Ge/Si interface, the merged structures revealed to be dislocation-free at the top when

formed by bridges [39]. Experimental studies are still needed for the assessment of the quality

for fully-merged layers.

The investigation of VHEs coherency was carried out using the linear elasticity theory equa-

tions, solved by Finite Element Method (FEM) simulations as proposed in Ref. [146]. In particu-

lar, an original quasi-3D approach was developed as reported in Ch. 3. It allowed for the calcu-

lation of the formation energy for dislocations, delivering the estimation of critical parameters

according to thermodynamics [28]. Such critical parameters were determined for a single-layer

structure, made of a SiGe layer on a Si pillar, and then generalized to multilayer configurations.

Moreover, the possibility to grow coherent structures at any size, when considering a proper

grading of the Ge content, was reported. A convenient semi-analytical expression delivering

the parameters for the achievement of such dislocation-free VHEs was also introduced. In ad-

dition, we reported the simplified evaluation of the onset for crack insertion in heteroepitaxial
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films. As illustrated in Ch. 4, the modeling of the plasticity onset was applied to the investi-

gation of competitive relaxation mechanisms in real heterostructures. Proper extensions were

implemented to account for a more accurate description of the experimental systems. It is

worth pointing out that the growth of dislocation-free microstructures of Sect. 4.4 were directly

stimulated by the theoretical predictions about coherency when grading the Ge content during

the growth.

The evolution in time of vertical micro-crystals during annealing was modeled with the aid

of the phase-field method and FEM simulations. The developed approach is based on a stan-

dard PF model [29], that was extended in order to account for the morphological evolution of

realistic structures. In particular, we addressed the modeling of the surface diffusion mecha-

nism with a general description of anisotropic surface energies as reported in Ch. 5 [32]. Other

extensions are also proposed for the modeling of crystal growth, dealing with the description

of material flux shielding by patterned substrates during deposition, and with the tracking of

faceted crystal growth. As discussed in Ch. 6, PF simulations allowed the evolution driven by

annealing of single structures to be described. Then, the coalescence mechanism for crystal

arrays, resulting in the formation of a suspended film, has been predicted. Such an evolution

was confirmed by dedicated experiments and leads to the fabrication of a promising system for

the high-quality heterogeneous integration of semiconductors [39]. Moreover, the evidence de-

livered by this investigation has been exploited to assess the coalescence occurring for closely

spaced crystals during growth at high temperature [41].

Notice that, despite the approaches reported in this thesis have been mostly used to de-

scribe Ge/Si systems, they are defined in a rather general way and can be readily applied and

extended to other similar systems. For the modeling of the plasticity onset, this can be done

by including the proper elastic constants, dislocation types, and geometry of the system. For

the morphological evolution by the PF model, when surface diffusion is the mechanism re-

sponsible for the evolution, the extension to other systems can be achieved by accounting for

the proper definition of the surface energy. Within such a modeling, a fine tuning of parame-

ters would also allow for a careful investigation of competition between surface diffusion and

growth kinetics.

It is worth mentioning that the aforementioned results open interesting perspectives for fu-

ture studies. Indeed, the extensions of the model for the evaluation of plasticity onset reported

in Ch. 4, as for instance the description of realistic Ge content distributions, can be the subject

of dedicated theoretical analysis. Moreover, we proved that PF modeling dealing with three-

dimensional geometries can be used for the investigation of realistic systems. So that future

investigations can directly apply the developed methodology including further physical phe-

nomena such as elasticity [158] or intermixing [160] for a thorough study of the evolution of

nanostructured systems. Further investigations can be also focused on the application of the

PF technique to the optimization of the growth process of VHEs. From the technological point

of view, the assessment and the optimization of the material quality for the suspended films

discussed in Ch. 6 will be the crucial task for the achievement of defect-free planar systems

exploiting the material properties of isolated, vertical crystals.
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