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Part 5 — Lesson 1 — Introduction to Logical Design

This is the last part of the course, in which we apply all the topics learnt so far, with the goal of introducing
a design methodology for the logical design of a database.

So far, we have investigated two models, the ER model adopted in the first phase of database design,
conceptual design, and the relational model, adopted in logical design. The output of conceptual design is a
conceptual schema, that in logical design has to be transformed into an equivalent representation in the
relational model, the relational logical schema.
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In order to translate the conceptual schema into the logical schema we have to define correspondences
between constructs of the ER model and constructs of the logical model. Tables and attributes of the
relational schema will be used as operands by queries and transactions of the application load; as a



consequence, the process of translation has to be performed with the objective to optimize the use of
resources by queries and transactions. Resources to be optimized are of two types,

a. space occupied by intermediate results in query execution (we do not consider transactions in the
following, as usually queries are responsible of more relevant transfers) and

b. time needed to execute the query.

Other optimizations are characteristic of the physical schema, that defines the physical representation of
data in secondary memory, such as e.g. the sectors in secondary memory where tables are stored, or the so
called block factor, the minimum number of bits that are transferred each time from secondary memory to
main memory, and viceversa. The optimization parameters of the physical schema are a high number, and
in this course we will not deal at all with the many issues that arise in the optimal design of the physical
schema. The topics is discussed in some detail in the Atzeni’s book.

We now provide an introduction to main issues to be addressed in logical design. First of all, we provide an
input-output view of logical design in general, see the following figure.

Conceptual schema

Logical design

l

Logical schema

Queries

— Application load {
\

Transactions

Logical model

Logical design as a black box

The figure tell us that logical design is an activity of transformation of the conceptual schema into the
logical schema. The logical schema is expressed in terms of the logical model adopted. Furthermore, among
the different equivalent schemas that we may produce, we have to choose the schema that optimizes the
application load; the application load is made of the queries performed on the database (as | said, we omit
transactions), ranked according to their frequencies.

We assume that the model for the logical schema is the relational model, so the input-output view is
simplified as in the following figure.

Conceptual schema

l

Logical design <— Query load

l ~ Relational model

Relational schema

Logical design in the relational model

In this part of the course, we introduce a simplified graphical notation for ER diagrams. We define the
notation using an example. In the following figure we see an ER diagram adopting the notation introduced
in Part 2.
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Diagrammatic notation for ER diagrams adopted so far

The corresponding diagram adopting the simplified notation is shown in the following figure.

/ Identifier of Entity

Student Id 1n) (1) Course Id
Surname | Student Exam Course | Name
Grade

Date S~

Attributes of Relationship

Attribute of Entity

Chinese Foreing /

Count
Student Student ountry

Simplified notation adopted in this chapter

Entities, relationships, is-a hierarchies, generalizations and external identifiers adopt the same notation as
in Part 2. The novelty is represented by attributes, that are listed close to the corresponding entity or
relationship. When the internal identifier is an attribute, it is underlined.

The above schema is now adopted for the motivating example, that will allow us to introduce the relevant
issues of logical design. The logical design process will be performed in the example within the following
two assumptions.

1. The relational model has only one modeling construct, the relation or table, composed of attributes.
The many examples of correspondence we have seen between constructs of the ER model and the
relation construct have shown that we will not have any problem in defining translation rules from
entities and relationships to relations. The problem arises with Is-a hierarchies and generalizations, that
do not have a direct counterpart in the relational model constructs. We have to manage this issue in
logical design.

2. We assume that the application load is such that all queries visit together the entities Student and
Course.

Let us now reply to the following questions: which are the typical steps of logical design?

First, we have to perform an activity of model translation from the conceptual model to the relational
model. Such activity, remembering our experience in previous parts, seems relatively simple for entities
and relationships.

Question 5.1 - Try in our example to translate entities Student and Course and relationship Exam into
relations in the relational model.



Discussion on Question 5.1 - | hope you have produced tables as in the following. Student is translated into
a table having as key Student Id, Course into a table with key Course Id. Being Exam a relationship whose
instances are pairs of instances of Student and Course, it is translated into a table with composed key

Student Id + Course Id.

Student Id

S

Student (Student Id, Surname)

urname | Student

(Ln)

X

Grade

(Ln)

Course Id
Course | Name

N\

Exam (Student Id, Course Id, Grade) Course (Course Id, Name)

Translation of entities and relationships into Relational tables

What appears not immediate to perform is the translation of generalizations; see the following figure.

Student Id
Surname STUdenf
Chinese Foreing
Student Student

How to translate generalizations?

Country

With reference to this case, and the related case of is-a hierarchies, we can manage these situations
through a simplification activity, that transforms the generalization into a new ER schema that equivalently
represents the generalization, but adopts only entity and relationship constructs. We see that besides
translation, and before translation, we have to perform, a second step, namely simplification.

Look now at the second assumption we made previously.

2.the application load is such that all queries visit together the entities Student and Course.

What are the consequences of this assumption in the logical design activity? Consider the translation we
performed previously, namely



Student Id (1) (Ln) Course Id

Surname | Student Course | Name

Grade

X \

Student (Student Id, Surname) Exam (Student Id, Course Id, Grade) Course (Course Id, Name)

At query time, the execution of queries on the relational schemas will request that the three tables are
linked together. However, remember the structure of a computer, which | reproduce in the following
figure, in the part referring to central processing unit and memories.

Central
Processing Channels . 5| Secondary
Unit 102 Memory
seconds
10-8/10°°
seconds
Main
memory

Computer structure: CPU and memories

To perform the linkage of tables (that, incidentally, in the query language SQL is performed with the Join
operator), we have to transfer three tables from secondary memory to main memory. Intuitively, in this
specific case in which all queries are performed on all the three tables, it is more efficient to transform the
ER schema made of Student, Course and Exam into a unique entity, as in the following figure.

Student Id (Ln) (L.n) Course Id
Surname | Student Course | Name
Grade
Student Id
Student Course Id
Course Surname
Grade

Transformation for achieving efficiency

Notice that we have denormalized the schema, to achieve more efficiency at query time. With this choice, a
unique table will be created in the translation step. The above case is called merging in the following. As a
second example, consider the following entity.



Employee Id
Place of Birth
Employee Date of Birth
Level

Salary

Taxes

An entity with two groups of attributes accessed separately by queries

Assume that queries in the application load operate both on the identifier, and separately on the two
groups of attributes, respectively:

a. Place of Birth + Date of Birth, and

b. Level + Salary + Taxes.

This assumption is reasonable, since the two groups of attributes refer to distinct properties of Employee,
respectively

a. personal characteristics and
b. professional and economic characteristics.

In this case, we can perform the opposite transformation w.r.t the previous one: we can decompose the
entity Employee into two entities that equivalently represent employees but with different attributes,
except the identifier that has to be reproduced for both entities. We can use the term partitioning for this
type of optimization.

Employee Id (1.n) (1) Empl2 Employee Id
Level Empll mp Place of Birth
Salary Date of Birth

Taxes

An example of partitioning

Therefore, we have identifies two types of optimization activities, respectively merging and partitioning.
We will see soon that also the simplification activity comprises optimization decisions.

Considering that optimization, as simplification, is performed on the conceptual schema, we come to the
conclusion that they are to be made before the translation in the relational model. In consequence of this,
logical design has the following structure, represented in the figure.



Conceptual schema in the ER model

l

Simplification
and optimization

l

Simplified and optimized conceptual schema in the ER model

l

Translation

l

Relational schema

The three steps of logical design

Before concluding this introductory lesson we have to make two remarks, both referring to the Atzeni’s
book.

First, with reference to optimization activities, the book adopts an optimization methodology more
complex than the methodology described in the following. For instance, it considers also the transaction
load, which we have discarded; furthermore, it considers for entities and relationships their volume in
terms of number of instances. See the book for more detail.

Secondly, the book mentions other two activities that we will not discuss in the following, and briefly
mention now. The first activity is redundancy analysis. Look at the following schema.

Student Id (1n) (L.n) Course Id
Surname | Student Course | Name
# of Exams passed Grade
Date

An ER schema with redundancies

The attribute # of Exams passed, as we noticed in Part 3, when we discussed the minimality quality
dimension, is redundant. It is up to logical design to decide whether to keep it in the relational schema, or
else to delete it. Keeping it in the schema makes more efficient the execution of queries that involve the
attribute, but forces to update the attribute when some transaction changes the instances of relationship
Exam, e.g. inserting a new exam of a student.

The second activity is relevant when an entity has multiple identifiers. Such activity corresponds to the
choice of the identifier to be translated as primary key of a relation. See the figure.



Student Id
Student Social Security Number
Given Name

Last Name

Student (Student Id, Social Security Number, Student (Student Id, Social Security Number,
Given Name, Last Name) Given Name, Last Name)

An entity with two identifiers and the two possible choices as primary keys

We will not deal further with these two activities; the interested reader can study the Atzeni’s book,
Chapter 7. We show in the following figure our simplification and optimization methodology compared
with the methodology described in the Atzeni’s book.

Course Id
Course | Name

(1.n)

1. Redundahgy analysis @ Grade
Date

Ln)

Student Id
Student Surname
# of Exams passed

2. Removing generalizations ~—>  Simplification step

3. Partitioning or merging Opftimization step
of entities >+ Merging
 Partitioning

identifiers,
¢€r to be translated

4.Incase o
choice of ident
into the pri

Simplification and optimization in Atzeni’s book and in this Part 5

Now we have completed the lesson.
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Part 5 — Lesson 2 — Simplification and Optimization Steps
As we said at the end of previous lesson, we discuss in the following:
a. with reference to simplification, the activity of restructuring generalizations, and

b. with reference to optimization, the activities of partitioning and merging.

Simplification: restructuring generalizations

We will discuss this issue starting from the following example, in which we have identified with a closed
dashed line the part of the schema to be restructured, and have connected with relationships A-D and D-E

respectively entities A and C in the generalization.

/' IdA \
Pes \(Ln) (,n)
v Al A D

The schema of the motivating example and the part on which we focus now

We have three most relevant cases, shown in the following figure.

A
Case 1 > ABC
1
B c
A A
E —
Case 2
[
B c B c
A
Case 3 _— B c
[
B c

Relevant cases of generalization restructurings
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The choice among the three cases depends on the characteristics of the query load. In this sense, the
simplification activity involves also optimization choices. Let us see the three cases.

The first case is applied when the queries of the application load visit the three (or n, in the general case)
entities all together.

The second case is applied when the queries of the application load visit separately the three entities.

The third case is applied when the queries of the application load visit separately the two child entities in
the generalization, and do not visit the parent entity.

Let us see now how the transformation has to be performed in the three cases in order to keep unchanged
the information content of the schema. We have to carefully associate to the new entity (or the new
entities) the properties (attributes and relationships) associated to the entities in the generalization in the
original schema.

Casel

- 5 ABC

Case 1 ]

B C

First case of restructuring

In our example, we have to perform the following transformation and assignment of properties.

IdA 1,n)

IdA (1,n) IdA (1,n)
ALL A = D Al 40 D
A2 A2

—> B1 ABC
| _| c1 on

(1) T (1n)
B c a3 = e CE E

B1 c1

Corresponding assignment of properties to new constructs in case 1

Notice that we have assigned to the unique entity ABC result of the transformation, all the attributes and
relationships previously assigned to A, B, and C. Furthermore, we have added a new attribute Type to the
entity ABC. The domain of Type is [B, C]; its role is to discriminate between instances of ABC corresponding
to instances of B and to instances of C. Finally we have changed the minimum cardinality of ABC in
relationship C-E, since the instances of C are a subset of the instances of A and we cannot be sure that all
instances of A are connected with instances of E.

12



Case 2

Case 2

[ ]

B c B C

Second case of restructuring

As to the second case of transformation, in our example we have to perform the following new assigniment
of properties.

IdA ) LdA (Ln) (Ln)
Al A LS D Al A A-D D
A2 A2 ToD 0.1)
I__l (1) .1
an (L) (1,n)
B C e E B C - E
B1 c1 B1 Cl

Corresponding assignment of properties to new constructs in case 2

Here we connect entities B and C with A, to represent the relationships between the same entity instances
in each pair of entities A/B and A/C. Furthermore, since the instances of B and C coincide with a subset of
the instances of A, we add to B and C an external identifier. Furthermore, the two minimum cardinalities of
A in relationships A-B and A-C are both 0, as some of the instances of A, as we said, are in common with B
and others are in common with C.

Case 3

Case 3 — : -

[ 1

B C

Third case of restructuring

In Case 3, see above, we assign the properties of A both to B and to C, and assign both to B and to C their
previous properties.

13



IdA (in) IdA ) (1n)
i 5 sl B D
A2 A2

(1)
(L.n) IdA (1.n)
B c > E al_C D

B1 c1 A2

¢ (L.n) : 1 E

Corresponding assignment of properties to new constructs in case 3

In the motivating example, due to the assumption that all queries visit entities Student and Course
together, we may apply Case 1, which leads to the following transformation.

Student Id (1n) (1.n) Course Id
Surname | Student Course Name
Grade

Date

Chinese Foreing | country

Student Student

Student Id @an) 1n) Course Id
Surname | Student Course Name
Type Grade

Country Date

Restructuring generalizations in the motivating example
We have concluded the discussion of the simplification step.

Optimization: partitioning

We reproduce here the case of entity partitioning we discussed in the introductory lesson.

Employee Id
Place of Birth

Date of Birth
Level

Salary
l Taxes
Employee Id 1n) (Ln) Empl2 Employee Id
Level Empll mp Place of Birth
Salary Date of Birth

Taxes

Employee

Entity partitioning
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Besides partitioning entities, we may also partition relationships. We do not discuss further this case.

Optimization: merging

Merging of two entities (and the related relationship) is performed when in the query load queries visit
together the two entities and the relationship. The identifier and attributes of the resulting entity depend
on the type of the relationship, namely a. many to many, b. many to one and c. one to one. In the following
figure, we see the three possible cases.

KE1
El E3 KE1
- T
E4
many
KE2
E2 E4
KE1
El E3 KE1
ohe —_— E12 EEZ
E4
many
KE2
E2  |Es
KE1
KE1 o=
E1l — 12 KE2
E3 E E3
ohe —_— or E4
KE1
one El2 [ X2
KE2 E3
E2 E4 E4

The three cases of entity (and related relationship) merging

When the relationship is many to many, the identifier of entity E12 is the union of the identifiers of the
entities to be merged. The reason of this rule is that in this case the instances of the entity correspond to
the many to many instances of the relationship, and so, to be identified, we need to know the identifiers of
the instances of both entities E1 and E2.

When the relationship is one to many, the identifier of entity E12 is the identifier of the entity on the one
side, since the corresponding instance identifies also the unique instance of the entity related to it on the

many side.

When the relationship is one to one, we can choose either the identifier of the first entity or the identifier
of the second entity.

15



Notice that in the case of many to many relationships, merging leads to an un-normalized entity, that will
generate a table non in BCNF. This is a typical design decision that is performed to make query execution
more efficient. While we apply denormalization during the first phase of logical design, it can be also
applied on the relational schema during the subsequent phase of physical design, which we do not discuss

here.

In the motivating example, applying again the assumption that all queries visit entities Student and Course
together, we may perform merging, obtaining as a result the following transformation.

Student Id (1,n) (1)
surname | Student Course
Type Grade

Country Date

l

Student-
Exam-Course

Student Id

Surname

Course Id

Name
Type
Country
Grade
Date

Result of merging in the motivating example

Course Id

Name

16



Part 5 — Lesson 3 — Translation Step — first part

In this lesson we start discussing the different cases of translation of ER constructs from the simplified ER

schema to a relational schema. They are:

Entity with internal identifier

Many to many relationship

Many to many Ternary relationship
Many to many recursive relationship
One to many relationship

Entity with external identifier

NoubkwNeE

a. (1,1)to(1,1)
b. (0,1)to(1,1)
c. (0,1)to(0,1).

One to one relationship; we will have to discuss three cases:

In this lesson we discuss the first five cases. | need your collaboration in defining the different translations.

You are aided by the examples given so far.

1. Entity with internal identifier

Student ID

Student

Given Name
Surname
Place of Birth

In the translation, we have to remember that an entity is a class of elementary instances sharing several

properties of type attribute.

Question 5.2 — How do you translate this case?

17



Solution to Question 5.2

The translation of the above entity is the following relation schema.

‘ Student (Student Id, Given Name, Surname, Place of Birth) |

Since in our motivating example the ER schema is made of a unique entity, we may proceed to the
translation of the simplified and optimized ER schema into the relational model.

Student Id
Surname

Student- Course Id
Exam-Course | Name
Type
Country
Grade

l Date

Student-Exam-Course (Student Id, Course Id, Surname, Name, Type, Country, Grade, Date)

Applying the translation in the motivating example
2. Many to many binary relationship

Student Id (1.n) (1.n) Course Id
Given Name | Student Course Name

Surname # of Hours
Place of Birth Grade
Date

Example considered in the translation of many to many binary relationship

As in Question 5.1, we may represent the relationship Exam with a relation, whose key is the union of the
identifiers of the two participating entities. This is reasonable, since the instances of Exam are pairs of
instances of Student and Course. The table is completed with the possible attributes of the relationship. In
our case we have for the whole above schema the following relational schema.

Student (Student Id, Given Name, Surname, Place of Birth) resulting from entity Student
Exam (Student Id, Course Id, Grade, Date) resulting from relationship Exam
Course (Course |d, Name, # of hours) resulting from entity Course.

Now, we should not forget adding referential integrity constraints, which relate the attributes participating
in the key of the table Exam, with the keys of the two tables associated to the two entities.

18
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i
Il

Student (Student Id, Given Name, Surname, Place of Birth)
A

Exam (Student Id, Course Id, Grade, Date)

v
Course (Course Id, Name, # of hours)

Do not forget referential integrity constraints...

3. Many to many ternary relationship

81

Idc
c1
c2

c3

Translation of ternary relationship

This case is a simple extension of the previous one; the only change is that now the instances of the
relationship are triples made of instances of three entities, so we have a key made of three attributes for
the relation corresponding to A-B-C. Including also referential integrity constraints, we get the following

schema.

A (IdA, A1, A2)
7

B (IdB, B1, B2)
R\‘~~_,_

< N

A-B-C (IdA. TdB, IdC, ABC1, ABC2)

y
C (IdC, ABC1, ABC2)

Relational schema resulting from the translation of the ternary relationship and related entities

19



4. Many to many binary recursive relationship

Person Id
Given Name

Pepson Surname
(1,n) (1,n)

Person A Person B

Type of parental Relationship

Example of many to many recursive relationship

The many to many binary recursive relationship in the example above is defined on the entity Person, and
expresses the parental relationships among a set of persons. For each pair of persons we want also to
represent the type of parental relationships, e.g. child of, uncle of, etcetera.

This case too is an extension of the many to many binary case considered above. In this case, the two
entities involved in the relationship coincide. Therefore, the key is made of two occurrences of the same
entity identifier; in the two occurrences, we have to adopt different names. Therefore, the resulting
relational schema is the following.

Person (Person Id, Given Name, Surname)
NS

\
\
\

Relative (Person IdA, Person IdB, Type of parental relationship)

Translation of many to many recursive relationship

5. Translation of one to many relationship

Student Id (19 (1.n) Country Id
Given Name STudenT COU'\T"'Y Name

Surname Continent
Place of Birth

Example of one to many relationship

A one to many relationship too is a particular case of a many to many relationship, so we could translate
the two entities and the relationship with three tables. However, we have to observe that due to the one to
many relationship, for each instance of Student we have a unique corresponding instance of Country in the
Born relationship. Therefore, a functional dependency exists between the key of Student, namely Student
Id, and the key of Country, Country Id. Therefore, we can save one table, including Course Id among the
attributes of table Student. We obtain the following relational schema.

20



Student (Student Id, Given Name, Surname, Place of Birth, Country)

Translation of a one to many relationship

With this case, we have concluded the lesson.

21



Part 5 — Lesson 4 — Translation Step — second part

In this lesson, we consider the last cases of translation form ER constructs to the relational model.

6. Translation of Entity with external identifier

Surname Student Id

T ® Name

@ (1n)
Student @ University
O city

The example for translation of an entity with external identifier

The external identifier means that the key of the table Student has to be extended with the identifier of the
second Entity involved in the relationship. Therefore, the resulting pair of tables corresponding to the

above schema is:

Student (Student Id, University, Surname)
‘,17

University (Name, City)

Resulting relational schema

7.1 Translation of one to one relationship: case of (1,1) to (1,1)

KA

A |
(11)
(11)

KB

B |

B2

(1,1) to (1,1) relationship

A (1,1) to (1,1) relation is a particular case of one to many relationship, so two solutions are possible.

22



Solution 1

A (KA, Al, KB)

-

v
B (KB, B1, B2)

Solution 2

B (KB, B1, B2, KA)

The two solutions are equivalent.

7.2 Translation of one to one relationship: case of (0,1) to (1,1)

A |a
©1)

<8 >

(11)
B e
B2

Also in this case we have the two solutions as before:

Solution 1

Here a difference emerges in comparison to the previous case, due to (0,1) cardinalities of A. Let us see in
the following figure an example of instances in the two solutions.

23



(0.1)

Ly

KB

B2

KA

Solution 1

A (KA, Al, KB)

>
B (KB, B1, B2)

Solution 2

B (KB, B1, B2, KA)

KA | A1 | KB
kal | all | null
ka2 | al2 | kbl
ka3 | al3 | null
ka4 | al4 | kb2
ka5 | a15 | kb3
ka6 | al6 | kb4

A

KA | A1

kal | all

ka2 | al2

ka3 | al3

ka4 | al4

kab | al5

ka6 | alé

B

KB |B1 |B2

kbl | bll | b21

kb2 | bl2 | b22

kb3 | b13 | b23

kb4 | bl4 | b24
B
KB [Bl |B2 |[KA
kbl | b1l |b21 | ka2
kb2 | b2 | b22 | ka4
kb3 | b13 | b23 | ka5
kb4 | b14 | b24 | kab

The two cases of translation in the case (0,1) to (1,1) and corresponding instances

We see that in Solution 1, due to the (0,1) cardinality of entity A, some instances of A are not connected
with instances of B, and so in table A we have null values, that correspond to inefficient use of space.

In solution 2, due to the (1,1) cardinalities of entity B, we have no null values, since all instances of B are
connected to instances of A, so KA is always different from null. In consequence of this, we prefer solution

2.

7.3 Translation of one to one relationship: case of (0,1) to (0,1)

In this case, besides the two solutions of previous cases, we have a third solution, see the figure.
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0.0

0.0

KB

B2

KA

Solutionl

A (KA, A1)
=

/ B (KB, B1, B2, KA)

Solution 2

A (KA, A1, KB)
Jpe——— |

B (KB, B1, B2, KA)

Solution 3

A (KA, A1)
-7

[ B (KB, B, B2)
\ AS

A-B (KA, KB)

The three solutions for the (0,1) and (0,1) case

The reason of introducing Solution 3 is that in this case for both entities A and B we have a minimum
cardinality equal to 0. So, in case we know that only a limited number of instances of A and B are connected
in the relationship A-B, then it is preferable to introduce a third table, corresponding to the A-B

relationship, in which we represent only pairs of keys that refer to connected instances of A and B.

We have concluded the lesson.
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Part 5 — Lesson 5 — Methodology for logical design

The above activities related to logical design need to be organized in a methodology. What is a
methodology? It is a set of activities, ordered according to a plan, with an input and an output for
each activity, that, when executed together, achieve an expected goal. In our case, the goal is to
design a relational schema that is coherent with initial requirements; furthermore, among the
different relational schemas that can be chosen, the resulting relational schema should be
efficient with respect to the application load. The methodology for logical design is shown in the

following box.

Methodology: Given an Entity Relationship schema S, to be translated into a Relational
schema proceed as follows:

1. SIMPLIFICATION AND OPTIMIZATION — Using requirements referring to the query load,
simplify and optimize the ER schema, producing a schema S'.
a. Transform generalizations.
b. Merge/Partition entities.

2. TRANSLATION - Starting from S'

a. Focus first on Entities, and translate them into relations.

b. Focus on Entities with external identifier, and extend the key of the corresponding
Relation with the Identifier of the other entity in the relationship.

c. Focus now on binary, ternary, and recursive many to many relationships; to represent
them introduce a new relation.

d. Focus now on one to many Relationships; to represent them, do not introduce a new
Relation, but extend the relation on the "one" side.

e. Finally, focus on one to one Relationships, and translate them according to the three
cases:
1. (1,1)to(1,1),
2. (0,1)to (1,1),
3. (0,1)to (0,1).

Notice that, with reference to the translation step, it is important that transformations involving
entities (steps a. and b.) be performed first, to complete the generation of keys of relations
associated to entities. The order among relationship transformations is not relevant: some of
them create a new relation, others extend relations previously created, but they act

independently from each other.

We now apply the methodology to three exercises.
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Exercise 5.1

Initial schema

©.1)

RBG

KB (1,n) (L1)
o B <>

D1

C D D2

El
E2

Requirements say that:

KA
Al

@1

K&

Gl

1. B, C, D, E are accessed by queries all together.
2. Instances of B and G are millions.
3. Instances of RBG are thousands.

Input schema and requirements of Exercise 5.1.
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Solution to Exercise 5.1 - Let us execute first the simplification and optimization step.

The simplification step involves the schema in the dashed closed line.

RBG
_ 0.1
(o ———7\tn) .y
l'o1 B - RAB >
) 7 N ©.
\ KG
, K6
- >~
I/Cl C D1 E El\\
L 2 D D2 E2 |

Requirement 1, that says that B, C, D, E are accessed by queries all together, suggests to collapse
the four entities A,B,C,D into a unique entity. So we obtain the following schema.

RBG

KB
B1 @1

cl (1n) (11) KA
- BCDE <> A |a
D1

D2 L‘—l
Bl on @ .n)

E2
TYPE

(0.1)

Result of simplification in Exercise 5.1

We have no optimization transformations, since requirements do not refer explicitly to
optimizations. So the final schema corresponds to the output of the simplification step.

We have now to apply the translation methodology. In the following figure, we show the different
parts of the schema to be transformed.
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K6

X G 611
\ S~ Wy .
et 1) W N y
‘| KL\|

L AL
! L,
1

~

------ entities
—— many to many relationships
................... one to many relationships

one to one relationships

At the end of the translation process, we obtain the following relational schema.

RBCDE (KB, B1, C1, C2, D1, D2, E1, E2, TYPE)
RA (KA, A1)

RG (KG, G1)

RL (KL, L1)

RCD (KBC, KBD)

RBG (KB, KG)

RAGL (KA, KG, KL, H)

Notice that relation RBG is created due to requirements 2 and 3, that lead to choose Solution 3 of
the (0,1) to (0,1) case of translation.

We have now to add referential integrity constraints to the schema.

29



RBCDE (KB B1,C1,C2,D1,D2, E1, E2, TYPE)

RL (KL Ll)

L RCD (KBC KBD)

RAGL (KA KG KL H)

This is the final schema for Exercise 5.1.



Part 5 — Lesson 6 — Exercise 5.2 and Exercise 5.3 on the University Database

Exercise 5.2

The input schema is shown below.

KA (O3] (O3] KD
Al A D D1
B1 E1l
B E "1 F
(1,n) (1,n)

Requirements are:

EF1

0.1)

(1.n)

KG

61
G2
63
G4
G5

1. Entities B and C are visited by different queries.

g

queries.

Entities D, E, and F are visited by the same queries.
3. Attributes KG, G1 and G2 and attributes KG, G3, G4, and G5 of entity G are visited by different
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Solution to Exercise 5.2

We have to consider requirements 1 and 2 for the simplification step and requirement 3 for the

optimization step. Leading to the following choices:

Simplification

Requirement 1 creates a schema with entity B and C separated.
Requirement 2 collapses D, E, and F into a unique entity.

The output of the simplification step is the schema:

KD
D1

KA

0.1)
Al 0.1)

RBD
w| B s> oer
KA 0.1) (0,1
Al C

El
F1

(0.1)

C1 (0,n)
E

<>

EF1

Output of simplification
Optimization
Requirement 3 leads to partition G into two entities.

The output of the optimization step is the schema:

KD
D1

O.n)

KA El

©.1) ©1 £
Al
" B <>  F

KA 0.9) 0.,1)
“l ¢

C1 (0.n)
E

<ReF >

EF1

Output of optimization

Translation

O.n)

The output of the translation step is the following relational schema:

(Ln)

0,1) (l,n)

K6
Gl

G2
G3

G4
G5

Kel
Gl

61

G2

)
(L)

G2

K62
G3

G4
65
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B (KA, A1, B1, KD)

C (KA, A1, B1,KD)

DEF (KD, D1, E1, F1, K&1, KG2)
61 (K61, 611, 621, KD, K62)
62 (K62, 63, 64, 65, KD)

REF (KD1, KD2, EF1)

Output of translation

Notice that we have added the attribute KD to relations G1 and G2 since the minimal cardinality of entity
DEF is O (Solution 1 of the (0,1) to (1,1) case).

We now add referential integrity constraints leading to the final schema.

B (KA, AL B, KD)

C (KA, AL BL, KD)

REF (KDl KD2 EF1)

Final schema of Exercise 5.2



Exercise 5.3 - University database logical design

The final schema of conceptual design was the one in the following figure.

ID Last Name First Name

Name Year of Enrollment
T T T (1,n) (1)
Enrolled in
Student ©On) (1n) Course
Passed
N
()]
Grade Date <>
Foreign St. | | Chinese St. eac
lln FlrST
av L ap N Name o
orn
@ (1,n) (1) Professor Last
(1,n) Name o
Department 1
Country ) | |
lName éCon’rinem‘ l J) Associate
P Ss
Name Address Sl et essay Professor
Name (1n)

Region

an
City " Born in

Here we make two assumptions.

1. Queries on Students visit together Student, Foreign Student and Chinese Student.
2. Queries on Professors visit separately Full Professors and Associate Professors.
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Solution to Exercise 5.3 — University database logical design
The two assumptions have to be considered in the simplification step.

Simplification and optimization

The output of the simplification step and of the optimization step is the following. Notice that now
the minimum cardinality associated to the entity Student in the two Born relationships with
Country and City are both 0. This is due to the fact that some students, namely foreign students,
are to be linked with Countries, and other students, namely Chinese Students, are to be linked in
Cities.

Last Name First Name Name  Year of Enrollment

T T I T

(0.1)
Student 1 Course
Q) Passed (Ln)
Grade Date S
<B°> many ﬁ
—————Teah—— ()
an @b . First
COUM‘r'y T'il'gfr\fe o Name
Oftest 10 Last Professor
l é N‘fme Full Professor o Name
. o .
Name Continent o :
Name (L) (n)

(1,n)

—
Region|  City T W ~—Works == Department

Name Address

The result of the translation step is the schema:

Student (Student Id, Last Name, First Name, Type)
Course (Course Id, Year of Enrollment)

Enrolled in (Student Id, Course Id)

Passed (Student Id, Course Id, Grade, Date)
Professor (Last Name, First Name, Type, Department Name)
Department (Name, Address)

Full Professor (Last Name, First Name, City of Birth)
City (Name, Region)

Foreign Student (Student Id, Country)

Chinese Student (Student Id, City of Birth)

Country (Name, Continent)
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The inclusion of referential integrity constraints produces the final schema.

S‘rudem‘ (S‘rudem‘ Id, Last Name, First Name, Type)
e 77”’

‘‘‘‘‘‘

Country (Nam Continent)

Final schema of Exercise 5.3

With this last exercise, we end the course. | kept my promise to enable you to produce ER and
relational schemas from requirements characterized by significant complexity.

| recall you that to achieve in an introductory course of databases a reasonable skill you have also
to attend a course on database programming.

Best wishes for your present and future activity in data management!!!!

Carlo Batini
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Concepts defined in Part 5

art 5 - Logical Design
Phase of Logical Design
Simplification and Optimization

Translation
Simplification Phase

Removing Generalizations
Optimization Phase

Partitoning of Entities/Relationships

Merging of Entities/Relationships
Translation Step

(Translation of an) Entity

Many to Many Relationship

One o Many Relationship

Ternary Relationship

Recursive Relationship

(1,1) to (1,1) Relationship
(0,1) to (1,1) Relationship
(0,1) to (0,1) Relationship
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Part 5 — Exercise assighment

Remember that a more complex method is discussed in Atzeni’s book for this part.
Once studied such method in Chapter 7 of the book, solve exercises from 7.1 to 7.4
of the book. Then compare your solutions with solutions provided in the course site.
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