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Abstract: Geometric and topological aspects associated with integrability of vortex
filament motion in the Localized Induction Approximation (LIA) context (which in-
cludes a family of local dynamical laws) are discussed. We show how to interpret
integrability in relation to the Biot-Savart law and how soliton invariants can be inter-
preted in terms of global geometric functionals of knotted solutions. Under the basic
(zeroth-order) LIA, we prove that vortex filaments in the shape of torus knots 7p,q (p,
g co-prime) with (g/p) > 1 are stable, whereas those with (¢/p) < 1 are unstable.

1 Localized Induction Approximation (LIA) and
integrability

The velocity u(X) (X position vector in IR?) with which an isolated thin vortex
filament propagates in an incompressible perfect fluid is given by the Bio-Savart
integral, which is a global integral functional of the vorticity distibution w. With
reference to the vortex filament axis (parametrised by the arc-length s), u can
be decomposed in intrinsic components (u, un, us) along the unit tangent vector
t (= X' = 80X /8s), unit principal normal n and unit binormal b to the vortex
axis.

Given the thinness of the vortex and neglegting long-distance effects and
self-interactions, we can develop an asymptotic theory and approximate the mo-
tion of the vortex with simple local laws [1]. We call this approach ‘Localized
Induction Approximation’ (LIA for short). Under LIA we have a family (or, bet-
ter, a hierarchy) of local laws of increasing complexity, depending on the degree
of sophistication of the physical model and the amount of information that we
want to take into account. The simplest example, which may be considered as
a zeroth-order LIA, is given by a very crude approximation to Biot-Savart that
after appropriate rescaling can be written as

u=X=X'xX"=cb, (1)
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with uy = u, = 0, uy = ¢ (¢ curvature of the vortex axis), being everything
a (sufficiently) smooth function of arc-length s and time ¢ (over-dots denoting
8/a8t). Under the Hasimoto map [2] (which is a Madelung transformation of
curvature ¢ and torsion 7 of the vortex axis to the complex plane) ¥(s,t) =
c(s,t)exp[[* T(¢,t) d¢], ¥ € C, eq. (1) can then be reduced to the (focusing)
non-linear Schrodinger equation —iyh = 9" + (1/2)[%|*¢ (NLSE), which in one
dimension is completely integrable, has soliton solutions and an infinite sequence
of conserved quantities in involution [3,4]. A first refinement of the physical model
is given by taking into account the presence of axial flow (measured by F = cst.)
in the vortex, so that the induced local velocity becomes [5]

2
u:cb+F(%t+c'n+cfb) ; (2)

which is equivalent (by the Hasimoto map) to the focusing version of the modified
Korteweg-de Vries equation (mKdV), the second Hamiltonian system in the
NLSE hierarchy of integrable soliton equations (Hirota class). Note that in the
absence of axial flow (F = 0) we recover eq. (1). Similarly, it is possible to take
account of additional physical aspects, such as linear inhomogeneities and second
order effects (due, for example, to particular local vorticity distribution), which
will give more elaborate expressions for u while preserving integrability.

In general, it is interesting to inquire under which physical conditions inte-
grability is preserved and to what extent physical properties are related to the
underlying mathematical structure. A partial answer to the first point is based
on the study of the Hamiltonian structure associated with soliton equations and
their Poisson geometry. It is possible to show [6] that there is a recursive op-
erator that generates the dynamical laws (such as those given by egs. 1 and 2)
associated with integrability. The construction can be explicited in the recursive
formula

X(O) =cb,
20D _ ), [f e(e,) (19 + ) :le] t,

where j = 0,1, 2,.... Here, two remarks can be made. First, it should be noted
that the integral in the r.h.s. of (3) is an operator that preserve arc-length
(these dynamical laws act as Killing fields on the vortex centreline, preserving
total length, and therefore enstrophy). This means that in this context inexten-
sibility of vortex filaments is a constitutive property of the integrable dynamical
laws generated by (3). As a consequence, the dynamics of vortex filaments un-
der stretching cannot be reconstructed by the recursive formula above. But this
doesn’t mean that an (intrinsic) stretching cannot generate integrable dynam-
ics. An example is given by the velocity u = Gt + Hcb (with G and H both
constants), which generates the sine-Gordon equation (sG) [7], a completely in-
tegrable soliton equation not captured by the recursive formula (3).

A second point of interest about (3) concerns the term.i x t in the recursive
construction of the (j + 1)-th dynamical law. Since ¢ = 8X /8s, we can write

(3)
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it+1 ;-(0)
(i +1) _ X il 300
X .’F( i )_R(X )5 (4)

where F and R are nonlinear operators acting on the zeroth-order LIA through
all its derivatives (up to order j + 1). Here R can be seen as an operator that
acts similarly as in the construction of a Taylor series, so that it would seem
appropriate to interpret the (j + 1)th-LIA as an expansion of the Biot-Savart
law around the original zeroth-order LIA (eq. 1).

2 Polynomial invariants and global geometric quantities

Under LIA integrability is preserved together with an infinity of conserved quan-
tities in involution. As we add more physical information and move gradually
from a local to a global approach (where the extreme is represented by Biot-
Savart) most of these quantities tend to decay and we are left just with the
most robust invariants (we know, for example, that kinetic energy, helicity, lin-
ear and angular momenta are conserved throughout this process [4]). A clear
understanding of this important mechanism is still missing.

A geometric interpretation of the invariants associated with integrability is
based on the application of the inverse of the Hasimoto map. Since the inverse
is well defined on C we can derive a complete set of conservation laws (soliton
invariants) expressed in terms of global geometric functionals Z, (n = 1,2,...),
1.€.

T f Byl s fFW’(" fdastuicn; (5)

where the densities D, (s,t) are function of curvature, torsion and their spatial
derivatives. This geometric interpretation was totally unexpected and led us to
a number of very interesting observations and new relationships between global
geometry and topology [8] (in this regard we should enphasize that under LIA
evolution the topology is conserved up to filament crossings, when the validity of
LIA breaks down). In the case of eq. 1, for example, together with conservation
of total length and total torsion, we have [4]

Dy=c®, Dy=cr, Dy=c*r*+?—(ct/4), ..., (6)

where, for example, D; can be interpreted as kinetic energy density and D; as
helicity density u - V x u of the vortex filament. It is interesting to note that
under (1) helicity can be written as [9]

H = k’Lk = &? VV'.I"+L Tds (7)
27

where Lk denotes the linking number of the vortex (a topological invariant), Wr
the writhing number (a geometric measure of the avarage number of apparent
signed crossings of the filament axis) and & the vortex circulation (constant).
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Since in this context both helicity and total torsion are constant, the writhe is
constant too (up to filament crossings). In actual fact it is possible to prove that

Wr ~ f(c’ — 1)rds = cst. (8)

(a double check can be made by using (1) and the intrinsic egs. for time deriva-
tives of curvature and torsion).

On dimensional grounds we should note that since both curvature and tor-
sion scale like the inverse of a length [L~!], the global geometric functionals Z,,
scale like [L~™]. If this can be associated with the physical interpretation of a
cascade process we cannot say, but it certainly allows us to construct a series
of polynomial invariants (in a dummy variable) whose coefficients are the func-
tionals Z,,. For a given knotted configuration and under specific LIA evolution,
the series would then encapsulate both integrability and global geometry, but it
wouldn’t be a measure of topological invariance.

3 Kelvin’s conjecture and stable torus knot solutions

Kelvin was the first to address the problem of steadiness and stability of knotted
vortex filaments and in particular he conjectured (see [10], p. 123, §16) that thin
vortex filaments in the shape of torus knots should be stable. This conjecture
was never proved. We give here a demonstration based on eq. (1) and our previ-
ous work [4,8]. Wave solutions to (1) expressed in cylindrical polar coordinates
(r, @, z) (smooth functions of s and t) and in the shape of torus knots 7, , can
be found by linear perturbation from the circular solution. Here p is the number
of wraps around the torus in the longitudinal direction and ¢ is the number
of wraps in the meridian direction; p and g are positive co-prime numbers and
w = ¢/p is the winding number of the knot. Rewrite eq. (1) in cylindrical polar
coordinates (cf. [8]), and let

-~

8 t
r=rotery, a=—+e€x;, z=—+€z, ()
To To

where 7 is the radius of the unperturbed circular vortex filament, £ is a scaled
‘time’ parameter and € = o(1). The linearised set of equations is thus given by

1
s ) & ot '
1‘1—21, Q]_———221|
To
(10)
: " 2 !
21 =-r + —=T1 +3&1 .

To

Wave solutions in the shape of closed torus knots are obtained taking

r1(s,t) = R(t) cos 1:—: , ai(s,t) = A(t)sin 1:—: y 21(8,t) = Z(t) cos 1:—: i (11)
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and by (11) egs. (10) are reduced to a linear system of first order differential

equations, i.e.
2
(@) 4D
To To s
2
7= [%+ (E) R+ (@)A,
To To To

which can be solved by standard methods. With (R, 4,Z) x exp (pt) (where
p € C), eq. (12) is further reduced to the matrix system

(12)

2
e 0 (7)) (F
0 P -5 Afl=0 (13)
o
2
2 3
d+(5) = ) \z

Fig. 1. Examples of stable vortex filaments in the shape of torus knots 7, , with
¢/p > 1.

The characteristic equation is

O (O S

which is solved by p = 0 and (replacing w = ¢/p) by

a= BION
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If (g/p) > 1, then p? < 0 and we have stable wave solutions in the shape of
torus knots. If (¢/p) < 1, then p? > 0 and we have an exponential growth of
the perturbations (instability). This means that in the class of torus knots 7, ,,
knotted vortex filaments with (¢/p) > 1 are stable, whereas those with (¢/p) < 1
are unstable: for example, a vortex filament in the shape of a standard trefoil
knot K33 is stable, but the knot K33 (which is topologically equivalent to K3 3)
is unstable. This result is new and unexpected.
The analytical solutions expressed in terms of traveling-waves are given by

r = 1o+ €k, sin [(q-)i-i-ﬁk] ) W
P/ To

=g 3en]
To P/ To P/ To

mgoren - (8) ] e [() e

with = s — at, where a = cst. is the propagation velocity of the wave and &,
and (; are constants. Details on the derivation of (16) can be found in [8], where
questions of stability were not addressed. Equations (16) are in perfect agreement
with the solutions found by Kida [11] (for the fully non-linear problem), who
expressed them in implicit form, without addressing the problem of stability.
With our method we have torus knot solutions in explicit analytical form as small
amplitude perturbations from the circular solution, together with conditions for
stability. These techniques are quite general and can be applied similarly to
higher-order LIA dynamics.

'
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