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“We’ll make things right, we’ll feel it all tonight
we’ll find a way to offer up the night tonight
the indescribable moments of your life tonight
the impossible is possible tonight
believe in me as I believe in you, tonight.”

Tonight, Tonight - Smashing pumpkins

A Federico.
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Latent Markov Models (LMMs) are a particular class of statistical models in which a la-
tent process is assumed. In studying LMMs, it is important to distinguish between two
components: the measurement model, i.e. the conditional distribution of the response
variables given the latent process, and the latent model, i.e. the distribution of the la-
tent process. LMMs allow for the analysis of longitudinal data when the response vari-
ables measure common characteristics of interest, which are not directly observable. In
LMMs the characteristics of interest, and their evolution in time, are represented by a
latent process that follows a first order discrete Markov chain and units are allowed
to change latent state over time. This thesis focuses on LMMs for aggregate data. It
considers two fields of applications: disease mapping and small area estimation.

The goal of disease mapping is the study of the geographical pattern and variation of
a disease measured through counts and incidence rates. From a methodological point
of view, this work extends LMMs to include a spatial pattern in the latent model. This
extension allows the probability of being in a latent state and the probability to move
from a latent state to another over time to be influenced by the neighbouring areas. The
model is fitted within a Bayesian framework using Gibbs and Random Metropolis-
Hasting algorithms with augmented data that allows for a more efficient sampling of
model parameters. Simulations studies are also conducted to investigate the perfor-
mance of the proposed model on data generated under different settings. The model
has also been applied to a data set of county specific lung cancer deaths counts in the
state of Ohio, USA, during the years 1968-1988.

Small area estimation (SAE) methods are used in inference for finite populations to
obtain estimates of parameters of interest when domain sample sizes are too small to
provide adequate precision for direct domain estimators. The second work develops
a new area-level SAE method using LMMs. In particular, since area-level SAE models
consider a sampling and a linking model, a LMM is used as the linking model. In a
hierarchical Bayesian framework the sampling model is introduced as the highest level
of the hierarchy. In this context, data are considered aggregate because direct estimates
are usually means and totals. Under the assumption of normality for the response vari-
able, the model is estimated using a Gibbs sampling in a data augmentation context.
The application field in this second work is particularly relevant: it uses yearly unem-
ployment rates at Local Labour Market Areas level for the period 2004-2014 from the
Labour Force Survey conducted by the Italian National Statistical Institute (ISTAT).
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Chapter 1

Introduction

Nowadays an always larger amount of data is often available thanks to modern tecnol-
ogy and to planned longitudinal surveys. Even if this could be an advantage to gain
pointwise information, occasionaly such data may not be easy to manage. Aggregate
data can provide a feature rich data set with reduced dimensionality but without loos-
ing too much information coming from longitudinal observation. Moreover such data
could point out patterns and trends that would not normally be visible without long
and sometimes not feasible computational procedures. In this thesis, Latent Markov
models (LMMs) are applied to aggregate data. It considers two fields of applications
where aggregated data have great relevance: disease mapping and small area estima-
tion. In these fields longitudinal data are used to obtain information about areas, which
are the subjects of interest.

Many models are proposed in the statistical literature for the analysis of longitu-
dinal data. Among them, LMMs assume the existence of a latent process which affects
the distribution of the response variables. The main assumption behind this approach
is that the response variables are conditionally independent given this latent process,
which follows a Markov chain with a finite number of states. The basic idea related to
this assumption, which is referred to as local independence, is that the latent process
fully explains the observable behavior of a subject together with possibly available
covariates. Therefore, in studying LMMs, it is important to distinguish between two
components: the measurement model, which concerns the conditional distribution of the
response variables given the latent process, and the latent model, which concerns the
distribution of the latent process.

LMMs can be applied in different kinds of analysis, e.g. they can asses the presence
of measurement errors. In addition, they can account for unobserved heterogeneity be-
tween areas in the analysis including covariates in the measurement model which do
not completely explain the heterogeneity in the response variable(s). The advantage of
LMMs is that the effect of the unobservable variable has its own dynamics and it is not
constrained to be time constant. Finally, through LMMs, a latent clustering of the pop-
ulation of interest can be pointed out. In fact, the latent states are identified as different
subpopulations, with areas in the same subpopulation having a common distribution

1



Chapter 1. Introduction 2

for the response variable(s). In this context, a LMM may be seen as an extension of the
latent class (LC) model (Lazarsfeld, Henry, and Anderson, 1968) in which areas are al-
lowed to move between the latent classes during the period of observation. In this field,
available covariates are included in the latent model and then may affect the initial and
transition probabilities of the Markov chain.

In the second chapter of this thesis an application of LMMs to disease mapping
in presented. The goal of disease mapping is to study the geographical pattern and
variation of a disease measured through counts or incidence rates. It provides effec-
tive tools for identifying areas with potentially high risk, determining spatial trend,
and formulating and validating hypotheses about the disease. Three aspects are rele-
vant to disease mapping: computing accurate estimates of disease measures in small
geographic areas, estimating the distribution of disease rates over the region and rank-
ing the disease rates so that environmental investigation can be conducted. Our work
wants to produce a classification useful to address all these aspects. From a method-
ological point of view, this work extends LMMs to include a spatial pattern in the latent
model as an unobserved covariate of the latent states. This extension allows the proba-
bility of being in a latent state and the probability to move from a latent state to another
over time to be influenced by the neighbouring areas. Moreover, in addition to create a
classification of disease severity in the areas, the possibility of analysing the real influ-
ence and the significance of neighbour structure is admitted. The model is fitted within
a Bayesian framework using Gibbs and Random Metropolis-Hasting algorithms with
augmented data that allows for a more efficient sampling of model parameters. Sim-
ulation studies are conducted to investigate the performance of the proposed model
on data generated under different settings. The model has then been applied to a data
set of county specific lung cancer deaths counts in the state of Ohio, USA, during the
years 1968-1988. Preliminary results of this work have been presented at the GEOMED
conference in Florence, 9-11 September 2015.

The third chapter concerns the appliction of LMMs to small area estimation (SAE).
SAE methods are used in inference for finite populations to obtain estimates of param-
eters of interest when domain sample sizes are too small to provide adequate preci-
sion for direct domain estimators. Unlike usual survey-sampling methods that treat
each area’s data independently, SAE models make assumptions that let areas "borrow
strength" from each other and from longitudinal information. This usually leads to
more precise and more stable estimates for the various areas. In this work, a new area-
level SAE method using LMMs is introduced. In particular, since area-level SAE models
consider a sampling and a linking model, a LMM is used as the linking model. In a hi-
erarchical Bayesian framework the sampling model is introduced as the highest level of
hierarchy. In this context, data are considered aggregate because direct estimates usu-
ally take the form of totlas or means (frequencies). Under the assumption of normality
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for the response variable, the model is considered as a matched model and it is esti-
mated using a Gibbs sampling in a data augmentation context. The proposed model
is quite innovative because the definition of SAE methods which are able to take into
account the non-observable nature of variables of interest is present in literature only in
Fabrizi, Montanari, and Ranalli (2015), but the authors considere just the cross sectional
nature of the problem without investigating its time extension. The application field in
this second work is particularly relevant: it uses yearly direct unemployment rate es-
timates at Local Labour Market Areas level for the period 2004-2014 from the Labour
Force Survey conducted by the Italian National Statistical Institute (ISTAT). Prelimi-
nary results of this second work have been presented at ITACOSM conference, Rome,
24-26 June 2015.



Chapter 2

Bayesian spatial latent Markov
models for disease mapping

2.1 Introduction

The analysis of the geographical variation of a disease and its representation using
maps are important tools to better understand its distribution in space. The observed
cases of a particular disease are counted for each area in which the region under study
is partitioned. These counts are then compared to the population size. Spatial depen-
dency between counts has to be taken into account when analysing such data. Investi-
gating the temporal pattern of a disease is also important to understand its evolution
and trend. Most statistical methods for disease representation are based on risk map-
ping of aggregated data using in particular Poisson log-linear mixed models (Richard-
son et al., 1995; Mollié, 1999; Lawson et al., 2000) and the model proposed by Besag,
York and Mollie (BYM) (Besag, York, and Mollié, 1991). The BYM model and its ex-
tensions (Clayton and Bernardinelli, 1992) are among the most popular approaches
used in this context and use a Bayesian hierarchical modelling approach. BYM is based
on an Hidden Markov Random Field where the latent risk field (the parameter of
the Poisson distribution) is represented by a Markov random field with continuous
state space modeled using Gaussian autoregressive spatial smoothing. Recent develop-
ments in this context include spatio-temporal mapping (Knorr-Held and Richardson,
2003; Robertson et al., 2010; Lawson and Song, 2010) and multivariate disease mapping
(Knorr-Held, Raßer, and Becker, 2002).

The possibility of clustering the areas in different classes has the advantage of
providing clearly delimited areas for different risk levels, which is helpful for deci-
sion makers to interpret the disease structure and enforce protection measures. These
groups of areas can be viewed as spontaneous clusters (Knorr-Held, Raßer, and Becker,
2002), but we prefer to interpret them as incidence of disease or risk classes (Green and
Richardson, 2002; Alfó, Nieddu, and Vicari, 2009). Latent Markov Models (LMMs) al-
low to obtain such classification and to consider different statistical distributions for

4
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the response variable. In fact, the main difference between LMMs and clustering algo-
rithms is that LMMs allow a "model-based clustering" approach that derives groups
of observations using a probabilistic model that describes the distribution of the data.
So, instead of finding clusters with some arbitrary chosen distance measure, LMMs
use a model that assesses the probability that an area belongs to a particular class. So,
we could say that it is a top-down approach (it starts with describing distribution of
the data) while other clustering algorithms are rather bottom-up approaches (they find
similarities between cases).

The basic LMM formulation is similar to that of hidden Markov models for time
series data (MacDonald and Zucchini, 1997). In fact, a latent Markov chain, typically
of first order, is used to represent the evolution of the latent characteristic over time.
Moreover, the response variable observed at the different time points is assumed to be
conditionally independent given this chain (assumption of local independence). The
basic idea behind this assumption is that the latent process fully explains the observable
behavior of an area. Furthermore, the latent state an area belongs to at a certain time
only depends on the latent state at the previous time. A LMM may also be seen as
an extension of the latent class model (LCM, Lazarsfeld, 1950; Lazarsfeld, Henry, and
Anderson, 1968; Goodman, 1974), in which the assumption that each area belongs to
the same latent class throughout the time period is suitably relaxed.

The basic LMM, relying on a homogenous Markov chain, has several extensions
based on parameterizations that allow us to include hypotheses and constraints of in-
terest. Generally speaking, these parameterizations may concern the conditional dis-
tribution of the response variable given the latent process (measurement model) and/or
the distribution of the latent process (latent model). In this way, the introduction of co-
variates in the measurement or in the latent model is possible. When covariates are
included in the measurement model, they affect the response variable and the latent
process is seen as a way to account for unobserved heterogeneity between areas. The
advantage with respect to a standard random effect model or a LCM with covariates is
that the effect of unobservable covariates could be non constant over time and it could
have its own dynamics. Differently, when covariates are included in the latent model,
they influence initial and transition probabilities of the latent process. In this case we
assume that the response variable measures and depends on the latent variable, which
may evolve over time. In such case, the main research interest is in modelling the ef-
fect of the covariates on this latent variable distribution (Bartolucci, Lupparelli, and
Montanari, 2009).

In our work, the spatial structure is modeled introducing defining a specific co-
variate into the latent model that influences the latent process and the resulting area
classification. Due to the complexity of the resulting estimation we work in a Bayesian
context and use Gibbs and Random Metropolis-Hasting algorithms with augmented
data for efficently sampling model parameters. The paper is organized as follow: the



Chapter 2. Bayesian spatial latent Markov models for disease mapping 6

data are presented in Section 2.2. The model formulation and its estimation are pre-
sented in Sections 2.3 and 2.4, respectively. Section 2.5 presents an extensive simulation
study, while the results of the application to the real data are provide in Section 2.6.
Section 2.7 concludes with a summary discussion.

2.2 Data

We apply our method to a data set of county specific lung cancer deaths counts in the
state of Ohio, USA. This dataset, originally studied in Devine (1992), contains infor-
mation about the occurence of lung cancer deaths in 88 counties of Ohio, USA during
the years 1968-1988. For each county the number of lung cancer deaths and people at
risk are given for on each year. As we can see from the distribution of counts (fig. 2.1),
incidence of death due to lung cancer in Ohio has dramatically increased during the
period of observation.

Data concerning the spatial structure of the counties is also available. In fact, for
each county the index, the number of neighbouring counties and their corresponding
indices are given. These informations are grouped in a neighbouring matrix G of di-
mension n × p where n = 88 is the number of counties and p = 8 is the the maximum
number of neighbours considering all counties. As an example, we show the first six
rows ofG, which represent counties labelled from 1 to 6:

G =



8 36 66 73 na na na na

6 32 33 69 81 na na na

38 39 42 47 52 70 85 na

28 43 78 na na na na na

37 53 58 64 82 84 na na

19 2 33 46 54 75 81 na

. . . . . . . . . . . . . . . . . . . . . . . .


. (2.1)

The first row indicates that county labelled with number 1 has 4 neighbours and they
are counties labelled as 8, 36, 66 and 73. Missing values na are reported in the matrix
when there are not other neighbouring counties. The second row indicates that county
labelled with number 2 has 5 neighbours and they are counties labelled as 6, 32, 33, 69,
81. Note that county 2, as a consequence, shows up in the sixth row.

2.3 Model

In a LMM the existence of two processes is assumed: an unobservable finite-state first-
order Markov chain U (t)

i , i = 1, . . . , n and t = 1, . . . , T with state space {1, . . . ,m} and
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(a) (b)

(c)

FIGURE 2.1: Lung cancer deaths in Ohio 1968-1978-1988.

an observed process Y (t)
i , i = 1, . . . , n and t = 1, . . . , T , where Y (t)

i denotes the response
variable for area i at time t and similary for U (t)

i . We assume that the distribution of Y (t)
i

depends only on U (t)
i ; specifically the Y (t)

i , t = 0, . . . , T are conditionally independent
given the U (t)

i . We also denote by Ũ
(t)
i the vector of latent states for the neighbours of

area i at occasion t.

The state-dependent distribution, i.e. the distribution of Y (t)
i given U (t)

i , can be ei-
ther a continuous or a discrete distribution. It can be taken from the exponential family
such as the Binomial, the Poisson or the Normal distribution. Thus, the unknown vec-
tor of parameters φ in a LMM includes both the parameters of the Markov chain φlat
and the vector of parameters of the state-dependent distribution of Y (t)

i conditionally
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on U (t)
i , φobs. The measurement model involves φobs and it can be written as

Y
(t)
i |U

(t)
i ∼ f(y,u,φobs).

The latent model includes two sets of parameters. The parameters φlat of the Markov
chain are the elements of the transition probability matrix

Π = {πu|ū} , with u, ū = 1, . . . ,m;

where
πu|ū = P (U

(t)
i = u|U (t−1)

i = ū)

is the probability that area i visits state u at time t given that at time t− 1 it was in state
ū, and the vector of initial probabilities

π = (π1, . . . , πu, . . . , πm)
′

where
πu = P (U

(1)
i = u)

is the probability of being in state u at the initial time for u = 1, . . . ,m. For the sake of
simplicity, in this work we consider homogeneous LMMs, i.e. LMMs where the tran-
sition probability matrix is constant as a function of time t, but the hidden markov
chain could also be considered non homogeneous and the transition probabilities time-
varying.

Spatial structure in this work is introduced as a covariate in the latent model based
on the latent structure and it depends on the neighbouring matrixG from equation (2.1)
which is fixed in time. Let ũ(t)

i denote the particular configuration of latent states for
the neighbouring counties of county i at time t. We consider a generic function η of ũ(t)

i

as a time-varying covariate affectecting φlat, i.e. the initial and transition probabilities,
through the following parameterizations:

log
p(U

(1)
i = u|Ũ (1)

i = ũ
(1)
i )

p(U
(1)
i = 1|Ũ (1)

i = ũ1
i )

= β0u + η[ũ
(1)
i ]′β1u with u ≥ 2, (2.2)

log
p(U (t) = u|U t−1 = ū, Ũ

(t)
i = ũ

(t)
i )

p(U (t) = ū|U t−1 = ū, Ũ
(t)
i = ũ

(t)
i )

= γ0uū + η(ũ
(t)
i )′γ1uū,

with t ≥ 2 and u 6= ū

(2.3)

where βu = (β0u,β
′
1u)′ and γuū = (γ0uū,γ

′
1uū)′ are vectors of parameters to be esti-

mated because they are part of φlat. There are different possible choices of η in this
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context: e.g. it could be the mean of the elements in ũ(t)
i , its mode, the relative frequen-

cies of the neighbouring latent states or the sum of the latent states realizations in the
neighbours. The best choice of η depends on the application of interest. We will study
the effect of alternativr choices in the simulation studies, and in the application on the
Ohio data.

2.4 Model Estimation

We adopt the principle of data augmentation (Tanner and Wong, 1987) in which the
latent states are introduced as missing data and augmented to the state of the sampler
(Germain, 2010). In this way we can simplify the process of sampling from the poste-
rior: we can use a Gibbs sampler for the parameters of the measurement model and
we can estimate the initial and the transition probabilities by a Random Metropolis-
Hasting step. We introduce a system of priors for the unknow model parameters φ.
We adopt common non-informative prior distributions. In particular, for Π and π we
use the uniform distribution U(0, 1), while for the vectors βu and γuū we assume
that they are a priori independent with distribution N(0, σ2

βI) and N(0, σ2
γI), respec-

tively. The choice for σ2
β and σ2

γ depends on the context of the application. Tipically
5 ≤ σ2

β = σ2
γ ≤ 10. The prior distribution for the parameters of the measurement model

φobs depends on the distribution assumed for the state-dependent distribution.

One of the goals of model inference is to estimate the set of the latent variables
u. In this context there is the possibility of choosing priors which are conjugate to the
form of the complete data likelihood, therefore sampling from the conditional posterior
of the model parameters given the latent states (the so called complete data posterior)
is straightforward. Moreover, because the state space is discrete and finite, sampling
from the conditional posterior of the latent states given the model parameters is also
possible. So it is possible to generate samples from the joint posterior distribution of
the model parameters and latent states as follows. Let y be the set of realizations of the
response variable. Given

π(θ,u|y) = π(θ)p(u|θ)p(y|θ,u) (2.4)

joint posterior = prior × likelihood × likelihood ,

samples can be generated alternating between sampling u from the conditional poste-
rior distribution π(u|y,φ) and drawing φ from the conditional posterior distribution
π(φ|y,u). When a priori independence is assumed betweenφobs andφlat, the complete
data posterior can be written as

π(θ|u,y) = π(θobs|u,y)π(θlat|u,y) (2.5)
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and the MCMC sampling scheme leads to repeat for iterations b = 1, . . . , B the follow-
ing steps:

1. Simulate ub from π(u|φb,y).

2. Simulate φb from π(φ|ub−1,y) where:

(a) φblat is simulated from π(φlat|ub−1);

(b) φbobs is simulated from π(φobs|ub−1,y).

If each yi is assumed independent, ui can be sampled individually using a Gibbs sam-
pler from the posterior and they can be drawn from

U
(t)
i ∼Mult(p(u

(t)
i = 1|y(t−1),y(t+1),θ), . . . , p(u

(t)
i = m|yt−1,y(t+1),θ)). (2.6)

The complete data posterior distribution is given by the Bayes Theroem as

π(φ|y,u) ∝ π(φ)p(y,u|φ).

If a priori independence is assumed between φobs and φlat, given u these parameters
remain conditionally independent a posteriori and the complete data posterior can be
decomposed in

π(φobs|y,u) ∝ π(φobs)p(y,u|φobs) (2.7)

and
π(φlat|y,u) ∝ π(φlat)p(y,u|φlat). (2.8)

The overall form of the complete data posterior distribution π(φobs|y,u) is specific to
a particular latent Markov model. If the prior for a component of φobs is conjugate
to the form of the complete data likelihood, than the full conditional distribution be-
longs to the same family of distributions as the prior and can be sampled directly with
a Gibbs sampler. Otherwise it is necessary to introduce Random Metropolis-Hasting
steps. To estimate φlat = {βu,γuū}when we introduce the spatial structure, we need a
Metropolis-Hasting step because we introduce a non-linear link function.

To clarify the estimation of the vector of parameters φ we consider a binomial
state-dependent distribution. This is the choice for the data set of lung cancer deaths in
Ohio presented in Section 3.2. In this case

Y
(t)
i |U

(t)
i ∼ Bin(r

(t)
i , pu)

for u = 1, . . . ,m
(2.9)

where r
(t)
i is the number of people at risk for area i at time t and pu is the succes

probability given a specific latent state. We assume that each component of φobs =

{p1 . . . , pm} has a Uniform U(0, 1) prior. In this way the vector p = (p1, . . . , pm)
′

can be
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simulated from a Dirichlet distribution such that

p ∼ Dir(α, ξ) (2.10)

where α = (α1, . . . , αm)
′

and αu = 1 +
∑
t

∑
i
y

(t)
i I(U

(t)
i = u) with u = 1, . . . ,m and ξ =

(ξ1, . . . , ξm) and ξu = 1 +
∑
t

∑
i
s

(t)
i I(U

(t)
i = u) where s(t)

i is the number of subjects who

are not dead for lung cancer in area i at time t. Latent parametersφlat = {βu,γuū} have
Normal priors with mean zero and fixed variance but their full conditional distribution
can not be written directly because it depends on the logit parametrization and on the
covariates so we have to use a Random Metropolis-Hasting sampler.

The choice of the number of latent states of the unobserved Markov chain under-
lying the observed data corresponds to the model selection procedure. This procedure
is very important in the estimation process. We use a model selection method based on
the choice of the maximum likelihood. Consider the marginal likelihood of the data y.
For any parameter configuration ū(1), . . . , ū(T ), φ, Bayes’ rule implies that the marginal
likelihood of the data y satisfies

p(y) =
p(ū(1), . . . , ū(T ), φ,y)

p(ū(1), . . . , ū(T ), φ|y)
=
p(y|ū(1), . . . , ū(T ), φ)p(ū(1), . . . , ū(T ), φ)

p(ū(1), . . . , ū(T ), φ|y)
; (2.11)

where ū(t), with t = 1, . . . , T is a fixed n × 1 vector of latent states and φ a vector of
fixed parameters. The numerator in (3.29) can be calculated but the posterior proba-
bility at denominator can be notoriously difficult to compute, and particularly so in
high dimensional problems. To do that we use the Chib and Jeliazkov (2001) estimator.
They employ the local reversibility of the Metropolis-Hasting algorithm to construct an
estimator in models where full conditional densities are not available analytically but
which does not require the normalising constant of p(ū(1), . . . , ū(T ), φ|y). The estimator
is free of distributional assumptions and is directly linked to the simulation algorithm.

A well-know problem occurring in Bayesian modeling is that of label switching
in which random permutations of the hidden state labels occur over the course of the
MCMC run. That can be seen as the non-identifiability of the components due to the
invariance of the posterior distribution to the permutation in the parameters labeling.
Several solutions have been proposed in the literature (Jasra, Holmes, and Stephens,
2005). We relabelled the MCMC output at every iteration following the ascending order
of the parameters which affect the initial probabilities vector.
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2.5 Simulation Studies

In the following we illustrate simulation results aimed at evaluating the behaviour
of the proposed model. We want to study how the model can identify the underly-
ing latent distribution and fit the parameters with different number of states, state-
dependent distribution and function η(·). In order to do that, we consider five simula-
tion scenarios:

• Scenario 1a: Binomial distribution with m = 2 latent states and η(·) = mean,

• Scenario 1b: Binomial distribution with m = 3 latent states and η(·) = mean,

• Scenario 2a: Binomial distribution with m = 2 latent states and η(·) = relative
frequencies,

• Scenario 3a: Normal distribution with m = 2 latent states and η(·) = mean,

• Scenario 3b: Normal distribution with m = 3 latent states and η(·) = mean.

For each scenario we run three chains and then consider their mean.

2.5.1 Scenario 1a

Scenario 1a concerns the use of the binomial distribution as in (2.9). In this first scenario
we consider m = 2 latent states and the spatial function covariate considered in the
model is the mean of the neighbouring latent states for each area i at time t. We consider
n = 88 units and T = 21 times as in the Ohio data. As neighbouring matrix we consider
the matrix (2.1) which comes from the Ohio data. Following (2.2) and (2.3), with k = 2

latent states and q = 1 covariate on the initial and the transition probabilities, eight
parameters have to be estimated. We fix these to be:

• β′
1 = (β01, β11) = (−1.5, 1) , where u = 1 is the reference group,

• γ ′
uū = (γ012, γ021, γ21, γ12) = (−2, 1, 0.5,−1), where ū is the latent state at time

(t− 1),

• p′
= (p1, p2) = (0.0025, 0.005).

With these parameters we simulate a scenario where, considering the severity of the
condition, an increase of the mean influences the area state to a more severe condi-
tion and where there is a balanced division of areas in the two states. Based on these
parameters we simulate U (t)

i from its full conditional as

U
(t)
i ∼Mult(p(U

(t)
i = 1|y(t−1),y(t+1),θ), . . . , p(U

(t)
i = m|yt−1,y(t+1),θ))
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and then

y
(t)
i |U

(t)
i = u

(t)
i ∼ Bin(r

(t)
i , pu) i =, 1, . . . , 88; t = 1, . . . , 21;u = 1, 2; (2.12)

where rti ∼ U(10000, 1800000). In this way the underlying latent distribution is divided
as follow: 957 areas are classified in state u = 1, 891 areas are allocated in state u = 2.

To estimate βu and γuū a random Metropolis-Hasting is used, with N(0, 1) as
random walk and Normal proposal with mean zero and standard deviation equal to
three. In the Metropolis-Hasting we obtain an acceptance rate of 21.64% for βu and
20.64% for γuū. The parameter vector of the manifest distribution is sampled using a
Gibbs sampler from its full conditional distribution p ∼ Dir(α, ξ) where α and ξ are
defined after (2.10).

TABLE 2.1: Scenario 1a: Binomial m = 2 and η(·) mean. State u = 1
distribution. Real value 957.

u=1 953 954 955 956 957 958 959 960

Freq 3 74 1734 12111 5284 743 51 1

TABLE 2.2: Scenario 1a: Binomial m = 2 and η(·) mean. Parameter esti-
mates and time series S.E. (Burn-in=20000).

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11) γ̂012 S.E.(γ̂012) γ̂021 S.E.(γ̂021)

-1.5101 0.0819 0.9782 0.0515 -2.0001 0.0215 0.3687 0.0227

γ̂21 S.E.(γ̂21) γ̂12 S.E.(γ̂12) p̂1 S.E.(p̂1) p̂2 S.E.(p̂2)

0.7365 0.0144 -0.8133 0.0153 0.0025 3.100e-08 0.0049 5.153e-08

2.5.2 Scenario 1b

In this second scenario we consider m = 3 latent states and the spatial function covari-
ate is considered in the model as the mean of the neighbouring latent states for each
area at time t. We again consider n = 88 units and T = 21 times as in the Ohio data.
As neighbouring matrix we consider the matrix in (2.1). Following (2.2) and (2.3), with
m = 3 latent states and q = 1 covariate on the initial and the transition probabilities, 19
parameters have to be estimated. We fix these to be

• β′
1 = (β01, β11, β22, β33) = (1,−3.5, 3.5, 4) , where u = 1 is the reference group,

• γ ′
uū = (γ021, γ031, γ012, γ032, γ013, γ023, γ21, γ31, γ12, γ32, γ13, γ23) =

= (1, 1,−0.5, 1,−0.5, 0.5, 0.5, 0.5,−0.5, 0.5,−0.5 − 0.5), where ū is the latent state
at time (t− 1)

• p′
= (p1, p2, p3) = (0.002, 0.003, 0.006)
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Then, the latent variable has the following distribution: over all the period of observa-
tion 425 area are in state u = 1, 641 are in u = 2 and 782 in u = 3.

TABLE 2.3A: Scenario 1b: Binomial distribution m = 3 and η(·) mean.
State u = 1 distribution. Real value 425.

u=1 418 419 420 421 422 423 424 425 426

Freq 1 7 87 629 2424 4731 1921 187 13

TABLE 2.3B: Scenario 1b: Binomial distribution m = 3 and η(·) mean.
State u = 2 distribution. Real value 641.

u=2 0 630 631 632 633 634 635 636 637 638

Freq 1 10 22 76 206 397 751 1164 1571 1718

u=2 639 640 641 642 643 644 645 646 647 648

Freq 1561 1194 744 369 130 63 14 7 2 1

TABLE 2.3C: Scenario 1b: Binomial distribution m = 3 and η(·) mean.
State u = 3 distribution. Real value 782.

u=3 0 777 779 780 781 782 783 784 785

Freq 1 1 1 10 30 92 242 624 1111

786 787 788 789 790 791 792 793 794 795

1588 1881 1731 1235 798 391 176 56 26 7

TABLE 2.4: Scenario 1b: Binomial distribution m = 3 and η(·) mean.
Latent parameters estimates and time series S.E.

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11) β̂22 S.E.(β̂22) β̂33 S.E.(β̂33)

0.822 0.008 -0.905 0.011 3.968 0.027 1.323 0.02

γ̂021 S.E.(γ̂021) γ̂031 S.E.(γ̂031) γ̂012 S.E.(γ̂012) γ̂032 S.E.(γ̂032

1.354 0.007 1.875 0.003 -0.639 0.003 1.853 0.007

γ̂013 S.E.(γ̂012) γ̂023 S.E.(γ̂022) γ̂21 S.E.(γ̂21) γ̂31 S.E.(γ̂31)

-0.154 0.001 0.292 0.003 0.311 0.001 0.177 0.001

γ̂12 S.E.(γ̂12) γ̂32 S.E.(γ̂32) γ̂13 S.E.(γ̂13) γ̂23 S.E.(γ̂23)

-0.022 0.002 0.917 0.003 -0.123 0.004 -0.933 0.001

TABLE 2.5: Scenario 1b: Binomial distribution m = 3 and η(·) mean.
Manifest parameters estimates and time series S.E.

p̂1 S.E.(p̂2) p̂2 S.E.(p̂2) p̂3 S.E.(p̂3)

0.003 5.603e-08 0.005 7.203e-08 0.006 5.692e-08
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2.5.3 Scenario 2a

In Scenario 2a we consider a Binomial state-dependent distribution with m = 2 latent
states and the spatial function covariate η(·) is considered in the model as the rela-
tive frequencies of the neighbouring latent states for each area at time t. In this way m
covariates are introduced in the model. The first covariate is given by the relative fre-
quencies of neighbouring areas with estimates u = 1, the last covariate is the relative
frequencies of neighbouring area with estimated latent state u = m. With the same aim
of Scenario 1, for m = 2 we fix the 11 parameters as follow:

• β′
1 = (β01, β111 , β112) = (−3.5,−3.5, 0.5);

• γ ′
uū = (γ012, γ021, γ211 , γ212 , γ121 , γ122) = (−1.5, 0.5,−1, 1, 1.5,−0.5) ;

• p′
= (p1, p2) = (0.003, 0.007).

Then, we simulate with a Gibbs sampler the distribution of the latent states for every
i = 1, . . . , 88 at every t = 1, . . . , 21 and then we generate the state space distribution as
in eq. (2.12). To estimate βu and γuū a random Metropolis-Hasting is used, withN(0, 1)

as random walk and Normal proposal of mean zero and standard deviation equal to
six. In the Metropolis-Hasting we obtain an acceptance rate of 22.6% for βu and 46.1%
for γuū. Latent states are divided as follows: 931 areas are assigned to u = 1 and 916 to
u = 2.

TABLE 2.6: Scenario 2a: Binomial distribution m = 2 and η(·) relative
frequencies. State u = 1 distribution. Real value 931.

u=1 917 918 919 929 921 922 923 924

Freq 1 19 117 363 958 1788 2211

u=1 925 926 927 928 929 939 931 1793

Freq 1411 689 256 57 11 3 1 1

TABLE 2.7: Scenario 2a: Binomial distribution m = 2 and η(·) relative
frequencies. Latent parameters estimates and time series S.E.

β̂01 S.E.(β̂01) β̂111 S.E.(β̂111) β̂112 S.E.(β̂112)

-3.5310 0.0201 -3.5310 0.0228 0.3486 0.1122

γ̂012 S.E.(γ̂012) γ̂021 S.E.(γ̂021) γ̂211 S.E.(γ̂211)

-1.5494 0.0037 0.5534 0.0038 -0.8984 0.0117

γ̂212 S.E.(γ̂212) γ̂121 S.E.(γ̂121) γ̂122 S.E.(γ̂122)

1.0946 0.0129 1.4505 0.0037 -0.4466 0.0033
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TABLE 2.8: Scenario 2a: Binomial distribution m = 2 and η(·) relative
frequencies. Manifest parameters estimates and time series S.E. (Burn-

in=20000).

p̂1 S.E.(p̂1) p̂2 S.E.(p̂2)

0.003 5.381e-08 0.0069 1.609e-07

2.5.4 Scenario 3a

Following the aim of testing the adaptability of the proposed method to different state-
dependent distributions, we simulate a sample from a Normal distribution. In this first
scenario we consider m = 2 latent states and the spatial function η(·) is in the model as
the mean of the neighbouring latent states for each area at time t. We consider n = 88

units and T = 21 times as in the Ohio data. As neighbouring matrix we consider the
matrix (2.1) which comes from the Ohio data. In this case, the state-dependent distri-
bution is

Y
(t)
i |U

(t)
i ∼ N(µu, σu)

for u = 1, 2.
(2.13)

We simulate a scenario where, considering the severity of the condition, an increase
of the mean influences the area state to more severe condition and where there is a
balanced division of areas in the two states. For m = 2 we fix the parameters to:

• β′
1 = (β01, β11) = (−1.5, 1) , where u = 1 is the reference group;

• γ ′
uū = (γ012, γ021, γ21, γ12) = (−2, 1, 0.5,−1), where ū is the latent state at time

(t− 1) and we have differen refereces group;

• µ′
= (µ1, µ2) = {10, 20};

• σ2
′

= (σ1, σ2) = (1, 1).

In this way, 957 areas are in state u = 1 and 891 in u = 2. We estimate the parameters of
the latent model with a Metropolis-Hasting algorithm , with N(0, 1) as random walk
and Normal proposal of mean zero and standard deviation equal to three. The Gibbs
full conditional distributions are

• µu ∼ N(Y , σ2
u/nu);

• τ ∼ InvGamma
(
nu
2 ,

1
2

∑nu
i=1

∑T
t=1(Y t

i − µu)2
)

;

where nu is the number of areas classified in state u over all time points. The acceptance
rate for β is 26.52% and for γ is 21.84%.
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TABLE 2.9: Scenario 3a: Normal distribution m = 2 and η(·) mean. State
u = 1 distribution. Real value 957.

u=1 0 955 957 958

Freq 1 51 9546 2

TABLE 2.10: Scenario 3a: Normal distributionl m = 2 and η(·) mean.
Latent parameters estimates and time series S.E.

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11) γ̂012 S.E.(γ̂012)

-0.986 0.034 0.728 0.022 -1.769 0.063

γ̂021 S.E.(γ̂021) γ̂21 S.E.(γ̂21) γ̂12 S.E.(γ̂12)

0.46 0.04 0.311 0.04 -0.89 0.033

TABLE 2.11: Scenario 3a: Normal distributionl m = 2 and η(·) mean.
Manifest parameters estimates and time series S.E. (Burn-in=10000).

µ̂1 S.E.(µ̂1) µ̂2 S.E.(µ̂2) σ̂1 S.E.(σ̂1) σ̂2 S.E(σ̂2)

9.972 3.071e-05 19.981 3.502e-05 1.015 0.002 1.029 0.001

2.5.5 Scenario 3b

In this scenario we consider m = 3 latent states and the spatial function η(· · · ) is in the
model as the mean of the neighbouring latent states for each area at time t. In this case,
the state-dependent distribution is

Y
(t)
i |U

(t)
i ∼ N(µu, σu)

for u = 1, 2, 3.
(2.14)

We simulate a scenario where, considering the severity of the condition, an increase
of the mean influences the area state to more severe condition. For m = 3 we fix the
parameters to:

• β′
1 = (β01, β11, β22, β33) = (1,−3.5, 3.5, 4) , where u = 1 is the reference group;

• γ ′
uū = (γ021, γ031, γ012, γ032, γ013, γ023, γ21, γ31, γ12, γ32, γ13, γ23) =

= (1, 1,−0.5, 1,−0.5, 0.5, 0.5, 0.5,−0.5, 0.5,−0.5− 0.5),
where ū is the latent state at time (t− 1);

• µ′
= (µ1, µ2) = {5, 10, 15} ;

• σ2
′

= (σ1, σ2) = (1, 1, 1).

In this way, 384 areas are in state u = 1 ,602 in u = 2 and 862 in u = 3. We estimate the
parameters of the latent model with a Metropolis-Hasting algorithm , with N(0, 0.5) as
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random walk and Normal proposal of mean zero and standard deviation equal to five.
The acceptance rate for β1 is 44.82% and for γuū is 36.86%.

TABLE 2.12: Scenario 3b: Normal distribution m = 3 and η(·) mean.
State u = 1 distribution. Real value 384.

u=1 363 383 384 399

Freq 4 33 9551 2

TABLE 2.13: Scenario 3b: Normal distribution m = 3 and η(·) mean.
State u = 2 distribution. Real value 602.

u=2 592 622 602 599

Freq 4 33 9551 2

TABLE 2.14: Scenario 3b: Normal distribution m = 3 and η(·) mean.
State u = 3 distribution. Real value 862.

u=1 843 850 862 893

Freq 4 33 9551 2

TABLE 2.15: Scenario 3b: Normal distributionl m = 3 and η(·) mean.
Latent parameters estimates and time series S.E.

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11) β̂22 S.E.(β̂22) β̂33 S.E.(β̂33)

1.139 0.026 -2.538 0.016 3.787 0.021 1.47 0.06

γ̂021 S.E.(γ̂021) γ̂031 S.E.(γ̂031) γ̂012 S.E.(γ̂012) γ̂032 S.E.(γ̂032

0.745 0.013 0.577 0.015 -0.324 0.043 1.256 0.103

γ̂013 S.E.(γ̂012) γ̂023 S.E.(γ̂022) γ̂21 S.E.(γ̂21) γ̂31 S.E.(γ̂31)

-0.310 0.015 0.3258 0.01 0.793 0.024 0.440 0.01

γ̂12 S.E.(γ̂12 γ̂32 S.E.(γ̂32) γ̂13 S.E.(γ̂13) γ̂23 S.E.(γ̂23)

-0.435 0.08 0.327 0.02 -0.675 0.04 -0.0795 0.019

TABLE 2.16: Scenario 3b: Normal distributionl m = 3 and η(·) mean.
Manifest parameters estimates and time series S.E.

µ̂1 S.E.(µ̂1) µ̂2 S.E.(µ̂2) µ̂3 S.E.(µ̂3)

4.683 5.071e-05 11.901 2.502e-04 13.978 4.065e-04

σ̂1 S.E.(σ̂1) σ̂2 S.E(σ̂2) σ̂3 S.E(σ̂3)

1.002 0.002 1.029 0.001 0.981 0.001
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2.5.6 Conclusions from the simulation studies

We can notice from these simulation studies that:

• the choice of the function η(·) does not affect the precision of the parameters
estimates.

• Manifest parameters are always well estimated, but the estimation procedure
works better if they are quite distinct.

• When m increases, latent parameters estimates are less accurate. They still keep
the sign of the real value, but sometimes there is bias and the true value is not in
the confidence interval. This may be due to the fact that we fix the real value of the
parameters, then we generate the latent variable structure with a Gibbs sampling
and considering its mode to obtain latent variable realizations for area i at time
t. After that we generate the undelying latent structure, we sample the manifest
variable for area i at time t and then finally we estimate the fixed parameters. In
this way the final error is not just MCMC error but depends on all the steps.

• The latent distribution is always quite accurate in all the scenarios.

In appendix A chains diagnostics for scenarios 1a and 2a are reported.

2.6 Application

We use our method on the real dataset Ohio described in Section 2.2. We considerm = 2

and m = 3 and we selected m = 2 latent states based on the proposed model selection
method. The marginal likelihood of the data y under the model withm = 2 latent states
is 19932. In the other case, it is 17006. The selection of m = 2 latent states is also quite
clear from the MCMC output. In fact, even under the model with m = 3 latent states,
latent state u = 3 appears just in some iterations of the chain. With just two states we
decide to consider the function η(·) to be the mean of the neighbouring latent states.
We use the priors in Section 2.4, with σ2

β = σ2
γ = 10.

We assume that latent states are ordered following the severity of lung cancer
death scenario, so that in state 1 the incidence of lung cancer deaths is smaller than in
state 2. We use this constraint to avoid label switching.

TABLE 2.17: Ohio dataset estimated parameters.

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11) γ̂012 S.E.(γ̂012) γ̂021 S.E.(γ̂021)

-0.0793 0.0030 -0.1155 0.0037 -5.4036 0.1331 0.1048 0.03

γ̂21 S.E.(γ̂21) γ̂12 S.E.(γ̂12) p̂1 S.E.(p̂1) p̂2 S.E.(p̂2)

2.2528 0.0848 -2.3517 0.2998 0.0003 2.573e-07 0.0005 4.162e-07
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We can see from Tab. 2.17 that when the mean of the neighbouring latent states
increases, the probability of unit i to remain in state 2 is higher than the probability of
moving to state 1 because γ̂21 is positive. In contrast, the increase of the spatial covari-
ate has a negative effect on the probability of moving to the lowest state. Moreover,
a one-unit increase in the neighbouring latent states mean is associated with a 0.1155
decrease in the relative log odd of being in latent state 2 at the first time of observation.
This means that the initial probability of area i to be in state 2 decreases when its neigh-
bouring counties occupy state 2. This is not what we expected. In fact, Fig. 2.1 shows
how areas with higher lung cancer death incidence are neighbours. Morover, Fig. 2.1
provides evidence of a strong temporal pattern. Probably, this temporal pattern influ-
ences also the initial probabilities and the Markov chain can not estimate them properly
because the distribution of the latent state frequencies is not balanced. In fact a strong
temporal trend can capture a large amount of information and it does not permit the
correct estimates of the initial probabilities, because they are estimated using only data
at time t = 1. This temporal pattern is also evident in the latent states classification (as
in Fig. 2.2).

To avoid this problem and try to capure the temporal trend in the data a covari-
ate that considers data time evolution (Hubert, 1973) may be usefully included in the
model. If this covariate is introduced in the transition probabilities parameters of the la-
tent model, the interpretation of the latent states does not change. This solution can also
give a measure of the strength of the changes in time of the latent states. Another way
to take the temporal trend into account in the data is to introduce the trend covariate
in the measurement model. In this way, it affects the response variable estimates and
it probably will fix the initial probabilities estimates. However, with this procedure the
interpretaton of the latent states changes. They do not provide no more a classifica-
tion of areas following the severity of incidence of lung cancer deaths, but we can only
be interpreted as time space residuals. After some trials, we decide to introduce it in
a linear way. We just test for the linear trend introducing this variable as a covariate
in the transition probabilities model, according to the metodology developed in this
work. With this solution the interpretability of the latent states classification does not
change. In fact, it considers just the influence of time in the latent state model. As ex-
pected we can see that the increase in time has a positive influence on the probability to
occupy state 2 instead of remaining in state 1. Also, the initial probabilities seem to fit
better. Probably the inclusion of the covariates in the latent state generation helps the
estimation.

TABLE 2.18: Ohio dataset: estimated β1 parameters with time variable.

β̂01 S.E.(β̂01) β̂11 S.E.(β̂11)

-0.0613 0.026 1.363 0.011
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(a) (b)

(c) (d)

(e)

FIGURE 2.2: Lantent states classification Ohio 1968-1974-1978-1984-1988.
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TABLE 2.19: Ohio dataset: estimated γuū parameters with time variable.

γ̂012 S.E.(γ̂012) γ̂021 S.E.(γ̂021) γ̂211 S.E.(γ̂211)

-0.337 0.018 0.046 0.010 1.375 0.011

γ̂212 S.E.(γ̂212) γ̂121 S.E.(γ̂121) γ̂122 S.E.(γ̂122)

1.159 0.014 -0.692 0.017 -4.590 0.601

TABLE 2.20: Ohio dataset estimated manifest parameters with time vari-
able.

p̂1 S.E.(p̂1) p̂2 S.E.(p̂2)

0.003 7.812e-08 0.005 1.182e-07

2.7 Conclusion

In this work we develop a method to include a spatial structure in LMMs. This ex-
tension allows the probability of being in a latent state and the probability to move
from a latent state to another over time to be influenced by the neighbouring areas. The
model is fitted within a Bayesian framework using Gibbs and Random Metropolis-
Hasting algorithm with augmented data that allows for a more efficient sampling of
model parameters. Spatial structure is introduced as a function of the latent states in
the neighbouring areas. It is important to notice that in this way the spatial structure
depends on the latent process, so it’s not fixed during the observation period.

We have run simulation studies in order to test for the robustness of the model
procedure to the following factors:

• the number of latent states,

• the choice of the spatial function,

• different manifest distributions of the response variables.

Simulations show that the latent state structure and the parameters of the manifest
distribution are always well fitted, but the estimation of latent parameters is less precise
when the number of latent states increases. The choice of manifest distribution and the
choice of the function of latent states which affects the spatial structure do not influence
model efficiency. Other simulations can be conducted to investigate prior sensibility
and classification of latent state when they are not well divided.

We have applied the proposed model to the Ohio dataset about mortality due to
lung cancer in Ohio from 1968 to 1988. We notice that there is a strong temporal pattern
in the data, and so we adjuste for it including a time trend variable in the latent model
for the estimation of the transition probabilities. Both the spatial latent covariate than
the time trand covariate are significant in our data. We find a good classification of the
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areas in two groups. The transition probability from state one to state two is higher than
the probability that an area i in state one remains in its state. Moreover, the probability
of moving towards the better latent states is even lower.

Future research includes a multivariate extension of the model in order to con-
sider more than one response variable and the inclusion of other different covariates
in the latent or measurement model. Moreover different neighbouring matrix could be
considered with a weighted spatial function.



Chapter 3

Time series SAE for unemployment
rates using latent Markov models

3.1 Introduction

In Italy, the Labour Force Survey (LFS) is conducted quarterly by ISTAT, the National
Statistical Institute, to produce estimates of the labour force status of the population at
a national, regional (NUTS2) and provincial (LAU1) level. Since 1996 ISTAT produces
LFS estimates of employed and unemployed counts at labour market areas (LMAs)
level. Until 2011 LMAs were 686 and they were sub-regional geographical areas where
the bulk of the labour force lives and works, and where establishments can find the
largest amount of the labour force necessary to occupy the offered jobs. They were
developed through an allocation process based on the analysis of commuting patterns.
Since 2011 LMAs are based on commuting data stemming from the 15th Population
Census. Now they are redefined in 611 distinct areas (Istat, 2014).

Traditional direct estimation requires sufficiently large samples. Unlike NUTS2
and LAU1 areas, LMAs are unplanned domains and direct estimators have overly large
sampling errors particulary for areas with small sample sizes. This makes it necessary
to "borrow strength" from data on auxiliary variables from other neighbouring areas
through appropriate models, leading to indirect or model based estimates. Small Area
Estimation (SAE) methods are used in inference for finite populations to obtain esti-
mates of parameters of interest when domain sample sizes are too small to provide
adequate precision for direct domain estimators. Statistical models for SAE can be for-
mulated at the individual or area (i.e. aggregate) levels. When information about the
geographic indicators for target areas are available for all individuals in the sample, the
usual approach is to estimate regression coefficients and variance components based on
a unit-level linear mixed model. Since 2004, after the redesign of LFS sampling strategy,
ISTAT uses an empirical best linear unbiased prediction (EBLUP) estimator based on
a unit level linear mixed model with spatially autocorrelated random area effects and
where individual covariates, such as sex by age classes, are inserted in the fixed part of

24
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the model (Istat, 2006). As mentioned earlier, in 2011 LMAs have been redefined and
this leads to re-thinking the SAE strategy. In particular, it is also possible to aggregate
the data to area level and estimate SAE parameters based on a linear model for the
areas. Area level data are computationally easier to manage because they are widely
smaller in number, in particular with the application at hand of LFS where 11 years of
data are available.

The Fay-Herriot model (Fay and Herriot, 1979, FH) is considered the basic area
level SAE model. It combines cross-sectional information at each time for computing
the estimate, but does not borrow strength over the past time periods. When longi-
tudinal data is available, the idea is to borrow strength over time, too. In the last two
decades, several approaches that allow to borrow strength simultaneously in space and
in time have been developed. Estimators based on the approach developed by Rao and
Yu (1994) successfully use space and time informations to produce improved estimated
with desiderable properties for small areas. Ghosh, Nangia, and Kim (1996) apply a
fully Bayesian analysis using a time series model to the estimation of median income
of four-person families. Datta et al. (1999) apply this model to a longer time series ac-
cross small areas from the U.S. Current Population Survey using a random walk model.
You, Rao, and Gambino (2003) apply the same model to unemployment rate estimation
for the Canadian Labour Force Survey using short time series data accross small areas,
so that they do not consider seasonal parameters. Finally, Marhuenda, Molina, and
Morales (2013) develop a spatio-temporal FH with simultaneous autoregressive model
in space (SAR) plus first order autoregressive (AR(1)) covariance structure in time.

Hierarchical Bayes (HB) models have been largely used in SAE (see Rao, 2003,
Chapter 10). A HB structure allows to rewrite complex models for the data as simple
models building blocks and it also allows to take into account the different sources of
variation. Ghosh, Nangia, and Kim (1996) consider HB generalized linear models for
an unified analysis of both discrete and continuous data. Fabrizi et al. (2011) develop a
model-based SAE method for calculating estimates of poverty rates based on different
thresholds for subsets of the Italian population in a HB framework. Finally, Boonstra
(2014) uses a time-series HB multilevel model to estimate municipal unemployment
based on the Dutch Labour Force Survey at a quarterly frequency including random
municipality effects and random municipality by quarter effects.

This work wants to develop a new area level SAE method based on Latent Markov
Models (LMMs, see Bartolucci, Farcomeni, and Pennoni, 2014, for an introduction). In
particular, we wish to use this model to estimate unemployment rates in LMAs from
2004 to 2014 within a HB framework. Area-level SAE models consist of two parts, a
sampling model formalizing the assumptions on direct estimators and their relation-
ship with underlying area parameters and a linking model that relates these parameters
to area specific auxiliary information. In this work a LMM is used as the linking model
and the sampling model is introduced as the highest level of hierarchy. The definition
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of SAE methods which are able to take into account the non-observable nature of vari-
ables of interest is presented in literature only in Fabrizi, Montanari, and Ranalli (2015),
but the authors consider just the cross sectional nature of the problem without inves-
tigating its time extension. They develop a latent class unit-level model for predicting
disability small area counts from survey data.

LMMs, introduced by Wiggins (1973), allow for the analysis of longitudinal data
when the response variables measure common characteristics of interest which are not
directly observable. The basic LMMs formulation is similar to that of Hidden Markov
models for time series data (MacDonald and Zucchini, 1997). In these models the char-
acteristics of interest, and their evolution in time, are represented by a latent process
that follows a Markov chain, tipically of first order. Latent models represent the evolu-
tion of the latent characteristic over time and areas are allowed to move between the
latent states during the period. LMMs can be seen as an extension of latent class models
(Lazarsfeld, Henry, and Anderson, 1968) to longitudinal data. Moreover, LMMs may
be seen as an extension of Markov chain models to control for measurement errors.
The model presented in this work is fitted within a Bayesian framework using Gibbs
sampler with augmented data that allows for a more efficient sampling of model pa-
rameters.

This chapter is organised as follows. Section 3.2 provides a more detailed descrip-
tion of the available LFS data. In Section 3.3, the model is described in detail, while in
Section 3.4 the estimation procedure is presented. Section 3.5 is devoted to application
results. Conclusions and possible future developments are outlined in the final Section
3.6.

3.2 Data

In Italy, the LFS is conducted quarterly by ISTAT to produce estimates of the labour
force status of the population at national, NUTS2 and LAU1 level (D’Alo et al., 2012).
Survey results are produced and disseminated on a quarterly basis and once a year as
annual averages. Since 1996 ISTAT produces estimates also for LMAs. LMAs are un-
planned domains for the LFS. In fact, the sampling design is as follows. Whitin a given
LAU1, municipalities are classified as Self-Representing Areas (SRAs; larger munici-
palities) and Non Self-Representing Areas (NSRAs; smaller municipalities). In SRAs a
stratified cluster sampling design is applied. Each municipality is a single stratum and
households are selected by means of systematic sampling. In NSRAs, the sample is
based on a stratified two stage sampling design. Municipalities are primary sampling
units (PSUs), while households are Secondary Sampling Units (SSUs). PSUs are di-
vided into strata of the same dimension in terms of population size. One PSU is drawn
from each stratum without replacement and with probability proportional to the PSU
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population size. SSUs are selected by means of systematic sampling in each PSU. All
members of each sample household, both in SRAs and in NSRAs are interviewed. In
each quarter, about 70,000 households and 1.350 municipalities are included in the sam-
ple. Note that some LMAs (generally the smallest ones) may have a very small sample
size. Furthermore, usually about a third of the LMAs is not included in the sample at
all (i.e. they have a zero sample size).

Households are rotated according to a 2-(2)-2 rotation scheme. Households are in-
terviewed during two consecutive quarters. After a two-quarter break, they are again
interviewed twice in the corresponding two quarters of the following year. As a result,
each household is included in four waves of the survey (Eurostat, 2015). This work uses
yearly unemployment incidences for 611 LMAs for the period 2004-2014 from the LFS.
For a sake of semplicity, in this paper we call unemployment incidences unemploy-
ment rates. LFS yearly direct estimats of unemployment at LMAs level are obtained
as the arithmetic mean of the quarterly direct estimates. The aggregation of quarterly
variance estimates to produce the annual ones has to take into account the correlation
between quarters due to the partial overlap of the sample during the four quarters in a
year. Therefore it is obtained by multiplying the estimate of each of the four quarterly
variances by a rotation coefficient, which depends on the correlation between estimates
that are based on overlapping sample units.

Over all times and areas, 1895 direct estimates cannot be computed because the
sample dimension is zero. In addition, missing values are more frequent in CVs com-
pared to direct estimates (see Tab. 3.1 and Tab. 3.2) for the reason that when direct
estimates are exactly equal to zero, CVs can not be calculated. Moreover it is necessary
to underline that estimates in LFS are produced quarterly and then they are aggregate
with an arithmetic mean to obtain yearly direct estimates. As a consequence, a zero
value in a quarter does not influence the annual estimate, but its respective missing CV
leads to a missing annual CV.

Tab. 3.3 shows the classification of the goodness of estimates based on their CV
(Statistics Canada, 2005). Estimates with a CV greater than 33.3% are considered too un-
reliable to be published. Estimates with CV from 16.6% to 33.3% must be used with cau-
tion because their sampling variability is quite high while estimates with CV smaller
than 16.6% are considered reliable. In our data, the vast majority of direct estimates
have large CV and can not be considered reliable estimates. In particular, in 2004 the
56.7% of direct estimates cannot be considered reliable and more that 50% in all our
sample.

The basic idea of SAE is to introduce a statistical model to exploit the relationship
between the variable of interest and some covariates for which population information
is available or which characterize each area. Auxiliary variables available for these data
are the following:
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TABLE 3.1: Summary of Unemployment Rates direct estimates (%) from
2004 to 2014.

year min 1st Qu Median Mean 3rd Qu. Max NA

2004 0.00 1.78 2.75 3.32 4.55 11.09 160
2005 0.00 1.81 2.82 3.23 4.41 10.25 174
2006 0.23 1.62 2.41 2.76 3.63 10.01 178
2007 0.00 1.49 2.26 2.60 3.49 9.96 176
2008 0.00 1.65 2.44 2.88 3.91 13.04 169
2009 0.00 2.10 2.87 3.21 4.02 15.06 167
2010 0.00 2.13 3.15 3.41 4.32 14.44 164
2011 0.21 2.16 3.02 3.43 4.57 10.52 169
2012 0.00 3.06 4.06 4.56 5.83 14.18 166
2013 0.00 3.42 4.67 5.03 6.52 12.37 185
2014 0.38 3.58 4.88 5.33 6.71 17.58 187

2004-2014 0.00 2.05 3.23 3.61 4.71 17.58 1895

• Time varying variables:

– population rates in sex × 14 age classes (0-4, 5-9, 10-14, 15-19, 20-24, 25-29,
30-34,35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65+).

• Fixed in time variables:

– Cultural Vocation : a qualitative nominal variable with five categories:

∗ Great beauty (70 LMAs that are both artistic and naturalistic centers and
which have a manufacturing based on cultural connotation);

∗ Potential heritage (138 LMAs that are artistic and naturalistic centers but
where the entrepreneurial dimension is less developed);

∗ Cultural activity (138 LMAs that have a manufacturing base to cultural
connotation even if they are not artistic or naturalistic centers);

∗ Tourism (194 LMAs that have a poorly developed cultural dimension or
industry but they are a tourist destination);

∗ Cultural remotness (71 LMAs that are under the EU standard in any
cultural or naturalistic classes).

– Prevalent Specialization: a qualitative nominal variable with four levels:

∗ not specialized,

∗ not manufacturing,

∗ made in Italy,

∗ industrial.
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TABLE 3.2: Summary of unemployment rates direct estimates CV (%)
from 2004 to 2014.

year min 1st Qu Median Mean 3rd Qu. Max NA

2004 4.91 25.81 36.73 39.34 48.34 148.8 216
2005 5.10 25.25 36.12 38.61 48.16 102.7 231
2006 5.89 25.86 38.01 42.42 52.28 154.2 264
2007 6.88 27.80 39.18 43.58 54.58 144.2 257
2008 6.82 26.95 36.49 41.32 49.75 150.3 238
2009 6.89 25.00 35.06 39.06 47.31 154.3 234
2010 6.56 23.83 34.48 37.77 46.11 122.0 234
2011 6.16 24.38 33.35 37.24 44.86 125.7 229
2012 4.96 22.11 30.56 33.08 39.99 116.6 211
2013 4.14 21.37 28.24 31.72 37.96 142.3 219
2014 4.14 20.08 28.30 31.40 38.26 122.3 214

2004-2014 4.14 23.85 33.72 37.64 46.30 154.3 2547

These qualitative variables are defined in the 2015 annual report by ISTAT (2015).

3.2.1 Smoothing MSE

The estimated mean square errors and CVs show wide variation (See Tab. 3.2). These
wide variations can be seen as a function of the sample size. Errors in estimates of sam-
pling error can affect small area modelling in different ways because the estimates of
final unemployment rates depend on it (Rao and Yu, 1994). For this reason, smoothing
estimated mean square errors is necessary. In this work, we propose to smooth them
using a factor regression model with a logarithmic trasformation of the coefficient of
variation and of the mean square error. The model is divided into two steps which are
applied to quarterly estimates. The first step aims at computing the smoothed MSE
when an estimate of the unemployment rate is available. The second step imputes
smoothed MSEs for the LMAs with a zero sample size.

Let θ̂itj be the direct survey estimate for small area i = 1, . . . ,m, with m = 611, at
year t = 1, . . . , T , with T = 11, and where j = 1, . . . , 4 are the quarters of observation.
LetCV 2

itj
be the correspondig squared coefficient of variation. In order to obtain smooth

estimated MSEs, the following auxiliary information is used:

• Dummy variables indicating the geographic macro-area LMA i belongs. In par-
ticular, δhi, for h = 1, . . . , 4, are north-west, north-east, center, south respectively.

• Mitj the population size at time t, quarter j, of the macro-area LMA i belongs to;

• Nitj the population size of LMA i at time t and quarter j.
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TABLE 3.3: Number of small areas with values of CV less than 16.6%,
between 16.6% and 33.3% and over 33.3% for Direct estimator (from 2004

to 2014).

year < 16.6 16.6-33.3 > 33.3

2004 41 130 224
2005 35 125 220
2006 24 115 208
2007 18 113 223
2008 24 132 217
2009 22 154 201
2010 25 155 197
2011 25 166 191
2012 42 188 170
2013 55 197 140
2014 60 198 139

2004-2014 371 1673 2130

The first step is based on predictions from the following model:

log(CV 2
itj ) =

4∑
h=1

βhδhi +

4∑
h=1

β4+h log(θ̂itj ) +

4∑
h=1

β8+h

Nitj

Mitj

. (3.1)

Smoothed ĈV itj are obtained as the square root of the exponential of such predictions.
Then, smoothed MSEs are obtained as

M̂SEitj = ĈV itj × θ̂itj . (3.2)

When direct estimates are missing, the model presented in this first step can not be
use because CV 2

itj
and θ̂itj are not available. In this second second step smoothed MSEs

are computed directly for LMA i at point tj using the prediction from the following
model:

log(MSEitj ) =

4∑
h=1

βhδhi +

4∑
h=1

β4+h

Nitj

Mitj

. (3.3)

Annual smoothed MSEs are obtained as the mean of quarterly MSEs adjusted in order
to take into account the partial overlap of the quarterly samples.

3.3 Model

3.3.1 General SAE framework

Rao and Yu (1994) propose an area level model involving autocorrelated random effects
and sampling errors using both time series and cross sectional data. It consists of a
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FIGURE 3.1: Direct estimates vs original MSEs and Direct estimates vc
smoothed MSEs.

sampling model

θ̂it = θit + eit,

i = 1, . . . ,m, t = 1, . . . , T,
(3.4)

and an area-linking model

θit = xTitβ + vi + uit,

i = 1, . . . ,m, t = 1, . . . , T,
(3.5)

where θ̂it is the direct survey estimator for small area i at time t, θit = g(Ȳit) is a function
of the small area mean, eit|θit are normal sampling errors with zero mean and with
known covariance matrix Ψ = blockdiag{Ψi}, xit are area specific covariates (possibly
time-varying), vi ∼ N(0, σ2

v) is the area effect and uit = ρui,t−1 + εit with |ρ| < 1

and εit ∼ N(0, σ2
ε ) is the area-by-time effect. In this model, eit, vi and εit are assumed

independent of each other.

The linking model is basically a linear model with mixed coefficients. You, Rao,
and Gambino (2003) translate this model into a HB framework as follows:

θ̂it|θi ∼ N(θit,Ψi)

θit|β, uit, σ2
v ∼ N(xTitβ + ρuit, σ

2
v)

uit|ui,t−1, σ
2
u ∼ N(ρui,t−1, σ

2
u)

(3.6)

where β, σ2
v and σ2

u are mutually independent with priors given as β ∝ 1 , σ2
v ∼

IG(a1, b1) and σ2
u ∼ IG(a2, b2). Even if a proper informative prior distribution on the

hyperparameters would be appropriate for a fully Bayesian analysis, non-informative
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priors are often used because information about these priors is seldom available in real
HB applications. The choice of a diffuse prior is not unique and some diffuse improper
priors could lead to improper posteriors. In the HB approach, MCMC methods make
inference direct and computationally feasible. For this reason, in a HB approach it is
easier to consider more complicated and realistic methods to analyse SAE problems.
Usually the Rao-Blackwellization approach is used to obtain estimators for the poste-
rior mean and the posterior variance of interest. In the next subsections, the new model
based on LMMs is illustrated.

3.3.2 Introducing elements on LMMs

As previously said, LMMs allow for the analysis of longitudinal data using latent vari-
ables. A fundamental assumption of LMMs is that of local independence, according
to which the response variables are conditionally independent given the latent vari-
ables. The motivation of this assumption is that the latent variables represent the only
explanatory factor of the response variables. In fact, the response variables provide
a measure of the latent ones and the latent process fully explains the observable be-
haviour of an area. Furthermore, the latent state to which an area belongs to at a certain
time point only depends on the latent state at the previous occasion.

In LMMs the existence of two processes is assumed: an unobservable finite-state
first order Markov chain Uit, i = 1, . . . ,m and t = 1, . . . , T with state space U =

{1, . . . , k} and an observed process θit, i = 1, . . . ,m and t = 1, . . . , T , where θit denotes
the response variable for area i at time t and similary for Uit. It is assumed that the
distribution of θit depends only on Uit, specifically the θit are conditionally indepen-
dent given the Uit. The state-dependent distribution, i.e. the distribution of θit given
Uit, can be a continuous or a discrete distribution. It can be taken for example from
the exponential family. Thus, the unknown vector of parameters φ in a LMM includes
both the parameters of the Markov chain φlat and the vector of parameters of the state-
dependent distribution of the random variables θit conditionally on Uit , φobs.

Due to the existence of these two processes, it is possible to differentiate between
two components of the model which are formulated through specific assumptions: the
measurement model and the latent model. The measurement model concerns the con-
ditional distribution of the response variables given the latent variables. The latent
model concerns the distribution of the latent variables, instead. By jointly considering
the two above components, the so-called manifest distribution is obtained. It is given
by the marginal distribution of the response variables, once the latent variables have
been integrated out.

The measurement model involves φobs and it can be written as

θit|Uit ∼ p(φobs).
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The parameters φlat of the Markov chain are the elements of the transition probability
matrix

Π = {π(u|ū)} , for u, ū = {1, . . . , k}

with
π(u|ū) = P (Uit = u|Ui,t−1 = ū) , u = {1, . . . , k} (3.7)

is the probability that area i visits state u at time t given that at time t− 1 it was in state
ū, and the initial probabilities

π = (π(1), . . . , π(u), . . . , π(k))

where
π(u) = P (Ui1 = u) (3.8)

is the probability of being in state u at the initial time for u = 1, . . . , k. For the sake of
simplicity, in this work we consider homogeneous LMMs, i.e. LMMs where the tran-
sition probability matrix is constant as a function of time t, but the hidden Markov
chain could also be considered non homogeneous and the transition probabilities time-
varying.

The basic LMM, relying on a homogenous Markov chain, has several extensions
based on parameterizations that allow to include hypotheses and constraints of inter-
est. These parameterizations may concern the conditional distribution of the response
variables given the latent process (measurement model) and/or the distribution of the
latent process (latent model). Individual covariates could be included in the measure-
ment or in the latent model. When the covariates are included in the measurement
model (Bartolucci and Farcomeni, 2009), they affect the response variable and the la-
tent process is seen as a way to account for the unobserved heterogeneity between
areas. Differently, when the covariates are in the latent model (Vermunt and Magid-
son, 2002; Bartolucci, Pennoni, and Francis, 2007) they influence initial and transition
probabilities of the latent process. We will consider then the former approach.

A Bayesian inference approach to LMMs is already available in the literature , e.g.
in Marin, Mengersen, and Robert (2005), Spezia (2010), and Bartolucci and Pandolfi
(2011). In the following section we illustrate how to incorporate a LMM into an area
level SAE model.

3.3.3 LMMs SAE model specifications

In this section the methodology proposed is presented in more detail. The model pre-
sented is composed by two structures in a HB framework. At the first level, a sampling
error model is assumed, then a LMM is used as linking model, that it is composed by
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two equations, the measurement model and the latent model. The latent Markov SAE
model has the following parametrization:

• Sampling Model

θ̂i|θi ∼NT (θi,Ψi)

i = 1, . . . ,m;θi = (θi1, . . . , θiT )T
(3.9)

• Linking Model

– Measurement Model

θit|Uit,xit ∼ N(xTitβu(it), σ
2
u(it))

i = 1, . . . ,m, t = 1, . . . , T
(3.10)

– Latent Model

∗ Initial probabilities

P (Ui1 = u) = π(u)

t = 1; u = 1, . . . , k
(3.11)

∗ Transition probabilities

P (Uit = u|Ui,t−1 = ū) = π(u|ū)

t = 2, . . . , T ; u, ū = 1, . . . , k.
(3.12)

Here θ̂i is a row vector of dimension T of the direct estimates used as data, θit is the
estimate which has to be produced for area i at time t, xTit is the vector p × 1 of the
auxiliary informations , where p is the number of auxiliary variables, βu(it) is the p× 1

vector of the regression coefficients for the latent state to which area i at time t belongs
to, σ2

u(it) is the variance of the latent state to which area i at time t belongs to and
Ψi are the sampling variances, which are assumed known. The matrix of transition
probabilities Π has π(·|ū) on the rows and, similarly, π(u|·) = (π(u|1), . . . , π(u|k))

T on the
columns.

The model proposed is a very flexible modeling framework. It could be seen as
a matched Normal-Normal model You and Rao (2002). However, this definitions is not
totally appropriate in this case because a matched model is defined as a model which
is obtained by combining the sampling and linking models with the aim to produce a
relatively simple linear mixed model. Instead, in our proposal the latent model with
the initial and the transition probabilities is present at the lowest hierarchical level.
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Moreover, it has to be noticed that while in the linear mixed model heterogenity is con-
tinuous, in the considered context it is modelled with a discrete dynamic variable. As
we can see from Fig. 3.2 our data has a skew distribution. However, the distribution
is not far from a Normal density. D’Alo et al. (2012) show that the differences in esti-
mates between adopting a Normal or a Binomial model are not as large as expected
and Normal models are often used for unemployment rates estimation (You, Rao, and
Gambino, 2003; Boonstra, 2014). Finally adopting the Normal distribution has compu-
tational advantages which will be clarified later in this section.
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FIGURE 3.2: Direct estimates of unemployment rates density.

The parameters of interest in the model can be divided into three groups: the small
area parameters of interest, the measurement parameters of interest and the latent parameters
of interest. In particular, they are given as follows:

• Small area
µ = (θ1, . . . ,θm)T ; (3.13)

• Measurement
φobs = {β1, . . . ,βk, σ

2
1, . . . , σ

2
k}; (3.14)

• Latent
φlat = {π,Π}; (3.15)

To complete the Bayesian specification of the proposed model, it is necessary to chose
priors for the parameters of interest which appear into the model. Small area parame-
ters do not need a specific prior because data direct estimates are available, so a set of
priors has to be chosen for the measurement and the latent ones. Looking at φobs diffuse
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normal priors with mean η0 and variance σ2
uΛ
−1
0 are assumed for the regression co-

efficients. These priors are conjugate, non-informative and computationally more con-
venient than the usually flat priors over the real line (see Rao, 2003, Chapter 10). In
particular,

βu ∼ Np(η0,Σ0), for u = 1, . . . , k, Σ0 = σ2
uΛ
−1
0 . (3.16)

Variances σ2
u, u = 1, . . . , k, are unknown so it is necessary to set a prior on them, too.

An inverse gamma distribution with shape parameter a0 and scale parameter b0, with
a0, b0 > 0 is assumed. The positive constants a0 and b0 are set to be very small. In this
way a large variance is assumed and the prior is considered non-informative:

σ2
u ∼ IG(a0, b0), for u = 1, . . . , k. (3.17)

For φlat, a system of Dirichlet priors is set on the initial probabilities and on the tran-
sition probabilities. The Dirichlet distribution is a conjugate prior for the multinomial
distribution. This means that if the prior distribution of the multinomial parameters is
Dirichlet then the posterior distribution is also a Dirichlet distribution. The benefit of
this choice is that the posterior distribution is easy to compute and, in some sense, it
is possible to quantify how much our beliefs have changed after collecting the data.
Then,

π = (π(1), . . . , π(k))
T ∼ Dirichlet(1k) (3.18)

π(·|ū) = (π(1|ū), . . . , π(k|ū)) ∼ Dirichlet(1k), for ū = 1, . . . , k. (3.19)

3.4 Model estimation

LMMs have been at the source of different methodological developments in computa-
tional Statistics. This work looks at the Data Augmentation method (Tanner and Wong,
1987; Liu, Wong, and Kong, 1994; Van Dyk and Meng, 2001) in which the latent states
are introduced as missing data (Marin, Mengersen, and Robert, 2005; Germain, 2010).
There are two main reasons for this choice. First of all, it’s been showed that the perfor-
mance of the marginal updating scheme is worse than that of the corresponding data
augmantation approach (Boys and Henderson, 2003). Moreover, in this way we can
simplify the process of sampling from the posterior distribution.

3.4.1 Data Augmentation Method

The goal of model inference is to estimate the set of small area, measurement and latent
parameters and the latent component u. In order to be able to calculate these estimates,
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a data augmentation approach (Tanner and Wong, 1987) is applied. This approach asso-
ciates at each observation θ̂it a latent multinomial variable Uit ∼Multik(1; pit1, . . . , pitk)

such that θ̂it|Uit ∼ p(θit|φ). In this context there is the possibility of choosing priors
which are conjugate to the form of the complete data likelihood, therefore sampling
from the conditional posterior of the model parameters given the latent states (the so
called complete data posterior) is straightforward. Moreover, because the state space
is discrete and finite, sampling from the conditional posterior of the latent states given
the model parameters is also possible. Then, it is possible to generate samples from the
joint posterior distribution of the model parameters and latent states as follow. Let θ be
the matrix of realizations of the response variable.

π(φ,u|θ) = π(φ)p(u|φ)p(θ|φ,u)

joint posterior = prior × likelihood × likelihood.

Samples are computed by alternating between sampling u from the conditional poste-
rior distribution π(u|θ,φ) and drawing φ from the conditional posterior distribution
π(φ|θ,u). When a priori independence is assumed between φobs and φlat the complete
data posterior can be written as

π(φ|u,θ) = π(φobs|u,θ)π(φlat|u,θ)

complete data posterior = posterior × posterior.

and the MCMC sampling scheme leads to repeat for R iterations r = 1, . . . , R the fol-
lowing steps:

1. Simulate ur from π(u|φr,θ).

2. Simulate φr from π(φ|ur−1,θ) where:

(a) φrlat is simulated from π(φlat|ur−1),

(b) φrobs is simulated from π(φobs|ur−1,θ).

If each θi is assumed independent, ui can be sampled individually using a Gibbs sam-
pler from the posterior and can be drawn from

Uit ∼Multik(p(Uit = 1|θit−1, θit+1,φ), . . . , p(Uit = k|θit−1, θit+1,φ)). (3.20)

The complete data posterior distribution is given by the Bayes Theroem as

π(φ|θ,u) ∝ π(φ)p(θ,u|φ).

If a priori independence is assumed between φobs and φlat, given u these parameters
remain conditionally independent a posteriori and the complete data posterior can be
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decomposed in
π(φobs|θ,u) ∝ π(φobs)p(θ,u|φobs),

and
π(φlat|θ,u) ∝ π(φlat)p(θ,u|φlat).

The overall form of the complete data posterior distribution π(φobs|θ,u) is specific to a
particular latent Markov model. If the prior for a component of φobs is conjugate to the
form of the complete data likelihood, than the full conditional distribution belong to
the same family of distribution as the prior and can be sampled directly with a Gibbs
sampler.

3.4.2 Model estimation specification

Assuming priors presented in Section 3.3.3, Gibbs conditionals are given by :

[uit|π,Π,β,σ2,θ, θ̂] ∼Multik(1;π1,it), for i = 1, . . . ,m; t = 1, . . . , T (3.21)

[π|u,Π,β,σ2,θ, θ̂] ∼ Dirichlet(1k + n1) (3.22)

[πū|u,π,β,σ2,θ, θ̂] ∼ Dirichlet(1k + nū,t), for t = 2, . . . , T (3.23)

[βu|u,π,Π,σ2,θ, θ̂] ∼Np(η1,u,Σ1,u) (3.24)

[σ2
u|u,π,Π,β,θ, θ̂] ∼ IG(a1,u, b1,u) (3.25)

[θit|u,π,Π,β,σ2, θ̂] ∼ N(θ̂Bit (u,β,σ
2), γitψit) (3.26)

where

• π1,it is different according to t:

– for t = 1: π1,it = π ∗ π(u|·) with u = u(i,t+1)

– for t = 2, . . . , T − 1: π1,it = π(u|·) ∗ πT(·|ū) with u = u(i,t+1), ū = u(i,t−1),

– for t = T : π1,it = πT(·|ū) wih ū = u(i,t−1)

and ∗ indicates the elementwise product;

• η1,u = Λ−1
1,u

∑
it xitθitI(Uit = u);

• Σ1,u = σ2
uΛ−1

1,u;
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• Λ1,u =
∑

it xitx
T
itI(Uit = u) + Λ0 ;

• a1,u = a0 +Nu/2 where Nu is the number of areas is state u;

• b1,u = b0 + 1
2(
∑

it θ
2
itI(Uit = u) + ηT0 Λ0η0 − ηT1,uΛ1,uη1,u);

• n1 = (n11, . . . , n1k) and n1u is the number of areas in state u at time t = 1, u =

1, . . . , k;

• nū,t = (nū,t1, . . . , nū,tk) and nū,t is the number of areas in transit at time t =

2, . . . , T ; u = 1, . . . , k.

The goal of SAE is to predict a good estimate of θit based on the model. This comes
from:

θ̂Bit (u,β,σ
2) = γitθ̂it + (1− γit)xTitβu(it) (3.27)

where γit = σ2
u(it)/(σ

2
u(it) + ψit).

A proof of (3.24), (3.25), (3.26) is sketched in Appendix B. Note that all the Gibbs
conditionals have closed forms and hence the MCMC samples can be generated di-
rectly from the conditionals. Rao-Blackwell estimators of the posterior mean and the
posterior variance of the estimates can be obtained.

In our application, many LMAs have zero sample size. As a consequence, direct
estimates are not available for these areas. In our context it is possible to impute these
missing values using a Gibbs sampler and sampling directly from its full conditional
distribution. The full conditional for θ̂it is given by:

[θ̂it|u,π,Π,β,σ2, θit] ∼ N(θDit (u,β,σ
2), γ∗itψit) (3.28)

where

• θ̂Dit (u,β,σ2) = γ∗itθ̂i,t−1 + (1− γ∗it)xTitβu(i,t−1)

• γ∗it = σ2
u(i,t−1)/(σ

2
u(i,t−1) + ψit)

for areas i and time t for which the direct estimates are missing.

3.4.3 Model selection

The identification of the number of latent states is a fundamental step for model selec-
tion and parameter estimation. In the framework of LMMs the choice of the number
of latent states of the unobserved Markov chain underlying the observed data corre-
sponds to the model selection procedure. From a Bayesian perspective a crucial goal is
to compute the marginal likelihood of the data for a given model . In this paper we use
a model selection method based on the ma maximum marginal likelihood and to esti-
mate this quantity we use the "Chib" estimator (Carlin and Chib, 1995). This method
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is based on the estimation of the marginal likelihood of any available model from the
output of the MCMC algorithm. It follows from noticing that for any parameter config-
uration, Bayes’ rule implies that the marginal likelihood of the data θ for model with
m latent states satisfies

p(θ|k) =
p(ū1, . . . , ūT , φ,θ)

p(ū1, . . . , ūT , φ|θ)
, (3.29)

where ūt, with t = 1, . . . , T is a n× 1 fixed vector of latent states and φ a vector of fixed
parameters. Numerator of (3.29) can be computed immediately from parameters and
data distributions. To compute the denominator of (3.29) the following decomposition
is used

p(ū1, . . . , ūT , φ̄|θ) =

[
p(ū1|θ)

T∏
t>2

p(ūt|θ, ū1, . . . , ūt−1)

]
p(φ̄|θ, ū1, . . . , ūT ).

Now each factor can be estimated from the Gibbs output. To estimate p(ū1|θ) we use

p̂(ū1|θ) =
1

R

∑
r

p(ū1|θ,u(r)
2 , . . . ,u

(r)
T ,φ(r)),

where (r) denotes the value at the rth iteration of the algorithm and R is the number of
iterations. Regarding p(ūt|θ, ū1, . . . , ūt−1), the estimator is

p̂(ūt|θ, ū1, . . . , ūt−1) =
1

R

∑
r

p(ūt|θ, ū1, . . . , ūt−1,u
(r)
t+1, . . . ,u

(r)
T ,φ(r)).

At last, p(φ|θ, ū1, . . . , ūT ) is a constant.

3.4.4 Label switching

A well-known problem occurring in Bayesian latent class and latent Markov modeling
is label switching. This problem can be seen as the non-identifiability of the components
due to the invariance of the posterior distribution to the permutation in the parameters
labeling. This implies that the component parameters are not identifiable marginally,
that is one component can not be distinguished from the others from the likelihood,
because they are exchangeable.

In a Bayesian analysis, if the prior distribution does not distinguish the compo-
nent parameters between each other, then the resulting posterior distribution will be
invariant in the permutation of the labels, since it will be proportional to the product
of a symmetric likelihood with a symmetric prior distribution.

Several solutions have been proposed, for a general review see Jasra, Holmes, and
Stephens (2005). In this work, we impose an artificial identifiability constraint to the
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MCMC sample. In such a case, the simulated MCMC output is permuted at every iter-
ation according to the ordering of a specific parameter. Unluckly, this approach works
well only when the selected constraint is able to separate well the symmetric posterior
modes, which is rarely true. The easiest approach is probably to use relabeling tech-
niques retrospectively, by post-processing the output (Marin, Mengersen, and Robert,
2005). However, in our case, we are interested to the prediction whose distribution pa-
rameters depend on the number of areas in each latent state. Then, we can not use the
post-processing approach and we adopt the previous method using the mean of θ as
ordering constraint.

3.5 Results

We apply LMM SAE method to the data presented in Section 3.2. We run the algorithm
with k = 2, 3, 4 latent states and we work with k = 3, following the proposed model
selection aproach. In fact we obtain p(θ|k = 2) = 24615.97 and p(θ|k = 3) = 25611.85.
With k = 4 the algorithm allocates areas in 3 groups and, thereby, it is not considered
further. We run one Markov chain with 20000 iterations and then we consider a burn-in
period of 10000 iterations.

Latent states can be seen associated to the severity of unemployment conditions,
conditionally to the covariates. Tab. 3.4 reports the mode of the latent states classifica-
tion for the data. We can see that areas are divided essentially into two groups, and
the third is very small and quite constant in time. A temporal trend is present in the
data. In fact we can see how group 1 decreases during time of observation, as group 2
increases. This temporal trend is also evident in the unemployment rate estimates (Fig.
3.3).

TABLE 3.4: Latent State Classification k = 3 (MCMC Mode).

u 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

1 578 568 562 558 552 549 543 539 527 523 520
2 31 41 46 50 56 59 65 69 81 86 89
3 2 2 3 3 3 3 3 3 3 2 2

Estimated initial and transition probabilities are the following:

π̂ = (0.930, 0.064, 0.005),

Π̂ =

 0.986 0.013 0.001

0.006 0.992 0.002

0.062 0.037 0.901

 .
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The probability of changing latent states is very low. However it seems that the proba-
bility of moving to a worse state is higher than the the probability to move to a better
condition. Informations regarding parameters estimates are in Appendix C.

Fig. 3.3 shows the unemployment rate estimates in 2004, 2008 and 2014. Direct es-
timates, You Rao Gambino (YRG) (You, Rao, and Gambino, 2003) estimates with ρ = 1

and LMM estimates are compared. All the methods show how in 2008 the unemploy-
ment rate in Italy was lowest. At the beginning of the observation there is a quite clear
division between north, center and south of Italy, with unemployment rates increasing
going south. In 2014 unemployment rates are very high in all the country, according
with the contemporary economic world crisis. Maps are built based on the quantiles
of the direct estimates distribution in 2004. The whole set of maps is provided in Ap-

(a) Direct estimates 2004 (b) Direct estimates 2008 (c) Direct estimates 2014

(d) YRG estimates 2004 (e) YRG estimates 2008 (f) YRG estimates 2014

(g) LMM estimates 2004 (h) LMM estimates 2008 (i) LMM estimates 2014

FIGURE 3.3: Unemployment rates estimates 2004-2008-2014.
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pendix D.

One of the basic properties that we require for model-based SAE estimates is that
they should have coefficient of variations lower than the coefficient of variations of
corresponding direct estimates. In Tab.3.5 we reported the CVs for the LMM estimates
classified following the Statistic Canada suggestion already use in Tab. 3.3 for direct
estimates. For LMM estimates areas are classified mostly in the first two classes. As
expected, when estimates are larger, as in the most recent years, CVs are smaller. We
report also the CVs classification for the YRG model. Values in the last column from
Tab. 3.6 are decreasing with time, and this provides evidence of temporal trend that is
well captured in the Random walk model.

TABLE 3.5: Number of small areas with values of CV less than 16.6%,
between 16.6% and 33.3% and over 33.3% for 3-state LMM estimator

(from 2004 to 2014).

year < 16.6 16.6-33.3 > 33.3

2004 149 380 82
2005 145 367 99
2006 126 357 128
2007 119 349 143
2008 135 357 119
2009 138 376 97
2010 163 381 67
2011 195 374 42
2012 251 340 20
2013 292 301 18
2014 307 287 17

2004-2014 2020 3869 832

3.5.1 Diagnostics for LMM SAE estimates

The aim of this diagnostics procedure is to validate the reliability of the LMM SAE
estimates versus direct survey estimates (Srivastava, Sud, and Chandra, 2007; Brown
et al., 2001).

If the model-based estimates are close to the small area values of interest, then un-
biased direct estimators should behave like random variables whose expected values
correspond to the values of the model-based estimates (Brown et al., 2001). The bias
diagnostic is used to assess the deviation of the LMM estimates from the direct survey
estimates. In fact, LMM estimates are expected to be biased predictors of the direct es-
timates. The LMM estimator will be biased if the relationship between the variable of
interest and the auxiliary variables has been misspecified or misestimated. When the
relationship has not been misspecified or misestimated, a linear relationship of the type
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TABLE 3.6: Number of small areas with values of CV less than 16.6%,
between 16.6% and 33.3% and over 33.3% for YRG estimator (from 2004

to 2014).

year < 16.6 16.6-33.3 > 33.3

2004 128 377 106
2005 169 360 82
2006 196 343 72
2007 215 317 79
2008 219 318 74
2009 241 317 53
2010 269 296 46
2011 314 267 30
2012 371 224 16
2013 395 206 10
2014 370 231 10

2004-2014 2887 3256 578

y = x is expected between the direct estimates and the model-based LMM estimates.
Fig. 3.4 reports scatterplots of LMM estimates vs direct estimates for every year. Coef-
ficients estimates of the intercept and the slope for the regression of direct estimates vs
LMM estimates together with their standard errors are in Tab. 3.7. From the slope esti-
mates we can notice that direct estimates for each year are sistematically higher than the
LMM estimates but usually these differences increase when direct estimates are larger.
This diagnostic method has to be taken carefully. When the variable of interest is a pro-
portion as in our case, the denominator of the direct estimator is a random variable
and so the proportion is a ratio estimator and hence possibly biased. We can compare
the direct and model-based estimators of the proportion but we have to accept that the
resulting ratio bias may slightly distort the interpretation of the diagnostic. The lower
the coefficient of variation of the denominator of the small area proportion is, the lower
the risk of bias in the direct estimate of the proportion is (Brown et al., 2001). Finally,
this diagnostic procedure provides a way of looking for bias due to model misspecifica-
tion but can not discover any bias in the direct estimates. Furthermore, LMM estimates
always fall in the corresponding direct estimates 95% confidence interval.

We want LMM estimates to be close to the direct estimates when the direct es-
timates are good. For this reason, as a test for unconditional bias in the model-based
LMM estimates we use a Wald goodness of fit statistic to test whether there is a sig-
nificant difference between the expected values of the direct estimates and the LMM
estimates. To evaluate this we compute the squared difference between the model es-
timates and the direct estimate which are weighted inversely by their variance and
summed over all the areas. This statistic is compared with the quantiles of the χ2 dis-
tribution with degrees of freeedom equal to the number of small areas. The goodness
of fit statistics are reported in Tab. 3.8. None of the statistics shows evidence to reject
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FIGURE 3.4: Bias scatterplots: direct estimates vs LMM estimates 45◦ line
(red) and regression fitted line (black).

TABLE 3.7: OLS regression parameters (standard error) from bias scat-
terplots: direct estimates vs LMM estimates.

year Intercept Slope

2004 -0.006 (0.001) 1.301 (0.032)
2005 -0.003 (0.001) 1.230 (0.032)
2006 -0.001 (0.000) 1.071 (0.030)
2007 -0.002 (0.001) 1.045 (0.026)
2008 -0.002 (0.001) 1.012 (0.029)
2009 -0.000 (0.001) 1.086 (0.031)
2010 -0.003 (0.001) 1.157 (0.032)
2011 -0.005 (0.001) 1.117 (0.033)
2012 -0.007 (0.001) 1.287 (0.036)
2013 -0.005 (0.002) 1.240 (0.038)
2014 -0.009 (0.002) 1.333 (0.042)

2004-2014 0.010(0.001) 0.643 (0.004)

the hypothesis that the two sets of estimates are significally different.

Another diagnostic procedure is the comparison of estimates with data from the
15th Italian Census. We consider unemployment rate from the 15th Italian Census as the



Chapter 3. Time series SAE for unemployment rates using latent Markov models 46

TABLE 3.8: Goodness of fit statistic values with p-value: direct estimates
vs LMM estimates.

year Statistic p-value

2004 173.227 0.99
2005 163.513 0.99
2006 126.382 ≈ 1
2007 101.931 ≈ 1
2008 133.988 ≈ 1
2009 153.935 ≈ 1
2010 159.443 ≈ 1
2011 163.389 0.99
2012 205.301 0.99
2013 230.586 0.98
2014 260.370 0.98

2004-2014 1872.064 1

TABLE 3.9: AARE compared with the 15th Census 2011.

Method OBS NO OBS ALL

DIR 0.401 na 0.401
LMM 0.373 0.391 0.378
YRG 0.349 0.491 0.389

true value and we evaluate the difference between direct estimates and LMM estimates
in 2011 and the Census value. To do that we consider the Average Absolute Relative
Error (AARE). AARE is computed as

AARE =

m∑
i=1

|θ̂i − Censi|
Censi

.

for each estimates. Values are reported in Tab. 3.9. The model-based estimates have
smaller AARE values than the direct estimates. It is also interesting to look at the dis-
tribution of AARE. In particular, we look at the higher quantiles of the AARE distribu-
tion (Fig. 3.5), which are associated with higher errors. The values for LMM are much
smaller than those for direct estimates for these observed areas. We want to investi-
gate also the YRG behaviour in the higher quantile of AARE distributon and compare
it with LMM. They are reported in Fig. 3.6. We can see that the two methods have a
similar behaviour. In addition, LMM has an overall smaller AARE than YRG, and this
is particularly due to the better performances of LMM in out of sample areas (0.391 vs
0.491).
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FIGURE 3.5: AARE compared with the 15th Census 2011: LMM estimates
vs direct estimates (quantile>0.5).
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FIGURE 3.6: AARE compared with the 15th Census 2011: LMM estimates
vs YRG estimates (quantile>0.5).

3.6 Conclusion

A new time-series SAE area level model has been developed and applied to italian LFS
from 2004 to 2014 in order to estimate unemployment rates. Area-level SAE models
consider a sampling and a linking model. In our context, a LMM is used as the linking
model. In a hierarchical Bayesian framework the sampling model is introduced as the
highest level of hierarchy. Under the assumption of normality for the response variable,
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the model is estimated using an augmented Gibbs sampling.

The realiability of the LMM estimates versus direct estimates has been validated
through several diagnostic procedures. After that we compare direct estimates and
LMM estimates with unemloyment rates from the 15th Italian Census and evaluate
the differences. LMM has an overall smaller AARE than YRG, especially thanks of the
better performances of LMM in out of sample areas.

The model-based method has been found to be effective for developing LMAs
level estimates of unemployment rates and for most of the areas the reduction in the
coefficient of variation is quite evident. LMM estimator seems to be more accurate than
direct and YRG estimator compared to census data. An advantage of this methodology
is that it provide an area classification.

It could be interesting to fit the model to quarterly estimates and aggregate them
at the end of the procedure, like for direct estimates. In fact, accounting for all available
data could actually improve model-based estimates precision.

Moreover, due to the fact that a temporal trend is evident in the data, we could
think of inserting in the model a temporal trend covariate to better estimate the rates
and the latent states. Further investigation is required to understand where it is more
feasible to insert such a covariate, if in the measurement or in the latent model. In addi-
tion, area spatial structure could be inserted in the latent model following the approach
developed in Chapter 2. Finally, a more effective approach to label switching has to be
developed, in order to better estimate the parameters of the model and to obtain a
better latent states classificaton.

The proposed model provides a very flexible modeling framework. It could be
extended also in a cross-sectional framework, using area spatial correlation informa-
tions, and it could consider different distributions for the manifest variables, like Pois-
son, Binomial and Multinomial responses. In this last scenario we could fit unmatched
sampling and linking models. The univariate model proposed can account for mea-
surement error, but the extension to multivariate framework could be also possible,
taking into account the conditional independence problem.



Appendix A

MCMC chains

A.1 Scenario 1a

(a) Latent model parameters (b) Measurement model parameters

FIGURE A.1: Scenario 1a: Trace plots.

(a) β (b) Measurement model parameters

FIGURE A.2: Scenario 1a: β and measurement model parameters mean
plots.

49
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(a) β (b) Measurement model parameters

FIGURE A.3: Scenario 1a: β and measurement model parameters auto-
correlation plots.

FIGURE A.4: Scenario 1a: Γ autocorrelation plot.

A.2 Scenario 2a
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(a) Latent model parameters

(b) Measurement model parameters

FIGURE A.5: Scenario 2a: Trace plots parameters.

(a) β (b) Measurement model parameters

FIGURE A.6: Scenario 2a: β and observed succes probabilities.
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(a) β01 (b) β111

(c) β112 (d) Measurement model parameters

FIGURE A.7: Scenario 2a: β and observed succes probabilities autocor-
relation plots.

(a) γ012 (b) γ021 (c) γ211 (d) γ212

(e) γ121 (f) γγ122

FIGURE A.8: Scenario 2: Γ autocorrelation plots.



Appendix B

Full Conditional Distributions

The Gibbs full conditional [βu|u,π,Π,σ2,θ, θ̂] can be written as

f(βu|u,π,Π,σ2,θ, θ̂) =
f(βu,u,π,Π,σ2,θ|θ̂)∫
f(βu,u,π,Π,σ2,θ|θ̂)dβ

∝ f(βu,u,π,Π,σ2,θ|θ̂) (B.1)

because the denominator is constant with respect to β. This posterior distribution is
proportional to the product of likelihood function and prior distribution. Considering
only terms involving β and σ2 we have

f(βu,u,π,Π,σ2,θ|θ̂) ∝ 1

(σ2
u)Nu/2

exp
(
− 1

2σ2
u

(θu −Xβu)T (θu −Xβu)
)
×

× 1

(σ2
u)(k+1)/2|Λ0|−1/2

exp
(
− 1

2σ2
u

(βu − η0,u)TΛ0,u(βu − η0,u)
)
×

×
b
a0,u
0,u

Γ(a0,u)

1

(σ2
u)a0,u+1

exp
(
− b0,u

σ2
u

)
=

= const
1

(σ2
u)(k+1)/2

exp
(
− 1

2σ2
u

(βu − η1,u)TΛ1,u(βu − η1,u)
)
×

× 1

(σ2
u)Nu/2+a0,u+1

exp
(
− b1,u

σ2
u

)
∝

N(β;η1,u, σ
2
uΛ1,u)× InvGamma(σ2

u; a1,u, b1,u)

with

• η1,u = Λ−1
1,u

∑
it xitθitI(Uit = u) + Λ0,uη0,u

• Λ1,u =
∑

it xitx
T
itI(Uit = u) + Λ0,u

• a1,u = a0 +Nu/2

• b1,u = b0 + 1
2(
∑

it θ
2
itI(Uit = u) + ηT0 Λ0η0 − ηT1,uΛ1,uη1,u)

The full conditional distribution of βu and σ2
u are proportional to the joint posterior.

By ignoring factors not depending on the parameter of interest, it can be seen, that the
full conditionals of βu and σ2

u are proportional to multivariate and the inverse gamma

53



Appendix B. Full Conditional Distributions 54

distributions which make the joint posterior.
Retaining terms involving only θ

f(θit|βu,u,π,Π,σ2
u, θ̂) ∝ exp

(
− 1

2

( θitθit
γitφit

− 2
θitθ̂it
φit
− 2

θiθ̂i
φi
− 2

θitx
T
itβu(it)

σ2
u

))
=

= exp
(
− 1

2γtφit

[
γitθ̂it + (1− γit)xTitβu(it)

])
∼

∼ N(θ̂Bit (u,βu(it), σ
2
u), γitψit)



Appendix C

Parameter Estimates

In the following, we report β MCMC output estimates for each latent states u={1,2,3}.
We notice (Fig.C.1 - Fig. C.9) that some label switching problem still affects the β pa-
rameters estimates even after a burn-in period of 10000 iterations, mostly for less nu-
merous groups. It is necessary to work on this point to obtain an event more better
latent states classification. We also report the MCMC output of four LMA during the
observation period. We choose four areas with different behaviour. In the first group
(Fig. C.10) direct estimates are computed for each year and their behaviour does not
seem to be influenced by the world economic crisis. Then we present the results for a
LMA whose unemployment rate increases (Fig. C.11). Finally, two LMAs with missing
values are reported. The one in Fig. C.12 has no direct estimates in the first three years
of observation, the last (Fig. C.13) has never been sampled. It seems that label switch-
ing does not influence the estimates, except when direct estimates are very high as in
the last three periods Fig. C.11.

Auxiliary variables available for these data are the following:

• population rates: Females × 14 age classes (0-4, 5-9, 10-14, 15-19, 20-24, 25-29,
30-34,35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65+)→ from β1 to β14;

• population rates: Males × 14 age classes (0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-
34,35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65+)→ from β15 to β28;

• Cultural Vocation : a qualitative nominal variable with five categories (insert as
dummy variables)

– Great beauty (70 LMAs that are both artistic and naturalistic centers and
which have a manufacturing based on cultural connotation);

– Potential heritage (138 LMAs that are artistic and naturalistic centers but
where the entrepreneurial dimension is less developed)→ β29;

– Cultural activity (138 LMAs that have a manufacturing base to cultural con-
notation even if they are not artistic or naturalistic centers)→ β30;
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– Tourism (194 LMAs that have a poorly developed cultural dimension or in-
dustry but they are a tourist destination)→ β31;

– Cultural remotness (71 LMAs that are under the EU standard in any cultural
or naturalistic classes)→ β32;

• Prevalent Specialization: a qualitative nominal variable with four levels (insert as
dummy variables):

– not specialized,

– not manufacturing→ β33;

– made in Italy→ β34;

– industrial→ β35.

Due to the identifiability problem, the intercept of the model and the first dummy vari-
ables created from Cultural Vocation and Prevalen Specialization are not in the model.
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FIGURE C.1: β1 − β4 MCMC output.
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FIGURE C.2: β5 − β8 MCMC output.
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FIGURE C.3: β9 − β12 MCMC output.
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FIGURE C.4: β13 − β16 MCMC output.
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FIGURE C.5: β17 − β20 MCMC output.
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FIGURE C.6: β21 − β24 MCMC output.
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FIGURE C.7: β25 − β28 MCMC output.
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FIGURE C.8: β29 − β32 MCMC output.
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FIGURE C.9: β32 − β35 MCMC output.
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FIGURE C.10: LMA with no missing direct estimates and where direct
estimates are quite constant.
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FIGURE C.11: LMA with no missing direct estimates and a strong tem-
poral trend.
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FIGURE C.12: LMA with missing direct estimates for the first 3 years.
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FIGURE C.13: LMA without any observations.



Appendix D

Unemployment estimates maps

In this appendix we report the Unemployment rate estimates maps for each year in
the period of observation. They are compared based on the quantile of direct survey
estimates at 2004. Direct estimates, You Rao Gambino estimates and LMM SAE with
k = 3 estimates are reported. A temporal trend is evident. As expected, model-based
estimates partially smooth direct estimates.
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(a) Direct estimates 2004 (b) Direct estimates 2005

(c) Direct estimates 2006 (d) Direct estimates 2007

(e) Direct estimates 2008 (f) Direct estimates 2009

FIGURE D.1: Unemployment direct estimates from 2004 to 2009.
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(a) Direct estimates 2010 (b) Direct estimates 2011

(c) Direct estimates 2012 (d) Direct estimates 2013

(e) Direct estimates 2014

FIGURE D.2: Unemployment direct estimates from 2010 to 2014.
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(a) YRG estimates 2004 (b) YRG estimates 2005

(c) YRG estimates 2006 (d) YRG estimates 2007

(e) YRG estimates 2008 (f) YRG estimates 2009

FIGURE D.3: Unemployment YRG estimates from 2004 to 2009.
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(a) YRG estimates 2010 (b) YRG estimates 2011

(c) YRG estimates 2012 (d) YRG estimates 2013

(e) YRG estimates 2014

FIGURE D.4: Unemployment YRG estimates from 2010 to 2014.
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(a) LMM estimates 2004 (b) LMM estimates 2005

(c) LMM estimates 2006 (d) LMM estimates 2007

(e) LMM estimates 2008 (f) LMM estimates 2009

FIGURE D.5: Unemployment LMM estimates from 2004 to 2009.
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(a) LMM estimates 2010 (b) LMM estimates 2011

(c) LMM estimates 2012 (d) LMM estimates 2013

(e) LMM estimates 2014

FIGURE D.6: Unemployment LMM estimates from 2010 to 2014.
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