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In this paper we present new results concerning the evolution and sta-
bility of vortex knots in the context of the Euler equations. For the first
time, since Lord Kelvin’s original conjecture of 1875, we have direct nu-
merical evidence of stability of vortex filaments in the shape of torus knots.
The results are based on the analytical solutions of Ricca [1] for thin vor-
tex filaments and numerical integration of the Biot-Savart induction law.
Moreover, a comparative study of vortex knot evolution under the so-called
Localized Induction Approximation (LIA), which is a low-order approxim-
ation to the Biot-Savart law, confirms the stability results predicted by
the LIA analysis. In particular, we show that thin vortex knots which are
unstable under LIA have a greatly extended lifetime when the Biot-Savart
law is used, but thick vortex knots have the same stability behaviour for
both equations of motion.

Applications of ideas from modern topology to fluid mechanics have
been pioneered by Moffatt [2] and co-workers (3], whose results clearly
demonstrate the importance of the new techniques in the study of knotted
and linked structures in fluid flows. The use of geometric and topological
methods in fluid mechanics has indeed proven to be very useful in the ana-
lysis of the entanglement of filamentary vortex structures as observed in
direct numerical simulations of homogeneous turbulence (see, for example
[4] and [5]). The most advanced visiometrics of streamlines and vorticity
lines associated with the formation of coherent structures reveal that a high
degree of braiding, re-connection and formation of new linkings of field lines
is a generic feature of turbulent flows. Moreover, the study of complex flow
patterns using topological techniques finds useful applications in the study
of filament structures present in a wide spectrum of physical scales, from
magnetic flux tubes in solar physics to quantized vortex lines in super-
fluidity [6]. Yet, from a theoretical viewpoint very little is known about
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Figure 1. Evolution of torus knot 72,3 under LIA. The knot is found to be stable as
predicted by the LIA analysis of Ricca. The knot is visualized by centering a thin tube
on the knot axis, as shown in figure. Hence, the tube is a virtual object and its thickness

is not measured by aq.

the effects of topology on the evolution of complex structures, and there
is therefore a call for more information about these processes and their
mathematical modelling.

The aim of the present work is twofold: to investigate the relationship
between geometry, topology and dynamics of topologically complex vortex
structures; to model the topological entanglement of vortex structures us-
ing knotted vortex lines as elementary constituents. We have concentrated
our attention to forus knots T4 which are thin vortex filaments wrapped
around a mathematical torus, where p and g are relatively prime integers.
A torus knot is characterized by its winding number w = q/p which is a to-
pological invariant and measures the number of wraps of the knot along the
small circle of the torus per number of wraps along the large circle of the
torus. In principle, vortex motion in the context of the Euler equations is
governed by the Biot-Savart law which determines the self-induced velocity
u(X) of a vortex line C of strength I in the following way:
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Here X is the position vector, X = R(s) the vector equation for C,
s the arc-length and t = dR/ds the unit tangent along C. Note that the
integral of eq. (1) is a global geometric functional and retains all the induc-
tion effects associated with the geometry of C, while preserving topology.
Unfortunately, explicit analytic solutions to the Biot-Savart law are only
known for very simple geometries and in general are very difficult to ob-
tain. Moreover, numerical simulations based on (1) are rather expensive to
run, because the motion of each single vortex point depends on the motion
of all the other points in which the vortex line is discretized. A standard
way to overcome these difficulties is to use a cut-off technique based on the
Localized Induction Approximation to (1). Under LIA the filament motion
is governed essentially by local curvature effects and in the limit of very
thin vortex filaments (1) is replaced by

u(X) = 4%1:: (z*;:) R' xR", (2

where R.g is some length-scale, which we choose equal to 8¢ (c local radius
of curvature) in order to reproduce the correct velocity for vortex rings; ag
represents a very small cut-off parameter, and typically ag =~ 1078.

Figure 2. Evolution of torus knot 732 under LIA. The knot is found to be unstable as
predicted by the LIA analysis of Ricca. The knot is however stabilized when its evolution
is governed by the Biot-Savart law.
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The numerical calculations which we have performed (7] confirm the
validity of Ricca’s [1] stability criterion under LIA evolution, i.e. that torus
knots are stable if w > 1. Figure 1 shows the stable knot 723 and Figure
2 shows the knot 732 as it becomes unstable and unfolds. These results
provide useful information for studying more sophisticate models of vortex
structures under LIA. Another interesting result that we have found is the
discovery of a strong stabilizing effect due to the Biot-Savart law. Take for
example the knot 73 2: this knot becomes immediately unstable under LIA,
whereas it remains stable under Biot-Savart, travelling a considerable dis-
tance. Although we find that these knots eventually de-stabilize (remember
that numerical noise is always present), the time which elapses and the dis-
tance over which the knots travel before breaking-up is very large and has
physical significance. Moreover, there are cases (for relatively thin knots)
in which the evolution under Biot-Savart is almost identical to that given
by LIA, an unexpected result worth investigating.

Finally, let us point out that unstable vortex knots evolve under Biot-
Savart towards a reconnection event. This is another interesting feature
of vortex knot evolution. In view of the great interest in the formation of
singularities in the Euler equations, an issue that represents an outstanding
problem in the mathematics of ideal fluid mechanics, unstable vortex torus
knots prove to be a simple and effective means of investigation. No doubt
that these results will stimulate more numerical work and will certainly
give new impetus to the mathematical search for the existence of steady
and stable vortex knot solutions to the Euler equations.
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