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ABSTRACT. We investigate the behavior of eigenvalues for a magnetic Aharonov-Bohm operator with
half-integer circulation and Dirichlet boundary conditions in a planar domain. We provide sharp asymp-
totics for eigenvalues as the pole is moving in the interior of the domain, approaching a zero of an
eigenfunction of the limiting problem along a nodal line. As a consequence, we verify theoretically
some conjectures arising from numerical evidences in preexisting literature. The proof relies on an
Almgren-type monotonicity argument for magnetic operators together with a sharp blow-up analysis.

1. INTRODUCTION

The aim of this paper is to investigate the behavior of the eigenvalues of Aharonov-Bohm operators
with moving poles. For a = (a1, as) € R? and a € R\ Z, we consider the vector potential

o — (22 — ay) T —a 2

Aa(x) - a((xl — a1)2 ¥ (xQ — CL2)27 (xl — CL1>2 + (x2 — a2)2)7 €T = (.771,332) €eR \{CL},

which generates the Aharonov-Bohm magnetic field in R? with pole a and circulation a; such a field is

produced by an infinitely long thin solenoid intersecting perpendicularly the plane (z1,23) at the point

a, as the radius of the solenoid goes to zero and the magnetic flux remains constantly equal to « (see e.g.
5L [@, 26]).

In this paper we will focus on the case of half-integer circulation, so we will assume o = 1/2 and denote

1 T2 Iy
Ag(z) = AY2(2) = Ag(z — a), here Ag(x1,22) == — .
a(2) (@) of ), w o(z1,22) 9 22 + 22’ 22 + 22
In the spirit [8], [27] and [28], we are interested in studying the dependence on the pole a of the spectrum
of Schrédinger operators with Aharonov-Bohm vector potentials, i.e. of operators (iV + A,)? acting on
functions u : R? — C as

(iV + Ag)*u = —Au + 2iA, - Vu + |A,|?u.

The interest in Aharonov-Bohm operators with half-integer circulation v = 1/2 is motivated by the
fact that nodal domains of eigenfunctions of such operators are strongly related to spectral minimal
partitions of the Dirichlet laplacian with points of odd multiplicity, see [I0, 28]. We refer to papers
[9, [IT), 15, [T6] [T, I8, 19, 20, 21] for details on the deep relation between behavior of eigenfunctions,
their nodal domains, and spectral minimal partitions. Furthermore, the investigation carried out in
[8, 241, 27, 28] highlighted a strong connection between nodal properties of eigenfunctions and the critical
points of the map which associates eigenvalues of the operator A, to the position of pole a. Motivated by
this, in the present paper we deepen the investigation started in [8[27] about the dependence of eigenvalues
of Aharonov-Bohm operators on the pole position, aiming at proving sharp asymptotic estimates for the
convergence of eigenvalues associated to operators with a moving pole.

Let Q C R? be a bounded, open and simply connected domain. For every a € €2, we introduce the
space H1:%(Q,C) as the completion of {u € H'(Q,C) N C*(Q,C) : u vanishes in a neighborhood of a}

with respect to the norm
9 1/2
L2(Q,<c)> '
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It is easy to verify that H1¢(Q,C) = {u € H'(Q,C) : %~ € L?(,C)}. We also observe that, in view

" z—al

of the Hardy type inequality proved in [23] (see (17))), an equivalent norm in H¢(Q, C) is given by

) 9 1/2
1) (16 + Adulz@ o + Iullfe@e) -

We also consider the space Hy™*(92,C) as the completion of C2°(2\ {a},C) with respect to the norm
| - |2 (2,c), so that Hé’a(Q,C) = {u € H}(Q,C): |xﬁa‘ € LQ(Q,(C)}.
For every a € €, we consider the eigenvalue problem

{(iV + Au)?u=du, inQ,

E
(Ee) u =0, on 0f),

in a weak sense, i.e. we say that A € R is an eigenvalue of problem () if there exists u € Hy® (€, C)\ {0}
(called eigenfunction) such that

/(iVu + Aqu) - (iVo 4+ Agv) da = )\/ wodz  for all v € Hy*(Q,C).
Q Q
From classical spectral theory, the eigenvalue problem (E,) admits a sequence of real diverging eigenvalues
{)\Z} x>1 with finite multiplicity; in the enumeration A\§ < A§ < ... < )\? < ..., we repeat each eigenvalue
as many times as its multiplicity. We are interested in the behavior of the function a — A} in a
neighborhood of a fixed point b € 2. Up to a translation, it is not restrictive to consider b = 0.
Thus, we assume that 0 € ).

In [8, Theorem 1.1] and [24] Theorem 1.2] it is proved that, for all j > 1,

(2) the function a + A} is continuous in .

A strong improvement of the regularity (2)) holds under simplicity of the eigenvalue. Indeed in [8, Theorem
1.3] it is proved that, if there exists ng > 1 such that

(3) AD, s simple,

then the function a +— Aj, is of class C'° in a neighborhood of 0; this regularity result is improved in [24]
Theorem 1.3], where, in the more general setting of Aharonov-Bohm operators with many singularities,
it is shown that, under assumption the function a — A7 ' is analytic in a neighborhood of 0. Then
the question of what is the leading term in the asymptotic expansion of such a function (at least on a
single straight path around the limit point 0) naturally arises. The main purpose of the present paper is
to answer such a question. This may also shed some light on the nature of 0 as a critical point for the
map a — A, when the limit eigenfunction has in 0 a zero of order k/2 with k > 3 odd.

At a deep insight into the problem, papers [§] and [28] suggest a high reliability of the behavior of the
eigenvalue A on the structure of the nodal lines of the eigenfunction relative to )‘?10' In order to enter
into the issue, let us establish the setting and some notation.

Let us assume that there exists ng > 1 such that holds and denote \y = )\20 and, for any a € ,

Ao = Agy, . From (2)) it follows that, if a — 0, then A, — Xg. Let g € H°(Q,C)\ {0} be an eigenfunction

of problem (Ejy) associated to the eigenvalue \g = AY, , i.e. solving
(4) (iV + Ao)*@0 = Xowo, in €,
wo =0, on 0,

such that
(5) / lpo(z)? d = 1.
Q
In view of [I3] Theorem 1.3] (see also Proposition below) we have that

k
(6) ®o has at 0 a zero of order 3 for some odd k € N,

see [8 Definition 1.4]. We recall from [I3, Theorem 1.3] and [28, Theorem 1.5] that (6] implies that the
eigenfunction g has got exactly k nodal lines meeting at 0 and dividing the whole angle into k equal
parts.

A first result relating the rate of convergence of A\, to A\g with the order of vanishing of ¢y at 0 can be
found in [§], where the following estimate is proved.

Theorem 1.1 (8], Theorem 1.7). If assumptions and @ with k > 3 are satisfied, then
\/\a—/\0|§C\a|% asa — 0

for a constant C' > 0 independent of a.
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As already mentioned, the latter theorem pursue the idea that the asymptotic expansion of the function
a — Aq has to do with the nodal properties of the related limit eigenfunction.

The main result of the present paper establishes the exact order of the asymptotic expansion of A, — Ag
along a suitable direction as |a|¥, where k is the number of nodal lines of ¢y at 0 which coincides with
twice the order of vanishing of g in assumption @ In addition, we detect the sharp coefficient of the
asymptotics, which can be characterized in terms of the limit profile of a blow-up sequence obtained by
a suitable scaling of approximating eigenfunctions.

In order to state our main result, we need to recall some known facts and to introduce some additional
notation. By [I3} Theorem 1.3] (see Proposition [2.1| below), if o is an eigenfunction of (iV + Ag)? on
satisfying assumption @, there exist 81, 82 € C such that (81, 52) # (0,0) and

(7) r 5200 (r(cost, sint)) = Bie'* cos (gt) + fB2€’% sin (gt) in 07 ([0, 27],C)

asr — 07 for any 7 € (0,1).

Let so be the positive half-axis sg = {(x1,72) € R? : 25 = 0 and 7 > 0}. We observe that, for
every odd natural number k, there exists a unique (up to a multiplicative constant) function ), which is
harmonic on R?\ sy, homogeneous of degree k/2 and vanishing on sg. Such a function is given by

k
(8) Yr(rcost,rsint) = r*/2sin (21&), r>0, te]0,2n].

Let s := {(z1,22) € R? : 72 = 0 and 21 > 1} and RE = {(z1,x2) € R? : 25 > 0)}. We denote as D!?(R%)
the completion of C°(R2 \ s) under the norm ( [p. |Vu|? dz)'/?. From the Hardy type inequality proved
T

in [23] (see (L7)) and a change of gauge, it follows that functions in D}%(R?.) satisfy the following Hardy

type inequality:
2

/ Vo(z)]* de > = 1 /]R2 ||f(_xl||2 dz, for all ¢ € DL?(RZ),

where e = (1,0). Then D2(R2) = {u € LL (R7\s): Vue L2(R?), iy € L*(R3), and u=0on s}.
The functional

(9) Je :DYARE) = R,  Ji(u) = %/R |Vu(m)|2dx—/ u(ﬂcl,O)%

OR2 \ s O0x2

(21,0) dxq,
is well-defined on the space D}?(R?); we notice that f’; vanishes on 0R?% \ s¢, so that

1
/ u(ml,O)%(:cl,O) dry = / u(a:l,O)%(zl,O) dxy.
8R3—\5 8x2 0 8$2

By standard minimization methods, .J; achieves its minimum over the whole space Di?(R%) at some
function wy, € Dy?(R%), i.e. there exists wy, € D?(R3) such that

(10) mp = min  Jg(u) = Jp(wg).
u€DL?(R2)

We note that

1 1 [to
(11) mg = Ji(wg) = —f/ |Vwy,(2)]? de = —= Pk (x1,0) wg(z1,0) dzy <O,
2 R?F 2 0 81'2

+’¢'k Pi(x1,t) =g (x1,0) k g_l.

where, for all z; > 0, (21,0) = limy_, gy S ERELT — Ba s
We are now in a pOblthIl to state our main theorem.

Theorem 1.2. Let Q C R? be a bounded, open and simply connected domain such that 0 € Q and
let ng > 1 be such that the ng-th eigenvalue Ay = no of (iV + Ap)? on Q is simple with associated
eigenfunctions having in 0 a zero of order k/2 with k € N odd. For a € Q let \, = A} be the no-th
eigenvalue of (iV + A,)? on Q. Let v be the half-line tangent to a nodal line of eigenfunctions associated
to Ao ending at 0. Then, as a — 0 with a € ¢,

Ao — A
2 (B + ) e

with (81, B2) # (0,0) being as in and my, being as in (10)—(L1).

(12)

Remark 1.3. Due to the analyticity of the function a — A, established in [24], Theorem 1.3], from
Theorem [L.2] it follows that Mo — A
0—

|al”

= 4(|B1]* +[B2]*) m
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FIGURE 1. a approaches 0 along the tangent t to a nodal line of .

as a — 0 along the half-line opposite to the tangent to a nodal line of ¢y. In particular, we have that
the restriction of the function Ay — A, on the straight line tangent to a nodal line of ¢y changes sign at 0
(is positive on the side of the nodal line of ¢ and negative on the opposite side). Hence, if Ay is simple,
then 0 cannot be an extremal point of the map a — A,.

We remark that Theorem is significant not only from a pure “analytic” point of view (detecting
of sharp asymptotics), but also from a quite theoretical point of view. Indeed Theorem and the
consequent Remark allow completing some results of papers [8, 27, 28] concerning the investigation
of critical and extremal points of the map a — A,. It is worth recalling from [8, Corollary 1.2] that the
function a — A, must have an extremal point in Q. More precisely, in [§] the following result is proved.

Proposition 1.4 ([8], Corollary 1.8). Fiz any j € N. If 0 is an extremal point of a — X}, then either

)\jQ is not simple, or the eigenfunction of (iV + Ag)? associated to )\9 has at 0 a zero of order k/2 with
k>3 odd.

In view of Theorem [[.2] and Remark we can exclude the second alternative in Proposition
obtaining the following result.

a

Corollary 1.5. Fiz any j € N. If 0 is an extremal point of a — Xj, then )\? is not simple.

The simulations in [8] suggest that extremal points of the map a — A, are generally attained at points
where the function itself is not differentiable. Taking into account Corollary we may conjecture that
the missed differentiability is produced by the dropping of assumption .

Furthermore, several numerical simulations presented in [8] are validated and confirmed by Theorem
Indeed, Theorem proves that the asymptotic expansion of Ag — A, has a leading term of odd
degree, hence, if k > 3, 0 is a stationary inflexion point along k directions (corresponding to the nodal
lines of ¢g), as experimentally predicted by numerical simulations in [8, Section 7]. More precisely, as a
consequence of Theorem [T.2] and Remark [I.3] we can state the following result.

Corollary 1.6. Under assumptions and @ with k > 3, 0 is a saddle point for the map a +— A,. In
particular, 0 is a stationary and not extremal point.

On the other hand, under assumptions and @ with k = 1, Theorem implies that the gradient
of the function a — A, in 0 is different from zero, then 0 is not a stationary point, a fortiori not even an
extremal point; we then recover a result stated in [28, Corollary 1.2].

The proof of Theorem is based on the Courant-Fisher minimax characterization of eigenvalues.
The asymptotics for eigenvalues is derived by combining estimates from above and below of the Rayleigh
quotient. To obtain sharp estimates, we construct proper test functions for the Rayleigh quotient by
suitable manipulation of eigenfunctions. In this way, we obtain upper and lower bounds whose limit as
a — 0 can be explicitly computed taking advantage of a fine blow-up analysis for scaled eigenfunctions.
More precisely, we prove (see Theorem that the blow-up sequence

Pa(lalr)
(13) T
converges as |a| — 01, a € t, to a limit profile, which can be identified, up to a phase and a change of
coordinates, with wy + g, being wy and ¥ as in and respectively. The proof of the energy
estimates for the blow-up sequence uses a monotonicity argument inspired by [7], based on the study
of an Almgren-type frequency function given by the ratio of the local magnetic energy over mass near
the origin; see [I3] 22] [27] for Almgren-type monotonicity formulae for elliptic operators with magnetic
potentials. We mention that a similar approach based on estimates of the Rayleigh quotient, blow-up
analysis and monotonicity formula was used in [3] to prove a sharp control of the rate of convergence of the
eigenvalues and eigenfunctions of the Dirichlet laplacian in a perturbed domain (obtained by attaching
a shrinking handle to a smooth region) to the relative eigenvalue and eigenfunction in the limit domain
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(see also [4], [14] for blow-up analysis and monotonicity formula); however, in [4] [3 [14] only the particular
case of limit eigenfunctions having at the singular point the lowest vanishing order (corresponding to the
case k = 1 in our setting) was considered. In the present paper we do not prescribe any restriction on the
order of the zero of the limit eigenfunction: this produces significant additional difficulties with respect
to [3], the main of which relies in the identification of the limit profile of the blow-up sequence . Such
a difficulty is overcome here by fine energy estimates of the difference between approximating and limit
eigenfunctions, performed exploiting the invertibility of an operator associated to the limit eigenvalue
problem.

From Theorem it follows that, under the assumptions of Theorem the Taylor polynomials of
the function a — Ao — A\, with center 0 and degree strictly smaller than k vanish, since by Theorem [T.2]
they vanish on the &k independent directions corresponding to the nodal lines of ¢( (see [2, Lemma 1.1]
and [8, Lemma 6.6]). Then we obtain the following Taylor expansion at 0:

Ao — Ao = P(a) +o(|a]®), as|a] =07,

for some i
P#0, P(a)=Plai,a2) = »_ajay ’a}
j=0

homogeneous polynomial of degree k. The detection of the exact value of all coefficients of the polynomial
(and hence the sharp asymptotics along any direction) is studied in the subsequent paper [2]. In the
asymptotic analysis along any direction performed in [2], we will not be able to construct explicitly the
limit profile of blown-up eigenfunctions as done in the present paper for directions of nodal lines; such
difficulty is treated in [2] studying the dependence of the limit profile on the position of the pole and
the symmetry /periodicity properties of the homogeneous polynomial P. The complete classification of
homogeneous k-degree polynomials with such periodicity/symmetry invariances (which will allow us to
determine explicitly the polynomial P in [2]) requires the result of Theorem as a crucial ingredient;
in particular the information that the limit in is strictly positive is the starting point in [2], since
it provides, besides the exact degree of the polynomial P, informations about locations of zeroes and
factorization.

The paper is organized as follows. Sections [2| and [3| are devoted to set up the framework, recall some
useful known facts, introduce notation and prove some basic inequalities. Section [4] contains the construc-
tion of a suitable limit profile which will be used to describe the limit of the blowed-up sequence. The
study of the behavior of such a blow-up sequence can proceed thanks to the Almgren-type monotonicity
argument which is presented in section [5} Via the energy estimates proved within section [ in section [f]
we present some preliminary upper and lower bounds for the difference Ag — A, relying on the well-known
minimax characterization for eigenvalues. Section [7] contains energy estimates of the difference between
approximating and limit eigenfunctions which are used to identify the limit profile in the sharp blow-up
analysis which is performed in section [8] Finally, section [9] concludes the proof of Theorem

1.1. Notation and review of known formulas. We list below some notation used throughout the
paper.

For r >0 and a € R?, D,.(a) = {x € R? : |z — a| < r} denotes the disk of center a and radius r.
For all » > 0, D, = D,(a) denotes the disk of center 0 and radius r.

For every complex number z € C, Z denotes its complex conjugate.

For z € C, MRe z denotes its real part and Jm z its imaginary part.

For R > 0, let np : R? — R be a smooth cut-off function such that

(14) nr=01in Dpjy, nr=1onR?*\Dr, 0<nrp<1 and |Vng|<4/RinR*

e For every b = (by,by) € R?, we denote as 6, the function 6, : R? \ {b} — [0, 27) defined as
arctan %:Z?, if x1 > by, o > b,
%7 ifxlzblv l'2>b2,
(15) Op(x1,22) = { 7+ arctan f‘,fi:%, if z1 < by,
%7’(’, ifxlzbl, $2<b2,

27 + arctan %7 if 11 > by, xo < bo,

so that 0,(b + r(cost,sint)) =t for all » > 0 and ¢ € [0, 27).
We also recall the Courant-Fisher minimaz characterization of eigenvalues which will be used to estimate
the eigenvalue variation in section @ The Rayleigh quotient associated to the eigenvalue problem (E,) is

" Jo |GV + Ag)ul?dx
R, : Hé’ (2,C) > R, Rq(u) =2 I ul? dx
Q
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It is well-known from classical spectral theory that the eigenvalues Af < A§ < --- < )\? < ... of problem
(E,) admit the following variational characterization:
(16) Af :min{ III;%){(O} Rq(u) : F is a subspace of Hy*(Q,C) with dim F = j} .

ue

2. PRELIMINARIES

2.1. Diamagnetic and Hardy inequalities. We recall from [23] (see also [I3] Lemma 3.1 and Remark
3.2]) the following Hardy type inequality

2
(17) / G + Ag)ul2 dz > 1/ @l 4,
Dr(a) 4 Jp,(a) |7 — a

which holds for all 7 > 0, a € R? and u € HY*(D,.(a),C).
We also recall the well-known diamagnetic inequality (see e.g. [25] or [I3, Lemma A.1] for a proof): if
a€Qandue H*(Q,C), then

(18) [V|u|(z)] < |iVu(z) + Aq(z)u(x)| for a.e. z € Q.

2.2. Approximating eigenfunctions. For all a € Q, let ¢, € Hé’a(Q,(C) \ {0} be an eigenfunction of
problem (F,|) associated to the eigenvalue A,, i.e. solving

(19) (ZV + Aa)z% = Aa‘paa in Q,
pa =0, on 0,
such that
(20) / lpa(2)|?dz =1 and / e%(e(’*a“)(m)%(z)sﬁo(m) dz is a positive real number,
Q Q

where g is as in (4H5) and 6,, 0, are defined in ; we observe that, given an eigenfunction v of (E,)
associated to A,, to obtain an eigenfunction ¢, satisfying the normalization conditions it is enough

to consider ([, [v|*> dz)~'e"’v where ¥ = arg [(fQ |2 dz) ([, ei(gﬂ_ea)/Qv%da?)_l] Using (3), @), (19),
, and standard elliptic estimates, it is easy to prove that

(21) Yo — wo in HY(Q,C) and in CZ (2 {0},C)

and

(22) [ 169+ 4@ dz > [ 169 + Aa)eo(a)]? do
Q Q

as a — 0. We notice that and imply that

(23) (iV 4 Ag)pa — (iV + Ag)po  in L*(Q,C).

2.3. Local asymptotics of eigenfunctions. We recall from [I3] the description of the asymptotics
at the singularity of solutions to elliptic equations with Aharonov-Bohm potentials. In the case of
Aharonov-Bohm potentials with circulation %, such asymptotics is described in terms of eigenvalues and
eigenfunctions of the following operator £ acting on 27-periodic functions

(24) Lp = ="+ + iw.

It is easy to verify that the eigenvalues of £ are {% :7€N, jis odd}; moreover each eigenvalue % has
multiplicity 2 and an L?((0, 27), C)-orthonormal basis of the eigenspace associated to the eigenvalue é
is formed by the functions

0= 2 cos (20, () = Chgin (2
(25) Pi(t) = NG cos <2t>, Pa(t) = N sin (275).
Proposition 2.1 ([13], Theorem 1.3). Let Q C R? be a bounded open set, b € Q and h € L (Q2\ {0}, C)

loc

such that |h(z)| = O(|z|>*%) as |z| = 0 for some e > 0. Letu € H“* (2, C) be a nontrivial weak solution
to

(26) (iV 4 Ap)*u = hu, in Q,

i.e.

(27) /(zVu + Apu) - (iVo + Apv) dz = / huwdz  for all v € HY'(Q,C).
Q Q
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Then there exists an odd j € N such that

o (16 + Au(a)* — (Reh(@)) [u@)]*) de
(28) hm+ D- (%) ( i 2 ) ;
r—0 faD,\(b) |’U,| ds

Furthermore,
(29) Tﬁj/Qu(b—F T‘(COSt,SiIlt)) — \/Eﬁjﬂ(b, u, h)iﬁjJ(i) + ﬁ,@jg(b,ﬂ, h)lﬁjg(lﬁ) m Ol’a([O,Qﬂ'],C)

as T — 0% for any a € (0,1), where, for £ =1,2,
1 2m j
30) Bje(b,u,h) = —/ [(R‘2u b+ R(cost,sint))
(30) =/ (
R ; ; . 1+4
+/ h(b+ s(cost,smt))y(b—i— s(cost,sint)) (sl_i‘ _ st ) ds]

0 J R

for all R > 0 such that {x € R? : |x — b| < R} C Q and (B;,1(b,u, h), Bj2(b,u, h)) # (0,0).

From Proposition we have that, under assumption (@,
r*k/2<po(r(cos t,sint)) — eiz (ﬁk,l((), ©0, Ao) COS (gt) + Br.2(0, v0, Ag) sin (%t))
in C*(]0,27],C) as r — 07 for any o € (0,1) with

(31) (5k,1(0,900a/\0)75k,2(0,5007)\0)) 7£ (070)7

where B (0,0, Ao) are defined as in . We observe that, from [16] (see also [8, Lemma 2.3]), the
function e~#2 gy (r(cost,sint)) is a multiple of a real-valued function and therefore

(32) either S .1(0, o, \g) = 0 or % is real.
Since and hold, the function

t = Br,1(0,90, o) cos (5t) + Br,2(0, o, Ao) sin (5¢)

has exactly k zeroes ti,ta,...,tx in [0,27). Up to a change of coordinates in R?, it is not restrictive to
assume that 0 € {t1,ta,..., ¢}, i.e. to assume that
(33) ﬂk,1(07 ©o, >‘0) = 0.

Remark 2.2. Condition can be interpreted as a suitable change of the cartesian coordinate system
(21, 72) in R?: we rotate the axes in such a way that the positive x;-axis is tangent to one of the k nodal
lines of g ending at 0 (see [28, Theorem 1.5] for the description of nodal lines of eigenfunctions near
the pole). It is easy to verify that, besides the alignment of a nodal line of ¢ along the z;-axis, such
a change of coordinates has also the effect of rotating the vector (8x,1(0, o, Xo), Bk,2(0, o, Xo)); hence,
since in the asymptotics stated in Theorem only the norm of such a vector is involved, it is enough
to prove the theorem for S 1(0, ¢o, Ag) = 0.

By Proposition under conditions and , Br,2(0, po, Ag) # 0 can be also characterized as

T r—0t

1 2m .
(34) Br,2(0, 90, o) = — lim r_k/Q/ ¢o(r(cost,sint))e™"= sin (£t) dt.
0

2.4. Fourier coefficients of angular components of solutions. Let U C R? be an open set, b € U
and u € H'*(U,C) be a weak solution (in the sense of (27)) to the problem

(35) (iV 4 Ap)?u = Mu, inU, for some \ € R,

If b € R? is of the form b = (|b|,0), letting ) as in , we have that 6, € C>(R?\ ([|b], +00) x {0}) and
V0, can be extended to be in C=(R?\ {b}) with V(%2) = 4, in R?\ {b}.

Let b = (|b],0) € U and let u € H"*(U,C) be a weak solution to (35). Let R > 0 be such that R > |b|
and D C U. For £ € {1,2} and j odd natural number we define, for all r € (|b], R),

27 . . e
(36) vjo(r) = / u(r(cost,sint))e 20 (reostrsing) oizy), (1) dt.
0

We note that {v;¢(r)};¢ are the Fourier coefficients of the function

t — u(r(cost,sin t))e_%(eb_eo)(r cost,rsint)
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with respect to the orthonormal basis of the space of periodic-L2((0, 27), C) functions given in . Since
the function w = ue~2% solves —Aw = \w in R\ {(x1,0) : 21 > |b|} and jumps to its opposite across
the crack {(z1,0) : 1 > |b|} (as well as its derivative g—;;), we have that v;, is a solution to the equation

; J N’ J
(37) — (rlﬂ (r_fvj,g) ) = )\rl*‘fvj,g, in (0], R).

3. POINCARE TYPE INEQUALITIES

In this section we establish some Poincaré type inequalities uniformly with respect to varying poles.

Lemma 3.1 (Poincaré inequality). Let r > 0 and a € D,. For any u € HY%(Q,C) the following
inequality holds true
1 1
(38) / uf? da < 7/ fuf? ds+/ (Y + Ag)uf® da.
D oD, D

r2 r

r r

Proof. From the Divergence Theorem, the Young inequality, and the diamagnetic inequality , it
follows that

2 ) 1 o 1 ) 2
=N . |u|” dx . /DT (dlv(|u| x) — 2|u|V|u| x) dx . /6DT |u|” ds - /DT |ulV|u| - z dz

1 1
< f/ fuf? ds+/ \V|u|\2dx+—2/ luf? do
T Jop, D, ™ JD.
1 1
< f/ fuf? ds+/ \(iV—i—Aa)uFdx—i——z/ uf? da
T JoD, D ™™ Jb

r T

which yields the conclusion. O
For every b € Dy we define

= e g ApJGTE AL da
b= .

2
vEH:;(ODl,C) fc’?Dl |’U| ds

Lemma 3.2. For every b € Dy, the infimum my defined in is attained and my > 0.

Proof. Let v, be a minimizing sequence such that
/ lun|? dz =1 and / iV + Ap)vn|® = my + 0(1)  as n — oo.
0D; D,

Then, by Lemma we have that {v, }n,en is bounded in H'*(D;, C). Hence there exists a subsequence
vp, converging to some v € H%*(Dy, C) weakly in H'*(D;,C) and (by compactness of the trace embed-
ding H'*(Dy,C) < L?(0Dy,C)) strongly in L2(9Dy,C). Strong convergence in L?(0D;,C) implies that
faDl \v|2 dr = 1, so that v # 0; moreover weak lower semicontinuity of the H*(D;,C)-norm implies
that v attains mg.

If, by contradiction, my = 0, then, via the diamagnetic inequality ,

0:/ IV + Ay)ol? dazz/ IV [l da
Dy Dy

which implies that [v| = C, being C > 0 a real constant. Since v # 0, we have that C' > 0 and then

fDl % dx = 400, thus contradicting the fact that v € H*(D;,C). O
Lemma 3.3. Letr >0 and a € D,.. Then
(40) %/ lul® ds < / |V + Ag)ul? dz for all u € HY*(D,,C),

r 8D, D,

with Mg as in with b= ¢

Proof. Tt follows from and a standard dilation argument. |

Lemma 3.4. The function b — my, with my defined in (39), is continuous in D1. Moreover mgy = %

Proof. The proof that my is continuous follows by classical compactness arguments; we omit it for the
sake of brevity and refer to [I] for details. To prove that my = %, we observe that from Lemma the
infimum myg is attained by a function vg € HY%(Dy,C) \ {0}, which weakly solves (iV + Ag)?vg = 0 in
D; in the sense of (27). From [13] Lemma 5.4], we have that

r [ |V + Ao)vol* da

N(vg,r) :=
( 0 ) faDT |'U0|2 ds

is monotone nondecreasing w.r.t. r;
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furthermore (see Proposition ) lim, o+ N(vo,7) > % Hence mg = N(vp,1) > % It is easy to verify
that, letting o(r cost, rsint) = r/2¢i2 sin(5), we have that 0 € H"(Dy,C) and
1 Jp, [V + Ag)i|* da
5 = ) > mo,
faDl |0|” ds
thus implying my = % The proof is thereby complete. O

As a direct consequence of Lemma [3.4] we obtain the following result which provides a Poincaré type
inequality with a control on the best constant which is uniform with respect to the variation of the pole.

Corollary 3.5. For any 0 € (0, %), there exists some sufficiently large ps > 1 such that my > % — 6 for
every b € Dy with |b] < ;Tla

Proof. The proof is a straightforward consequence of Lemma O

4. LIMIT PROFILE

In the present section we construct the profile which will be used to describe the limit of blowed-up
sequences of eigenfunctions with poles approaching 0 along the half-line tangent to a nodal line of .

Lemma 4.1. For every odd natural number k there exists ®), € Jpoo H'(D},) (where DY, denotes the
half-disk {(z1,22) € Dg(0) : 22 > 0}) such that &, — ¢, € DE?(RZ),

—A®, =0, in Ri in a distributional sense,
&, =0 on s, and % =0 on ORZ \ s, where v = (0,—1) is the outer normal unit vector on OR?.
Proof. The function wy, € P?(R2) minimizing the functional J, defined in (9 weakly solves

—Aw, =0, inR3%,

(41) wy, = 0, on s,
%:f%, on OR? \ s.
Taking
(42) Q) = Y + wi
we reach the conclusion. |

From now on, with a little abuse of notation, ®; will denote the even extension of the function ®; in
the previous Lemma on the whole R?, i.e. ®y(z1,—22) = ®x(x1,22). Let us now set e = (1,0) and
define, for every odd natural number k,

(43) U, = i T Dy,

where 0, is as in (with b = e) and @y, is the extension (even in x3) of the function in Lemma
We denote as H;;(R?, C) the space of functions belonging to H*¢(D,,,C) for all r > 0, as D!*(R?)

the completion of C°(R? )\ s) with respect to the norm ( [y, [Vu|? dz)*/? and as DL?(R?) the completion
of C°(R?\ {e}) with respect to the norm ([g, |(iV + Ae)u|? dz)'/2.

Proposition 4.2. The functions ¥y defined in satisfies the following properties:

(44) Uy € HL°(R?,C);
(45) (iV + Ao)?T), =0 in R? in a weak H"®-sense;
46 iV 4+ A)(Wy — e%/2)|* dx < +o0;
(46) I(
R2
(47) eieeéw)wk = Ug(z) — eiee%m@/}k(x) =O(|z|7Y?), as|z| = +oc.

Proof. Statements (44H45)) follow by direct calculations together with the asymptotic expansion of solu-
tions to elliptic problems with cracks which is proved in [12] and which yields that ®;(e+r(cost,sint)) =
O(r*/?) as r — 0%, follows from Lemma 4.1{and direct calculations.
To prove , we write
Uy, = ei%ewk +v
where v = €1 (&), — ). We note that wy, = & — 1, € D-2(R2) and hence v € DL2(R2). Since wy,
weakly solves —Awy, = 0 in R? \ s, its Kelvin transform iy (z) = wk(ﬁ) weakly solves —Aw, = 0 in
Dy \ {(21,0) : 0 < x1 < 1} and vanishes on {(21,0) : 0 < 27 < 1}. From the asymptotics of solutions to
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elliptic problems with cracks proved in [12] it follows that |y (x)| = O(|x|'/?) as |x| — 0T, which yields

lwg (z)| = O(|z|~/?) as |z| — +oo. Therefore we have that

(48) [v(@)] = Ol ~1/?)  as [a] = +o0,

thus proving (47]). |
The following result establishes that Wy, is the unique function satisfying (44)), (45)), and (46

Proposition 4.3. If ® € Hllo’f(RQ) weakly satisfies

(49) (iV + Ao)?® =0, inR?,

and

(50) iV + Ao)(® — e2%h) [ < 400,
RZ

then ® = Wy, with Uy, being the function defined in .

Proof. Suppose that ® € Hﬁjj (R?) satisfies and (50). Then, in view of ([45)), the difference ¥ = ®—W},
weakly solves (iV + Ae)?¥ = 0 in R2. Moreover from and it follows that

(51) / |(iV + Ae) ¥ (z)[2dz < 400,
]RQ
which, in view of , implies that
¥ ()|
52 d .
(52) /Rz\x—e|2 T < +00

For R>1,let np : R? > R as in . Testing the equation for ¥ by (1 — nr)?¥ we obtain that
/ (1 —nRr)?|(iV + Ao)¥|? dx = 721'/ (1 —nR)¥(iV + Ae)¥ - Vg dx
R2

R2

1
<5 [0V AW o2 [ (WP (Tl de
R2 R2

which implies that
/ |(iV + Ao)¥[* dar < / (1= nr)?|(0V + Ae)¥[* dz < 4/ (V2 [Vng|? da
Drjo R2 R2

64 R+1) v
gj/ |\If|2dxg64#/ Ll
R Dgr\Dg/2 R Dr\Dg/2 |z — e

as R — +oo thanks to (52)). It follows that [5, |(iV + Ae)¥|? dz = 0 and then [, |z —e|72|¥(z)|? dz =0
in view of . Hence ¥ =0 in R2 and & = ¥y, O

The following lemma establishes a deep relation between the function ¥y and the constant my in .
Lemma 4.4. Let Uy be the function defined in . Then

27 . )
53 T — W, (cost, sint)e” 20e(costsint) gipy (kg g = émk
( 9 2

0

k
with my, as in .
Proof. Let wy be the function introduced in and , extended evenly in x5 to the whole R? (i.e.
wi (21, —22) = wg(z1, 22)); from we have that wy, is harmonic on R? \ so. Taking into account ,
, and , we have that
1 2m s . 2m L
- (7‘(’ - / Wy (cost,sint)e 20e(costsing) gipy (51) dt) = / wg(cost,sint)e* 2y o(t) dt = w(1)
VT 0 0

where w(r) := fo% wi(rcost, rsint)e’zyy o(t) dt. As observed in i, w(r) satisfies, for some C,, € C,
(r=*2w(r))" = Cor= 0+ for r > 1. Integrating the previous equation over (1,7) we obtain that

w(r) Cy 1

_ = —= - — > 1.
2 w(1) A <1 rk) , forallr>1

From it follows that w(r) = O(r—'/2) as r — 400, hence, letting 7 — +o0 in the previous identity,
we obtain that necessarily C,, = —kw(1) and then

(54) wr) =w@)r 2 () =—Zwl)r 27!, forallr>1.
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On the other hand,

’ _r 2 8wk
(55) =" [ Tk
Combining (54)) and (55)) we obtain that
2 8wk
)= ——~ —— Yy ds.
(56) w) == [ S

Multiplying the equation —Awy, = 0 (which is weakly satisfied in R? \ sq) by 3, and integrating by parts
on D \ sp, we obtain that

8wk

(57) Yeds = | Vwy - Vi dz,

D4 v D1
whereas multiplying —As;, = 0 (which is weakly satisfied in R? \ sq) by wy and integrating by parts on
Dy \ sp we obtain that

1
(58) / ;”“ wy ds 72/ aerk(xl,O)wk(xl,O)dzl:/ Vwy - Vi, de.
8D1 v o Oz2 D,

Collecting and we have that
a 0 Lo
/ wkw ds —/ ﬂw;cds—Q +wk(m1,0)wk(m1,0)d$1.
oD, op, 0

Ov v o Oxo
Since [, P iy ds = Mw(l) now reads w(l) = — fl 68*;2* (z1,0) wg(z1,0) doy and
thus
0
w(1) k\f/ (;j;k (z1,0) wi(x1,0) dxy.
Letting my, as in 7 in view of (|11) we conclude that w(1) = —ﬁm;€7 thus proving . |

5. MONOTONICITY FORMULA AND ENERGY ESTIMATES FOR BLOW-UP SEQUENCES

In this section we prove some energy estimates for eigenfunctions using an adaption of the Almgren
monotonicity argument inspired by [27, Section 5] and [13].

Definition 5.1. Let A € R, b € R?, and u € H"*(D,,,C). For any r > |b|, we define the Almgren-type
frequency function as
E(u,r, A\, Ap)
N b b A? 'A - b)
O 10X

where

1
E(u,r, A\, Ap) :/ |V + Ap)u|® dz — )\/ lu> dz, H(u,r) = 7/ lu? ds.
D, D, T JoD.,

When we study the quotient N = E/H for any magnetic eigenfunction, we find several specific relations
to hold true. We are interested in the derivative of such a quotient, since it provides some information
about the possible vanishing behavior of eigenfunctions near the pole of the magnetic potential.

Forall 1 <j <nganda €, let ¢} € Hy*(€2,C)\ {0} be an eigenfunction of problem (E,]) associated
to the eigenvalue A7, i.e. solving

(59) {(iV + A)207 = X%, in Q,
¢j =0, on 052,
such that
(60) /Q|<p;(m)|2da::1 and /Qg;;(x)mdxzo AL
For j = ngy, we choose
(61) Pro = Pa

with ¢, as in 7. We observe that, since a € {2 — A} admits a continuous extension on Q as
proved in [8] Theorem 1.1], we have that
(62) A= sup A} € (0,+00).

a€c)
1<j<no

Lemma 5.2.
(i) There exists Ry € (0, (5A)~/2) such that Dg, C Q and, if |a| < Ro, H(p$,7r) >0 for allr € (|al, Ro)
and 1 < j <ng.
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(ii) There exist Cy > 0 and ag € (0,Ro) such that H(¢§,Ro) > Cy for all a with |a| < ag and
1<j < ng.

Proof. To prove (i) we argue by contradiction and assume that, for all n sufficiently large, there exist
an € Q with |a,| < L, 7, € (Jan|, ), and j, € {1,...,n0} such that H(p$",r,) = 0, i.c. ¢ir =0 on
0D, . Testing with ¢§" and integrating on D, , in view of Lemma 1 we obtain

0= [ (167 + A0 )P = Xszloi P do = (1= ard) [ |GV + Aa, )i P
D D

Tn Tn

Since 7, — 0, for n large 1 —Ar2 > 0 and hence the above inequality yields / p, |V +A4,,)ei" 2dr =0.
Lemma (3.1f then implies that [[¢}" [|g1.en(p,, c) = 0 and hence ¢i" = 0 in D, . From the unique
continuatlon principle (see [13] Corollary l 4]) we conclude that ¢j" = =0 in Q, a contradlctlon

To prove (ii), we argue by contradiction and assume that, for all n sufficiently large, there exist an e
with a, — 0 and j,, € {1,...,n0} such that lim, (goj ,Ro) = 0. Letting ¢, := <pj and A\, := )\?:,
using and it is easy to prove that, along a subsequence, \,, — )\00 for some jy € {l . o}
and @, — ¢ weakly in H!(Q, C) for some ¢ € Hy°(Q,C) satisfying (iV + Ag)2p = A9 ¢ in a weak sense
in Q and [, lo(z)]? dz = 1. In particular ¢ # 0. Furthermore, by compactness of the trace embedding
H(Dg,,C) < L?*(0Dg,,C), we have that

1
- | 7 2 _ 2
0= lm = /BDR lpn, " ds = R / |<p| ds,

which implies that ¢ = 0 on dDpg,. Testing (iV + Ag)%p = /\0 ,» with ¢ and integrating on Dpg,, in view
of Lemma [3.1] we obtain

0= / (|(N + Ag)pl® — A§0|<p|2) de > (1 - AR%)/ |(iV + Ao)p|* da.
Dr, Dk,

Since 1 — AR2 > 0, we deduce that fDn |(iV + Ag)p|? dz = 0. Lemma then implies that ¢ = 0 in
-0

Dpg,. From the unique continuation principle (see [13, Corollary 1.4]) we conclude that ¢ = 0 in €, thus
giving rise to a contradiction. ([l

We notice that, thanks to Lemma the function r — N(¢§,7,Af, A,) is well defined in (|a|, Ro).

Lemma 5.3. Let1 < j <ng, a €Q, and ] € Hol’a(Q,(C) be a solution to 7. Thenr w— H(p§,7)
is smooth in (|a|, Ro) and

2
d’l” (Lp]) >_ E(@]ara)‘j7A)

Proof. Since the proof is similar to that of [27, Lemma 5.2], we omit it. O

Lemma 5.4. For 6 € (0,1/4), let us be as in Corollary 3.8, Let ro < Ry and j € {1,...,no}. If
uslal < <re < 1o and ¢4 is a solution to ., then

H((p}’,rg) S o3 (7,2>125
H(g§,m) — 1 '

Proof. Combining Lemmawith Lemma and Corollary we obtain that, for every usla| < r < Ry,

%2/ ’apﬂz dx < (1—}—122(;)/ |(iV+Aa)g0ﬂ2 dm<5/ ‘(iV—I—Aa)go?lQ dx.
D, D

[d

From above, Lemma Lemma recalling that Ry < (5A)~1/2, for every usla| < r < ro we have that

d 2 , 2 ‘
TH(g5r) = 7/ (169 + )" = X5 ¢5]*) do = = (1 - 5Ar2)/ |6V + Aq)pt | da
D, r

r

3

2 2 1

> = (1 - 5Ar2) ma/rH(05,7) > — (1 - 5Ar2) (2 - 5) H(pf,7),
r T

so that, in view of Lemma

1-26 (5—106)7"21_25

d a
—log H(.r) > —5Ar.

Integrating between r; and ro we obtain the desired inequality. O
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Lemma 5.5. For 1 < j <mng and a € ), let pj € H&’G(Q,(C) be a solution to 7. Then, for all
la| < < Ry, we have that

d a a - a 2 2 a a a 2
(63) aE(¢j7r7)‘j7Aa):2/ |(iV + Aq)g$ - v ds—; (Mj +)‘j/ %] dx)
oD, D,
where v(x) = ﬁ denotes the unit normal vector to 0D, and
a 1 2 2
(64) Mj = Z (al(ca,j — daJ) + QCLQCa’jda,j),

with a = (a1,az), caj = VThi1(a,¢§,A}), and do; = /7P 2(a, 95, A}), being Bi,1(a, 9§, A]) and
Bi1,2(a, 93, A}) the coefficients defined in . Furthermore, letting us as in Corollary

M
H(p$, pslal) = 7
for some Cs > 0 independent of a.
Proof. Since the proof is similar to that of [27, Lemmas 5.6, 5.7, 5.8, 5.9], we omit it. O

Lemma 5.6. For1 < j <nganda € Q, let 9§ € Hy*(€2,C) be a solution to B9 -(60). Let s € (0,1/4),
s as in C’omllary and 7o < Ry. Then there exists c5r, > 0 such that, for all p > ps, |a| < %0,
plal <r <rg, and 1 < j < nyg,

Ar2 Arg?
(65) TR (N (7, X, Aa) +1) < €TV (N (570, A, Au) 1) + 0%
and
(66) N(pf,m, A, Aa) +1 > 0.

Proof. By direct computations and Schwarz inequality (see [27, Lemma 5.11]), we obtain that, for all
la| <7 < Ro,
AN (9%, 7, X, A,)
dr
. u u . . W =2 g2
%(( Jop, |GV + Aa)g§ - v2 ds) ( [op, 12517 ds) = (i [op, iV + Aa)i] - v &5 ds) )

H2(p%,7)
2

2 2
__ 2 (peane a > (1M e e
TH(tp‘},r)( J“JL’%’ d””)— FH (g7 (' 4 [

Via Lemmas and we estimate, for all psla| < r < ro,
2|3 My H(g palal) (|a|)”6
- = - - < constg | — ,
H((pjv’r) H((p]a/u5|a|) H(QOJ,’I’) r

where consts > 0 is independent of a (but depends on ). On the other hand, by Lemma we have
that, for all usla| < r < ro,

’@?’2 dac).

r

1—A’I"2 2
16 < H ) + B g A
D’V‘

r

which implies

274 2Ar
J a2 g, <« AT a . \a ,

rH (e, 1)
Therefore follows. Moreover, for all pusla] < r < 7o,
dN(QD?,T’, A?aAa) |a|1_25 2Ar a a
o > —consts 255 T 1 Ao (N((,ojm7 Ay Aa) + 1)

which is read as
2 ‘a|1—26

Ar2 ! __Ar
(elATOQ (N(QD?,T, )‘?7 Aa) + 1)) e 1At > _ConSt6ﬂ~
Letting r € [us|al, 7o) and integrating from r to 1o we obtain

Ar2 Arg? _Aro®consty (o] \' 2
e1-Arg? (N((p}’,r A% AL) + 1) < g1-Arg? (N((p?,ro, Ay Aa) + 1) + e1-Ar0? T a5\ .
- r

) 77

Arg?

_4ro
Letting p> s, |a] < %7 pla| <7 <ro, and taking cs ., = e1=A0” S22 the above estimates yields (65). O
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A first consequence of Lemma [5.6]is the following estimate of the Almgren quotient of ¢, at radii of
size |a| in terms of the order of vanishing of ¢ at the pole.

Lemma 5.7. Fora € Q, let ¢, € Hy*(Q,C) be a solution to @-@) For every § € (0,1/4) there exist
rs >0 and Ks > ps > 0 such that, if p > Ky, |a| < %, and plal <1 < rs, then N(oq,m, A, Aa) < §+6,

Proof. Let p > 0 be sufficiently small so that p(2+ £ + 2) < 1. Let § € (0,1). Since, in view of
Proposition [2.1]
k
lim N Ao, Ag) = =
T_I:’(I)lJr (@07T7 0 0) 2’
2

Arg
we can choose rs > 0 sufficiently small so that rs < min{RO,(5A)_1/2}, el=As? < 1+ dp, and
N(SD()»T(% )\03 AO) < g + 5p
Since, in view of and 7 N(pa,rs5,Xay Aa) = N(wo,7s5, Ao, Aa) as |a| — 0, there exists some
ags > 0 such that if |a| < as then N(pq, 75, Ao, Aa) < g + dp. From Lemma it follows that, if p > us,
la| <min{%, as}, and pla| < r <rs, then

Cs,r
N(parr, Aay Aa) +1 < (1+0p)(5 +0p 1) + 7755
k k Cor k1 Cs.r
—14 5(2 f 52) SN WS S
+2—|- p+p2+p +M1_25 +2+2 +M1_25
1

If K5 > max {,ug, (ZC‘;“‘)I*”,T(;/O[(;}, we conclude that, if u > Kj, |a] < %, and pla] < r < rs, then
N(pa, 7y Ay Ag) < % + §, thus concluding the proof. O

A second consequence of Lemma is the following estimate of the energy of eigenfunctions ¢} in
disks of radius of order |al.

Lemma 5.8. For1<j <nganda € Q, let v € H&’G(Q,(C) be a solution to 7. Let Ry be as in

Lemma . For every § € (0,1/4), there exist Ks > 1 and Cs > 0 such that, for all w> Ks, a € Q with
|a\<%, and 1 < j < ng,

(67) | lesias < Cutula* >,
ulal

(68) /D (Y + A0)@?? de < Cy(pulal) =,
ulal

(69) /D 1022 di < Ci(ylal)>2.

wlal

Proof. Let us fix § € (0,1/4) and let s be as in Corollary [3.5] From Lemma [5.6]it follows that, if > s
and |a| < % then, for all 1 < j < nyg,

a a ARD22 a a Cs5,.Ro
(70) N(¢§, plal, NS, Aa) < er=270% (N (g, Ro, Af, Ag) + 1) + Ml’_% -1
s
From (59)), 7 and (62) we deduce that
(71) / 16V + Ag)¢2|? dxg/ | + Aa)g?]? dz = A2 < A,
DRO Q

therefore, in view of Lemma if |a| < o,
| a|2 _\a a2
(72) N (%, Ro, A%, Ay) = fDRo ‘(Zv+Aa)§0j‘ dx )\J fDRO |<pJ| dx - A
52405 Ajs H(@?’RO) = o

Combining and we obtain that, if 4 > K; with K5 > max{us, Ro/ao} and |a| < %, then

J,

for some positive consts > 0 depending on §. Hence, from Lemma [3.1

(1= AaP) [ [0V + Ad) P do = AQulalH(E. plal) < consts (2. pla)
mlal

|(iV+Aa)<p?|2d:cf/\?/ |<p§|2d:c < consts H (¢, p1]al)

wlal wlal

which implies

(73) / (Y + Ad)gl | do <
D

wlal

ARZ + consts

AR H (¢}, plal).
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From Lemma it follows that, if > Kj and |a| < %,

1-26
5 2 mia a
(74) H(p5, ulal) < €317 (IL') H(¢§. Ro).

On the other hand, Lemma Corollary and yield
2A

1
75 H(% Ry) < / iV + A, dr <
(75) (5 Ro) < o [ 160+ A do < 155

Estimate (67) follows combining ((74)), and ., whereas ebtlmate . ) follows from (73| ., and ([75) .
Finally, (69) can be deduced from (67]), and Lemma

We blow-up the family of elgenfunctlons {¢a} with a = (]a|,0) as |a|] = 0, i.e. we introduce the family
of functions

. ¢a(lalz)
(76) Pa(®) 1= ————=, a = (|a],0) = [ale,
H(pa, Kslal)
with K5 being as in Lemma [5.7] for some fixed § € (0,1/4). We observe that ¢, weakly solves
(77) (iV + Ae)?Pa = |a*NaPa, in F}”Q ={z € R?: |a|lz € Q},
and

1 / o
— [P |”ds = 1.
Ks Jop,, "

In section [§] we will prove that ¢, converges to a limit profile which is a multiple of the function ¥y
introduced in . To this aim, the energy estimates below will play a crucial role.

Theorem 5.9. For all R > Kj,
(79) the family of functions {¢a : a = |ale, |a| < %} is bounded in H"*(Dg,C).
In particular, for all R > Ky,

(78)

(30) [ 169+ Al de = O, Ksla),as ol - 0,
DRja)

(51) [ leaPde=O(alt(pu: Kslal). as la] = 0%,

(82) / |Lpa|2dx = O(|a|2H(goa,K5\a|)), as |a| = ot.
Dpgja

Proof. For § € (0,1/4) fixed, let rs > 0 and K5 > ps be as in Lemma so that Lemma yields

k
(83) N(pa Rlal, Aas Ag) < 5 496, for all R > Kj and |a] < %.

Let us observe that, by a standard change of variables in the integrals and ,
) 2 2
Rla| (fp,,. GV + A)@al do = Ao [, [¢al’ do)
2
fBDRM |pal” ds

Ry 67 + ARl e —aNe ) g
Jops |2al” ds -2

Thus, via Corollary Lemma and , for all R > Ks and |a] < % there holds

(84) N(¢a, Rlal, Aa, Aa) =

(85) (1—5Ar§)/ 6V + A2 do < (1= Alal R2(1+me/R)>/ GV + Ao)Bal? da
DR DR
) N . _ k H(¢q, Rla|) [k
< iV + Ae azdx—a2)\a/ o?dr < H(@a,R) (= +0) = =22V (2 4 5).
169+ Al e e [ o @B (5+5) = gt (5
From Lemmas and there holds that, if R > K and |a| < %

1 d
H(pq,r) dr

hence integration between Ks|a| and R|a| yields

k+26

2 2(k
(56) ) = 2N (ur A0, A < 2 (5 +6) for all Kool < < s
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From and we obtain that, if R > K; and |a| < 7%,

) 1 k R k+26
. ~ oL [k R .
(58) 169+ agfas < (5+0) (1)
Moreover yields
R k420
89 / ¢a2ds<R<> .
(89) aDRI \ e

Estimates and together with Lemma imply (79). To conclude, we observe that yields
, imply , while follows from (80]) and (81) in view of Lemma |

6. PRELIMINARY ESTIMATES FOR THE DIFFERENCE OF EIGENVALUES

To obtain both upper and lower estimates for the eigenvalue variation Ao — A,, we will use the following
technical lemma.

Lemma 6.1. For every a = (|a|,0) € Q let us consider a quadratic form

ng
Qa:C"™ =R, Qalz1,22,...,25,) = Z M;n(a)zizn,

j,n=1
with M ,,(a) € C such that M; ,(a) = M, j(a). Let us assume that there exist o € (0,+00), a — o(a) € R

with o(a) > 0 and o(a) = O(|a|*®) as |a| — 07, and a — p(a) € R with p(a) = O(1) as |a| — 0T, such
that the coefficients M, (a) satisfy the following conditions:

(90) Mg o (@) = o(a)p(a),
(91) for all j < ng M; j(a) — M; as |a| — 0T for some M; € R, M; <0,
(92) for all j < ng Mjn,(a) = My, i(a) = O(|a|*\/o(a)) as |a| = 0T,
(93) for all j,n < ng with j #n M;,(a) = O(|a|**) as |a] = 07,
(94) there exists M € N such that |a| ) = o(c(a)) as |a| — 0F.
Then
max Qa(2) = o(a)(u(a) +o(1)) as |a] — 0T,
llzll=1
where ||2]] = [|(21, 22, 2ng) |l = (372 12512) 2.

Proof. For every a let z(a) = (z1(a), ..., 2n,(a)) € C™ be such that

(95) lo(@l =1 and Qu(s(a)) = max Qu(2)
llz]l=1
From
(96) Mugng(a) < Mjn(a)z(a)zn(a)
J,n=1

it follows that

(1= J2ng (@) (Magng (@) = max My (@) < 3 Mjn(a)z(a)2a(a)

Jj<no i
i#n
and hence, by and (91)),
no
(97) (1= e (@F) (= s M+ o(0) < 3 M (@) (0)2 o)
o=
J#n
as |a| = 07. Due to (92), and the assumption o(a) = O(|a|?®) we then have
(98) 1 — |20, (a)]* = O(|a]*®) as |a| — 0.

Since 1 — |2, (a)* = 32, ., [2j(a)]?, we also have that

(99) |2j(a)|* = O(|a**), for all j < no,
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as |a] = 07. We claim that

(100) > Mjn(@)2(a)z(a) = o(o(a))
g

as |a| = 0F. To prove ([100) it is enough to show that

(101) { for every sequence a; = |a;|e — 0 there exists a subsequence a;, such that

> jin Mjn(ar,)zj(ar,)zn(ar,) = o(o(ay,)) as p — +oo.

Let a; = |a;le — 0. From (92)), (93), (09), and the assumption o(a) = O(|a|?**) we deduce that

> M a(a)zi(a)za(a)

J,n=1
j#n
no—1 no—1 no—1
= 3" Mja(a)zj(a)za(a) + Y Mjny(a)zj(a)zng (@) + Y My, ;(a)zn,(a)z;(a)
j,}r;:l j=1 j=1
] n

= O(|a[**) + O(la]**\/o(a)) = O(la]**)
as a = a;, | = oo. If |a;|3* = o(c(a;)), we have proved claim (101)); if not, there holds
(102) o(a) = O(Jaf*)
along a subsequence of a; (still denoted as a;). Hence estimate is improved as
(103) |zj(a)|? = O(la*™), for all j < ny,

along the subsequence. We now perform a recursive argument, improving the previous estimates step by
step. Proceeding as above and exploiting the improved estimates (102)) and (103]), together with and
([93)), along the subsequence we have

> Mjn(a)zj(a)zn(a)

jn=1
j#n
no —1 no —1 no —1
= Y Mjn(@)z(a)zn(a) + D Mjng(0)2(a)20(a) + D Mug.j(a)2n,(a)z(a)
jn=1 j=1 j=1
j#n

= 0(laf**) + 0(|al**\/o(a)) = O(|a|**).

If |a|** = o(o(a)) along the subsequence, we have proved claim (101]); if not, up to passing to a subsequence
again, there holds

(104) o(a) = O(la[*®).
Hence we improve estimate ((103)) as
(105) 2 (@) = O(la|*®),  for all j < ng,

along the subsequence. Repeating the above argument M times with M as in , we obtain that, along
a subsequence,

D~ Mjn(@)z(a)zn(a) = O(lal* ) = o(a(a),
e

thus proving (101)) and then (100]).
From @ and ([100)), it follows that

(106) |2no(@)> = 1+ o(o(a)) and |z;(a)]* = o(o(a)) for all j < ny,
as |a| — 0T. From (00), (91), (95), , and (106]), we obtain the conclusion. O
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6.1. Upper bound for )\yj — )\,;: the Rayleigh quotient for \;g. We are now going to estimate the
Rayleigh quotient for Ag. Let R > 2. Being Ry as in Lemma [5.2] for every a = (|a[,0) with |a| < Ro/R
we define the functions v; g , as follows:

ext ;
_ ) Y%Ra IDQ\DR\a\v i1
Vj Ra = int . J=4...,No,
v in D

j,R,a’ Rla|»

where
(107) v;f’%’a = e%(eﬂ_ga)go? in Q\ Dg|q|,

with ¢f as in — and 6,,0, as in (notice that e2(90=94) ig gmooth in O \ DRjq|), sO that it

solves
(ZV + AO)?U‘?%,G = )\(jl ;IFf{ @ in Q \ DR\a\v
U;:);%’a — eg(eo_ea)gpj on 8(9 \ DR|a|)7

whereas v;"ﬁ{ . is the unique solution to the minimization problem

(108) [ 16V + do)elth (o) do
DRjal

= min {/D |(iV + Ao)u(z)?dz : u € HY*(Dpjq),C), u = e%(GO—GG)go? on BDR|a} ,
Rla|
so that it solves

(109) int

iV + A0)2 ;n}% . =0, in DR\a|7
V'R0 = ez (00— ea)go‘}, on 0Dg|q|-
It is easy to verify that
(110) dim (span{vl,R,a7 e 7Un0,R,a}) = ny.

Lemma 6.2. For 6 € (0,1/4), let Ks > 1 be as in Lemma 8§ and let Ry be as in Lemma , For all
R > max{2, K5}, a = (|al,0) € Q with |a| < %, and 1 < j < ng, let vé"}m be defined in (108])-(109)).
Then there exists Cs > 0 (depending only on §) such that

(111) / GV + Aot 2 dx < Ci(Rlal)*~2,
DRgja|

(112) / vt |2 ds < Cs(Rla))>2,
9Dpa|

(113) / itk |2 dz < Cs(Rla])* 2.
DRgjal

Proof. Let 14 r be as in . From (108) it follows that

a) [V A @P o< [0V Aa) (0 ) (@)
DRja| DRjal

2
‘dx

i — a 2 a
<o 6V + A (A @) de 2 [ @ PITa) P da
DRja|\D RJa| Drja|

32
§2/ iV + Aa)y | dz + R?|a |2/ |05 ()|? da,
DR\a\\D% al

which yields (111]) in view of estimates ([68]) and . Estimate 1-) follows directly from and .
We finally conclude by observing that ((113)) follows from Lemma and estimates and (112).

For all R > 2 and a = (]a|,0) € Q with |a| < RO , we define
,Uint alz
(115) ZR(z) .= Lﬂl)
H(pa, Kslal)
Lemma 6.3. For all R > 2,

(116) the family of functions {ZF : a = |ale,|a| < 22} is bounded in H"°(Dg,C).
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In particular, for all R > 2,

(117) / |V + Aoy |2 dx = O(H (g, Kslal)), as [a] — 0*,
DRja)
(118) / [0 Pde = O(|a|H(ga, Kslal)), as |a] = 0%,
9DRja|
(119) /D O g oPdz = O(|a|*H (¢a, Kslal)), as |a] — 0%.
Rlal

Proof. We notice that ZF solves

7R =303, on dDp,
and, by the Dirichlet principle and Theorem [5.9

(120) / |(iV+Ao)Zf'|2dx§/

Dr Dr

{(iV +A0)2ZR =0, in Dg

s 2
(iV + Ap) (77R eé(@o—ae)¢a)) ‘ dr

<2 [ |VaePlgaPdo+2 [ |GV + Adg. e < O,
Dg Dr\Dg/2

for some Cr > 0 and nr being as in (14). Then, taking into account , we obtain (116)). Estimate
(117) follows directly from (120) and (115) while (118) is a direct consequence of the definition of v} ,
([

(see (109)) and (BI). (TI9) follows from (I17)) and (L18) in view of Lemma [3.1}

Lemma 6.4. There exists R > 2 such that for all R > R and a = (|a|,0) € Q with |a| < o

)\O_)\a
_— < a
Hpa Bslal) = 17
where
(121) fR(a):/ |(N+Ao)zf\2dx—/ iV + Ao)Gal? dz + o(1), as |a] — 0%,
Dr Dr

fr(a) =0(1), asla| — 0",
with @o and ZI defined in and (L15) respectively.

Proof. Let K5 > 1 be as in Lemma and fix R > max{2, f((;}.
In with j = ng and a = 0, we choose F as the space of functions {9; g ,} which result from
{vj.r.a} by a Gram-Schmidt process, that is
~ @ a
Bj Ra = — J R, 7
| (Q,0)

where Uy R,q := Ung,R,q and

Z f v]RaUZRadx

ija: Vj,R,a — U[R,a forj:I,...,nofl.

=j+1 || Ve RaHL2(Q C)
For notation convenience we also set

are Jo ViRl R0 dx
5 T

“647R7a||%2(9’c) .
From , Lemmas and and an induction argument, il follows that

(122) I 200 =1+0(al*™) and d;"" = O(|a|*"*) for £ # j
as |a| — 07. Furthermore, from , , and we deduce that
(123) g o220y = om0 malliaey = 1+ O(al2H (gas Kslal))  as la = 07,
and
(124) d = 0(|al?~°\/H(pa, Ksla])) as Ja| — 0%, for all j < no.
From and it follows that
2
Ao < o 1233{)66"0/ (tV + Ayp) (Za]vj Ra) dx.

52 layl?=1
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Hence
no
a,R —
(125) Ao — A < max E m;’, 00,
(Q1,eeey0m,)EC™O A
S50, Jag =1 DT
where

mq’R = / (Zv + Ao)flj7R7a . (Zv + Ao)ﬁn,R,a dr — )\aajna
Q

2,

with d;, = 1if j =n and d;, = 0 if j # n. We will show that the quadratic form with coefficients m‘;:R

satisfies the assumptions of Lemma with o(a) = H(pa, Ksla|), p(a) = fr(a) and a = 1 — 4.

To this aim, we first observe that integration of over the interval (Kjs|al,7s5) yields

126 H (g, Ksla) > Cslal*20, i o] < ~2.
¥ K
)

for some Cs5 > 0 independent of a, thus yielding if M is such that 1+ & — (24 M)5 > k + 20.
Estimate implies that
(127) H(ga, Kslal) = O(lal'™)  as |a| = 0.

From ([123), (115)), (76), Theorem 5.9} and Lemma [6.3| we deduce that

. in 2 . 2
)\a(l - HUnO,R,a||%2(Q7c)) i (fDR\aI |(Zv + Ao)vngt,R,a| dr — fDR‘a‘ |(’LV + Aa)90a| dx)

HUNO’R’G||%2(97C) ||Un0,R,a||%2(Q)(C)

= tgn i) [ 167+ a0ziPac- [
Dr

Dr

(128) m®% =

10,10

|(iV + Ae)@al? dx + 0(1)) ,

as |a| — 0T, thus yielding (90). From [8, Theorem 1.1] (which ensures that X} — A9 as |a| — 0), (122),
, , and Lemmas and we obtain that, if j < ny,

1 )
m?”JR =Xt A — / ’(zV + Aa)<p?|2 dx + / ‘(ZV + Ag)v}%ﬂ’Q dx
HULR,a”Lz(Q,c) DRjal Dpjal
2
1 . R,a ~
+ W / (zV + Ao) ( Z dZ,}' Ug)R)a) dx
i.Rall2(0,0) /o >

2
Re ( / (iV + Ao)vj 5.0 - (iV + Ap) ( > df‘fﬁgﬂﬂ) da:)
Q

H@J‘,R,aHQL?(Q,C) >5

=(A) = Xo) +o(1) aslal —0.

so that is satisfied. From , , 7 , , Lemmas and and 7 it follows

that, for all j < ng,

~ N R
195,701l 2 (©2,0) |0, Roall L2 (2,0) 5

- / (69 + Ao - GV Aoy — (Y + Ad)g - GV + A ) do
DRja)

- /Q (1 + A0) (Y- a5 0una) - GV + A0)ng e do = O(Jalt =/ H (pa, Kolal) )
>3]

Hence, by (122 and (123)), we have that

mit =0 (a0 VH(pa, Kolal)) and mfs = m$i = 0(Jaf* =/ H{pq, Kslal))

Jsmo no,J J,no
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as |a| — 07, thus yielding . From ([122)), , , and Lemmas and we deduce that, for all
jyn < ng with j # n,

. . R
195, 7,allL2(.0) |00, Roall L2 (2,0) M5

:/ (66 + A0t -V + Ay, — (Y + A)gs -V + 404 ) da
DRja)

+ / (zV + AO)(Z dg}-a'f}g’R’a) . (zV + Ao)( Z dﬁ’s’{)h,R,a) dx
Q

>3 h>n

~ 69+ A (T ) T F Aonade

>3

/(N A0y e (Y + A0) (3 A2t pa) do = O(lal'2) as [a] 0.
Q2 h>n

Hence, in view of ((122)),
a,R _

mi, (\a|1725) as |a|] — 0,

so that also is verified. Then we can apply Lemma to deduce that

(at,...

PO o [2=1
as |a| — 0T, which, in view of (125), yields ﬁ < fr(a) with fg as in (121f). We notice that, from
Theorem and Lemma for all R > R, fr(a) = O(1) as |a| — 0. The proof is now complete. [J

Z mj Pt = H(pa, Ksla)) |(iV + Ao) ZE|? dx — [(iV 4 Ae)Pa|? dz + o(1)
Oé-,, )EC”O Dpgr Dgr

J,n=1

As a direct consequence of Lemma [6.4] the following corollary holds.
Corollary 6.5. There exists positive constants C*,r* > 0 such that, for all a = (|al,0) € Q with |a| < *,
/\0 - )\a S C*H(@Q,K(;laD.

6.2. Lower bound for A\ — )\,: the Rayleigh quotient for \,. Being R, as in Lemma [5.2] for every
R > 2 and a = (Ja],0) € Q with |a] < Ro/R we define the functions w; g , as

weet in Q\ D
JR,a> Rlal>» .
'U.)j,Rva_{ Jrena ol j=1,.

. .., No
int 3 ’ ) )
WiRa 0 DRjal;

where w§% , := 65(0“790)@? in Q\ Dpgjq|, with ¢ as in (59)-(61)) with a = 0, so that it solves

J ]Ra’

(iV + Aa)*wi o = Nw§Th o 10 Q\ Dpja,
west | = ¢3(0u=00) 0 on (2 \ Dgja)),

whereas w’”é ., is the unique solution to the minimization problem

/ 6V + Agywinh  (2)? dx = min / (Y + A)u(@)? de,
DRja| u€H"*(DRja),C) Dgja|
u:e%(9a790)¢? on ODRg|q
thus solving (iV + Aa)2w§j‘1§7a = 0in Dpyq with w;’ﬁ = 6%(9(1760)@? on 0Dp|q|- It is easy to verify that
(129) dim (span{wl)R)a, ... ,wno’R’a}) = ng.

As a direct consequence of [I3, Theorem 1.3] (see also Proposition , there exists some K > 0 such
that, for every R > 2, a = (|a],0) € Q with |a] < £ and 1 < j < ny,

<wm/‘ Q0 ds < R(R|a])?. / KN+%wwmsRmm,/'|@ﬁmsmmw?
ODR|q| Dpja Drja|

Arguing as in the proof of Lemma [6.2| (using estimates instead of . . we obtain (up to
enlarging the constant K) that, for every R > 2, a = (|al, 0 ) € Q with |a| < B8 and 1 < j < ng,

(131) /D GV + Agywint | dx < K(Rla]),
Rla|

(132) / it 12 ds < K(Rlal)?, / i 12 di < K(Rjal)*.
ODRja) Drja
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For all R > 2 and a = (Ja|,0) € 2 with |a| < %, we define

int

(13) Uf(e) = el 0y = 2D

Under assumptions (6) and (33), from [I3, Theorem 1.3 and Lemma 6.1] we have that
(134) W, — Be3%yy,  as |a] — 0

in H*Y(Dg, C) for every R > 1, where 9, is defined in (8) and

(135) B := Br,2(0, %0, Ao)

with ,Bkg(o,(po,/\o) as in and .

We also denote as wg the unique solution to the minimization problem

/ |(iV+Ae)wgr(2)|? dr = min {/ iV + Ag)u(z)|?dx : u € H"*(Dg,C), u=e3%; on 8DR} )
DR DR
which then solves

(136) {(iv + Ao)*wr =0, in Dp,

wr = 2%y, on ODp.
By the Dirichlet principle and (134)), we have that

/ |(iV + Ae)(US — ﬁwR)|2 dx < / (iV + Ae)(nRe%wefeo)(Wa - 56%90%) ‘2 dx
Dr

Dr
i 2 . i 2
<2 [ (O Wa - et fde v [ Y+ A0 (W - gt Pz = of1)
Dpg DRr\Dg/>
as |a| = 0T, where ng : R? — R is a smooth cut-off function as in (14)). Hence, for all R > 2,
(137) UR & Bwg, in H®(Dg,C),

as |a| — 0, where 3 is defined in ((135)).
Lemma 6.6. For everyr > 1, wg — ¥y in H¢(D,,C) as R — +oo0.

Proof. Let r > 2. For every R > r, by the Dirichlet Principle, (46]), and we have that, letting nr as
in ,

/ iV + Ae)(wr — ) (2)[* d < / (1Y + Ae)(r (e3P — 1)) ()] do
D, Dr

; 32
= 2/ (iV + Ao) (2% gy — V)P da + = le2%%qpy, — Wy dz = o(1)
R2\Dp/2 R Dgr\Dg/2

as R — +o0. 0

Lemma 6.7. Fora = (|a|,0) € Q, let g, € Hy*(92,C) solve @-@2 and o € Hy*(Q, C) be a solution to
. If and (6)) hold and is satisfied, then, for all R > R and a = (|al,0) € £, ’\T;‘;\“ > gr(a)
where lim|q |0 gr(a) = i|B[* kR, with B as in (138) and

(138) Fp = /8D (e—éee(iv + Awg v — (iV )iy, - V)z/)k ds

being Yy as in .

Proof. In with j = ny we choose F' as the space of functions {w; g o} which result from {w; r .} by
a Gram—Schmidt process, that is

Wj,R,a

71)‘7‘7]{7(1 = ~ ) 17"'7”07
10, 7,allL2(0,c)
where Wy, R.a = Wny,R,a)
no —_—
; . ; Wj,R,aWe, R,a d
Wj Ra = W) Ra — Z cgf’wg,p;,a forj=1,...,n9 — 1, CE}G = Jo e
t=j+1 loe.r.allZ2 )
From (60, (130), and (132)) and an induction argument, it follows that
. R, .
(139) 5 malaa = 1+0(af) and e = O(laf®) for ¢ £ j

as |a| = 0T. Furthermore, from (60)), (I34)), and (137) we deduce that

(140) o, R.allZ20.0) = 1Wno, RallZ2 ) = 1+ O(laf*™))  as la] — 07,
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and
(141) o O(|a|%+§)) as |a| — 0T, for all j < no.

no,J

From and (129) it follows that

Ao < max /
((le 7“710)6C"0 Q
anl 1% |2—1

dx.

(iV+ A, (Za]wjga>

Hence

142 N g < _
( ) = w“?'“%i?)é@"ﬂ Z p O[]a

2
2?21 laj|"=1

where p?”f = [o((V4+A)W) ra (iV + Ag)n, k.o dz—No0;n. By ([133), ([134), (137), (140), and integration
by parts we obtain that

Ao(1 = lwne,rall72(0.c)) . lal® ([, |GV + A) UL dx — [}, |(iV + Ag)W,|? dx)

||wn0,R,a||2L2(Q7(c) Hw’ﬂO;R;a||i2(Q,C)
S / (9 + AjwnP do— [ [T0 da -+ o(1)) = ~ilal5 (i -+ o(D)
DR Dr

as |a| — 0, with Zg as in . From -, and ( -, we have that, for all j < ny,

1 )
p;;jR =X+ [ A - / |(iV + A0)¢§?|2 dz + / |(iV + Aa)w;zgaf dx
||wJ,R,a||L2(Q)(C) Drjaq) DRja|

2
1
+A—/ ZV+A ( C’-a’UA}(Ra)
||wj7R7a||%2(Q,(C) Z b

2 @~
Re (/(ZV + Ag)wj pq - (IV+ Aa)( E cf;- we,R,a> dil?)
Q

>3

j,n=1

a,R _
p’no,no -

dx

195,70l 22 q,c)
= ()\? —Xo) +0o(1) aslal —0.
From (130)), (131)), (134), (137, and (141)) it follows that, for all j < ng,

. . R
ij, , (Q,C) ||wno,R,a||L2(97C)p;,no

= / (6 + Aaywh o GV + A0 g = (Y + A0}l - GV + Ao)po ) da
Dral

/ (tV + Aa) (Zce]‘wéRa> -(iV+Aa)wn0,R,adx=O<|a|%) as |a| — 0,

>3
and hence, in view of (139)) and (140)),
R NG 5%
P = vl = 0(lal ") s la| — 0.
In a similar way, we have that, for all j,n < ng with j # n, p;lf = O(la]) as |a] — 0.

Then the quadratic form with coefficients p?”f’ satisfies the assumptions of Lemmaﬂ with o(a) = |a|”
and a = % Then Lemma implies that

0o
max S piasan = ol (< il81%Rn +o(1)), asla| -0,

(Q15eees0m)EC™O

27'191 ‘o‘j‘2:1

j,n=1

which, in view of ( , yields 2= ,f‘“ > gr(a) where lim, 0 gr(a) = i|8|?Fr. The proof is thereby
|al |al
complete. O

Lemma 6.8. Let ir be as in (138]). Then limg_ 1o Rr = dimy, with my, as in .
Proof. We claim that
(143) kr =ikvm(vV/m—€(1)) +0o(1), as R— +oo,

where

2T )
(144) &(r) = / e2bo=be)(reostrsint)\y, (- cost, rsint)iyo(t) dt, > 1.
0
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To prove claim ([143)), we note that, according to and , the function vy defined as
2m ) ) o
vgr(r) ::/ wR(r(cost,sint))e_%ee(’"COSt’Tsmt)e’%wk,g(t) dt, rel[l,R],
0

satisfies, for some cg € C, (r*k/QvR(r))' = -t in (1, R). Integrating the previous equation over (1,7)
we obtain

1
(145) r R 20R(r) — vr(1) = % (1 - r’“)’ for all r € (1, R].
We notice that, in view of and ,
(146) Y (rcost,rsint) = \/7?7”“/267%%&2(0, for all t € (0,27) and r > 0.

Since (136) and (T46) imply that vg(R) = /7 R¥/2, from (145) we deduce that cp = k R{?—il(ﬁ—vg(l))

and then

R*(y/m —vr(1)) 1 R*/T — vr(1) R*(y/T — vr(1))
_ k)2 k/2 _ k)2 —k/2
vr(r) = r*Pon(1) + P =S (1 - G ) = M TP
for all r € (1, R]. By differentiation of the previous identity, we obtain that

k R:1

(147) v (R) ((R’“ 1)V — QUR(l)).

T2 RF-1

On the other hand, writing vg as vr(r) = + [, wp(z)e=20e=00)() (0, (x)) ds(x), differentiating
and using ([146)), we obtain that

1 k i
148 va(r) = f—r*k?/ e" 2% (iV + Ae)wp - vy, ds.
(148) w0y =zt h [ iy 1A
Combination of (147) and (148) yields
. : k
(149) / e He(iV + AJwg vy ds = YT B ((R* + Vv — 208(1)).
dDg 2 RF-1
Moreover, directly gives
(150) / (i) Yy, - viby, ds = kiR
aDg 2
From ((149)), (150)), and (138]), it follows that
__ikym RF 5 k..
RR =~ T _1<(R —|—1)\f—2UR(1)) - §zR 0
_ikym R* . k
== Rk_1<\/7rR + /7 — 20R(1) — VA(R 71))
ik/mRF ik/TRF
= 72(1{"’ — 1) (2\/77'7 2’UR(1)) = 7Rk 1 (\/E* UR(I)).

Since Lemma and (144)) imply that limpg 4o vr(1) = £(1), we obtain claim (143]). The conclusion
follows by combining (143]) and the identity

(151) N %mb

which results from Lemma [£.4] (]

Combining Lemma [6.7] and Lemma we deduce the following result.

Proposition 6.9. For a = (|a|,0) € Q, let ¢, € Hy"(Q,C) solve @-@) and gy € Hy°(Q,C) be a
solution to . If and @ hold and 1s satisfied, then

2o — Aa
liminf 22—2% > —4|8>m; > 0

lal®
with B as in (135) and my as in (10H11)).

Remark 6.10. As a consequence of Proposition we have that, if a €  approaches 0 along the
half-line tangent to a nodal line of eigenfunctions associated to the simple eigenvalue \g, then A\, < Ag.

Combining Corollarywith Propositionwe obtain the following upper/lower estimates for A\g—A,.
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Proposition 6.11. For a = (|al,0) = |ale € Q, let ¢, € Hy*(Q,C) solve @-@ and ¢y € HY°(Q,C)
be a solution to . Let , @, and hold. Then there exists a positive constant C* > 0 such
that

—4|BPmg a|*(1 + o(1)) < Ao — Ao < C* H(pa, Kslal), as |a] — 0,
with B as in (135) and my < 0 as in (10H11)).

7. ENERGY ESTIMATES

To obtain our main result, we aim at proving that the difference of the eigenvalues A\g — A, is estimated
even from above by the rate |a|¥, i.e. we have to determine the exact asymptotic behavior of the
normalization term in , ie. of /H(pa, Ksla|]). To this purpose, in this section we obtain some
preliminary energy estimates of the difference between approximating and limit eigenfunctions after
blow-up, based on the invertibility of the differential of the function F' defined below.

Throughout this section, we will treat the space Hé’O(Q7(C) defined in as a real Hilbert space
endowed with the scalar product

(u, v)Hl,g(Q c) = Ne (/ (tV + Ag)u - iV + Ag)v dm),
oRET Q

which induces on Hy°(2, C) the norm

1/2
lull 000y = ( /Q ](iV+A0)u|2dx)

which is equivalent to the norm (see Lemma [3.1). To emphasize the fact that here Hy"(2,C) is
meant as a vector space over R we denote it as H&’(Q, C). We will denote as (H&’Dg(ﬁ, C))* the real dual
space of H&’&(Q, C).

Let us consider the function

(152) F:Cx Hyg(Q,C) — R x R x (Hy(,C))*
() = (1101210 0.c) = 0 Im( o w@ada), (¥ + 400 = Ap),
where (iV + Ag)%¢ — Ay € (Hé”]g(ﬂ, C))* acts as

(Héy,ug(g,c))*«iv + Ag)2p — Ao, u> = Re (fQ(ZV + Ao)gp - (iV + Ag)udz — A, @ﬂdm)

Hyp(92,0)
for all ¢ € Hé,’]}%(ﬂa C). In (152)) C is also meant as a vector space over R. From and it follows
that F(Aﬂa <)00) = (07070)

Lemma 7.1. Under assumptions , and , the function F defined in (152)) is Fréchet-differentiable
at (Mo, o) and its Fréchet-differential dF (Ao, o) € L(Cx H&ﬁg(Q, C),RxRx (Hé”H%(Q, C))*) is invertible.

Proof. By direct calculations it is easy to verify that F' is Fréchet-differentiable at (Ao, ¢o) and
dF (Mo, po)(\, @) = <2 Re (fg(iv + Ag)po - IV + Ag)p da:) ,Im ([ @0 da) , (iV 4 Ag)*p — Aop — )\goo)

for every (A, ¢) € C x H&’Hg(Q,C).

It remains to prove that dF(\g, ¢g) : C x H&}%(Q,C) - R xR x (Héy’H%(QL(C)* is invertible. To this
aim, by exploiting the compactness of the map T : H&}%(Q,(C) — (H&]%(Q,(C))*7 u = Aou, it is easy
to prove that, if R : (Hé”]g(Q, C)* — Hé:ﬂ%(Q, C) is the Riesz isomorphism and Z denotes the standard
identification of R x R onto C, then the operator (Z x R) o dF (Ao, o) € L(C x H&’Dg(ﬂ)) is a compact
perturbation of the identity. Indeed, since by definition

oy IV + Ag)?o, U>H1,0(Q) = NRe (iV 4+ Ag)p - (iV + Ag)udz ) = (¢, 'U:)HI,O(Q o)
o,R 0,R Q 0,R\*%

we have that R((iV + Ag)%¢ — Xow — Apo) = ¢ — R(Aow) — R(Apo), being R(Aoy) the image of ¢
by a compact operator (composition of the Riesz isomorphism and the compact operator T'), as well as
R(Apg). Therefore, from the Fredholm alternative, dF' (Ao, o) is invertible if and only if it is injective.
So, to conclude the proof, it is enough to prove that ker(dF (A, o)) = {0,0}. Let (A, p) € Cx Héy’ﬂg(Q, C)
be such that

(153) Re (fQ(ZV + Ao)po - (iV + Ao)npda:) =0, Jm([,¢Podr) =0, (iV 4+ A0)% 0 — Ao — Apo = 0.
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The last equation in (153) means that Re (fQ ((iV + Ag)p - i1V + Ag)u — Aol — Apor) dx) =0, for all

u € H&’Hg(Q,C). Plugging u = ¢y and u = tpg into the previous identity and recalling and , we
obtain Re\ = 0 and JmA = 0, respectively. Then the last equation in becomes (iV+Ag)%p—Aop = 0
in (Hé,’H%(Q, C))*, which, by assumption (3], implies that ¢ = (a+i8)¢o for some a, 3 € R. The first and
the second equation in imply a = 0 and 8 = 0, respectively, so that ¢ = 0. Then we conclude that
the only element in the kernel of dF (o, ¢o) is (0,0) € C x H&”&(Q, C). O

Theorem 7.2. For every R > 2 and a = (|a],0) € Q with |a| < Ro/R and Ry being as in Lemma[5.3,
let vq € Hé’a(Q,C) solve @-@, ©o € Hé’O(Q,(C) be a solution to satisfying , @, and ,
and Un, R,q be as in (see also and (108)). Then ||vny,r,a — (pOHHé’O(Q,C) = O(W)
as |a| — 0% for every R > 2, with K; as in Lemmal[5.7 for some fized 5 € (0,1/4).

Proof. Let R > 2. We first notice that v,, ra — o in Hy(Q,C) as |a| — 07. Indeed, recalling

definitions , (115)) and (133]), we have that

/ (69 + Ao)(vm 10 — 00)” dr = / e300 (1Y 4 A, )0 — (1Y + Ao)gol? de
Q Q

/2 2
H(pa, K. Y+ Ao) (28 - el —w, )|
+ H(pa, 5|“|)/DR VA2 = Trorma Vo) &
H(pa, K 50002 (1Y + Ao) A iy 1 agyw, )|
_ 3 e S ) .
(Soaa 5|a|)/DR e (Z + 9)90‘1 H(‘PWKJWD(Z + 0) a) xz
Estimate (127)) implies that H(p,, Ks|la|) = o(1) whereas Proposition [6.11| yields % = 0(1)
¢a.Ksla

as |a| = 0. Then Theorem Lemma (134), and imply that v,, g — @0 in Hy’(Q,C) as
la| — 0T. Therefore, from Lemma we have that

(154) F()\ayvng,R,a) = dF()\(), (PO)()\CL - )\0; Ung,R,a — 900) + 0(‘)\a - )\Ol + ||Un0,R,a - @O”Hé‘o(Q,C))

as |a|] = 0. In view of Lemma the operator dF(Ag, @) is invertible (and its inverse is continuous
by the Open Mapping Theorem), then ([154) implies that
[Aa = Aol + llvng, R0 = #oll 10 (a,0)
< [(dF (Ao, 800))71||L(RXRX(H;:D;j(ﬂ,c))*,cxH[}:g(Q,c))||F()\a7Uno,R,a)HRxRx(Hév“(Q))*(1 +o(1))

R

as |a| — 07. In order to prove the theorem, it remains to estimate the norm of

(155) F()‘avvno,R,a) = (g, fa, Wa)

= (”vno,R,a”Zé»O(Q’C) - )‘0, Jm (fQ Uno,R,a%dw) ) (Zv + A0)2vno,R,a - Aavno,R,a)

in R xR x (Hé’ﬂg(ﬂ))*. As far as «, is concerned, arguing as in (128)), we have that, in view of (76),
(115)), Theorem Lemma and Proposition

Qg = (/ |(1V + AO)“%%R@F dx — / |(iV + Ag)pal? dm) + (Aa — Ao)
DRja| Drjaj

— H(gu. Kslal) ( [ 169+ anzipa - [

[ v+ Ae>¢a|2dw) T (e — Do) = O(H (pu, Kslal))

as |a] — 0F. As far as (3, is concerned, by Theorem Lemma (134), and the normalization
condition required on ¢,, we have that

Ba = Tm / U:L%fR,a%dx 7/ 65(9076a)¢a%dx Jr/ 6%(9079a)80a%d$
DRja) DRja| Q

= \/H(goa,K5|a|)|a|§+2 Jm (/ ZEW, dx —/
Dr

e;(eo—ee)@amd‘r> = 0( H(spa’Ké‘aD)
Dgr
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as a| — 0T. Let njqr be a cut-off function as in (14). Then, for every ¢ € H}°(Q,C) we have that
77|a‘Re%(‘9“*00)<p € Hé’a(Q, C). Hence testing with n|a|Re%(9“’9°)go we obtain that

/ e%(eofea)ﬁv + Ao)pa - 1V + Ag)pdr — A, / e3(00=0a) Bz
Q\DRgjq Q\Dg|q|
=— / (iV + Ag)pq - (iV + Ag)p 77|a‘Re%(90—9a) dr — z/ (tV+ Ag)pa - vnla‘R@%(ao—aa) dx
DRja| DRjal
+ )\a ¢a77|a\R€%(90_0a)¢dx
DRja)
and hence, by Holder inequality and ,
(156) ‘ / 65(90_9“)(iv + A)pa - IV + Ag)p dr — )\a/ e2(Po=0a) By
Q\Dg|q| \DRg|q|

1/2 1/2
S <9</ |(iV+Aa)§0a|2d$) +2/\aa|R(/ |§0a2dm> ) H@HHS’O(Q,C)'
DRja) DRjal

By Holder inequality and , we also have that

(157) ‘ / (iV 4+ Ap)vp o - (iV + Ag)pda — Aq / it pda
DRja| Dpja)

1/2
< ([ 16+ Aopintnal?ds) (14 PR el cy
R|a|
From (156)), (I57), (80), (82), and (117) it follows that

Re </ (ZV + AO)vno,R,a . (zV + Ao)(p dr — )\a/ UnO,R,aCPd33> ‘
Q Q

||waH HL0 Q.C))* = sup
(H}2(2,0)) e o0

IIW\IHé,O(QYCfl

= O(\/H(goa,K5|a|)), as |a| — 07,

The proof is thereby complete. O

As a consequence of Theorem we obtain the following uniform energy estimate.

Theorem 7.3. For a = (|a|,0) € Q, let p, € Hy“(Q,C) solve (1942(}), o € Hy (2, C) be a solution to
@ satisfying , @, and , Pa be as in and W, as in (133)). Then, for every R > 2,

i k/2 2
(158) / (iV + Ae)(¢a(x) - eﬂee—@o)LWa) dr = O(1), as|a| — 0.
(19)\Dn H(pa dsla)
Proof. The proof follows directly from scaling and Theorem [7.2] O

8. BLOW-UP ANALYSIS

In this section we study the limit of the blow-up sequence introduced in .

Theorem 8.1. Fora = (|a|,0) € Q, let g, € Hy*(Q, C) solve (19420)) and po € Hy*(2, C) be a solution
to satisfying , and , Let ¢, and Ks be as in (76)), Br.2(0, 0, Ao) as in , and Uy, be
43)

the function defined in (43)). Then

) |a|*/? 1 K;
159 lim =
(159) lal=0+ \/H(pa, Ksla])  [Br.2(0, %0, Ao)| faDK5 |Wy|2ds

and

. Br,2(0, ¢o, Ao) K "
160 - : VU, aslal — 07,
1o o |Br,2(0, 90, Ao)| faDKé NARE k ]

in H“®(Dpg,C) for every R > 1, almost everywhere and in CZ_(R*\ {e},C).

Proof. From Theorem we know that the family of functions {@, : a = |ale,|a| < %} is bounded in

H'“%(Dg,C) for all R > K;. Furthermore, from Proposition [6.11 % =O0(1) asa| —0*. It
Patis|a
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follows that, for every sequence a, = (|an|,0) = |an|e with |a,| — 0, by a diagonal process there exist
ce[0,4+00), ® € H-°(R%,C), and a subsequence a,, such that

loc

|an |k/2

lim
e \/H Pan,> Kslan,|)

for every R > 1 and almost everywhere. We notice that ® % 0 since
1

— |®|2ds =1
K /6st

thanks to and the compactness of the trace embedding H'®(Dg;,,C) < L?(0Dg;,, C).
Multiplying by n € C°(R?\ {e},C) and integrating by parts, we have that, if |a| is sufficiently
small so that suppn C ﬁQ,

=c and @, = ® weakly in H®(Dg,C)

(161)

/ (iV + Ao)Ba - OV ¥ Aoy dz = Aaal? / Bofjd.
R2 R2

Along a = a,, with £ — oo, the left hand side converges to [p.(iV + A)® - (iV + Ae)n dx via the weak
HY¢(Dg, C)-convergence, where R > 1 is such that suppn C Dg, whereas, in view of , the right
hand side can be estimated as

Qn, |2 / @awﬁdx
RQ

thus proving that ® weakly solves
(162) (iV 4 Ac)?® =0, inR2

A <A

— ane

an, *|@an, 512D r.0) 1Ml L2R2 0) = Olan,|?)  as £ — oo,

Qn,

We now claim that the convergence of the subsequence ¢,,,, to ® is actually strong in H Le(Dpg,C) for
every R > 1. By classical elliptic estimates, we can easily prove that ¢, — ® in C>*(Dpg, \ Dg,,C)

for every 1 < Ry < Ry. Therefore, multiplying by ® equation (162) and integrating by parts in Dp for
R > 1, we obtain

(163)  —i / ((V + Ae)Pa,, V) Pa,, ds — —i /
ODRr 4]

as ¢ — co. On the other hand, multiplying equation by Pan, with ¢ large and integrating by parts
in D for R > 1, we obtain

(164) / (iV + Ao)@a,,, [Pz = A, |aw|2/ |Pa,, |2da — z/ ((iV + Ae)@a,, - V)P, ds.

Dgr Dr ODRr
From and (164), we obtain that [}, |(iV+Ae)@a,, [*dz — [}, |(iV + Ae)®|2dx as £ — oo, whereas
the compactness of the trace embedding H'°(Dg, C) < L*(0Dg,C) yields [, |Pa,,[*ds = [,p |®|2ds
as { — oo, so that, in view of Lemma we can conclude that ||g5an2||H1,e(DR,¢;) — H‘i)HHlve(DR,(C) as

(1Y + Ao)® - 1) ds = / (Y + Ad)B|2dz

R Dr

¢ — oo, and hence @,,, — ® strongly in HY“¢(Dg,C) for every R > 1 as desired.
Passing to the limit along a,, in (158) and recalling (134)), we obtain that

(165) /]R |6V + 40) ((a) - epet®eu)

Estimate (165) implies that ¢ > 0. Indeed, ¢ = 0 would imply that [5, |(iV + A )<i>|2dx < +oo and then,
arguing as in the proof of Proposition we could prove that P = 0, thus contradlctmg
Then, from , and Propos1t10n we deduce that necessarily o = cBYy Wlth \I/;.C being
n 4

2
dx < 4o00.

the function deﬁned i From (161 ) and the fact that ¢ is a positive real number, it follows that

1/2
c= m(m) . Hence we have that ¢, W(W) Uy, in HY¢(Dg, C) for every

|an4 |
VH@an, ,Ka\anzl)
on the sequence {a,}, nor on the subsequence {a,, }¢, we conclude that the above convergences hold as
la] — 0%, thus concluding the proof of the theorem (the convergence in C2_(R?\ {e},C) follows easily
from classical elliptic estimates). (]

R > 1 and a. e., and — ﬁ(%)l/? Since the above limits depend neither
8D

2
PRLTIEE

Theorem 8.2. Fora = (|a|,0) € Q, let ¢, € Hy*(Q, C) solve @-@) and o € Hy°(Q,C) be a solution
to satisfying , (@, and . Then

¢a(lalz)

+
a5/ = Br.2(0, 00, Ao) ¥k as [a| = 07,
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in H'*(Dg,C) for every R > 1, a.e. and in C2_(R?\{e},C), with Bk 2(0,¢0, \o) # 0 as in and ¥y,
being the function defined in .

Proof. 1t follows directly from convergences (159)) and (160)) established in Theorem (8.1 O

As a consequence of Theorem [8:1] we can prove convergence of the blow-up family of functions intro-
duced in (115]). Let zg be the unique solution to the minimization problem

|(iV+Ag)zr(x)|* dr = min {/ (iV + Ag)u(z)|?dz : u € HYO(Dg,C), u= e %0, on aDR} )
Dgr Dgr
which then solves

(166)

(zV + A0)2ZR =0, in Dg,
zp = e2@=0)Q,  on dDg.

Lemma 8.3. Under the same assumptions as in Theorem let Z be as in (115). Then, for all
R>2, ZE — vs52r in HYO(Dpg,C) as |a] — 0T, where

o 5]6,2(07 %0, )‘0) K5
1Bk,2(0, w0, Ao)| faDK5 |V |ds
Proof. We notice that Zf’ — YszR solves (iV + A0)2(Zf — sz) = 0 in Dp with boundary condition

ZE — yszp = e (00=0e) (Pa —v5¥%) on ODg. Then, by the Dirichlet principle and Theorem ,

/ |(iV+A0)(Zf—752R)|2daz§/
Dr

Dr

i

, 0o—0o) [ ~ 2
(iV + Ag) (nr e2®=0%)(p, — 75‘1%))‘ da

- 2 ) - 2
§2/ |V77R|2‘<,0a—75‘11k’ dx—|—2/ né‘(zV—l—Ae)(gpa—’yg‘llkﬂ dr = o(1)
Dgr Dr\Dgr/2

as |a| — 0T, where ng : R* — R is a smooth cut-off function as in (14)). Then, taking into account (17),
we conclude. 0

9. SHARP ASYMPTOTICS FOR CONVERGENCE OF EIGENVALUES

In view of the exact asymptotics of the term H(p,, Ks|al) established in (159)), Proposition [6.11|yields

a control of A\g — A, with |a|* both from above and below. To compute explicitly the limit of T;l,f‘“ it

remains to determine the limit of the function fr(a) in Lemmal6.4]as |a| — 0 and R — +oc.

Lemma 9.1. For all R > R and a = (|a],0) € Q with |a| < 8o et fr(a) be as in Lemma. Then

. Ks
(167) lim fgr(a)=—i—————kKng
ol Toow, 1045
where
(168) KR = / (67%00 (iV + Ag)zr - v — e 2% (iV + A) Wy, - V)G%GQ\Ides.
oDg

Furthermore imp_, 1 oo kp = —4imy, where my, is defined in .
Proof. We first observe that, by Theorem Lemma , and (|166)),
lim |(iV+A0)Zf|2dzf/ |(iV + Ao)@a|? dz

la]=0% Jpy Dr

- K5 ; 2 _ : T |2 _ —iK,
= g i (167 Aopsalt o= [ 169+ A i) = ot

with kg as in (168]). Hence (167) follows from (121). The computation of limg_, 1+~ kg is divided into
two steps.

Step 1. We claim that

(169) KR = / (e-%"’o (iV + Ag)zr - v — e~ 2% (iV + Aoy - u) i ds + o(1)
dDg

as R — oco. To prove the claim, we observe that

(170) KR = / (e_%go(iV+A0)ZR -V—e_%ee(iV+Ae)\IJk V)’gbk dS-i—Il(R)—l-IQ(R)
ODg
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where
Ry = [ (T e i) (9 + A (e - ) v
ODRr
I,(R) = / (e_%(eo_ee)\ITk — e_%goz/}k) (iV 4+ Ap) (ZR — eéeowk) -vds.
ODgr

Testing the equation (iV + Ae)2(e%‘gewk — \Ilk) = 0, which is satisfied in R? \ Dg, with the function
(e2%qpy, — Wy,) (1 — n2g)? (being nm2g as in (14))), we obtain that

Ii(R) = i/ﬂz?\D (iV + Ag) (3%, — Uy - (iV + Ae) (1 — nar)2(e3%4hy, — ) da

:i/ |(7;V+Ae)(6%93’¢k —\I!k)\2(l—n23)2dx
+ 2/ (1 — n2r) (6™ 2%y — Wp)(iV + Ae)(e%%k —Uy) - Vg dz,
R2\Dp

and hence, thanks to and ([47),

(171) I1(R)| sz/ \(zv+Ae)(ezewk—\Pk)l2dx+ﬁ/ le2%%qpy, — Wi |* dz — 0
R2\Dgr D>p\Dr

as R — +oo0. ‘
On the other hand, testing the equation (iV 4 Ag)?(e2®¢p — zr) = 0 in Dg with the function
R (65(90’96)\111c — 6500¢k) (with ng as in ) and using the Dirichlet Principle, we have that

[I>(R)| = ‘ - Z/ (iV + Ao) (2%t — zg) - (iV + AO)(UR(eé(Q"_Qe)‘I’k - 6%9"1/%)) dr
Dr

i i 2
< / (iV + Ao) (UR(65(9°799)‘I’1¢ - 65901/%)) ’ dx
Dg

o2
DR\D%

which, in view of (46) and estimate (47)), yields that I;(R) — 0 as R — 4o0. Claim (I69) then follows
recalling (170) and (171]).
Step 2. We claim that

(172) /8 N (7% + Ao)z v — €™ 1%(iV + A) W - v ) by ds = ikV/T(E(1) = V),

i 2 32 i
(09 + o) (W = edtoun, ) | do+ 23 |y — ey | do
R Dp\D g

where the function £ is defined in (144). From and , the function £ satisfies (7“_'“/25(7“))/ = %
in (1,+00), for some C¢ € C. Integrating the previous equation over (1,r) we obtain that

(173) rR2E(r) — €(1) = Ce <1 —~ 1) :

k rk

From and estimate it follows that

1 27
&(r) = ﬁ/o Ui (rcost,rsint)sin (5¢) dt

2 . i .

+/ 3 (00=0c)(rcost,rsint) (\I!k(rcost,rsint) - efae(mogt’rsmt)lbk(rcost,rsint))ilfk,Q(t) dt
0

= /arf?2 £ O(r=?), asr — 400,

and hence r=*/2¢(r) — /7 as r — +00. Letting 7 — oo in (73], this implies that % =/ —¢(1), so
that

(174) €)= VR 4R —VR), ) = VR (VR — gt s,
In particular, from we have that

(175) VT =€) = ark —rk2¢(r), for all 7 > 1,

whose substitution into yields

(176) £'(r) = ky/mrk/271 — g @, for all r > 1.
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On the other hand, writing & as £(r) = 1f8D7 e2(0=0) W, (1) Y. 2 (0o (z)) ds(z), differentiating and taking

into account . . and the fact that Ag - v = 0 on dD,., we obtain also that
1 i —_— ) i

(177) €' (r) = 7/ v(eﬂ@o*@e)\pk) v 2(0o(2)) ds = fir*%*/ e 2% (iV + Ao) Uy, - vy ds.
r JoD, NG 8D,

Combination of (176)) and (177)) yields that

; k
(178) / e” 2% (iV + Ae) Uy, - vy ds = in/mrt 2 (r) = iy/mrk/ 2T (k\/%r’“/Q—l -5 m)
oD, r
for all » > 1. According to and , the function (i defined as
2m
Cr(r):= / zg(rcost, rsint)y 2(t) dt
0

satisfies, for some Cr € C, (rik/QCR(r))/ = ?fk in (0,R). Integrating the previous equation over
(r,R) we obtain R~*/2Cg(R) — r—*/%Cg(r) = C;f’ (Tik — le), for all » € (0, R]. Since by Proposition
Cr(r) = O(r'/?) as r — 0%, we necessarily have Cr = 0. Hence

Cr(R) kCr(R) 4/a-
(179) Cr(r) = o/ k2 for all v € (0,R], (h(r) = W E r*/2=1 0 for all r € (0, R).
On the other hand, writing (g as (r(r x) Yr.2(00(x)) ds(x), differentiating and using (25)),

oD,

and Ag-v = 0 on OD,, we obtain that

1 - ;
(180) Calr) = - | Venvia(o(@) ds = —ﬁf%*/a e300 (i 4 Ag)zp - vy ds.

D, D

Combination of (179)) and (180]) yields that
— 200 (2 ( )
(181) /aD‘e 2 (ZV"‘A(J)ZR'VTZJ]C ds = \f Rk/2

for all r € (0, R]. From the boundary condition in (166|) it follows that {(R) = (g(R). Hence, collecting
(1178), (181), and (175 we obtain that

/ (e—%‘90 (iV + Ag)zp-v — e~ 3% (iV + Ae)\Ilk-u)wk ds = iky/m(E(R)R% —/TRY) = iky/m(£(1) — V/7),
oDg
thus proving claim (172]).

Combining (169)) with (172) we obtain that kg = ik\/7(£(1) —y/7)+0(1) as R — +oo. The conclusion
then follows recalling Lemma (see also (151)). O

We are now in position to prove our main result.
Proof of Theorem[1.2 From Proposition [6.1]] “ Lemma m Lemma and it follows that, for
every R > R,

~41Bk.2(0. 0o, o) *my; < lim inf Mo < llinlﬂsup MIRe < —ikg| Br,2(0, 90, M) .
al—07t

Letting R — 400, Lemma yields the conclusion (see Remark . (]
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