Course on Database Design
Carlo Batini
University of Milano Bicocca

Part 3 — Relational Model

[@ole)

© Carlo Batini, 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-

nc-nd/4.0/.

Part 3 — Lesson 1 - Introduction to the Relational model

We face now the second model discussed in the course, the relational model, adopted in most of

database management systems used all over the world. So, we have reached the turning point of
the course.

[Basics Models Design methods J

/Part 1 - Basic Concepts
Troditional Data Management \
Data Base
Data Base Model

Part 2 - Entity Relationship Model |
Diagrammatic Representation |
Modeling Constructs

Part 4 - Conceptual Design |
Schema Quality Dimensions

L.

Design Strateqgies
Relational Model
Schema
Instance
Data Base Technology Part 3 - Relational Model
Data Base Management System Relation
Data Base Design Data Base y
Design Phase Schema 2 4
2 Conceptual Design Instance [Part 5 - Logical Design
Entity Relationship Model Integrity Constrant | Phases of Logical Design
Logical Design Nermalization

Simplification Phase
Optimization Phase
——>| Translation Phese

High level conceptual map

This figure shows in more detail the relationships between this third part of the course and the
other parts. We will examine in depth some concepts previously discussed in the introduction, and
will lay the foundations for the part of the course in which we discuss design methodologies

Part 2 - Entity Relationship Model o ;
Diagrammatic Representation /'g'; 4 - Conceptual Design
Modeling Construct Schema Quality Dimension
T Entity Correctness with respect to the Model
' Attribute of Entity =y Correctness with respect to Requirements
5 Relationship “a Minimality (Redundancy)
\ Attribute of Relationship go:;?lereness
\ Min/Max Cardinality of an Entity in a Relat Rz n:r;ce
) Is-aRelotionship between two Entities Sadbl ity P
“Part 1 - Basic Concepts 'l Generalization Hierarchy among n Entities) ?;:?;g':::;‘ Readability
Organizational System and Information System \ %;:::I;T::::p;::ry ! _ A== =3Normalization
;I_cs: S:;:]c[?)urc of a Computer 'l L IImzr-nuI IdemTf:er ' : ;1>Design Strategy
raditi ata Management 1 Bottom Up
Illedunda:cy . External Identifier A Ir Il T°IF' Do
nconsistency | _ses=sssmsccccscssscccscmcssmmasae= -t I Qil Stain
Data Base - 1 | : I Mixed
Data Base Model A 'art 3 - Relational Model i 8 ;
Relational Model =~ = = ~ _ £ : Relation (. i
Relation Sl 1 Schema LI \
Attribute s Instance 'l |‘ E=S Y -
Data Base - 2 T Tuple v A art 5 - Logical Design
Schema 11 T T ==> Attribute i | Phase of Logical Design
Instance | Domain of an Attribute 3y Simplification and Optimization
~|> DataBase Technology £~ == == - ~ ! Value of an Attribute r. ! Translation
,’ Data Base Management Sys tem "<~ w1 : Data Base ! : “-3 Simplification Phase
1 SQ)L-Data Description Language S Schema i Removing Generalizations
1 SQL-Data Manipulation Language T Instonce 1 J--=> Optimization Phase
ll Data Base Design s 1 ==+ Incomplete information 1A Partitoning of Entities/Relationships
. Design Phase o) Integrity Constraint 3 WA Merging of Entities/Relationships
\ Conceptual Design IntraRelation Int. Constraint I ! Translation Step
1 Entity Heloncnshnp Model Domain Constraint L (Translation of an) Entity
. Logical Design - ------- m—— Tuple Constraint 9" Many to Many Relationship
- KM."I-MS?J up, QHGPY and Upd,nte Phase y :‘Y t PO One to Many Relationship
olagy - -) . rimary Key i1 Ternary Relationshi
= - Inter Relation Int. Constraint i ! Recursive R¢|af|°ns:|P
Referential Integrity g g
Rel Data Base Quality: Normalization~ © ¢+ /

(1.1) to (1.1) Relationship
\ (0.1) to (1,1) Relationship

(0.1 to (0.1) Relationship /

DnyceCoddNormalem i
\ Normalization Process T4

Low level conceptual map

Let us start with the usual motivating example. Look at this figure.

@ <Student Id = 21, Surhame = Wang, City of Birth = Rome>

——@ Student ID
Student ——O Surname
——Q Place of Birth

@ «Student Id = 37, Surname = Batini, City of Birth = Milan>

@ <Student Id = 43, Surname = Xu, City of Birth = Harbin>

An ER schema and its instance
We see an entity, Student, with three attributes, and a corresponding instance made of three
student instances, represented with the attributes and related values.

Question 3.1 - Now try to represent the entity and its instance by means of a relation (also called
table) that we have introduced in Part 1.

Answer to Question 3.1

Probably you produced the following table, with three columns corresponding to the three
attributes of the entity, and three tuples corresponding to the three instances of students.

Student
Student Id Surname Place of Birth
21 Wang Rome
37 Batini Milan
43 Xu Harbin

A relation having the same information content of the Entity Relationship schema and instance

Manipulating relations

Now before defining the main concepts of the relational model, | would like to transform the
above relation together with you, to discover relevant behaviors of data in the relational model.
Let us see two examples of transformations.

Example 3.1 - In the first transformation, we decompose the relation Student into two smaller
relations Student1 and City

Student

StudentId Surname City of Birth

37 Batini Rome

41 Rossi Rome

53 Wang Harbin
Studentl City
StudentId Surname City of Birth
37 Batini Rome

41 Rossi Harbin

52 Wang

Splitting a relation into two smaller relations

The two relations have the following attributes. The first relation, Studentl, has attributes
Studentld and Surname, and the second, City, has a unique attribute City of Birth. Notice that in
the second relation we have deleted one occurrence of Rome, because a relation is a
mathematical set, and so we may have only one instance of Rome.

This transformation does not seem a “good” transformation. What is a “good” transformation? li
is a transformation that allows you to reconstruct the original undivided relation. The only way in

5

which we can try to reconstruct the original transformation corresponds to evaluate the Cartesian
product of the first and second relation, but the Cartesian product is made of six tuples, as we
have to couple each one of the three tuples of Studentl with each one of the two tuples of City.
Not good.

Example 3.2 - In this example we decompose the relation Student into two relations, Studentl
and Student2, as before, but in this case we have an attribute in common, that is Studentld. If we
try to reconstruct the original relation from the two relations, in this case we succeed. This is
reasonable, as Studentld univocally identifies the Surname and the City of Birth. To each
Studentld, a unique Surname and a unique City of Birth correspond. We will say soon that
Studentld is the key of the relations Student, Studentl and Student2.

Student

StudentId Surname City of Birth

37 Bqtini Rome

41 Rossi Rome

53 Wang Harbin

Studentl Student2

StudentId Surname StudentId City of Birth
37 Batini 37 Rome
41 Rossi 41 Rome

52 Wang 52 Harbin

An example of “good” transformation

Example 3.3. Let us finally examine a third transformation, in which, again, we decompose the
original relation into two relations made, in this case, of two attributes. This time the two pairs of
attributes are respectively Studentld and City of Birth and Surname and City of Birth.

Student

StudentId Surname City of Birth

37 Batini Rome

41 Rossi Rome

53 Wang Harbin

Studentl Student?2

StudentId | City of Birth Surname City of Birth
37 Rome 37 Rome

41 Rome 41 Rome

52 Harbin 52 Harbin

Another “not good” transformation

In this case we do not have Studentld as a common attribute of the two tables. As in the first case,
we do not have any means to reconstruct the original table; if we use the common attribute City
of Birth to link the two tables, we couple the first two tuples of the first table and the first two
tuples of the second table, resulting in a table of five tuples instead of three.

In the discussion of the above examples we have seen that, when for some reason we decompose
a table into a set of tables, we have to choose carefully the attributes of the tables; according to
the type of transformation, we may be able, or else we may not be able, to reconstruct the
original information content. In the last lesson of this part, focused on the concept of
normalization, we will formalize this concept, finding general conditions of what we can call
transformation without loss of information.

The relational model is based on values

Now we focus on another fundamental characteristic of the relational model.

Question 3.2 - Look at the ER schema in the figure and try to represent the schema and the
instance by means of relations. Notice that in the instance we represent values of Grade with tags
associated to instances of the relationship Exam.

——@ Student ID
Student ——O Surname

—_—
@. Grade

——@ Course ID
Course ——(Q Course Name

@ <21, Wang>

80> /@ <3, Algorithms>
/—
(51) <13, Batini>

& cxe

<70> \@ <7, Databases>

<60>

An ER schema and an instance

| suggest you to represent the ER schema and the instance in the relational model by means of
three relations.

Discussion on Question 3.2

You should have produced three relations as the following ones.

Exam

Student Id | Course Id | Grade
13 3 80

13 7 70

32 7 60

Course

Course Id | Name

3 Algorithms
7 Databases

Three relations representing students, exams passed and courses

Student

Student Id | Surname

21 Wang

13 Batini

32 Xu
Question 3.3

Now, try to reply to the query

Tell me the average grades in the exams passed by the Student with Surname = "Batini"

and try to trace the movements of your eyes, drawing them with a pen.

Answer to Question 3.3

The answer is 75, and it is possible that the movements of your eyes have been as in the following
figure.

Student Exam Course
Student Id | Surname Student Id | Course Id | Grade Course Id Name
13 LALLELTEREEL e xguee 3» 80
21 Wapg..e=**** V 3 Algorithms
13 €t Batini BV} Lesusasavesved »70 - -
; atabases
32 'TX” 32v 7 60

The relational model is based on values

In order to reply to the question, you had to navigate in the tables, and the navigation between
Student and Exam has identified the tuples that have the same value of Batini’s Id (i.e. 13). We say
that the relational model is based on values, meaning that links between pairs of the same object
of the real world represented in different tables (in this case, the student Batini), are made
possible by the explicit representation of the same values (in this case the values of the Student Id)
in different tables. The same characteristic helped us to reconstruct the relation that has been
decomposed in two relations in the example 3.2. With this important consideration, we conclude
the lesson.

Part 3 — Lesson 2 — Basic definitions of the relational model

We now introduce the basic concepts of the relational model, namely:

Relation schema

Database schema

Attribute

Tuple

Relation (or Table) instance
Database instance

SR

Let us consider again the relations of the previous example, related to a University database.

Student Exam Course

Student Id | Surname Student Id | Course Id | Grade Course Id | Name

21 Wang 13 3 80 3 Algorithms
13 Ratini 13 7 70 - .

> X 32 7 60 atabases

A database made of three relations

Definition - The schema of a relation R (or relation schema) is the set of concepts represented in
the relation; it is made of the relation name R and its properties, also called attributes. In the
example we have three relation schemas, corresponding to

1. Student, with attributes Student Id and Surname,

2. Exam, with attributes Studentld, Courseld and Grade, and

3. Course, with attributes Courseld and Name.

Notice that we can represent, e.g. the relation schema associated to Student as

‘ Student (Studentld, Surname) ‘

Definition - The schema of the data base (or database schema) is the set of relation schemas of
the database.

In the example we have a unique database schema University made of

Student (Studentld, Surname)
Exam (Studentld, Courseld, Grade)
Course (Courseld, Name)

Notice that the values represented in relations are not part of the schema.

10

Definition - Given a relation schema R, an attribute is defined as a pair <Attribute Name, Domain>
where Attribute Name is the name of the attribute and domain is the set of values that the
attribute may have in the relation instance.

E,g, if Students in the University we are describing are 20.000, the attribute Studentld can be
defined as

< Studentld, [1..20.000]>

Definition - Given a relation schema R (A1, A2, ..., An), a tuple is defined as <A1: v1; A2: v2; ...; An,
vn> where for each Ai vi is a value in the domain of Ai.

E.g. in the relation schema Student (Studentld, Surname, Place of Birth) a tuple is

<Student Id: 21; Surname: Wang; Place of Birth: Rome> |

Definition - An instance of a relation R (or relation instance) is a set of tuples defined on the
attributes in R.

In our example an instance of the relation Student is

Student

StudentId | Surname | Place of Birth
21 Wang Rome

37 Batini Milan

43 Xu Harbin

The instance of relation Student
We will use the term relation to denote the relation schema and the relation instance as a whole.
Definition - The instance of a database (also database instance) is the set of relation instances in
the database. We will adopt the term database to denote the database instance and the database

schema as a whole.

Incomplete information

A last concept we introduce in this lesson is the concept of incomplete information. Consider for
instance the following ER instance, where instances Si represent students and Cj represent
courses.

11

You see that for the student having Student Id = 13 we do not know the surname, and for the
course with Course Id = 3 we do not know the Course name. This is a very frequent situation in our
experience in common life, where sometimes we do not find all the information we need.

How do we represent this ER instance using two relations Student and Course in the relational
model? We have to introduce the concept of null, meaning “l don’t know this value”. When for
some attribute of some tuple we do not know the value, we write null in the corresponding cell.
Notice that all the domains of attributes must be extended with a value null (we will see soon that
this is not true for attributes composing the primary key). Therefore, the database instance is

(s2

@ < Course Id = 7, Course Name = Databases>

@ < Student Id = 13, Surname = ??>

< Student Id =12, Surname = Wang>

@ < Student Id = 32, Surname = Xu >

An ER instance

represented with the following relations.

@ < Course Id = 3, Course Name = 2?2 >

Student Course

Student Id | Surname Course Id Name

12 Wang 3 null

13 null 7 Databases
32 Xu

The ER instance represented with two null values

We conclude the lesson with an exercise.

Exercise 3.1 - Given the University database as represented below, extend the database schema

with new requirements:

Student Exam Course
Student Id | Surname Student Id | Course Id | Grade Course Id Name
13 Batini 2 3 80 3 Databases
21 Xu 13 7 70
7 Algorithms
32 Smith
4 Geometry

The University database

Add given names of students.

Add dates of exams, with day, month and year.

Add city of birth and country of birth of students.

Add professors, with professor id, surname, city of birth and country of birth.

PwnNpE

avoiding redundancies and risks of inconsistencies.

Hint - Try to identify first if you have to create a new relation schema, or else if you can manage
the change extending an existing relation schema; in this case identify first the relation schema.

13

Solution to Exercise 3.1

1. Add given names of students
Relation schema involved: Student

The new relation schema is
Student (Studentld, Given Name, Surname)

2. Add dates of exams, with day, month and year
Relation schema involved: Exam

The new relation schema is
Exam (Studentld, Course Id, Grade, Day, Month, Year)

3. Add city of birth and country of birth of students.
Relation schema involved: Student

In this third case the modification is not straightforward, and needs for some caution. In fact, if we
extend the relation schema Student with two new attributes City of Birth and Country of Birth, we
risk introducing redundancies in the relation instance. It is enough that several students are born
in the same city, to give rise to several copies of the pair <city, country> in the relation.

A better solution is to extend Student with a unique attribute City of Birth, and add a new relation
City, with two attributes City Name, and Country. The new pair of relation schemas is

Student (Student Id, Given Name, Surname, City of Birth)
City (Name, Country of Birth)

4. Add Professors, with Professor Id, Surname, City of Birth and Country of Birth
No previous relation involved

These requirements involve a completely new aspect of the reality of interest, that is professors.
We can represent requirements with a new relation schema with four attributes, but we have to
remember that a relation schema City (City Name, Country) has been created in the previous step,
so we need only to define a single relation schema with three attributes:

Professor (Professor Id, Surname, City of Birth).

14

Part 3 — Lesson 3 — Introduction to integrity constraints

Look at the following database. Assume we are in a Chinese University. Grades are according to
the Chinese rules, the range is [0 — 100]. Assume that CumLaude is a grade of excellence beyond
grade 100, so it can be yes only when Grade = 100.

Student Exam Course
StudentId Surhame StudentId CourseId Grade Cum Laude CourseId Name
13 Batini 21 3 80 no 3 Data Bases
21 Xu 13 7 70 yes 7 Algorithms
32 Smith 21 3 120 null 4 Geometry
13 Wang 39 3 70 no

32 9 90 no

The usual database representing students, courses, and exams passed,
with a new attribute Cum Laude

Question 3.4 - Now, look carefully to the relation instances, initially one at a time, and then all

together. Are you able to find "errors" in data, namely tuples or single values or pairs of values
that do not represent a reasonable reality? Make a list of errors, written in natural language.

15

Discussion on Question 3.4
A possible list of errors is the following:

1. 120in the third tuple of Exam is not a correct value of the domain of Grade (that is [0,100]).
2. In the 2nd tuple of Exam, the value yes of CumLaude is not compatible with value 70 for
Grade.

13 cannot be the Studentld of two students.

Studentld = 39 appears in Exam but does not appear as an Id of Student.

5. Courseld =9 appears in Exam but does not appear as an Id of Course.

b w

In a database, we need some mechanism that helps us to automatically discover what we have
called errors. Instead of discovering ourselves errors, an highly time consuming activity, our
interest is that the DBMS itself performs such check. So, we need to define rules that can be
elaborated by the DBMS and that allow the DBMS to automatically check if the database is a
correct representation of the reality: such rules are called in the relational model integrity
constraints.

Definition - An integrity constraint is a logical property that has to be satisfied by all instances of a
database. With the term logical property, we mean that its value can be true or false. True when
the property is satisfied by all instances of the database, false otherwise.

In the relational model, we have four types of integrity constraints that are all present in the
above list of errors. For each error, let us define the corresponding type of integrity constraint. In
the next lessons, we will examine in depth the different types of constraints.

Integrity constraints in the exercise.

1. 120in the third tuple of Exam is not a correct value of the Domain of Grade (that is [0,100]).
- This is called a domain constraint, as it expresses a condition on the membership of the value to a
domain.

2. Inthe 2nd tuple of Exam, the value yes of CumLaude is not compatible with value 70 for Grade.
- This is called a tuple constraint as the condition is on the tuple.

3. 13 cannot be the Studentld of two students.
- This is called a key constraint and expresses a condition on the whole relation instance.

The above three types of constraints belong to the class of intrarelation constraints as they
express logical conditions that must hold on single relations.

4. Studentld = 39 appears in Exam but does not appear as an Id of Student.
5. Course Id =9 appears in Exam but does not appear as an Id of Course.

The above two constraints belong to the class of interrelation constraints as they express logical
conditions referred to more than one relation instance, in our case referred to two relation
instances. They are called referential integrity constraints.

16

Part 3 — Lesson 4 — Intrarelation constraints

Domain constraint

Definition - A domain constraint over an attribute A of a relation R expresses the property that
values of A must belong to a given domain D(A).

Let us come back to our example, and assume that we are in a Chinese University, whose students
are 20.000 and whose courses are 300.

Student Exam Course
StudentId Surname StudentId CourseId Grade Cum Laude CourseId Name
13 Batini 21 3 80 no 3 Data Bases
21 Xu 13 7 70 yes 7 Algorithms
32 Smith 21 3 120 null 4 Geometry
13 Wang 39 3 70 no

32 9 90 no

The Chinese University database
The domain of the attribute Studentld is
Domain (Student Id) = [1....20.000], the set of integer values between 1 and 20.000.
The domain of the attribute Course Id is Domain (Course Id) = [1...300].
The domain of Grade is Domain (Grade) = [1...100].
The domain of CumLaude is [true, false] or [yes, no].

The domain of Surname is a bit more complex to define. | am not interested to examine in depth
this point. We can assume that Surname can be any string of alphabetic characters, say, long no
more than 20 characters.

Domain (Surname) = [any string of alphabetic characters long < = 20 characters]

Notice that for the definition of the domain of Surname we have adopted a description in natural
language: again, | underline that I’'m not interested in this course to analyze further in depth this
topic. Notice also that all domains must be extended with the null character.

Tuple constraint

Definition - A tuple constraint over a relation R expresses a property that must be true for all
tuples of R.

Coming back to our example

17

Student Exam Course

StudentId Surname StudentId Courseld Grade Cum Laude CourseId Name
13 Batini 21 3 80 no 3 Data Bases
21 Xu 13 7 70 yes 7 Algorithms
32 Smith 21 3 120 null 4 Geometry
13 Wang 39 3 70 no

32 9 90 no

a tuple constraint is:
(In every tuple of Exam) when Grade is < 100 then Cum Laude cannot be yes.

Notice that we have used a restricted form of natural language for expressing the above tuple
constraint. If you are interested in a more formal approach to the expression of tuple constraints,
please refer to the Atzeni’s book.

Key constraints

Key constraints are one of the most important, perhaps the most important concept in the
relational model. They play in the relational model the same role of the identifier in the ER model.
We first introduce keys by means of examples, and then we define them formally.

Consider the relation Student.

Student
StudentId Surname
13 Batini

21 Xu

32 Wang

48 Wang

In this relation instance we see that given a Studentld, a unique Surname corresponds to it. Said in
another way, two tuples cannot exist with the same Studentld and different surnames. Notice that
the same property does not hold for surnames: we have two occurrences of surname Wang, which
correspond to different Ids.

The property of Studentld to uniquely identify students is valid in every possible instance of
Student. So we say that Studentld is a key of the relation Student. Similarly, Course Id is a key of
Course, for the same reason.

Let us consider the relation Exam.

18

Exam

StudentId CourseId Grade Cum Laude

21 3 80 no
13 7 70 no
21 7 100 yes
32 3 70 no
32 4 90 no

A relation with a more complex key

In this case, two different exams correspond to e.g. the student with Id = 32, and different exams
correspond also to e.g. the course with Id = 7, so Studentld and Courseld alone cannot be a key for
Exam. On the other hand, the pair <Studentld, Courseld> is a key of Exam, because in order to
know the grade of an exam, we have to know both the student and the course the exam refers to.

We now move to a formal definition of key. To do so we have first to define the concept of
functional dependency.

Consider again a relation Student.

Student
StudentId Surname City of Birth Country of Birth
13 Batini Rome Ttaly
21 Xu Harbin China
32 Smith Paris France
48 Wang Harbin China

In this relation instance, and in all other relation instances of Student, as we have seen before in a
similar example, a unique Surname, City of Birth, and Country of Birth correspond to each
Studentld. We say that a functional dependency exists between Studentld and the set of attributes
Surname, City of Birth, Country of Birth, and we write:

Studentld --> Surname, City of Birth, Country of Birth

Also the following functional dependency (among others) holds in the relation:
City of Birth --> Country of Birth

Definition - Given a relation schema R defined on attributes Al, A2,..., An, said B and C two disjoint
subsets of the attributes, we say that a functional dependency holds between B and C, and write

B-->C

when for each instance of R, to each set of values <b1l, b2, .., bk> of attributes in B, a unique set of
values <cl, c2, ..., ch> of attributes in C corresponds.

In the relation schema Student (Studentld, Surname, City of Birth, Country of Birth), meaning in all
of its relation instances, the following functional dependencies hold

19

Student Id --> Surname, City of Birth, Country of Birth
City of Birth --> Country of Birth

Notice that in the above specific relation instance of the relation schema Student (Studentld,
Surname, City of Birth, Country of Birth), other dependencies hold such as

Surname --> City of Birth
Surname --> Country of Birth

This is not true in general for all possible relation instances, as, e.g. two persons with the same
surname can be born in different cities. E.g. Wang is a frequent surname in China, so in general
we will have several Wangs born in different Chinese cities.

Definition - Given a relation schema R (A1, A2, ..., An), when an attribute Ai or in general a group
of attributes Ail, ...,Aik of R is such that

1. Ail, ...,Aik --> all other attributes in R

and

2. no subset of Ail, ...,Aik has the same property

we say that Ail, ..., Aik is a key of R.

The concept of key is the most important concept in the relational model. The value of a key allows
to uniquely identify objects of the real world represented in R. For instance, given the relation
Student above, we may want to retrieve the unique surname of the unique student with Studentld

= 13, because we know that Studentld is a key, and so a unique surname may correspond to
Studentld 13.

Student
StudentId Surname City of Birth Country of Birth
13 Batini Rome Ttaly
21 Xu Harbin China
32 Smith Paris France
48 Wang Harbin China

Primary key

Assume that we are in China and assume also that a Social Security Number identifies all citizens in
the country. Consider the new relation with the attribute Social Security Number added to it.

20

Student

StudentId | Social Security Number | Surname | City of Birth | Country of Birth
13 BTN57 Batini Rome Ttaly

21 X3472 Xu Harbin China

32 null Smith Paris France

48 WNG54 Wang Harbin China

A relation with two keys

Now both for Student Id and for Social Security Number the following two functional
dependencies hold

1. Student Id = Social Security Number, Surname, City of Birth, Country of Birth
2. Social Security Number - Student Id, Surname, City of Birth, Country of Birth
Therefore, both Studentld and Social Security Number are keys of the relation. However, contrary
to what happens for the Social Security Number, only Studentld is always specified, and so only

Studentld allows to uniquely identifying students.

Definition - We call primary key a key whose values are always specified, namely, are different
from null.

We want to emphasize a point that we addressed before in the lesson. Look at the following
relation.

Student

StudentId Social Security Number Surname City of Birth Country of Birth
13 BFG3RTK Batini Rome Ttaly

21 null Xu Harbin China

32 GRTBYHF Smith Paris France

48 SDEBIKL Wang Harbin China

A specific relation instance where more functional dependencies are valid
In the specific relation instance shown above also the following functional dependency holds
Surname --> Student Id, Social Security Number, City of Birth, Country of Birth
but this is not true in general, for all possible instances!!!

Before concluding our discussion on keys, we aim to introduce a graphical notation for them.
Consider the database

21

Student

Student Id Social Security Number Surname City of Birth

13 BFG3RTK Batini Rome
21 null Xu Harbin
32 GRTBYHF Smith Paris
48 SDESIKL Wang Harbin
Exam

Student Id Course Id Grade

13 3 80
13 7 70
21 7 60

A database with two relations

We know we may represent the two relation schemas as

Country of Birth
Ttaly

China

France

China

Student (Student Id, Social Security Number, Surname, City of Birth, Country of Birth)

Exam (Student Id, Course Id, Grade)

We may represent the primary keys of the two relation schemas as follows

Student (Student Id, Social Security Number, Surname, City of Birth, Country of birth)

Exam (Student Id, Course Id, Grade)

underlying all the attributes in a relation schema that take part to the key.

Question 3.5 - Find keys of relation schemas in the following database schema

Student (Student Id, Given Name, Surname, City of Birth)
City (Name, Country)

Country (Name, Continent)

Course (Course Id, Name, Year of Enrollment)

Professor (Professor Id, Given Name, Surname)

Teaches (Professor Id, Course Id, Number of Hours)

assuming that more than one professor can teach a course.

22

Answer to Question 3.5

Student (Student Id, Given Name, Surname, City of Birth)
City (Name, Country)

Country (Name, Continent)

Course (Course Id, Name, Year of Enrollment)

Professor (Professor Id, Given Name, Surname)

Teaches (Professor Id, Course Id, Number of hours)

Question 3.6 - Assume now we represent in the following schema all Chinese university students

Student (Student Id, University Id, Given Name, Last Name)
University (University Id, Name, City)

Find the two primary keys.

23

Answer to Question 3.6

Student (Student Id, University Id, Given Name, Last Name)
University (University Id, Name, City)

Notice that the key is similar in structure to the external identifier of Student for the ER schema in
the figure.

[
Student ID
Student Given Name
Last Name
B onhe
@@
many

—@ University Id
University —O
—O City

The Student — University schema represented in the ER model

24

Part 3 — Lesson 5 — Interrelation constraints: referential integrity constraints

Referential integrity constraints

Student Exam Course
StudentId Surname StudentId Courseld Grade Cum Laude CourseIld Name
13 Batini 21 3 80 no 3 Data Bases
21 Xu 13 7 70 yes 7 Algorithms
32 Smith 21 3 120 null 4 Geometry
13 Wang 39 3 70 no

32 9 90 no

A database with three relations
Consider the above database and the two errors we have identified, and we did not discuss so far,

1. Studentld = 39 appears in Exam but does not appear as an Id of Student.
2. Courseld =9 appears in Exam but does not appear as an Id of Course.

Why we do not accept that the student with Student Id = 39 appears in Exam and does not appear
in Student? The reason is that relations such as Student play a role of registry: all Student Ids
appearing somewhere in the database instance, must appear in Student. So, given, as an example,
the schema

Student (Student Id, Surname)
Exam (Student Id, Course Id, Grade, CumLaude)
Course (Course Id, Name)

we say that the following referential integrity constraint holds

Exam (Studentld) --> Student (Studentld) ‘

meaning that if a value v of Studentld exists in Exam, it must exist also in Student. Notice that
Studentld is the key of Student. This is the reason why a referential integrity constraint is also
called external key, meaning that the value v externally identifies tuples of Student.
Notice the following roles in the referential integrity constraint

Exam (Studentld) -—-> Student (Studentld)

Primary relation or Registry relation Secondary Relation

Question 3.7 - Find all referential integrity constraints defined in the following database.

25

Student

StudentId Surname

13
21
32
13

Batini
Xu

Smith
Wang

Exam

StudentId CourseIld Grade Cum Laude

21
13
21
39
32

3

O W w N

80
70
120
70
90

Course

no 3
yes 7
null 4
no
no

Database with two registry relations, Student and Course

CourseId Name

Data Bases
Algorithms
Geometry

26

Answer to Question 3.7

Exam (Student Id) = Student (Student Id)
Exam (Course Id) = Course (Course Id)

Graphical notation for referential integrity constraints

For referential integrity constaints, besides the notation

Exam (Studentld) --> Student (Studentld)
Exam (Courseld) --> Course (Courseld)

we can also use a graphical notation

Student (Student Id, Surname)
N

Exam (STuden‘F Id, Course Id, Grade, CumLaude)

Course (Cour‘ge Id, Name)

Graphical notation for integrity constraints

A more complex example of referential integrity constraint

Assume that cars in a Country are identified in their car plates with

a. a RegionCode, and
b. a progressive number in the set of cars of the Region.

So, in Italy a plate such as

Tuscany - 65456

identifies a car that is registered in the Tuscany Region and has number 65456. Cars can be
represented with a relation schema defined as

Car (Region Code, Number, Make, Color, Number of Seats)

Assume now that we want to represent in another relation the accidents between pairs of cars,
and that a pair of cars can be involved in only one accident.

Such relation can be
Accident (Region Codel, Numberl, Region Code2, Number2, Place of Accident, Date)

as we know that each pair of cars can be involved in only one accident.

27

Now, given the two relation schemas

Car (Region Code, Number of Car, Make, Color, Number of Seats)

Accident (Region Codel, Numberl, Region Code2, Number2, Place of Accident, Date)

Question 3.8 - Find the keys of the two relations

Question 3.9 — Find referential integrity constraints

28

Answer to Question 3.8

Car (Region Code, Number, Make, Color, Number of Seats)

Accident (Region Codel, Numberl, Region Code2, Number2, Place of Accident, Date)

Notice that

Region Codel, Numberl, Region Code2, Number2

Is the key of the relation schema Accident, as we know the two cars can have in only one accident.

Answer to Question 3.9

We have two symmetric referential integrity constraints between the two plates of the two cars
involved in the accident and the plate of the car in the Car relation.

Car (Region Code, Number, Make, Color, Number of Seats)
v\\ .

——

Two referential integrity constraints

Exercise 3.2 - Given the following database schema

Student (Studentld, Given Name, Surname, Date of Birth, City of Birth, Country of Birth)
Country (Name, Continent)
Course (Courseld, Course Name, Semester, Year of Enrollment)

Professor (Profld, SocialSecurityNumber, Given Name, Surname, Date of Birth, City of Birth,
Country of Birth)

Teaches (Courseld, Profld)

Enrolled (Studentld, Courseld)

Passed (Studentld, Courseld, Date, Grade)

CourseSchedule (Courseld, Day of Week, Room, Building, Start Hour, End Hour)

Room (Room Number, Building, Floor, Number of Seats)

29

assume that

1. A professor can teach different courses, and a course can be taught by only one professor.
Courses can be taught in different days of week, in different rooms of different buildings.

3. Two rooms in different buildings may have the same number, two rooms in the same
building have different numbers.

N

Find and represent keys and referential integrity constraints.

30

Solution to Exercise 3.2 (keys)

Student (Studentld, Given Name, Surname, Date of Birth, City of Birth, Country of Birth)
Country (Name, Continent)

Course (Courseld, Course Name, Semester, Year of Enrollment)

Professor (Profld, SocialSecurityNumber, Given Name, Surname, Date of Birth, City of Birth,

Country of Birth)
Teaches (Courseld, Profld)

Enrolled (Studentld, Courseld)

Passed (Studentld, Courseld, Date, Grade)

CourseSchedule (Courseld, Day of Week, Room, Building, Start Hour, End Hour)

Room (Room Number, Building, Floor, Number of Seats)

Furthermore Profld is the primary key of Professor.

Solution to Exercise 3.2 - referential integrity constraints

Sfuden‘r (Sfudeand Given Name, Surname, Date of Birth, City of Blr‘rh Coum‘r‘y

=
Country (Name, Continent)

Course (Courseld, Course Name, Semester, Year of Enrollment)

Room (Room Number, Building, Floor, Number of Seats)

31

Part 3 — Lesson 6 — Normalization

Consider the following relation, that represents Chinese and Foreign students of a Chinese
University.

Student

StudentId | Surname City of Birth | Country of Birth | Continent of Birth
37 Batini Rome Ttaly Europe

41 Rossi Rome Ttaly Europe

53 Wang Harbin China Asia

26 Xu Harbin China Asia

14 Smith Rome Ttaly Europe

39 Maigret Paris France Europe

76 Hollande Paris France Europe

Motivating example for normalization

We know, and we see, that in this schema we have redundancies, e.g. the pair <Paris, France>
appears two times.

Question 3.10 - Find the functional dependencies in the schema.

32

Answer to Question 3.10

Functional dependencies are

1. Student Id = Surname, City of Birth, Country of Birth, Continent of Birth
2. City of Birth = Country of Birth, Continent of Birth

3. Country of Birth = Continent of Birth

Question 3.11 - Do you have any idea on transforming the schema into a set of relational schemas

in such a way that we succeed in removing redundancies?

Hint: start with looking for a transformation that removes the redundancies on <Harbin, China>

and <Paris, France>.

33

Answer to Question 3.10

As a solution of the exercise, we can generate, among others, the following schemas

Schema 1
Student (Student Id, Surname, City of Birth)
City (Name, Country, Continent)

Schema 2

Student (Student Id, Surname, City of Birth)
City (Name, Country)

Country (Name, Continent)

Let us generate the functional dependencies in the two schemas and compare their structure.

Schema 1
Student (Student Id, Surname, City of Birth)
1. Student Id - Surname, City of Birth
City (Name, Country, Continent)
1. Name - Country, Continent
2. Country - Continent

Notice that in Schema 1 potential redundancies are present in the City relation.

Schema 2
Student (Student Id, Surname, City of Birth)
1. Student I|d - Surname, City of Birth
City (Name, Country)
1. Name = Country
Country (Name, Continent)
1. Name - Continent

Notice that in Schema 2 no potential redundancy exists.

Definition - A key dependency is a dependency whose left hand part is a key.

All relations in Schema 2 have only key dependencies. We say that Schema 2 is in normal form (or

normalized), while Schema 1 is un-normalized.

Definition - A relation schema R is in normal form, or better, is in Boyce Codd normal form (BCNF)

if all functional dependencies in R are key dependencies.

Definition - A database schema is in Boyce Codd normal form (BCNF) if all its relation schemas are

in BCNF.

34

The database instance corresponding to Schema 2 is

Cit

Student 4 Country
StudentId Surname City of Birth Name | Country of Birth Country | Continent
37 Bqtini Rome Rome Ttaly of Birth | of Birth

Ttaly Europe
41 Rossi Rome Harbin | China

China Asia
53 Wang Harbin Paris France

France Europe
26 Xu Harbin
14 Smith Rome
39 Maigret Paris
76 Hollande Paris

A database in Boyce Codd Normal Form

Looking at the above database instance, we notice that we have eliminated all redundancies. And
the reason is that, as the definition of normal form says, all dependencies in relations are key

dependencies, so every pair of values can appear only once in a relation instance.

Exercise 3.3 — Given the following five schemas, check which schemas are in BCNF.

Schema 1
Student (Student Id, Surname, Course Id, Course Name, Grade of Exam, Date of Exam)

Schema 2
Student (Student Id, Surname, Course Id, Course Name)
Exam (Student Id, Course Id, Grade of Exam, Date of Exam)

Schema 3
Student (Student Id, Surname)
Exam (Student Id, Course Id, Course Name, Grade of Exam, Date of Exam)

Schema 4

Student (Student Id, Surname)

Exam (Student Id, Course Id, Grade of Exam, Date of Exam)
Course (Course Id, Course Name)

Schema 5

Student (Student Id, Surname)

Exam1 (Student Id, Course Id, Grade of Exam)
Exam?2 (Student Id, Course Id, Date of Exam)
Course (Course Id, Course Name)

35

Discussion on Exercise 3.3

Let us identify the functional dependencies in the five cases.

Schema 1

Student (Student Id, Surname, Course Id, Course Name, Grade of Exam, Date of Exam)
Student Id, = Surname

Course |d = Course Name

Student Id, Course |d = Grade of Exam, Date of Exam

The schema is not in BCNF, since relation Student violates BCNF

Schema 2

Student (Student Id, Surname, Course Id, Course Name)
Student Id = Surname
Course Id = Course Name

Exam (Student Id, Course Id, Grade of Exam, Date of Exam)
Student Id, Course Id = Grade of Exam, Date of Exam

The schema is not in BCNF, since relation Student violates BCNF

Schema 3

Student (Student Id, Surname)
Student Id = Surname

Exam (Student Id, Course Id, Course Name, Grade of Exam, Date of Exam)
Student Id, Course |d = Grade of Exam, Date of Exam
Course |d = Course Name

The schema is not in BCNF, relation Exam violates BCNF

36

Schema 4

Student (Student Id, Surname)
Student Id = Surname

Exam (Student Id, Course Id, Grade of Exam, Date of Exam)
Student Id, Course Id = Grade of Exam, Date of Exam

Course (Course Id, Course Name)
Course Id = Course Name

The schema is in BCNF, all dependencies in relation schemas are key dependencies.

Schema 5

Student (Student Id, Surname)
Student Id = Surname

Exam1 (Student Id, Course Id, Grade of Exam)
Student Id, Course |d = Grade of Exam

Exam?2 (Student Id, Course Id, Date of Exam)
Student Id, Course |d = Date of Exam

Course (Course Id, Course Name)
Course |d = Course Name

The schema is in BCNF, all dependencies in relation schemas are key dependencies. In this case we
have used two relation schemas to represent exams, and this is a bit counterintuitive. We will see
in Part 5 — Logical Design how to deal with these issues.

How to Normalize an Un-normalized Schema

We have seen that normalization is a “good” property of a schema. Sometimes it may happen that
checking for BCNF, some schema reveals un-normalized. How can we transform the schema in a
new schema, with the same information content, but normalized in BCNF? A procedure for
database schema normalization is the following.

37

1. Identify relation schemas that are not normalized.
2.For each un-normalized relation schema R:

Decompose the un-normalized relation schema R, separating in different relations schemas
functional dependencies that violate BCNF.

Until all the resulting relation schemas are in BCNF.

Let us apply the normalization procedure to the following database schema and instance, made of
a unique relation.

Student

Student Id Surname City of Birth Country of Birth Continent of Birth
37 Batini Rome Ttaly Europe

41 Rossi Milano Ttaly Europe

53 Wang Harbin China Asia

26 Xu Pecking China Asia

14 Smith Rome Ttaly Europe

39 Maigret Paris France Europe

An un-normalized relation

Functional dependencies are

Student --> Surname, City of Birth, Country of Birth, Continent of Birth
City of Birth --> Country of Birth, Continent of Birth

Country of Birth --> Continent of Birth

Input to the normalization procedure

Relation Student (Student Id, Surname, City of Birth, Country of Birth, Continent of Birth)
with dependencies

Student --> Surname, City of Birth, Country of Birth, Continent of Birth

City of Birth --> Country of Birth, Continent of Birth

Country of Birth --> Continent of Birth

First normalization step: separate Country of Birth --> Continent of Birth

Output of the normalization step: two relation schemas
1. Relation Student (Student Id, Surname, City of Birth, Country of Birth)
with dependencies

Student --> Surname, City of Birth, Country of Birth
City of Birth --> Country of Birth

38

2. Relation Country (Country of Birth, Continent of Birth)

with dependency
Country of Birth --> Continent of Birth

Second normalization step: separate City of Birth --> Country of Birth

Output of the normalization step — three relation schemas
1. Relation Student (Student Id, Surname, City of Birth)

with dependency
Student Id--> Surname, City of Birth

2. Relation City (City of Birth, Country of Birth)

with dependency
City of Birth --> Country of Birth

3. Relation Country (Country of Birth, continent of Birth)

with dependency
Country of Birth --> Continent of Birth

We have achieved BCNF for all relation schemas!!! The database schema is in BCNF

The final schema is

Student (Student Id, Surname, City of Birth)
City (City of Birth, Country of Birth)
Country (Country of Birth, Continent of Birth)

that for clarity we can change into a new schema with some attribute name modified.

Student (Student Id, Surname, City of Birth)
City (Name, Country of Birth)
Country (Name, Continent of Birth)

Transformations without loss of information content

Everything is OK! No,.......... be careful when you transform a relation schema R(A,B,C) into two
relation schemas R1 and R2 with the goal of obtaining a normalized schema.

As we have seen in the first lesson on the relational model, some transformations of a relation R
that decompose R into two (or more) relations are reversible, namely they can be performed in
the reverse direction allowing to reconstruct the original relation, other decompositions result in a

39

loss of information, and the original relation cannot be reconstructed. We provide now a
sufficient condition for characterizing the transformations that are without loss of information.

Property of decomposition without loss of information content - Given a relation schema R, if
we decompose a relation instance of R into two two instances of relation schemas R1 and R2,
the original instance of R can be reconstructed without loss of information content if

Attributes (R1) N Attributes (R2) is a key of R1 or a key of R2

In previous normalization steps we always selected functional dependencies A = B (where A was
a key) that produced a new relation R(A,B), so we always respected the property of decomposition
without loss of information. E.g., when we have transformed

‘ Student (Student Id, Surname, City of Birth, Country of Birth, Continent of Birth)

using the dependency Country of Birth --> Continent of Birth into

Student (Student Id, Surname, City of Birth, Country of Birth)

Country (Country of Birth, Continent of Birth)

Attributes (Student) N Attributes (Country) is equal to Country of Birth, the key of Country, and
so the corresponding decomposition is without loss of information.

40

Concepts defined in Part 3

art 3 - Relational Model
Relation

Schema
Instance
Tuple
Attribute
Domain of an Attribute
Value of an Attribute
Data Base
Schema
Instance
Incomplete information
Integrity Constraint
Intra Relation Int. Constraint
Domain Constraint
Tuple Constraint
Key
Primary Key
Inter Relation Int. Constraint
Referential Integrity
Rel. Data Base Quality: Normalization

Boyce Codd Normal Form
Normalization Process

Part 3 — Exercise assighment

Solve exercises from 2.1 to 2.8 of Chapter 2 of Atzeni’s book. Then compare your solutions with
solutions provided in the course site.

42

[@ole)

© Carlo Batini, 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-

nc-nd/4.0/.

43

