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Introduction

In many �elds it is interesting to study the interactions between time series of di�erent measures of
the same unobservable characteristic or between time series of the same characteristic measured on
di�erent subjects. To study the case in which these time series are non-negative, Engle and Gallo
(2006) introduced a multivariate version of the Multiplicative Error Model proposed by Engle
(2002). They called it �vector Multiplicative Error Model� (vMEM). In this model the vector of
observations is represented as the element-by-element product of a conditional mean vector and a
random innovation vector. The main limitation of the early approaches to the analysis of these
models was the necessity to use some restrictive hypotheses on the multidimensional distribution of
the random term. The main purpose of our research line is to overcome this issue using a Bayesian
Semiparametric approach: we model the multidimensional distribution of the innovation vector as
an in�nite location-scale mixture of multidimensional kernels with support on the positive orthant
obtaining a very �exible speci�cation that outperforms the classical ones both in terms of �tting and
in predictive power. Furthermore we introduce a very general speci�cation for the conditional mean
vector term so that the model could take into account several di�erent features of the observed time
series and could be used to model di�erent kind of data. We will in particular use this model on real
�nancial datasets to study the dynamic interactions among di�erent volatility proxies measured on
the same market index. Thanks to the general speci�cation of the conditional mean term and to
the �exibility of the distribution of the random term, we strongly believe that our model could be
a useful improvement for applications in which di�erent vMEMs are already used and maybe even
allow for new ones.
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Chapter 1

Random measures and Dirichlet

processes

1.1 Introduction

In this chapter we will give a brief introduction to the fundamentals of the branch of statistics
known as Bayesian nonparametrics. The results we are going to show are nowadays classical results
whose study started with the papers by Ferguson (1973) , Antoniak (1974), Cifarelli and Regazzini
(1979) and many other authors after them.

1.2 Random Measures

1.2.1 The space of all the probability measures

Let (X ,A ) be a Polish space with its Borel σ-�eld and let
(

[0, 1]
A
,W
)
be the space of probability

measures on (X ,A ) 1 equipped with the Borel σ-�eld generated by the weak topology. Before
introducing the concept of random probability measure we give, without proof, a result that should
explain why, although other measurability structures are possible, we choose exactly the W σ-�eld.

Proposition 1.1. Let X be Polish and W the Borel σ-�eld generated by the class of all open
subsets of [0, 1]

A
de�ned using the weak convergence. Then W is also:

1. The smallest σ-�eld on [0, 1]
A

making all the maps P 7→ P (A) measurable, ∀A ∈ A .

2. The smallest σ-�eld on [0, 1]
A

making all the maps P 7→ P (A) measurable, ∀A in a generator
A0 of A .

3. The smallest σ-�eld on [0, 1]
A

making all the maps P 7→
´
ψdP measurable, ∀ψ ∈ C0

b (X ) .

1Technically this is an abuse of notation, since [0, 1]A usually refers to the space of all the functions from
A to [0, 1] and instead here we are using that name for its subspace composed only by the σ-additive functions (i.e.
the measures).

2



CHAPTER 1. Random measures and Dirichlet processes

Consequently, a �nite measure on
(

[0, 1]
A
,W
)
is completely determined by the family of distribu-

tions induced by the maps P 7→ (P (A1) , . . . , P (Ak)), for A1, . . . , Ak ∈ A0 and k ∈ N and also by
the maps P 7→

´
ψdP for ψ ∈ C0

b (X ).
Furthermore, the space of probability measures on (X ,A ), equipped with the weak convergence

metric, is a Polish space.

1.2.2 De�nitions of random probability measure

Having equipped the space [0, 1]
A

of probability measures on (X ,A ) with the described σ-�eld W
we can give the following de�nition.

De�nition 1.1. Let (X ,A ) and
(

[0, 1]
A
,W
)
be as de�ned before. A random probability measure

(r.p.m.) on (X ,A ) is a random variable P from some probability space (Ω,F ,P) to the space of
all the probability measures on (X ,A ), namely:

P : (Ω,F ,P)→
(

[0, 1]
A
,W
)
.

The �rst point of Proposition 1.1 implies that a map P : (Ω,F ,P)→
(

[0, 1]
A
,W
)
is measurable

if and only if the induced �random probability� P (A) of every set A ∈ X , viewed as a function

from
(

[0, 1]
A
,W
)
to ([0, 1] ,B ([0, 1])), is measurable (i.e. it is a random variable). Thus a random

probability measure can be identi�ed with a random variable {P (A)}A∈A in the product space

[0, 1]
A
. Hence can be given also the subsequent de�nition:

De�nition 1.2. A random probability measure (r.p.m.) P on (X ,A ) is a stochastic process
indexed by the elements of the σ-�eld A s.t.

P : Ω×A → ([0, 1] ,B ([0, 1])) s.t.

1) ω 7→ P (ω,A) is W -measurable ∀A ∈ A

2) A 7→ P (ω,A) is a probability measure on (X ,A ) ∀ω ∈ Ω.

From this de�nition follows that a general way to construct a r.p.m. is to build a stochastic
process indexed by the elements of the σ-�eld A using Kolmogorov's extension theorem and next
show that this process can be realized within [0, 1]

A
, viewed as a subset of RA . Before starting the

description of the construction, let us report, without proof, the Kolmogorov's extension theorem.

Theorem 1.1. For every �nite subset S of an arbitrary set T let PS be a probability distribution
on RS. Then there exists a probability space (Ω,F ,P) and measurable maps Xt : Ω→ R such that
(Xt)t∈S ∼ PS for every �nite set S if and only if for every pair S′ ⊂ S of �nite subsets of T, PS′

is the marginal distribution of PS on RS′ .

From the theorem stems that to build our target stochastic process we can start de�ning the
joint distributions of the random variables (P (A1) , . . . , P (Ak)) for every k and every sequence
A1, . . . , Ak of measurable sets (these distributions are also sometimes called �marginals� or ��nite
dimensional laws� of the stochastic process). If the given distributions respect the consistency
condition required by Kolmogorov's theorem, it ensures that there exists a probability measure P

3



CHAPTER 1. Random measures and Dirichlet processes

on
(

[0, 1]
A
, σ
(
C A

))
that has them as �nite-dimensional laws. To ensure that the process we built

is a r.p.m. it is further necessary (but not su�cient) that

i)P (∅) = 1, P (X ) = 1 P− a.s.
ii)P (A1 ∩A2) = P (A1) + P (A2) P− a.s., ∀A1, A2 ∈ A s.t. A1 ∩A2 = ∅

(1.2.1)

These requirements are not su�cient to guarantee that our process is a r.p.m., since the null set
in which ii) does not hold depends in general on the pair of measurable, disjoint sets {A1, A2}
considered and A has countably many disjoint elements (so a direct extension of ii) to σ-additivity
is not possible).

Anyway we can overcome the problem proving the existence of a so called �mean measure�, i.e.
a map µ : A → R s.t.

µ (A) = E [P (A)] .

If the de�ned process P is a r.p.m. this clearly de�nes a regular measure on A . But, as shown in
the theorem below, the existence of a mean measure is also su�cient for the existence of a version
of {P (A)}A∈A that is a r.p.m. on (X ,A ).

Theorem 1.2. Suppose that {P (A)}A∈A is a stochastic process that satis�es i) and ii) and whose
mean function A 7→ E [P (A)] is a (regular) Borel measure on (X ,A ). Then there exists a meas-

urable map P̃ : (Ω,F ,P)→
(

[0, 1]
A
,W
)
such that P̃ (A) = P (A) P− a.s. for every A ∈ A .

Proof. Let A0 = {A0, A1, . . .} be a countable �eld that generates A . Since the mean measure µ is
regular, for every i,m ∈ N there exists a compact set Ki,m ⊂ Ai with µ (Ai −Ki,m) ≤ 2−2i−2m.
By Markov's inequality we have that

P
{
P (Ai −Ki,m) > 2−i−m

}
≤ 2i+mE [P (Ai −Ki,m)] ≤ 2−i−m

hence, de�ned Ωm =
∞
∩
i=1

{
P (Ai −Ki,m) ≤ 2−i−m

}
, we have that P {Ωm} ≥ 1 − 2−m and so

P
{

lim inf
m→∞

Ωm

}
= 1 by the Borel-Cantelli lemma.

Since A0 is countable, the nulls set involved in i) and ii) with {Ai}i≥1 ∈ A0 can be aggregated
into a single null set N . For every ω /∈ N the process P is a �nitely additive measure on A0 with
the resulting usual properties of monotonicity and sub-additivity. We can also ensure that it is
sub-additive on all �nite unions of sets Ai −Ki,m by increasing N if necessary.

Let Ai1 ⊃ Ai2 ⊃ . . . be an arbitrary decreasing sequence of sets in A0 with empty intersection.
Then, for every m, the corresponding compacts Kij ,m posses empty intersection too: for every m
there exists a �nite Jm such that ∩

j≤Jm
Kij ,m = ∅. This implies that

AiJm =
Jm∩
j=1

Aij −
Jm∩
j=1

Kij ,m ⊂
Jm∪
j=1

(
Aij −Kij ,m

)
and consequently, on the event Ωm −N,

lim sup
j→∞

P
(
Aij
)
≤ P

(
AiJm

)
≤

Jm∑
j=1

(
Aij −Kij ,m

)
≤ 2−m.
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CHAPTER 1. Random measures and Dirichlet processes

Thus on the event Ω0 = lim inf
m→∞

Ωm−N the limit is zero. We can conclude that for every ω ∈ Ω0 the

restriction of A 7→ P (A) to A0 is countably additive and, by Carathéodory's theorem it extends to
a measure P̃ on A .

By construction P̃ (A) = P (A) P-a.s. for every A ∈ A0 and, in particular,

E
[
P̃ (A)

]
= E [P (A)] = µ (A) ∀A ∈ A0.

Hence, by uniqueness of extension, the mean measure of P̃ coincides with µ on A .
Since A = σ (A0), for every A ∈ A there exists a sequence {Am} ⊂ A0 s.t. µ (A∆Am) −→

m→∞
0.

Then both P (A∆Am) and P̃ (A∆Am) tend to zero in mean. Further, �nite additivity of P gives
that |P (A)− P (Am)| ≤ P (A∆Am) and the same holds for P̃ thanks to its σ-additivity.

Hence P (A) = P̃ (A) P − a.s. for every A ∈ A . This also proves that P̃ (A) is a random

variable for every A ∈ A and so P̃ is a measurable map on
(

[0, 1]
A
,W
)
.

Rather than starting with a process {P (A)}A∈A indexed on all the Borel sets, we may wish to
start from a smaller set {P (A)}A∈A0

of variables, for some A0 ⊂ A . As shown by the previous
proof a countable collection A0 su�ces with just an additional speci�cation regarding compact sets.

Theorem 1.3. Suppose that {P (A)}A∈A0
is a stochastic process that satis�es i) and ii) for a

countable �eld A0 that generates A and is such that for every A ∈ A0 and ε > 0 there exists a
compact Kε ∈ X and Aε ∈ A0 such that Aε ⊂ Kε ⊂ A and µ (A−Aε) < ε, where µ is the mean
measure µ (A) = E [P (A)] . Then there exists a random measure that extends P to A .

1.2.3 Discrete random probability measures

Since discrete random probability measures (i.e. random probability measures which sample discrete
distributions almost surely) are of particular interest in itself and, above all, for the rest of our
discussion, we will now describe a general way to build them.

Given a random vector (N,w1,N , w2,N , . . . , wN,N , θ1,N , θ2,N , . . . θN,N ) where N ∈ N ∪ {∞}, the

�weights� (w1,N , w2,N , . . . , wN,N ) are non-negative random variables such that
N∑
i=1

wi,N = 1 and

the �locations� (θ1,N , θ2,N , . . . θN,N ) are random variables taking values in (X ,A ), De�nition 1.1
implies that we can de�ne a random probability measure by

P =

N∑
i=1

wi,Nδθi,N , (1.2.2)

where δθ is the measure that gives mass 1 to the point θ.
This random probability measure has support included in the subset of [0, 1]

A
made of the

discrete probability distributions on (X ,A ) with �nitely or countably many support points.

Proposition 1.2. If the support of N is unbounded and, given N, the weights and the locations
are mutually independent and if, given N=n, the weights have full support on the n-dimensional
simplex, Sn, and the locations have full support X n, for every n, then P has full support.

5



CHAPTER 1. Random measures and Dirichlet processes

Proof. Since the distribution with �nite support are (weakly) dense in the space of the discrete dis-
tributions on (X ,A ) and this latter is (weakly) dense in the space of all the probability distributions
on (X ,A ), it su�ces to show that P gives positive probability to any (weak) neighbourhood of a

distribution with �nite support, P ? =
k∑
i=1

w?i δθ?i .

All distributions P
′

=
k∑
i=1

wiδθi with (w1, . . . , wk) and (θ1, . . . , θk) su�ciently close to (w?1 , . . . , w
?
k)

and (θ?1 , . . . , θ
?
k) are in such a neighbourhood and so are the measures P

′
=
∞∑
i=1

wiδθi with
∞∑

i=k+1

wi

small enough and (w1, . . . , wk) and (θ1, . . . , θk) su�ciently close to (w?1 , . . . , w
?
k) and (θ?1 , . . . , θ

?
k).

If N is not identically in�nite, then the assertion follows from the assumed positive probability

of the events

{
N = k′, max

i≤k′
(|wi,k′ − w?i | ∨ |θi,k′ − θ?i |) < ε

}
for every ε > 0 and a given k′ > k

(where we de�ne w?i = 0 and θ?i arbitrarily for k < i < k′).
If N is in�nite with probability one then the assertion follows considering the events{∑

i>k

wi,∞ < ε, max
i≤k

(|wi,k − w?i | ∨ |θi,k − θ?i |) < ε

}
.

These events have positive probability since they refer to an open subset of S∞ and the weights
have full support on S∞ and so the assertions follows as before.

A practically very important way to construct the sequence of weights (w1, w2, . . .) is the so
called �stick-breaking� algorithm.

Given a sequence of random variables v1, v2, . . . with values in [0, 1], we consider the interval
[0, 1] as a stick of unit length and we break it at the point v1. We then consider the remaining
part of the original stick, namely the interval [v1, 1], as a stick of unit length and we break it at the
point v2. We then consider the remaining part of the original stick, namely [v1 + v2 (1− v1) , 1], as
a stick of unit length and we break it at the point v3, etc... If we identify the sequence of weights
(w1, w2, . . .) with the sequence of breaking points of the original stick we have that

wj = vj

j−1∏
i=1

(1− vi) (1.2.3)

and, under mild conditions on the sequence (v1, v2, . . .), we have that
∞∑
j=1

wj = 1.

Proposition 1.3. Given a sequence of random variables (v1, v2, . . .) with values in [0, 1], the stick-
breaking sequence (w1, w2, . . .) de�ned as in equation (1.2.3) sums one almost surely if and only if

E

[
n∏
j=1

(1− vj)

]
−→
n→∞

0.

If the variables (v1, v2, . . .) are independent the previous condition is equivalent to
∞∑
j=1

log (E [1− vj ]) = −∞. In particular if (v1, v2, . . .) are i.i.d. it su�ces that Pr (v1 > 0) > 0.

If for every k ∈ N the support of (v1, v2, . . . , vk) is [0, 1]
k
, then the support of (w1, w2, . . .) is the

whole in�nite-dimensional simplex, S∞.

6
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Proof. By construction the leftover mass at stage n of the stick-breaking algorithm is equal to

1−
n∑
i=1

wj =
n∏
i=1

(1− vi). Hence

(w1, w2, . . .) ∈ S∞ a.s. ⇐⇒
n∏
j=1

(1− vj) −→
n→∞

0.

Since the sequence of leftover mass is decreasing, non-negative and bounded by 1, the convergence
a.s. is equivalent to the convergence in mean, and thus is proved the �rst part of the proposition.

If v1, v2, . . . are independent variables the condition E

[
n∏
j=1

(1− vj)

]
−→
n→∞

0 becomes

n∏
j=1

E [1− vj ] −→
n→∞

0 which is equivalent to the condition
∞∑
j=1

log (E [1− vj ]) = −∞ and, if the

variables are also identically distributed, this last condition is implied by Pr (v1 > 0) > 0.
Since, for every k ∈ N, the random vector (w1, w2, . . . , wk) is a continuous function of the

random vector(v1, v2, . . . , vk) and this latter has support [0, 1]
k
, then the former has support Sk

and the sequence (w1, w2, . . .) has support S∞.

An important special case of random probability measure built as in equation (1.2.2) is obtained
when N ≡ ∞, the sequence of locations θ1, θ2, . . . is i.i.d. on X and the sequence of weights
w1, w2, . . . is stick-breaking. In this case, if the common distribution of the θis has support the full
space X and the sequence of weights has support S∞, then the r.p.m. de�ned as in (1.2.2) has full
support.

1.3 The Dirichlet Process

We will now introduce the Dirichlet process, which is �the normal distribution of Bayesian nonpara-
metrics�. It is the default prior on spaces of probability measures and will be the building block of
the models we will present in the next chapters. But �rst let us introduce the �nite-dimensional
analogue of the Dirichlet process, the Dirichlet distribution.

1.3.1 Dirichlet distribution

The Dirichlet distribution makes its appearance in problems involving order statistics and is known
to Bayesians as the conjugate prior for the parameters of a multinomial distribution.

De�nition 1.3. Let G1, . . . , Gk
ind∼ Gamma (αj , 1) with αj ≥ 0 ∀j = 1, . . . , k and αj > 0 for some

j ∈ {1, . . . , k} (if αj = 0, then Gj ∼ δ0). The Dirichlet distribution with parameter(α1, . . . , αk) is

de�ned as the joint distribution of

Y1 = G1
k∑
j=1

Gj

, . . . , Yk = Gk
k∑
j=1

Gj

 . In symbols

 G1

k∑
j=1

Gj

, . . . ,
Gk
k∑
j=1

Gj

 ∼ Dir (α1, . . . , αk) .

7



CHAPTER 1. Random measures and Dirichlet processes

This distribution is always singular with respect to the Lebesgue measure on Rk, since
Y1 + . . . + Yk = 1. In addition, if αj > 0 ∀j = 1, . . . , k, the distribution of (Y1, . . . , Yk−1) on Rk−1

is absolutely continuous (with respect to the Lebesgue measure on Rk−1) with density

f (y1, . . . , yk−1|α1, . . . , αk) =

Γ

(
k∑
j=1

αj

)
k∏
j=1

Γ (αj)

k−1∏
j=1

y
αj−1
j

1−
k−1∑
j=1

yj

αk−1

IDk (y1, . . . , yk−1) ,

where Dk =

{
(y1, . . . , yk−1) ∈ Rk−1

∣∣∣∣∣yj ≥ 0 ∀j = 1, . . . , k − 1,
k−1∑
j=1

yj ≤ 1

}
is a subspace of the k-

dimensional simplex Sk.
The main properties of the Dirichlet distribution are:

Proposition 1.4. If (Y1, . . . , Yk) ∼ Dir (α1, . . . , αk) and is given a partition I1, . . . , In of {1, . . . , k}
then ∑

j∈I1

Yj , . . . ,
∑
j∈In

Yj

 ∼ Dir

∑
j∈I1

αj , . . . ,
∑
j∈In

αj

 .

Proof. It follows directly from the additive property of the Gamma distribution.

Since Wi =
∑
j∈Ii

Gj
ind∼ Gamma

(∑
j∈Ii

αj , 1

)
for i = 1, . . . , n,

n∑
i=1

Wi =
k∑
j=1

Gj and
∑
j∈Ii

Yj = Wi
n∑
j=1

Wj

the result follows directly.

Proposition 1.5. If (Y1, . . . , Yk) ∼ Dir (α1, . . . , αk) and we de�ne |α| =
k∑
j=1

αj, then , marginally,

Yj ∼ Beta (αj , |α| − αj), for j = 1, . . . , k and hence

E [Yj ] =
αj
|α|

E
[
Y 2
j

]
=

αj (αj + 1)

|α| (|α|+ 1)

E [YjYh] =
αjαh

|α| (|α|+ 1)
if j 6= h.

Proof. From Proposition 1.4 with n = 2, I1 = {i} and I2 = {1, . . . , k} − {i}, we have thatYi,∑
j 6=i

Yj

 ∼ Dir

αi,∑
j 6=i

αj

 = Beta (αi, |α| − αi) ∀i = 1, . . . , k

Hence the expression for the �rst two central moments follow from the moments of the Beta distri-
bution.

For the last assertion, using again Proposition 1.4 with n = 2, I1 = {j, h} and
I2 = {1, . . . , k} − {j, h} we have thatYj + Yh,

∑
i 6=j,h

Yi

 ∼ Dir

αj + αh,
∑
i 6=j,h

αj

 = Beta (αj + αh, |α| − αj − αh)

8



CHAPTER 1. Random measures and Dirichlet processes

and this gives Var (Yh + Yj) =
(αj+αh)(|α|−αj−αh)

|α|2(|α|+1)
. Then, remembering that

2Cov (Yj , Yh) = Var (Yj + Yh)−Var (Yj)−Var (Yh)

we have that

E [YjYh] =
1

2
(Var (Yj + Yh)−Var (Yj)−Var (Yh)) + E (Yj)E (Yh) =

=
1

2

(
(αj + αh) (|α| − αj − αh)− αj (|α| − αj)− αh (|α| − αh)

|α|2 (|α|+ 1)

)
+
αj
|α|

αh
|α|

=

=
−αjαh

|α|2 (|α|+ 1)
+
αjαh

|α|2
=

=
αjαh

|α| (|α|+ 1)

Finally we give, without proof, the very well known conjugacy property mentioned at the start
of this subsection.

Proposition 1.6. If Pr {X = j|Y1, . . . , Yk} = Yj a.s. ∀j = 1, . . . , k and (Y1, . . . , Yk) ∼ Dir (α1, . . . , αk),
then

(Y1, . . . , Yk) | {X = j} ∼ Dir (α1, . . . , αj−1, αj + 1, αj+1, . . . , αk) .

It is useful to enlighten that from the last two propositions it follows that the equality

Pr {X = j, Y1 ≤ y1, . . . , Yk ≤ yk} = Pr {X = j}Pr {Y1 ≤ y1, . . . , Yk ≤ yk|X = j}

may be expressed, in terms of the distribution function D (y1, . . . , yk|α1, . . . , αk) of the Dirichlet
distribution, asˆ y1

0

. . .

ˆ yk

0

zjdD (z1, . . . , zk|α1, . . . , αk) =
αj
|α|

D (y1, . . . , yk|α1, . . . , αj−1, αj + 1, αj+1, . . . , αk) .

1.3.1.1 An Urn Scheme for the Dirichlet Distribution

Consider an urn containing α balls of k di�erent colours: α1 balls are of colour 1, ... , αk balls are
of colour k. Thus the initial proportions for each colour are(

f
(0)
1 , . . . , f

(0)
k

)
=
(α1

α
, . . . ,

αk
α

)
.

Then at the ith step we draw a ball randomly from this urn, record its colour Xi, and then put it
back in the urn with another ball of the same colour. After the �rst step hence we have(

f
(1)
1 , . . . , f

(1)
k

)
=

(
α1 + δ1 (X1)

α+ 1
, . . . ,

αk + δk (X1)

α+ 1

)
.

If we continue with these sampling scheme, the asymptotic fraction of the balls of di�erent colours
in the urn will be a random draw from Dir(α1, . . . , αk), i.e.

(
f

(n)
1 , . . . , f

(n)
k

)
=

α1 +
n∑
i=1

δ1 (Xi)

α+ n
, . . . ,

αk +
n∑
i=1

δk (Xi)

α+ n

 =⇒
n→∞

Dir (α1, . . . , αk) .

9
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1.3.1.2 A Stick-Breaking construction

Proposition 1.7. Given (α1, . . . , αk) with αj ≥ 0 ∀j ∈ {1, . . . , k} and αj > 0 for some j ∈

{1, . . . , k}, let us de�ne the random variables vj
ind∼ Beta

(
αj ,

k∑
i=j+1

αi

)
∀j = 1, . . . , k − 1 and

vk ∼ δ1. Then, if we de�ne

pj =


v1 if j = 1

vj
j−1∏
i=1

(1− vi) if j = 2, . . . , k

we have that
(p1, . . . , pk) ∼ Dir (α1, . . . , αk)

Proof. From the de�nition of v1, . . . , vk we have that
k∑
j=1

pk = 1. Furthermore if we de�ne the

function g (v1, . . . , vk−1) =

(
p1 = v1, p2 = v2 (1− v1) , . . . , pk−1 = vk−1

k−2∏
j=1

(1− vj)

)
its inverse is

g−1 (p1, . . . , pk−1) =

v1 = p1, v2 = p2

1−p1
, . . . , vk−1 = pk−1

1−
k−2∑
j=1

pj

 and the Jacobian of the inverse

transformation is
∣∣∣∂g−1(p1,....pk−1)

∂(p1,....pk−1)

∣∣∣ = 1
1−p1

1
1−p1−p2

. . . 1

1−
k−2∑
j=1

pj

.

Hence the joint density of (p1, . . . , pk−1) is

fp1,...,pk−1 (p1, . . . , pk−1) = fv1,...,vk−1

p1,
p2

1− p1
, . . . ,

pk−1

1−
k−2∑
j=1

pj

 1

1− p1

1

1− p1 − p2
. . .

1

1−
k−2∑
j=1

pj

=

= fv1 (p1) . . . fvk−1

 pk−1

1−
k−2∑
j=1

pj

 1

1− p1

1

1− p1 − p2
. . .

1

1−
k−2∑
j=1

pj

∝

∝ pα1−1
1 (1− p1)

k∑
j=2

αj−1
(

p2

1− p1

)α2−1(
1− p1 − p2

1− p1

) k∑
j=3

αj−1

× . . .×

×

 pk−1

1−
k−2∑
j=1

pj


αk−1−1

1−
k−1∑
j=1

pj

1−
k−2∑
j=1

pj


αk−1

× 1

1− p1

1

1− p1 − p2
. . .

1

1−
k−2∑
j=1

pj

∝

∝ pα1−1
1 pα2−1

2 . . . p
αk−1−1

k−1

(
1−

k−1∑
j=1

pj

)αk−1

10
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1.3.2 Dirichlet process

De�nition 1.4. Let α be a non-null �nite regular Borel measure (non-negative and σ-additive2)
on (X ,A ). We say that a random probability measure P on (X ,A ) possess a Dirichlet process
distribution with base measure α (shortly, P ∼ DP (α)) if we have

(P (B1) , . . . , P (Bk)) ∼ Dir (α (B1) , . . . , α (Bk)) ,

∀k ∈ N and ∀ {B1, . . . , Bk} measurable partition of X . We will use the notation |α| = α (X )
for the total mass of the base measure (also called �concentration parameter�), ᾱ = α

|α| for the

probability measure obtained normalizing the base measure (also called �centred base measure�)
and we will write P ∼ DP (α) or P ∼ DP (|α| , ᾱ) to indicate that the random probability measure
P has a Dirichlet process distribution with given base measure.

The existence of the Dirichlet process is not obvious, so we will now prove that this is a good
de�nition .

De�nition 1.4 speci�es the marginal distribution for any measurable partition of the sample
space. Let us �rst prove that the given speci�cation of distributions can be extended to any vector
of the type (P (A1) , . . . , P (Ak)), for any class of measurable sets (not only partitions) respecting
the consistency conditions required by Kolmogorov's extension theorem.

An arbitrary class of measurable sets (A1, . . . , Ak) de�nes a collection of 2k atoms of the form

A?1∩. . .∩A?k, where A? stands for A or Ac. These atoms {Bj}2
k

j=1 form a partition of the sample space

and hence the joint distribution of
(
P (Bj) : j = 1, . . . , 2k

)
is de�ned by De�nition 1.4. Furthermore

every Ai can be written as a union of atoms and P (Ai) can be de�ned accordingly as the sum of
the respective P (Bj) s, so we have a de�nition for the law of (P (A1) , . . . , P (Ak)).

To prove the consistency conditions required by Kolmogorov's theorem let us consider the dis-
tribution of the vector (P (A1) , . . . , P (Ak−1)). This distribution has been de�ned using the coarser
partitioning in the 2k−1 sets of the form A?1 ∩ . . . ∩ A?k−1 and every set in this coarser partition
is necessarily a union of two stets in the �ner partition used before to de�ne the distribution of
(P (A1) , . . . , P (Ak)). Therefore, to prove the required consistency conditions for every class of
measurable sets, it is enough to prove the same conditions for every couple of partition, one �ner
than the other. Let {B1, . . . , Bk} be measurable partition of X and {Bi1, Bi2} be a further meas-
urable partition of Bi for every i = 1, . . . , k. Then De�nition 1.4 speci�es that

(P (B11) , P (B12) , P (B21) , . . . , P (Bk1) , P (Bk2)) ∼
Dir (α (B11) , α (B12) , α (B21) , . . . , α (Bk1) , α (Bk2))

and, this implies that,

(P (B1) = P (B11) + P (B12) , . . . , P (Bk) = P (Bk1) + P (Bk2)) ∼
Dir (α (B1) = α (B11) + α (B12) , . . . , α (Bk) = α (Bk1) + α (Bk2))

because of Proposition 1.4 and �nite additivity of the base measure. Hence the consistency condition
is respected for any partition and so it is proved that there exists a stochastic process with �nite
dimensional laws as the ones speci�ed in De�nition 1.4.

2In the original de�nition in Ferguson (1973), was required only �nite additivity.

11



CHAPTER 1. Random measures and Dirichlet processes

Furthermore directly from De�nition 1.4 we also have that (P (A) , P (Ac)) ∼ Dir (α (A) , α (Ac))
and that P (A) ∼ Beta (α (A) , |α| − α (A)) for every measurable set. Hence P (∅) = 0 P-a.s.,
P (X ) = 1 P-a.s. and the mean measure is A 7→ E [P (A)] = ᾱ (A), which is a regular Borel measure
by assumption. Thus Theorem 1.2 implies the existence of the Dirichlet process distribution with
base measure α.

We will now present some propositions that shows the relationship between the properties of
the random probability measure P and the properties of the parameter measure α.

Proposition 1.8. Let P be a DP(α) on (X ,A ) and let A ∈ A . If α (A) = 0, then P (A) = 0
P-a.s. and if α (A) > 0 then P (A) > 0 P-a.s..

Proof. Let us consider the measurable partition {A,Ac}. Then P (A) ∼ Beta (α (A) , α (Ac)). So, if
α (A) = 0 then P (A) ∼ δ0 (i.e. P {P (A) = 0} = 1) and if α (A) > 0 then P (A) � δ0 (and, since the
Beta distribution with positive parameters is a continuous distribution, P {P (A) = 0} = 0).

It is important to enlighten that the P-null set outside of which the conclusion of Proposition 1.8
holds may depend on A. Hence Proposition 1.8 does not imply that α and the random probabilities
P drawn from a DP (α) are mutually absolutely continuous.

Proposition 1.9. Let P be a DP(α) on (X ,A ). If α is σ-additive then so is P , in the sense that
for a decreasing sequence of measurable sets Am ↘ ∅ we have P (Am) −→

m→+∞
0 P-a.s..

Proof. Since Am ↘ ∅ and α is σ-additive we have that α (Am) −→
m→∞

0. Hence there exists a

subsequence {mj} s.t.
∞∑
j=1

α
(
Amj

)
<∞. Using the Chebichev inequality we have, for �xed ε > 0,

∞∑
j=1

P
{
P
(
Amj

)
> ε
}
≤ 1

ε

∞∑
j=1

E
[
P
(
Amj

)]
=

1

ε

∞∑
j=1

α
(
Amj

)
|α|

<∞.

Hence, from the Borel-Cantelli lemma, we have that P
{

lim sup
j→∞

P
(
Amj

)
> ε

}
= 0 that implies that

P
{

lim
j→∞

P
(
Amj

)
= 0

}
= 1. Furthermore, since Am ↘ ∅, we have that P (A1) > P (A2) > . . . P-a.s.

and so we can conclude that P
{

lim
m→∞

P (Am) = 0
}

= 1.

Proposition 1.10. Let P be a DP(α) on (X ,A ) and let Q be a �xed probability measure on
(X ,A ) with Q� α. Then ∀m ∈ N, ∀A1, . . . , Am ∈ A and ∀ε > 0 we have

P {|P (Ai)−Q (Ai)| < ε for i = 1, . . . ,m} > 0.

Proof. LetBν1...νm =
m
∩
j=1

A
νj
j with vj = 0, 1, A1

j = Aj andA
0
j = Acj . Then P (Ai) =

∑
{ν1...νm}3νi=1

P (Bν1...νm)

and hence

P {|P (Ai)−Q (Ai)| < ε for i = 1, . . . ,m} ≥ P

 ∑
{ν1...νm}3νi=1

|P (Bν1...νm)−Q (Bν1...νm)| < ε for i = 1, . . . ,m

 .

12
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Therefore it is su�cient to show that

P
{
|P (Bν1...νm)−Q (Bν1...νm)| < ε

2m
for all (ν1 . . . νm)

}
> 0.

If α (Bν1...νm) = 0 then Q (Bν1...νm) = 0 (since Q � α) and P (Bν1...νm) = 0 P-a.s. (because of
Proposition 1.8), so that |P (Bν1...νm)−Q (Bν1...νm)| = 0 P-a.s.. For those (ν1 . . . νm) for which
α (Bν1...νm) > 0, because of Proposition 1.8, the distribution of the corresponding P (Bν1...νm) gives
positive weight to all open subsets of ∑

{ν1...νm}s.t.α(Bν1...νm)>0

P (Bν1...νm) = 1

and this completes the proof.

Remark. This proposition states that the support of the DP(α) is �large�. The discussion of the
support of a random probability measure depends on the topology considered on the space of
probability measures on (X ,A ). If the topology chosen would have been the one of pointwise
convergence (i.e. Qn → Q i� Qn (A)→ Q (A) ∀A ∈ A ), by Proposition 1.10 the support of the
DP(α) on (X ,A ) would have contained only the set of all probability measures that are absolutely
continuous with respect to α (and, conversely, any probability measure that is not absolutely
continuous with respect to α would not have been included).

With the topology of the weak convergence (that is commonly adopted and that we described
in the previous section) it may be shown that, if α is σ-additive, the support of P is the set of all
σ-additive probability measures whose support is contained in the support of α. So the adoption of
the σ-�eld W of subsets of [0, 1]

A
induced by the topology of the weak convergence is once again

practically convenient.

De�nition 1.5. Let P ∼ DP (α) on (X ,A ). We say that X1, . . . , Xn is an independent and
identically distributed sample of size n from the Dirichlet process if, for any m = 1, 2, . . . and
measurable sets A1, . . . , Am, C1, . . . , Cn

Pr {X1 ∈ C1, . . . , Xn ∈ Cn |P (A1) , . . . , P (Am) , P (C1) , . . . , P (Cn)} =

n∏
j=1

P (Cj) P−a.s. (1.3.1)

Roughly speaking, the de�nition given above means that X1, . . . , Xn is an independent sample
of size n sampled from a distribution P which was drawn from a Dirichlet process distribution on(

[0, 1]
A
,W
)
. We will adopt the widely used notation:

P ∼ DP (α)

X1, . . . , Xn |P
iid∼ P.

This de�nition determines the joint distribution of X1, . . . , Xn, P (A1) , . . . , P (Am), since

Pr {P (A1) ≤ y1, . . . , P (Am) ≤ ym, X1 ∈ C1, . . . , Xn ∈ Cn} =

=

ˆ y1

0

. . .

ˆ ym

0

ˆ
[0,1]n

n∏
j=1

P (Cj) dDP (A1),...,P (Am),P (C1),...,P (Cn)
(1.3.2)

13
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can be found integrating (1.3.1) with respect to the joint distribution of P (A1) , . . . , P (Am) , P (C1) , . . . , P (Cn)
over [0, y1]× . . .× [0, ym]× [0, 1]

n
. The Kolmogorov consistency conditions may easily be checked to

show that (1.3.2) determines a probability measure P on the product space
(
X n × [0, 1]

A
,A n ⊗W

)
.

From this consideration we obtain the subsequent properties for a DP.

Proposition 1.11. Let P ∼ DP (α) on (X ,A ) and let X be a sample of size 1 from P . Then

P {X ∈ A} =
α (A)

|α|
= ᾱ (A) .

Proof. Since P {X ∈ A|P (A)} = P (A) P-a.s.,

P {X ∈ A} = E [P {X ∈ A|P (A)}] = E [P (A)] =
α (A)

|α|
.

Proposition 1.12. Let P ∼ DP (α) on (X ,A ) and let X be a sample of size 1 from P . Let
{B1, . . . , Bk} be a measurable partition of X and A ∈ A . Then

P {X ∈ A,P (B1) ≤ y1, . . . , P (Bk) ≤ yk} =

=

k∑
j=1

α (Bj ∩A)

|α|
D (y1, . . . , yk |α (B1) , . . . , α (Bj−1) , α (Bj) + 1, α (Bj+1) , . . . , α (Bk) ) ,

(1.3.3)

where D (y1, . . . , yk |α (B1) , . . . , α (Bj−1) , α (Bj) + 1, α (Bj+1) , . . . , α (Bk) ) is the distribution func-
tion of the Dirichlet distribution with parameters (α (B1) , . . . , α (Bj−1) , α (Bj) + 1, α (Bj+1) , . . . , α (Bk))
evaluated in (y1, . . . , yk).

Proof. De�ne Bj,1 = Bj ∩ A and Bj,0 = Bj ∩ Ac for all j = 1, . . . , k. Let Yj,ν = P (Bj,ν) for all
j = 1, . . . , k and ν = 0, 1. Then, from (1.3.1),

P
{
X ∈ A

∣∣∣{Yj,ν}ν=0,1
j=1,...,k

}
=

k∑
j=1

Yj,1 P− a.s. (1.3.4)

Hence, for arbitrary yj,ν ∈ [0, 1], for j = 1, . . . , k and ν = 0, 1,

P {X ∈ A, Yj,ν ≤ yj,ν , for j = 1, . . . , k and ν = 0, 1}

can be found by integrating (1.3.4) w.r.t. the Dirichlet distribution of the Yj,νs over the set
{Yj,ν ≤ yj,ν , j = 1, . . . , k and ν = 0, 1}:
k∑
j=1

ˆ y1,0

0

. . .

ˆ yk,0

0

ˆ y1,1

0

. . .

ˆ yk,1

0

Yj,1dD (Y1,0, . . . , Yk,0, Y1,1, . . . , Yk,1 |α (B1,0) , . . . , α (Bk,0) , α (B1,1) , . . . , α (Bk,1) ) =

=

k∑
j=1

α (Bj,1)

|α| D (y1,0, . . . , yk,0, y1,1, . . . , yk,1 |α (B1,0) , . . . , α (Bj,0) + 1, . . . , α (Bk,0) , α (B1,1) , . . . , α (Bj,1) + 1, . . . , α (Bk,1) ) .

Since P (Bj) = Yj,1 + Yj,0 P-a.s., the conclusion of the proof follows using Proposition 1.4 because
the process of �nding marginal distributions (i.e. the multi-integral) is linear.
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One of the most remarkable properties of the Dirichlet process prior is that the posterior distri-
bution is again Dirichlet process.

Theorem 1.4. Let P ∼ DP (α) on (X ,A ) and let X1, . . . , Xn |P ∼ P . Then

P |X1, . . . , Xn ∼ DP

α+

n∑
j=1

δXj

 .

Proof. It is su�cient to prove the theorem for n = 1, since the general case then follows by induction
upon repeated application of the case n = 1.

Let {B1, . . . , Bk} be a measurable partition of X and let A ∈ A . The marginal distributions
of the conditional distribution of a process are identical to the conditional distributions of the
marginals (given a stochastic process P = {ξt}t∈T on a Polish space, there exists a version of the
random variable P |X that can be represented as the family {ξt |X }t∈T ). Hence we must show that
the conditional distribution of (P (B1) , . . . , P (Bk)) given X has distribution function

D (y1, . . . , yk |α (B1) + δX (B1) , . . . , α (Bk) + δX (Bk) ) . (1.3.5)

This may be done showing that the integral of (1.3.5) over A with respect to the marginal distri-
bution of X is equal to the probability (1.3.3), since if, after the integration, we obtain the joint
distribution of X,P (B1) , . . . , P (Bk) this means that the integrand was the conditional distribution
of P (B1) , . . . , P (Bk) given X. Using the marginal probability of X as found in Proposition 1.11,
we compute

ˆ
A

D (y1, . . . , yk |α (B1) + δx (B1) , . . . , α (Bk) + δx (Bk) ) d
α (x)

|α|
=

=

k∑
j=1

ˆ
Bj∩A

D (y1, . . . , yk |α (B1) , . . . , α (Bj−1) , α (Bj) + 1, α (Bj+1) , . . . , α (Bk) ) d
α (x)

|α|

=

k∑
j=1

α (Bj ∩A)

|α|
D (y1, . . . , yk|α (B1) , . . . , α (Bj−1) , α (Bj) + 1, α (Bj+1) , . . . , α (Bk)) ,

which completes the proof.

This theorem essentially gives an update rule for the base measure of the Dirichlet process
distribution when passing from the prior to the posterior. In terms of the parametrization (|α| , α)
it is

|α| 7→ |α|+ n

ᾱ 7→ |α|
|α|+ n

ᾱ+
n

|α|+ n
Fn

where Fn = 1
n

n∑
j=1

δXj is the empirical distribution of the sampleX1, . . . , Xn. Since the mean measure

of a Dirichlet process is the normalized base measure we obtain

E [P (A) |X1, . . . , Xn ] =
|α|
|α|+ n

ᾱ (A) +
n

|α|+ n
Fn (A) , (1.3.6)

15
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that means that the posterior mean (i.e. the �Bayes estimator� of P ) is a convex combination
of the prior mean ᾱ and the empirical distribution of the data. For a given sample size n, the
posterior mean is close to the prior mean if the concentration parameter |α| is large and is close to
the empirical distribution if the concentration parameter is small3. Thus |α| determines the extent
to which the prior controls the posterior mean.

Furthermore equation (1.3.6) implies that, for a �xed |α|, the posterior mean behaves asymptot-
ically as n→∞, P−a.s., like the empirical distribution of the sample to the order O

(
n−1

)
. Hence

it possesses the same asymptotic properties as the empirical distribution: in particular, ifX1, X2, . . .
are sampled from a �true distribution� P0 then the posterior mean will tend to P0 P− a.s..

Combining Theorem 1.4 with the formula for the variance of a Dirichlet variable we obtain that

Var (P (A) |X1, . . . , Xn ) =
E [P (A) |X1, . . . , Xn ]E [P (Ac) |X1, . . . , Xn ]

1 + |α|+ n
≤ 1

4 (1 + |α|+ n)
. (1.3.7)

Consequently, the posterior distribution contracts to its mean as n → ∞: this implies that, if
the data are sampled from a �true distribution� P0, then the posterior distribution of P converges
weakly to the measure degenerate at P0.

1.3.3 Stick-breaking representation

The stick-breaking representation of the Dirichlet process due to Sethuraman (1994), allows to
represent the Dirichlet process as a discrete random measure of the type expressed in equation
(1.2.2) with stick-breaking weights.

Before approaching the Sethuraman's construction it is necessary to prove a preliminary Lemma.

Lemma 1.1. Let us consider a �nite, non-negative, regular Borel measure α on (X ,A ). For
given independent random variables θ ∼ ᾱ and Y ∼ Beta (1, |α|), the Dirichlet process DP (α) is
the unique solution of the distributional equation4

P =d Y δθ + (1− Y )P. (1.3.8)

Proof. For a given measurable partition {B1, . . . , Bk} the equation requires that

Q := (P (B1) , . . . , P (Bk))

has the same distribution as the vector Y N+(1− Y )Q for N ∼ Multinomial (1; ᾱ (A1) , . . . , ᾱ (Ak))
and (Y,N) independent of Q.

We �rst show that the solution is unique in distribution. Let (Yn, Nn) be a sequence of i.i.d.
copies of (Y,N) and, for two solutions Q and Q′ of the equation that are independent of this
sequence and suitably de�ned on the same probability space, set Q0 = Q, Q′0 = Q′ and recursively
de�ne

Qn = YnNn + (1− Yn)Qn−1

Q′n = YnNn + (1− Yn)Q′n−1

∀n ∈ N.

3Clearly the terms �large� and �small� are to be intended with respect to the sample size n
4We say that a random probability measure that is independent of (Y, θ) is a solution of the distributional equation

(1.3.8) if for every measurable partition of the sample space the random vectors obtained by evaluating the random
probability measures on the right and left side of the equation have the same distribution in Rk.
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Then, since Q and Q′ are solutions of equation (1.3.8), every Qn is distributed as Q and every Q′n
is distributed as Q′n. Also

‖Qn −Q′n‖ = |1− Yn|
∥∥Qn−1 −Q′n−1

∥∥ =

n∏
i=1

|1− Yi| ‖Q−Q′‖ −→
n→∞

0 a.s.

since the Yi are i.i.d. and are in (0, 1) with probability 1. This proves the uniqueness of the solution
for the distributional equation (1.3.8).

To prove that the Dirichlet process is the solution let G0, G1, . . . , Gk
ind∼ Gamma (αi, 1) for

i = 0, . . . , k and α0 = 1. Then the vector

(
G0, G =

k∑
j=1

Gj

)
is independent of the vector

Q :=

(
G1

G
, . . . ,

Gk
G

)
∼ Dir (α1, . . . , αk) .

Furthermore Y := G0

G0+G ∼ Beta (1, |α|) and (Y, (1− Y )Q) ∼ Dir (1, α1, . . . , αk). Thus, for any
i = 1, . . . , k, merging the 0th cell with the ith, we obtain from Proposition 1.4 that, with ei the ith
unit vector,

Y ei + (1− Y )Q ∼ Dir (α1, . . . , αi−1, αi + 1, αi+1, . . . , αk)

and this gives the conditional distribution of the vector Y N + (1− Y )Q given N = ei. It follows
that Y N + (1− Y )Q given N is distributed as Dir (α1 +N1, . . . , αk +Nk), just as (Y1, . . . , Yk)
given X in Proposition 1.6. Since also the marginal distributions of N are the same as the ones of
X in Proposition 1.6 so must be the marginal distributions of Y N + (1− Y )Q and (Y1, . . . , Yk),
i.e. Y N + (1− Y )Q ∼ Dir (α1, . . . , αk).

We are now ready to give the subsequent representation theorem.

Theorem 1.5. Let θ1, θ2, . . .
iid∼ ᾱ and v1, v2, . . .

iid∼ Beta (1,M) are independent random variables

and wj = vj
j−1∏
i=1

(1− vi), then P =
∞∑
j=1

wjδθj ∼ DP (Mᾱ) .

Proof. Since E

[
j∏
i=1

(1− vi)
]

=
(

M
1+M

)j
−→
j→∞

0, it follows from Proposition 1.3 that the vector of

stick-breaking weights sums 1 a.s. and hence P is a probability measure a.s.. For j ≥ 2 de�ne

w′j = vj
j−1∏
i=2

(1− vi) and θ′j = θj+1. Then wj = (1− v1)w′j−1 for every j ≥ 1 and hence

P = w1δθ1 +

∞∑
j=2

wjδθj = v1δθ1 + (1− v1)

∞∑
j=1

w′jδθ′j .

But the random probability measure
∞∑
j=1

w′jδθ′j has exactly the same distribution as P (since it has

the same structure) and is independent of (v1, θ1). So we conclude that P satis�es the distributional
equation (1.3.8) and hence we have from the previous Lemma that P ∼ DP (Mᾱ).

From this fundamental result follow to important corollaries.
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Corollary 1.1. The realizations from the Dirichlet process distribution are discrete probability
measures P− a.s..

Proof. This result stems directly from the atomic representation on the Dirichlet process distribu-
tion given in Theorem 1.5.

Corollary 1.2. The Dirichlet process distribution with base measure α has full support on
(

[0, 1]
A
,W
)
.

Proof. This result stems directly from Propositions 1.2 and 1.3.

In order to represent the weight process w = {w1, w2, ...} constructed as described above we
will use the notation w ∼ GEM (α) where GEM stands for Gri�ths, Engen, McCloskey, as used
in Pitman 2002 and Johnson, Kotz, and Balakrishnan 1997.

1.3.4 Properties of samples from Dirichlet Processes

We now enlighten some properties of samples from Dirichlet processes (as de�ned by De�nition 1.5)
that comes directly from the propositions stated above.

The joint distribution of a sequence X1, X2, . . . generated from P ∼ DP (α) on (X ,A ) has a
complicated structure but can be conveniently described by the sequence of its predictive distribu-
tions (i.e. the laws of X1, X1 |X2 , X3 |X1X2 , . . .).

From Proposition 1.11 we have that, marginally, each Xi is distributed as ᾱ. If X1, X2 were an
i.i.d. sample from ᾱ we would expect that P {X1 = X2} = 0 but that is not the case. Although
α is non-atomic the conditional distribution of P given X is a Dirichlet process with parameter
α+ δX and that is an atomic measure with an atom of mass 1 at X. Hence the probability that X2

is equal to X1, given X1 is 1
|α|+1 . In other words, since X2 |P,X1 ∼ P and P |X1 ∼ DP (α+ δX1

)

then, by the same reasoning applied in the proof of Proposition 1.11, we have that

P {X2 ∈ A |X1 } = E [P {X2 ∈ A |P } |X1 ] = E [P (A) |X1 ] =

=
α (A) + δX1 (A)

|α|+ 1
=

|α|
|α|+ 1

ᾱ (A) +
1

|α|+ 1
δX1

(A)

By the same logic, since P |X1, . . . , Xn−1 ∼ DP

(
α+

n−1∑
j=1

δXj

)
by Theorem 1.4, we obtain that

Xn |X1, . . . , Xn−1 ∼
|α|

|α|+ n− 1
ᾱ+

n−1∑
j=1

1

|α|+ n− 1
δXj (1.3.9)

and the probability of obtaining i equal samples is then calculated as

P {X1 = . . . = Xn} =
(n− 1)! |α|!

(|α|+ n− 1)!
∀n = 1, 2, . . .

It is clear from equation (1.3.9) that the joint distribution of (X1, . . . , Xn), being equal to the
product of the predictive distribution, is not equal to the product of the single marginal distributions
(i.e. X1, . . . , Xi are not independent). But from (1.3.9) if follows also that the joint distribution of
(X1, . . . , Xn) is exactly the same as the distribution of

(
Xs(1), . . . , Xs(n)

)
for every permutation s

18



CHAPTER 1. Random measures and Dirichlet processes

of the elements of the set {1, . . . , n} and this holds for every n ∈ N. Thus any sequence X1, X2, . . .
generated from P ∼ DP (α) on (X ,A ) is exchangeable.

Equation (1.3.9) can also be viewed as an iterative rule for building an urn initially composed
by a in�nitely continuous number of �balls� distributed according to ᾱ and is thus also called
�generalized Polya urn scheme�. This property, studied �rst by Blackwell and MacQueen (1973),
can be used to characterize the Dirichlet process.

Let us now consider the probability that Xn is a new value, distinct from any previous obser-
vation X1, . . . , Xn−1, in the case that the base measure α is non-atomic. Under this hypothesis on
α equation (1.3.9) implies that the nth value is di�erent from all the previous ones if it is drawn
from ᾱ. If we de�ne the random variables

Wi =

{
1 if Xi /∈ {1, . . . , Xi−1}
0 otherwise,

then Wi is independent from Wj for all i 6= j and, by equation (1.3.9), we have that

P {Wi = 1} =
|α|

|α|+ i− 1
∀i = 1, 2, . . . .

We can further de�ne the number of distinct values obtained in the �rst n observations as

Zn =
n∑
i=1

Wi and obtain the subsequent results.

Proposition 1.13. Given a sample X1, X2, . . . , Xn generated from P ∼ DP (α) on (X ,A ) with
α non-atomic and �xed mass |α|, we have that

1. E [Zn] ≈ |α| log n ≈ Var (Zn)

2. Zn
logn −→n→∞ |α|

3. Zn−E[Zn]√
Var(Zn)

=⇒ N (0, 1)

Proof. The �rst point follows from easy calculations:

E [Zn] =

n∑
i=1

E [Wi] =

n∑
i=1

P {Wi = 1} =

n∑
i=1

|α|
|α|+ i− 1

≈ |α| log (n)

Var (Zn) =

n∑
i=1

Var [Wi] =

n∑
i=1

|α| (i− 1)

(|α|+ i− 1)
2 ≈ |α| log (n)

The second point follows from the strong law of large numbers for independent variables, since

E
[

Zn
log(n)

]
→ |α| and

∞∑
i=1

Var

(
Zi

log i

)
=

∞∑
i=1

Var (Wi)

(log i)
2 =

∞∑
i=1

|α| (i− 1)

(|α|+ i− 1) (log i)
2 <∞.

Finally the last point is a direct consequence of the Lindeberg central limit theorem.
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So, although P {Wn = 1} = |α|
|α|+n−1 ↘ 0 and thus new distinct values are increasingly rare,

we are assured nonetheless of a steadily increasing number of distinct values5. Moreover, since the
distribution of the distinct values is simply ᾱ, this property can be used to obtain information about
the shape of α (·) if it is unknown.

On the other hand, the rate at which new distinct values appear when increasing the sample
depends only on the magnitude of |α|, and not on the shape of α (·). In terms of the stick breaking
representation given in equation (1.3.8), this means that only the magnitude of |α| determines the
di�erences in magnitude of the weights wi: a small value of |α| implies that w1 is big compared
to w2, this latter is big compared to w3 (and so on...) while a large value of |α| means that there
are many small weights that tail o� to zero slowly. Since |α| characterizes the rate at which new
values appear it is justi�ed the name �concentration parameter� and is also justi�ed the use of the
notation P ∼ DP (|α| , ᾱ) in the cases in which it is of some interest the rate at which new values
appear.

1.3.5 Mixtures of Dirichlet processes

The application of the Dirichlet process prior requires a choice of a base measure α. It is often
reasonable to choose the centre measure ᾱ from a speci�c family of statistical distributions depend-
ing on some parameters. It is then natural to give a further prior distribution to the parameters
of the centre measure. Similarly, to incorporate prior beliefs and uncertainty on the stick-breaking
weights, one can also put a prior on the precision parameter |α|. For a base measure α (ξ) that
depends on a parameter ξ the model then consists of the hierarchy

X1, . . . , Xn |P, ξ
iid∼ P

P |ξ ∼ DP (α (ξ))

ξ ∼ π

and the induced marginal prior on P , called �mixture Dirichlet prior�, is usually denoted by
MDP (α (ξ) , π). Many properties of this mixture Dirichlet prior follow immediately from the
those of Dirichlet process (e.g. any probability measure P drawn from a mixture Dirichlet process
prior is almost surely discrete) and, given ξ, we can use theorem 1.4 to obtain

P |ξ,X1, . . . , Xn ∼ DP

α+

n∑
j=1

δXj

 .

To obtain the posterior distribution of P given the data we thus need to integrate this with respect
to the posterior distribution of ξ given X1, . . . , Xn, which is proportional to π (ξ) p (X1, . . . , Xn |ξ ),

obtaining that P |X1, . . . , Xn ∼ MDP

(
α+

n∑
j=1

δXj , π (ξ) p (X1, . . . , Xn |ξ )

)
. The joint marginal

density p (X1, . . . , Xn |ξ ) is described by the conditional distributions given in equation (1.3.9) with
α (ξ) instead of α: in general this has a complicated structure due to the random ties between the
observations. However, as far as the posterior estimation is concerned, we condition on the observed

5More precisely, the number of distinct values in a large sample from a distribution drawn from a �xed Dirichlet
process prior is logarithmic in the sample size and the �uctuations of this number around its mean are of the order√

logn.
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data X1, . . . , Xn and know their ties. Given this information, the density p (X1, . . . , Xn |ξ ) takes
a simpler form. If, for instance, the observations are distinct (which happens with probability 1
when the observations actually follow a continuous distribution), then equation (1.3.9) implies that

p (X1, . . . , Xn |ξ ) =
n∏
i=1

αξ(Xi)
|α(ξ)|+i−1 , where αξ (·) is a density of α (ξ).

1.3.6 Dirichlet process mixtures

Since the Dirichlet process prior is discrete, it is useless when we wish to estimate a continuous
distribution but this can be remedied by convolving it with a continuous kernel density.

De�nition 1.6. For each θ in a probability space (Θ,B (Θ) , P ) let x 7→ ϕ (x, θ) be a probability
density function measurable in its two arguments. If P ∼ DP (α) then we say that the mixture
density pP (x) =

´
ϕ (x, θ) dP (θ) is a Dirichlet process mixture.

If the data are distributed as a Dirichlet process mixture, then the resulting statistical model,
called �Dirichlet process mixture� (DPM) model, can be written as follow:

P ∼ DP (α)

θi |P
iid∼ P

Xi |θi, P
ind∼ ϕ (·, θi)

(1.3.10)

The following result, due to Antoniak (1974), shows that if we obtain an unobservable sample
from a mixture Dirichlet process and the observed sample is distorted by a random error (i.e. the
distribution drawn from the mixture Dirichlet process prior is used as mixing distribution for the
mixture distribution of observed the data) then the posterior distribution of the process given the
observed sample is again a mixture Dirichlet process.

Theorem 1.6. Let P ∼ MDP (α (ξ) , π) on a Polish space (Θ,B (Θ)) where π is a probability
measure on a Polish space (U,B (U)) and α is a transition measure on U×B (Θ). Let (X ,B (X ))
be a Polish space and F a transition probability from Θ×B (X ) to [0, 1]. If

ξ ∼ H
P |ξ ∼ DP (α (ξ))

θ |P, ξ ∼ P
X |P, ξ, θ ∼ F (θ, ·)

then P |X ∼MDP (α (ξ) + δθ, p (θ, ξ |X )), where p (θ, ξ |X ) is the conditional distribution of (θ, ξ)
given X.

Proof. From Theorem 1.4 it follows that P |θ, ξ,X ∼ DP (α (ξ) + δθ), independently of X. From

Proposition 1.11 we have that marginally (w.r.t. P ) θ |ξ ∼ α(ξ,·)
α(ξ,Θ) . By hypothesis

X |P, ξ, θ ∼ F (θ, ·) is independent of ξ and ξ ∼ H. Hence the joint distribution of (θ, ξ,X) is de�ned
by the (conditional) distributions of X |P, ξ, θ , θ |ξ and ξ, and thus the conditional distribution of
(θ, ξ) |X is well de�ned. Finally the conditional distribution of P given X is obtained integrating
the conditional distribution of P |θ, ξ,X with respect to the conditional distribution of (θ, ξ) |X :
since P |θ, ξ,X ∼ DP (α (ξ) + δθ), we recognize that the conditional distribution P |X is a mixture
Dirichlet process with the conditional distribution of (θ, ξ) |X as mixing measure.
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From this result follows directly the subsequent Corollary which states that, if the observed data
are distributed according to a Dirichlet process mixture model, the posterior distribution of the
Dirichlet process given the observed data is a mixture Dirichlet process with mixing distribution
the joint conditional distribution of the unobserved sample from the Dirichlet process (i.e. the
parameters of the Dirichlet process mixture model) given the observed data.

Corollary 1.3. Let P ∼ DP (α) on a Polish space (Θ,B (Θ)). Let (X ,B (X )) be a Polish space
and ϕ : Θ ×X → R such that θ 7→ ϕ (x, θ) is measurable for all x ∈ X and x 7→ ϕ (x, θ) is a
probability density function for all θ ∈ Θ. If

P ∼ DP (α)

θi |P
iid∼ P

Xi |θi, P
ind∼ ϕ (·, θi)

for i = 1, . . . , n

then P |X1, . . . , Xn ∼MDP

(
α+

n∑
i=1

δθi , p (θ1, . . . , θn |X1, . . . , Xn )

)
, where p (θ1, . . . , θn |X1, . . . , Xn )

is the conditional distribution of θ1, . . . , θn given X1, . . . , Xn.

Proof. From Theorem 1.4 it follows that P |θ1, . . . , θn, X1, . . . , Xn ∼ DP

(
α+

n∑
i=1

δθi

)
, independ-

ently of X1, . . . , Xn. From Proposition 1.11 we have that marginally θi
iid∼ ᾱ and hence their joint

distribution is simply the product of these marginals. By hypothesis

(X1, . . . Xn) |θ1, . . . , θn, P ∼
n∏
i=1

ϕ (·, θi). Hence the joint distribution of (θ1, . . . , θn, X1, . . . , Xn) is

well de�ned by the distributions of (X1, . . . Xn) |θ1, . . . , θn, P and θ1, . . . , θn, and thus the condi-
tional distribution of θ1, . . . , θn |X1, . . . , Xn is well de�ned too. Finally the conditional distribution
of P given X is obtained integrating the conditional distribution of P |θ1, . . . , θn, X1, . . . , Xn with
respect to the conditional distribution of θ1, . . . , θn |X1, . . . , Xn :

since P |θ1, . . . , θn, X1, . . . , Xn ∼ DP

(
α+

n∑
i=1

δθi

)
, we recognize that the conditional distribution

P |X1, . . . , Xn is a mixture Dirichlet process with the conditional distribution of θ1, . . . , θn |X1, . . . , Xn

as mixing measure.

From this results it follows that the posterior mean density of a Dirichlet process mixture density
pP (x) =

´
ϕ (x, θ) dP (θ) given θ1, . . . , θn, X1, . . . , Xn is

E [pP (x) |θ1, . . . , θn, X1, . . . , Xn ] =
1

|α|+ n

(ˆ
ϕ (x, θ) dα (θ) +

n∑
i=1

ϕ (x, θi)

)
(1.3.11)

which is a combination of a part attributable to the prior and a part due to observations (has it
happens in equation (1.3.6) for the posterior mean of a Dirichlet process). It is also interesting to
enlighten the role of the concentration parameter |α| in the context of a Dirichlet process mixture
model. As we have already said at the end of subsection 1.3.4 the concentration parameter rules
the appearance of new values (distinct from all the ones previously obtained) in samples from the
Dirichlet process: in the context of Dirichlet process mixture models this means a large value of |α|
is associated with a little number of mixture components with weights much heavier than the ones
of the remaining components, while a small value of the concentration parameter is associated with
a more even distribution of the weights between the components.
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Chapter 2

Multiplicative error models

2.1 Introduction

Modelling non-negative time series is quite an important task in the econometric literature. For
example one could think to the volume of shares traded over a 10-minute period or the di�erence
between the highest price and the lowest price in a given time period or the ask price minus the
bid price or again sales volumes, demand levels, insurance claims, weather derivatives, etc...

In particular, being able to accurately forecast the volatility of asset returns, which is a positive
quantity, is vital in many �elds of �nance such as derivative pricing and risk management. Di�erent
variants of the ARCH model introduced by Engle (1982) and the stochastic volatility model Taylor
(1987) have been widely employed to model daily data since the introduction of the original mod-
els. These are e�ectively models for the squared returns, where the conditional variance is a latent
factor, and they produce relatively noisy forecasts of the volatility. With the recent wide availability
of intra-daily data, it has become possible to measure directly the daily volatility more accurately
than before. Andersen and Bollerslev (1998) showed that the realized variance, computed as the
sum of squared intra-daily returns, provides a measure of the volatility with desirable properties.
In particular Andersen, Bollerslev, Diebold, and Labys (2001) and Andersen, Bollerslev, Diebold,
and Ebens (2001) demonstrated that the square root of realized variance (also called realized volat-
ility) of stock and exchange rates can be described as unconditionally lognormally distributed and
exhibiting long memory.

As remarked in Engle (2002), in the classical literature there are two conventional approaches
to the analysis of these non-negative-valued processes: the �rst is to ignore the non-negativity, the
second is to take the logs and, in both cases, then it is used a linear regression model to represent
the observations.

Let us consider a univariate time series {xt}Tt=1 where xt ≥ 0 ∀t = 1, . . . , T and such that

Pr {xt < δ |xt−1, . . . , x1 } > 0 ∀δ > 0, t = 1, . . . , T. (2.1.1)

Let us indicate as µt = E [xt |xt−1, . . . , x1 ] and σ2
t = Var (xt |xt−1, . . . , x1 ) the conditional mean

and the conditional variance of the series at time t given its past. Then, ignoring the non-negativity,
we can specify a linear model as

xt = µt + εt, εt
∣∣Ft−1 ∼ D

(
0, σ2

t

)
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CHAPTER 2. Multiplicative error models

where Ft−1 is the information available at time t−1 and D is a continuous probability distribution
with mean 0 and variance σ2

t . It is clear that the de�nition of the distribution D is quite delicate
since by the fact that the mean µt is positive and xt is non negative implies that the disturbances
cannot be more negative than the mean. Thus the support of the distribution D will be di�erent
for every observation. Furthermore, since the probability of a near zero is given by

Pr {xt < δ |xt−1, . . . , x1 } = Pr {εt < δ − µt |xt−1, . . . , x1 } ,

then the error distribution must be discontinuous at −µt to satisfy equation (2.1.1). These facts
makes the estimation process quite cumbersome (both in the classical and in the Bayesian context).

If instead we consider the idea of taking the logs, the model becomes

log (xt) = mt + ut

and the conditional mean and variance become µt = emtE [eut ] and σ2
t = e2mtVar (eut). But this

solution will not work if there are exact zeros in the time series {xt} and the solution sometimes
adopted to add a small constant to eliminate exact zeros is more of a theoretical solution than
a practical one, since it has been proven that the �nite sample estimates are typically heavily
in�uenced by the size of this constant.

2.2 The univariate case

Since both the classical approaches reported above have been proven to be �awed Engle and Russell
(1998) introduced the Autoregressive Conditional Duration (ACD) model to model the duration
between transactions in �nancial markets. This model had then been generalized for a wider set
of applications by Engle (2002) who also renamed it Multiplicative Error Model, also referred to
with the acronym MEM. This is a model in which the data, at every time t, are speci�ed as the
product of a random term representing the disturbances in the data and a deterministic term
representing the conditional mean of the data (given the past information at that time). The
model is then completed specifying a distribution for the data and an equation that describes the
dynamics of their conditional mean. The MEM approach has the advantage that it both reduces
the di�culties in the speci�cation of the distribution of the data and avoids the problems due to the
log transformation of zero data, allowing an easy and parsimonious analysis of non-negative-valued
time series.

2.2.1 Model formulation

Given a non-negative time series {xt}Tt=1, the MEM model is speci�ed as

xt = µtεt (2.2.1)

where

• µt = µ (η,Ft−1) is a positive, deterministic, term that evolves according to the vector of
parameters η.

• εt |Ft−1 ∼ D
(
1, σ2

)
where D

(
1, σ2

)
is a continuous probability distribution on [0,∞) with

unit mean and unknown constant variance σ2.
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CHAPTER 2. Multiplicative error models

Hence we have that
E [xt |Ft−1 ] = µt,

Var [xt |Ft−1 ] = µ2
tσ

2.
(2.2.2)

2.2.2 Speci�cation of the innovations

In principle the conditional distribution of the innovations εt can be speci�ed by means of any
probability density with support on [0,∞) with unit mean. Examples include the Gamma, Log-
Normal, Weibull, Inverted-Gamma and mixtures of them. Engle (2002) proposed an exponential
distribution with unit mean, which allows for easy and consistent quasi-maximum likelihood es-
timates but lacked �exibility. Chou (2005), who applied a MEM to model the high/low range of
prices in daily and weekly scales, used a Weibull distribution. Lanne (2006) adopted a mixture of
unit-mean Gamma densities to model realized volatilities. Engle and Gallo (2006) choose Gamma
distributions with equal parameters (so that it has unit mean and it is more �exible than the
exponential) to model, simultaneously, squared returns, realized variances and high-low ranges.

An alternative strategy is to leave the distribution of the disturbances unspeci�ed except for
the two conditional moments in equation (2.2.2), to obtain a classical semiparametric speci�cation
of the model to be estimated using the generalized method of moments as done by Brownlees,
Cipollini, and Gallo (2012).

Finally it is also possible to adopt a Bayesian semiparametric point of view to specify the
distribution of the disturbances as done by Solgi and Mira (2013), who proposed to adopt a Dirichlet
process mixture of Gamma distributions with two free parameter as distribution of the disturbances.
The use of this rich family of distributions allowed them to approximate any continuous distribution
on [0,∞) to any precision level, thus obtaining great �exibility and very good �t of the distribution
of the data.

2.2.3 Speci�cation of the conditional mean

Any practical speci�cation of µt must depend on the available information Ft−1 and must ensure
that µt is always positive for every t. We will now show some examples from the literature for
illustrative purposes but the list will not be exhaustive of the many di�erent speci�cations of the
conditional mean adopted for MEMs in the past decade.

Engle (2002), supposing the existence of a vector of weakly exogenous variables zt, proposed to
specify µt as

µt = ω +

p∑
i=1

αixt−i +

q∑
i=1

βiµt−i + γ′zt.

To ensure the positiveness for all possible realizations, if z are positive variables, it is su�cient to
require that all the parameters are positive1. To ensure covariance stationarity for xt it is su�cient

that zt is covariance stationary and
p∑
i=1

αi+
q∑
i=1

βi < 1. With this structure, the persistence property2

of xt can be modelled parsimoniously and it is a well known fact that this model for µt is equivalent
to an ARMA (max (p, q) , q) model for xt, with heteroskedastic errors speci�ed as νt = xt − µt.

1Note however that this is not a necessary condition.
2A time series process is called �persistent� if the e�ect of in�nitesimally small shock will be in�uencing the future

predictions of the time series for a very long time.
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CHAPTER 2. Multiplicative error models

Removing the exogenous variables and posing p = q = 1 we obtain the simplest speci�cation, also
called �baseline� MEM

µt = ω + α1xt−1 + β1µt−1 (2.2.3)

which often in the literature took the role of benchmark model and is usually su�cient in empirical
studies.

It is a known fact that some �nancial time series, like the realized volatility of an equity, reacts
asymmetrically in response to positive and negative realizations of some exogenous variable, like
the returns of the same asset. It had then been introduced the so called asymmetric MEM, in which
the conditional mean of the non-negative process {xt} is speci�ed as

µt = ω +

p∑
i=1

αixt−i +

q∑
i=1

βiµt−i +

s∑
i=1

γixt−iI{rt−i<0}, (2.2.4)

where rt−i denotes a lagged exogenous variable (usually the lagged returns) such that E
[
xt−iI{rt−i<0} |Ft−1

]
=

µt
2 and I{·}is the indicator function. Also in this case the speci�cation most used in practice is the
one with p = q = s = 1. To ensure mean stationarity for the time series xt is su�cient that
p∑
i=1

αi +
q∑
i=1

βi +
s∑
i=1

γi
2 < 1 and again the positiveness of the conditional mean is trivially guaranteed

if all the parameters are positive (but, also in this case, this is not a necessary condition).
Beyond these two basic speci�cations for the conditional mean are possible many extensions in

many directions, mainly depending on the characteristics of the time series under analysis. Since it
is far beyond the aim of this work to describe all the possible speci�cations of the conditional mean
in a MEM model, we limit ourselves to cite the Component MEM by Brownlees, Cipollini, and
Gallo (2011) built to model intra-daily volumes of transactions and the speci�cation introduced by
Manganelli (2005) to model the durations between subsequent trades.

2.2.4 Estimation methods

Since the introduction of the multiplicative error models many methods had been proposed to es-
timate both the parameters of the conditional mean and the parameter of the distribution of the
disturbances. Engle (2002), under the hypothesis of unit-mean exponential disturbances, proved
that, under some mild conditions on the process xt

µt
, the quasi-maximum likelihood estimator of the

parameters of the conditional mean is consistent and asymptotically normal. Brownlees, Cipollini,
and Gallo (2012), considering disturbances with Gamma distribution with equal shape and rate,
showed that the maximum likelihood estimator of the parameters of the parameters of the con-
ditional mean does not depend on the �dispersion parameter� of the disturbances. This last can
be estimated again by maximum likelihood, based on the estimates of the parameters of µt. On
the other hand, in the same paper, the authors propose also to resort to Generalized Method of
Moments to estimate the parameters of µt (thus avoiding distributional assumptions on the dis-
turbances) and give a formulation for the instruments that give the GMM estimator with smaller
asymptotic variance.

As far as we know, the only Bayesian formulation of a MEM model is the semiparametric one
given by Solgi and Mira (2013). In this case the estimation of the parameters of interest is carried
out using a conditional method, known as �slice sampler�. We will detail this algorithm in the next
chapter.
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2.3 The multivariate case

As described in the Introduction, to study multivariate time series de�ned on the non-negative
orthant Cipollini, Engle, and Gallo (2006) proposed a multivariate version of the multiplicative
error model, called vector MEM (vMEM). In this case di�erent mono-dimensional time series are
represented together as a single time series of vectors. The vectors of data are modelled as an
element by element product of a random vector representing the disturbances and a deterministic
vector representing the conditional mean of the data (given the past information). The model is
then completed specifying a multidimensional unit-mean distribution for the data vector and a
vector equation that describes the dynamics of the mean-vector of the data.

From now on we will indicate the non-negative orthant of Rn as (R+)
n
and we will use the

notation ιn to refer to the n-dimensional vector with every component equal to 1.
Furthermore bold capital letters will in general refer to matrices, bold Greek letters will refers

to vectors and normal Greek letters will refer to elements of the corresponding matrix/vector (e.g.
αij is an element of the matrix A and ωi is an element of the vector ω).

2.3.1 Model formulation

Given a d-dimensional time series {xt}t contained into (R+)
d
, the vMEM model is speci�ed as:

xt = µt � εt (2.3.1)

where

• µt = µ (η,Ft−1) is a deterministic vector with non-negative components that evolves accord-
ing to the vector of parameters η.

• εt |Ft−1 ∼ D (ιd,Σ) where D (ιd,Σ) is a continuous probability distribution on (R+)
d
with

unit-vector mean ιd and unknown constant covariance matrix Σ.

Thus we have that
E [xt |Ft−1 ] = µt,

Var [xt |Ft−1 ] = µtµ
′

t �Σ.
(2.3.2)

and hence Var [xt |Ft−1 ] is guaranteed to be a positive de�nite matrix.

2.3.2 Speci�cation of the innovations

As in the univariate case, in principle the conditional distribution of the innovations εt can be

speci�ed by means of any probability density with support on R+d with unit mean. The natural
extension of the univariate case is to limit ourselves to the assumption that at each time t, given

the past information, all the components, ε
(t)
i of the vector εt are independently distributed with

Gamma densities with equal shape and rate, φi. We could also use a multivariate log-normal
distribution (de�ned as the distribution of the exponential transformation of a multivariate normal
random variable).

Another possibility is to use one of the multivariate generalizations of the Gamma distribution
described in Johnson, Kotz, and Balakrishnan (2000), but most of them are quite unhandy since
they are de�ned via the joint characteristic function (and so require numerical inversion formulas
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to �nd the corresponding probability density function). Because of this Cipollini, Engle, and Gallo
(2006) chose to adopt the multivariate version of the Gamma distribution due to Cheryan and
Ramabhadran with unit mean,

fεt|Ft−1
(x;φ0,φ,φ) =

1

Γ (φ0)

d∏
i=1

φi
Γ (φi − φ0)

e
−

d∑
i=1

φixi
ˆ min

i=1,...,d
(φixi)

0

yφ0−1e(d−1)y
d∏
i=1

(φixi − y)
φi−φ0−1

dy

where 0 < φ0 < min (φ1, . . . , φd). In this case each ε
(t)
i has univariate gamma marginal distribution

with shape and rate equal to φi and Cov
(
ε

(t)
i , ε

(t)
j

)
= φ0

φiφj
(so no negative correlations are allowed

under this speci�cation).
A di�erent way to de�ne the distribution of εt|Ft−1 is to start from the assumption that

all the univariate marginal probability density functions are Gamma (φi, φi) and then use copula
functions. Many copula functions have been proposed in the literature: Cipollini, Engle, and Gallo
(2006) choose to use a Normal copula because of its analytic tractability and the easy of simulation.
The advantage of using copulas over a multivariate Gamma distribution are mainly that copulas
allows more �exible covariance structures (allowing also negative correlations), the correlations do
not depend anymore on the variances of the marginals (but are completely speci�ed by the copula
function adopted) and there are no complicated constraints on the parameters of the marginal
distributions.

Anyway, as we could see from the previous example and had been enlightened also by Cipollini,
Engle, and Gallo (2013), there are some problems in the complete speci�cation of the conditional
distribution:

• the distributions de�ned on the positive orthant are often not enough �exible or they are
de�ned via the characteristic function.

• the distributions obtained via copulas often present not realistic symmetric behaviours due to
the fact that the choice of the copula function is driven by computation reasons. Furthermore,
even when combined with correct formulations of the marginals, copulas are not always able to
model adequately the association among components of the error term. Finally, as far as the
marginals are concerned, in principle each one of them could follow a di�erent distribution.
Hence a copula approach could require an expensive tuning.

• the exact speci�cation of the distribution of the disturbance term may be not interesting3.

Because all of these motivations, as we will describe in the next chapters, we will consider a Bayesian
semiparametric framework and we will propose as conditional distribution for the disturbances a
DPM of multivariate log-normal distributions.

2.3.3 Speci�cation of the conditional mean

Just like in the univariate case, any practical de�nition of µt must depend on Ft−1 and must ensure

that µt ∈ (R+)
d ∀t ≥ 0. Cipollini, Engle, and Gallo (2006) proposed the so called base vMEM, in

which the speci�cation of µt is the multivariate analogous of the base MEM represented in equation
(2.2.3):

µt = ω + Bµt−1 + Axt−1 (2.3.3)

3This happens in particular when the analysis is mainly focused on the dynamics of the conditional mean.
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where ω is a d×1 vector and B and A are d×d matrices. Su�cient (but not necessary) conditions

so that µt ∈ R+d ∀t ≥ 0 are again that all the parameters ωi, βij , αij are positive for every
i, j = 1, . . . , d4, while su�cient condition for the stationarity of µt is that all the characteristic
roots of B+A lie inside the unit circle5.

A direct generalization of the speci�cation (2.3.3), used when we are modelling jointly di�erent
measures of the volatility of one asset and analogous to the univariate asymmetric speci�cation
expressed in equation (2.2.4), is the so-called asymmetric vMEM (AvMEM):

µt = ω + Bµt−1 + Axt−1 + A(−)xt−1I{rt−1≤0} (2.3.4)

where A(−) is another d × d matrix and rt is the return at time t of the asset whose volatilities
are measured. Also in this case for µt to belong to the positive orthant it is su�cient that all the
element of all the matrices are non-negative, while su�cient condition for the stationarity of µt is

that all the characteristic roots of B+A + A(−)

2 lie inside the unit circle. Some generalizations of
the AvMEM presented in equation (2.3.4), have been used by Cipollini, Engle, and Gallo (2013) to
study inter-dependencies across volatility measures.

Furthermore Engle, Gallo, and Velucchi (2009) and Engle, Gallo, and Velucchi (2012), used
another augmented version of the base vMEM to describe the volatility spillover e�ect in the East
Asian �nancial markets in the period before, during and after the Asian currency crisis of 1997-1998.
In these papers they use this speci�cation for the conditional mean:

µt = ω+diag (β1, . . . , βd)µt−1+A?xt−1+diag (ψ1, . . . , ψd) xt−2+δDCt−1+λPCt−1+G?xt−1DCt−1

(2.3.5)
where

A? =


α

(+)
1,1 I{r(t−1)

1 ≥0
} + α

(−)
1,1 I{r(t−1)

1 <0
} α1,2 . . . α1,d

α2,1
. . .

...
...

. . . αd−1,d

αd,1 . . . αd,d−1 α
(+)
d,d I{r(t−1)

d ≥0
} + α

(−)
d,d I{r(t−1)

d <0
}

 ,

G? =


γ

(+)
1,1 I{r(t−1)

1 ≥0
} + γ

(−)
1,1 I{r(t−1)

1 <0
} γ1,2 . . . γ1,d

γ2,1
. . .

...
...

. . . γd−1,d

γd,1 . . . γd,d−1 γ
(+)
d,d I{r(t−1)

d ≥0
} + γ

(−)
d,d I{r(t−1)

d <0
}

 ,

δ and λ are d×1 vectors of parameters, rt =
(
r

(t)
1 , . . . , r

(t)
d

)
is the vector of returns, at time t, of the

d market indexes whose volatility is measures and DCt−1, PCt−1 are dummy variables that assume
value 1 if the (t− 1)th observation belongs to the �during crisis� period or the �post crisis� period,
respectively. Alternatively an easier speci�cation for the conditional mean proposed by Gallo and

4Note however that this is not a necessary condition and, in multivariate context, it is also quite restrictive. It
is therefore often omitted in applications in favour of a simple non-negativity check of the values of the conditional
mean obtained with the estimates of its parameters.

5This stationarity condition follows directly from the classical theory of vector autoregressive models.
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Velucchi (2009) and Giovannetti and Velucchi (2011) always to study the volatility spillover e�ect,
is:

µt = ω + diag (β1, . . . , βp)µt−1 + A(+)xt−1 � I{rt−1≥0} + A(−)xt−1 � I{rt−1<0} (2.3.6)

where

A(+) =


α

(+)
1,1 . . . α

(+)
1,d

...
. . .

...

α
(+)
d,1 . . . α

(+)
d,d

 , A(−) =


α

(−)
1,1 . . . α

(−)
1,d

...
. . .

...

α
(−)
d,1 . . . α

(−)
d,d

 and I{rt−1≶0} =


I{
r
(t−1)
1 ≶0

}
...

I{
r
(t−1)
d ≶0

}

 .

2.3.4 Estimation methods

To estimate the parameters of vMEMs in the literature had been proposed di�erent methods. In
their seminal paper Cipollini, Engle, and Gallo (2006), considering a Normal copula of Gamma
marginals as distribution of the innovations, showed that the neat maximum likelihood approach
doesn't work in this context because the likelihood equations for the correlation matrix of the
Normal copula cannot be solved. So they proposed a compromise to be able to solve the likelihood
equation and then obtain an estimator (that formally cannot be interpreted as a maximum likelihood
estimator) for that matrix. In the same paper the authors, to avoid functional speci�cations for the
distribution of the innovations, proposed also to use the Estimating Function approach in which
the advantage of not formulating assumptions about the shape of the conditional distribution of
the data is balanced by a loss of e�ciency with respect to the maximum likelihood under correct
speci�cation of the complete model.

To avoid parametric assumptions on the distribution of the innovations, Cipollini, Engle, and
Gallo (2013) proposed to estimate the parameters of the conditional mean using an e�cient ver-
sion of Generalized Method of Moments that allowed the estimator obtained to have the smallest
asymptotic covariance matrix. In this context, the covariance matrix of the innovation is treated as
a nuisance parameter and the choice of the instruments necessary for the estimation of the paramet-
ers of the conditional mean ensured that the resulting estimator is �nuisance parameter insensitive�
(in the meaning of Jørgensen and Knudsen (2004)), so that the goodness of the estimation of Σ did
not a�ect the goodness of the estimation of the parameters of the conditional mean.

Finally, to study the volatility spillover e�ect, Engle, Gallo, and Velucchi (2012) and Giovannetti
and Velucchi (2011), used independent gamma distributions as marginals for each unidimensional
time series and estimated the parameters of their model for the conditional mean using equation-
by-equation.
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Chapter 3

A Bayesian semiparametric vector

multiplicative error model

3.1 Introduction

In this chapter we are gonna describe a new vMEM in which the speci�cation of the conditional mean
is general enough to contain all the speci�cations described in the previous chapter as particular
cases and the distribution of the innovation is more �exible than the ones described in the literature.

3.2 Speci�cation of the conditional mean

As described in Chapter 2, we model the d-dimensional non-negative stochastic process xt as an
element-by-element product of the innovation term εt times the conditional mean of the process
µt = E [xt|Ft−1], where Ft−1 is the information set available at time t− 1. In other words we will
have

xt = µt (η)� εt
where, for any t, µt (η) is a non-negative process, measurable with respect to the σ-algebra Ft−1,
and η is a vector of parameters, to be estimated, that characterize the speci�cation of the conditional
mean. As described in the previous chapter, in the literature the innovation term is often modelled
as an i.i.d. process with conditional unit-vector mean, i.e.

E [εt|Ft−1] = ιd.

This unit mean assumption is necessary to guarantee the identi�ability of the model. The i.i.d.
assumption instead is not necessary: it implies that the xts, conditional on Ft−1, are draws from
a scale-family of distributions in which the scale parameter evolves in time according to µt and
the shape of the distribution remains unchanged, but, in principle, as long as the conditional unit
mean constraint holds, the shape of the distribution may change through time as a function of the
elements of the information set Ft−1.

Assuming that we have a partition of the set of times {1, .., T} in ` subsets, a speci�cation of
the conditional mean that could nest the speci�cations (2.3.3), (2.3.4), (2.3.5) and (2.3.6) presented
above is:
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

xt =µt � εt
µt =ω + Bµt−1 + Axt−1 + A(−)xt−1 � I{rt−1<0d} + Fxt−2+

+

`−1∑
j=1

(
κ(j) + G(j)xt−1 + G(j−)xt−1 � I{rt−1<0d}

)
δ

(t−1)
j

(3.2.1)

where

I{rt−1<0d} =


I{
r
(t−1)
1 <0

}
...

I{
r
(t−1)
d <0

}


d×1

ω =

 ω1

...
ωd


d×1

B =

 β1,1 . . . β1,d

...
. . .

...
βd,1 . . . βd,d


d×d

A =

 α1,1 . . . α1,d

...
. . .

...
αd,1 . . . αd,d


d×d

A(−) =


α

(−)
1,1 . . . α

(−)
1,d

...
. . .

...

α
(−)
d,1 . . . α

(−)
d,d


d×d

F =

 ϕ1,1 . . . ϕ1,d

...
. . .

...
ϕd,1 . . . ϕd,d


d×d

κ(j) =


κ

(j)
1
...

κ
(j)
d


d×1

∀j = 1, . . . , `− 1

G(j) =


γ

(j)
1,1 . . . γ

(j)
1,d

...
. . .

...

γ
(j)
d,1 . . . γ

(j)
d,d


d×d

∀j = 1, . . . , `− 1

G(j−) =


γ

(j−)
1,1 . . . γ

(j−)
1,d

...
. . .

...

γ
(j−)
d,1 . . . γ

(j−)
d,d


d×d

∀j = 1, . . . , `− 1
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δ
(t−1)
j is a time-dummy that assumes the value 1 if the (t− 1)th observation lies in the (j + 1)th
time interval and the operation �I{...} is meant to be an Hadamard product if I{...} is a vector (as
in the case of �volatility spillovers analysis�) or a simple product if I{...} is just a scalar value (as in
the context of volatility proxies comparison).

The parts containing the time dummies do have an empirical motivation mainly in the �volatility
spillover analysis� context, but can have some sense also in other contexts if the data analysed show
apparent changes of dynamics in di�erent time periods. Anyway, that part of the speci�cation
of the conditional mean might be generally excluded or included simply looking at the volatility
dynamics.

The asymmetric reaction to negative returns can be taken in account also introducing a term
dependent on the lagged returns (as done in Engle and Gallo 2006). Since it is a known stylized
fact for volatility proxies that they depend asymmetrically from their past values, this cannot be a
cheap substitute to the introduction of the signed lagged term , but it can be a possible additional
term.

3.3 Speci�cation of the innovations

We model the innovation term using a mixture of simple multivariate distributions. A �nite mixture
with K components can be formulated as

εt|dt,φ ∼ F (φdt)

dt|p ∼ Discrete (p1, . . . , pK)

where φdt =
(
φ

(dt)
1 , . . . , φ

(dt)
K

)
, p = (p1, . . . , pK) and dt are categorical variables (also called �latent

labels�) that determine to which mixture component the observation εt belongs. In order to fully
specify this model in a Bayesian setting, we should assign priors to φd and p:

φd ∼ G0

p ∼ Dir
( α
K
, . . . ,

α

K

)
where G0 is a distribution on the parameter space of F and Dir

(
α
K , . . . ,

α
K

)
is the Dirichlet distri-

bution on the K-dimensional simplex described in Chapter 1.
There are two important problems with �nite component mixtures:

• it is usually di�cult to determine a priori the required number of components,

• they lack the degree of �exibility that is needed in many applications.

To solve this problems we will use the Dirichlet Process Mixture (DPM) model described in Chapter
1, that can be seen as the limit of the �nite mixture model speci�ed above for K −→∞.

As seen in subsection (1.3.6), a DPM is the result of nonparametric DP mixing of a parametric
family of distribution:

fε (·) =

ˆ
k (·|θ) dG (θ)

G ∼ DP (G0, α) .

33



CHAPTER 3. A Bayesian semiparametric vector multiplicative error model

The stick breaking construction of the DP, described in subsection (1.3.3), implies that

fε (·) =

∞∑
j=1

wjk (·|θj)

w ∼ GEM (α)

θj
i.i.d.∼ G0

therefore this model bypasses the problem of choosing the correct number of components, typical
of the �nite mixture models.

In our vMEM framework we propose to model the innovations by a DPM. Since in our model the
data vector belongs to the positive orthant, we choose to use multivariate log-normal densities as a
convenient choice for the kernels of the in�nite mixture. As mentioned earlier, in parametric vMEM
the distribution of innovations is restricted to have unit-vector mean. Hence, at a �rst glance, it
seems natural to use multivariate log-normal densities with unit-vector mean and a positive-de�nite
scale matrices, Σj , obtaining

1:

fε (·) =

∞∑
j=1

wj logNd (·|m,Σj)

logNd (ε|Σ) =

d∏
i=1

1

εi
(2π)

− d2 |Σ|− 1
2 exp

{
−1

2
(log ε−m)

′
Σ−1 (log ε−m)

}
I(R+)d (ε)

mi = −1

2
Σi,i ∀i = 1, . . . , d.

w ∼ GEM (α)

Σj
i.i.d.∼ G0.

(3.3.1)

Constricting the vector-means of all the components to depend only from the diagonal elements
of the scale matrix of the same component, restricts in some way the ability of the model to cover
all the possible distributions on the positive orthant. In fact, in the univariate log-normal case (just
like in the univariate Gamma case with only one parameter analysed by Solgi and Mira (2013))
introducing components with thicker tails in the mixture (i.e. with bigger variance) not modifying
the mean will increase at the same time the probability of the neighbourhood around zero. Hence, in
presence of fat tailed innovations in the data, while this univariate DPM attempts to assign higher
weights to the components with smaller precision, it will, at the same time, increase the likelihood
of the innovations close to zero. In the multivariate case, this same of reasoning can be directly
applied to the marginals and can also be extended, mutati mutandis, to the joint distribution. As

1If we have a d-dimensional multivariate log-normal random variable ε with log-scale m and shape matrix Σ (i.e.
we have a multidimensional random variable ε such that y = log ε ∼ Nd (m,Σ)) we have that the components of
the mean vector are

E [εi] = emi+
1
2

Σi,i ∀i = 1, . . . , d,

and hence we obtain a unit mean vector if and only if

mi = −
1

2
Σi,i ∀i = 1, . . . , d.
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a consequence, this model does not e�ectively range over all the possibly true distributions on the
positive orthant.

Then, in a more �exible view, we can replace the previous kernels with log-normal densities with
location vectors mj , obtaining

fε (·) =

∞∑
j=1

wj logNd (·|mj ,Σj)

logNd (ε|m,Σ) =

d∏
i=1

1

εi
(2π)

− d2 |Σ|− 1
2 exp

{
−1

2
(log ε−m)

′
Σ−1 (log ε−m)

}
I(R+)d (ε)

w ∼ GEM (α)

(m,Σ)j
i.i.d.∼ G0

(3.3.2)

By this de�nition clearly fε (·) does not have unit mean. In fact, if we call σj =
(
σ

(j)
1,1, . . . , σ

(j)
d,d

)
the vector of the diagonal elements of the matrix Σj , we have

m̄ = Ef [ε] =

∞∑
j=1

wj exp

{
mj +

1

2
σj

}
6= ιd.

To solve the arising identi�cation issue we could modify the support of the random mixing distri-
bution so that the in�nite mixture has unit-vector mean. This could be done simply modifying the
mixture kernels so that the density function of the innovations results speci�ed as

gε (·) =

∞∑
j=1

wj logNd (·|mj − log m̄,Σj) .

This speci�cation ensures that

Eg [ε] =

∞∑
j=1

wj exp

{
mj − log m̄ +

1

2
σj

}
=

=

∞∑
j=1

wj exp

{
mj +

1

2
σj

}
� exp {log m̄} =

=

 ∞∑
j=1

wj exp

{
mj +

1

2
σj

}� m̄ = ιd.

Combining this model for the distribution of innovations with (3.2.1) results in a model that we
will call DPMLN2-vMEM. Unfortunately direct sampling of this model by the sampling schemes
available in the literature is not possible, since the kernel of each of the components of the mixture
depends on all the in�nitely many wjs and mjs.

Thus, here we propose to consider the unconstrained DPM for the distribution of the innovations
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obtaining:

xt =µt � εt
µt =ω + Bµt−1 + Axt−1 + A(−)xt−1 � I{rt−1<0} + Fxt−2+

+

`−1∑
j=1

(
κ(j) + G(j)xt−1 + G(j−)xt−1 � I{rt−1<0}

)
δ

(t−1)
j

fε (·) =

∞∑
j=1

wj logNd (·|mj ,Σj)

logNd (ε|m,Σ) =

d∏
i=1

1

εi
(2π)

− d2 |Σ|− 1
2 exp

{
−1

2
(log ε−m)

′
Σ−1 (log ε−m)

}
I(R+)d (ε)

w ∼ GEM (α)

(m,Σ)j
i.i.d.∼ G0

(3.3.3)

which is a parameter expanded 2 (PX) version of the DPMLN2-vMEM proposed in (3.3.1) and will
be called PX-DPMLN2-vMEM. It is important to enlighten that a prior on the parameters of the
PX model induces a prior on the parameters of the original model and that the use of proper priors
results in proper posteriors for this model (even if the likelihood is improper).

Hence we will set up a Markov Chain Monte Carlo (MCMC) simulation to target the PX-
DPMLN2-vMEM and, at the end of this simulation, we will post-process the sample obtained
from the that parameter-expanded model to an equivalent sample from the DPMLN2-vMEM. To
map the sample from the PX-DPMLN2-VMEM to one from the DPMLN2-vMEM we will use this

2in the sense of Liu 1999, Van Dyk 2001 and Liu 1998
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transformation:



ω
B
A

A(−)

ϕ
K

G(1)

...
G(`−1)

G(1−)

...
G(`−1−)

w1

w2

...
m1

m2

...
Σ1

Σ2

...



→



ω � m̄
B

A�
[
m̄ι

′

d

]
A(−) �

[
m̄ι

′

d

]
ϕ� m̄

K�
[
m̄ι

′
]

G(1) �
[
m̄ι

′

d

]
...

G(`−1) �
[
m̄ι

′

d

]
G(1−) �

[
m̄ι

′

d

]
...

G(`−1−) �
[
m̄ι

′

d

]
w1

w2

...
m1 − log (m̄)
m2 − log (m̄)

...
Σ1

Σ2

...



(3.3.4)

Note that, in order to use this post-processing function, we need to sample m̄, the mean of the
DPM, that is an in�nite sum. Although the distribution of the mean of the DP and DPMs has been
the subject of several studies 3, we are not aware of a simple way to sample from these distributions
since their evaluation is generally subject to computation of some numerical integrals.

To solve this problem here we propose to approximate the in�nite sum constituting m̄ by a
�nite one so that the truncated sum of weights is close enough to 1. In practice, in order to obtain
a sample from the mean of the DPM, we need to truncate the it at

Kεm̄ = inf

k ∈ N
∣∣∣∣∣∣1−

k∑
j=1

wj < εm̄

 (3.3.5)

whereεm̄ is a �xed tolerance level. In Muliere and Tardella (1998) it has been shown that

Kεm̄ − 1 ∼ Poisson (−α log εm̄) ,

therefore the expected value of the truncation level Kεm̄ is proportional to − log εm̄ so that, with
a small value of the concentration parameter α, extremely accurate results may be obtained in a
reasonable computational time.

3For further insights see Lijoi 2004, Cifarelli and Regazzini 1990 and Regazzini, Lijoi, and Prünster 2003
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3.4 Bayesian Inference

The Bayesian Inference on DPM models has the big issue that DPMs are in�nite dimensional
objects. There are substantially two main families of methods to deal with this problem: the
�marginal methods�, that are based on integrating out the random distribution and the �conditional
methods� that explicitly instantiate the DP and rely on its stick-breaking representation. One of
the most used conditional methods is the so-called �slice sampler�, introduced by Walker (2007).
Here we will describe, adapt to our goals and �nally use its e�cient version due to Kalli, Gri�n,
and Walker (2011).

Following Walker (2007), we augment the model with the latent variable u such that the joint
density of (ε, u) is

fε,u (ε, u) =

∞∑
j=1

I (wj > u) logNd (ε |mj ,Σj ) , (3.4.1)

Therefore, given u, the in�nite mixture reduces to a �nite mixture: for every �xed value of u in

[0, 1], only a �nite number of wjs can be greater than u, since
∞∑
j=1

wj = 1. Moreover, introducing

the latent label l that indicates to which component of the mixture ε belongs, the joint density of
(ε, u, l) is

fε,u,l (ε, u, l) = I (wl > u) logNd (ε |ml,Σl ) . (3.4.2)

Obviously it is not possible to sample the in�nite set of parameters (mj ,Σj)j>1 but it had been

shown by Walker (2007) that, by augmenting the model with the latent variable u, we only need
to sample a �nite set of these parameters to obtain a sample from the target �DPM distribution�
(i.e. distribution that is a trajectory of a DPM).

In order to improve the e�ciency of the slice sampler, Kalli, Gri�n, and Walker (2011) proposed
to sample in a block u and w and to rewrite the joint density (3.4.2) as

fε,u,l (ε, u, l) = I (ξl > u)
wl
ξl
logNd (ε |ml,Σl ) ,

where {ξl} is an in�nite sequence decreasing in l. The block sampling increases the e�ciency with
respect to the original algorithm since u and w are strongly correlated, while the introduction of
ξl reduces the sampling of useless wjs

4. In what follows, we will use a deterministic, decreasing
sequence {ξj}j∈N but, in general, a random sequence could also be considered. Kalli, Gri�n, and

Walker (2011) found that the mixing of the resulting Markov chain depends on the rate of increase

of
E[wj ]
ξj

: higher rates of increase are associated with better mixing but longer running times, since

the average size of the sets {j |wj > u} increases. They suggest increasing the rate of increase of
E[wj ]
ξj

until the gains in mixing are counter-balanced by the longer running time. In their examples,

Kalli, Gri�n, and Walker (2011) �nd that
E[wj ]
ξj
∝
(

3
2

)j
strikes a good balance. Thus here we set

ξj ∝ E[wj ]

(1.5)j
.

4Since the sampling of u can cause changes in the set
n
∪
i=1
{j |wj > ui }, this can lead to the simulation of super�uous

wjs: a scaling factor can reduce the number the average dimension of the sets {j |wj > ui } and mitigate the problem.
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At this stage we have that xt � µt = εt and fεt (·) =
∞∑
j=1

wj logNd (· |mj ,Σj ) so

fxt|... (x) = fεt (x� µ)

∣∣∣∣ ∂ε∂x
∣∣∣∣ =

=

∞∑
j=1

wj logNd (x� µ |mj ,Σj )

d∏
i=1

1

µi
=

=

∞∑
j=1

wj

d∏
i=1

1

µi

d∏
i=1

µi
xi

(2π)
− d2 |Σj |−

1
2 exp

{
−1

2
(log (x� µ)−mj)

′
Σ−1 (log (x� µ)−mj)

}
=

=

∞∑
j=1

wj

d∏
i=1

1

xi
(2π)

− d2 |Σj |−
1
2 exp

{
−1

2
(logx− logµ−mj)

′
Σ−1
j (logx− logµ−mj)

}
=

=

∞∑
j=1

wj logNd (x |mj + logµ,Σj )

Hence the posterior of our PX-DPMLN2-vMEM model is:

p (η,m1,m2, . . . ,Σ1,Σ2, . . . ,w,d,u |x1, . . . ,xt ) =

= Priors×
T∏
t=1

I(ξdt>ut)
wlt
ξlt

logNd (xt � µt |mlt ,Σlt )

d∏
i=1

1

µ
(t)
i

=

= Priors×
T∏
t=1

I(ξlt>ut)
wlt
ξlt

d∏
i=1

1

x
(t)
i

(2π)
− d2 |Σlt |−

1
2 exp

{
−1

2
(log xt − logµt −mlt)

′
Σ−1
lt

(log xt − logµt −mlt)

}
,

whereη is vector of all the parameters from which depends the conditional mean, w = {w1, w2, ...}
is the weight process, l = (l1, . . . , lT ) is the vector of latent labels and u = (u1, . . . , uT ) is the vector
of latent variables such that (3.4.1) holds.

In our MCMC simulations we sample lt,ut ∀t = 1, . . . , T , vj ,mj ,Σj for all the required js and
η. Then we post process the sample obtained using the map (3.3.4) in order to obtain a sample
from the posterior of DPMLN2-vMEM.

We will now detail the steps of the slice sampler.

3.4.1 Sampling ut

The full conditional probability density function of ut is

p (ut |. . . ) ∝ I (ξlt > ut) .

Therefore, we can simply sample ut from the uniform distribution U (0, ξlt) .
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3.4.2 Sampling vj

As described in the �rst chapter, vj
i.i.d.∼ Beta (1, α). Thus the full conditional probability density

function of vj is

p (vj |. . . ) ∝ π (vj)
∏
t: lt≥j

wlt ∝

∝ v0
j (1− vj)α−1

∏
t: lt≥j

vlt

lt−1∏
k=1

(1− vk) ∝

∝ (1− vj)α−1
∏
t: lt=j

vlt

lt−1∏
k=1

(1− vk)
∏
t: lt>j

vlt

lt−1∏
k=1

(1− vk) ∝

∝ (1− vj)α−1
∏
t: lt=j

vlt
∏
t: lt>j

(1− vj) =

= v
nj
j (1− vj)α−1+gj .

Therefore, the full conditional distribution of vj is Beta (1 + nj , α+ gj) , where nj =
T∑
t=1
I(lt=j) and

gj =
T∑
t=1
I(lt>j) .

Note that
T∑
t=1
I(lt=j) =

T∑
t=1
I(lt>j) = 0 ∀j ≥ d̄ = max {l1, . . . , lT }: this means that the distribution

of vj will be updated if and only if there exists at least one innovation coming from a component
with index greater than (or equal to) j. Otherwise the full conditional of vj is equal to the prior
distribution. Therefore at this step of the sampling we only need to update a �nite number, N , of
vjs: the others will not be updated and, if we will ever need them in other steps of the sampler, we
will sample them from their prior.

3.4.3 Sampling
(
mj,Σ

−1
j

)
In our PX-DPMLN2-vMEM model we put a d-dimensional Normal-Wishart prior on

(
mj ,Σ

−1
j

)
.

This prior is the conjugate prior for a Bayesian model with normal data, so we consider a trans-
formation of the data:

εt =xt � µt ∀t = 1, . . . , T

fε (·) =

∞∑
j=1

wj logNd (ε|mj ,Σj)

fx (x) = fε (x� µ)

∣∣∣∣ ∂ε∂x
∣∣∣∣

=⇒



log εt = log (xt � µt) = yt ∀t = 1, . . . , T

flog ε (·) =

∞∑
j=1

wjNd (log ε|mj ,Σj)

fy (y) = flog ε (log (x� µ))

∣∣∣∣ ∂ log ε

∂ log (x� µ)

∣∣∣∣
(3.4.3)

So for every j = 1, 2, . . ., we put

Σ−1
j ∼Wishartd (a,W)

mj

∣∣Σ−1
j ∼ Nd

(
ν, n0Σ

−1
j

) (3.4.4)

40



CHAPTER 3. A Bayesian semiparametric vector multiplicative error model

where a ≥ d, n0 > 0, W is a positive de�nite, symmetric d× d matrix and n0Σ
−1 is the precision

matrix. Thus we obtain that

Σ−1
j |y1, . . . ,yT ∼

∼Wishartd

a+ nj ,

W−1 +
∑
t: lt=j

(yt − ȳj) (yt − ȳj)
′
+

n0nj
nj + n0

(ȳj − ν) (ȳj − ν)
′

−1


mj

∣∣Σ−1
j ,y1, . . . ,yT ∼ Nd

(
n0ν + njȳj
n0 + nj

, (n0 + nj) Σ−1
j
−1

)
with ȳj = 1

nj

∑
t: lt=j

yt and where (n0 + nj) Σ−1
j is the precision matrix. Note that, although j =

1, 2, . . . , only a �nite number of
(
mj ,Σ

−1
j

)
s will be updated at each step of the Gibbs sampler,

since the full conditional of all the couples for which nj = 0 is equal to their prior.

3.4.4 Sampling lt

The full conditional distribution of lt is given by the probabilities:

Pr {lt = k |. . .} ∝

∝ I(ξk>ut)
wk
ξk

d∏
i=1

1

x
(t)
i

(2π)
− d2 |Σk|−

1
2 exp

{
−1

2
(log xt − logµt −mk)

′
Σ−1
k (log xt − logµt −mk)

}
.

Since ξk ∝
(

2
3

)k
E [wk] =

(
2
3

)k 1
1+α

(
α

1+α

)k−1

= 1
α

(
2α

3+3α

)k
is a decreasing function of k, for every

k ≥ log 2α
3+3α

(αut) we have that ξk ≤ ut and hence Pr {lt = k |. . .} = 0. Consequently, given all the

other parameters, lt takes values in the �nite set
{

1, . . . ,
⌊
log 2α

3+3α
(αut)

⌋}
,where bac stands for the

integer part of the real number a.

3.4.5 Sampling η

The full conditional probability density function of the vector of parameters of the conditional
mean, η1×m = vec

([
ω,B,A,A(−),F,K,G(1), . . . ,G(`−1),G(1−), . . . ,G(`−1−)

])
1×m, is

p (η |. . . ) ∝ p (η)×
T∏
t=1

logNd (xt � µt (η) |mlt ,Σlt )

d∏
i=1

1

µ
(t)
i (η)

∝

∝ p (η)×
T∏
t=1

exp

{
−1

2
(log xt − logµt (η)−mlt)

′
Σ−1
lt

(log xt − logµt (η)−mlt)

}
,

(3.4.5)
which is not a standard distribution. For the prior of η we use an independent Normal distribution
with large variances:

p (η) = Nm (η; 0m, 20Im) ,

where m = d + 4d2 + d (`− 1) + 2 (`− 1) d2 and Nm (·; 0m, 20Im) is the density function of the
m-dimensional Normal distribution with parameters (0m, 20Im).
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To sample η we will use an adaptive version of the random-walk Metropolis-Hastings algorithm
with proposal density

q (ηn,ηn+1) = p ·Nm
(
ηn+1;ηn,

Λn

m
σ2

1

)
+ (1− p) ·Nm

(
ηn+1;ηn,

Λn

m
σ2

2

)
.

The Λn component of the proposal covariance matrix is adapted as

Λn = Σ̂n �C + 10−6Im

where Σ̂n is the empirical covariance matrix of the vectors obtained from η1, . . . ,ηn using trans-
formation (3.3.4), and

C =


m̄
ιd2

m̄
...

m̄


[

m̄′ ι′d2 m̄′ . . . m̄′
]

is the transformation matrix to be applied to Σ̂n to recover from it the empirical covariance matrix
of [η1, . . . ,ηk].

For what it takes the scale parameters, σ1 and σ2, and the mixture weight, p, we consider them
as constants that should be tuned.

Finally it is important to enlighten that at the k-th iteration Σ̂n changes only by O
(

1
n

)
by

de�nition. Therefore this adaptation mechanism satis�es the �diminishing adaptation� condition of
Roberts and Rosenthal (2007) and thus the correct target distribution is preserved.
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Chapter 4

Simulations

To study the performance of the di�erent speci�cations of our model and of the proposed sampling
scheme we run several simulation studies. We will now present some of most signi�cant ones using
di�erent speci�cations of the conditional mean.

4.1 Bivariate simulations

For all the bivariate simulations we will use this common hyperparameters:

• the concentration parameter of the DP is α = 1 .

• the truncation level de�ned in equation (3.3.5) is εm̄ = 10−6

• the parameters of the base Normal-Wishart measure de�ned in equation (3.4.4) are

a = 10 + d, Wij =

 1
T−1

T∑
t=1

(
log εt,i − log εi

)2
if i = j

0 else

, ν = log ε, n0 = 1

where εt = xt�µt (η0), d = 2 is the length of the vector xt and the over-line indicates sample
mean over t.

• the initial value of the vector of parameters of the conditional mean, η0, is the maximum like-
lihood estimate found assuming a parametric model with log-Normal distributed innovations.

The samples from the posterior of the DPMLN2-vMEM are derived by post-processing the samples
obtained from the posterior of the PX-DPMLN2-vMEM using the direct adaptation of transform-
ation (3.3.4) to the case under analysis.

For every simulation we sample 3000 bivariate observations from the speci�ed model. The
location vectors of both the components of the mixture distribution of the true innovations are
always chosen such that both of them (and thus also the whole mixture) have unit-vector mean.
To compute the e�ective sample sizes will use the �coda� R package. Furthermore, we will compare
the estimates of the density of the innovations and of the predictive density obtained with our
DPMLN2-vMEM with the ones obtained using Maximum Likelihood from a vMEM with parametric
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Log-Normal innovations with vector mean obtained as a transformation of the diagonal elements
of the scale matrix (so that the unit-vector-mean constraint is satis�ed). From now on we will call
this last parametric model LN1-vMEM.

4.1.1 Base diagonal speci�cation

We start our simulations with the simplest speci�cation for the conditional mean, that we will call
the �base diagonal speci�cation�:{

xt = µt � εt
µt = ω + β � µt−1 + Axt−1

with

ω =

[
0.40
0.25

]
, β =

[
0.35
0.30

]
, A =

[
0.27 0.19
0.18 0.31

]
and

εt
i.i.d.∼ 0.7 ∗ logN2

([
−0.10
−0.05

]
,

[
0.20 0.09
0.09 0.10

])
+ 0.3 ∗ logN2

([
−0.15
−0.10

]
,

[
0.30 0.10
0.10 0.20

])
.

We run the algorithm for N = 51, 000 iterations and then we discard the �rst 6,000 as burn in. To
sample the parameters of the conditional mean as described in subsection 3.4.5 we set p = 1 as the
weight for the proposal density and σ1 = 1.5 as its scale factor. The simulation time on a server
running at 2.60GHz and with 128GB RAM is about 2 hours. In Table 4.1.1 we report the posterior
means and 95% credible intervals for the parameters of the conditional mean, along with their true
values. As it can be seen all the true values lie inside the 95% credible intervals ensuring thus the
goodness of the estimates. All the estimates are based on e�ective sample size greater than 1100. In
Figures 4.1.1, 4.1.2, 4.1.3 we reported the traces, the posterior histograms and the autocorrelation
functions parameters of the conditional mean of the DPMLN2-vMEM model. As it can be seen
from the traces and is also con�rmed by the Geweke and Heidelberg-Welch tests of convergence, all
the Markov chains of the parameters of the conditional mean seem to have reached convergence and
the autocorrelation functions remain signi�cant for less than 80 lags. In Figure 4.1.4 are reported
the traces and the running averages of the maximum number of components and of the number of
�active components1� at each step along with the traces of the mixture weights. As it can be seen
both the average number of components and the average number of active ones converge quite fast.
Since we choose a �xed value for the concentration parameter for computational e�ciency reasons,
the average number of active components converge to 7, which is quite bigger than the true number
of components. But, from the rightmost graph of that same �gure we can notice that, at each step,
only two of the active components have signi�cant weight. So the choice of a �xed concentration
parameter in our simulations do not really a�ect that much the ability of the model to recover the
true number of components of the distribution of the disturbances. The contour plot on the left of
Figure 4.1.5 reports the density of the innovations estimated with DPMLN2-vMEM (black line),
the density of the innovations obtained with LN1-vMEM (green lines) and the true density of the
simulated innovations. As we can see the approximation of the density of the innovations obtained

1With the expression �active components� we will refer to those components to which, at a given iteration of the
MCMC simulation, is assigned at least one observation.
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with our speci�cation is very good and slightly better than the one obtained with the parametric
model (which, with this simple model, is the same quite good). Finally the contour plot on the
right of Figure 4.1.5 shows the one-step-ahead predictive density obtained with DPMLN2-vMEM
(black line), the one-step-ahead predictive density obtained with LN1-vMEM (green line) and the
true density of xT+1 given x1, . . . , xT . The approximation obtained with both models is quite
good although the one obtained with our model is slightly better than the one obtained with the
parametric model.

Table 4.1.1: Posterior mean and 95% credible intervals for the parameters of the conditional mean.
ω1 ω2 β1 β2

True 0.40 0.25 0.35 0.30
Est. 0.4764 0.2419 0.3295 0.3230

(95% C.I.) (0.3880, 0.5740) (0.2031, 0.2823) (0.2494, 0.4069) (0.2782, 0.3673)

α11 α21 α12 α22

True 0.27 0.18 0.19 0.31
Est. 0.2768 0.1741 0.1600 0.2970

(95% C.I.) (0.2363, 0.3191) (0.1498, 0.1973) (0.1005, 0.2265) (0.2581, 0.3376)

Figure 4.1.1: MCMC traces, posterior densities and ACF of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure 4.1.2: MCMC traces, posterior densities and ACF of the components of the post-processed
vector β. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.1.3: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.1.4: The upper left plot shows the traces of total number of components and of the
number of active components at each step. The lower left plot shows the corresponding running
averages. The plot on the right shows the traces of the mixture weights.
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Figure 4.1.5: On the left, the true and estimated contour plots of the densities of the innovations.
On the right, the contour plots of the true and estimated one step ahead predictive densities.

4.1.2 Base full speci�cation

We now extend the previous base diagonal speci�cation of the conditional mean to include also
o�-diagonal elements of the B matrix:{

xt = µt � εt
µt = ω + Bµt−1 + Axt−1

with

ω =

[
0.40
0.25

]
, B =

[
0.35 0.10
0.07 0.30

]
, A =

[
0.27 0.19
0.18 0.31

]
and

εt
i.i.d.∼ 0.7 ∗ logN2

([
−0.10
−0.05

]
,

[
0.20 0.09
0.09 0.10

])
+ 0.3 ∗ logN2

([
−0.15
−0.10

]
,

[
0.30 0.10
0.10 0.20

])
.

We run the algorithm for N = 200, 000 iterations and then we discard the �rst 5,000 as burn-in.
To sample the parameters of the conditional mean we set p = 0.9 as the mixture weight for the
proposal density and σ1 = 0.5, σ2 =

√
10 as scale factors. The simulation time on server running at

3.5GHz and with 128GB RAM is about 7 and a half hours. In Table 4.1.2 we report the posterior
means and 95% credible intervals for the parameters of the conditional mean, along with their true
values. As it can be seen all the true values lie inside the 95% credible intervals. All the estimates
are based on e�ective sample sizes greater than 328. In Figures 4.1.6, 4.1.7, 4.1.8 we reported the
traces, the posterior densities and the autocorrelation functions of the post-processed parameters
of the conditional mean. The traces seem to mix a little worse with respect to the corresponding
ones presented in Figures 4.1.1, 4.1.2, 4.1.3 but still seem to have reached convergence and the
autocorrelation functions remain signi�cant for at most 2500 lags. These are clues of the fact
that the Markov chain struggles to move with this target density more than with the one of the
base diagonal speci�cation. This is likely due to the newly introduced o�-diagonal elements of
the B matrix, that are highly correlated with other parameters. Figure 4.1.9 shows the traces
and the running averages of the maximum number of components and of the number of active
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components at each step along with the traces of the mixture weights. As in the case of the model
considered in subsection 4.1.1, there are on average 7 active components but only two of them has
really signi�cant weights. The contour plot on the left of Figure 4.1.10 reports the density of the
innovations estimated with DPMLN2-vMEM (black line), the density of the innovations obtained
with LN1-vMEM (green lines) and the true density of the simulated innovations. As we can see
the approximation of the density of the innovations obtained with our speci�cation is very good
and slightly better than the one obtained with the parametric model. Finally the contour plot on
the right of Figure 4.1.10 shows the one-step-ahead predictive density obtained with DPMLN2-
vMEM (black line), the one-step-ahead predictive density obtained with LN1-vMEM (green line)
and the true density of xT+1 given x1, . . . , xT . As we can see, the approximation obtained with our
semiparametric model is quite good and much better than the one obtained with its parametric
counterpart.

Table 4.1.2: Posterior mean and 95% credible intervals for the parameters of the conditional mean.
ω1 ω2 β11 β21 β12 β22

True 0.40 0.25 0.35 0.07 0.10 0.30
Est. 0.499751 0.247714 0.137292 0.103098 0.333920 0.252589

(95% C.I.) (0.3703, 0.6725) (0.1378, 0.3405) (−0.2711, 0.4915) (−0.1511, 0.4219) (−0.0555, 0.7963) (−0.0678, 0.5170)

α11 α21 α12 α22

True 0.27 0.18 0.19 0.31
Est. 0.253322 0.200371 0.167585 0.292701

(95% C.I.) (0.2132, 0.2962) (0.1758, 0.2262) (0.1005, 0.2336) (0.2526, 0.3317)

Figure 4.1.6: MCMC traces, posterior densities and ACF of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure 4.1.7: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix B. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.1.8: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.1.9: The upper left plot shows the traces of total number of components and of the
number of active components at each step. The lower left plot shows the corresponding running
averages. The plot on the right shows the traces of the mixture weights.

49



CHAPTER 4. Simulations

Figure 4.1.10: On the left, the true and estimated contour plots of the densities of the innovations.
On the right, the contour plots of the true and estimated one step ahead predictive densities.

4.1.3 Complete full speci�cation

Finally we simulate our sample from the full model described in equation (3.2.1):
xt = µt � εt
µt = ω + Bµt−1 + Axt−1 + A(−)xt−1I{rt−1<0} + Fxt−2+

+
`−1∑
j=1

(
κ(j) + G(j)xt−1 + G(j−)xt−1I{rt−1<0}

)
δ

(t−1)
j

with

εt
i.i.d.∼ 0.7 ∗ logN2

([
−0.200
−0.175

]
,

[
0.40 0.30
0.30 0.35

])
+ 0.3 ∗ logN2

([
−0.185
−0.195

]
,

[
0.37 0.15
0.15 0.39

])
.

We set rt ∼ N2 (0, xt,1) and divide the time period into three intervals: (0, 1000],(1000, 2100],
(2100, 3000].

We run the algorithm for N = 200, 000 iterations and we discard the �rst 10,000 as burn-in.
To sample the parameters of the conditional mean we set p = 0.9 as the weight for the proposal
distribution and σ1 = 1, σ2 =

√
38. The simulation time on a server running at 3.5GHz and with

128GB RAM is about 18 hours. In Table 4.1.3 we report the posterior means and 95% credible
intervals for the parameters of the conditional mean, along with their true values. As we can see
from the table, all the true values of the parameters lie inside the 95% posterior credible intervals.
All the estimates are based on e�ective sample sizes greater than 547. Since also in this case the
number of parameters is quite high and the graphs for all the variables are similar, we will report in
Figure 4.1.11 only a representative example of the traces, the histograms and the autocorrelation
functions of the sampled values2. As we can see the traces seem to have reached convergence and
the autocorrelation functions of most of the variables becomes non-signi�cant after about 3000 lags.
Figure 4.1.12 shows the traces and the running averages of the maximum number of components
and the active components on the left and the traces of the mixture weights on the rightmost �gure:
as we can see, there are on average 5 active components every step but, correctly, only two of them

2The remaining traces, histograms and autocorrelation functions are reported in Appendix A
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have signi�cant weights. The contour plot on the left of Figure 4.1.13 reports the density of the
innovations estimated with DPMLN2-vMEM (black line), the density of the innovations obtained
with LN1-vMEM (green lines) and the true density of the simulated innovations. Also in this
case the approximation of the density of the innovations obtained with our semiparametric model
is good in general and much better than the one obtained with the parametric model. Finally
the contour plot on the right of Figure 4.1.13 shows the one-step-ahead predictive density obtained
with DPMLN2-vMEM (black line), the one-step-ahead predictive density obtained with LN1-vMEM
(green line) and the true density of xT+1 given x1, . . . , xT . With this complex speci�cation of the
conditional mean the approximation obtained with our semiparametric model is not as good as the
one obtained with simpler speci�cations but is still signi�cantly better than the one obtained with
the parametric model.

Table 4.1.3: Posterior mean and 95% credible intervals for the parameters of the conditional mean.
True Est. (95% C.I.) True Est. (95% C.I.)

ω1 0.27 0.2426 (0.1360, 0.3589) κ1
2 0.11 0.1305 (0.0003, 0.2646)

ω2 0.57 0.5040 (0.3984, 0.6263) κ2
1 0.12 0.1633 (0.0232, 0.3175)

β11 0.25 0.0844 (−0.1123, 0.2831) κ2
2 0.05 0.1065 (−0.0454, 0.2655)

β21 0.10 0.0601 (−0.1448, 0.2745) γ1
11 0.08 0.0984 (−0.0013, 0.2078)

β12 0.08 0.2174 (−0.0251, 0.4420) γ1
21 0.03 0.0077 (−0.0946, 0.1171)

β22 0.23 0.2290 (−0.0204, 0.4613) γ1
12 0.05 0.0568 (−0.0451, 0.1527)

α11 0.15 0.1392 (0.0558, 0.2158) γ1
22 0.06 0.0105 (−0.0949, 0.1085)

α21 0.10 0.1086 (0.0115, 0.1952) γ2
11 0.07 0.0790 (−0.0362, 0.2051)

α12 0.11 0.1294 (0.0635, 0.2062) γ2
21 0.04 0.0638 (−0.0511, 0.1905)

α22 0.17 0.1988 (0.1220, 0.2899) γ2
12 0.05 0.0268 (−0.0906, 0.1322)

α−11 0.13 0.2126 (0.0854, 0.3517) γ2
22 0.06 -0.0116 (−0.1267, 0.0955)

α−21 0.04 0.099413 (−0.0333, 0.2456) γ1−
11 0.08 0.0527 (−0.1377, 0.2288)

α−12 0.05 -0.0133 (−0.1232, 0.0851) γ1−
21 0.03 -0.0504 (−0.2268, 0.1228)

α−22 0.20 0.1806 (0.0591, 0.3019) γ1−
12 0.04 0.0038 (−0.1484, 0.1656)

ϕ−11 0.10 0.1183 (0.0599, 0.1793) γ1−
22 0.12 0.0724 (−0.0960, 0.2335)

ϕ−21 0.05 0.0469 (−0.0132, 0.1099) γ2−
11 0.10 -0.0436 (−0.2437, 0.1327)

ϕ−12 0.07 0.0400 (−0.0151, 0.0951) γ2−
21 0.06 -0.0901 (−0.2815, 0.0939)

ϕ−22 0.09 0.0542 (0.0005, 0.1126) γ2−
12 0.02 0.0530 (−0.1059, 0.2309)

κ1
1 0.10 0.0680 (−0.0627, 0.2034) γ2−

22 0.09 0.1342 (−0.0328, 0.3125)

51



CHAPTER 4. Simulations

Figure 4.1.11: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.1.12: The upper left plot shows the traces of total number of components and of the
number of active components at each step. The lower left plot shows the corresponding running
averages. The plot on the right shows the traces of the mixture weights.

Figure 4.1.13: On the left, the true and estimated contour plots of the densities of the innovations.
On the right, the contour plots of the true and estimated one step ahead predictive densities.
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4.2 Trivariate simulations

We will report now some trivariate simulations. Since the number of parameter rapidly increase
with the complexity of the speci�cation of the conditional mean, we will report only simulations
with two simple speci�cations of the conditional mean.

For these trivariate simulations we will use the same hyperparameters used for the bivariate
simulations, described at the beginning of the previous section. Also in this case the samples from
the posterior of the DPMLN2-vMEM are derived by post-processing the samples obtained from the
posterior of the PX-DPMLN2-vMEM using the direct adaptation of transformation (3.3.4) to the
case under analysis.

For every simulation we sample 3000 trivariate observations by the speci�ed model. The location
vectors of both the components of the mixture distribution of the innovations are again chosen such
that both of them (and thus also the whole mixture) have unit-vector mean.

4.2.1 Base diagonal speci�cation

We start again simulating the base diagonal speci�cation{
xt = µt � εt
µt = ω + β � µt−1 + Axt−1

with

ω =

 0.27
0.57
0.37

 , β =

 0.35
0.23
0.31

 , A =

 0.21 0.12 0.06
0.11 0.27 0.10
0.08 0.09 0.28


and

εt
i.i.d.∼ 0.7∗logN2

 −0.20
−0.175
−0.15

 ,
 0.40 0.30 0.20

0.30 0.35 0.25
0.20 0.25 0.30

+0.3∗logN2

 −0.185
−0.195
−0.125

 ,
 0.37 0.15 0.24

0.15 0.39 0.18
0.24 0.18 0.25

 .

We run the algorithm for N = 50, 000 iterations and we discard the �rst 5000 as burn in. To sample
the parameters of the conditional mean we set p = 1 as the weight for the proposal mixture density
and σ1 = 1.5 as its scale factor. The simulation time on a server running at 2.60GHz and with 128GB
RAM is about 2 and a half hours. In Table 4.2.1 we report the posterior means and 95% credible
intervals for the parameters of the conditional mean, along with their true values. As it can be
seen, all the true values lie inside the 95% credible intervals. All the estimates are based on e�ective
sample sizes greater than 582. In Figures 4.2.1, 4.2.2, 4.2.3 we reported the traces, the posterior
densities and the autocorrelation functions of the post-processed parameters of the conditional
mean. As it can be seen, all the traces have reached convergence and all the autocorrelation
functions become non-signi�cant in at most 500 lags. In Figure 4.2.4 are reported the traces
and the running averages of the maximum number of components and of the number of active
components at each step along with the traces of the mixture weights. Clearly both the average
maximum number of components and the average number of active components converge quite fast,
resulting in an average number of 6 active components. But, from the rightmost graph of that same
�gure we can also notice that also in this case, at each step, only two of the active components have
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signi�cant weights (which are, on average, remarkably close to the true ones). Finally in Figure
4.2.5 we report the true marginal densities of the innovations together with the estimated marginal
densities obtained with DMPLN2-vMEM and the LN1-vMEM. The approximation obtained with
the DPMLN2-vMEM is quite good and slightly better than the one obtained with the LN1-vMEM.

Table 4.2.1: Posterior mean and 95% credible intervals for the parameters of the conditional mean.
True Est. (95% C.I.) True Est. (95% C.I.)

ω1 0.27 0.2738 (0.2104, 0.3363) α31 0.08 0.0889 (0.0323, 0.1464)

ω2 0.57 0.5463 (0.4411, 0.6525) α12 0.12 0.1282 (0.0766, 0.1786)

ω3 0.37 0.3485 (0.2779, 0.4228) α22 0.27 0.2592 (0.1891, 0.3273)

β1 0.35 0.3143 (0.2437, 0.3838) α32 0.09 0.1002 (0.0513, 0.1472)

β2 0.23 0.2311 (0.1558, 0.3072) α13 0.06 0.0830 (0.0294, 0.1417)

β3 0.31 0.2980 (0.2283, 0.3668) α23 0.10 0.1397 (0.0663, 0.2158)

α11 0.21 0.2080 (0.1436, 0.2725) α33 0.28 0.2877 (0.2296, 0.3507)

α21 0.11 0.1029 (0.0257, 0.1845)

Figure 4.2.1: MCMC traces, posterior densities and ACF of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.2.2: MCMC traces, posterior densities and ACF of the components of the post-processed
vector β. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure 4.2.3: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.2.4: The upper left plot shows the traces of total number of components and of the
number of active components at each step. The lower left plot shows the corresponding running
averages. The plot on the right shows the traces of the mixture weights.

Figure 4.2.5: True and estimated marginal densities of the innovations.
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4.2.2 Base full speci�cation

We now simulate our sample from the base full speci�cation{
xt = µt � εt
µt = ω + Bµt−1 + Axt−1

with

ω =

 0.35
0.59
0.43

 , B =

 0.36 0.07 0.18
0.20 0.24 0.14
0.01 0.10 0.41

 , A =

 0.21 0.14 0.04
0.13 0.28 0.09
0.07 0.08 0.30


and

εt
i.i.d.∼ 0.7∗logN2

 −0.200
−0.175
−0.150

 ,
 0.40 0.30 0.20

0.30 0.35 0.25
0.20 0.25 0.30

+0.3∗logN2

 −0.185
−0.195
−0.125

 ,
 0.37 0.15 0.24

0.15 0.39 0.18
0.24 0.18 0.25

 .

We run the algorithm for N = 200, 000 iterations and we discard the �rst 20,000 as burn-in. To
sample the parameters of the conditional mean we set p = 0.9 as the weight for the proposal
mixture density and σ1 = 1, σ2 =

√
21 as its scale factors. The simulation time on a server running

at 2.60GHz and with 128GB RAM is about 13 hours. In Table 4.2.2 we report the posterior means
and 95% credible intervals for the parameters of the conditional mean, along with their true values.
As it can be seen, again, all the true values of the parameters lie inside the 95% posterior credible
intervals. All the estimates are based on e�ective sample sizes greater than 327. In Figures 4.2.6,
4.2.7, 4.2.8 we reported the traces, the posterior densities and the autocorrelation functions of the
post-processed parameters of the conditional mean. These �gures show that all the traces have
reached convergence and all the autocorrelation functions become non-signi�cant in less than 3000
lags (most of them in less than 2000). In Figure 4.2.9 are reported the traces and the running
averages of the maximum number of components and of the number of active components, at
each step, along with the traces of the mixture weights. We can see that there are on average 7
active components but, correctly, only two of them have really signi�cant weights. Finally in Figure
4.2.10 we report the true marginal densities of the innovations together with the estimated marginal
densities obtained with DMPLN2-vMEM and the LN1-vMEM. Also in this case, the approximation
obtained with the DPMLN2-vMEM is better than the one obtained with the LN1-vMEM.

Figure 4.2.6: MCMC traces, posterior densities and ACF of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Table 4.2.2: Posterior mean and 95% credible intervals for the parameters of the conditional mean.
True Est. (95% C.I.) True Est. (95% C.I.)

ω1 0.35 0.3532 (0.1531, 0.5743) α11 0.21 0.2083 (0.1658, 0.2521)

ω2 0.59 0.6455 (0.4572, 0.8484) α21 0.13 0.1359 (0.0946, 0.1770)

ω3 0.43 0.4290 (0.2965, 0.5566) α31 0.07 0.0792 (0.0473, 0.1095)

β11 0.36 0.1417 (−0.1222, 0.3800) α12 0.14 0.1255 (0.0744, 0.1765)

β21 0.10 0.0864 (−0.2156, 0.3987) α22 0.28 0.2469 (0.1966, 0.2977)

β31 0.01 -0.0741 (−0.3631, 0.2235) α32 0.08 0.0737 (0.0348, 0.1102)

β12 0.07 0.1346 (−0.0989, 0.4058) α13 0.04 0.0534 (0.0014, 0.1074)

β22 0.24 0.2126 (−0.0449, 0.4671) α23 0.09 0.1046 (0.0512, 0.1572)

β32 0.10 0.1290 (−0.1039, 0.3946) α33 0.30 0.2739 (0.2308, 0.3190)

β13 0.18 0.2390 (0.0909, 0.4126)

β23 0.14 0.1884 (0.0206, 0.3706)

β33 0.41 0.4788 (0.3109, 0.6359)

Figure 4.2.7: MCMC traces, posterior densities and ACF of the components of the post-processed
vector β. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure 4.2.8: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure 4.2.9: The upper left plot shows the traces of total number of components and of the
number of active components at each step. The lower left plot shows the corresponding running
averages. The plot on the right shows the traces of the mixture weights.

Figure 4.2.10: True and estimated marginal densities of the innovations.
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Chapter 5

Empirical Analyses:

Interdependence across volatility

measures.

5.1 Introduction

Volatility measurement using intra-daily data was born with the simplest daily range proposed
by Parkinson (1980) and evolved since then passing through the plain vanilla realized volatility
proposed by Andersen and Bollerslev (1998) arriving to the more recent realized kernels proposed
by Barndor�-Nielsen, Hansen, Lunde, and Shephard (2008). In parallel to the evolution of these
measures has been done a natural complementary e�ort to build adequate models for volatility pre-
diction and Multiplicative Error Models have been used for this purpose (see, for example, Cipollini,
Engle, and Gallo (2013)). The time series which are most commonly used in this respect are the
squared close-to-close returns r2

t , the realized variances rv2
t (in any of their �avours), the absolute

returns |rt|, the realized volatilities rvt, and the daily ranges hlt. All these series posses some very
well known general features like persistence and alternance of periods of high and low volatility.
From an empirical point of view, we will now illustrate the characteristics of our DPMLN2-vMEM
in modelling the interaction among several volatility measures for the purpose of forecasting. We
will consider four di�erent speci�cations of the conditional mean for our semiparametric model:

Specification 1: µt = ω + β � µt−1 + Axt−1

Specification 2: µt = ω + β � µt−1 + Axt−1 +α(−) � xt−1I{rt−1<0} +ϕ� xt−2

Specification 3: µt = ω + β � µt−1 + Axt−1 +α(−) � xt−1I{rt−1<0} + Fxt−2

Specification 4: µt = ω + β � µt−1 + Axt−1 + A(−)xt−1I{rt−1<0} + Fxt−2

We will make a comparison between the DPMLN2-vMEM with each speci�cation of the conditional
mean and the analogue LN1-vMEM (estimated using MLE) in terms of their (in the sample)
predictive performance. To do this we will use the Log-Predictive Score (LPS) proposed by Kim,
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Figure 5.1.1: Time series of realized volatilities and absolute returns of S&P 500, DJIA, FTSE 100

Shephard, and Chib (1998), de�ned as:

LPS = − 1

T

T∑
t=1

log f̂xt (xt) = − 1

T

T∑
t=1

log

(
d∏

h=1

1

µ̂
(t)
h

f̂εt (xt � µ̂t)

)
where the probability density function of the innovations has been estimated as:

f̂εt (·) =
1

N

N∑
n=1

NTrunc∑
j=1

w
(n)
j logNd

(
·; m(n)

j ,Σ
(n)
j

)
and Ntrunc is the minimum number of components that appear in all the MCMC steps and is such

that
NTrunc∑
j=1

w
(n)
j > 0.99. By this de�nition, a lower LPS is an indication of a better predictive

performance.
For our analysis we make use of a bivariate series composed by daily absolute returns and

realized kernel volatilities, (|rt| , rvt). We take the data from the Oxford Man Institute �Realized
Library� (Shephard and Sheppard (2010)) and we express them in annualized percentage terms
through the transformation:

xAPt = 100
√

252xt.

We run our analysis on three stock indices: Standard & Poor 500 (S&P 500), Dow Jones Industrial
Average (DJIA), Financial Times Stock Exchange 100 (FTSE 100). The covered period is the one
between January 1996 and February 2009 for a total of 3261 observations for the S&P 500 series,
3260 observations for the DJIA series and 2840 observations of the FTSE 100 series. From the time
series plotted in Figure 5.1.1, we can see that both the measures of all the three indices share some
common features like alternance of periods of high and low volatility and persistence.

In the next sections we will compare the estimates obtained for the di�erent models and the
di�erent time series using our DPMLN2-vMEM and the corresponding ones obtained using a LN1-
vMEM estimated with Maximum Likelihood.

For the �rst speci�cation of the conditional mean, for all the time series, we run 150,000 iterations
of the algorithm described in Section 3.4 and then discard the �rst 30,000 of them as burn-in. For
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all the other speci�cations of the conditional mean, for all the time series, we run 200,000 iterations
of the same algorithm and then discard the �rst 50,000 of them as burn-in. In Tables 5.2.1,
5.3.1, 5.4.1 and 5.5.1 we report, for each speci�cation of the conditional mean, the estimates of
its parameters and the 95% credible intervals obtained with our model for the three time series,
together with the maximum likelihood estimates of the same parameters and the corresponding
standard errors obtained from the LN1-vMEM, for all the time series. In all the analyses, all the
e�ective sample sizes of the variables obtained from the MCMC simulations are bigger than 500. In
Tables 5.2.2, 5.3.2, 5.4.2 and 5.5.2 we report, for each speci�cation of the conditional mean, the Log-
Predictive scores of the DPMLN2-vMEM and the LN1-vMEM, for all the three time series. Figures
5.2.1, 5.3.1, 5.4.1 and 5.5.1 show a signi�cant examples of the traces, the posterior histograms
and the autocorrelation functions of the parameters of each speci�cation of the conditional mean.
Finally Figures 5.2.2, 5.3.2, 5.4.2 and 5.5.2 show the estimated joint and marginal densities of the
innovations over the estimated innovations obtained with all the four speci�cations1.

5.2 Speci�cation 1

We �rst �t to the time series described above our semiparametric model with Speci�cation 1 of the
conditional mean.

Table 5.2.1: Posterior mean, 95% credible intervals, ML estimates and corresponding standard
errors, for the parameters of the conditional mean.

S&P 500 DJIA FTSE 100
MCMC Est. MLE Est. MCMC Est. MLE Est. MCMC Est. MLE Est.

(95% C.I.) (S.d.) (95% C.I.) (S.d.) (95% C.I.) (S.d.)

ω1 0.00835 -0.0361 0.0157 -0.1157 0.0748 -0.0486
(−0.1266, 0.3211) 0.2473 (−0.2783, 0.3423) 0.2527 (−0.1332, 0.3047) 0.2155

ω2 0.4343 0.4685 0.4446 0.4519 0.2244 0.2089
(0.3102, 0.5623) 0.0603 (0.3229, 0.5698) 0.0571 (0.1415, 0.3140) 0.0401

β1 0.7111 0.6379 0.6115 0.6386 0.6455 0.6629
(0.6357, 0.7754) 0.0523 (0.5189, 0.6967) 0.0525 (0.5692, 0.7149) 0.0624

β2 0.5609 0.5603 0.5486 0.5621 0.6421 0.6735
(0.5221, 0.5980) 0.0157 (0.5091, 0.5862) 0.0154 (0.5978, 0.6852) 0.012506

α11 -0.0428 -0.1131 -0.0451 -0.0925 -0.0245 -0.0574
(−0.0667,−0.0183) 0.0230 (−0.0750,−0.0151) 0.0251 (−0.0552, 0.0065) 0.0282

α21 0.0405 0.0393 0.0370 0.0368 0.0305 0.0325
(0.0308, 0.0505) 0.0052 (0.0280, 0.0461) 0.0047 (0.0210, 0.0403) 0.0046

α12 0.3452 0.5915 0.4514 0.5610 0.4042 0.5137
(0.2723, 0.4276) 0.0760 (0.3537, 0.5558) 0.0763 (0.3167, 0.5000) 0.0973

α22 0.3636 0.3625 0.3782 0.3641 0.3086 0.2758
(0.3307, 0.3973) 0.0150 (0.3447, 0.4134) 0.0144 (0.2701, 0.3486) 0.0125

1For the sake of brevity, we will plot hereafter only the traces, histograms and autocorrelation functions of the
elements of the ω vector and the estimations of the joint density and its marginals obtained analysing the time series
of the S&P 500 index with DPMLN2-vMEM and LN1-vMEM. Very similar �gures for other parameters and for the
other two time series are reported in Appendix B.
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Table 5.2.2: Log-Predictive Scores for parametric and semiparametric models, for all the three
series.

S&P 500 DJIA FTSE 100

LN1-vMEM 6.1795 6.0238 6.1318
DPMLN2-vMEM 6.0176 5.8676 5.9124

Figure 5.2.1: MCMC traces, posterior histograms and ACFs of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I.

Figure 5.2.2: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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5.3 Speci�cation 2

We will now �t our semiparametric model with Speci�cation 2 of the conditional mean.

Table 5.3.1: Posterior mean, 95% credible intervals, ML estimates and corresponding standard
errors, for the parameters of the conditional mean.

S&P 500 DJIA FTSE 100
MCMC Est. MLE Est. MCMC Est. MLE Est. MCMC Est. MLE Est.

(95% C.I.) (S.d.) (95% C.I.) (S.d.) (95% C.I.) (S.d.)

ω1 0.1543 0.1030 0.0635 0.0368 0.1147 0.1423
(−0.0025, 0.3211) 0.1490 (−0.1573, 0.3039) 0.1245 (−0.0512, 0.2931) 0.1084

ω2 0.3810 0.3360 0.3368 0.2812 0.1453 0.1196
(0.2812, 0.4913) 0.0452 (0.2496, 0.4306) 0.0378 (0.0936, 0.2039) 0.0215

β1 0.7896 0.7914 0.7092 0.8358 0.7179 0.8314
(0.7285, 0.8393) 0.0359 (0.6184, 0.7858) 0.0312 (0.6224, 0.8049) 0.0348

β2 0.6488 0.7111 0.6790 0.7517 0.7720 0.8376
(0.5952, 0.6960) 0.0195 (0.6299, 0.7237) 0.0189 (0.7300, 0.8116) 0.0132

α11 -0.1077 -0.2068 -0.0959 -0.1690 -0.0831 -0.1776
(−0.1416,−0.0731) 0.0267 (−0.1287,−0.0614) 0.0298 (−0.1210,−0.0436) 0.0324

α21 0.0352 0.0310 0.0319 0.0290 0.0209 0.0187
(0.0261, 0.0442) 0.0046 (0.0240, 0.0400) 0.0040 (0.0130, 0.0292) 0.0033

α12 0.2262 0.2926 0.3156 0.2161 0.2888 0.2129
(0.1665, 0.2991) 0.0563 (0.2263, 0.4188) 0.0483 (0.1835, 0.4038) 0.0548

α22 0.3143 0.3411 0.3316 0.3531 0.2934 0.3256
(0.2757, 0.3518) 0.0193 (0.2951, 0.3684) 0.0181 (0.2534, 0.3344) 0.0171

α
(−)
1 0.0896 0.1291 0.0850 0.1245 0.0566 0.1604

(0.0608, 0.1194) 0.0249 (0.0520, 0.1167) 0.0221 (0.0161, 0.0949) 0.0236

α
(−)
2 0.0612 0.0568 0.0549 0.0514 0.0353 0.0389

(0.0465, 0.0759) 0.0071 (0.0432, 0.0668) 0.0059 (0.0237, 0.0469) 0.0055

ϕ1 0.0492 0.1137 0.0380 0.0961 0.0615 0.0971
(0.0181, 0.0815) 0.0280 (0.0069, 0.0690) 0.0280 (0.0272, 0.0973) 0.0315

ϕ2 -0.0604 -0.1398 -0.0979 -0.1831 -0.1168 -0.2127
(−0.1112,−0.0067) 0.0238 (−0.1480,−0.0468) 0.0241 (−0.1661,−0.0692) 0.0197

Table 5.3.2: Log-Predictive Scores for parametric and semiparametric models, for all the three
series.

S&P 500 DJIA FTSE 100

LN1-vMEM 6.1606 6.0020 6.1069
DPMLN2-vMEM 5.9986 5.8469 5.8908
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Figure 5.3.1: MCMC traces, posterior histograms and ACFs of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I.

Figure 5.3.2: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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5.4 Speci�cation 3

Now we �t to the time series our DPMLN2-vMEM, with Speci�cation 3 of the conditional mean.

Table 5.4.1: Posterior mean, 95% credible intervals, ML estimates and corresponding standard
errors, for the parameters of the conditional mean.

S&P 500 DJIA FTSE 100
MCMC Est. MLE Est. MCMC Est. MLE Est. MCMC Est. MLE Est.

(95% C.I.) (S.e.) (95% C.I.) (S.e.) (95% C.I.) (S.e.)

ω1 0.1404 0.0623 0.0418 0.0136 0.1022 0.1408
(−0.0165, 0.3051) 0.1127 (−0.1682, 0.2602) 0.0862 (−0.0760, 0.2880) 0.0939

ω2 0.3701 0.3087 0.3407 0.2655 0.1425 0.1049
(0.2715, 0.4832) 0.0434 (0.2500, 0.4457) 0.0371 (0.0901, 0.2015) 0.0196

β1 0.7910 0.8486 0.6409 0.8931 0.6832 0.8559
(0.7097, 0.8532) 0.0384 (0.4790, 0.7843) 0.0289 (0.5311, 0.8194) 0.0353

β2 0.6541 0.7280 0.6741 0.7619 0.7708 0.8530
(0.5990, 0.7042) 0.0193 (0.6224, 0.7220) 0.0190 (0.7243, 0.8143) 0.0123

α11 -0.1062 -0.2025 -0.0891 -0.1636 -0.0733 -0.1640
(−0.1376,−0.0730) 0.0271 (−0.1212,−0.0549) 0.0300 (−0.1114,−0.0346) 0.0332

α21 0.0370 0.0359 0.0333 0.0335 0.0335 0.0382
(0.0264, 0.0479) 0.0058 (0.0233, 0.0431) 0.0053 (0.0226, 0.0446) 0.0056

α12 0.2501 0.4694 0.3593 0.4251 0.3122 0.2546
(0.1472, 0.3561) 0.1095 (0.2454, 0.4811) 0.1082 (0.1867, 0.4454) 0.1177

α22 0.3162 0.3475 0.3355 0.3586 0.2914 0.3176
(0.2768, 0.3543) 0.0192 (0.2981, 0.3741) 0.0181 (0.2511, 0.3325) 0.0179

α
(−)
1 0.0866 0.1042 0.0743 0.0963 0.0522 0.1572

(0.0572, 0.1167) 0.0246 (0.0406, 0.1071) 0.0211 (0.0082, 0.0930) 0.0243

α
(−)
2 0.0601 0.0534 0.0546 0.0494 0.0346 0.0376

(0.0460, 0.0745) 0.0070 (0.0422, 0.0671) 0.0059 (0.0232, 0.0460) 0.0052

ϕ11 0.0470 0.1281 0.0273 0.1078 0.0463 0.0845
(0.0140, 0.0788) 0.0288 (−0.0072, 0.0609) 0.0284 (0.0087, 0.0815) 0.0330

ϕ21 -0.0035 -0.0095 -0.0012 -0.0073 -0.0165 -0.0251
(−0.0143, 0.0076) 0.0060 (−0.0114, 0.0085) 0.0056 (−0.0277,−0.0054) 0.0059

ϕ12 -0.0218 -0.2543 0.0398 -0.282525 0.0237 -0.0736
(−0.1497, 0.1114) 0.1279 (−0.1354, 0.2199) 0.120276 (−0.1476, 0.1936) 0.1277

ϕ22 -0.0642 -0.1543 -0.0971 -0.193756 -0.1089 -0.2123
(−0.1159,−0.0105) 0.0235 (−0.1491,−0.0455) 0.023992 (−0.1598,−0.0600) 0.0201

Table 5.4.2: Log-Predictive Scores for parametric and semiparametric models, for all the three
series.

S&P 500 DJIA FTSE 100

LN1-vMEM 6.1595 6.0009 6.1033
DPMLN2-vMEM 6.0007 5.8437 5.8926

65



CHAPTER 5. Empirical Analyses: Interdependence across volatility measures.

Figure 5.4.1: MCMC traces, posterior histograms and ACFs of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I.

Figure 5.4.2: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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5.5 Speci�cation 4

Finally we �t to the time series our DPMLN2-vMEM, with Speci�cation 4 of the conditional mean.

Table 5.5.1: Posterior mean, 95% credible intervals, ML estimates and corresponding standard
errors, for the parameters of the conditional mean.

S&P 500 DJIA FTSE 100
MCMC Est. MLE Est. MCMC Est. MLE Est. MCMC Est. MLE Est.

(95% C.I.) (S.e.) (95% C.I.) (S.e.) (95% C.I.) (S.e.)

ω1 0.1682 0.1225 0.0757 0.0425 0.1274 0.1633
(0.0305, 0.3112) 0.1133 (−0.1403, 0.3074) 0.0919 (0.0127, 0.2535) 0.0917

ω2 0.3833 0.3816 0.3603 0.3061 0.1271 0.1175
(0.2993, 0.4815) 0.0413 (0.2739, 0.4552) 0.0364 (0.0847, 0.1758) 0.0187

β1 0.8270 0.8475 0.6805 0.8856 0.8305 0.8608
(0.7673, 0.8760) 0.0354 (0.5275, 0.8035) 0.0297 (0.7315, 0.8954) 0.0319

β2 0.7123 0.7307 0.6906 0.7596 0.8217 0.8580
(0.6666, 0.7539) 0.0180 (0.6443, 0.7334) 0.0184 (0.7840, 0.8543) 0.0117

α11 -0.1170 -0.2026 -0.0963 -0.1690 -0.0885 -0.1621
(−0.1504,−0.0819) 0.0274 (−0.1332,−0.0586) 0.0307 (−0.1257,−0.0484) 0.0345

α21 -0.0039 -0.0045 0.0032 0.0046 0.013283 0.0166
(−0.0162, 0.0081) 0.0069 (−0.0074, 0.0142) 0.0063 (0.0010, 0.0259) 0.0066

α12 0.2221 0.4052 0.3152 0.3910 0.2381 0.2155
(0.1175, 0.3268) 0.1094 (0.1954, 0.4402) 0.1097 (0.1260, 0.3551) 0.1193

α22 0.2884 0.3106 0.3121 0.3336 0.2684 0.3048
(0.2519, 0.3257) 0.0190 (0.2760, 0.3496) 0.0181 (0.2305, 0.3074) 0.0180

α
(−)
11 0.1054 0.1027 0.0851 0.1084 0.0870 0.1478

(0.0687, 0.1442) 0.0321 (0.0379, 0.1339) 0.0301 (0.0405, 0.1315) 0.0378

α
(−)
21 0.0934 0.0902 0.0692 0.0643 0.0450 0.0433

(0.0780, 0.1089) 0.0080 (0.0552, 0.0836) 0.0072 (0.0317, 0.0594) 0.0069

α
(−)
12 0.0022 0.0504 0.0277 0.0083 0.0046 0.0386

(−0.0438, 0.0462) 0.0387 (−0.0350, 0.0883) 0.0353 (−0.0466, 0.0549) 0.0479

α
(−)
22 -0.0206 -0.0216 -0.0032 -0.0060 -0.0037 -0.0016

(−0.0385,−0.0025) 0.0097 (−0.0198, 0.0127) 0.0086 (−0.0200, 0.0121) 0.0087

ϕ11 0.0551 0.1295 0.0343 0.1085 0.0554 0.0854
(0.0234, 0.0864) 0.0286 (−0.0019, 0.0692) 0.0285 (0.0210, 0.0900) 0.0327

ϕ21 -0.0005 -0.0025 0.0013 -0.0046 -0.0184 -0.0234
(−0.0114, 0.0099) 0.0059 (−0.0078, 0.0107) 0.0056 (−0.0294,−0.0072) 0.0059

ϕ12 -0.0420 -0.2194 0.0210 -0.2465 -0.0784 -0.0602
(−0.1657, 0.0830) 0.1251 (−0.1468, 0.1899) 0.1215 (−0.2184, 0.0683) 0.1251

ϕ22 -0.0629 -0.0990 -0.0689 -0.1468 -0.1164 -0.1872
(−0.1119,−0.0146) 0.0227 (−0.1165,−0.0209) 0.0238 (−0.1626,−0.0711) 0.0202
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Table 5.5.2: Log-Predictive Scores for parametric and semiparametric models, for all the three
series.

S&P 500 DJIA FTSE 100

LN1-vMEM 6.1398 5.9885 6.0961
DPMLN2-vMEM 5.9783 5.8305 5.8848

Figure 5.5.1: MCMC traces, posterior histograms and ACFs of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I.

Figure 5.5.2: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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5.6 Discussion

First of all, from Figures 5.2.1, 5.3.1, 5.4.1 and 5.5.1 we can see that, although there is some
autocorrelation, for every speci�cation of the conditional mean, the traces of the MCMC simulations
have all reached convergence and the posterior histograms look informative.

For all the speci�cations of the conditional mean, for all the three time series and both the
models considered, we obtain some common qualitative features of the point estimates. First of
all the βs are always the biggest coe�cients, meaning that the factor that in�uences the most the
evolution of the conditional mean is always its lagged realization. Second, the estimates of the
coe�cients of the second column of matrix A are always bigger, in absolute value, than the ones in
the �rst column of the same matrix. This suggests that the lagged realizations of the realized kernel
volatility in�uence the evolution of both the components of the conditional mean vector more than
the lagged realizations of the absolute returns. This fact, that could look strange at �rst sight,
simply means that the lagged observation of the realized volatility contains more information on
the present realization of the conditional mean of the absolute returns than the lagged absolute
returns and this can be viewed as a further proof of the fact that the realized volatilities are more
informative about the latent volatility than the absolute returns. Furthermore the α11 coe�cient
is always negative meaning that the conditional mean of the absolute returns depends inversely
from the lagged realizations of the absolute returns. For what it takes the parameters in matrices
A(−) and F, when present, they are always smaller than the coe�cients of β and of the second
column of the matrix A meaning that, although their introduction contribute to the increment of
the predictive power of the model (as proven by the Log-Predictive Scores), their in�uence on the
evolution of the conditional mean is of secondary importance.

In all the empirical analyses we tried, for all the speci�cations adopted for the conditional mean,
there are always about the same average number of active and total components of the DPM, for all
the time series (as shown by the graphs in Appendix B). Furthermore for all the time series and all
the speci�cations of the conditional mean there are always at least eight or nine components of the
DPM for the whole MCMC run. The sum of the average of the weights of these components is always
bigger than 0.99, meaning that, even in the MCMC steps in which there are more components, the
�rst eight or nine are dominant.

Regarding the approximation of the distribution of the data obtained with the DPMLN2-vMEM
and with the LN1-vMEM with all the four speci�cations of the conditional mean, Figures 5.2.2,
5.3.2, 5.4.2 and 5.5.2 show that our semiparametric model outperforms its parametric counterpart.
This can be perceived from the graphs of the joint distribution, but it becomes even more clear
looking at the graphs of the marginals: for all the speci�cations of the conditional mean, the
approximation (in particular of the �rst marginals) obtained with DPMLN2-vMEM is much better
than the one obtained with LN1-vMEM.

For what it takes the predictive performances in the sample, Tables 5.2.2, 5.3.2, 5.4.2 and 5.5.2
clearly show that the DPMLN2-vMEM performs always better the LN1-vMEM. In Table 5.6.1 we
report all together the Log-Predictive Scores that we already presented singularly in the previous
sections, to compare more easily the predictive powers of the two models when the speci�cation of
the conditional mean changes. As we can see looking at the columns of this table, for all the time
series considered and with both the DPMLN2 and LN1 models we have almost the same trend of
the Log-Predictive Scores for increasing model complexity. In particular, passing from the �rst to
the second speci�cation causes a small increase of the predictive power. Passing from the second to
the third speci�cation generally does not cause a signi�cant decrease of the Log-Predictive Scores
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Table 5.6.1: Log-Predictive Scores
DPMLN2 LN1

SP500 FTSE100 DJIA SP500 FTSE100 DJIA

Spec. 1 6.0176 5.9124 5.8676 6.1795 6.1318 6.0238
Spec. 2 5.9986 5.8908 5.8469 6.1606 6.1069 6.0020
Spec. 3 6.0007 5.8926 5.8437 6.1595 6.1033 6.0009
Spec. 4 5.9783 5.8848 5.8305 6.1398 6.0961 5.9885

(and also, in the case of the DPMLN2-vMEM for the S&P 500 and FTSE 100 time series, there is a
slight increase), meaning that the introduction of doubly-lagged observations of the other volatility
proxy do not increase signi�cantly the predictive power of the model. Finally passing from the
third to the fourth speci�cation there is a general decrease of the Log-Predictive Scores, meaning
that introducing the asymmetric observations of the other volatility proxy generally increases the
predictive power of the model.

70



Conclusions
With this work we gave a novel contribution to the modelling and computational aspects of

vector Multiplicative Error Models. We proposed a semiparametric speci�cation for the innovation
term of a vector MEM using a location-scale Dirichlet Process Mixture of multivariate log-normal
distribution and obtained a framework that is more �exible and e�cient in comparison with the
standard parametric one. We also introduced a very general speci�cation for the conditional mean
that nests most of the speci�cations used in the literature allowing the model to represent many
features of �nancial time series. The parameter expansion technique enabled us to simplify some
aspects of our adaptation of the slice sampler obtaining an e�cient and relatively fast algorithm.
The proposed semiparametric model showed better performances than the naive parametric coun-
terpart in the �tting of both the simulations and the empirical data. Possible development of this
research line include (but are not limited to) a further re�nement of the sampling technique used to
sample the parameters of the conditional mean from their full posterior to make this step even more
e�cient (this is a crucial point especially when considering time series with many dimensions), the
use of a more complex speci�cation of the conditional mean to compare volatility proxies and the
use of the proposed model for other applications (e.g. for the analysis of spillover e�ect between
di�erent market indices).
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Appendix A

Remaining graphs of the bivariate

simulations

We will now include the graphs of the parameters of the model analysed in subsection 4.1.3 that
we have not already included there.

Figure A.0.1: MCMC traces, posterior densities and ACF of the components of the post-processed
vector ω. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

72



APPENDIX A. REMAINING GRAPHS OF THE BIVARIATE SIMULATIONS 73

Figure A.0.2: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix B. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure A.0.3: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix A(−). The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure A.0.4: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix F. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure A.0.5: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix K. The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure A.0.6: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix G(1). The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure A.0.7: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix G(2). The green lines in the histogram represent the 95% C.I. while the red one is the true
value.
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Figure A.0.8: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix G(1−). The green lines in the histogram represent the 95% C.I. while the red one is the true
value.

Figure A.0.9: MCMC traces, posterior densities and ACF of the components of the post-processed
matrix G(2−). The green lines in the histogram represent the 95% C.I. while the red one is the true
value.



Appendix B

Remaining graphs of the empirical

analyses

B.1 Speci�cation 1:

B.1.1 S&P 500

Figure B.1.1: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.

Figure B.1.2: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.
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Figure B.1.3: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.1.4: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.1.5: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.1.2 DJIA

Figure B.1.6: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.1.7: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.1.8: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.1.9: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.1.10: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.1.3 FTSE 100

Figure B.1.11: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.1.12: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.1.13: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.1.14: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.1.15: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.2 Speci�cation 2:

B.2.1 S&P 500

Figure B.2.1: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.2.2: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.2.3: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.2.4: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.2.5: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.
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Figure B.2.6: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.

Figure B.2.7: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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B.2.2 DJIA

Figure B.2.8: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.

Figure B.2.9: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.2.10: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.
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Figure B.2.11: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.2.12: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.

Figure B.2.13: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.2.14: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.2.3 FTSE 100

Figure B.2.15: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.2.16: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.2.17: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.2.18: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.2.19: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.
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Figure B.2.20: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.

Figure B.2.21: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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B.3 Speci�cation 3:

B.3.1 S&P 500

Figure B.3.1: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.

Figure B.3.2: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.3.3: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.
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Figure B.3.4: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.3.5: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.

Figure B.3.6: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.3.7: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.3.2 DJIA

Figure B.3.8: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.3.9: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.3.10: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.3.11: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.3.12: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.
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Figure B.3.13: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.

Figure B.3.14: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM



APPENDIX B. REMAINING GRAPHS OF THE EMPIRICAL ANALYSES 95

B.3.3 FTSE 100

Figure B.3.15: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.

Figure B.3.16: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.3.17: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.
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Figure B.3.18: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.3.19: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.

Figure B.3.20: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.3.21: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.4 Speci�cation 4:

B.4.1 S&P 500

Figure B.4.1: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.4.2: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.4.3: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.4.4: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.4.5: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.



APPENDIX B. REMAINING GRAPHS OF THE EMPIRICAL ANALYSES 99

Figure B.4.6: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.

Figure B.4.7: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM
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B.4.2 DJIA

Figure B.4.8: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.

Figure B.4.9: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.4.10: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.
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Figure B.4.11: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.4.12: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.

Figure B.4.13: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.
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Figure B.4.14: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM

B.4.3 FTSE 100

Figure B.4.15: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed vector ω. The green lines in the histogram represent the 95% C.I.
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Figure B.4.16: MCMC traces, posterior histogram, ACFs and running averages of the components
of the post-processed vector β. The green lines in the histogram represent the 95% C.I.

Figure B.4.17: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A. The green lines in the histogram represent the 95% C.I.

Figure B.4.18: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix A(−). The green lines in the histogram represent the 95% C.I.

Figure B.4.19: MCMC traces, posterior histograms, ACFs and running averages of the components
of the post-processed matrix F. The green lines in the histogram represent the 95% C.I.
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Figure B.4.20: The upper plot shows the traces of total number of components and of the number
of active components at each step. The lower plot shows the corresponding running averages.

Figure B.4.21: Estimated joint and marginal densities of the innovations over the estimated innov-
ations. On the upper row there are the results obtained with the DPMLN2-vMEM, on the lower
row the ones obtained with LN1-vMEM



Appendix C

Codes and data

The Matlab codes used for the analyses in Chapters 5 and 6 and the dataset from the Oxford
Man Institute �Realized Library� (Shephard and Sheppard (2010)) are available for download at
the following link:

https://dl.dropboxusercontent.com/u/8383093/Codes.rar
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