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Abstract

Joint models for time-to-event and multivariate longitudinal data The joint models for
longitudinal and time-to-event data are a recent family models that jointly analyse the
longitudinal and the survival data.

The models are composed by two sub-models, the longitudinal and the survival sub-
model. A proportional hazard model can be used for survival sub-model and it is ex-
pressed in function of the true and unobserved value of the longitudinal outcome, while
concerning the longitudinal sub-model a linear mixed model is often proposed.

After analysing some univariate cases, it is interesting to study the situation in which
one of the two sub-models or both are multivariate. Thus different scenarios are possible.
Firstly it is possible to consider a situation in which only the longitudinal sub-model is
multivariate, in this situation a multivariate linear mixed model or another type of multi-
variate longitudinal model can be considered. Choosing a multivariate linear mixed-effects
model, a different longitudinal outcome must be considered for each linear predictor. Ac-
cordingly the survival sub-model is composed by several parameters that express the
relation of each true and unobserved value of the longitudinal outcome with the hazard
function.

Secondly a situation in which only the survival sub-model is multivariate is possible, thus
the survival sub-model may consider two situations, competing risks or recurrent events.
Lastly a situation in which both the longitudinal and the survival model are multivariate
must be considered. The sub-models are composed by the multivariate longitudinal and
survival sub-models which are jointly analysed.

The great problem related to the multivariate situation concerns the computational as-
pect of the estimation. In fact considering that the univariate case is computational
demanding, increasing the number of the parameters or the dimension of the sub-models
will lead to higher computational demanding situations. This problem could be solved
with the implementation of some algorithms in the R software that could reduce the time
and the memory requested.

In this thesis the focus is on the situation in which only the longitudinal sub-model is
multivariate. The aim is to find new methods of estimation and some algorithms that
could help to solve the problem of the computational aspect. At first a two stages ap-
proach is implemented as it permits to obtain very fast and significant estimations.
The most of the applications of joint models focus on the biostatistical area, thus the event
analysed is death or the manifestation of a disease and the influence of some biomarkers
on it.

In this thesis the focus is on the undergraduates’ career, analysing the careers of the
undergraduate students in an Italian university, using jointly the time to graduation and
the student’s path, focusing on the marks and on the number of exams that the student
has already passed before a fixed time. The algorithms are implemented also on a well-
known biostatistical data set available in the package JM of the software R the test the
reliability and the efficiency.

Keywords: Joint Models, Proportional Hazard Models, Linear Mixed Models, Timing of
Student Graduation
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Chapter 1

Introduction

The joint models for longitudinal and time-to-event data are a recent family
of models that jointly analyse longitudinal and survival data. The models
are composed by two sub-models, the longitudinal and the survival sub-
model.

In the classical joint model a proportional hazard model can be used for
survival sub-model and it is expressed as a function of the true and unob-
served value of the longitudinal outcome, while concerning the longitudinal
sub-model a linear mixed model is often proposed.

These recent models had been analysed from several researchers, then there
is a very extensive literature available. Then after analysing in deep the
literature of the classical case in which both sub-models are univariate, it is
interesting to study the possible extensions of these models. These exten-
sions may concern different formulations of the sub-models, thus different
formulation for the longitudinal or for the survival sub-model. Through the
use of different formulation of the sub-models, it is possible to deal, for ex-
ample, with heterogeneity in the sample or relations between the risk of the
event and the longitudinal covariates which are not linear.

One of the most interesting extension concerns the situation in which one
of the two sub-models or both are multivariate. Thus different scenarios are
possible. Firstly a situation in which only the longitudinal sub-model is mul-
tivariate can be considered, then more than one longitudinal covariate may
influence the risk of the event. Secondly the extension may concern the case
in which the survival sub-model is multivariate, then there are more than
one event analysed, that can be recurrent or terminal. Lastly a situation in
which both sub-models are multivariate can be considered.

In this class of extensions we decided to focus on the situation in which only
the longitudinal sub-model is multivariate, as a possible first step to analyse
the extension in which one or both the sub-models are multivariate. This
choice is related to the fact that we want to investigate the situations in
which not only one but more than one longitudinal covariates influenced the
event, in order to obtain better estimations. In fact we think that increasing
the number of covariates that influence the event, will deal to better esti-
mations of the risk of the event or of the survival function, as there is an
increase of the information at disposal to investigate the event. In addition
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8 CHAPTER 1. INTRODUCTION

it is possible to find different covariates, not only one, that may influence
the event, considering also the interaction and the joint effect of these co-
variates on the risk of the event.

As for the case in which both sub-models are univariate, also for the ex-
tensions the literature is very extensive. In fact it is possible to find several
researchers that focused on one or more extensions. Concerning the case in
which the longitudinal sub-model is multivariate, several authors focused
on possible assumptions on the distribution of the covariates, different for-
mulation of longitudinal sub-models, or the use of Bayesian methods for the
estimations.

The great problem related to the situation in which one or both sub-models
are multivariate concerns the computational aspect of the estimation. The
joint model with univariate sub-models is computationally demanding, then
increasing the number of parameters that must be estimated or the dimen-
sions of the sub-models will lead to methods of estimation more compu-
tationally demanding. The aim of this thesis is to find some methods of
estimation and to implement some new algorithms in software R that could
help to solve the problem of the computational aspect, focusing, as a first
step, on the situation in which only the longitudinal sub-model is multivari-
ate.

As a first possible method of estimation for the case in which only longi-
tudinal sub-model is multivariate, we proposed a two-stage approach as it
permits to obtain very fast and with desirable proprieties estimations. The
two-stage approach is based on two steps. In the first step the parameter
for the longitudinal sub-model are estimated using a maximum likelihood
approach. Subsequently in the second step these estimates are used to im-
pute appropriate values in the classical partial likelihood of the Cox model.
The most of the applications of joint models focused on the medical data,
because in clinical trail it is very interesting to analyse two subgroups, for
example placebo and treated, in order to study the longitudinal covariates
that could influence the survival or the effect of a new drug. In this the-
sis the focus of the applications is on the undergraduates’ career, jointly
analysing the time to graduation and the student’s path, in order to study
the influence of some longitudinal covariates on the event graduation. This
is one of the biggest novelty of this thesis, as the time to graduation had
never been analysed through a joint model, neither in joint model in which
the sub-models are univariate.

This thesis is organised as follow: after a brief introduction, in the follower
two chapters there is a review of the longitudinal and survival models.
The fourth chapter reports a review of the definitions, method of estima-
tions, diagnostics, and applications of the classical joint models.
Subsequently in the fifth chapter there is a review of the possible extensions
of the classical joint models. The sixth chapter is given by a deep review of
the extension with multivariate longitudinal sub-model and by a proposal
of using the two-stage approach for the estimations of the joint model with
multivariate longitudinal sub-model.

The seventh chapter concerns the results of this method applied to inves-



tigate the effect of some longitudinal covariate on the event graduation
for university students. Particularly firstly the results with univariate lon-
gitudinal sub-models are shown, subsequently the results obtained by the
two-stage method of estimation with a bivariate longitudinal sub-model are
discussed.

The last chapter reports some conclusions and proposals for further work.
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Chapter 2

Longitudinal models

The longitudinal models analyse data that are collected repeatedly in time,
the outcome and the covariates are collected in different time points in
order to evaluate the trend and the outcome change over time. The basic
formulation used to analyse the longitudinal data is called marginal model
which is based on a classical linear regression model:

where Y; = (Yi1, ..., Yi,,) and Y;; is the value j observed on the subject i at
time ¢;;, X; is a known matrix of covariates, § is a vector of parameters, and
¢; are the error terms. The most famous marginal model used to analyse
the longitudinal data is the mixed model, that helps to evaluate also the
individual influence on the evolution of the observed variables.

2.1 Mixed models

The linear mixed model is based on the idea that each individual has his
own subject specific mean response profile over time. The mixed model can
be represented by these equations introduced by Laird and Ware [29]:

Y =X,f+ Zibi + €
b; ~ N(0, D)
€; ~ N(O, Ez)

by, ...,by, €1, ...,y independent

(2.2)

where Y; is the n;-dimensional response vector for subject i (i = 1,..., N),
N is the number of subjects measured at time ¢;;, and n; is the number of
answers given by subject i. X; and Z; are (n; X p) and (n; X ¢) dimensional
matrices of known covariates, § is a p-dimensional vector containing the
fixed effects, b; is the g-dimensional vector containing the random effects,
and ¢; is an n;-dimensional vector of residual components or error terms.
Finally, D is a general (¢ X ¢) covariance matrix with every (i,j) element
that respects this relation d;; = d;; and %, is a (n; x n;) covariance matrix
which depends on 7 only through its dimension n;, i.e. the set of unknown

11



12 CHAPTER 2. LONGITUDINAL MODELS

parameters in >; will not depend on 1.

Due to the distributions of error terms, it is possible to obtain that, condi-
tional on the random effect b;, Y; is normally distributed with mean vector
X;08 + Z;b; and with covariance matrix >;, which is often posed equal to
o?1I,.. Further, b; is assumed to be normally distributed with mean vector
0 and covariance matrix D.

Therefore this model analyses two type of effects, the fixed and the random
effects. The fixed effects describe the impact of known measured covariates,
where such effects are assumed to hold over all the population of individ-
uals. On the other hand, the random effects measure the impact of known
variables, where effects are assumed to vary across individuals in the popu-
lation.

In addition the error terms could be split in two parts [56], €; = €(1); + €2y,
thus the general model becomes:

(Y, = XiB + Zib; + €(1)i T €(2)i

b; ~ N(0,D)

ey ~ N(0,0°1,,) (2.3)
€2y ~ N(0, T2 H;)

[ b1, s b, €)1, - €N, E@)1, -, E2)n independent

where H; is the correlation matrix and each elements of this matrix is often
created by this relation h;;, = g(|t;; — tix|) where g(-) is a fixed function.
Let f(y;|b;) and f(b;) be the density functions of y,|b; and b, therefore
the marginal density function of Y; is given by:

flys) = / £(3:[be) £ (by)db, (2.4)

which is the density function of an n;-dimensional normal distribution with
mean vector X;[ and with covariance matrix V; = ZiDZ,H—Ei. This marginal
distribution is used for the maximum likelihood estimation, then starting
from:

Y, ~ N(X,;3, Z:DZ, + %) (2.5)
the classical likelihood function becomes:
N
Lur(®) =]] {(%)‘”i/QMIW
i=1

(2.6)
X exp [_%(YZ — Xiﬁ)/vfl(a)(Yi - Xzﬁ>:| }

where 6 denotes the parameters and a denotes the vector of all variance
and covariance parameters found in V.
Supposing that « is known, it is possible to obtain the estimation of the 3:

N
B(@ = (ZX;W1X1> ZXz,Wzyz (2.7)
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where W; = V;~'. Note that this estimator is the same obtained by the
generalized least square method. If « is not known but there is an estimation
of it, it can be used and the estimator change accordingly.

The expected value of the estimator is:

£ [(a)] = (i X;wixi) ﬁx;mm» =

(2.8)

N -1 N
= <Z szixz-) S XWXB=8
i=1 i=1
thus the (8 estimator is unbiased, and the variance and covariance matrix

1S:

i=1

N -1 N -
(Z Xém&-) = (Z XéWiXi>
=1 =1

Concerning the random effects b;, they can be estimated using the Bayesian
methods. In fact it can be found that [56]:

Var [5(}1)] - (i X{WZ-Xi> (i X{WiVar(Yi)WiXi>
=1 (2.9)

1

f(bily;) f(bi)
J(bily;) = f(bi]Y: =y;) = . 2.10
) =N =) = Ty fbab, - 41
And often the estimations are made by the expected value of this probability,
thus it becomes:

b(6) = EIY, =) = [ bf(bly)dbi = DZWi(a)y, - Xi6) (211)

But if « is not known or there is no estimation for it, the Restricted Maxi-
mum Likelihood (REML) method must be used to estimate the parameters.
Therefore Verbeke and Molenberghs [56] introduces the matrix of error con-
trast U = A'Y where A is a (n x (n — p)) full-rank matrix with columns
orthogonal to the columns of X. The vector U is distributed as a normal
with mean vector 0 and variance and covariance matrix given by A'V;(«)A.
From this the likelihood function becomes:

N 1/2 N ~1/2
L(a) =2m) "2 N XX x Y X[VX,
i=1 i=1
N : A A (2.12)
H Vil ~1/% x exp |:_§(Yi — XiB) V(Y - Xzﬂ)]
i=1
This formulation can also be simplified and it becomes:
N ~1/2
Lia)=C>_XW (@) Xi|  Lur(B(a), ) (2.13)
i=1
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where C' is a constant that not depending on «.

The maximization of the likelihood or of the log-likelihood cannot be written
in closed form, thus mathematical algorithms are used to obtain a numerical
optimization. One of this method is the Expectation-Maximization (EM) al-
gorithm [12] which is based on two steps, the expectation (E) step, which
creates a function for the expectation of the likelihood using the current
estimate for the parameters, and a maximization (M) step, which computes
parameters maximizing the expected likelihood found on the E step. An-
other mathematical method is the Newton-Raphson which is an iterative
methods used to find a numerical solution starting with a first value and
then trying to approach the solution using the tangent.

As Verbeke and Molenberghs [56] and Hedecker and Gibbons [21] showed,
the model can be also written in a matrix formulation:

Y =XB+Zb+e (2.14)

where the vectors Y, b, and ¢ are composed by stacking the single vectors
of the subjects Y;, b;, and ¢;, the matrix X is composed by the single
matrices X;, and Z is a block diagonal matrix with all the elements on the
diagonal that are the matrices Z;. The dimensions of the vector Y is given
by SN i =n.

An easier formulation of the model based only on the time is possible [21],
accordingly the model becomes:

Yij = Bio + Batij + € (2.15)

This equation can also be written highlighting the random and fixed effects
and it becomes:

Yij = (Bo + bio) + (B + bin) i + € (2.16)

where b; = (by, bﬂ)T are called the random effects and 3; and 3, are called
the fixed effects.

2.2 Missing data

During the longitudinal studies it often happens that someone not give the
answer, then there are missing data. The biggest problems of missing data
are related to the loss of efficiency, the influence on the design, and the
creation of unbalanced data sets which can leads to bias and misleading
inferences. In these cases the answers are split in two types, the y?, which
contains all the value of observed y;;, and y;", which contains the missing
values.

There are two type of missing data: monotone and intermittent. The first
one incorporated the case in which a subject withdraws from the study
(drop-out) or when a subject comes into the study later (late entry). The
second one represents the case in which a subject answers just intermit-
tently, therefore one time he answers, the next one no, later he answers
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again and so on.

If in the study there are some missing data, the most important probabil-
ity analysed is the probability of missigness process r; given the complete
response vector Y; = (y?,y!"), defined as:

p(rilyy, vi"; 0;) (2.17)

where 6, is the vector of parameters and r; = (71, ..., rip,; )’ Where 75 is equal
to 1 only if y;; is observed, 0 otherwise.
Rubin [47] classified the different missing data mechanisms in:

1. Missing completely at random (MCAR): in this case r; is independent
of the complete response, so:

p(rily?, y™; 0,) = p(ri; 6,)

thus the observed and complete data have the same distribution. One
example of this situation is when the researcher decides to stop the
study after a fixed number of answers.

2. Missing at random (MAR): in this case the probability of missingness
depends only on the observed data, defined as:

p(ri|yi07 y;ma ‘97") = P(Myf, 07“)

therefore it is possible to predict the missing values using the observed
values. One example of this situation is when a subject decides to go
out of the study if he has a specific characteristic observed. From the
probability of missingness it is possible to obtain:

p(ri, yi, ui0) _ plrily?, vi"; 0:)p (s, vi"; 0y)
p(y7,7i;0) p(rilyds 0:)p(ys, 7is 0,)
_ praly?: 0)p(yg v 6y) _ p(y? v 0,) (2.18)

p(rilys; 0.)p(ys, ri; 0y)  p(y?,ri;0,)
= p(yi"lyi; 0y)

p(yi"lyi i 0) =

where 6 is the parameter vector of the joint distribution of response
vector and missigness process, and 6, is the parameter vector of the
distribution of response vector.

This type of missing data has a likelihood-based inferences, the ig-
norability, through which the likelihood function can be split in two
parts:

Li(0) = /p(yi,n;ﬁ)dyln = /p(y?,yZ”;Qy)p(nlyijﬁ;&)dyin

= /p(y?,y?;9y)p(ri!yf;0r)dy? = p(y); 0,)p(r:]y?; 0,)

= L;(0,)Li(0,)
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3. Missing not at random (MNAR): in this case the missing depends on
a subset of missing values, thus this probability of missingness is:

p(ri’yfayzm;er) or p(rzh/zmaer)

An example of this situation is the fact that often the richest or the
poorest decide to ignore the demands regarding the income.

This is the most difficult case to deal with because unlike the other
situations in which a mixed model can be used, in this case it creates
biased results. Therefore there are three different models to handle
it, selection models, pattern mixture models, and shared-parameter
models, in which cases the different formulations of the conjoint prob-
abilities are respectively:

(Y, ris 0) = p(ys, yis 0y)p(rilys, yi; 0,)
p(yfvszTL?r’Lae) :p( fay;n"ruey)p(rmer)

Pyl y 1 0) = | p(yy, yi"|bi; 0,)p(ri|bi; 6,)p(bi; 65)db;



Chapter 3

Survival models

The survival models analyse the time of an event, like the time of death, the
time of degree, the time of appearance of a disease, and so on. Two functions
characterise the survival models. The first one is the survival function that
indicates the probability of not experiment the event before time ¢, or the
probability of surviving at time ¢, defined as:

S(t) = Pr(T* > 1) (3.1)

in addition it can be obtained from the distribution function F'(¢), as long
as it is absolutely continuous, because S(t) = 1 — F(t).

The second function is the hazard function that indicates the instantaneous
failure rate, hence it indicates the probability of experiment the event in
the time interval [t,¢ + dt) provided survival up to ¢, defined as:

Pr(t <T* < t+dt|T* > t)

h(t) = C}g}) o t>0 (3.2)
it can besides be evaluated from this relation:
f(t)
h(t) = =—= 3.3
= 5 (33

Furthermore even the cumulative hazard function can be evaluated that
describes the accumulated risk until time ¢:

H(t) = /0 h(s)ds (3.4)

The survival function can be moreover expressed in term of the cumulative
hazard function:

S(t) = exp {—H(t)} = exp {—/Oth(s)ds} (3.5)

3.1 Censored

As well as in the longitudinal models there are missing data, in survival
models there are censored data, therefore the event of interest is not fully
observed on all the subjects. There are three different types of censoring;:

17



18 CHAPTER 3. SURVIVAL MODELS

1. Right censoring: in this situation the event of interest is only known
to occur after a certain time point, the true unobserved event is on
the right of the censoring time. There are three classification of this
type of censoring. The first one is Type I, when a subject may reach
the end of the study without having experienced the event of interest.
The second one is the Type II, when the study is terminated after a
pre-specified number of events has recorded. The third one is random
censoring, thus when a subject moves away from the study.

2. Left censoring: in this situation the event of interest is only known to
occur before a certain time point, then the event has already occurred
when observation time begins, true unobserved event is on the left of
the time of study.

3. Interval censoring: in this situation the event of interest is only known
to occur between two certain time points, for example the tests are
made periodically but the researcher ignores when exactly the dis-
ease appeared. This type of censoring includes both the two previous
situations, left and right censoring.

Another useful classification is based on the distinction between informa-
tive or non-informative censoring. The first type indicates the situation in
which a subject withdraws from the study for reasons related to the failure
time (similar to MNAR). The second type is the opposite, thus when the
withdrawn is not relate to the event of interest, but it can depend on some
covariates (similar to MCAR).

3.2 Estimation

The estimations for the survival function, if there is no censoring in the
data, are based on the empirical estimate of the survival function that is
the proportion of individuals with event times greater than ¢, expressed as:

S(t) _ number of indivisual with T* >t (3.6)

n

where n is the number of subject.

If instead there is censoring two methods of estimation are possible: the
non-parametric or the parametric method. The parametric method can be
used if the survival function assumes a specific parametric function, instead
the non-parametric method is the only solution.

The most famous non-parametric method is the Kaplan-Meier estimator
[28], defined as:

& T —d;

Sn(®) =[]

(3.7)
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where 7; denotes the number of subjects still at risk at the time ¢; and d; is
the number of event at time ¢;. This estimation is based on this relation:

S(T)=p(T > tiv1) =p(T > t1,T > to,....; T > t;11)

=p(T > t) [ [ (T >t |T > t;) = [ [[1 = p(T = t;4|T > )]

j=1 j=1
e
=t

The estimator is approximately normal and asymptotically unbiased, but for
evaluating the variance, the Greenwood’s formula [19] is needed, therefore
the variance estimation is:

ar(3(0) = (5OF ¥ 7 = (H - d")

it <t it <t ¢

It is obtained by the fact that [24]:

where p; = ’"’T;d‘ If ¢; is considered as a Bernoulli distribution and p; is the
estimation of its probability, this estimator is unbiased, then his expected
value is p;, and his variance is (p;(1 — p;)) /7.

Using the delta method, which said that if Y is normal with mean p and
variance o2, then g(Y) is approximately normally distributed with mean
g(p) and variance [¢'(u)]?0?, the variance of log(Y") becomes:

1
Var(log(Y)) & —oy
Hy

Applying this method to log(p;) it is possible to obtain:

A R L pi(1 —p; d;
Var(og(py)) = 202 (39)

i T ri(ri_dz’)

I

From this the variance of log(S(t)) is:

Var(og(S(1))) = 3 Varllog()) = ¥ ——s (310)

ot <t 2t <t
Trough the delta method it is possible to obtain the var(exp(X)):
Var(exp(X)) = (exp(ux))*o%

Applying this to exp(log(S(t))) = S(t) it becomes:

Var(S(t)) = (5(t))* )

ity <t (ri = di)ri

(3.11)
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Frequently even the variance of log(—log(S(t))) = log(H (t)) is analysed:

g ] i ot <t d;/|ri(r; — d;
Var(log(H (1)) = S Ti(r‘dz - Y ini<t &/ [ri(ri — di)]

1
[log(S(t))]? irey i\ — G > i< Log((ri — di) /1i]?
(3.12)
From the estimation of variance the confidence intervals for S(t) are built
as it is asymptotically normal:

S(t) £ 21_asase(S(t)) (3.13)

As said, if the parametric form of the survival function is known, a para-
metric method could be used to estimate the parameters: the maximum
likelihood. In this situation a subject that experiment the event contributes
to the likelihood with the density function f(7;;6), while a subject that is
censored is still survived up to the T; point then he contributes to the like-
lihood with the survival function S;(7;; #). Thus the log-likelihood function

becomes:
n

1) =) [0ilog f(T3;0) + (1 — 6;) log Si(T5; 6)] (3.14)

i=1
where §; is equal to 1 if the subject is not censored and 0 otherwise.

From the relations introduced before, which are h(t) = % and S(t) =
exp{—H (t)}, it is possible to obtain:

n

1(6) = [0:log f(T3; 0) + log Si(Ty; 0) — 6;log Si(T;; )]

=1

- i;0
i1 ACES

n T
= Z [@' log hi(T;; 6) —/ hi(s; G)ds]
i=1 0

Therefore it can be seen that the censored observations contribute with less
information to the statistical inference than uncensored ones.

3.3 Cox and extended Cox models

A particular class of survival model is the Cox model [6], also known as
relative risk or proportional hazards model. In this model the covariates
have a multiplicative effect on the hazard function and it is defined as:

t<T*<t+dt|T* >t w;

— /.
dt—0 dt = ho(t) exp(y'w;)  (3.15)

where w} = (wi1, ..., w;,) denotes the vector of covariates associated with the
hazard function, v indicates the coefficient vector for the covariates, and
ho(t) is called the baseline hazard. The baseline hazard can have different
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formulations, it can also be constant or correspond to a known parametric
distribution, like for example Weibull, log-normal, or Gamma.
The model could also be written in log scale:

IOg hl(t]w,) = 10g ho(t) + Y1Wi1 + YoWi2 —+ ...+ YpWip (316)

The survival function can be obtained through the relation presented above
S(t) = exp[—H(t)]:

S(tlw;) = exp[—ho(t) exp(y'w;)] = [So(t)]ZP0"«) (3.17)
where Sy(t) = exp[—ho(t)].
Note that using this model the ratio of hazard between two subjects, ¢ and

7, has a particular formulation and it is constant, as does not depend on
time, in fact:

= exp[y(w; — wy)] (3.18)

From the classical likelihood function it is possible to obtain the estimation
of the parameters, dealing also with the censored data [24], because for
the censored observations the value of f(t,7) is considered while for the
uncensored observations the value of S(t,~) is used:

L) = [T {f st~} (3.19)

where §; = 1 if uncensored and 0 otherwise. From this log-likelihood function
becomes:

l(y) = Z {03 log[f (£:,7)] + (1 = &:) log[S(t:, )]} (3.20)

But Cox [6] introduces an easier method for estimate the parameter v, the
partial log-likelihood, defined as:

pl(v) = Z(Si v'w; — log Z exp(y'w;) (3.21)
i=1

T, >T;

This method is based on the partial likelihood, expressed as:

05
B i exp(v'w;)
L(y) = 1} { 211, XP(7'wW)) }

which, applying the logarithm function, becomes:

n /o o
) = log [H exp(y'wi) )]

_ zn:(si Yw; —log | Y exp(v'w;)
=1

T52T;
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Then the estimations can be obtained by differentiating the partial likeli-
hood function with respect to the parameter ~:

o Wi exp(Yw;
8pl Z(S {wl 211, Wi exp(Y J)}:O (3.22)

ZTﬂzTi exp(y'w;)
J

In order to evaluate the variance, the inverse of expected information matrix
E[I(¥)]"" is needed, where:

2

Z 9 plil (3.23)
37’37

The extended Cox models include in the hazard function also exogenous

time-dependent covariates, where an exogenous variables is not affected by

the occurrence of failure, it is a predictable process, in contrast with the

endogenous ones that are not predictable and are in function of the event of

failure. In the extended Cox models the formulation for the hazard function
is based on the work of Andersen and Gill [2]:

Y=Y

hi(tlyi(t), wi) = ho(t) Ri(t) exp[y'w; + ayi(t)] (3.24)

where y;(t) indicates the time-dependent covariate and « is his coefficient,
R;(t) assumes value 1 if subject ¢ is at risk at time ¢ and 0 otherwise, and
all the other elements are the same indicated in the classical Cox models.
In addition the element N;(t) must be considered that indicates the number
of events for subject ¢ by time t. The authors used the partial log-likelihood
function for estimating the parameters v and a:

Z / { Hlw: + agi(t)

(3.25)
Z R;(t) exp[y'w; + ay;(t )]] }dNi(t)

— log

Andersen and Gill [2] demonstrated that estimated parameters are asymp-
totically normal.

The limit of this type of model is that it considers only exogenous covari-
ates, thus the values of each covariates are known at every failure time,
moreover no longitudinal error is considered. This is one of the reason for
the introduction of the joint models.



Chapter 4

Joint models

The joint models for longitudinal and time-to-event data are a recent fam-
ily of models that analyse jointly the longitudinal and the survival data.
With the joint models it is possible to analyse a repeatedly measured out-
come and his association with a time-to-event outcome. Nevertheless joint
models allow to analyse the time-to-event outcomes considering their as-
sociation with the repeatedly measured outcomes, where the longitudinal
time-dependent covariates can be measured with errors. Alternately the aim
of these models can be the study of the relationship between time-to-event
and repeatedly measure outcomes, that is the association between survival
and longitudinal processes.

4.1 Model definitions and estimations

In 1988 Wu and Carroll [61] proposed a method that helps to solve the
problem related to right censored data using a linear random effects model,
therefore for the first time a longitudinal model is considered jointly with an
event. Moreover the authors used likelihood ratio test for analysing informa-
tiveness and maximum likelihood for estimating the response parameters.
As long as the primary right censoring process coefficients are derived under
probit model, where primary right censoring is the right censoring caused
by the participant’s death or withdrawal.

The first formulation of the joint model was presented by De Gruttola and
Tu [9, 10]. The authors considered a population of n subjects, indexed by
7, each of whom has m; observations of a marker of disease progression. Let
y; be an m; x 1, whose elements y;; are the values of the marker for the
person ¢ on the occasion j of measurement for: =1,...,nand j =1, ....,m,.
Let 7; = min(z;, ¢;), where z; and ¢; denote respectively the survival and
censoring times for the subject . The authors modelled the progression of
the marker y; using a random effects model:

where o is a p x 1 vector of unknown parameters, T; is a known full-rank
m; X p design matrix linking « to y;, b; ~ N(0, D) iid denotes a k x 1 vector

23
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of unknown individual effects, Z; is a known m; x k design matrix linking
b; to yi, €, ~ N(0,0%1) is a vector of residuals, and I is an m; X m; identity
matrix. In addition De Gruttola and Tu [9, 10] proposed a transformation
of the survival time:

where £ is a ¢ length vector of unknown parameters, w; is a ¢ length design
vector linking x; to &, X is a k length vector of unknown parameters linking
b; to z;, and r; ~ N(0, s?) iid are the residuals.

The authors assumed that all the censoring is non informative and the
missing data are missing at random, from these assumptions is possible to
obtain the likelihood contribution for any subject:

L= (o) | [loCui0)a(tslyr .. yj-1:ty < )2 [g(]b)][1 — D(cfb)]' "

Jj=2

(4.3)
where ¢ is a constant, and ¢(-) and ®(-) are respectively the probability
density and the cumulative distribution function of the standard Normal
distribution. The joint log-likelihood function can be written using the pre-
vious equation as:

N[)
Lobs = Z lOg |:/b ¢<y1|b27 o, U2>¢(bz‘D)¢<x1’blv 57 52>db1:|
i=1 i
(4.4)

NC
+ log { /b S(yilbi, @, 0*)$(bi| D) [1 — D(cifby, €, 5°)] dbz}
i=1 i

where ®(¢;[b;, &, s%) = [ ¢(x]b;, &, s*)dx, and N° and N© denote the num-
ber of failed and censored individuals respectively. If there is no censoring,
the equation is formed by only the first part. In this case the EM algorithm
for the estimations can be used as the joint distribution of longitudinal and
survival data is supposed to follow a multivariate normal distribution. The
sufficient statistics required are then:

ib,b;, iEéGZ‘, i?”?, iZﬂ)é, il’lbz, and iwwbz (1 Sj S q)
i=1 i=1 i=1 =1 i=1 =1

The estimations obtained from log-likelihood maximisation are:

n -1 n
62 = <Z mi) E (Z e.6Y, é)
i=1

i=1

2 =n'E (Z 2|y, é)

=1

D=n"'E (Z bbl|Y, é)

=1
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From these estimation the estimations of the other parameters become:

i=1 =1
Q= (Z T{ﬂ) h S (v 2ih)
1=1 i=1

n -1 5
é = (Z wm;é) Z w; (xz — S\/ZA)Z)

i=1 i=1
If there is some censoring, the authors supposed that they are non infor-
mative and with some modifications the estimation of the parameters is
possible by the EM algorithm. In the application a comparison between the
joint maximization and the two steps maximisation is proposed. Concern-
ing the two steps maximisation, the first step fits the growth curve model
using maximum likelihood and the second one is ordinary least squares or
proportional hazards regression of the survival times applied on the esti-
mated random effects obtained from the first step. This comparison shows
that the joint maximization creates more unbiased and efficient results. The
same results are obtain from a simulation study.
Another model is based on the work of Tsiatis, DeGruttola, and Wulfsohn
[55]. The authors proposed a two-stage approach. In the first stage, the
longitudinal time dependent data are modelled using repeated measures
random components models, while in the second stage methods are devel-
oped for estimating the parameters in a Cox proportional hazard model.
The model was based on the hypothetical true value of the longitudinal
data Z*(t) and the history up to time ¢, Z (t), was introduced in the haz-
ard function in order to analyse the relationship between survival and the
longitudinal values:

=

Z (t),B) (4.5)

The estimation was based on the classical partial likelihood proposed by
Cox [6], but the effect of measurement error must be consider, then the
model becomes:

AUZ" (1)) = lim %P[t <T<t+MT > 6,7 (8)] = do(0)/(

Z(t) = Z*(t) + e(t) (4.6)
=0

where e(t) is a zero mean error with var(e(t)) = o2 and cov(e(s), e(t))
with s # t. From the equation (4.5) it is possible to obtain:

At Z(t) = /A(t@(t)j*(t))dp(?* OIZ(t), X > 1) (47
= M E[f(Z (), B)|Z(tr), . Z(t), X > 1]
and the parameter S can be again estimated with the classical partial likeli-

hood proposed by Cox [6]. A formulation of the hazard function in relation
with the current value Z*(t) can be considered:

f(Z7(1), B) = exp(BZ7(1)) (4.8)
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and the estimation can be evaluated with the conditional expectation and
the partial likelihood. Concerning the longitudinal analysis, the mixed model
[29] is used:

Zi(u) = Z(u) +e;(u), u<t (4.9)

where ZF(u) = 6o; + 01;u. From this each hazard function can be modelled
by the parameter that indicates the past history 6;:

Ai(t) = No(t) exp|P1(6o; + O1iu) + B261;] (4.10)

The parameters can be estimated imputing the empirical Bayes estimates
of the individual random effects in the partial likelihood. An adjustment
of the model for the missing data pattern considering the hazard also as a
function of the timing of the events can be introduced:

UZ(1),Z (1)) = Mo(t) explBoZ (1) + 7 D(8) (4.11)

where D(t) =t —t;.
A similar model was proposed by Self and Pawitan [48], but instead of a
typical hazard function, the authors proposed a hazard function which has
a linear relation with the random effects, then the exponential function was
replaced with a linear function of the longitudinal values.
Faucett and Thomas [15] in 1996 used the Markov chain Monte Carlo tech-
niques of Gibbs sampling to estimate the joint posterior distribution of the
unknown parameters of the model. The authors modelled a continuous co-
variate over time and simultaneously related the covariate to disease risk.
The model considers censoring of the survival time and allows for unequally
spaced or missing covariate data, so different numbers of observations per
subject are possible.
Gibbs sampling is used to fit simultaneously the covariate tracking model
and the disease risk model, which are the two sub-models. The covariate
tracking model is a random components model with normal errors defined
as:

Zij = l’i(tij) + €ij (412)

where x;(t) is the true unobserved value of covariates, z; is a continuous
time dependent covariate, t;; are the observational times, and ¢;; are the
error terms assumed independent and normally distributed with mean 0
and variance 2. While the disease risk model is a proportional hazard
model defined as:

Ai(t) = Ao(t) exp[yzi(t)] (4.13)

where \g(t) is the baseline hazard of disease and ~ is the regression coeffi-
cient for estimation. It is posed that the baseline hazard is a step function,
therefore \o(t) = Ag.

From this the posterior distribution of model parameters was estimated,
starting from the random effects using Bayes’ rule. Subsequently the esti-
mation of the means and covariance matrix, of the error variance, of the
baseline hazard and of the disease risk parameter can be obtained. The au-
thors highlighted that the combined analysis is a feasible approach, and the
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parameter estimations are more efficient, also if Gibbs sampling is compu-
tationally intensive.

Another model is based on the work of Wulfsohn and Tsiatis [62]. The au-
thors criticized the two-stage approach and presented a new approach in
which only the random effects are normally distributed. In the model there
was T; that indicates the survival time for individual ¢, X; = min(7;, C;)
where C; corresponds to the censoring time, A; is the failure indicator. In
addition m; indicates the number of measurements of the covariate and n
indicates the number of individuals, ¢;; is the time of observation for subject
1 for 7 = 1,...,m; and Z; indicates the values observed in different times.
The first model used for the longitudinal data is a linear growth model with
random intercept and slope:

Zz’j = 9()1' + Qlitij + €ij (414)

where €;; is a N(0,02), and 6; ~ N(0,0). For the survival model a Cox
model is used:

The observed data likelihood was given by:

H {/_—i-oo [ﬂ f (25165, U?)] f(60:10, V) f( X5, A;)6;, )\o,ﬁ)d@} (4.16)

i — O — O1t5:)?
F2ijl0s, 02) = (270?) " exp {_(zw 0 — Ohit;) }

202
(9, — 9)/‘/71(@ — 9)
]

f(6;10,V) = (27T|V|)_1/2 exp {—

and

f(Xi, Ail0i, Mo, B)
_ {)\O(Xi) exp|B(00; + 01:.X)] 2 exp [_ /0 ™ () explB(6u + euxi)]du] }

Subsequently the EM algorithm is used for the estimations and it is possible
to obatin the estimations for all the parameter except for the £ for which
the one-step Newton-Raphson method is used. The results are therefore:

0=> Ei6:)/n

i=1

V=> Ei6; —0)(6; - 0)

i=1
52 — Z?:l Z;nzll Ei(zij — 60 — Qlitij)Q
‘ Z?:l my
\ - AT(X; = u)
Ao(u) = -
o ; > j—1 Ei{exp[B(0o; + 01;u)]}Y;(u)

(4.17)
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where Y;(u) is the at risk indicator equal to I(X; > u). Concerning § an
iterative method was used and the estimation at the iteration £ was:

By = Br—1 + Iéilsékﬂ (4.18)

where S; s the score for § at the iteration k£ — 1, while /5  is its infor-
mation for the same iteration.
Another important model is based on the work of Henderson, Diggle, and
Dobson [22]. The authors considered a set of m subjects observed over in-
terval [0, 7) that provide a set of measurements {y;; : j = 1,...,n;} at times
{tij,j = 1,...,n;}, in addition there were also the realizations of a count-
ing process {N;(u) : 0 < u < 7} for the events and a predictable zero-one
process { H;(u) : 0 < u < 7} indicating whether the subject is at risk of ex-
periencing the event. The authors proposed to model the joint model with an
unobserved zero-mean bivariate Gaussian process W;(t) = {Wy,(t), Wa(t)}
independent in different subjects. The two sub-models are:

1. measurement sub-model composed by:
Yij = pitiy) + Whltiy) + Zi (4.19)

where Z;; ~ N(0,02) is a sequence of errors and y;(%;;) is the mean re-
sponse and assumed that can be described by a linear model p;(t;;) =
x1;(t)' 81, where xy;(t) are the explanatory variables and f; are their
regression coefficients.

2. intensity sub-model composed by:
)\z(t) = H,(t)a/o(t) exp[xzi(t)’ﬁg + Wgz(t)] (420)

where x9;(t) are the explanatory variables and (35 are their regression
coefficients. These variables and coefficients may have some elements
in common with xy;(¢) and f;.

The main objective of the joint analysis was to show the relation between the
two latent variables Wi; and Wh;: if there is no association, the joint model
is senseless. From these considerations a linear random effect model [29] was
proposed Wy; = Uy;+Us;t, in conjunction with a proportionality assumption
Way; = yWh,, where (Uy;, Us;) are bivariate Gaussian random effects. It is
possible to vectorise the model, thus the vector of all the subjects is:

Wi(t) = Uy + Ust (4.21)

where (Uy, Us) are zero mean bivariate Gaussian variable with variances o7
and o2 and p correlation coefficient. So the formulation of Wy () becomes:

Wa(t) = Ui + 72Uz + 73(Ur + Ust) + Us (4.22)

where Uz ~ N(0,02) is independent of (Uy,Us). The authors showed that
the likelihood can be factorised in two part:

L =Ly x LN\Y (423)
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and it is possible to obtain the estimation with the EM algorithm applying
the conditional expectations presented by Wulfsohn and Tsiatis [62]. Lastly
a simulation study was presented to show the estimation performance.
In 1997 Hogan and Laird [23] focused on the joint distribution of repeated
vector Y and failure time D. The authors proposed two different models,
the selection model where fy,p = fpy fy, and the mixture model where
fv.o = fyipfp-
Similarly in 2001 Xu e Zeger [64] focused on the joint probability, so the
authors analysed how the distribution of the responses change with covari-
ates [T,Y|X] where T are times to clinical events, Y are repeated mea-
sures, and X are the covariates. The authors recalled the three classes of
model already presented [23]: selection model [T,Y|X] = [TY, X][Y|X],
pattern-mixture model [T, Y| X] = [Y|T, X][T|X], and latent variable model
[T,Y|X] = [[T,Y|n, X]d[n|z] where n is a unobserved latent variable. Sub-
sequently the authors focused on the latest and use a Markov chain Monte
Carlo algorithm to estimate the model parameters and the distributions.
Likewise in 2003 Slasor and Laird [49] used the mixture model where the
authors proposed to use f(T|Z)f(Y|T, Z) for the conjoint distribution and
f(T|Z) was modelled as a piecewise exponential distribution. Through a
simulation study and an application, the authors showed that this hypoth-
esis gives more efficient results than using the standard hazard model and
the gain in efficiency is higher than the gain of the other joint models that
suppose a multinomial distribution instead of a piecewise exponential dis-
tribution.
In 2001 Wang and Taylor [57] proposed a classical joint model of two linked
sub-models for longitudinal and survival data, but they added an integrated
Ornstein-Uhlenbeck stochastic process, so the model for longitudinal data
becomes:

Yi(tyy) = Zi(ti;) + eilti;) (4.24)

Zi(t) = a; + bt + BX;(t) + Wi(t) '

where W;(t) is the integrated Ornstein-Uhlenbeck stochastic process that
accounts for the random fluctuation of the marker around the population
average. Subsequently the authors used a Bayesian techniques for the esti-
mations.

Tsiatis and Davidian [53] in 2001 proposed a simpler method for estimating
the proportional hazards model parameters that requires no assumption on
the distribution of random effects. The authors proposed to use the condi-
tional score method, which is a semi parametric method. At first the authors
estimated the baseline hazard and replacing it in the estimating equations,
it is possible to estimate the other parameters by the large sample theory.
The authors verified the model with a simulation study, also if they obtain
that in some situations the results are not so good.

In 2008 Diggle, Sousa and Chetwynd [13] presented a review of the methods
and described in detail a fully parametric approach. The authors presented
three approaches for the joint model: the random effects model [62, 64],
the semi parametric models and a simple transformation model, which is
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a fully parametric model where (Y,log F') ~ MV N(u, ), where Y are the
repeated measures while F' are the times to event.

When the approaches are compared the choice depends on the context. If the
aim of the research is to analyse the individual effect, the first model is the
best also if it is computationally intense and it requests some assumptions
concerning the distribution, while the second model offers a sharp focus on
properties of the mean response profiles of the measurement process, de-
livering consistent estimation under minimal assumptions and self-evident
robustness to non-Gaussian behaviour. Lastly the authors focused on the
third method as it is the simplest one because the likelihood based infer-
ence, and the accommodation of both interval-censored and right-censored
event times are simpler.

In 2010 Ibrahim, Chu and Chen [27] presented basic concepts of the joint
model of longitudinal and survival data, using the classical formulation of a
joint model, composed by the linear mixed model and the hazard function.
In addition a review of the applications already presented concerning the
HIV/AIDS and the cancer data set are exposed.

In same year Wu, Liu and Hu [59] proposed a new method of estimation for
the parameters, using the Laplace approximation and the Monte Carlo EM
algorithm (MCEM). The MCEM was first proposed for the joint models
in 2008 from Wu, Hu e Wu [58]. The EM algorithm iterates between an
E-step and an M-step: the E-step computes the conditional expectation of
the complete data log-likelihood given the observed data, and the M-step
gives updated parameter estimates by the conditional expectation in the
E-step. When the conditional expectation in the E-step is difficult to eval-
uate analytically, Monte Carlo approximations may be used, which leads to
a Monte Carlo EM algorithm.

In 2011 Sweeting and Thompson [51] proposed a joint model with shared
random effects and made a comparison with a two-stage approach through
a simulation study. The authors performed a Bayesian approach to joint
modelling the two sub-models using MCMC methods.

In 2013 McCrink, Marshall and Cairns [34] presented a review that high-
lights the benefits of joint modelling, introducing the possible survival sub-
models and the different estimation methods. Two different formulation of
the joint model are presented:

1. in the first case the time-to-event process is influenced by a longitu-
dinal time dependent covariate that is measured with error [43]:

hi(t) = ho(t) exp{x9;f2 + am;(t)} (4.25)

where x9; represents the baseline covariates with the corresponding
regression parameters [, ho(t) represents the baseline hazard, and «
represents the effect of the true longitudinal response m;(t) on the
survival process.

2. in the second case the longitudinal process assumes informative cen-
soring or the focus is on both process, so the longitudinal random
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effects is inserted into the survival function:

hz(t) = hg(t) eXp{l’giBQ -+ ’Y()Uoi -+ ’Yth't} (426)

where Uy; and Uj; represent the random intercept and slope effects
and vy and 7y, represent their effect on the survival process.

In addition the authors showed an application using two different packages
of the software R, the JM and joineR package.

In 2015 Barrett, Diggle, Henderson and Taylor-Robinson [3] proposed a dis-
cretisation of the time scale of time-to-event outcome, using a probit model
for the discrete hazard function. The aim of the study was to reduce the
computational time because, as others researchers have already shown, the
joint model is very computationally demanding. The authors highlighted
that there was of course a lost of information due to the decision to apply
a discretisation to the survival observations, but a simulation and an ap-
plication study showed that this lost was not so big, while the reduction in
the computational time was high with respect to the time needed for the
classical method.

Tsiatis and Davidian [54] presented one of the best overview of the joint
models in 2004. The authors showed how the longitudinal process X;(u)
could be express as a function of the time and of some parameters, as sev-
eral researchers have already done:

Xi(u) = f(u)' oy (4.27)
In addition a mean-zero stochastic process U;(u) can be considered:
Xi(u) = f(u)'a; + Ui(u) (4.28)

and the use of hypothesis on the distribution of random effects is very com-
mon. Concerning the survival data, an hazard function in relation with the
observed longitudinal values is proposed.

The authors mentioned the estimation approaches presented before, and
then suggested two other methods: the semi parametric likelihood and the
conditional score method [53], which are very easy to compute.

Some of the joint model presented above can be classified as shared pa-
rameter model, which is a type of model where the two sub-models share
the same random effects. This model is often use when there is informa-
tive right censoring [60], informative missing data [17] or to model drop out
mechanism [33].

4.2 Rizopoulos’ formulation
The joint model presented by Rizopoulos [43] is formed by two sub-models,

one sub-model is the survival model as a function of the m;(t) which denote
the true and unobserved value of the longitudinal outcome and the other
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one is a longitudinal mixed model.
The survival sub-model is expressed as a function of m;(t):

ha(tMi(t), i) = limy dt (4.29)
= ho(t) exp['y’wi + ozmi(t)], t>0

where M;(t) = {m;(s),0 < s < t} denotes the history of the true unob-
served longitudinal process up to time ¢, 77 is the true event time for the
subject ¢, T; is the observed event time, defined as the minimum of the
potential censoring time C; and 7T}, and « quantifies the effect of the un-
derlying longitudinal outcome to the risk of an event. The other elements
are the same introduces in the classical Cox model, where hgy(t) indicates
the baseline hazard function and w; are the covariates that influence the
risk of the event with coefficient 7. In addition exp(7;) denotes the ratio
of hazards for a one unit change in w;; at time ¢, and exp(«) denotes the
relative increase in the risk for an event at time ¢ that results from a one
unit increase in m;(t) at the same time point [43].

Contrarily to the classical survival model, the evaluation of the survival
function is given by:

— exp {— /Ot ho(s)[Y'wi + Oémi(g)]ds} (4.30)

The baseline risk function hg(-) must be specified, otherwise an underesti-
mation of standard error (SE) could be found. To overcome this underes-
timation, the first option is to define the baseline risk function as a known
parametric distribution, for example Weibull, log-normal, or Gamma. Al-
ternatively, a parametric but flexible specification could be applied, such as
step-function and linear splines, B-spline approximation, or cuBIC splines.
Another option is the piecewise-constant model:

Q
ho(t) = &I(vgr <t <) (4.31)
g=1
where 0 = vy < v; < ... < vg denotes a split in the time scale, and

&, denotes the value of the hazard in the interval (v,_1,v,]. Alternately a
regression spline model could be used:

log ho(t) = ko + Zm: kaBal(t, q) (4.32)

d=1

where k' = (Ko, K1, ..., ki) are the spline coefficient, ¢ denotes the degree
of the basis functions of the B-splines B(-), and m = m + ¢ — 1 where m
denotes the number of interior knots.
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Concerning the longitudinal sub-model, Rizopoulos [43] proposed a linear
mixed model:

(y;(t) = my(t) + &(t)
m;(t) = x;(t) B + ()b
€i(t) ~ N(0,0%) (4.33)
bi ~ N(0,D)

(015, O, €1, €n independent

Note that y;(t) is composed by the m;(t) and a random error term, and as in
the classical longitudinal model, § are the fixed effects for z;(¢), and b; are
the random effects for z;(t). The author highlighted that sometimes subjects
show highly non-linear longitudinal trajectories, in these cases a flexible rep-
resentations for the covariates was introduced. An alternative formulation,
that helps to consider the highly non linear shapes, is based on adding a
stochastic term that aims to capture the remaining serial correlation:

yi(t) = my(t) + u(t) + €(t) (4.34)

where wu;(t) is a mean-zero stochastic process independent of the random
effects and of the error term.

4.3 Rizopoulos’ estimation

Rizopoulos [43] proposed two kinds of estimation, the two-stage approach
and the joint likelihood formulation. The two-stage approach is biased but
less computationally demanding, while the joint likelihood is more efficient
but computationally slower.

The two-stage approach is based on two steps. In the first one: the random
effects are estimated using a least-squares approach, while in the second
step the estimates previously found are used to impute appropriate values
of m;(t) that are substituted in the classical partial likelihood of the Cox
model. The joint likelihood could be based on maximum likelihood, or a
Bayesian estimation of joint models using MCMC, or some hypothesis con-
cerning the normal distribution of random effects or of covariates.
Rizopoulos [43] proposed a new method of estimation based on the joint
likelihood formulation. The author supposed that the vector of random ef-
fects b; underlies both the longitudinal and survival processes. As a results:

p(Tiadhyi’biQG) :p(Th(Silbi;e)p(yi‘bi;e) (4-35>

and
yz|b170 Hp yz zg |b179 (436)

where §; = I(T;" < () is the event indicator and 6 = (0;,0;,6;)" denotes
the full parameter vector, with 6, denoting the parameters for the event
time outcome, ¢, the parameters for the longitudinal outcomes, and ¢, the

unique parameters of the random-effects covariance matrix.
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In addition some assumptions are made: given the observed history, the cen-
soring mechanism and the visiting process are independent of the true event
times and of the future longitudinal measurements. Where the visiting pro-
cess is the mechanism that generates the time points at which longitudinal
measurements are collected, and the observed history, for any time point ¢,
is formed by all available information for the longitudinal process prior to t.
These assumptions mean that the possible withdrawn of a subject depends
only on the observed past history.

Accordingly the log-likelihood contribution for the subject i is:

log p(T5,6;, y:;0) = log/P(ﬂ,@,yubi;@)dbi

(4.37)
= log/p(ﬂ;51|bi§9taﬁ) {Hp[yi(tij)|bi; Qy]}p(bi;eb)dbi
J
obtained by the equations before, and where:
(T3, 0ilbi; 01, B) =hi[T1| M;(T;); 6, 51 Si[T3| My (T;); 6y, 5]
= {ho(T3) eXp[vT% +ami(Th)]} (4.38)
X exp {— / ho(s) exply'ewi + ami(s)]ds}
0
where hy(+) is the baseline hazard. In addition:
p(Yilbi; 0)p(bi; 0) = | [ plui(ti;)1bs; 0,]p(bi; 6)
J
_ X.8—Z.b: |2
=(210?)"/? exp | — v if = Zibi | (4.39)
202
b.D 'Y,
x (2m)%/2 det(D) Y exp <— ! 5 >

where || - || denotes the Euclidean vector norm.
For the maximization standard algorithm can be used, like EM or Newton-
Raphson algorithm. In order to make the estimation easier the score vector
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corresponding to [(#) can be so simplified:
Z%mg | P51 Ol O)p(ti )
D oy o [ P10 0p(u o 500,
o(T, 61,:%, gyop | P b Bt
= —_ (T3, 0;|b;; 0 bi; 0)p(b;; 0)]db;
> T 57 [ 57T 0t )t 0)

_Z/{%lgg (T;, 8;]bi; 0)p (yi‘bi;9>p(bi;0)]}

p(T;, 0;|bi; 0)p(ys)bi; 0)p(bs; 0)
p(T;, 6iy yi50)

- Z / A(0,b:)p(bi| T3, 65, yi; 0)db

(4.40)

db;

where A(6,b;) = O[logp(T;,6;|bi; 0) + logp(y;|bi; 0) + log p(b;; 0)]/06". Ri-
zopoulos [43] showed besides the EM algorithm applied to the joint model,
beginning from the joint model:

hi(t) = ho(t) exp {y'wi + a[z;(t)5 + z(t)bi] }
yi(t) = i(t)B + zi(t)bi + €i(t)

b; ~ N(0,D)

€ ~ N(0,0?)

(4.41)

where § = (6;,6;,6;), with 6, = (5',0°), 6, = (v, ¢/, 6}, ) where 0, denote

t y7
the parameters in the baseline risk function hg(-), and 6, = vech(D). For
the E-step this equation can be used:

Q010" =Elog p(y; 0)|y°; 0]
= / p(y™, v O)p(y™ |y 0% dy™

= Z / log p(Ti, 04, Yi, bi; 0)p(bil T, 04, yis e(it))dbi (4.42)
=" [ o (Tialni0) + log (0,
+log p(bs; 0)p(bi| T, 6, yi; 0 )b,

where y° is the vector of observed data, while y™ is the vector of missing
data. For the M-step the log-likelihood could be split into three part:

log p(T5, 6;, yi, bi; 8) = log p(T3, 6;|bi; 0;) + log p(y:|bi; 6,) + log p(bi; 0y)
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From the maximization of Q(6|6) it is possible to obtain:
F=NTD / (i = Xif = Zib) (yi — Xif8 = Zibi)p(bi| T, 85, s 6)cdb,

=N (g — XiB) (yi — X — 2Ziby) + tr(Z{Zivby) + U, Z| Z:b;
D = n_l Z V~bi + Z;ZEZ,

where N = Y. n,, b; = E(b:|T}, 6;,ys; 0¢ = [ bip(bi|T;, i, yi; 09)db;, and
vbi = var(bi|T;, 65, y;0%) = [(bi — b) (b T}, 6:, yi; 00)db;. For the re-
maining parameters there is no close solution, so an iteration solution must
be considered:

B(itJrl) _ B(it) . [85‘( A(it))/aﬁ} (B )
07D = 6 — [0S (3 /o 5(0")

where B(if) and ét(it) denotes the values of 5 and 6, at the current iteration
and 9S(B™) /08 and AS(B) /0B represents the corresponding blocks of
the Hessian matrix. The score vectors become:

=" Xi(yi — Xi — ZiB;) |0 + ab;xi(T))

— exp(v/w) / / ' ho(s)ai(s) explalel(s)8 + 24(s)bi)
x p(b;T;, 0;, y;; 0)dsdb;

:Zw{ e [ / ho(s) expla(l()8 + 24(3)b0)

X p(bi’Tia 04, Yi; e)debi}

Zé T,)B + #(T)bi]

— exp(r/ // hofs)[a1(5)5 + 2{(5)b] exp alel(5)8 + =1 (s)b
X p(b;|T5, 6;, yi; 0)dsdb;]

Ologho(T5; On,)
5(0ho) 25 a6,

Oho(s;0n,)
‘exp’“”z// Pl 0] a5 + 51
ho
X p(bi| Ti, 6, yi; 0)dsdb;
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From these estimations and from the score vector S(#), the Hessian matrix
can be evaluated from the fact that:

95;(6) 0 :
o a@/M9“<M%@%ﬁM@
:/%p(bim,%%mdbi (4.43)

In addition it is possible to pose:

I _/A 0 b b |E7517y27 )

:/A(Q,bD {1ogp(bi|Ti,5i,yi,0)} p<bz’|Tz‘75ia’yi;9)dbi

00

Ollog p(T3, 0;bi; 0) + log p(yi|bi; ) + log p(bi; 0
:/A(Q,bi){[ (L ib30) +log (il 8) +log (5 0)

00

:/AQMM&M—&@M@M@MWW%

0 /
)}p<bilTi,5i,yi; 0)db;

Through this the standard errors for the parameters estimates can be easily
estimated as:

var = [1(6)]™!

where

- “~ 98;(0

Focusing on the estimation of the random effects, a Bayesian paradigm
can be used, assuming that p(b;; @) is the prior distribution, and that the
conditional likelihood part is p(T;, 0;]b;; 0)p(y:|bi; 0), it is possible to obatin
the posterior distribution:

6=0

p(Ti, 5i’bi§ e)p(yi’bi; e)p(bi§ 9)
X p(Ti, 51"51‘; e)p(yi’bi; e)p(bi; 9)

As the number of longitudinal measurement increases, this distribution will
converge to a normal distribution. For the estimation the mean or the mode
can be used:

b, = /bip(bi|Ti75i7yi;9>dbi

b; = arg max log p(b|T}, 6, vi; 0)

(4.45)
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In 2009 Rizopoulus, Verbeke and Lesaffre [45] proposed another method of
estimation, the Laplace approximation, using this method of approximation
in the M-step of the EM algorithm in order to approximate the integral.
Later, in 2012, Rizopoulous [42] presented another numerical method of
estimation, the Gauss-Hermite quadrature rule, but this method is too much
computationally demanding, so a new method was proposed, the pseudo-
adaptive Gauss-Hermite quadrature. The main idea behind this rule is to re-
scale and re-center the integrand for each subject using information from a
separate fit of the linear mixed effects models for the longitudinal outcome,
this considerably decreases the computational burden without sacrificing
accuracy.

4.4 Asymptotic inference

Through the asymptotic inference is possible to analysis the hypothesis
testing for the parameters. The classical hypothesis is:

Hy:0=0, versus H, :0+#6, (4.46)
Rizopoulos [43] proposed to use three different tests:

1. Likelihood Ratio Test with the test statistic defined as:
LRT = —2[(6,) — 1(6)]

where éo and 6 denote the maximum likelihood estimates under the
null and alternative hypothesis.

2. Score test with the test statistic defined as:
U = S'(00)[1(60)] " S(60)

where S(-) and I(-) denote the score function and the observed infor-
mation matrix of the model under the alternative hypothesis.

3. Wald test with the test statistic defined as:

~ ~

W = (6 — 0, [1(0))(6 — 0)

Under the null hypothesis, the asymptotic distribution of each of these tests
is a chi-squared distribution with p degrees of freedom, where p denoting the
number of parameters being tested. For a single parameter ¢; the Wald test
is equivalent to (6; — 6;)/se(;), which under the null hypothesis follows
an asymptotic standard normal distribution. These tests are asymptotically
equivalent but the likelihood test ratio is preferred than the Wald test be-
cause in finite samples its chi-squared distribution is not certain.

In addition a linear combination of coefficients can be tested, so the hypoth-
esis is:

Hy:LO=0 versus H,:LO+#0 (4.47)



4.5. DIAGNOSTIC 39

where L specifies the linear combination of coefficients tested.

Another type of hypothesis test is based on the comparison of two nested
models. There are two common tests, Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC):

AIC = =21(0) + 2npq,
BIC = —21(0) + npgy log(n)

where n,,, denotes the number of parameters in the model. For these tests
the rule is "smaller is better”. The differences of the two tests is based on
the fact that AIC tends to select more elaborate models than BIC because
the latter penalizes much more heavily for the complexity of the model.
Through the asymptotic inference is also possible to built the confidence
intervals. The asymptotic 95% confidence intervals for the parameter of
interest can be based on Wald statistics, so it is 6 + 1.965e().

In addition the asymptotic confident intervals for the fitted values can be
based on the asymptotic normal distribution of the MLEs. For example
Rizopoulos [43] proposed the asymptotic confidence intervals for the average
longitudinal evolutions 4 = X/ in the longitudinal process:

Q£ 1.965€ (1)

X3+ alz'ag[XU&T(B)X']1/2

where X denotes the design matrix of interest, and U&T(B) the block of
observed Hessian matrix corresponding to .

4.5 Diagnostic

Rizopoulos [43] recalled that there are different type of residuals because
there are different models involved, residuals for the longitudinal sub-model
and residuals for the survival sub-model.

The first type of residuals are split in two, the subject specific and the
marginal residuals. The subject specific residuals aim to validate these as-
sumptions:

yi =XiB+ Zibi+¢
b; ~ N(0,D) (4.48)
& ~ N(0,07)

and the corresponding residuals are:

~

() = [wit) — 2i()B — 2i()b] (4.49)

with the corresponding standardized version:

Tgss(t) _ [yi(t) — z;({)é - Zz/(t)l;z]

g



40 CHAPTER 4. JOINT MODELS

On the other hand the marginal residuals focus on validate the marginal
model assumptions:

e ~N(0,Z,DZ + o1, '
and the corresponding residuals are:
™ =y — X3 (4.51)

with the corresponding standardized version:

~ 179 .
() = Vi Py - Xi)
where VZ = ZJ)Z; +621,,, denotes the estimated marginal covariance matrix
of Y.

Concerning the residuals for the survival data, the martingale residuals can
be used:

rm(t) =N(t) — / Ri(s)hi(s|M;(s); 0)ds
0 (4.52)

t
() — / Ri(s)ho expld/ws + arng(s)]ds
0

where N;(t) is the counting process denoting the number of events for sub-
ject ¢ by time ¢, R;(t) is the left continuous at risk process with R;(¢) = 1 if
subject i is at risk at time ¢, 0 otherwise, ri;(t) = 2/(£)5 + 2/(t)b;, and hy(-)
denotes the estimated baseline risk function. The aims of these residuals is
to identify excess events and to evaluate the functional form for the covari-
ate.

An alternative type of residuals for the survival model is the Cox-Snell
residuals:

tes

T; . .
: :/ ha(s| VI (s): )ds
0

(4.53)

T,
:/ ho(s) exp[yw; + am;(s)]ds
0

and thus ri = N;(T;) — ri™(T;).
Subsequently Rizopoulos [43] presented several plots that are able to inves-
tigate the residuals and to display the trend of the observed data.

The non-random drop-out in the longitudinal outcome can be a problem,
so Rizopoulos, Verbeke, and Molenberghs [46] noted that the reference dis-
tribution of statistics, such as the residuals, in missing data settings is not
directly available and complex calculations are required to derive it, so a
multiple-imputation-based approach can be used. The basis of the method
is the hypothesis that visit times were pre-specified by the protocol and all

patients adhere to them.
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Dobson and Henderson [14] presented a paper concerning the diagnostics
of joint longitudinal and drop-out time modelling. The authors had three
aims, at first to explore if there is any association between responses and
drop-out time, secondary to study conditional residual analysis methods for
longitudinal data with drop-out, and lastly analyse the individual case in-
fluence for joint modelling.

The robustness of the model is very important, thus Li, Elashoff and Li
[31] proposed to analyse the robustness of the joint model and proposed a
linear mixed effects sub-model for the longitudinal outcome and a propor-
tional cause-specific hazards frailty sub-model for the competing risks data,
linked together by latent random effects. Instead of the usual normality as-
sumption for measurement errors in the linear mixed effects sub-model, the
authors adopted a t-distribution which has a longer tail and thus is more
robust to outliers.

Also Hsieh, Tseng and Wang [25] focused on the robustness, in fact they
reviewed the merits of the joint modelling approach in Wulfsohn and T'si-
atis [62] by providing a theoretical explanation of the robustness features
observed in the literature. In addition the authors demonstrated the missing
information and implicit profile features in joint modelling, and proposed
to use the Fisher information for estimating the standard errors of the EM
estimators.

4.6 Predictions and accuracy

As there are two types of residuals, there are also two types of predictions.
The first type concerns the dynamic predictions of survival probabilities.
The aim is to predicting survival probabilities for a new subject ¢ that has
provided a set of longitudinal measurements Y;(t) = {y:(s);0 < s < t}, so
Rizopoulos [43, 41] focused on the conditional probability of surviving time
u >t given survival up to t:

mi(ult) = p[T; > u|T; > t,Yi(t),wi, Dy; 0] t>0 (4.54)

where w; denotes the baseline covariates, #* denotes the true parameter
values, and D,, = {T},0;,y;;¢ = 1,...,n} denotes the random sample. Then
the probability can be formulated as:

plT7 2 ulT} < t,Yi(t); 0]
_ / (T > | > £, Yi(8), b O)p(i| T > £, Yi(t): 0)db,

4.55
= [0 > it > 1000 > 1 Yi(0:0)a (4.55)

[ Si[ulM;(u, b;,0): 6] ) |
/s AIV(E b, ;) T YD) )

where S;(-) denotes the survival function and M;(-) indicates the longitu-
dinal story. In order to estimate this function Rizopoulos [43, 41] used the
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empirical Bayes estimates for b;:

S; [u}MZ(u, lA)Z(t), 9), é]

+O{[ni(t)] '}

mi(ult) = S, [t}Mi(t po) é);é}

P A

where 0 denotes the maximum likelihood estimates, ZA)Et) denotes the mode

~

of the conditional distribution of log p(b;|T;* < t,Y;(t);0), and n;(t) denotes
the number of longitudinal responses for subject ¢ by time t.

In addition the author suggested to consider the posterior expectation of
mi(ult):

p(T3 = u|Ty > t,Yi(t), Dn) = /p(Ti* > u|Ty" > 1,Yi(t); 0)p(0] Dy)do

The estimations are then possible through the Monte Carlo method with a
simulation scheme.

The other type of predictions concerns the dynamic prediction for the lon-
gitudinal outcome [43, 41]. In particular, for a specific subject i who is still
alive by follow-up time ¢, the interest is in the expected value of the longi-
tudinal outcome at time v > ¢ given the observed responses up to that time
point Y;(t), which is formulated as:

wi(ult) = Ely;(w)|TF > t,Y;(t), Dp; 0] u>t (4.56)

For estimating it, Rizopoulos [43] suggested again to use the Bayesian
method, and calculated the expectation of w;(u|t) with respect to the pos-
terior distribution of the parameter {6|D,,}:

El(IT; > 1Y), D) = [ Elu(w)[T; > t.Yi0: 0(6ID,)do - (457)
In addition it must be considered that:
Elyi(uw)| T > t,Y;(t); 6]
— [ El(IT? > 1. Yi(6). b3 Op(bIT? > 1. Yi(e): )b
— [ Bl @lblpT; > £ Yi(e): 0,

= [#}()B + #(bilp(B|T; > 1, Yi(t); 6)dby
= 2}(u) + Z{(w)p;”
where:

8 =[BTy > 8 Yi(os o)

Under these assumptions a straightforward estimator of w;(u|t) was obtained
by replacing # with 6, and calculating the mean of the posterior distribution
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A

of p(b;|T7 > t,Y;(t); ). In the same spirit, a similar estimator is derived
when instead of the mean Bﬁtf of the posterior distribution its mode b; =
arg max, log p(b|T; > t,Y;(t);0) is used, so:

Di(ult) = 2} (w)B + 2, ()b + O(n;™)

considering the relation: BE” = lA)Z(t) +O{[n;(¢)]"'}. From this the estimations
are possible through the Monte Carlo method with a simulation scheme.
The time-dependent accuracy measures for the longitudinal markers [43, 41,
67] are very important. The information at disposition is the collected set
of longitudinal measurements Y;(t) = {v:(s);0 < s < t} upon time ¢ for
subject i. Considering a vector of threshold values ¢, these new functions
can be defined:

o (t K, c) = {yi(s) > csik < s < t}
as a "success”, i.e., the marker indicates that the event will occur, and:
ol (tk, ) = R7ED {yi(s) > ek < s <t}

as a "failure”, where 1" denotes the n-dimensional Euclidean space, and
r(k,t) denotes the number of longitudinal measurements taken in the in-
terval [k,t]. The value of k& > 0 specifies which past marker values of the
longitudinal history contribute to the rule, and cs; denotes the threshold
value at time point s. The convention with these prediction rules is that
larger values for the marker are associated with higher risk for death.
From these the sensitivity, the probability that the marker correctly classi-
fies a subject as diseased, can be defined as:

TPA(e) = plpf (. k,OT} > 417 € (Lt + A0} (4.58)

also known as the true positive rate. In addition the respectively, the prob-
ability that the marker correctly classified a subject as non-disease, can be
defined as:

1— FPAY(¢e) = plo! (t,k,e)|TF > t, T >t + At;0°} (4.59)

where F'PA!(c) denotes the false positive rate.

The overall discrimination capability of the longitudinal marker for all pos-
sible thresholds ¢ € ¥, the corresponding Receiver Operating Characteristic
(ROC) curve can be assessed:

ROCA (p) = TPAY(FPAY ™ (p)]

where p is in [0,1] and (FPAY)"Y(p) = inf{c : FPA!(c) < p}. In order to
summarise this characteristics, the area under the ROC curve (AUC) can
be used:

1
AUC'tAt:/ ROCA(p)dp

0
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As Rizopoulos [43, 41] highlighted these values describe how well a marker
can discriminate between patients at a specific follow-up time t. Therefore,
at different time points the marker may exhibit different levels of discrimina-
tion, and thus a relevant question the author posed is how the discriminative
capability of the marker over the whole follow-up period can be summarized.
So a dynamic discrimination index based on the AUC was proposed:

dyn

CHt = / AUCA (t)dt
0

where
p(T7 > t)

U0 =TT > pyd

is the weight function and where p(7T; > t) is the marginal survival proba-
bility. The attention will be typically restricted to a fixed follow-up period
(0,7). In this case the C4! index can be modified to account for finite
follow-up:

[CAt

dyn

I = / AUC ™ (t)dt
0

where w7 (t) = u(t)/ [, u(t)dt. So this index is connected to the probability
that the predictions for a random pair of subjects are concordant with their
outcomes, but given that the smaller event time occurs within the interval
(0,7).

Focusing on the sensitivity some simplifications of the true positive rate can
be made:

TP (c) = p{pi(t b, )| T} > t, T} € (.t + At]; 07}

_ Plei(t ko), T € (t,t + Al[T7 > ;0" }
- L—p(TF >t + At[T; > t;0%)

where 0* denotes the true parameter values. The numerator can be simplified
and becomes:

p{ei(t k,c), T € (t,t + At)|T] > t;07}
:/p{pg(t,k,c),T; € (8,1 + AH|TF > t, b 0 p(bs| T2 > :6%)db,

—/p{@f(t,k,C)lbi;G*}p{Ti* € (t,t + AL[T > £, b3 0" }p(bs| T} > £;07)db;

where

t
s e cs —my(s, b;, B*)
p{@z‘ (t7k7c)|b2"9 } - ECD |: o* :|
and

p{T; € (t,t + At)|T > ¢,b;0"} =1 —
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While the denominator becomes:
(T >t + AT > t;0)

Thus the sensitivity can be rewritten as the ratio of two expected values:

Ey(bi, 0) = {II@{ m”Sb“ﬁ>}}

- Silt + At|M;(t + At, b;); 6*]

and

Silt + At|M;(t + At, b;); 6*]

By (b;, 0) = Si[t|M; (¢, b;); 67]

with respect to the marginal posterior distribution p(b;|T; > t;6%).
Following a simulation scheme this Monte Carlo estimate of sensitivity can
be obtained:

E (b, 60
ploi(t koI > 1,17 € (t.t + At]} = >, B (] ’l) )
L—3, Ex(b,00)

The same procedure can be used to obtain the parallel simplified results for
the specificity.

4.7 Review of the applications in biostatistic
area

The joint model is very useful in medical area because in clinical trail is
very interesting to analyse in the two subgroups, placebo and treated, in
order to study the longitudinal covariates that influence the survival or the
effect of a new drug.

The first examples regarding the study of AIDS data set. A model that
study the relationship between longitudinal and survival data was proposed
in 1993 [11] as an application to analyse the lymphocyte CD4 in the AIDS
studies. The aim was to analyse the effect of the CD4 lymphocyte on the
risk of death and the effect of an antiviral treatment, the zidovudine. The
relation between CD4 lymphocytes and the hazard of death at time ¢ showed
that the risk of death is greater for patients with lower CD4 lymphocytes
counts. The main usefulness of the joint model is that it permits calculation
of the distributions of expected CD4-lymphocyte count among surviving
patients and the expected survival distributions that correspond to a given
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CD4 trajectory.
A similar application was made by DeGruttola and Tu [9, 10], defining the
log C'D4 as:

10g CD4ZJ =aq + aQI(tijZS) —+ Oé3(t — S)I(tijzg)
015 + boid(z,;>8) + bsil(,;>8) + €55

where (4>, is an indicator function, b; are the random effects, and ¢;; are
the residuals. The results showed that although the entry level CD4 count
is not related to survival, greater initial rise in CD4 and less steep decline
in CD4 are associated with longer survival.

Tsiatis, DeGruttola, and Wulfsohn [55] applied a two-stage model to the
same data set obtaining that the hazard rate increases as CD4 declines,
with the greatest effect occurring for patients with CD4 counts less than
50, they also demonstrated that the hazard rate increases as a function of
time from treatment initiation even after adjusting for CD4 values.

The AIDS data set was analysed also by Self and Pawitan [48], but instead
of the CD4 the ratio of T4 and T8 and the effect on the time from serocon-
version to diagnosis with AIDS is studied, using a two steps method with a
linearised relation between hazard and random effects.

Also Faucett and Thomas [15] used the data set composed by the data of the
immunologic marker CD4 to analyse the time of diagnosis of AIDS, using
the Markov chain Monte Carlo techniques of Gibbs sampling to estimate
the joint posterior distribution of the unknown parameters of the model.
With reference to the same data set Wu, Hu e Wu [58] showed that pa-
tients’ viral loads after initiating antiviral treatment declined in the early
period and some patients’ viral loads rebounded in the later period. This
is probably caused by the fact that HIV virus was sensitive to the antiviral
treatment in the initial period but developed drug resistance subsequently.
There is a substantial variation between patients and some patients do not
experience viral rebound during the study period. Some patients with faster
initial viral decays appear to have earlier viral rebound. In addition smaller
baseline CD4 values are associated with earlier viral rebound.
Subsequently Wu, Liu and Hu [59] suggested to consider in addition a new
covariates, a joint model with shared random effects is applied to the AIDS
data set in order to analyse three different models, the non-linear mixed
effects model for viral dynamics, the non-parametric mixed model for CD4
process, and the parametric event-time model for the ratio CD4/CDS8 de-
cline. These three model are liked by the same random effects.

Wang and Taylor [57] used the AIDS data set to investigate the effect of
treatment and risk factors on the markers and on the development of AIDS
or death. The estimations showed that the CD4 levels before infection have
a significant positive effect on CD4 after infection, and higher CD4 before
infection leads to higher CD4 after infection. Analysing the adequacy of
the model with the comparison between observed and predicted values, the
model with IOU or Brownian process fits better the data. In add a simula-
tion study showed that the biggest differences are noticeable for the hazard
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model parameters comparing the joint model and an alternative approach
in which the longitudinal and the hazard models are fitted separately.
Henderson, Diggle, and Dobson [22] proposed to use a different data set
composed by schizophrenia trial data analysing the development of mean
scores for each of three treatment groups on a particular measure of psy-
chiatric disorder (Positive and Negative Symptom Scale, PANSS), the three
treatment groups are Haloperidol, placebo, and Risperidone. A comparison
between different model with different relations between the latent com-
ponents is made showing that when there is a latent association, there is
a substantial improvement in combined likelihood, and the improvement
becomes greater when the relation between the latent components become
more elaborate.

The same data set was used by Xu e Zeger [64] that analyse the effect of
risperidone on the PANSS score and his effect on time of survival. The pa-
rameters showed a big effect for both and in add this model permits a more
precise estimation of the survival function.

In 2008 Diggle, Sousa and Chetwynd [13] used fully parametric approach to
analyse the schizophrenia trial data set. The goal of the trial was to compare
the efficacy of the different treatments in reducing the mean PANSS score.
Subsequently Ibrahim, Chu and Chen [27] applied joint model to analyse
the trade-off between quality of life and survival in cancer clinical trials.
The joint modelling approach typically gives unbiased and larger estimates
of the treatment effect when the longitudinal data is associated with sur-
vival.

In 2011 Sweeting and Thompson [51] used the multicentre aneurysm screen-
ing study data to analyse the association between abdominal aortic aneurysm
diameter and the hazard of his rupture. Several models are implemented,
the classical time-dependent, the classical two-stage, the classical shared
random effects, and the Bayesian shared random effects models. The results
showed a strong association between risk of rupture and current diameter.
In 2012 Das, Li, Huang, Gai, and Wu [8] applied a classical joint model
to the data set composed by the quantitative trait loci in order to control
development processes and the timing of development and their casual cor-
relation over time.

In 2013 McCrink, Marshall and Cairns [34] used joint model to analyse the
factors that affect the survival of end-stage renal disease patients. The fac-
tors analysed are the glomerular filtration rate and the changing haemoglobin
levels. The first factor is analysed with the package JM of the software R
because the aim of the study is to analyse the survival end-stage renal dis-
ease patients, while the second one is analysed with the package joineR of
the same software because it focuses on the link between the two processes
with shared latent random effects.

In 2015 Barrett, Diggle, Henderson and Taylor-Robinson [3] used the cystic
fibrosis patients data set in order to analyse the relation between disease
progression and survival. Four random-effects models are applied to the
data: a stationary Gaussian process, a stationary Gaussian process with
one time lag in the survival model, a random intercept and slope model,
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and a stationary Gaussian process plus random intercept and slope.
Rizopoulos [43] analysed four data set. The first data set is primary biliary
cirrhosis where the outcome of primary interest was patient survival and
whether this could be prolonged by D-penicillamine. The interest was in
serum bilirubin level and his association with survival because it is consid-
ered a strong indicator of disease progression .

The second data set is the AIDS data set, and the aim of this study was
to compare the efficacy and safety of two alternative antiretroviral drugs,
namely didanosine and zalcitabine, in the time-to-death, focusing on study-
ing the association structure between the CD4 count and the risk for death
for these advanced HIV-infected patients.

The third data set in the liver cirrhosis data set were patients randomized
to a treatment with prednisone and the remaining receiving a placebo, but
the interest was on the association between the prothrombin index and the
risk for death, investigating also the capability of the prothrombin index in
discriminating between subjects who died within a medically relevant time
interval after their last assessment and subjects who lived longer than that.
The last data set is the aortic valve data set where the interest was in the
association between the aortic jet velocity (aortic gradient) and the risk for
death or re-operation.



Chapter 5

Extensions

After analysing the simplest joint models in which both the sub-model are
univariate and of linear form, it is interesting to analyse different exten-
sions which deal with hazard formulation, the heterogeneity in the sample,
multiple failure times, accelerated failure time, categorical or multiple lon-
gitudinal outcomes, and joint cure model.

5.1 Different hazard function parametriza-
tions

Rizopoulos [43] presented different parametrizations for the hazard function.
The generalization of these parametrization is based on:

hl(t) = ho exp{’/wﬁ -+ f(mz(t — C), bi, Wi Oé)} (51)

where f(-) is a function of the true level of the marker m;(+), of the random
effects b;, and of the extra covariates wj».

The first parametrization is based on the interaction effects that is used
when the effect of the true level of the marker is different between the
subgroups of the target population, so Rizopoulos [43] proposed to include
in the linear predictor of the relative risk model interaction terms of the
marker with the baseline covariates of interest:

hi(t) = ho(t) exp{~'wi1 + o' [m;(t)wis] }

where w;; is used to accommodate the direct effects of baseline covariate to
the risk for an event, and w;s contains interaction terms that expand the
association of m;(t) in different subgroups in the data.

Another parametrization is based on lagged effects, that supposes that the
current value of the time dependent covariates does not affect the current
risk for an event, but it is influenced by the values of the covariates at a
precedent time, so it is possible to use time-lagged covariates:

hi(t) = ho(t) exp{y'wi1 + am;max(t — ¢, 0)]}
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where ¢ specifies the time lag of interest, so the relative risk indicates that
the risk at time ¢ depends on the true value of the longitudinal marker at
time t — c.

The third parametrization is based on the time-dependent slope which is
based on the work of Ye, Lin and Taylor [65] who supposed that in the joint
model the risk depends on both the current true value of the trajectory and
the slope of the true trajectory at time t:

hi(t) = ho(t) exp[y'w; + agm;(t) + aam;(t)]

where

_ imi(t) = %[x;(t)ﬁ + 2 ()b

and where the parameter as measures how strongly associated is the value
of the slope of the true longitudinal trajectory at time ¢ with the risk for an
event at the same time point, provided that m;(t) remains constant. This
parametrization is applied to the study of cancer recurrence in prostate can-
cer after radiation therapy, analysing the dependence of the risk of cancer
recurrence in the prostate-specific antigen level and the rate change of the
prostate-specific antigen level.

Subsequently Rizopoulos [43] suggested that the risk for an event at a spe-
cific time depends on an elaborate function of the longitudinal marker his-
tory, like the cumulative effect of the longitudinal outcome:

hi(t) = ho(t) exp {»/wi +a /0 t mi(s)ds]

where for any particular time point ¢, & measures the strength of the as-
sociation between the risk for an event at time point ¢ and the area under
the longitudinal trajectory up to the same time ¢, with the area under the
longitudinal trajectory regarded as a suitable summary of the whole trajec-
tory. In add sometimes is better to consider a weight function for evaluating
the past values of the marker:

hi(t) = ho(t) exp [’y’wi + o /Ot w(t — s)m;(s)ds

where w(-) denotes the weight function.

Rizopoulos [43] introduced in the hazard function some time dependent
covariates considering the case in which there are some exogenous time-
dependent covariates that influenced the risk of failure:

hi(t) = ho(t) exp[y'w;(t) + am;(t)]

Rizopoulos [43] applied these extensions to the primary biliary cirrhosis and
to the liver cirrhosis data set.
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5.2 Heterogeneity in the sample

If the sample considered comes from a non-homogeneous population, so the
population is divided in multiple strata, then Rizopoulos [43] introduced a
stratified relative risk model. Accordingly the risk for patient ¢ belonging to
stratum k becomes:

hir(t) = hor(t) exp[y'w; + am;(t)]

where hgx(t) denoting the baseline hazard function for stratum k. This
model is applied to the primary biliary cirrhosis data set, stratifying the
relative risk sub-model in two part.

If, instead, the interest is in recovering latent heterogeneity which is not
captured by any of the observed covariates, a latent class joint models can
be used. The population is divided in class and the model postulates that
patients in different latent groups have both different longitudinal evolutions
and different risks for an event, so the joint model becomes:

hi(tlc; = g) = hoy(t) exp(yywi)
[i(t)]ei = g = 2i(1) By + 2i(t)big + £i(t)
ei(t) ~ N(0, %)

L - exp(\ u;)
Plei=g) = iy exp(Ajus)

(5.2)

where ¢; is the class indicator. The application concerns the data set of
AIDS, and he obtained, obtaining that the population can be split in three
distinct sub-population.

This model was proposed by Proust-Lima, Joly, Dartigues, and Jacqmin-
Gadda [38] in order also to deal with Multiple longitudinal outcomes.

5.3 Multiple failure times

There are two type of multiple failure the competing risks, different causes of
failure, and the recurrent event, single event that may occur several times. In
the first case there are K different causes of failure so the standard relative
risk model becomes:

hi(t) = how(t) exp|ywi + agm(t)]

where k = 1, ..., K and the parameters are different for each cause of failure.
This model is applied to the primary biliary cirrhosis data set, in order to
consider three different state, dead, transplanted and alive.
In the second case two different type of risk model can be used, one for the
recurrent events and one for the terminal events:
T <t> = To (t) eXp[V;Wri + Oérmi(t) + Ui] (5 3)
hi (t) = h() (t) exp[*y;lwm‘ + apm; (t) + CUZ] .
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where w,; denotes the baseline covariates affecting the risk for a recurrent
event, and wy; denotes the baseline covariates affecting the risk for the ter-
minating event, with corresponding regression coefficients v, and ~;,. Param-
eters a,. and «, measure the strength of the association between the current
value of the longitudinal marker and the risk for a recurrent or a terminal
event, respectively. Term v; is a random effect that accounts for the correla-
tion in the recurrent events. Parameter ¢ in the terminating event relative
risk model measures how strongly associated is the risk of a terminating
event with the risk for a recurrent event.

5.4 Accelerated failure time

This model, presented by Tseng, Hsieh and Wang [52], specifies that pre-
dictors act multiplicatively on the failure time or additively on the log fail-
ure time, so the proportionality assumption fails to capture the relationship
between the survival time and longitudinal covariates. AF'T models are typ-
ically defined as:

log T} = 7'w; + o1e4i (5.4)

where parameter o; is a scale parameter and g4 is assumed to follow a
specific distribution. Every single parameter 7, denotes the change in the
expected log failure time for a unit change in the corresponding covariate
wij. In add the risk rate function for subject i becomes:

hi(t| M;(t), w;) = ho(Vi(t)) exp[y'w; + am;(t)] (5.5)

where:
¢
Vi(t) = / exp[y'w; + am;(s)]ds
0

A simulation study is made in order to analyse the performance of the EM
procedure used to estimate the parameters. In addition an application of
this model to the data set composed by some female Mediterranean fruit
flies, and the number of eggs produced daily is made, jointly analysing the
fecundity curves and the longevity. This model reflects covariate risks on an
accelerated time scale and involves the cumulative reproductive effects and
not just the daily effects.

5.5 Categorical or multiple longitudinal out-
comes

To handle with categorical longitudinal outcomes Rizopoulos [43] proposed
to use generalized linear mixed model (GLMM). This type of model uses
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the classical formulation and the joint model becomes:

p(yi(t)lbi) = exp {Z;Lzzl yij¢ij(b;)(;§[¢ij(bi)] _ d(yz‘ja 90)}

m(t) = E(yi(t)|b;) = g~ [2i() 8 + 2(t)bi] (5.6)
b; ~ N(0,D)

hi(t) = ho(t) exp {Y'wi1 + flm;(t — ¢), b;, wio; ]}

where the formulation for the survival model f[m;(t —c), b;, w;2; ] can have
the simplest formulation, or one of the form presented above.

While to solve the problem of multiple longitudinal outcome a multivariate
generalized linear mixed-effects model can be used where the linear predictor
is given by:

9alE (iq(1)[big] = g (8) B + 2i (£)biq (5.7)
where ¢,(-) denotes a known one-to-one monotonic link function, and y;, (%)

denotes the value of the ¢th longitudinal outcome for the subject ¢ at time
point ¢, and accordingly the relative risk becomes:

hi (t) = h() (t) exp {’y,wil —}— Z fq[mzq(t — C), biq; wigq; O./q]} (58)

q

where ¢ indicates the number of longitudinal covariates and b;, random ef-
fects vector member of the exponential family.

Another approach for handling multiple longitudinal outcomes is proposed
by Proust-Lima, Joly, Dartigues, and Jacqmin-Gadda [38], these authors
proposed a multivariate joint model in which the longitudinal outcomes are
considered as realizations of a single latent process which is defined in con-
tinuous time and represents the common unobserved factor that drives the
observed longitudinal trajectories. In addition different error terms for each
longitudinal outcome are considered which account for the extra correlation
in the repeated measurement of the longitudinal outcome not captured by
the random effect.

5.6 Joint cure model

In the joint-cure model, presented by Law, Taylor, and Sandler [30] and by
Yu, Law, Taylor, and Sandler [66], joint modelling of the disease progression
marker and the failure time process is done in a cure model setting. They
assumed that a fraction of the patients are cured by the treatment and are
immune from recurrence, the event of interest.
There are three sub-models, the incidence model which indicates the prob-
ability of an individual ¢ to be in the susceptible group, that is given by the
logistic function:

exp(b'Z;)
1+ exp(V'Z;)
while the longitudinal model is given by:

p(D; = 1|b, Z;) = (5.9)
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and the conditional failure time model is:
AMtID; = 1, Ry, Z;) = Xo(t|n) exp[ylog(Y;"(t) + 1) + B'Z;] (5.11)

where Z; denote the g+1 fixed baseline covariates for subject ¢, Y; the vector
of longitudinal values, T; indicates the observed follow-up time, and ¢; is the
corresponding censoring indicator. The cure group indicator is denoted by
D;, thus if a subject 7 is in the susceptible group, D; is equal to 1; otherwise,
it is equal to 2. Y} is the true longitudinal value at t; , €;; ~ N(0,0?)iid is
the measurement error at time ¢;;, A\o(t|n) is the unspecified baseline hazard
function at time ¢. The EM and the Markov chain Monte Carlo algorithm
are used for the estimation.

There are three major advantages of adding a longitudinal component to
the cure model: at first it is possible to reduce the bias due to informative
censoring, secondly there is an increase in individual predictions, and lastly
it is possible to observe a reduction of the identifiability problems in a cure
model.

This model is applied to a data set composed by patients who had carcinoma
of the prostate and who were treated with radiation therapy. The endpoint
of interest is clinical recurrence, but a fraction of the patients are cured
by the treatment and are immune of recurrence, considering the prostate-
specific antigen as a biomarker.



Chapter 6

The case of multivariate
longitudinal

This thesis focuses on the extension in which only the longitudinal sub-
model is multivariate, as a first possible evolution of the classical joint model
in which both sub-models are univariate.

This chapter is organised as follows. At first a review of the literature con-
cerning joint models with multivariate longitudinal sub-model is presented.
Subsequently the new method of estimation is proposed: the two-stage ap-
proach.

We propose this method as a first approach to solve the computational prob-
lem. As already said, the joint model is computationally demanding, then
increasing the number of parameters or the dimensions of the sub-models
will lead to method of estimation more computationally demanding. The
two-stage approach permits to obtain very fast and with desirable propri-
eties estimations.

6.1 Model definitions and estimations

Xu and Zeger [63] presented one of the first article that concerns joint model
with multivariate longitudinal sub-model. The paper proposed a latent vari-
able model for the joint analysis of a time to event and repeated measures
on multiple surrogate marker processes. The authors proposed two comple-
mentary approaches to answer the question whether using multiple surro-
gate processes is better than using only one. A Markov chain Monte Carlo
(MCMC) algorithm is used to estimate parameters in the model extending
the Xu and Zeger [64] model and the Faucett and Thomas [15] model. In
addition some assumptions are made: the time to clinical event T" and vector
of repeatedly measured biomarkers Y are conditionally independent given
71, the treatment X can affect T either through n or directly, and X only
affects Y through its influence on 7, where 7 is the latent process.

In case of multivariate longitudinal model all the elements that variate as
a function of two components must be considered, the subject ¢ and the
biomarker or the longitudinal variable k. Then 7, (t) is the latent stochastic

55
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process that represents the true value of the biomarker &k of the patient 1,
Yir(t) is an imprecise measure of 7;(t), X (t) is the collection of predic-
tors including a treatment indicator for the same marker process and the
same patient, where k£ = 1,2,..., K, i = 1,2,...,n, and T; represents the
time event for the subject i. The authors supposed that given 7, (t), Yir(t)
is an independent observation from a generalized linear model with linear
predictor 7 (t) such that:

G ALY () [0 (8)]} = nir(2) (6.1)

where g is an arbitrary but known link function. Another assumption sup-
posed that 7 (t) follows a multivariate extension of the standard Gaussian
random effects model:

where ) is an my X 1 vector of regression coefficients and Uy, is an r, X 1
vector of random effects corresponding to the biomarker k. At first U; =
(U1, Uia, ..., Uik ) is supposed to be a realization of a Gaussian random vector
with mean zero and r X r covariance matrix G, where r = r{ +ro+-- -+ 1.
Concerning the survival function, a conditional hazard model is proposed
with the form:

h(tmi(t), Xi) =ho(t; o)

6.3
exp{an1mi (t) + aramin(t) + -+ - + a1xnir () + X} (6.3)

An analyse of the relative benefits of multiple versus one biormaker evalu-
ating the gain in precision comparing the length of the predictive intervals
is done.

An application of this model to the Schizophrenia trial data comparing the
risperidone and placebo for the treatment of schizophrenia is presented,
comparing the model with only one biomarker and the one with three
biomarker and showing that in this situation there is a gain in precision
also if it is not so big, then the gain is not so big to warrant the additional
risk of bias from the more complex model. The authors used the Markov
chain Monte Carlo algorithm to estimate the parameters.

Another paper concerning the joint analysis of time-to-event and multiple
longitudinal variables was proposed by Lin, McCulloch and Mayne [32]. The
authors extended the model presented by Wulfsohn and Tsiatis [62]. The
model allows a direct dependence of the event process on the multiple lon-
gitudinal covariates simultaneously and also accommodates the correlation
among the longitudinal covariates. A one-step-late EM algorithm is used to
handle the direct dependence of the event process on the modelled longi-
tudinal variables along with the presence of other fixed covariates in both
processes.

The model formulation is:

yis () = XI;(6)B; + Zi;(0)biy + €35 = ybi(t) + &35 (6.4)
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where ¢ = 1, ..., n is the subject index, 7 = 1, ..., J is the longitudinal covari-
ate index, y;;(t) denotes the longitudinal response j for subject ¢ measured
at time ¢, X;;(t) are subject ¢ specific covariate vectors for fixed effects at
time ¢ in the longitudinal sub-model j with coefficient vector 3;, and Z;;(t)
are subject ¢ specific covariate vectors for random effects at time ¢ in the
longitudinal sub-model j with coefficient vector b;;. The vector of random
effect b;; was taken to be multi-normally distributed with mean B; and co-
variance D;;. The measurement error ¢;; is assumed uncorrelated with b;;,
normally distributed with mean 0 and variance 0]2».

In addition the hazard model was given as:

J
A(t]bij, wi) = wido(t) exp {xé(t)% +)

j=1

Pz
yfj(t)”ij + Z l’ily?j(thyjl] }

=1

(6.5)
where \q is an unspecified conditional baseline hazard. The vector of fixed
covariates in z; is associated with the coefficient vector v, while the term
Sort wayl;(t) vy denotes the interaction between yf;(t) and the elements
[ in covariate vector x;. It is often supposed to be zero for some [. The
frailty distribution of w; is assumed to be Gamma(%; ) with mean one and
variance . Lastly the counting process notation must be considered, where
the event process for subject 7 is written as (N;(t); Y;(t)) with V;(¢) counting
the number of events for subject ¢ by time ¢ and Y;(¢) being a left continuous
at risk process with Y;(¢) = 1 if subject i is at risk at time ¢ and 0 otherwise.
In the survival context, the counting process V;(t) for each subject i remains
at zero unless and until death, when it jumps to one.
For using the maximum likelihood the authors considered some vectors:

/

Yi = Y- Yis
B=B,. B
b’L = (b;].’""b’/i.]
Y= (’7;771117 ce 7lny7’yz/1,inte7“

/

/

)
)
y
)

and some matrices:

X 0
X = ;

0 Xiy
Dy, D1y

D= :
Dy Dy
U%Inil 0

Y= : :
0 e 0-3IniJ

where the row ¢ of X;; is a p-vector of covariates measured at time t. In
add from this it is possible to obtain that: y;|b; ~ N(X;5 + Z;b;,%;) and
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b; ~ N(B, D). The log-likelihood can be written as:

n

> [wilba) + LN, Yilbi, w;) + 1(bi) + Lw;)] (6.6)

=1

where
[(N3, Yi|bi, wi) =N;(7) log w; +/ [log Ao(t) + Wi(t, v, B,b)]dN;(t)+
0

—w /0 TYi(t) exp(Wilt, v, B, ))dAo (1)

where 7 is the maximum potential follow-up time and:

J

Wilt, v, B8,b) = @(t)7e + Y

j=1

Pz

Yo (s + D wiayly ()
=1

Subsequently the authors applied the Monte Carlo E-step to the log-likelihood
and a one-step-late M-step with Newton-Raphson iteration from which it is
possible to obtain the estimation of all the parameters involved: A, 57]2-, B;, D

and Bj. In addition the other two parameters, v and 6, are updated through
one-step Newton-Raphson iteration. The authors applied this new method
to the data set of the beta-carotene trial showing the benefits of joint mod-
elling the longitudinal and time-to-event variables.

Subsequently Song, Davidian and Tstiatis [50] generalized the model pre-
sented by Tsiatis and Davidian [53], thus a generalisation of semi-parametric
conditional score estimation for the parameters is presented. For each sub-
ject i , 1 =1,...,n, let T; denote the failure time and C; denote censoring
time. The observed survival data are V; = min(T;,C;), A; = I(T; < Cy),
where I(-) is the indicator function. Let X (u), k =1, ..., K, denote K time-
dependent covariates at time u, and let the r-dimensional vector Z; denote
r time-independent covariates for subject 7. Assuming that each covariate
process X;(u) satisfies:

Xiw(u) = oy, fr(u) (6.7)
where fp(u) is a (g x 1) vector of functions of w, a; is a (g x 1) ran-
dom effect, and f;, and «a;;, may be different for each k. The covariate pro-
cesses X;,(u) are not observed directly; rather, longitudinal measurements
Wik(tik;) on the covariate k are taken at times t;,;, 7 = 1,2,...,my, , for
each i, where:

Win(ting) = Xie(ting) + eirs (6.8)

and e;; are normally distributed mean-zero errors with variance oy that
may reflect both biological variation and measurement errors.

In addition let e; = (e}, ..., €jx)", where e = (€1, s €ipm,, ) 5 tie =
(tix1s -+ tigm,, ) e the ordered times for subject i, covariate k, and t; =
(..., t.;)" be the set of time points where observations on all K covari-

ates are available; m; = (mly,...,mi) ; and a; = (o}, ..., alx) is (¢ x 1),
where ¢ = ), qi. It is useful to assume that the conditional distribution
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of e; given (T}, C;, oy, Z;, t;,m;) is normal with covariance matrix depending
only on m; and on the parameters of covariance between errors of two dif-
ferent covariates.

A proportional hazards regression model is assumed for the relationship be-
tween the hazard of failure and the covariates, accordingly the hazard for
subject ¢ becomes:

Xi(u) = lim du™'p{u < T; < u+du|T; > u, 04, Z;, Ci, e5(u), ti(u)} =
du—0 (69)
=Xoexp {7V G(u, ;) +n'Z;}

where A\g(u) is an unspecified baseline hazard function; G(u, o;) is a (s x 1)
vector whose elements are functions of u and «; ; v and 7 are (s x 1) and (r x
1) parameter vectors; t;(u) = {ti; <wu;k =1,..., K} denotes the observa-
tion times up to and including u; and e;(u) = {ex; : ti; <u;k =1,..., K}.
The vector G(u, «;) allows flexibility in modelling the hazard relationship.
The authors used the conditional score estimation for the parameters, gen-
eralized the method proposed by Tsiatis and Davidian [53], assuming that
G(u, ;) = G(u).

The applications concern the data set composed by the aids clinical trials
group, analysing the time trajectories of CD4 and CD8 and the effect of zi-
dovudine alone or with three others therapies (zidovudine plus didanosine,
zidovudine plus zalcitabine, or didanosine alone). The results suggested that
this method of estimation is good, confirmed also from a simulation study.
Subsequently Ibrahim, Chen, and Sinha [26] presented a joint model for
studying the effect of a vaccine on the melanoma through the analysis of
two antibodies.

Let X;(t) denote the true, unobservable antibody level, and let Y;(t) =
(Yi1(t),Yia(t)) denote the (2 x 1) vector of observed antibodies immunolog-
ical titer measures for subject ¢ at risk at time ¢, 2 = 1, ..., n. The model can
be written as:

Y (t) = Xi(t) + ea(t)
}/;2@) = Qg + ale(t) -+ &Tiz(t)

o~ (V) o T e .
2 0/’ pPO102 O'%

where €;(t) = (£41(t), €i2(t))" is independent of X;(¢).

The survival component of the model is taken to have a proportional hazards
structure. For the subject ¢ at risk at time ¢, let x;(¢) denote the history of
X;(+) up to time ¢, Y;i(t) denotes the history of the observable covariates
(Yi1(+), Yia(+)) up to t, and let z; denote a (px 1) vector of baseline covariates
for subject i, such as treatment, gender, age, and so forth. The hazard
function for the subject i becomes:

where hy(t) is the baseline hazard function, f; is a scalar regression coef-
ficient for the longitudinal covariate process, and (5 is a (p x 1) vector of
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regression coefficients for the baseline covariates.

The method of estimation implemented is the maximisation of likelihood
function using the Gibbs sampling. The applications showed that the vac-
cines are associated with the event.

Brown, Ibrahim, and DeGruttola [4] proposed a joint longitudinal and sur-
vival model that has a non-parametric model for the longitudinal markers
using a cuBIC B-splines to specify the longitudinal model and a propor-
tional hazard model to link the longitudinal measures to the hazard.
Analysing the longitudinal cuBIC B-spline model is possible to focus on the
multivariate case assuming that p is the number of longitudinal outcomes:

Yij = ta,(tiy) + € (6.12)
such as:
Yij
Yij=1| : (6.13)
Y;jp

where Yj; indicates the set of biomarkers of the the subject 7 observed at

VYap1(tij) Yob_ Bim Bi(ti;) + zhon
Va,8(tij) = : = ; (6.14)
Vapp(tij) > it Birp Br(tis) + wjoy,

where Bi, = (Bik1, -, Bikp) ~ N(box, Vor) and «; is a vector of parameters
linking the vector of baseline covariates x; to the longitudinal outcome.
Finally:

€ij1

Eijp
where €;; ~ N,(0,%).
Subsequently the authors assumed that 13 = a—05(ti;) and accordingly
defined the hazard function given the longitudinal measures as:

h(t]Y) = A(t) exp(y¢s(t) + 2'C) (6.16)

where v = (71, ..., )" is a vector of parameters linking the trajectory to the
hazard function, A(¢) is the baseline hazard, and ( is a parameter vector
linking a vector z of baseline covariates to the failure time. After posing
some priors and using some rules of approximations, the authors imple-
mented the Gibbs sampling method for the estimation of the parameters
involved in the model. A simulation study and an application on AIDS data
set is also made in order to find the efficiency of the model and the cuBIC
B-spline model provides a good fit to the longitudinal data that could not
be obtained with simple parametric models.

Fieuws, Verbeke, Maes, and Vanrenterghem [16] proposed a multivariate
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mixed model specifying a joint distribution for the random effects, thus the
univariate mixed models are combined into a multivariate mixed model by
specifying a joint distribution for all the random effects. In order to obtain
the estimations a pairwise modelling strategy is used, where all possible pairs
of bivariate mixed models are fitted using in addition the pattern-mixture
approach, the pseudo-likelihood theory, and the Monte Carlo integration.
The authors applied this model to analyse the renal graft failure with the
study of some biomarkers.

Ghisletta [18] applied a joint multivariate longitudinal survival analysis to
the cognitive data of the Swiss Interdisciplinary Longitudinal Study on the
Oldest Old. The author simultaneously estimated a multivariate multilevel
longitudinal model and a Weibull survival model to test whether individual
performance and change in speed and fluency predict survival, controlling
for retest effects and sensory functioning.

Albert and Shih [1] proposed a regression calibration approach for jointly
modelling multiple longitudinal measurements and discrete time-to-event
data, using a regression calibration approach which appropriately accounts
for informative drop-out.

The model is composed by T; which indicates the discrete event-time which
can take on discrete values ¢;, j = 1,2, ..., J, and Y;; to be a binary indicator
of whether the patient 7 is dead at time ¢;. Then J; = Z;.]:l(l -Y;)=J-Y.
where Y. = Z}]:1 Y;; indicates the number of follow-up measurements be-
fore the event or the end of follow-up at time ¢, longitudinal measurements
are measured at times ty,to,...,t;. Denote Xy; = (Xyi1, X1z, -y X147,),
Xgi = <X2i17 Xgig, ey X?i],‘)lu couy XP'L' = (XPih XP'L'27 ceey XPiJi)/ as the P
biomarkers measured repeatedly at j = 1,2, ..., J; time points. Further, de-
fine X, = (X;“, Xoizs oo X;Ui)’ as the longitudinal measurements without
measurement error for the biomarker p and X; = (X7;, X5;, ..., X5;)'. The
authors considered a joint model for multivariate longitudinal and discrete
time-to-event data in which the discrete event time distribution is mod-
elled as a linear function of previous true values of the biomarkers without
measurement error on the probit scale. Specifically:

P
P(Yy = 1|Yjj—1) = 0; X]) = ®(a; + ZapX;i(j—l)) (6.17)
p=1

wheret=1,2,...,1,7 = 2,3,..., J;, Y;1 is taken as 0, op; governs the baseline
discrete event time distribution, and ay, measures the effect of the biomarker
p (p = 1,2,...,P) at time ¢;_; on survival at time ¢;. Particularly this
formulation allows for examining the effect of multiple true biomarker values
at time ¢;_; on the probability of an event between the time point ¢; and ¢;_;.
The longitudinal data is modelled assuming that the fixed and random effect
trajectories are linear. Specifically, the multivariate longitudinal biomarkers

can be modelled as:
Xpij = Xpij + €pij (6.18)

where

Xpii = Bpo + Bpitj + Ypio + Ypirt; (6.19)
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where 3,9 and 3,; are the fixed effect intercept and slope for the biomarker p,
and 7,0 and 7,1 are the random effect intercept and slope for the biomarker
p on the individual . Denote B = (ﬁlo,ﬁn,ﬁzo,ﬂgl, ...,ﬁpo,ﬁpl)/ and Yi =
(’)/11‘0, Y1ils Y2i05 Y2ils -5 VP05 ’ypil), assuming that Yi is normally distributed
with mean 0 and variance X, where X, is (2P x2P) variance matrix, and €,;;
are independent error terms which are assumed to be normally distributed
with mean 0 and variance UZE. Alternately the event-time process could be
adapted to depend on the random effects of the multivariate longitudinal
process (e.g., vpi; can replace X;i(j_l)).

Conceptually, model can be estimated by maximizing the likelihood:

L:ilj/%.../{ljh(Xpilvpioﬁpﬂ)}

Ji

j=2

(6.20)

where 7;; = P(Y;; = 1|Y-1) = 0), h(Xpi|Vpio, Vpir) is the product of J;
univariate normal density functions each with mean X;; and variance o7,
and f(7) is a multivariate normal density with mean zero and variance 3,.
When P = 1, the likelihood can be maximized by numerical integration
techniques or alternately through Monte Carlo methods, but these methods
do not perform well for even moderately high dimensional random effects.
Thus the authors proposed a two-stage regression calibration approach for
estimation, which is based on two-stage. In the first stage, multivariate lin-
ear mixed models can be used to model the longitudinal data. In the second
stage, the time-to-event model is estimated by replacing the random effects
with corresponding empirical Bayes estimates, where the discrete event time
distribution is modelled as a linear function of previous true values of the
biomarkers without measurement error on the probit scale. The benefit of
the models are shown with a simulation study and with an application made
in order to examine the effect of multiple longitudinal biomarkers on the
short-term prognosis for patients with primary biliary cirrhosis.
Rizopoulos and Ghosh [44] proposed a new semiparametric multivariate
joint model that relates multiple longitudinal outcomes to a time-to-event.
In particular, for the subject-specific longitudinal evolutions a spline-based
approach is used, the baseline risk function is assumed piecewise constant,
and the distribution of the latent terms is modelled using a Dirichlet Pro-
cess prior formulation.

Let Vi = (Y}1, s Yips - Ui ), k = 1,..., K denote the K-variate response
vector for the subject ¢ (i = 1,...,n), where y;. is an ng x 1 vector of
longitudinal responses for outcome k taken at some time points ¢;; ;. This
formulation allows that the longitudinal responses may be collected at dif-
ferent time points for each outcome. For the time-to-event outcome, let T;
denote the observed event time, taken as the minimum of the true event
time 77 and the censoring time C; . Furthermore, the event indicator is

)

defined as 9; = I(T; < C;), where I(-) is the indicator function. The condi-
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tional distribution of y;, given a vector of random effects b;;, is assumed to
be a member of the exponential family, with linear predictor given by:

gkl E ik ()[bik] = fir(t) (6.21)

where gi(-) denotes a known one-to-one monotonic link function, and vy, (¢)
denotes the value of the longitudinal outcome k for the subject ¢ at time
point t. The unknown function fi(-) is assumed to describe the true, pos-
sibly non-linear, longitudinal profile for the outcome k. To allow for flex-
ible shapes for the subject-specific evolutions for each outcome, a spline-
based approach is proposed to approximate the function. Specifically, let
A = A3l =1, ..., L, denote an increasing sequence of knot positions, then
fir(+) is assumed to have the form:

far = Bu (B, B 050) + Ha(t; 87, 87,65 M) (6.22)

where the approximation to f;x(t) consists of two parts, the time-independent
and the time-dependent parts. The time-independent part Bji(-) includes

a set of baseline covariates located in the vectors xl(,i) and xl(.i), with corre-

sponding vectors of fixed effects 6,(:) and /6’,(5) and random effects bg;). For
the time-dependent part H(-) the authors used a natural cuBIC spline

basis functions with knots at A;;. The covariate vectors 3352) and :UE:), with

corresponding fixed effects ﬁl(,?) and 6;,3 ), and random effects bg?,z, are used to
include possible interactions of baseline covariates with the time-dependent
part.

The effects of the longitudinal outcomes and of baseline covariates on the
survival times are captured via a relative risk model of the form:

Plt < Ty <t+dt|TF >t, FH(t),w;
Bt FH (8), ) = tim DS T <t dATT 2 8 F (1), o

dt—0 dt

K
= ho(t) exp {wl’-’y + Z Mk fie(t), 7(Br, bir), b4, Oék]}

k=1

(6.23)

where FH(t) = {fi(s),0<s <t 1<k<K} denotes the history of the
true and unobserved longitudinal process up to time ¢, w; denotes a vector of
baseline covariates with corresponding regression coefficients ~y, and function
mix(+) specifies which components of the longitudinal process for outcome
k are related to the survival times, where ¢; denotes a frailty term and ay,
denotes a parameter vector measuring the effect of the longitudinal outcome
k to the time-to-event. To complete the specification of the survival model,
the baseline risk function is assumed of the form:

Q
ho(t) = ZéqI(qul <t <)

q=1

where 0 = vy < 11 < --- < vg denotes a split of the time scale, with v
being larger than the largest observed time, and &, denotes the value of the
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hazard in the interval (v,_1,7,]. The latent terms of the multivariate joint
model consist of the random effects in the longitudinal process and possibly
a frailty term in the survival process.

The authors proposed three parameterisations of the function m;; and com-
pared them in a simulation study and in an application to the analysis of
renal graft failure using a Bayesian formulation for the semi-parametric mul-
tivariate joint model, and deriving the posterior inferences using a Markov
chain Monte Carlo algorithm.

Choi, Anderson, Richards, and Thompson [5] implemented a joint model for
mixed multivariate longitudinal measurements, applying it to the predic-
tion of time until lung transplant or death in idiopathic pulmonary fibrosis.
Specifically, the authors formulated a unified Bayesian joint model for the
mixed longitudinal responses and time-to-event outcomes. For the longitu-
dinal model of continuous and binary responses, multivariate generalized
linear mixed models using shared random effects is investigated.

For subject 7,7 =1, ..., n, let y1;; and y9;; denote the outcome j at time point
t;; consisting of continuous and binary components, respectively. Further-
more, let y; = (y4;,y5;) denote the bivariate longitudinal outcome vector
for subject 4, where yn; = (Ynits -, Ynis), b = 1,2, j = 1,...,np;, 1S an np;-
dimensional column vector giving the longitudinal outcome h for subject 7.
For the longitudinal bivariate response vector, y;, with different data types,
generalized linear mixed effects model is assumed that:

E(ynilbri) = gn(XniBr + Znibni) (6.24)

where g, () denotes a known bijective link function that differs across data
types, Xp; and B, denote an (ny; X p,) design matrix of covariate values
and a pp-dimensional vector of fixed effects, respectively, and Z;; and by,
denote the (ny; X ¢1) design matrix of covariates and a g,-dimensional vector
of normally distributed random effects with a zero mean and covariance
matrix X, respectively.

The generalized linear mixed effects model can be written with an identity
link for the continuous response and the logit link for the binary response:

E(y1i|b1:) = X1 + b1+ Z1iby;

} 6.25
lOth(P(y% = 1)|b2i) = X924+ Zaiba; ( )

assuming that by; follows a normal distribution with a mean vector of zeros
and variance-covariance matrix X and that by; is proportional to by;, i.e. by; =
Agby;, where Ag is a diagonal matrix of unknown constants. Considering
the survival sub-model, let T; denote the true event time for subject i,
C; be the censoring time, and §; = I(T; < C;) be the event indicator. Let
TF = min(T;, C;) be the observed event time for subject i. The proportional
hazard model is given by:

)\i(t‘l'gi, Ugl) = )\o(t) exp[wélﬂg + Ugl] (626)

where x3; is a p3-dimensional vector of covariates with regression coefficients
B3, and Ag(t) is the baseline hazard function, which can be assumed to be of
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a parametric form or left unspecified. To express the effects of longitudinal
outcomes on the time-to-event outcome, the shared parameters, Us;, are
associated with the random effects of longitudinal outcomes, by; and by;.
The joint model connects the longitudinal response sub-models and the
event time outcome sub-model:

Usi = a’lbu + 0/2521‘ + bs; (6.27)

where a = (a},a}) is a set of unknown constants and b; is a normally dis-
tributed frailty term with mean zero and variance o3, independent of the
b = (b, bh,)"-

Then the authors built the log-likelihood for the observed data and im-
plemented a Bayesian approach for parameter inferences, using a Gibbs
sampling algorithm. This method of estimation was applied to a simulation
study and to mortality in idiopathic pulmonary fibrosis outcomes study
focusing on the survival function. Simulation studies indicate good perfor-
mance for the models and the two longitudinal responses jointly contribute
nearly significantly to the prediction of failure times.

He and Lou [20] developed a joint model that consists of a multilevel item
response theory model for the multiple longitudinal outcomes, and a Cox
proportional hazard model with piecewise constant baseline hazards for the
event time data. Shared random effects are used to link together the two
models. The model inference is conducted using a Bayesian framework via
Markov Chain Monte Carlo simulation implemented in BUGS language.
This model is applied to analyse the Parkison’s disease.

Proust-Lima, Joly, Dartigues, and Jacqmin-Gadda [39] proposed another
way to solve the problem related to the multivariate longitudinal data.
These authors proposed a multivariate joint model in which the longitudinal
outcomes are considered as realizations of a single latent process which is
defined in continuous time and represents the common unobserved factor
that drives the observed longitudinal trajectories. In addition different error
terms for each longitudinal outcome are considered which account for the
extra correlation in the repeated measurement of the longitudinal outcome
not captured by the random effect.

6.2 The two-stage approach

After analysing the different models and methods of estimation already
proposed, we choice the two-stage approach as an extension of the univariate
method of estimation ([36, 37, 51, 53, 55, 65]). This option was chosen as a
first possible method to solve the computational problem. As already said,
the joint model is computationally demanding, then increasing the number
of parameters or the dimensions of the sub-models will lead to method
of estimation more computationally demanding. The two-stage approach
permits to obtain very fast and with desirable proprieties estimations.

In this thesis the survival sub-model is a proportional hazard model which
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is defined as a function of the m;,(;;) that denotes the true and unobserved
value of the longitudinal covariate ¢ for subject i:

hi(t|M;(t), w;) = ho(t) exp

v'w; + Z aqmiq(t)] (6.28)

q
In (6.28):

o M;(t) = {myy(s),0 < s < t,¥g = 1,...,Q} indicates the history of
the true unobserved longitudinal processes up to time ¢

e o, quantifies the effect of the longitudinal outcome ¢ onto the risk of
an event

e h(t) indicates the baseline hazard function

e w; are the covariates that influence the risk of the event with coefficient
.

The biggest difference from the survival sub-model with univariate longi-
tudinal sub-model concerns the parameter «,, thus a parameter for each
longitudinal covariate considered is introduced.

This model can be simplified using a vectorial form for the parameter oy
for each ¢ = 1, ..., @, thus the equation (6.28) becomes:

hi(t| M;(t), w;) = ho(t) exp [¥'w; + o'my(t)] (6.29)

where the vector e and m,(t) are composed by stacking the single elements
of a, and my,(t) respectively.

Concerning the longitudinal sub-model a linear multivariate mixed model
is proposed:

(iq(tis) = mig(l) + (1)

miq(t ) = ( J)ﬁ (z )biq

€ig(tij) ~ N(O o?) (6.30)
bz‘q ~ N(07 Z)

[ b1gs s Ogs €1g; -, €ng  independent

where ¢ is the longitudinal variable index, y;,(t;;) is composed by the m;,(t;;)
and by a random error term €;,(¢;;), and 3, are the fixed effects for x;,(%;;),
while b;, are the random effects for z;,(¢;;).

As in the survival sub-model, also in the longitudinal sub-model it is possible
to simplified the model introducing the matrix formulation:

my, = X;,By + Zighiqg + €iq (6.31)

where X;, and Z,, are the design matrices (with corresponding row vectors
5, (ti;) and 2, (t;;)), while the vectors my, is composed by stacking the single
elements m;,(t;;).

The two-stage approach is based on two steps. In the first step the fixed
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effects and random effects for all the longitudinal sub-models are estimated
using a maximum likelihood approach. Subsequently in the second step
these estimates are used to impute appropriate values of m;,(t;;) that are
substituted in the classical partial likelihood of the Cox model.

Thus in the first step it is possible to obtain through the maximum likelihood
method the estimation of the parameters for the longitudinal sub-model,
where the likelihood function can be expressed as:

n o 1
LML(Qq) = H {(27’(’) z/2|‘/;q|1/2 exp _§<Yzq zqﬂq) (Yzq iqﬁq):| }
i=1
(6.32)
where V;, = ZiqZZ{q + 0%I; and 6, indicates the parameters that must be
estimated for each longitudinal covariate ¢. The likelihood (6.32) is related
to the fact that:
Yig ~ N(XigBy; ZigSZly + 0°1)

because the density function of the covariates are given by:

zq /f ‘blq 2 ) bzq

Then considering the likelihood function for each subject @ it is possible to
obtain the equation (6.32).

The estimations for the fixed effects obtained by the maximisation of the
function above (6.32) are:

-1
[Z iq ¥ iq 1X7,q] ZXl/q‘/zq yzq (633)

And the estimations for the random effects are:
I;iq(e) = EZz{qVViq(Yiq - Xiqu) (6.34)

These estimations are expressed as a function of the design matrices and of
the covariance matrices.
Subsequently it is possible to estimate the proportional hazard parameters

through the partial log-likelihood:
Z R;(t) exp[r ‘>]] } dN;(t)

v=3 / m{z—a(t) ~log
) (6.35)

where R;(t) assumes value 1 if the subject ¢ is at risk 0 otherwise, V;(t)
indicates the number of observed events for subject i by time ¢, and r(t,) =
Ywi + a ml( ), where 1h;(t) is composed by staking the single elements
Mig = T, (t )8y + zlq(t)blq that are the values imputed in the partial log-
likelihood obtained by the estimations of the linear mixed model.

This method is based on the partial likelihood function, expressed as:

= i(1) exp[ (t,1)] N
HH ) explr(t, )] (6:36)

J
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applying the logarithm function it is possible to obtain the former equation
(6.35).

The partial likelihood function for each subject ¢ is evaluated as the proba-
bility to fail for a subject ¢ at a fixed time ¢ given the set of subject at risk
at the fixed time ¢, which becomes in formula:

Li(v, o, t) =p(individual i fails|set of individual at risk at timet)

p(individual i fails|at risk attimet)

B >l subject at risk P(individual | fails|at risk at timet)
_ i Mi(t), wi)

2 (I M(t),w)

_ ho(t) exp [Y'wi + a'my(2)]

7, ho(t) exp [Yw; + o/my (t))]

where [ are the subjects at risk. In order to consider all the subject an
indicator R;(t) can be introduces which assumes value 1 if the subject i is
at risk 0 otherwise. Then the previous function becomes:

ho(t) Ri(t) exp [y'wi + a'mii(t)]
225 ho(t) B; (1) exp [y'w; + a'my;(t))]

Li(v, e, t) =

where the index of summation j refers to all the subjects, not only the ones
at risk.

In a situation in which there are time dependent covariates a new element
must be considered: N;(), that is the number of observed events for subject
¢ by time ¢. Then the partial likelihood becomes:

. ANy (t)
Lz‘(%a,t):{ Rlt) exp [y + m]m}

> Ri(t) exp [y'w; + a/my(

Subsequently, for obtaining the partial likelihood function, the likelihood
function for each subject ¢ and for each instant time ¢ must be considered,
from which it is possible to obtain the equation (6.36).

The estimations for the two parameter vector o and v can be obtained by
differentiating the partial log-likelihood function with respect to the param-
eter and posing it equal to zero.

8pl 7, '_ZjRj(t)WjeXP[T(tJ)] o
Z/ { e S RO el ) }W”‘O

opl( R; exp|r(t, j
Yo =2 [ { )~ S S}jﬂ}d%“):o
a ; exp|r(t,
Trough the numerical method of Newton-Raphson it is possible to solve
these equations and obtain the estimations: 4 and a.

The exponential of each element of the vector estimated & expressed as
exp(d,) denotes the relative increase in the risk for an event at time ¢ that
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results from one unit increase in 7;,(¢) at the same time point, and exp(~;)
denotes the ratio of hazards for one unit change in w;; at time ¢.

Ye et al. [65] made inference for the risk coefficient estimators, using the
standard errors calculated based on the induced partial likelihood as if all
the true covariate values were known. This method does not take into ac-
count the uncertainty of the estimated time-varying covariates. Therefore,
the estimated standard errors for the risk coefficients are likely to be biased
and tend to be smaller than the true variance of these risk coefficient esti-
mates. The authors proved, through a simulation studies, that this assump-
tion permits to obtain standard errors that are very close to the empirical
ones.

Then supposing that all the true covariate values were known, the estimated
parameter 7 is:

e consistent

e asymptotically normally distributed with mean ~, the true parameter
vector, and variance E(I(y))™!, the inverse of the expected informa-

tion matrix I(y) = —a?vl%f)

Using the same assumptions the estimated parameter ¢ is:
e consistent

e asymptotically normally distributed with mean «, the true parameter

vector, and variance E(I(a))™!, the inverse of the expected informa-

. : 2
tion matrix I(a) = 88’2%’;')
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Chapter 7

Applications

As already said the joint model is very useful in medical area because in
clinical trail it is very interesting to analyse the two subgroups, for example
placebo and treated, in order to study the longitudinal covariates that could
influence the survival or the effect of a new drug. In this thesis we decide to
focus on a different application, in fact for the first time the joint models are
used to study the length of stay before graduation of university students.
Thus the new method of estimation is applied to investigate the effect of
some longitudinal covariates on an event that had never been investigated
in joint models, the graduation.

7.1 The data set

Before presenting the results and the characteristics of the data set, we
have to recall that the University system in Italy is different than in other
European countries, where registration for the subsequent academic year is
possible only if all credits in the syllabus of the previous year have been ac-
quired. In Italy there are no limits for previously accumulate credits, each
university student can proceed with his own trajectory of passed exams,
free to depart from formal progression, with, at most, constraints on the se-
quence of examinations in the same subject, and can stay in the system for
as long as he likes. Then this could lead to situations in which the student
stay too much time in the system. In addition, the undergraduates in the
Italian University system can obtain a degree only after three year of study
and after having passed all the exams in the syllabus.

The data set that we analysed consists of the cohort of 1215 undergraduate
students enrolled in the faculty of Economics for the academic year 2005-
2006 at the University of Milano-BICocca, in the Lombardy region. Every
student was followed for 5 academic years from the enrolment (the time is
expressed in days), and every exam passed by the student was recorded. Ta-
ble 7.1 reports the characteristics of the students. Females made up 55.31%
of the students. Students aged 19 or under reached a total of 69.38%, mean-
ing that most of them proceeded regularly through high school and enrolled
immediately after it. In addition the number of students that obtained at

71
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Table 7.1: Characteristic of data set

Character Value Frequency | Relative Frequency
Gender Male 543 0.4469
Female 672 0.5531
Age <19 843 0.6938
>19 372 0.3062
High School Mark | > 90 324 0.2667
<90 891 0.7333
Area Milan 198 0.1630
province Milan 373 0.3070
Lombardy 530 0.4362
Other 114 0.0938
Status Drop-out 389 0.3202
Degree 578 0.4757
Still enrolled 248 0.2041

Figure 7.1: Trajectories of cfu percentage

least 90 out of 100 at high school final exam is low, only 26.67%. Concerning
the living area, most students live in the province of Milan or in Lombardy.
Lastly, 32.02% of students left the system before graduation (drop-out),
while 47.57% obtained a degree and 20.41% were still enrolled at the end
of the observation period of 5 academic yeas.

As every student was followed for 5 academic years, it was possible to ob-
serve their paths. After each exam the student can have a different level of
credit formative unit (cfu) or European University Credit (EUC) percent-
age, and a different average grade and move to a different situation from the
previous one, where the cfu percentage is a function of the maximum num-
ber of possible credits. Figure 7.1 shows the trajectories of cfu percentage
for every student, where the censored units in the graphs are the students
that leave the university (drop-out) or the students that are still enrolled at
the university at the end of the fifth academic year, while failed units are
the students that obtain the degree. As shown in Figure 7.1 the cfu per-
centage for the censored students is very low at the beginning and is lower
compared to the failed students level, where the level at the beginning is
low but increases more quickly. Analysing Figure 7.2 for the trajectories of
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Figure 7.2: Trajectories of average grade

the average grade, we notice that the average grade for the failed students
is slightly higher than that of the censored students.

7.2 Study of length of stay at the university
with one longitudinal covariate

Several models were estimated considering the available covariates. The
models were then chosen on the basis of significant parameters and the
AIC and BIC values. Two joint models were analysed. In the first one, the
longitudinal sub-model concerns the cfu percentage obtained by the student
after each exam, and the survival sub-model is related to graduation. In the
second joint model, the longitudinal sub-model concerns the average grade
of all passed exams, and the survival sub-model is related to graduation. In
formula:

yi(t) = Bo + Pati + bio + bint; + €;(t)

7.1
hi(t) = ho(t) exp[y1gender + y2age + yshsmark + ysarea + am;(t)] (7.1)

where m;(t) is the cfu percentage or the average grade depending on the
joint model considered, gender is coded as 0 for male and 1 for female, age
is the age of the undergraduates at enrolment, hsmark is the mark obtained
at high school final exam, and area indicates where the student lives at en-
rolment (1 = Milan, and 0 = Outside Milan).

The JM [40] package of R is used for the estimations. Table 7.2 reports
the course in Management, Statistics and IT (MSIT) composed of 30 stu-
dents, the longitudinal sub-model is a linear mixed-effects model for the cfu
percentage while the survival sub-model is a relative risk model with two
possible baseline risk functions, namely Weibull or the Piecewise-constant.
For the piecewise-constant baseline hazard, the value of « is 25.3305, with
exp(a) = exp(25.3305-0.01) = 1.2883, which means that an increase of 0.01
in the cfu percentage, increases the risk of graduation 1.2883 fold. Every
covariate’s parameter is significant at a level of 0.0001. As an example an
increase of one year in the age at enrolment decreases the risk of gradua-
tion. This means that younger students are more likely to obtain a degree.
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Table 7.2: Coefficients of joint model cfu percentage
Weibull Piecewise-constant

Value Std. Err  p-value Value Std. Err  p-value
Longitudinal
(Intercept) 0.4889 0.0381  <0.0001 | 0.4853 0.0381  <0.0001
timelog 0.0002 0.0001 0.0002 0.0002 0.0000  <0.0001
Event
(Intercept) -119.4774  39.3711  0.0024
age -0.4165 0.9692 0.6674 -0.7216 0.0195 <0.0001
gender 3.7927 1.6349 0.0204 3.0751 0.0030  <0.0001
hsmark 3.2476 2.1822 0.1367 2.3691 0.0015  <0.0001
area 1.5083 1.1857 0.2033 1.1180 0.0085  <0.0001
« 29.9640 9.8399 0.0023 25.3305 0.0011  <0.0001
log(shape) 2.5452 0.3307  <0.0001
AIC -474.1383 -454.6892
BIC -455.9227 -429.4677

Female students are likely to obtain degree 21.65 times more than the male
students. The hsmark and the area of living also have a positive effect on
the risk of graduation. A similar effect that an increase in the cfu percent-
age has on the risk of the graduation is found in the model with a Weibull
baseline hazard where the o parameter is positive, but in this model the
other parameters are not significant, only the gender is significant at a level
of 0.05 with a positive effect on the risk of graduation.
Concerning the model with piecewise-constant baseline hazard, Figure 7.3

shows some diagnostic graphs.
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Figure 7.3: Diagnostic plots for the joint model of cfu percentage with

piecewise-constant baseline

The graphs show that the residuals versus the fitted have few tendency,
the data are normal except for the tail, and the estimated marginal and
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marginal cumulative survival show that the survival function shrinks in the
first period after three year and then it decreases slowly.

Figure 7.4 displays some diagnostic graphs for the Weibull baseline hazard
model.
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Figure 7.4: Diagnostic plots for the joint model of cfu percentage with
Weibull baseline

The graphs shows that the residuals versus the fitted have few tendency,
the data are normal except for the tail, and the estimated marginal and
marginal cumulative survival show that after three years the survival func-
tion decreases steadily.

Table 7.3 considers the course in Management Accounting composed of 258
students. The longitudinal sub-model is a linear mixed-effects model of the
average grade, while the survival sub-model is a relative risk model with
Weibull as baseline risk function.

Table 7.3: Joint model average grade: coefficients

Value  Std. Err  p-value
Longitudinal
(Intercept) 22.8557  0.1814  <0.0001
timelog 0.0007 0.0001  <0.0001
Event
(Intercept) -42.0691  3.0021  <0.0001
age -0.0873  0.0443 0.0486
gender 0.0090 0.1878 0.9619
area 0.2752 0.2853 0.3348
hsmark 0.0938 0.7809 0.9044
« 0.4155 0.0577  <0.0001
log(shape) 1.4891  0.0706  <0.0001

The parameter « is positive, which means that an increase of one unit in
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the average grade increases the risk of graduation 1.5274 fold, as exp(«a) =
exp(0.4236) = 1.5274. In this model only the enrolment age parameter is
significant with a level of 0.05. An increase of age at enrolment decreases
the risk of graduation. Figure 7.5 contains some diagnostic graphs.
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Figure 7.5: Diagnostic plots for the joint model of average grade

The graphs show that the residuals versus the fitted have no tendency,
the data are normal except for the tail, and the estimated marginal and
marginal cumulative survival show that after three years the survival func-
tion decreases stably.

Table 7.4 considers the course in Economics and Tourism composed of 124
students, the longitudinal sub-model is a linear mixed-effects model of cfu
percentage while the survival sub-model is the Weibull accelerated failure
time model. The accelerated failure time (AFT) model can be considered

Table 7.4: Joint model cfu percentage AFT: coefficients

Value Std. Err  p-value
Longitudinal
(Intercept) 0.4195 0.0106  <0.0001
timelog 0.0002  0.0000  <0.0001
Event
(Intercept) 79795 0.4335 <0.0001
age 0.0306  0.0174  0.0781
gender 0.0952  0.0679  0.1607
area 0.1346  0.0695  0.0530
hsmark 0.0647  0.2961 0.8271
« -1.8420  0.2843  <0.0001
log(shape) 1.7025  0.1109 <0.0001

for the cfu percentage supposing that the cfu percentage has an accelera-
tive effect on graduation. The o parameter is negative, that means that an
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Figure 7.6: Diagnostic plots for the joint model of cfu percentage with AFT

increase of cfu percentage increases the hazard function. Figure 7.6 reports
some diagnostic graphs. The graphs show that the residuals versus the fitted
have no tendency, the data are normal except for the tail, and the estimated
marginal and marginal cumulative survival show that after three years the
survival function has a stable decrease.

The relation differs among the courses, supposedly related to the different
undergraduate features in each course.

As there are two longitudinal covariates that are separately analysed, it
would be interesting to analyse these two longitudinal covariates jointly in
order to evaluate the jointly effect of both covariates on the risk of the event,
as we suppose that the graduation is related to the cfu percentage but also
the average grade may influence the event. Then we proposed a joint model
in which the longitudinal sub-model is multivariate, or better in this case
bivariate.

7.3 Study of length of stay at the university
with two longitudinal covariates

Concerning the application using a bivariate longitudinal sub-model, the
longitudinal sub-model concerns the percentage of the cfu obtained by the
student after each exam and the average grade of all passed exams while
the survival sub-model regards graduation. In formula:

Yir(t) = Bor + Buiti + bior + binti + € (?)

Yia(t) = Boz + Brati + iz + bital; + €i(2)

hi(t) = ho(t) exp[y1gender + ~sage + yshsmark + vyshsclass+
arm (t) + aamia(t)]

(7.2)
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where m;;(t) is the cfu percentage, m;s(t) indicates the average grade, and
hsclass indicated the class (type) of high school attained (1 = Lyceum, and
0=Not Lyceum).

As for the univariate case, also for the multivariate case several models were
estimated considering the available covariates. The models were then chosen
on the basis of significant parameters and the AIC and BIC values.

Firstly the small data set composed by all the 30 students of Management,
Statistics and IT course (MSIT) is analysed. The estimations are reported
in Table 7.5.

Table 7.5: Results Management, Statistics and IT course data set

Models \ 1 \ 2 \ 3 \ 4 \ 5 \ 6
fitmark 0,5695 . | 0,7887 * 1,305 * 1,309 * 1,318 * 1,342 *
fitcfu 19,54 * | 21,75 % | 21,91 % | 21,94 * | 21,99 * | 21,63*
hsmark -3,653 | -6,395 . -6,188 -6,294 -6,259
area 1,371 1,357 1,365 1,311
age 0,2519 0,2534 0,2756
hsclass 0,03837 | -0,06133
gender -0,1375
Pseudo R-square 0,045 0,047 0,05 0,051 0,051 0,051
Likelihood ratio 27,73 28,96 30,92 30,99 30,99 31,01
Wald test 9,6 9,75 9,16 9,51 9,52 9,36
Score (logrank) 14,31 14,34 14,38 16,33 16,4 16,78
df 2 3 4 5 6 7
AIC 42,25989 | 43,03122 | 43,06887 | 44,99776 | 46,9953 | 48,97411
BIC 51,04707 | 56,21199 | 60,64323 | 66,96572 | 73,35685 | 79,72924

Signif. codes: 0 “*** 0.001 “**’ 0.01 “*’ 0.05 ‘.’ 0.1

Studying the AIC, the BIC and the pseudo R-square values, the best model
is that one that considers in the hazard function only the two longitudi-
nal covariates, fitmark and fitcfu (m;; and mys). The estimations for
the parameter a; = 0,5695 and as = 19.54 mean that an increase of
one unit in the mean mark increases the risk of the event of 1.7674 fold
(exp(0.5695) = 1.7674), while an increase of 0.01 in the cfu percentage in-
creases the risk of the event of 1.2158 fold (exp(19.54 - 0.01) = 1.2158).
Comparing the survival function estimated through the Kaplan-Meier esti-
mation without considering any covariate and the survival function obtained
from the model just analysed (Figure 7.7), it is possible to see that the two
curves are very close.

Some diagnostic graphs can be moreover analysed, studying for example the
residuals which are all very close to 0 (Figure 7.8).

If the proportional hazard model is a good model the survival distribution
of the Cox-Snell Residuals must be near the exponential function [7, 24]. In
this case it is possible to observe that the two distributions are very close
(Figure 7.9).

As the data set composed by all the students of the Management, Statistics
and IT course is small, we decided to analyse the data set composed by
all the male undergraduates of the Economic Faculty (543 students). The
estimations of the parameter are shown in Table 7.6.
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Figure 7.7: KM and survival function MSIT
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Figure 7.9: Cox-Snell Residuals MSIT

Studying the AIC, the BIC and the pseudo R-square values, the best model
is that one that considers in the hazard function the two longitudinal covari-
ates, and the variables hsmark and area. The estimations for the parameter
a1 = 0,0166 and as = 24,29 mean that an increase of one unit in the mean
mark increases the risk of the event of 1.1258 fold (exp(0.1185) = 1.1258),
while an increase of 0.01 in the cfu percentage increases the risk of the event
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Table 7.6: Results Male undergraduates (543 students)
Models \ 1| 2 | 3] 4 5
fitmark 0,0166 0,1112 * 0,1185 * 0,1090 * 0,11 *
fitcfu 24,29 *** | 26,93 *** | 27,25 ¥k | 97 3R kx| Q7 3R HFkx
hsmark -2,656 *** | -2,687 **F* | 2 506 *H* | -2,589 Hkk
area 20,35 * | -0,3432 .| -0,3541 *
hsclass -0,1647 -0,1474
age -0,03042
Pseudo R-square 0,077 0,079 0,08 0,08 0,08
Likelihood ratio 803,9 822.8 826,4 827.8 827.9
Wald test 281,3 232.3 229,2 9297.8 9297.8
Score (logrank) 466,8 467 467 467 467.4
df 2 3 4 ) 6
AIC 1600,324 1583,367 1581,792 1582,433 1584,272
BIC 1614,739 1604,991 1610,623 1618,471 1627,518

Signif. codes: 0 “*** 0.001 “**’ 0.01 “*’ 0.05 ¢.” 0.1

of 1.3132 fold (exp(27.25-0.01) = 1.3132). In addition the parameter for the
variable hsmark means that an increase of the hsmark decreases the risk
of the event, while concerning the variable area passing from area 0 (not
Milan) to area 1 (Milan) the risk of the event decreases.
Comparing the survival function estimated through the Kaplan-Meier esti-
mation without considering any covariate and the survival function obtained
from the model just analysed (Figure 7.10), it is possible to see that the two
curves are very close, where the survival function obtained by the model sug-
gested is the thicker one.
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Figure 7.10: KM and survival function male sub-population

Some diagnostic graphs can be moreover analysed, studying for example the
residuals which are all very close to 0 (Figure 7.11), except for few outliers.
The survival distribution of the Cox-Snell Residuals is close to the expo-
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Figure 7.11: Residuals male sub-population

nential function (Figure 7.12), except for a little central area.
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Figure 7.12: Cox-Snell Residuals male sub-population

Subsequently it is interesting to check if the multivariate joint models give
more information concerning the survival function than the univariate joint
models. We decided to create an index that is able to summarise the situa-
tion, considering the differences between the survival function:

~

 Swar(t) — Se(t
 Sga(t) = Syt

~—

a(t)

(7.3)

~—

where Sy (t) indicates the estimation of survival function at time ¢ for the
joint models with k longitudinal covariates, while Sy (t) = [1.. ti<t ”;di in-
dicates the Kaplan and Meier estimation of the survival function at time ¢.
Thus if the value of this index is lower than one this indicates that the sur-

vival function of the multivariate joint models is nearer to the the survival
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function estimated through the Kaplan-Meier estimation than the survival
function obtained by the univariate joint model, as the numerator of the
index is slower than the denominator.

In Figure 7.13 there are the values obtained for this index for the male
sub-population comparing the univariate joint model that consider only the
cfupercentage with the bivariate joint model. It is possible to assert that
the introduction of a new covariate increases the estimation of the survival
function as, except for few time instants, the value of the index is always
lower than 1.
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Figure 7.13: Univariate versus bivariate male

In addition it is interesting to comparing the survival function of two differ-
ent profiles, changing the value of a covariate. For example in Figure 7.14
there are two survival functions, one for a male that obtained 95 as high
school mark (the solid one) and one for a male obtained 60 as high school
mark (the dashed one). The survival function for the first student is higher
than the survival function for the second student, then the second student
has a better situation, as in this case the event is a positive thing: the grad-
uation.
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Figure 7.14: Difference survival function for student obtaining high school
mark 95 (solid) and 60 (dashed)

As the variables analysed are two, it is interesting to observe also the dif-



7.3. TWO LONGITUDINAL COVARIATES

83

ferences in two survival function changing the value in area. For example
in Figure 7.15 there are two survival function, one for a male that lives in
Milan (the dashed one) and one for a male that lives out of Milan (the solid
one). The survival function for the first student is higher than the survival
function for the second student, then the second student has a better situ-
ation, as in this case the event is a positive thing: the graduation.
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Figure 7.15: Difference survival function for student living in Milan (dashed)

or not (solid)

After analysing the situation for the male sub-population, it is interesting
studying the model for the female sub-population (672 students). The esti-
mations are shown in Table 7.7.

Table 7.7: Results Female undergraduates (672 students)

Models \ 1| 2 | 3] 4 5
fitmark 0,1007 ** | 0,1122 *** | 0,1165*** | 0,1229 *** | 0,1236 ***
fitcfu 46,39 *F* | 47,83 ¥** | 4823 FkK | 48 45 FK¥ | 48 44 F**
area 0,4491 * 0,4446 * 0,442 * 0,4447 *
hsclass 0,1686 0,19 0,1917
hsmark -0,2733 -0,2707
age 0,006524
Pseudo R-square 0,091 0,092 0,092 0,092 0,092
Likelihood ratio 1311 1318 1320 1320 1320
Wald test 176,1 164,9 163.,5 161,6 161,6
Score (logrank) 555,3 555,5 556,1 556,4 557,3
df 2 3 4 5 6
AIC 2438,889 2434,334 | 2434,263 2435,937 2437,899
BIC 2453,942 2456,915 2464,37 2473,571 3483,06

Signif. codes: 0 “*** 0.001 “*** 0.01 “*’ 0.05 *.” 0.1

Studying the AIC, the BIC and the pseudo R-square values, the best model
is that one that considers in the hazard function the two longitudinal covari-
ates, and the variable area. The estimations for the parameter oy = 0.1007
and ay = 46.39 mean that an increase of one unit in the mean mark in-

creases the risk of the event of 1.1187 fold (exp(0.1122) = 1.1187), while
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an increase of 0.01 in the cfu percentage increases the risk of the event of
1.6133 fold (exp(47.83-0.01) = 1.6133). In addition the parameter for the
variable area means that passing from area 0 (not Milan) to area 1 (Milan)
the risk of the event increases.

Comparing the survival function estimated through the Kaplan-Meier esti-
mation without considering any covariate and the survival function obtained
from the model just analysed (Figure 7.16), it is possible to see that the two
curves are very close, where the survival function obtained by the model sug-
gested is the thicker one.
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Figure 7.16: KM and survival function female sub-population

Some diagnostic graphs can be moreover analysed, studying for example the
residuals which are all very close to 0 (Figure 7.17).
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Figure 7.17: Residuals female sub-population

The survival distribution of the Cox-Snell Residuals in close to the expo-
nential function (Figure 7.18).

Also for the female sub-population it is interesting to analyse the gain in
survival function estimation with the introduction of a new longitudinal co-
variate. Then the values obtained for the index previously introduced for the
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Figure 7.18: Cox-Snell Residuals

female sub-population are evaluated comparing the univariate joint model
that consider only the cfupercentage with the bivariate joint model. The
results are showed in Figure 7.19. It is possible to assert that the introduc-
tion of a new covariate increases the estimation of the survival function as,
except for few time instants, the value of the index is always lower than 1.
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Figure 7.19: Univariate versus multivariate

As for the male sub-population, also for the female sub-population it is inter-
esting to comparing the survival function of two different profiles, changing
the value of a covariate. For example in Figure 7.20 there are two survival
functions, one for a female that lives in Milan (the dashed one) and one for
a female that lives outside Milan (the solid one). The survival function for
the second student is higher than the survival function for the first student,
then the first student has a better situation, as in this case the event is a
positive thing: the graduation.
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Figure 7.20: Difference survival function for student living in Milan (dashed)
or not (solid)

7.4 Conclusion

In this chapter, it is proposed the use of joint models in a new type of appli-
cation for analysing of the timing of student graduation. In particular the
relation between cfu percentage and the average grade of the exams with
graduation was investigated using a joint model of longitudinal and time-
to-event data. As shown, the parameters that indicates the association are
significant and indicates the effect of the longitudinal covariates on the risk
of the graduation.

In the univariate applications the relation between the single longitudinal
covariates and the graduation differs among the courses, supposedly related
to the different undergraduate features in each course.

In the bivariate applications the results obtained permit to assert that the
joint models allow to estimate the influence of two or more longitudinal co-
variates on the graduation. In these applications the two longitudinal covari-
ates considered are the cfu percentage and the average grade of the exams.
The estimations are significant and permit to assert that an increase of the
two longitudinal covariate considerably increases the risk of graduation. In
addition, in some of the models presented, is also possible to consider the
effect of some exogenous covariates, such as area and hsmark.

The fact that the introduction of a new covariate has a positive effect is
confirmed by the analysis of the improvement in the estimation of the sur-
vival function. This improvement is summarise by the introduction of a new
simple index, which, through the graphical representation, is able to give us
a fast answer if there is an improvement or not.

The results are encouraging and deal to several ideas of future application
work. In fact further application work concerns a competing risks model in
order to jointly analyse the graduation and the drop-out in a survival com-
peting risks model, with two possible univariate longitudinal sub-models or
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a bivariate longitudinal sub-model for the cfu percentage and average grade
of the exams.

Perhaps, instead of considering the cfu percentage, which has value between
0 and 1, it would be possible to transform it into a binary variable consid-
ering whether the student has sufficient requirements in terms of cfu (for
example greater than 80% for each academic year).
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Chapter 8

Conclusions and future work

This thesis concerns the joint models for longitudinal and time-to-event data
which is a recent family of models that jointly analyses longitudinal and sur-
vival data. The models are composed by two sub-models, the longitudinal
and the survival sub-model. Then as a first step we presented a brief review
of the longitudinal and survival models used, which are the sub-models of
the joint models. Particularly the linear mixed models and the Cox models
with proportional hazard function are analysed.

Subsequently we presented a review of the univariate joint models that
permit to evaluate the influence of one longitudinal covariate on the haz-
ard function, mentioning the definitions and the methods of estimation
presented in literature. These models had been analysed from several re-
searchers, then there is a very extensive literature available. The formu-
lation of the joint models are often similar, with the addition of different
assumptions on the distribution of the covariates or with the use of different
methods of estimation, both Bayesian or frequentist.

After analysing the classical joint model, it is interesting to analyse the
possible extensions of the joint models, that help to deal with different sit-
uations. For example several extensions help to deal with heterogeneity in
the sample or they could consider relations between the risk of the event
and the longitudinal covariates which are not linear.

Another interesting extension concerns the case in which one or both sub-
model are multivariate. We focused on the extension in which only the
longitudinal sub-model is multivariate in order to investigate if more than
one longitudinal covariates influenced the risk of the event. We decided to
focus on this extension as we think that an increase of information, given
by the addition of one or more longitudinal covariates in the model, will
deal to better estimations of the survival function and of the level of the
longitudinal covariates influence on the risk of the event. We proved that
the joint model with multivariate longitudinal sub-model allows to obtain
better results than using only one longitudinal covariate, as shown by the
comparison of the estimated survival function in the applications.
Subsequently we presented a review of the joint models with multivariate
longitudinal sub-model. Several authors defined the longitudinal sub-model
as a multivariate linear mixed model and the survival sub-model as an haz-

89
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ard function expressed as a function of the longitudinal covariates jointly
considered. Concerning the methods of estimation the authors proposed dif-
ferent solutions, which often are the generalisation of a method of estimation
used when both sub-models are univariate, for example the Markov chain
Monte Carlo algorithm [63], the one-step-late EM algorithm [32], the semi-
parametric conditional score estimation [50], the Gibbs sampling algorithm
[26]. Alternately the authors used different strategy for the estimation like
for example a pairwise modelling strategy [16], or the use of a latent variable
(39].

As said the most important problem related to the multivariate situation
concerns the computational aspect of the estimation. In fact considering
that the univariate case is computational demanding, increasing the num-
ber of the parameters or the dimension of the sub-models will lead to higher
computational demanding situations. In order to solve this problem some-
times the authors focused on possible assumptions on the distribution of
the covariates, on different formulation of longitudinal sub-models, or on
the use of Bayesian methods for the estimations.

For solving the computational problem related to the joint models, extended
by the extension of the longitudinal sub-model, we instead proposed as a
first possible solution a two-stage estimation method that allows to obtain
very fast and with desirable proprieties estimations. This method is deeply
analysed presenting the sub-models used and the steps for obtaining the
estimations, focusing on the parameters that indicate the relation between
the hazard function and the longitudinal covariates.

We applied the joint model to study the length of stay before graduation
of university students, thus the aim is to quantify the relation between
this event, the graduation, with one or more longitudinal covariates. At
first we implemented two different joint models with univariate longitudinal
sub-models, in order to investigate the influence of the cfu percentage and
the mean mark on the risk of graduation. The results showed a significant
positive relation between the risk of the graduation and the longitudinal
covariate individually analysed.

We think that both longitudinal covariates can jointly influenced the risk
of graduation, as the mark obtained at the exam may influence the time
to graduation, not only the amount of cfu already obtained from the ex-
ams passed. Then implemented an algorithm in which the longitudinal sub-
model is multivariate, in our case bivariate, and the hazard function is
expressed as a function of both longitudinal covariates jointly considered.
The results showed that there is a significant positive relation between the
longitudinal covariates and the risk of graduation.

In addition we compared the results obtained by a joint model that considers
only one longitudinal covariate with a joint model that considers two longi-
tudinal covariate through comparison of the survival function estimated. In
order to summarise the improvement in estimation, we proposed a new in-
dex which is based on the distance between the survival function obtained
by the Kaplan-Meier estimation and the survival functions estimated by
two joint models, one with univariate and the other one with bivariate lon-
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gitudinal sub-model. The values of this index suggest that adding a new
longitudinal covariate gives a better estimation of the survival function.
At the end of the applications we conclude that this data set could be further
investigated, by the implementation of other extensions of the joint models,
like for example considering two opposing terminal event, graduation and
drop-out, with an univariate or multivariate longitudinal sub-model.
Further work concerns a deeper analysis of the two-stage approach and the
implementation of the EM algorithm, extending Rizopoulos [43] model with
multivariate longitudinal sub-models. The aim is to make comparison be-
tween the two methods of estimation: the two-stage and the joint likelihood
approach, comparing the efficiency and the efficacy of the two methods of
estimation.

In addition other types of extensions may be considered. For example ex-
tending the survival sub-model considering multivariate survival sub-model,
like competing risk or recurrent events, with univariate or multivariate lon-
gitudinal sub-models.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK



Appendix

As the most of the applications of the joint models focused on the medical
data, we decided to analyse a medical data set which is highly studied, where
the event of interest in the death of the patient. The data set is composed by
312 randomised patients with primary biliary cirrhosis, a rare autoimmune
liver disease, at Mayo Clinic. The data frame has got 1945 observations and
20 variables. These are the variables analysed:

e id: patients identifier

e years: number of years between registration and the earlier of death,
transplantion, or study analysis time.

e status: a factor with levels alive, transplanted and dead.

e drug: a factor with levels placebo and D-penicil.

e age: at registration in years.

e sex: a factor with levels male and female.

e year: number of years between enrollment and this visit date
e serBilir: serum bilirubin in mg/dl.

e albumin: albumin in gm/dl.

e SGOT: SGOT in U/ml.

e prothrombin: prothrombin time in seconds.

The results obtained from the applications of the two-stage estimation are
shown in Table 8.1, introducing all the different variables in the model
and considering ser Bilir and albumin as the longitudinal covariates that
characterised the linear mixed model. Analysing the AIC, the BIC and the
pseudo R-square values, the best model is that one that considers only four
covariates in the hazard function:

exp [y1age + yaprothrombin + « fitbilirubin + as fitalbumin]

where fitbilirubin and fitalbumin are the value imputed (m;; and 77;5).
The most important parameters are &¢; = 0,0756 and &y = —1,4289. This
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Table 8.1: Results pbc data set

Models [ 1 [ 2 [ 3 [ 4 [ 5 [ 6
Fitbilirubin 0,0733*** 0,0813*** 0,0756%** 0,0756*** 0,0691*** 0,0688***
Fitalbumin 21,6190%%* | _1,5041%%*% | -1,4280%%% | _1 4356%** | _1,3362%** | _1,3321%**
age 0,0439*** 0,0415%%* 0,0393*** 0,0440*** 0,0442%**
prothrombin 0,0532 * 0,0556 * 0,0574 * 0,0574 *
sex -0,2625 -0,2292 -0,2318
fitsgot 0,0021 0,0021
drug -0,0343
Pseudo R-square 0,064 0,076 0,077 0,078 0,079 0,079
Likelihood ratio 138,8 164,2 168,1 169,4 170,9 170,9
Wald test 147.6 169,6 180,6 179,9 177,1 177,6
Score(logrank) 188,4 215,8 229,7 230,3 230,5 213,1
df 2 3 4 5 6 7
AIC 1246,599 1223,237 1221,291 1221,985 1222,493 1224,454
BIC 1257,884 1240,164 1243,861 1250,198 1256,348 1263,952

Signif. codes: 0 “*** (0.001 “**’ 0.01 **’ 0.05 ‘. 0.1

km vs observed

Survival function

0.0
L

years

Figure 8.1: Kaplan-Meier (KM) versus Survival function

parameters mean that an increase of the fitbilirubin increases the risk of
the event, while an increase of the fitalbumin decreases the risk of the
event. In addition the parameter for the covariates age and prothrombin
are positive, thus an increase of the value of these covariates rises the risk

of the event.

Subsequently it is interesting to make a comparison between the survival
function estimated through the Kaplan-Meier estimation without consider-
ing any covariate (the thinner one in Figure 8.1) and the survival function
obtained from the model just analysed (the thicker one). As the graph shows
the two curves are not so different and distant.
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