
Orthography-Semantics Consistency 1

Running head: ORTHOGRAPHY-SEMANTICS CONSISTENCY

Semantic transparency in free stems: the effect of Orthography–Semantics Consistency in

word recognition.

Marco Marelli

Center for Mind/Brain Sciences, University of Trento, Italy

Simona Amenta and Davide Crepaldi

Department of Psychology, University of Milano-Bicocca, Italy

Correspondence concerning this article should be addressed to Marco Marelli, Center for

Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.

Tel: +39 0464 80 8620. E-mail address: marco.marelli@unitn.it

This research was partially supported by the ERC 2011 Starting Independent Research

Grant n. 283554 (COMPOSES) and by a FIRB – Futuro in Ricerca Grant n.

RBFR085K98 from the Italian Ministry of Education, University and Research.



Orthography-Semantics Consistency 2

Abstract

A largely overlooked side result in most studies of morphological priming is a consistent

main effect of semantic transparency across priming conditions. That is, participants are

faster at recognizing stems from transparent sets (e.g., farm) in comparison to stems from

opaque sets (e.g., fruit), regardless of the preceding primes. This suggests that semantic

transparency may be also consistently associated with some property of the stem word.

We propose that this property might be traced back to the consistency, throughout the

lexicon, between the orthographic form of a word and its meaning, here named

Orthography-Semantics Consistency (OSC), and that an imbalance in OSC scores might

explain the “stem transparency” effect. We exploited distributional semantic models to

quantitatively characterize OSC, and tested its effect on visual word identification relying

on large–scale data taken from the British Lexicon Project (BLP). Results indicated that

(a) the “stem transparency” effect is solid and reliable, insofar it holds in BLP lexical

decision times (Experiment 1); (b) an imbalance in terms of OSC can account for it

(Experiment 2); and (c) more generally, OSC explains variance in a large item sample

from BLP, proving to be an effective predictor in visual word access (Experiment 3).

Keywords: Orthography–Semantics Consistency, distributional semantic models,

megastudies, visual word identification
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Semantic transparency in free stems: the effect of

Orthography–Semantics Consistency in word recognition.

Recent research on morphological processing has focused on the role played by

semantic transparency in the recognition of derived words. Indeed, the meaning of a

derived form can be more or less associated to the meanings of its constituent morphemes:

words like nameless, farmer, bakery can be easily understood given the meaning of their

roots (transparent words), whereas in words like courteous, fruitful, cryptic root meanings

are not fully maintained (opaque words). How early semantic transparency comes to the

stage during visual word processing has been the theoretical issue at the center of a

long-standing debate (for a review, see Rastle & Davis, 2008). Priming was the main

methodological tool adopted in addressing this question, with the assumption that, if the

recognition of a root (e.g., farm) is made quicker by the previous presentation of a related

derived form (e.g., farmer) in comparison to a control prime (e.g., speaker), this would

mean that the root is accessed when processing the derived form. Typically, transparent

and opaque derived primes are compared for their effectiveness in facilitating the

identification of their (pseudo-)roots. In order to rule out any strategic effect related to

prime awareness, the prime is often presented very shortly and preceded by an

orthographic mask, making it virtually invisible at an explicit level (masked priming;

Forster & Davis, 1984). Under these conditions, priming effect is regularly observed for

both transparent and opaque prime-target pairs (that is, for both farmer-farm and

courteous-court), although actual differences in the effect magnitude are still debated

(Rastle, Davis, & New, 2004; Feldman, O’Connor, & Moscoso del Prado Mart́ın, 2009).

Notwithstanding the large amount of data collected on this issue, a side effect often

emerging in these studies has been largely overlooked. Indeed, a qualitative evaluation of

the published results suggests that a main effect of transparency typically characterises
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these data as well, that is, target stems used in the transparent condition elicit quicker

response times than target stems used in the opaque condition, independently of prime

type. Table 1 reports average latencies for transparent and opaque pairs in all relevant

studies, namely, those that (a) have stems as visually-presented target words; (b) employ

lexical decision as task; (c) are run on native speakers of the language of interest; and (d)

include both a transparent and an opaque condition in a between-target design.

“Transparent” targets are systematically faster to recognize than “opaque” targets in

English: the effect is quite strong in most of the studies, and even in those reporting

smaller differences the effect direction is still consistent (with the only exception of

Andrews & Lo, 2013). Russian, Dutch and Italian are on par with English. The only

oddball seems to be French, where the difference between target stems in transparent and

opaque conditions is not consistent (Longtin, Segui, & Hallé, 2003; Diependaele, Sandra,

& Grainger, 2005).

::::::::::::::::::::::::: Please insert Table 1 here :::::::::::::::::::::::::::

Since the studies reported in Table 1 all involve the same (or very similar) experimental

conditions, the qualitative observation that target stems in the transparent condition are

generally easier to identify than target stems in the opaque condition can be assessed

statistically in a meta-analysis considering those studies for which we were able to retrieve

item means (and thus compute confidence intervals). Indeed, the forest plot reported in

Figure 1 indicates that the best point estimate for the difference between “transparent”

and “opaque” stems is 19 ms and its 95% confidence interval is 12–25.

::::::::::::::::::::::::: Please insert Figure 1 here :::::::::::::::::::::::::::
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In conclusion, it seems that experiments comparing transparent and opaque morphological

priming do not only provide information on how (pseudo-)complex words (i.e., the primes)

are analyzed morphologically, but also possibly reveal the existence of two groups of

simple words (i.e., the stem targets) that are distinct for some property. Still, prima facie,

it is not easy to identify which property might distinguish between words like cheer, herb,

poet, quiet, train and words like cheek, helm, pond, quest, trail. This paper tests the

hypothesis that these groups of words are characterized by how consistently each stem

form is associated to its meaning, i.e., how informative any particular orthographic string

is about the meaning of the word it identifies.

Before expanding on this idea, however, we need to assess the reliability of the “stem

transparency” effect. Of course, there is a possibility that the difference observed is just a

side effect of (a) some uncontrolled lexical variable, or (b) of the presence of the primes.

We cannot exclude (a) since targets for opaque and transparent sets were typically only

matched for mean values (as opposed to distributions), and covariates were not always

included in the statistical analyses. For what concerns (b), the priming effect was smaller

for opaque than transparent pairs in many of the studies considered (e.g., Diependaele et

al., 2005; Feldman et al., 2009; Kazanina, 2011; Marelli, Amenta, Morone, & Crepaldi,

2013), a difference that obviously impacted on the collapsed mean latencies. For these

reasons, in Experiment 1 we aimed at establishing the reliability of the effect by

considering independent evidence from the British Lexicon Project (Keuleers, Lacey,

Rastle, & Brysbaert, 2012).

Experiment 1 – Validating the “stem transparency” effect

In the present analysis, we aim at establishing the validity of the alleged “stem

transparency” effect by excluding potential methodological and lexical confounder. In

order to pursue this aim, we prepared an item set including those English words that were
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used as stem targets for either opaque or transparent primes in published priming studies;

hence, we tested the difference between the transparent and opaque set on lexical decision

latencies as extracted from the British Lexicon Project (BLP, Keuleers et al., 2012).

Observing the effect under the relatively simple conditions of a pure lexical decision task

will indicate that the phenomenon does not depend on the particular manipulations

associated to the priming paradigm. Moreover, the present approach also allows to control

the influence of several covariates, thus excluding alternative explanations based on other

lexical variables.

Materials and Methods

Items were extracted from a concatenation of the set used by Rastle, Davis,

Marslen-Wilson, and Tyler (2000), Devlin, Jamison, Matthews, and Gonnerman (2004),

Rastle et al. (2004), Morris, Frank, Grainger, and Holcomb (2007), Marslen-Wilson, Bozic,

and Randall (2008), and Andrews and Lo (2013), leading to a set including 335 stem

words. lock and port were subsequently removed because they appeared in different sets in

different studies: port was used as a target for the transparent prime portable in Morris et

al. (2007) and as a target for the opaque prime porter in Marslen-Wilson et al. (2008),

whereas the pair locker–lock was classified as opaque in Morris et al. (2007) and as

transparent in Marslen-Wilson et al. (2008). Eight items were further removed because

they were not included in the BLP. Therefore, the final set was comprised of 325 words,

157 of which were originally part of a set of transparent pairs (e.g., cheer, herb, poet,

quiet, train) and 168 were originally part of a set of opaque pairs (e.g., cheek, helm, pond,

quest, trail).

Response times (RTs) in lexical decision were extracted from the BLP. The SUBTLEX-uk

database (van Heuven, Mandera, Keuleers, & Brysbaert, in press) was used to collect

word frequency for each target item. The morphological annotation from CELEX
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(Baayen, Piepenbrock, & Gulikers, 1995) was exploited to compute morphological family

size (hence, FS), that is, the type frequency of the morphologically complex words where

each stem appears (De Jong, Schreuder, & Baayen, 2000). Table 2 reports a descriptive

summary of the predictors in the opaque and the transparent set. Frequency and FS, along

with word length (in letters), were included as covariates along with the “transparency”

variable in a regression model. RTs, FS and frequency were log-transformed in order to

obtain more Gaussian-like distributions. Once the model was fitted, outlying datapoints

were removed on the basis of the model residuals (adopting 2.5 SD as a threshold). The

model was then refitted to ensure that the analysis outcome was not determined by few

influential outliers. The reported results are those of the refitted model.

::::::::::::::::::::::::: Please insert Table 2 here :::::::::::::::::::::::::::

Results

Targets from opaque sets elicited longer RTs (mean = 581ms, SD = 56ms) than targets

from transparent sets (mean = 553ms, SD = 47ms). The difference is significant, even

once the effects of the considered covariates are partialled out. Table 3 reports the results

of the regression analysis.

::::::::::::::::::::::::: Please insert Table 3 here :::::::::::::::::::::::::::

Over and above the transparency effect, frequency and FS also have significant facilitatory

effects on lexical decision latencies (the larger frequency and FS, the shorter the RTs).

The effect of length is not significant, but this may be due to the extremely limited

distribution of the variable in the dataset (80% of the items is either 4 or 5 letter long).

Overall, the model fitted the observed data with an adjusted R-squared of .5081; predicted
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values were not correlated with the residuals (r = −.0001).

Discussion

The alleged effect of “stem transparency” received independent support from the analysis

of the BLP data. Stems extracted from transparent sets are recognized faster than stems

extracted from opaque sets, even in an experimental context unrelated to priming

techniques. The effect is also independent from possible mismatching in terms of

frequency, length, or family size. These results confirm the validity and reliability of the

phenomenon: in previous studies the item grouping based on the transparency of the

derived forms also individuated distinct groups of stems.

Experiment 2 – An explanation for the effect

As anticipated in the Introduction, the hypothesis that we take up in this paper is that

the difference described above is related to how reliable each word is as an orthographic

cue for its meaning. Genuine morphological stems may also form opaque words – e.g.,

invent is a genuine stem in invention or inventive, but clearly does not contribute to the

meaning of inventory. This phenomenon can be observed to different extent in the lexicon.

At one extreme of the continuum, there are stems that always appear in words whose

meaning is related to their own; in these cases, stems carry orthographic information that

is consistently associated to a certain meaning, e.g., the orthographic chunk widow will be

always associated to the WIDOW meaning, irrespective of the words it appears in

(widower, widowed, widowhood). At another extreme, stems that mostly appear in opaque

forms (e.g., corn), and therefore are found in words in which their meanings is not

maintained (corner, corny), will not be very reliable orthographic cues for their semantics.

As a result, the association between form and meaning in stems from the “opaque sets”

will be potentially more difficult to learn, and hence weaker (see Andrews & Lo, 2013). In
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a sense, “opaque” stems are worse symbols than “transparent” stems, which may drive to

slower response times.

One way to assess this hypothesis is to develop a measure that reflects how much a word

is a reliable orthographic cue for its semantics, and then showing that stems in the opaque

sets had lower scores than stems in the transparent sets in previous priming experiments.

We call this new measure Orthography–Semantics Consistency (hence OSC), and we show

in the present Experiment how it was defined (based on methods from distributional

semantics) and how it explains indeed the “stem transparency” effect.

Materials and methods

We considered the same English item set employed in the previous analysis, including 157

items originally part of a set of transparent pairs and 168 items originally part of a set of

opaque pairs, for a total of 325 items. We then collected all words starting with these

items from a list including the top 30k most frequent content words (i.e., nouns, verbs,

adjectives, adverbs) in a 2.8–billion corpus (detailed below), thus forming a family of

“orthographic relatives” for each target stem. As an example, the family for the stem

whisk includes whisky, whiskey, whisker, whiskered.

The next step was to compute a measure of semantic similarity between a stem and each

of its orthographic relatives. In order to do so, we exploited methods borrowed from

distributional semantics (Turney & Pantel, 2010), that have proven to be extremely

effective in providing cognitively sound estimates of semantic association (e.g., LSA,

Landauer & Dumais, 1997; HAL, Lund & Burgess, 1996) . This approach is based on the

assumption that the meaning of a word can be approximated by the way that word

co-occurs with other words in the lexicon. In a Distributional Semantic Model (hence,

DSM) word meanings are represented as vectors that are derived from these

co-occurrences. The more two words tend to occur with the same set of other words (i.e.,
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in similar contexts), the more their vectors will be close, the more their meanings will be

considered to be similar. Geometrically, this amounts to measuring the cosine of the angle

formed by the two vectors: the more similar the vectors, the smaller the angle between

them, the higher their cosine. In the present study, we build a DSM by using a large

part-of-speech tagged and lemmatized corpus, formed by a concatenation of the ukWaC

(http://wacky.sslmit.unibo.it/), English Wikipedia (http://en.wikipedia.org/),

and BNC (http://www.natcorp.ox.ac.uk/) corpora (about 2.8 billion words in total)1.

We focused on the co-occurrences involving the top 30k most frequent content words (i.e.,

nouns, verbs, adjectives, adverbs), collected using a 5-word window. Raw counts were

re-weighted using Positive Pointwise Mutual Information (Church & Hanks, 1990), and we

reduced matrix dimensions by means of Non-negative Matrix Factorization (Arora, Ge, &

Moitra, 2012), setting the number of dimensions of the reduced space to 350. These

parameters were adopted because they were shown to produce high quality semantic

spaces in previous studies (e.g., Bullinaria & Levy, 2007). For model implementation we

relied on the freely available DISSECT toolkit (Dinu, The Pham, & Baroni, 2013).

Given a target word and the set of its k orthographic relatives, OSC was computed as the

frequency-weighted average semantic similarity. In formal terms:

OSC(t) =

∑k
x=1 frx ∗ cos(~t, ~rx)∑k

x=1 frx

Where t is the target word, rx each of its k orthographic relatives, and frx the

corresponding frequencies extracted from the above described corpus. Since cosine values

range from 0 to 12, the resulting OSC measure is a 0-to-1 score where values close to 0

identify words that are bad orthographic cues for their associated meanings, and values

close to 1 indicate an almost perfect association between form and meaning.

The item frisk was not included in the semantic space and its OSC could not be

computed; it was thus excluded from the following analysis. After having computed OSC
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for each target, we regressed it against log-transformed RTs extracted from the BLP, as

for Experiment 1. Again, in accordance with Experiment 1, we also included in the

regression analysis log-transformed frequency (from SUBTLEX-uk), family size (from

CELEX), and length in letters.

Results

::::::::::::::::::::::::: Please insert Figure 2 here :::::::::::::::::::::::::::

The density distributions of OSC in the two transparency sets is represented in Figure 2.

The average OSC was significantly different in the transparent-set stems v́ıs-a-v́ıs the

opaque-set stems (t(322) = 7.41, p = .0001), with the former showing larger OSC than the

latter (.72 ± .012 vs. .50 ± .017 respectively). This OSC difference can explain the

transparency effect in lexical decision latencies discussed above: indeed, if OSC is

introduced in place of transparency in the regression model summarized in Table 3, its

effect emerges as significant (b = −0.046, t = 3.47, p = .0006) and larger than the estimate

previously observed for the transparency dummy variable (b = −0.022). This observation

is confirmed by the Relative Importance Indicators extracted from a model including both

predictors: normalized LMG (Lindeman, Merenda, & Gold, 1980; Kruskal, 1987) for

transparency and OSC is, respectively, .05 and .11. The results of the model where

transparency-set is substituted by OSC as a predictor are summarized in Table 4.

::::::::::::::::::::::::: Please insert Table 4 here :::::::::::::::::::::::::::

Along with OSC, also frequency and FS have significant facilitatory effects, whereas the

effect of length is not significant. Overall, the model fitted the observed data with an

adjusted R-squared of .5133; predicted values were not correlated with the residuals
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(r = .0001). The model with OSC provides a better fit to the data than the one reported

in Experiment 1 (AIC -860.55 and -857.04, respectively); according to Wagenmakers and

Farrell (2004), ∆AIC = 3.51 indicates that the OSC model is 5.78 times more likely to be

the best one than the model including transparency as predictor.

Discussion

In this analysis, we have tested the effect of OSC in (a) distinguishing stems coming from

either opaque or transparent sets in previous priming experiments; and (b) predicting

lexical decision latencies for those items in the BLP. In both tests, OSC proved to have a

significant effect in the expected direction: stems taken from transparent sets have

significantly higher OSC than stems taken from opaque sets, and OSC has a facilitatory

effect on RTs in lexical decision. This suggest that the bizarre phenomenon that inspired

this study, that is, the main effect of semantic transparency on simple stem targets in

priming experiments, may be explained by considering how much, in the whole lexicon,

the orthographic information carried by the stem is consistent with its associated

semantics. In conclusion, the grouping based on the semantic properties of the derived

forms also identifies two sets of stems that are distinguishable for their level of

Orthography-Semantics Consistency.

Once we consider the issue from this point of view, it is not surprising that OSC provides

a better fit to RT data than the transparency predictor: the latter just happens to be a

dichotomization of the former, and it is well known that, when dealing with naturally

continuous variables, a continuous indicator has to be preferred to its dichotomized

counterpart in terms of both statistical power and estimation accuracy (Cohen, 1983;

Maxwell & Delaney, 1993). Concerning the difference in OSC distributions between

transparent and opaque sets (Figure 2), it arguably reflects a selection bias in the item

samples from the original studies. English derivational morphology is a productive system,
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leading to opaque words being naturally scarce; as a consequence, stems having at least an

opaque form were most likely assigned to opaque sets in order to obtain as large samples

as possible. Still, one single opaque form does not guarantee that OSC will be low, leading

to the vaguely uniform OSC distribution observed for the opaque set. On the other hand,

the transparent set is likely to include stems having only transparent forms (if they were

associated also to opaque words, they would have been assigned to an opaque set); for this

reason, the OSC distribution in the trasparent set is negatively skewed.

Why should OSC impact word processing? In order to account for their masked priming

results, Andrews and Lo (2013) proposed that the association between an opaque derived

word and its stem may be difficult to learn because of their similarity in form paired with

their discrepancy in meaning. The present results suggest that this has not only

consequences when both the derived word and the stem are explicitly used during the

experiment, but also under simpler conditions when skilled readers are just presented with

isolated stems: the knowledge that those stems have opaque and/or transparent derived

forms is stored in the mental lexicon, and influences the way they are processed even when

(pseudo-)morphological relatives are not involved by the experimental paradigm.

Experiment 3 – Generalization of the OSC effect

So far, OSC was shown to explain human performance on stems that happened to be used

in previous priming experiments. Of course, before being able to make any general point

about the role of OSC in visual lexical identification, we need to demonstrate that this

effect holds in a much wider word sample that is independent from previous research. In

our hypothesis, OSC is not an effect that can be limitedly observed in the two peculiar,

extreme sets we have been considering so far, but rather something that regularly affects

word processing in a continuous way. This is the issue that we take up in the present

Experiment.



Orthography-Semantics Consistency 14

Materials and methods

For this analysis we considered a dataset of 1821 words, randomly sampled from the words

included in both the semantic space described in Experiment 2 and the BLP database,

and having at least one orthographic relative over and above itself (in order to exclude

words with OSC = 1 that could have distorted the distribution of the variable of interest).

OSC was defined following the same approach described in the Experiment 2. Again, for

each target word we also collected frequency (from SUBTLEX-uk), family size (from

CELEX), and length in letters. RTs in lexical decision were extracted from the BLP.

Table 5 summarizes the distribution of the variables in the considered dataset.

::::::::::::::::::::::::: Please insert Table 5 here :::::::::::::::::::::::::::

OSC was not correlated with any of the other predictors (frequency: ρ = .06; FS:

ρ = −.08; length: ρ = .15). RTs, FS and frequency were log-transformed in order to

obtain more Gaussian-like distributions. The four predictors were tested in a regression

model with RTs as dependent variable. The same procedure described for the previous

experiments was followed.

Results

The results of the regression model are summarized in Table 6.

::::::::::::::::::::::::: Please insert Table 6 here :::::::::::::::::::::::::::

All the considered effects are significant. OSC, frequency and FS have facilitatory effects

(larger values are associated to shorter RTs), whereas the effect of length is inhibitory

(larger values are associated to longer RTs). Overall, the model fitted the observed data
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with an adjusted R-squared of .5222; predicted values were not correlated with the

residuals (r = .0001).

The obtained model was validated in a bootstrap procedure with 5,000 resamples (see Wu,

1986). The resulting optimism indexes are small for both the R-squared and the mean

standard error (.0023 and .0001 respectively), indicating that overfitting is extremely

limited and thus confirming the reliability of the model. Table 7 summarizes the

distributions of the effect parameters across the bootstrap samples.

::::::::::::::::::::::::: Please insert Table 6 here :::::::::::::::::::::::::::

Discussion

Even when considering a large set of items extracted from the BLP, the effect of OSC on

lexical decision latencies is significant, and independent from frequency, FS, and length.

This indicates that the effect of OSC is generally in place during word recognition, and

not simply a bizarre consequence of the choice of particularly extreme item sets in the

previous literature. The effect of OSC in such a large sample of words, along with the low

correlations with the other predictors, suggests that the measure proposed in the present

paper describes an important aspect, even if so far unexplored, of visual word recognition.

General Discussion

In the present paper we have investigated a curious side effect in priming experiments on

morphological processing, namely that stems assigned to the transparent condition are

identified more quickly than stems assigned to the opaque condition, regardless of any

primes preceding them. This effect is puzzling because the difference between transparent

and opaque conditions was exclusively related to the primes in those experiments, that is,

there was nothing a priori that differentiated the stems in the two conditions; why corn,



Orthography-Semantics Consistency 16

fruit, whisk (chosen as opaque targets because part of corner, fruitful, whisker) should be

processed slower than adore, farm, widow (chosen as transparent targets because part of

adorable, farmer, widower), even when the corresponding derived form is not presented to

the participants? This question, springing from the casual observation of a bizarre yet

empirically solid phenomenon, has led us to wonder about the semantic relations

intercurring between a word and its orthographic relatives, and how this underexplored

aspect may influence visual word processing. The outcome of this venture was the

development of a new measure (OSC: Orthography-Semantics Consistency) quantifying

the consistency of the carried orthographic and semantic information.

In a series of three experiments, we showed that (a) the “stem transparency” effect is solid

and reliable, insofar it holds on BLP lexical decision times where no primes are involved

whatsoever (Experiment 1); (b) an imbalance in terms of Orthography–Semantics

Consistency can account for this effect (Experiment 2); and (c) OSC explains variance in a

large item sample from BLP that is independent of frequency, family size and word length

(Experiment 3).

The OSC effect indicates that word processing is influenced by the relative distribution of

form and meaning in the lexicon or, in other words, that the strength of the association

between orthography and semantics contributes to determining how easily a word is

recognized. The effect fits naturally well with learning models that see lexical and

morphological effects as emerging at the interface between orthography and meaning (e.g.,

Plaut & Gonnerman, 2000; Baayen, Milin, Durdević, Hendrix, & Marelli, 2011). In these

approaches, a word will be more difficult to process when part of opaque derived forms

because of competition during learning: the same orthographic information (e.g., bat) is

associated to several meanings in this case (e.g., BAT, BATTERY, BATTLE, BATMAN ),

with the result that it becomes a relatively unreliable cue for the associated semantic

representation. Therefore, the result of the present study is a natural consequence of the
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learning process implemented in these models, and the OSC effect fits well with these

kinds of architectures because it can be considered a proxy of the distributed

nodes/weights linking orthography to semantics. It is also true, however, that, the same

effect could be accounted for under a spreading–activation framework (e.g., Taft, 2004),

although it is probably not an obvious prediction of most of these models. In these

architectures, the effect would depend on competition between dissimilar semantic

representations (e.g., BAT vs. BATTLE ), activated at the same time by the

corresponding lexical (or sub-lexical) units (e.g., bat, battle), that are in turn accessed

because of the common orthographic input (e.g., b, a, t).

Being born from a side effect emerged in priming studies, one may wonder whether OSC

could have any impact on the priming phenomenon itself. Could this effect be primarily

driven by properties of the stems targets, as opposed to the derived primes? Indeed, if we

hypothesize that priming effects can emerge for high-OSC words only, the facilitation

observed for both transparent and opaque items will be explained by the OSC

distributions in the target sets, since they both include words characterized by high levels

of OSC (Figure 2). The more uniform distribution in the opaque set would also explain

the much discussed variability in priming results for opaque forms (Rastle & Davis, 2008):

item samples will be more or less likely to elicit a priming effect on the basis of their

average OSC. As interesting as this idea may seem, we don’t believe it to be fully

supported by existing data. Järvikivi and Pyykkönen (2011) and Feldman, Kostić,

Gvozdenović, O’Connor, and Moscoso del Prado Mart́ın (2012) have convincingly shown

that different priming effects are found for transparent vis-a-vis opaque primes in a

within-target design, that is, even when OSC is kept constant. However, OSC may still

modulate the magnitude of the priming effect, orthogonally to the properties of the

derived primes. Indeed, a preliminary analysis on the data reported by Rastle et al. (2004)

indicates a positive correlation between target OSC and priming effect size (ρ = .19;
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p = .0594). Further results, on purposedly created sets, are clearly needed in order to

draw a conclusion, but this first observation in such a small set (n = 100) is certainly

promising.3

The measure we proposed seemed to efficiently capture the Orthography-Semantics

Consistency by computing the weighted average semantic similarity between a word (e.g.,

whisk) and the words that have similar orthographic onsets (e.g., whisky, whisker). Of

course, the way we formalized OSC has not to be taken for granted and alternative

implementations of the measure may be proposed, in particular with regards to the way

we defined the relatives. For example, we may consider as an orthographic relative any

string including the word, independently of its position. Although previous results has

shown that the onset of a word is crucial for its orthographic processing (Jordan, Thomas,

Patching, & Scott-Brown, 2003; White, Johnson, Liversedge, & Rayner, 2008), the same

does not hold when semantics is at stake. Indeed, in English, crucial meaning information

is often carried by the final portion of the word; this is the case, for example, for all

prefixed words (e.g., heat in reheat) and most compounds (a swordfish is a fish, not a

sword). The present version of the measure, that focuses only on word onsets (e.g., a

swordfish is considered a relative for a sword, but not for fish), is likely loosing a certain

degree of information in this regard.

An even more radical approach would be to extract orthographic relatives by means of a

continuous measure of orthographic similarity (e.g., Grainger & Whitney, 2004; Yarkoni,

Balota, & Yap, 2008; Davis, 2010), in place of taking the whole word as a unique

orthographic chunk. We could consider as relatives all the words that are above a certain

threshold of similarity, irrespective of them beginning with the same string or not. If we

adopt as similarity threshold a Levenshtein Distance (LD, Yarkoni et al., 2008) of 2, for

examples, we will extract as relatives of boat words like moat (LD = 1), boot (LD = 1),

boast (LD = 1), board (LD = 2), boost (LD = 2), etc., over and above boater (LD = 2)
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that would have been already considered in the present version of the measure.

Finally, morphological family members may be considered in place of orthographic

relatives – e.g., dealer would be a relative for deal, fruitful would be a relative for fruit,

but dialog would not be a relative for dial because dialog is not a morphologically complex

word). This approach would be closely related to results from morphological literature

indicating that opaque family members do not contribute to the family size effect on word

recognition (Bertram, Baayen, & Schreuder, 2000; De Jong et al., 2000; Moscoso del

Prado Mart́ın, Bertram, Häikiö, Schreuder, & Baayen, 2004). However, despite their

theoretical association, family size and morphological OSC are quite different measures

from a mathematical point of view. Whereas family size is a discrete count of how many

semantically related members a word has in its morphological family, morphological OSC

would be a continuos estimate of the meaning consistency within a morphological family.

The actual count of family members does not influence directly OSC: being computed as

an average between those very members, it is entirely possible to have words with identical

OSC and very different family size, and vice-versa. In conclusion, the two measures, not

being quantitavely associated, will arguably capture different word properties and it will

be hence worth considering their combined effects on word recognition.

It is beyond the scope of this paper to investigate which of the above parameter settings

may be better at capturing Orthography–Semantics Consistency. The crucial point that

we want to make here, independently of any specific implementation, is that OSC does

influence visual word access, even when target words are isolated stems. Importantly, we

were able to show that this is the case using a measure that (a) is easily interpretable – it

goes from 0, no consistency, to 1, perfect consistency; (b) can be computed automatically

– one does not need to rely on human annotations; and (c) is also theory-independent –

although its spirit is surely more in line with learning approaches than with more classic

box–and–arrows models, the measure itself is completely bottom-up. In conclusion, OSC
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should be considered when implementing and developing models of visual word processing,

and taken into the appropriate consideration when planning and running reading

experiments.
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Feldman, L. B., Kostić, A., Gvozdenović, V., O’Connor, P. A., & Moscoso del

Prado Mart́ın, F. (2012). Semantic similarity influences early morphological priming

in serbian: A challenge to form-then-meaning accounts of word recognition.

Psychonomic Bulletin & Review , 19 (4), 668-676.

Feldman, L. B., O’Connor, P. A., & Moscoso del Prado Mart́ın, F. (2009). Early

morphological processing is morphosemantic and not simply morpho-orthographic:

A violation of form-then-meaning accounts of word recognition. Psychonomic

Bulletin & Review , 16 (4), 684–691.

Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical

access. Journal of experimental psychology: Learning, Memory, and Cognition,

10 (4), 680-698.



Orthography-Semantics Consistency 23

Grainger, J., & Whitney, C. (2004). Does the huamn mnid raed wrods as a wlohe?

Trends in Cognitive Sciences, 8 (2), 58–59.

Hutchison, K., Balota, D., Neely, J., Cortese, M., Cohen-Shikora, E., Tse, C.-S., . . .

Buchanan, E. (2013). The semantic priming project. Behavior Research Methods,

45 (4), 1099-1114.

Järvikivi, J., & Pyykkönen, P. (2011). Sub- and supralexical information in early phases

of lexical access. Frontiers in psychology , 2 , 282.

Jordan, T. R., Thomas, S. M., Patching, G. R., & Scott-Brown, K. C. (2003). Assessing

the importance of letter pairs in initial, exterior, and interior positions in reading.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 29 (5),

883–893.

Kazanina, N. (2011). Decomposition of prefixed words in russian. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 37 (6), 1371-1390.

Kazanina, N., Dukova-Zheleva, G., Geber, D., Kharlamov, V., & Tonciulescu, K. (2008).

Decomposition into multiple morphemes during lexical access: A masked priming

study of russian nouns. Language and Cognitive Processes, 23 (6), 800-823.

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project:

Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior

Research Methods, 44 (1), 287–304.

Kruskal, W. (1987). Relative importance by averaging over orderings. The American

Statistician, 41 (1), 6–10.

Landauer, T., & Dumais, S. (1997). A solution to Plato’s problem: The latent semantic

analysis theory of acquisition, induction and representation of knowledge.

Psychological Review , 104 (2), 211-240.

Lavric, A., Clapp, A., & Rastle, K. (2007). Erp evidence of morphological analysis from

orthography: A masked priming study. Journal of Cognitive Neuroscience, 19 (5),



Orthography-Semantics Consistency 24

866–877.

Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and

multivariate analysis. Scott, Foresman Glenview, IL.
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Footnotes

1Since the reference corpora were POS-tagged, in the resulting DSM we obtained

separate vectors for homographs with different grammatical class (e.g., a vector for the

noun run and a vector for the verb run). When target items were ambiguous in relation

to their grammatical class, they were assigned the one most frequently observed in the

corpus in order to extract the corresponding vector.

2 When all vector components are non-negative (as resulting from the settings of our

DSM), the cosine is also non-negative.

3In a sample of similar size (n = 113) extracted from the Semantic Priming Project

(Hutchison et al., 2013) no correlation between OSC and priming effect was found

(ρ = −.01; p = .8898). This additional piece of evidence confirms that OSC is efficiently

capturing a dimension encompassing both form and meaning : in fact, it is associated with

morphological priming, but becomes irrelevant when purely semantic conditions are under

exam.
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Table 1

Average response latencies in the transparent and opaque conditions of published visual

masked priming experiments. *only RTs on visually presented prime-target pairs were

considered.

Language Opaque Transparent Effect

Investigated Stems Stems Size

Rastle et al. (2000), Exp. 1 English 612 ms 582 ms 31 ms

Devlin et al. (2004) English 673 ms 639 ms 34 ms

Rastle et al. (2004) English 616 ms 586 ms 30 ms

Lavric et al. (2007) English 688 ms 666 ms 22 ms

Morris et al. (2007) English 669 ms 648 ms 21 ms

Marslen-Wilson et al. (2008) English 548 ms 531 ms 17 ms

McCormick et al. (2008), Exp. 4 English 627 ms 607 ms 20 ms

Rueckl & Aicher (2008), Exp. 1 English 648 ms 613 ms 35 ms

Rueckl & Aicher (2008), Exp. 2 English 667 ms 626 ms 41 ms

Feldman et al. (2009) English 650 ms 617 ms 33 ms

Diependaele et al. (2011), Exp. 1 English 592 ms 589 ms 3 ms

Andrews & Lo (2013) English 576 ms 579 ms -3 ms

Diependaele et al. (2005), Exp. 1* Dutch 629 ms 619 ms 10 ms

Diependaele et al. (2009), Exp. 1 Dutch 599 ms 584 ms 15 ms

Diependaele et al. (2009), Exp. 3* Dutch 602 ms 583 ms 19 ms

Longtin et al. (2003), Exp. 1 French 629 ms 631 ms -2 ms

Diependaele et al. (2005), Exp. 2* French 623 ms 608 ms 15 ms

Marelli et al. (2013), Exp. 2 Italian 631 ms 594 ms 37 ms

Kazanina et al. (2008) Russian 662 ms 643 ms 19 ms

Kazanina (2011), Exp. 2 Russian 679 ms 666 ms 13 ms
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Table 2

Summary of the predictors for stems from the transparent and the opaque set.

Transparent set Opaque set

Mean SEM Mean SEM

Word frequency 13914 2762 11804 4519

Word FS 15.87 1.63 12.97 1.84

Word length 4.66 .06 4.41 .07
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Table 3

Results of the regression analyses on the lexical decision latencies extracted from the BLP.

Estimate Std. Error t value p value

Intercept 6.6351 0.0267 248.11 .0001

Word frequency -0.0301 0.0024 12.42 .0001

Word FS -0.0132 .0049 2.72 .0069

Word length -0.0046 .0044 1.06 .2912

Transparency set -0.0217 0.0074 2.95 .0034
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Table 4

Results of the regression analyses on the lexical decision latencies extracted from the BLP,

when including OSC in place of transparency as predictor.

Estimate Std. Error t value p value

Intercept 6.6341 0.0266 249.84 .0001

Word frequency -0.0282 0.0025 11.21 .0001

Word FS -0.0147 .0048 3.06 .0024

Word length -0.0031 .0045 0.71 .4826

OSC -0.0461 0.0133 3.47 .0006
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Table 5

Summary of the predictors considered in Experiment 3. *values obtained once the variable

is log-transformed.

Mean SEM 1st quartile Median 3rd quartile Asymmetry Kurtosis

OSC .69 .01 .56 .75 .88 -0.91 0.04

Word frequency 16119 1482 570 2515 10882 11.68 (-0.17*) 188.59 (-0.09*)

Word FS 14.13 1.07 4 7 14 24.46 (0.17*) 775.57 (1.08*)

Word length 5.26 0.03 4 5 6 0.34 -0.39
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Table 6

Results of the regression analyses on the lexical decision latencies extracted from the BLP

for a large set of random words.

Estimate Std. Error t value p value

Intercept 6.5922 0.0109 602.89 .0001

Word frequency -0.0308 0.0009 33.41 .0001

Word FS -0.0041 0.0021 1.97 .0495

Word length 0.0035 0.0013 2.74 .0061

OSC -0.0254 0.0066 3.84 .0002
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Table 7

Summary of the distributions of the effect parameters across 5,000 bootstrap samples.

Mean SD 1st quartile Median 3rd quartile Confidence Interval

Intercept 6.5922 0.0124 6.5839 6.5924 6.6008 6.5919 6.5926

Word frequency -0.0309 0.0011 -0.0316 -0.0308 -0.0301 -0.0309 -0.0308

Word FS -0.0041 0.0021 -0.0055 -0.0041 -0.0026 -0.0041 -0.0039

Word length 0.0035 0.0013 0.0027 0.0035 0.0044 0.0035 0.0036

OSC -0.0255 0.0071 -0.0301 -0.0253 -0.0207 -0.0256 -0.0252
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Figure Captions

Figure 1. Forest plot showing a reliable difference between response times to stems used in

trasparent vs. opaque conditions in masked priming experiments manipulating the

semantic transparency of the derived forms.

Figure 2. Density distribution of Orthography-Semantics Consistency in stems extracted

from either transparent or opaque sets.
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