UNIVERSITA’ DEGLI STUDI DI MILANO-BICOCCA

DIPARTIMENTO DI FISICA G. OCCHIALINI

o
gy
o
-
w»
-
c
=

©3 UNIVERSITA
== ONVTIN Id

CORSO DI DOTTORATO IN FISICA E ASTRONOMIA

CICLO XXVIII

DEVELOPMENT AND VALIDATION
OF A DECISION SUPPORT SYSTEM

FOR THE AUTOMATIC DIAGNOSIS OF MEDICAL
IMAGES FROM BRAIN MRI STUDIES

CHRISTIAN SALVATORE

Supervisor: Prof. Marco Paganoni
External supervisor: Dott.ssa Isabella Castiglioni

Coordinator of PhD school: Prof. Giberto Chirico

Academic Year 2014-2015



A mia moglie Alice.
Ai miei genitori.
A mia sorella,

alla mia famiglia
e ai miei amici.



Prediction is very difficult,
especially if it's about the future.
- Niels Bohr -



Table of contents

Abstract

1.

Introduction

1.1 Nuclear Magnetic Resonance

1.2 Decision Support Systems for assisted diagnosis
1.3 Support Vector Machine

. Materials and methods

2.1 The machine learning method

2.1.1 Feature extraction and selection
Principal Components Analysis
Fisher’s Discriminant Ratio

2.1.2 Classification

2.1.3 Computation of activation patterns and extraction of

biomarkers

Backward models and activation patterns

2.2  Application I: Parkinson’s Disease
2.2.1 Participants
2.2.2 MR images
2.2.3 The classifier
2.2.4 Performance evaluation
2.2.5 Diagnostic MR-related biomarkers

2.3  Application ll: Alzheimer’s Disease
2.3.1 Participants
2.3.2 MR images
2.3.3 The classifier
2.3.4 Optimization of classification and performance evaluation
2.3.5 Diagnostic MR-related biomarkers

2.4  Application lll: Eating Disorders
2.4.1 Participants
2.4.2 Psychiatric assessment
2.43 MR images
2.4.4 The classifier
2.4.5 Performance evaluation
2.4.6 Diagnostic MR-related biomarkers

2.5 Other applications
2.5.1 Autism Spectrum Disorder

2.5.1.1 Participants
2.5.1.2 Procedure, apparatus and kinematic data
acquisition

2.5.1.3 Data analysis
2.5.1.4 The classifier



2.6

2.5.1.5 Performance evaluation and extraction of the most
discriminant features

Scalability, computational efficiency and use of cloud
computing

3 Results and Discussion

3.1

3.2

3.3

3.4

3.5

Application I: Parkinson’s disease

3.1.1 Participants

3.1.2 MRimages

3.1.3 The classifier

3.1.4 Performance evaluation

3.1.5 Diagnostic MR-related biomarkers

Application ll: Alzheimer’s Disease

3.2.1 Participants

3.2.2 MRimages

3.2.3 The classifier

3.2.4 Optimization of classification and performance evaluation
3.2.5 Diagnostic MR-related biomarkers

Application Ill: Eating disorders

3.3.1 Participants and psychiatric assessment
3.3.2 The classifier

3.3.3 Performance evaluation

3.3.4 Diagnostic MR-related biomarkers

Other applications
3.4.1 Autism Spectrum Disorders
3.4.1.1 Participants
3.4.1.2 Data analysis
3.4.1.3 The classifier
3.4.1.4 Performance evaluation and extraction of the most
discriminant features

Scalability, computational efficiency and use of cloud
computing

4 Conclusions and outlook

Acknowledgements

Bibliography

Publications



Abstract

Decision support systems for the assisted diagnosis in medicine are computer-based
information systems designed to assist physicians and clinicians with decision-
making tasks by automatically determining diagnosis, or improving the diagnostic
confidence. This could result in the possibility to perform early and differential
diagnosis of neurodegenerative pathologies, such as Alzheimer’s Disease (AD) and
Parkinson’s Disease (PD), for which definite diagnosis still remains a crucial issue.

Among decision support systems, multivariate Machine Learning (ML) methods are
recently growing in popularity within the neuroimaging community. Among these,
supervised ML methods are based on algorithms able to automatically extract
multiple information from image sets without requiring a-priori hypotheses of where
this information may be coded in the images. These methods have been proposed as
a revolutionary approach for identifying sensitive biomarkers (or combinations of
them) allowing for automatic classification of individual subjects.

The aim of this thesis was to implement, optimize and validate a ML method able to
perform automatic diagnosis of medical images by means of structural Magnetic
Resonance Imaging (MRI) data. This method consists of 3 phases: 1) image pre-
processing, mainly devoted to the co-registration of data from different patients to the
same reference system (i.e., a standard coordinate space); 2) feature extraction and
selection, performed through Principal Components Analysis and Fisher's
Discriminant Ratio, respectively, with the aim of extracting and selecting the most
discriminative features for classification; 3) classification, performed by Support
Vector Machine (SVM), with the aim of estimating the parameters that define the
predictive model to be used for the classification of new (unseen) subjects.

Moreover, in order to allow the identification of new MRI-related biomarkers useful for
the diagnosis of the considered pathology, | also developed and implemented a
method for the generation of pattern distribution maps of brain structural differences,
which reflect the importance of each image voxel for SVM classification. This point
results to be particularly important because these maps could help to identify
potential biomarkers for the diagnosis of neurological diseases.

In order to test the feasibility of the implemented ML method, | applied it to the
diagnosis of 3 different pathologies: AD, PD and Eating Disorders (ED).

For the application to the diagnosis of PD, we acquired T1-weighted brain structural
MR images of 56 patients and 28 healthy control (CN) subjects. The group of 56
patients consisted of 28 patients with clinically diagnosed PD and 28 with clinical
diagnosis of probable or possible Progressive Supranuclear Palsy (PSP), that is a
parkinsonian condition with similar symptoms to PD but different treatment and



prognosis. The classifier allowed individual differential diagnosis with the following
accuracy (specificity/sensitivity): in Leave-One-Out validation, PD vs. CN 92.7
(92.3/93.4)%, PSP vs. CN 97.0 (98.2/95.9)%, PSP vs. PD 98.2 (98.8/97.8)%; in half-
splitting validation, PD vs. CN 93.5 (90.6/97.4)%, PSP vs. CN 92.2 (92.5/92.4)%,
PSP vs. PD 92.2 (91.3/94.4)%. The following MRI-related brain biomarkers were
identified to be used for the differential diagnosis of PD and PSP: midbrain, pons,
corpus callosum and thalamus, four critical regions which are highly consistent with
typical neuropathological and imaging findings described in patients with PSP.

For the application to the diagnosis of AD, we obtained T1-weighted brain structural
MR images of patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. We enrolled 162 CN, 137 AD, 76 Mild Cognitive Impairment (MCI) patients
who converted to AD within 18 months (MClc) and 134 MCI who did not convert to
AD within 18 months (MCinc). A total of 509 subjects from 41 different radiology
centers were considered. Classification performances evaluated by nested Cross
Validation were 0.76 + 0.11 for AD vs. CN, 0.72 £6 0.12 for MClc vs. CN, 0.66 £ 0.16
for MClic vs. MCinc. Voxels influencing the classification of AD with respect to CN
resulted to be localized in the temporal pole, superior temporal cortex, medial
temporal cortex including hippocampus and entorhinal cortex, amygdala, thalamus,
putamen, caudate, insular cortex, gyrus rectus, lateral orbitofrontal cortex, inferior
frontal cortex, superior frontal cortex, anterior cingulate cortex, precuneus and in the
posterior cerebellar lobule. The major part of voxels influencing the classification of
both MClc vs. CN and MClc vs. MCInc was similar to the one previously found in AD.

The application of the proposed method to ED was made with the aim of extracting
the most important voxels for the classification. For this study, we enrolled 17 ED
patients and 17 CN. T1l-weighted brain structural MR images were acquired and
submitted to the ML method. The classifier allowed individual ED vs. CN diagnosis
with accuracy (specificity/sensitivity) of 0.85 (0.73/0.93). The voxel-based pattern
distribution map of brain structural differences showed that voxels influencing ED vs.
CN discrimination were localized in the occipital cortex, posterior cerebellar lobule,
precuneus, sensorimotor and premotor cortices, anterior cingulated cortex and
orbitofrontal cortex, all brain regions involved in the regulation of appetite and
emotional processing.

The reported results encourage the application of ML methods as decision support
systems for the assisted diagnosis in clinical practice by means of brain structural
MRI studies. Moreover, these methods could allow the identification of possible MRI-
related biomarkers useful for the diagnosis of the considered disease.



Chapter1.
INTRODUCTION

The aim of this chapter is to introduce the reader to the themes on which the
whole thesis is based. In particular, a description of the physical principles on which
Nuclear Magnetic Resonance (NMR) is based will be provided, as it is the method we
used for extracting information about the patient’s status, as it will be deeply
explained in Chapter 2. Moreover, Decision Support Systems (DSSs) will be outlined,
with a particular remark on Support Vector Machine (SVM), that is a multivariate
machine learning (ML) method able to perform binary classification and that was used
during this thesis as method to predict the status of a patient starting from his NMR
data (see Chapter 2).

1.1  Nuclear Magnetic Resonance

The Nuclear Magnetic Resonance (NMR), on which Magnetic Resonance Imaging
(MRI) is based, was discovered in 1946 by physicists Felix Bloch and Edward Purcell.
NMR is a technique that exploits the ability of atomic nuclei to absorb energy from a
magnetic field and electromagnetic radiation release. The nucleus of an atom consists
of neutrons (particles at zero charge) and protons (positively charged particles) and
has its own characteristic angular momentum (spin). The consequent rotation of the
protons generates a magnetic field known as magnetic moment |i, oriented as the spin

vectorf
i= 1 (1.1.1)

with y gyromagnetic ratio and h Planck’s constant. Generally, the nuclear
magnetic moment of nuclei in a body is casually oriented, with a resultant
magnetization equal to zero.



When the body is placed in an external magnetic field, this condition causes the
orientation of the magnetic moments of the paramagnetic nuclei, such as hydrogen,
gadolinium, and manganese, according to the direction of the field. As a consequence,
a not-null total magnetization is produced.

In presence of a static magnetic field which produces a spin polarization, a
radiofrequency signal of a proper frequency can induce a transition between spin
states. This proper frequency is known as the Larmor frequency and it depends on the
gyromagnetic ratio of the nucleus and on the magnetic field, as follows

UO = _BO (112)

This is the frequency of the nuclei precession around the magnetic field. The
radio frequency signals can induce a rotation of the spin of 90 or 180 degrees.

Figure 1.1.1 Representation of the magnetic moment u

The spin flip, caused by the absorption of the energy of the signal, places some of
the spins in their higher energy state. If the radio frequency signal is then switched off,
the relaxation of the spins back to the lower state produces a measurable amount of
RF signal at the resonant frequency associated with the spin flip.

The relaxation can only occur if the system is capable of exchanging energy. The
nuclei can in fact change the energy level exchanging their magnetic energy with the
thermal energy of the sample (spin-lattice interaction) or giving each other magnetic
energy (spin-spin interactions, which do not alter the populations of the magnetic
levels).



The first interaction consists for the longitudinal magnetization vector Mz into
returning to equilibrium and it is characterized by a time constant T; (that is the time
taken by the spins to recover 63% of the longitudinal magnetization).

The spin-lattice relaxation time (T;) depends on the composition and the
structure of the sample and on the intensity of the magnetic field. Materials with
molecules having great freedom of movements (such as water) and a consequent
difficulty for the molecules themselves to release energy, have very long T; constant,
just like in the case of a strong magnetic field, which causes precession of nuclei in a
faster way.

Figure 1.1.2 Schematic representation of the longitudinal magnetization after the application
of a radio frequency signal
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Figure 1.1.3 Trend of the longitudinal magnetization after the application of a radio frequency
signal

The spin-spin interaction consists in the decay of the transverse magnetization
vector Mxy due to the loss of phase coherence of the nuclear magnetic moments and
it is characterized by a time constant T, (time required for the transverse
magnetization to return to 37% of its original value).

The spin-spin relaxation time (T,) expresses the interaction between the intrinsic
magnetic moment of a nucleus and that of nearby nuclei, this parameter giving
indications of magnetic homogeneity of the sample and about chemical nature of the
environment around each single nucleus.



The effective magnetic field experienced by the individual spin is not equal for
everyone. For example, the spins in itself represent a source of additive magnetic fields
(micro-spatial different distribution of spin is reflected in a different manner on the
single spin) and the motion of electrons produces magnetic fields too, with a
consequent screen effect. T, is influenced by the inhomogeneity of external and local
magnetic fields.

The two ways of relaxation give the possibility to weight the images according to
one of the time-constants (T; or T,). T;-weighted images show tissues with the
following gray scale: lipid tissues (brightest), muscles, cartilage, fluids, ligaments and
bones (darkest). T;-weighted sequences are often collected before and after infusion
of MRI contrast agents. In the brain T;-weighted scans provide appreciable contrast
between gray and white matter.

et At ke ]

Figure 1.1.4 Schematic representation of the transversal magnetization after the application of
a radio frequency signal
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Figure 1.1.5 Trend of the transversal magnetization after the application of a radio
frequency signal

Like the T;-weighted scan, lipid’s tissues are differentiated from water, but in
this case fat appears to be darker and water appears to be brighter. In the case of
cerebral and spinal study, the CSF (cerebrospinal fluid) appears brighter in T,-weighted
images. These scans are therefore particularly well suited to imaging edema.



There is a third possible weight for the images and it is the proton density (p).
Proton density, also called Spin density, expresses the ratio between the number of
resonant protons and the volume of the tissue under exam. Differently from T; or T,
weighted scans, signal changes only come from differences in the amount of available
hydrogen nuclei in the water molecules. This is a consequence of the fact that a
significant contribution to the signal is given not by all protons present in the unit
volume, but only by those contained in the hydrogen nuclei from liquid water. For
example, ice gives no signal and blood gives a much higher one.

Finally, among the most used, there are two kind RF pulse sequences: saturation
recovery and spin-echo. The first one is the simplest sequence and it is constituted by
two pulses at 90 degrees, which completely overturn the longitudinal magnetization
Mz in the xy plane. During the time interval between one pulse and the successive, the
magnetization along the z axis increases progressively up to the original value.

The second pulse sequence alternates a 90 degrees pulse with a 180 degrees
pulse. After the first impulse, due to local magnetic field inhomogeneities (variations in
the magnetic field in different regions of the sample that are constant in time), some
spins slow down due to lower local field strength, while some speed up due to higher
field strength, this causing the Mxy signal decay. During this decay, the second pulse is
applied so that the slower spins lead ahead of the main moment and the fast ones trail
behind. Progressively, the fast moments reach the main moment and the slow
moments drift back toward the main moment, causing a new increase of Mxy and the
fall of the magnetization along the z axis.

In clinical applications in which Tg/2 > Tg, where Ty is the recovery time (time
between two 90° pulses) and Tg is the echo time (time between the 90° pulse and the
maximum amplitude of the echo), the measured signal (S) is equal to

TR Tg

Sxp(l—e T1)e T2 (1.1.3)

180° RF pulse
90° RF pulse at time TE/2
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Figure 1.1.6 Schematic representation of the transversal magnetization with two RF pulses

The choice of Tr and Tg allows one to choose between T;, T, or p weighted
images. T;-weighted images can be obtained with long Ty and Tg (Tg K T,), T,-
weighted images need both Tg and Tg to be short (Tg > T;) and proton density
images need long Trand short Tz (Tg < T, and Ty > T;).



1.2 Decision Support Systems for assisted diagnosis

A (clinical) decision support system (DSS) is an interactive computer-based
information system which is designed to assist physicians and other health
professionals with decision-making tasks, such as determining diagnosis of patient
data. In other words, DSSs link health observations with clinical knowledge in order to
influence choices with the aim of improving the diagnostic accuracy (Miller et al.,
1994). Such an active-knowledge system is usually based on a database of data or
images, that is used to compare an individual data (coming from the patient to be
studied) with reference images (the database), in order to generate case-specific
clinical advices. The main feature offered by these methods is the one of giving
objective assessments (i.e., free from arbitrary clinical reasoning) which are based on
mathematical models for data analysis; resulting information has to be available in a
reasonably short interval of time (if compared with typically diagnostic times). This
approach is less biased than qualitative visual inspection of images and it provides
diagnostic signs that are otherwise easily missed. The use of DSSs has been proven to
improve diagnostic accuracy: a systematic review (Garg et al.,, 2005) of 100 studies
concluded that DSSs improved practitioner performance in 64% of the studies; another
systematic review (quantitative analysis) of 70 studies (Kawamoto et al., 2005) found
that DSSs significantly improved clinical practice in 68% of trials. Thanks to the large
number of evaluations proving their usefulness and, particularly, to the increased
performance of imaging systems (e.g., spatial resolution, acquisition protocols,
reconstruction algorithms), DSSs are ready to become clinically available. Indeed, all
these emerging approaches are possible solutions to address the clinical need of
making accurate and early diagnosis and to enhance the diagnostic confidence about a
specific disease (also during monitoring of diseases progression). Nevertheless, their
availability in current clinical practice is still limited by the need of a large number of
control data (even healthy subjects) and the huge amount of computational cost
needed for algorithm processing.

Until the last few years, basing on the method they make use of, the most
promising DSSs included Region-of-interest measures, image segmentation and mass
univariate statistical approaches, e.g. Voxel-Based Morphometry (Ashburner and
Friston, 2000), that compares an individual image (for example, a MR image) with
reference images of control subjects.

However, recent advances in statistical learning have attracted strong interest
toward multivariate pattern analysis (MVPA). This approach aims at analyzing a
distributed pattern of activity in order to extract the information of interest, which can
be represented, for example, by a single variable of interest (such as the diagnostic
label of a patient).



In general, the main advantage of MVPA-based methods naturally descends from
their multivariate nature. Specifically, they are able to detect spatially distributed
activations and cerebral patterns over a set of pixels. In other words, MVPA-based
methods are able to automatically extract multiple information from image sets
without requiring a priori hypotheses of where this information may be coded in the
images. Because of this, MVPA-based methods show a relatively higher sensitivity than
methods based on conventional univariate analysis (Mahmoudi et al., 2012; Pereira et
al., 2009; Schrouff et al., 2013).

Interestingly, these methods showed promising results in medicine when
coupled with a ML approach (e.g. Salvatore et al., 2015b). The main characteristic of
ML methods is that they are able to design a predictive model from a set of training
data, and this model can subsequently be used to evaluate information of interest
about new (unseen) data.

Among MVPA ML methods, Support Vector Machine (SVM) attracted strong
interest within the neuroimaging community for its ability in the classification medical
images. In the following section, a description of SVM will be given, that is, a
multivariate and supervised classifier able to separate binary groups of data and that
was used as classifier for the implementation of the ML method during this thesis
work, as described in Chapter 2.

1.3 Support Vector Machine

Supervised ML is an attractive approach to data modelling which has been
successfully used in many applications for image classification and, particularly, for
functional brain image studies to support diagnosis by means of pattern recognition
techniques (Scholkopf et al., 2003; Gunn et al., 1998).

Among supervised ML methods, SVM algorithm was first proposed by Vladimir N.
Vapnik and Alexey Ya. Chervonenkisin 1963 as a (linear) binary classifier able to
generate a predictive model for the discrimination of new samples.

Let us suppose that we have to study a particular kind of disease involving two
different classes, the former containing images representing patients characterized by
a particular feature (or pathology), the latter containing images representing patients
who are not characterized by this feature (i.e., normal subjects). The aim of supervised
predictive models, in general, and of SVM, in particular, is to find a mapping that, given
some information about these subjects (for example, structural information encoded
in MRI data), is able to predict the class to which new subjects belong.

Imagine we are given N observations, each one consisting of a pair: an input
vector x, € RN, n=1,..N and the corresponding target value t, € {+1}, given to us
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by a trusted source. Data are assumed to be iid, i.e., independently drawn from an
unknown probability distribution P(x; t) and identically distributed. In our example,
x, € RY might be a vector of pixel values (representing images of patients) and
t, € {1} would be +1 for images belonging to the feature class, -1 for images
belonging to the normal class. The aim is to estimate a function that will correctly
classify unseen examples (x; t), i.e., we want f(x) = t for samples (x; t) that were also
generated from P(x; t). This problem reduces to the goal of separating the two classes
by a function which is induced from available examples, in order to produce a
classifier, based on input-output data training, which will work well on unseen
samples. Let us now make the further assumption that the training data set is linearly
separable in feature space and consider the example in Figure 1.3.1: here there are
many possible linear classifiers that can separate the data, but there is only one that
maximizes the margin (i.e., the distance between it and the nearest data point of each
class). This classifier is termed the optimal separating hyper-plane. Intuitively, we
would expect this boundary to generalize well as opposed to the other possible
boundaries (Figure 1.3.1).

Figure 1.3.1 Optimal separating hyper-plane

If we consider the following class of hyper-planes (linear model)

y(x) =w () +b (1.3.1)

Where ¢(x) denotes a fixed feature-space transformation and the explicit
parameter b is called bias parameter, then new data points x can be classified
according to the sign of y(x). In fact, as we assumed the training data set to be linearly



separable in feature space, by definition there exists at least one choice of the
parameters w and b such that a function of the form 1.3.1 satisfies y(x,) > 0 for
points having t, = +1 and y(x,) <0 for points having t, = —1. Furthermore,
t, " v(x,) > 0 for all training data points. As we said before, there may exist many
such solutions that separate the classes exactly. This problem can be solved by
introducing the concept of the margin, which is defined to be the smallest distance
between the decision boundary and any of the samples, as illustrated in Figure 1.3.2.

In SVM, the decision boundary is chosen to be the one for which the margin is
maximized. The maximum margin solution can be motivated using computational
learning theory, also known as statistical learning theory or VC (Vapnik-Chervonenkis)
theory.

y =1 y=—1
y=0 y=10
y = —1 ’

margin

Figure 1.3.2 Margin and support vectors

It must be noted that the margin is defined as the perpendicular distance
between the decision boundary and the closest of the data points, as shown on the left
part of Figure 1.3.2. Maximizing the margin leads to a particular choice of decision
boundary, as shown on the right part of Figure 1.3.2. The location of this boundary is
determined by a subset of the data points, known as support vectors, which are
indicated by the circles. The margin is defined as the perpendicular distance between
the decision boundary and the closest of the data points, as shown on the left part of
Figure 1.3.2. Maximizing the margin leads to a particular choice of decision boundary,
as shown on the right of Figure 1.3.2. The location of this boundary is determined by a
subset of the data points, known as support vectors, which are indicated by the circles.

In general, the perpendicular distance of a point x from a hyper-plane defined by
y(x) = 0, where y(x) takes the form specified in equation 1.3.1, is given by |y(x)|/||w]|.
Furthermore, in this case we are only interested in solutions for which all data points
are correctly classified, so that t,, - y(x,,) > 0 for all n. Thus the distance of a point x,,
to the decision surface is given by

tny(xn) tn'(wT(P(x)'H’)

3.2
Wi i (1.3.2)



The margin is given by the perpendicular distance to the closest point x,, from
the data set, and we wish to optimize the parameters w and b in order to maximize
this distance. Thus the maximum margin solution is found by solving

1
llwll

argmaxW,b{ min, [t, - (T o(x) + b)]} (1.3.3)

where we have taken the factor ﬁ outside the optimization over n because w

does not depend on n. Solving this optimization problem simply reduces to the
requirement of minimizing ||w/||?

1
argmaxy {5 ||W||2} (1.3.4)

1. . . . .
(the factor of Sis included for later convenience), subject to the constraints

tp(w'o(x)+b >1,n=1,..N (1.3.5)

It appears that the bias parameter b has disappeared from the optimization.
However, it is determined implicitly via the constraints, because these require that
changes to ||w]|| be compensated by changes to b. This constrained optimization
problem is dealt with by introducing Lagrange multipliers a,, > 0, with one multiplier
a, for each of the constraints in equation 1.3.5, giving the Lagrangian function

L(@,b,a) = S Wl = ZN=; an{tn - (@ () +b) — 1) (13.6)

where a = (ay,...ay)T. The negative sign in front of the Lagrange multiplier
term is a consequence of the fact that minimization is performed with respect to w
and b, and maximization is performed with respect to a. By setting the derivatives of
L(w, b, a) with respect to w and b equal to zero, the two following conditions can be
obtained:

w = Zrl\lel Ap "ty QD(X) (1-3-7)
and
Yh=1Gn ty =0 (1.3.8)

Eliminating w and b from L(w, b,a) using these conditions, then, gives the dual
representation of the maximum margin problem in which we maximize

(@) = TNy ay = S 2Ny 2Ny Aotk (i, Xn) (13.9)



with respect to the constraints

a,>0n=1,..N (1.3.10)
R=1an ty =0 (1.3.11)

Here, the kernel function is defined by k(x,x") = @(x)T - @(x)": this kernel
formulation makes clear the role of the constraint that the kernel function k(x,x") be
positive definite, because this ensures that the Lagrangian function L(a) is bounded
below, giving rise to a well-defined optimization problem. In order to classify new data
points using the trained model, we evaluate the sign of y(x) defined in equation 1.3.1.
This can be expressed in terms of the parameters an and the kernel function by
substituting for w using 1.3.7 to give the hyper-plane decision function

y(x)=YN_a, t, k(x,x,)+b (1.3.12)

It can be shown that a constrained optimization of this form satisfies the Karush-
Kuhn-Tucker (KKT) conditions, which, in this case, require that the following three
properties hold:

a, =0 (1.3.13)
tn y() =120 (1.3.14)
an{tn"y(xn) =1} =0 (1.3.15)

Thus for every data point, either a, = 0 or t, *y(X,) = 1. Any data point for
which a, = 0 will not appear in the sum in 1.3.12 and, hence, they will play no role in
making predictions for new data points. The remaining data points are called support
vectors, and because they satisfy t,, - y(x,) = 1, they correspond to points that lie on
the maximum margin hyper-planes in feature space, as illustrated in Figure 1.3.2. This
property is central to the practical applicability of SVM. Once the model is trained, a
significant proportion of the data points can be discarded and only the support vectors
retained. Having solved the quadratic programming problem and found a value for a,
we can then determine the value of the threshold parameter b by noting that any
support vector x,, satisfies t, - y(x,) = 1. Using 1.3.12, this gives

tn(Emes Amtmk (n, X)) +b) =1 (1.3.16)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector x,,, a numerically more
stable solution is obtained by first multiplying through by t,, making use of (t,)? = 1,
and, then, averaging these equations over all support vectors and solving for b to give



b= N%Znes(tn ~ Lmes Amtmk (n, Xm)) (1.3.17)

where Ng is the total number of support vectors.

In practice, a separating hyper-plane may not exist, e.g., if a high noise level
causes a large overlap of the class-conditional distribution. In order to overcome this
limitation, Cortes and Vapkin (1995) proposed a modified version of SVM introducing
the idea of soft margin, which is useful when training classes cannot be sharply
discriminated. Specifically, the soft margin approach allows to misclassify a fraction of
training samples, while preserving the ability of the hyper-plane to maximizing its
distance from the nearest samples of the two classes.

In order to allow for the possibility of violating 1.3.14, the general approach has
to be modified so that data points are allowed to be on the wrong side of the margin
boundary, but with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty a linear
function of this distance; to do this, we introduce slack variables

&, =>0n=1,..N (1.3.18)

with one slack variable for each training data point. These are defined by {, = 0
for data points that are on or inside the correct margin boundary and ¢, =
|ty — y(x,)| for other points. Thus, a data point that is on the decision boundary
y(x,) = 0 will have §, = 1 and points with §, > 1 will be misclassified. In this case,
classification constraints relax to

t,yxy)=1-¢,n=1,..N (1.3.19)

in which the slack variables are constrained to satisfy &, = 0. Data points for
which &, = 0 are correctly classified and are either on the margin or on the correct
side of the margin. Points for which 0 < &, < 1 lie inside the margin, but on the
correct side of the decision boundary, and those data points for which &, = 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Figure
1.3.3. This is sometimes described as relaxing the hard margin constraint to give a soft
margin and it allows some of the training set data points to be misclassified. Note that
while slack variables allow for overlapping class distributions, this framework is still
sensitive to outliers, because the penalty for misclassification increases linearly with &.
In order to realize a soft margin classifier, we now have to minimize the



Figure 1.3.3 Slack variables in support vector classifiers objective function.
Data points with circles around them are support vectors.

1
SIwll? + X0y én (1.3.20)

subject to the constraints 1.3.18 and 1.3.19; here, the parameter C > 0 controls
the trade-off between the slack variable penalty and the margin. Incorporating kernels
and rewriting it in terms of Lagrange multipliers, this again leads to the problem of
maximizing 1.3.9, subject to the constraints

0<a,<C (1.3.21)
P=1antn =0 (1.3.22)

forn = 1,...N (constraints in 1.3.21 are known as box constraints).

The only difference from the separable case is the upper bound C on the
Lagrange multipliers a,. In this way, the influence of the individual patterns (which
could be outliers) gets limited. As above, the solution shows that predictions for new
data points are again made by using 1.3.12. The threshold b can be computed by
exploiting the fact that for all support vectors x,,, with 0 < a,, < C, the slack variable
&, = 0 and, hence, will satisfy 1.3.16. As before, a subset of the data points may have
a, =0, in which case it does not contribute to the predictive model 1.3.12. The
remaining data points constitute the support vectors.



Figure 1.3.4 Generalized optimal separating hyper-plane

In practice, when dealing with a SVM-based classifier, the main parameter to be
set for a study is the kernel function. The most popular kernels in literature are the
linear, the polynomial and the Gaussian Radial Basis Function (RBF) kernels:

k(xi, %) = (x; - x;) (1.3.23)
k(xpx) = (- x)" (1.3.24)
k(xi2) = (%, +1)° (1.3.25)
k(xox) = exp (=vl —x%l") v >0 (1.3.26)

where relation 1.3.23 is associated to linear kernels, relations 1.3.24-25 are associated
to (homogeneous and inhomogeneous) polynomial kernels and relation 1.3.26 is
associated to Gaussian RBF kernels, respectively.

As a general remark, it must be considered that non-linear kernels have been
observed to be more flexible than linear ones in solving discrimination problems (Orru
2012). This feature can bring to better classification performance in the training set,
but usually lower generalization power (i.e., worse classification performance) in the
testing set. This is referred to as an overfitting problem, that is, an overfitting of the
generated predictive model to the dataset used for training the classifier. This
drawback is particularly enhanced when the sample size is small with respect to the
number of features. Because of this, in classification of neuroimaging data, in which



the sample size (number of patients) is usually smaller than the number of features
(number of voxels), linear kernels should be preferred.

Both kernel function and related parameters can be (a priori) set to default
values or they can be chosen through parameter optimization, which is performed
using a grid-search approach. In the grid-search approach, a subset of the parameter
space is defined, and classification performances are evaluated for each parameter
configuration. When the whole subset of the parameter space has been explored, the
configuration corresponding to the best classification performance is chosen as the
optimal one. It is important to note that data used for parameter optimization and for
training/testing the classifier should not be the same, because this could bring to a
biased estimate of the generalization error.

SVM classification method has been used in imaging studies with good results:
for example, Osuna et al. (1997) applied SVM classifiers to the problem of face
recognition; Bonneville et al. (1998) studied SVM for improving the classification of
human brain PET images with a resulting estimate error rate of 7.1%; Magnin et al.
(2008) used this method for classification of Alzheimer’s Disease (AD) using whole-
brain anatomical MRI images reaching an overall mean accuracy of 94.5%. For a review
of the use of SVM in structural neuroimaging studies for the diagnosis of AD, see the
paper by Salvatore et al. (2015b).



Chapter 2.
MATERIALS AND METHODS

The aim of this chapter is to present and describe the ML method implemented
and developed during my doctoral thesis. This method is based on Principal
Components Analysis and Fisher’s Discriminant Ratio for feature extraction and
selection, respectively, while SVM is employed as classification algorithm.

The implementation of the algorithm is described in Section 2.1, while in
Sections 2.2-2.5 the application of this method to four clinical problems is reported. In
particular, these applications are useful as validation settings for the proposed
method.

2.1 The Machine Learning Method

In this work, we aimed at performing automatic binary classification of MR
images of patients by means of a ML approach. Specifically, in order to classify
different groups of subjects by means of their T1l-weighted structural MRIs, we
implemented a ML classifier. The flow of the whole process (after the phase involving
patient recruitment and data acquisition) consists of 3 steps: 1) image pre-processing,
mainly devoted to the co-registration of data from different patients to the same
reference system (that is, to a standard coordinate space); 2) feature extraction and
feature selection, with the aim of extracting and choosing the most discriminative
features for classification; 3) classification, i.e., estimation of the parameters defining
the predictive model and prediction of the label of new (unseen) subjects. It is worth
noting that all these steps are applied during both the training phase and the testing
phase of the classifier separately. The training of the classifier is performed using a
training set of subjects with known labels and it ends with the estimation of the
parameters defining the predictive model. The testing phase of the classifier is
performed using a testing set without known labels (unlabeled subjects) and it ends
with the prediction of the label by means of the predictive model previously
computed. The processing outlined above is schematically represented as a flowchart
in Figure 2.1.1.

Among these three main phases of the proposed ML method, in the following
Subsections 2.1.1 and 2.2.2 the two phases that | personally implemented, developed



and tested during my doctoral thesis will only be described: 1) feature extraction and
selection; 2) classification (training and prediction).

Moreover, in Subsection 2.2.3 the implementation of the extraction of
biomarkers is described, intended as the detection of the most important voxels for
group discrimination and classification.
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Fig 2.1.1 Flowchart representing the main phases of the ML method, i.e., image pre-processing,
feature extraction and selection, classification (for both training and testing/prediction)

2.1.1 Feature extraction and selection

In order to identify the most discriminative features among groups, |
implemented an automatic feature extraction and selection technique to be applied to
MR images before training and classification with SVM.

Feature extraction is the operation of generating a new set of features as a
function of the original input data. The new set of features should have the following
characteristics with respect to the original input data: 1) reduced redundancy, by
removing those features carrying no more information than the selected subset; 2)
increased relevance (or reduced irrelevance), by removing those features that don’t
provide useful information for class discrimination (independently from the selected
subset); 3) reduced dimensions, as a consequence of points 1) and 2).

This operation results in two main advantages. First, the reduction of the
number of features to be handled by the classification algorithm usually enhances
classification performance; this is only possible if the feature extraction technique is
able to retain significant information for discrimination while discarding irrelevant and
redundant information. Second, the reduction of the dimension of the feature set may
result in a decrease of computational costs for the learning process. This point is



particularly important if we think that we are dealing with medical MR images, which
are composed of a number of features (i.e., voxels) that are typically in the order of 10°
or even more.

On the other side, the final purposes of feature selection are the same than
those of feature extraction, e.g. dimensionality reduction or removal of redundant and
irrelevant data. This is the reason why feature extraction and feature selection are
often confused. However, there is one main difference between feature extraction and
feature selection: the first generates a new set of features as a function of the original
input data, while the second selects a subset of features from the original input data.
As a consequence of this, feature selection doesn’t suffer from the problem of making
interpretation of the results difficult, which is typical of some feature extraction
techniques (because in this last case we have to deal with a newly generated set of
features that could show completely different characteristics with respect to the
original one). On the contrary, feature selection could even aid the interpretation of
the predictive model, because it restricts the dataset to a subset of discriminative
features without operating any transformation on them.

Besides reducing computational costs and improving model interpretability,
selection of a subset of relevant features from the original dataset before the
generation of the predictive model also helps reducing overfitting problems, which
brings to a better evaluation of the generalization ability of the classifier.

The technique of feature extraction and feature selection implemented in this
work consists of two subsequent phases: 1) application of Principal Components
Analysis (PCA), for feature extraction; 2) ranking of the extracted features by means of
a Fisher’s Discriminant Ratio (FDR) criterion, for feature selection. These two phases
are described in detail below.

Principal Components Analysis
PCA (Habeck et al., 2008; Alvarez et al., 2009; Salas-Gonzalez et al., 2010) is a
feature extraction technique that is based on two successive steps.

The first step consists in the application of an orthogonal transformation to a
given dataset of (possibly) correlated variables, which results in a set of orthogonal
(uncorrelated) variables. These variables are called principal components of the
original dataset and they define the PCA subspace. Principal components of a given
dataset are the eigenvectors of the covariance matrix of that dataset. The main
characteristic of principal components is that they are sorted in descending order
according to the proportion of explained variance of the input dataset, maintaining the
constraint to be orthogonal with one another.

The second step consists in the projection of each variable of the original dataset
onto the PCA subspace; this operation results in the reduction of the original set of
observed variables into a smaller set of features called PCA coefficients (low dimension
representation of the original samples). The total number of PCA coefficients is equal
to the number of Principal Components extracted from the original dataset. The



number of Principal Components, in turn, is at most equal to the value of the smaller
dimension of the original dataset — 1.

Mathematically, let us suppose X to be a dataset of 3D brain MR images X;, with i
ranging from 1 to N and N being the number of MR images (samples) in the dataset. If
each image X; is considered in the form of a vector of dimension V (in this case V could
represent the total number of voxels in each image), than the dimension of X is equal
to NxV. Under the condition that the dataset X has zero mean, PCA-space can be
defined as the space spanned by the eigenvectors of the covariance matrix C of the
dataset X:

C=X-X" (2.1.1)

(if the dataset X had non-zero mean, then the average Xy could simply be
subtracted from each image X; to satisfy this condition).

As outlined above, application of PCA to a given dataset results in a number of
principal components (i.e., eigenvectors) with non-null eigenvalues which is at most
equal to the value of the lower dimension of the data matrix - 1. If N is the number of
subjects in the dataset, and if N is smaller than the number of considered features,
there will only be N-1 eigenvectors (principal components) with non-null eigenvalues.
The other eigenvectors will have a zero eigenvalue associated, so that they will not be
considered.

Fisher’s Discriminant Ratio

While PCA returns coefficients containing information about the proportion of
explained variance of the whole input dataset, FDR gives information about the class
discriminatory power, i.e., it considers both input dataset and class labels.

In order to obtain FDR of each component, the following formula was applied to
the PCA coefficients obtained from the feature extraction procedure:

TRY:
FDR, = % (2.1.2)

where 1 and 2 represent the two classes involved (for example, pathological and
normal condition), while u; and ¢ are the mean and the variance of the i™ class,
respectively. As it can be seen in formula 2.1.2, FDR is a measure of the separation of
the two considered classes: for each PCA coefficient k, the higher is the value of FDR,
the greater is the discriminatory power of that coefficient with respect to classes 1 and
2. In this way, FDR criterion was implemented in this work in order to rank PCA

coefficients in a descending order according to their class discriminatory power.



2.1.2 Classification

The classification algorithm of the proposed ML method was based on SVM. A
detailed description of SVM was given in Section 1.3. However, here we report the
decision function used by SVM to predict the belonging class of a new (unseen)
sample:

y(x) = Ymea Wy "ty k(%) + b (2.1.3)

where vy is the predicted class for sample x; N is the total number of samples
included in the training set (both classes); w, is a weight assigned during the training
phase by SVM to each sample n of the training set; t, is the label of the sample n of the
training set; k(x,x,) is a kernel function; b is a threshold parameter.

In order to perform classification of features that were previously extracted and
selected from MRI data through PCA and FDR, an SVM classifier was implemented. In
the whole work, we used the Matlab platform to both implement and optimize the
SVM classifier. Our code also included algorithms of the biolearning toolbox of Matlab.
In all applications of the implemented ML algorithm described in this thesis, SVM
classification was always performed using a linear kernel. The reasons for this are that
1) it is able to improve generalization ability and 2) it is the only kernel function that
allows the computation of weights and, thus, the generation of voxel-based pattern
distribution maps of brain structural differences (see subsection 2.1.3 below).
Moreover, linear kernels allows to improve computational efficiency with respect to
non-linear ones and this is a useful feature when dealing with big datasets (e.g.
Application Il in Section 2.3).

2.1.3 Computation of activation patterns and extraction of

biomarkers

Extraction of biomarkers is one of the most important points in the proposed
work, because it allows the computation of the most significant features (i.e., voxels)
for group discrimination and the generation of image maps of voxel-based pattern
distribution of brain structural differences between two given groups or conditions
(e.g., pathological vs. healthy controls). This technique, coupled with a correct
interpretation of these maps, could help to identify potential biomarkers for the
diagnosis of a given pathology.

The most significant features for group discrimination can be computed during
the training phase of the SVM classifier. As it can be seen from equation 2.1.3, during
the training step, the SVM classifier assigns a specific weight w, to each data-sample n
of the training set. This weight reflects the importance of each given sample for the
definition of the separating hyper-plane, i.e., the importance of each given sample for
binary class separation. In our case, a weight can be associated to each MR image used
to train the classifier. It is worth noting that this weight is non-null only for support
vectors, while its sign is positive or negative whether the associated support vector
belongs to the first or the second binary labeled class.



In order to extract the most important voxels for classification, the following
procedure can be used: after training the SVM classifier, each sample of the training
set is multiplied with the corresponding weight w, assigned by SVM. The resulting
weighted samples are then summed voxel-by-voxel, so that a vector of weights
representing the importance of each voxel for SVM classification is generated (Kloppel
et al., 2008; Focke et al., 2011). This vector can then be mapped onto a standard
reference system (e.g. a standard stereotactic brain) to show the importance of each
MR image voxel for SVM binary group discrimination.

However, as stressed by Haufe and colleagues (Haufe et al.,, 2014), this
procedure is not sufficient in the case of backward models and, on the contrary, it
could bring to misinterpretations in terms of the studied brain processes.

Backward models and activation patterns

Let us consider to have a source of information to be measured, and to have a
number M of measurement channels. Data coming from channel m will be referred to
as X,,. Let us make the further assumption that N data samples x(n) = 1,...N are
available (i.e., number of measurements), and that K latent factors s(n) are hidden in
the data. Finally, each latent factor sy (n) is linked to the corresponding target variable

ye(n).

Backward models are models able to extract latent factors §(n) as a function of
the observed data. Indeed, the general purpose of backward models is the mapping of
the data into a more informative representation, with the aim of showing the signals
of interest as low-dimensional isolated components. In this sense, they are the
opposite of forward models, which respect the functional dependency between factors
and data (that is reversed in the case of backward models). Backward models are
roughly used when there is the need to transform observations in order to find a
representation (possibly at lower a dimension) in which they exhibit certain desired
characteristics. In this sense, backward models roughly correspond to discriminative
models in ML.

When dealing with the linear case, the transformation matrix W € RM*X e,

the matrix of filters, summarizes the mapping from observations to factors, so that the
backward model can be written as follows:

WTx(n) = §(n) (2.1.4)

In supervised backward models, W can be chosen so that $(n) approximates a
target variable, where typically K < M. In this case, we can speak of decoding, a term
used in analogy to the term of encoding used for supervised forward modeling
(Naselaris et al., 2011).

Generally, one factor §,(n) is extracted for each column W, € R of W, and
that column of W is referred to as the extraction filter for the corresponding factor. As
a consequence, an M-dimensional weight vector is associated to each factor, that is
what happens also in forward modeling. However, in contrast to forward modeling,
where the contribution of a factor to the measured data x(n) is obtained by



multiplying it with a latent factor §;(n), here it is multiplied to the measured data
x(n) with the aim of obtaining the latent factor §;(n). As it can be understood, the
filter vector w;, does not coincide with the activation pattern a; of the same factor
$,(n), and there is no reason to think that these two entities should be similar or
should have the same significance. Indeed, the interpretation of these entities is rather
different:

When projecting observed data onto an extraction filter wy, the
result will be a latent component exhibiting certain desired
properties (e.g., allow good classification or maximize the
similarity to a target variable) (Haufe et al., 2014)

In general, a filter is designed with the aim of amplifying the signal of interest
and reducing (or suppression) all signals of no interest, which include noise, artifacts,
redundant signals and signals coming from the source but regarding processes not
under study (that is typically one of the main problems when dealing with brain
processes). In this sense, extraction filters are functions of signal and noise
components in the data, and it is the second task (i.e., reduction of signals of no
interest) to be the responsible of the difference between filters and activation
patterns. This is why the filter weights (e.g., the weights assigned by SVM as described
above) do not allow one to draw conclusions about the features (e.g., brain voxels) in
which the corresponding factor is expressed.

As written above, the general purpose of backward models is the mapping of the
data into a more informative representation, with the aim of showing the signals of
interest as low-dimensional isolated components.

However, the filters which compose the matrix W do not represent the
expression of factors (from data) in the measured channels, as they only show how to
combine information coming from different channels in order to extract factors from
data. This is a problem when we are dealing with neurophysiological data to be
interpreted: in this case, there is the need to compute activation patterns from
extraction filters.

Let us now consider the case in which the number K of extracted linearly
independent factors is exactly equal to M, i.e., the number of measurement channels.
In this case, the matrix W of the extraction filters is square and invertible, so that
multiplying Equation 2.1.4 with W~T (inverse and transpose), the following relation
can be obtained:

x(n) = W-Ts(n) (2.1.5)

in which the activation pattern A corresponds to W~T. Under this simplifying
condition, the backward model can be interpreted as a forward model, which means
that the activation patterns A are simply given by the extraction filters W.

On the other side, when dealing with the general case in which K < M, the
extraction filters do not form an invertible matrix anymore. As a consequence, solving
the problem of finding a pattern matrix A that indicates in which channels the



extracted factors are reflected is not trivial. We are looking for a linear forward model
(corresponding to our backward model) which can be described by the following
equation:

x(n) = A8(n) + e(n) (2.1.6)

where €(n) is an M-dimensional noise vector. We assume (without loss of
generality) that E[x(n)],, = E[S(n)],, = E[e(n)],,, where E[-],, denotes expectation
over samples. Because of this, the associated covariance matrices are given by
2, = E[x(m)x(m)T],, Z; = E[S(n)§(n)"],, and X, = E[e(n)e(n)T],. We then make
the further assumptions that the latent factors $(n) are linearly independent, which
implies that rank (W) = K (i.e., W must have full rank), and that the noise €(n) is
uncorrelated with the latent factors §, i.e. if E[e(n)$(n)T],, = 0. As a consequence of
these assumptions, the model described in Equation 2.1.6 can be called the
corresponding forward model to the discriminative model of Equation 2.1.4.

This approach leads to the consequence (from the paper by Haufe and
colleagues) that for any backward model

WTx(n) = 8(n) (2.1.7)
the corresponding forward model is unique, and its parameters are obtained by
A=z Wzt (2.1.8)

The proof of this theorem can be found in the Appendix A of the paper by Haufe
et al. (2014). What is important to note here is that A is the matrix whose columns are
the activation patterns. Differently from associated filters which form the matrix W,
activation patterns allow the correct interpretation of results, i.e., they actually
represent the effect directions and strengths of the extracted latent factors in the
measurement channels.

It is worth noting that, in practice, population covariances %y, 2; and X that
appear in the equations above and on which these results depend can be substituted
by their sample empirical values. This simplification allows the derivation of activation
patterns in practice.

Finally, if the estimated factors §(n) are uncorrelated, the computation of
activation patterns in practice is simplified. Specifically, activation patterns can be
obtained multiplying the covariance Z, with the matrix W, i.e., as covariance between
data and latent factors:

A x X, W = Cov[x(n),s(n)] (2.1.9)

where



Cov(x;(n),$,(n)) -+ Cov(x,(n),3x(n))
Cov[x(n),s(n)] = : - : (2.1.10)

Cov(xy (;l), $1(n)) - C ov(xy (T:l), $k(n))

This simplifying condition is verified for many backward models, including the
method used during this thesis.

In this work, in order to ensure the correct interpretation of weights assigned by
SVM, | adapted this method proposed for the computation of activation patterns in
backward models by Haufe and colleagues to the extraction of the most important
voxels for SVM classification. By mapping back the computed pattern from the PCA
space to the MRI images space and by superimposing it onto a standard stereotactic
brain for visualization purposes, a map of voxel-based pattern distribution of MR
image differences among considered groups could be obtained, this map providing
information about the localization of the most important areas used by SVM during
the classification process.

2.2 Application I: Parkinson’s Disease

Parkinson's disease (PD) is the second most common neurodegenerative disease
affecting millions of people worldwide. Achieving an individual differential diagnosis
still remains the primary goal in the clinical practice of PD, given the need of tailoring
the best individual treatment. Diagnosis of PD is particularly prone to errors (Tolosa et
al., 2006) because motor symptoms reported in PD can also be found in parkinsonian
conditions such as Progressive Supranuclear Palsy (PSP), that is a parkinsonism with
clinically similar symptoms to PD, but different treatment response (PSP patients are
less responsive to treatment) and different prognosis (PSP has a more rapid disease
progression). In particular, PSP results to be one of the most difficult parkinsonisms to
be discriminated from PD, especially in early stages of diseases, when the typical
clinical signs are not clearly evident yet (Litvan et al., 1996; Gelb et al., 1999).

The diagnosis of PSP is still based on the clinical history of the patient, while
brain MRI is only used to exclude concomitant diseases. Moreover, given that images
only undergo visual inspection, the resulting diagnostic accuracy (as well as sensitivity
and specificity) is poor (Tolosa et al. 2006). In the last years, advanced processing
techniques for neuroimaging have been developed. One of the objectives of these
techniques is the identification of potential neuroimaging biomarkers able to improve
the diagnostic confidence in the clinical practice. These efforts produced significant
results (e.g. Shi et al., 2013), even if most studies only reported results at a group level,
which is a limitation for a possible translation to an individual diagnosis in clinical
settings.

In this first application of the proposed ML method to PD, we aimed to perform
individual differential diagnosis of PD and PSP. Classification was made by means of
structural T1-weighted MRI data collected from a cohort of PD and PSP patients and



healthy controls (CN). Moreover, in order to identify potential MR-related biomarkers
for the early and differential diagnosis of PD, we also generated pattern distribution
maps of brain structural differences reflecting the importance of each image voxel for
the SVM classification, as explained in section 2.1.3.

2.2.1 Participants

In this study, 56 patients and 28 healthy control subjects were enrolled. The
group of 56 patients consisted of 28 patients with a clinical diagnosis of PD (Gelb et al.,
1999) and 28 patients with clinical diagnosis of probable or possible PSP (Litvan et al.,
1996). Neurologists working in the field of movement disorders for more than 10 years
examined all 84 subjects (patients and healthy controls). Age at onset of the disease,
duration and severity of symptoms as assessed by the Unified Parkinson’s Disease
Rating Scale (UPDRS), and the Hoehn—Yahr (H&Y) stage were obtained and recorded
for all patients. Moreover, the Mini Mental State Examination (MMSE) was used to
assess the general cognitive status of each patient. The healthy control subjects had no
history of neurologic or psychiatric diseases, with normal neurological examinations.
The 28 healthy control subjects were matched for age to both patient groups.

2.2.2 MR images

MR images were acquired at the Institute of Neurology, University “Magna
Graecia”, Catanzaro. For each subject in both patients and healthy controls groups, we
performed one brain structural MRI study. MRI scans were obtained by means of a 1.5-
T Signa NV/I unit (GE Medical Systems, USA) and data were acquired using a 3D T1-
weighted spoiled gradient echo sequence with the following parameters: TR = 15.2ms;
TE = 6.7ms; flip angle = 15°; FOV = 24cm. Slice thickness was of 1.2mm and each slice
had a resolution of 256 x 256 pixels. This process resulted in a T1-weighted 3D dataset
for each subject. Motion artifacts were negligible for all scans by visual inspection.

Original datasets were converted from DICOM format to 3D NIfTI format using
the dcm2nii tool included in the MRICron software
(http://www.mccauslandcenter.sc.edu/mricro/mricron/). After this, the pre-processing
procedure mainly consisted of 4 steps: 1) cropping and 2) re-orientation of converted
images; 3) skull stripping, which was achieved using the BET tool of the FSL 4.1
software (Smith et al., 2004; Jenkinson et a., 2012); 4) spatial normalization to MNI
space, which was performed by co-registration to the MNI template
(MNI152_T1 _1mm_brain) (Grabner et al., 2006) included in the FSL 4.1 software.

At the end of this pre-processing phase, images were imported into the Matlab
platform using the ‘Tools For NifTl And ANALYZE Image’ toolbox
(http://www.mathworks.com/matlabcentral/fileexchange/8797) and limited within a
bounding box. Final whole-brain volumes consisted of 145x178x133 voxels. It is worth
noting that in this first application of the proposed ML method to PD, no smoothing or
segmentation were applied to MRI data.



2.2.3 The classifier

Classification was performed through the ML method described in Section 2.1
and visually outlined in Figure 2.1.1. The whole procedure is also describe in the paper
by Salvatore et al. (2014). Specifically, feature extraction and feature selection were
applied to pre-processed whole-brain MR images by means of PCA and FDR. After this
step, extracted and ranked features were used as input to the SVM classifier.

SVM was used for the classification of PD vs. CN, PSP vs. CN and PSP vs. PD.
Classification was performed using a linear kernel and for a number k of PCA
coefficients ranging from 1 to the total number of extracted PCA coefficients.

2.2.4 Performance evaluation

In order to test the feasibility of this method for the automatic classification of
PD and PSP, we used two different validation approaches: Leave-Out-Out (LOO) and
half-splitting.

LOO is a particular case of cross validation in which the testing set only consists
of one sample, while the training set is made up of all the remaining (N-1) samples of
the whole dataset. By performing a number of rounds of LOO validation equal to the
number of sample in the whole dataset, it is possible to test all samples in turn. The
main strength of this validation technique is that it can be applied also when the
dimension of the dataset is relatively small. Indeed, in LOO the largest portion of the
dataset is reserved for the training of the classifier, which is useful when the number
of samples is small in order to adequately compute the predictive model. On the other
side, by reserving the largest part of the datasample for the training phase, the testing
of the predictive value of the classifier is made only using a very small portion of the
dataset, which can more easily bring to overoptimistic estimates of the predictive
power (overfitting) with respect to other validation techniques. This is due to the fact
that the classifier could be excessively tuned to the large amount of data used for the
training.

Half-splitting, on the other side, is a validation approach in which half of the
whole datasample is used for training the classifier and the remaining half is used for
testing. One of the advantages of this procedure is the use of the same number of
subjects for training and classification, which has been supposed to affect classification
performance in terms of sensitivity and specificity of the classifier (see below).
However, when half-splitting is performed using only one data partition, and especially
when dealing with small heterogeneous datasets, half-splitting validation technique
could be sensible to variability, bringing to significant variations in performance of
classification.

For each validation method and for each of the three binary comparisons
described above (PD vs. CN, PSP vs. CN, PSP vs. PD), accuracy, specificity and sensitivity
of classification were computed as follows:

T
Accuracy; = % (2.2.1)



xCC

Specificity, = (2.2.2)
XCC +YMC

Sensitivity, = Yec (2.2.3)
YCC + XMC

where | indicates the number of employed principal components; T is the
number of classified images; Tcc is the number of images that were correctly classified;
Xce (Xme) is the number of images belonging to the first class that were correctly
classified (misclassified); Ycc (Ywme) is the number of samples belonging to the second
class that were correctly classified (misclassified). In particular, as it can be seen from
equations 2.2.1-2.2.3, specificity represents the ability of the algorithm to correctly
classify samples belonging to the first class (usually, the CN class), while sensitivity is
the ability of the algorithm to correctly classify samples belonging to the second class
(usually, the pathological class).

Once accuracy, specificity and sensitivity were computed, we calculated overall
mean accuracy, specificity and sensitivity as mean values over a number of principal
components ranging from 1 to PC, where PC is the whole number of extracted
principal components. Furthermore, accuracysgg, specificitysgo and sensitivity.gg were
calculated as mean values over a range of principal components for which accuracy,
specificity and sensitivity fell above 80%. The dependency of accuracy, specificity and
sensitivity on the number of principal components was studied.

2.2.5 Diagnostic MR-related biomarkers

The most important voxels for SVM classification were computed as reported in
section 2.1.3 using the whole number of subjects in the dataset (28 PD, 28 PSP and 28
Controls) and for each of the three binary comparisons described above (PD vs. CN,
PSP vs. CN, PSP vs. PD).

In particular, for this first application of the implemented ML method to the
diagnosis of PD, importance of voxels was computed without applying the correction
needed for obtaining activation patterns in backward models.

2.3 Application ll: Alzheimer’s Disease

In this second application of the proposed ML method, | studied the early
diagnosis of AD. AD is the first most common neurodegenerative disease, which affects
millions of people worldwide (Martin et al., 2012). To date, individual diagnosis of AD
in clinical practice is mainly based on neuropsychological assessment and clinical
examinations, but definite diagnosis can only be achieved through post-mortem
analysis (Blennow et al., 2006; Knopman et al., 2001). In order to aid clinicians to
develop new treatments as well as to monitor their effectiveness, the identification of
sensitive and specific markers of early AD are needed.



The study of normal and pathological ageing is gaining more and more interest
given the increase in life expectancy and the prevalence of age-related cognitive
disorders. Some of the main objectives of research in this field is represented by the
possibility of detecting predictors of degenerative disorders for early and differential
diagnosis, as well as improve efficacy of cognitive and pharmacological approaches in
the treatment of these conditions. Indeed, considering the high costs on national
healthcare systems given by exams and therapies of degenerative diseases, research
with the aim of improving early and differential diagnosis is needed.

Clinical diagnostic criteria for AD, developed by the National Institute of
Neurologic and Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA), define cognitive impairment as
necessary for the diagnosis of definite, probable or possible AD (McKhann et al., 1984).
Moreover, the presence senile plagues and neurofibrillary tangles were afterwards
introduced as neuropathological conditions for AD diagnosis (Hyman and Trojanowski,
1997).

In 2011, the National Institute on Aging-Alzheimer’s Association developed
revised diagnostic criteria for AD, which proposed additional features for the
diagnostic process, such as measurement of cerebrospinal fluid (CSF), amyloid and tau,
neurogenetic testing and neuronal injury biomarkers as measured by neuroimaging
instruments, such as PET and MRI. In particular, PET provides measurements of
metabolism/amyloid markers (Jagust et al., 2006; Fox and Schott, 2004), while MRI
provides measurements of atrophic regions associated to AD, even before dementia is
apparent (Sperling et al., 2011).

Among other methods, MRI has the advantage that it is a non-invasive
technique. Because of this, the development of advanced MR image processing has
been increasing in the past years in order to identify MR-related biomarkers useful for
improving the accuracy of clinical diagnosis of AD. Among those studies focused on the
identification of structural brain differences among AD patients and CN, the major part
was based on a priori-defined regions of interest (ROls) or on mass univariate image
analysis methods, such as Voxel Based Morphometry (e.g. Busatto et al., 2003). These
approaches, differently from multivariate techniques, are not able to detect spatially
distributed patterns.

In order to overcome these limitations, in the last few years there has been a
growing interest within the neuroimaging community in multivariate pattern analysis,
including ML algorithms. Several studies have assessed the feasibility of these
techniques in the automatic diagnosis of AD by means of brain structural MRI data
(e.g. Davatzikos et al., 2008; Kloppel et al., 2008; Cuingnet et al., 2011; Hidalgo-Munoz
et al., 2014). Some studies showed good results also for the prediction of conversion to
AD in the early phases of the disease (e.g. Tufail et al., 2012; Moradi et al., 2015).
Among these, Kloppel et al. (2008) performed automatic ML classification by means of
brain structural MR images, and they were also able to identify MR-related spatially-
distributed biomarkers useful for the differential diagnosis of AD versus Fronto-
Temporal Lobar Degeneration (FTD) and versus CN.



To date, definite early and differential diagnosis of AD by structural MRI data is
one of the major challenges about neurodegenerative disorders, due to the difficulty
of quantifying patterns of structural change during early stages of AD or during
clinically normal stages (Davatzikos et al., 2008). Patients suffering from AD at a
prodromal stage are often clinically classified as Mild Cognitive Impairment (MCI), but
it is still difficult to predict MCI patients who will (MClc) or will not (MClInc) convert to
AD. The rate of conversion of MCl to AD has recently been estimated to be around 5-
10% per year (Mitchell and Shiri-Feshki, 2009).

Given all these reasons, the identification of multivariate MR-related biomarkers
for the diagnosis of AD and for the prediction of conversion of MCl to AD (MClc vs.
MClInc) is needed. Therefore, in this second application of the proposed ML method to
AD, we aimed to perform early differential diagnosis of AD and to extract potential
structural MR-related biomarkers for the prediction of conversion of MCl into AD.

2.3.1 Participants

Subjects included in this study were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). A total of 162 cognitively
normal elderly controls (CN), 137 patients with diagnosis of AD, 76 patients with
diagnosis of MCl who converted to AD within 18 months of follow-up (MClc) and 134
patients with diagnosis of MCl who did not convert to AD within 18 months of follow-
up (MClInc) were included in the study. MCI patients who had been followed less than
18 months were not considered. Demographic and clinical data (sex, age and mini-
mental score) for each group are shown in Table 2.3.1 (see
http://adni.loni.usc.edu/study-design/background-rationale/ for further description of
groups). A total of 509 subjects from 41 different radiology centers were considered.
Identification Numbers (IDs) of each subject involved in this study can be found in the
supplementary material of the paper by Salvatore et al. (2015a). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60
million, 5-year public private partnership. The primary goal of ADNI has been to test
whether serial MR, PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCl and early AD.

According to the ADNI inclusion criteria, enrolled subjects were all between 55
and 90 years of age and spoke either English or Spanish. Each subject was willing, able
to perform all test procedures described in the protocol and had a study partner able
to provide an independent evaluation of functioning. Inclusion criteria for CN were:
Mini Mental State Examination (MMSE) scores between 24 and 30; Clinical Dementia
Rating (CDR) (Mitchell and Shiri-Feshki, 2009) of zero; absence of depression, MCl and
dementia. Inclusion criteria for MCl were: MMSE scores between 24 and 30; CDR of
0.5; objective memory loss, measured by education adjusted scores on Wechsler
Memory Scale Logical Memory Il (Wechsler, 1987), absence of significant levels of
impairment in other cognitive domains; absence of dementia. Inclusion criteria for AD
were: MMSE scores between 20 and 26; CDR of 0.5 or 1.0; NINCDS/ADRDA criteria for
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probable AD (McKhann et al.,, 1984; Dubois et al., 2007). Detailed description of
inclusion/exclusion criteria can be found in the ADNI protocol (http://www.adni-
info.org/Scientists/ADNIStudyProcedures.aspx).

Table 2.3.1 Demographic and clinical data for the considered groups of participants

Group | #subjects ﬁii;;ean AL g&rﬁ: / r“:[e\:]iE +S§fdrTrange] #centers
#Females -

CN 162 76.3+5.4[60-90] | 76 M/86F | 29.2+1.0[25-30] |40

MCinc | 134 74.5+7.2[58-88] |84 M /50F | 27.2+1.7[24-30] |36

MClc | 76 74.8+7.4[55-88] |43M/33F |26.5+1.9[23-30] |30

AD 137 76.0+7.3[55-91] |67M/70F | 23.2+2.0[18-27] |39

2.3.2 MR images

For each of the 509 patients and healthy controls described above, we obtained
one structural MR image from the ADNI database. We only considered T1-weighted
structural MR images performed at 1.5 T. Moreover, in order to allow standardization
of images from different sites and platforms, we only used images which had
undergone: 1) geometry correction for gradient nonlinearity, by 3D gradwarp
correction (Jovicich et al., 2006); and 2) intensity correction for non-uniformity, by B1
non-uniformity correction (Narayana et al., 1988). T1-weighted structural MR images
of each subject were acquired according to the ADNI acquisition protocol (Jack et al.,
2008). We used scans from the baseline visit (when available) or from the screening
visit. According to the ADNI protocol, MR imaging examination was performed twice
per visit. Scans were then rated by the ADNI investigators of the ADNI MR imaging
quality control center at the Mayo Clinic on the basis of blurring/ghosting, flow
artifact, intensity and homogeneity, signal-to-noise ratio (SNR), susceptibility artifacts,
and gray-white/cerebrospinal fluid contrast (Jack et al., 2008). In this work, we used
the image which was rated as the best quality scan for each subject. 3D MR images
were downloaded from the ADNI dataset in 3D NIfTI format.

As for Application I, MR images underwent a pre-processing phase, which
consisted of 4 steps: 1) cropping, 2) re-orientation, 3) skull-stripping and 4) spatial
normalization to MNI standard space, performed by co-registration to the MNI
template (MNI152_T1 _1mm_brain) (Grabner et al.,, 2006). These procedures were
performed through the VBM8 software package (Ashburner and Friston, 2000). At the
end of this step, image size was of 121x145x121.

After this phase of spatial pre-processing, images underwent 1) segmentation
into Gray Matter (GM) and White Matter (WM) tissue probability maps and 2)
smoothing using an isotropic Gaussian kernel with Full Width at Half Maximum
(FWHM) ranging from 2 to 12 mm> (step: 2mm°).
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The final set consisted of 21 images for each subject, depending on the
considered tissue (whole-brain, GM, WM) and on the kernel used for smoothing (from
2 to 12 mm? FWHM or no smoothing).

2.3.3 The classifier

In order to perform classification, we applied the ML method described in
Section 2.1 and depicted in Figure 2.1.1. In particular, feature extraction and feature
selection were applied to pre-processed MR images (whole-brain, GM and WM) by
means of PCA and FDR. After this step, extracted and ranked features were used as
input to the SVM classifier.

SVM was used for the classification of AD vs. CN, MClc vs. CN and MClc vs.
MClnc. Classification was performed using a linear kernel. The following parameters
were varied: brain tissue (whole-brain, GM or WM images); smoothing (2-12 mm?>
FWHM or no smoothing); number of PCA coefficients (ranging from 1 to the total
number of extracted PCA coefficients).

In order to show the impact of FDR-analysis on PCA coefficients, the explained
variance was studied as a function of the number of considered principal components
before and after sorting them in accordance to their FDR.

2.3.4 Optimization of classification and performance evaluation

In order to find the best parameter configuration for the classification of AD vs.
CN, MClc vs. CN and MClc vs. MCInc, | performed an optimization of the considered
parameters (i.e., brain tissue, kernel for smoothing and number of PCA coefficients to
be used for classification). This optimization was performed through nested k-fold CV,
which consists in splitting the original dataset into k subsets of (possibly) equal size and
then performing an inner training-and-validation loop for parameter estimation and
optimization and an outer test loop for performance evaluation. The inner training-
and-validation loop is performed using k-1 subsets, while the outer test loop is
performed using the k™ held-out subset, and by repeating the whole process k times it
is possible to use all k subsets once for performance evaluation in the outer loop.

In particular, in this work, | used nested 20-fold CV. The inner training-and-
validation loop was performed using 19/20 of the original dataset, and for each loop
these 19/20 subsets were randomly split in half to perform training and validation on
two independent datasets. The outer test loop was performed using the held-out 1/20
of the original dataset, for which a label (AD, MClc, MCinc, CN) was predicted using the
trained and optimized model and parameter set computed during the corresponding
inner loop.

For each round of the inner loop, in order to chose the best parameter
configuration, i.e., the optimal set of parameters (which brain tissue, which level of
filtering, how many PCA coefficients), the algorithm aimed at minimizing the
classification error (E) defined as follows:



E = 1-Balanced Accuracy (2.3.1)

Balanced Accuracy = %(Specificity + Sensitivity) (2.3.2)

where specificity and sensitivity were computed as in 2.2.2-2.2.3. Optimization
was performed as a function of the following parameters: 1) tissue map (whole-brain,
GM and WM); 2) smoothing (FWHM = 2, 4, 6, 8, 10, 12 mm?> or no smoothing); 3)
number of PCA coefficients (from 1 to PC, where PC is the total number of extracted
coefficients).

Balanced accuracy was computed as in 2.3.1 for each of the 20 separate rounds
of the outer test loop. These results were then averaged across all 20 rounds in order
to obtain the overall balanced accuracy.

This procedure (parameter optimization and accuracy evaluation) was performed
for the binary classification of AD vs. CN, MClc vs. CN and MClc vs. MClnc.

2.3.5 Diagnostic MR-related biomarkers

In order to identify potential MR-related biomarkers for the early diagnosis of
AD, extraction of voxel based pattern distribution of MR image differences between
AD and CN, MClc and CN, MClc and MCInc was performed. Specifically, extraction was
carried out according to the procedure described in section 2.1.3 for the computation
of activation pattern in backward classification models. For each round of the inner
training-and-validation loop and for the optimal set of parameters (minimum E)
computed as described in subsection 2.3.4, a map of voxel-based pattern distribution
of MR image differences among groups of subjects was generated. The resulting 20
maps (one for each round) were then averaged in order to obtain one final map, which
was represented by a proper color scale and superimposed on a standard stereotactic
brain for spatial localization. By performing this process for each of the three
considered binary classifications, | finally obtained voxel-based pattern distribution
maps of brain MR differences between AD and CN (AD diagnosis), MClc and CN (early
AD diagnosis), MClc and MCInc (prognosis).

2.4 Application lll: Eating Disorders

Eating disorders (ED) are a psychiatric condition with typical adolescent-onset
that cause serious disturbances to everyday diet, such as eating extremely small
amounts of food or severely overeating. It was demonstrated that the female gender is
a potent risk factor for ED (Hoek and van Hoeken, 2003). However, it is still unknown
how much this association can be attributed to biological rather than social factors
(Treasure et al., 2010). ED presents various clinical phenotypes, the mot investigated
among them being Anorexia Nervosa (AN) and Bulimia Nervosa (BN). AN is a mental
disorder that leads to death in approximately 10% of cases (Nielsen, 2001). In
accordance with the DSM-V criteria, diagnosis of AN is made following the criteria
below: (a) Persistent restriction of energy intake relative to requirements leading to a



significantly low body; (b) Intense fear of gaining weight or becoming fat, even though
underweight; (c) Disturbance in the way in which one's body weight or shape is
experienced, undue influence of body weight or shape on self-evaluation, or denial of
the seriousness of the current low body weight. On the other side, BN is characterized
by frequent episodes of binge eating followed by inappropriate behaviors such as self-
induced vomiting to avoid weight gain. In accordance with the DSM-V criteria, people
with BN must exhibit binge eating and compensatory behaviors with a frequency of at
least once a week.

To date, individual clinical diagnosis of ED is only based on a clinical interview
complemented by physical, psychopathological and behavioural examinations aimed
at assessing the existence of physical, emotional, behavioural and cognitive
disturbances. However, a particular feature of ED diagnosis is that it is extremely
unstable, with clinical features changing over time (i.e., weight normalization, Kong et
al., 2014) and often switching from AN to BN (Fairburn and Harrison, 2003). For this
reason, the identification of biomarkers useful for helping and improving not only
early diagnosis, but especially treatment planning and monitoring of disease
progression is strongly needed. This has lead to a considerable effort in developing
advanced neuroimaging methods in the last few years (Titova et al., 2013; Gaudio and
Quattrocchi, 2012; Van den Eynde and Treasure, 2009; Kaye et al., 2009; van Kuyck et
al., 2009). Results from research in this field regarding AN reported global reductions
of total gray and white matter (Seitz et al., 2014) and cortical thickness (King et al.,
2014). As it was proposed in recent literature (Van den Eynde et al., 2012), AN patients
are characterized by widespread brain abnormalities involving: (a) the mesolimbic
regions (striatum, amygdale, hippocampus and cerebellum), (b) the dorsolateral
prefrontal cortex, (c) the visual cortex and (d) the cerebellum. On the other side, BN
are characterized the presence of a specific involvement of the reward neural system
(ventral striatum, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), nucleus
caudate), which could bring to the hypothesis that, as for addiction, during binge
eating the feeling of satisfaction can be reached only after a greater consume of food
with respect to the normal condition (Amianto et al., 2013; Marsh et al., 2015; Brooks
et al.,, 2012).

Although significant results have been achieved, all these studies reported
neurobiological abnormalities at a group level, comparing patients and controls, which
has a consequently limited clinical translation power at the individual level. For this
reason, the attention of the neuroimaging community has recently turned toward
alternative kinds of analyses of neuroimaging data, such as multivariate ML
techniques. However, to date there are no studies investigating the potential role of
these methods in ED.

In this third application of the proposed ML method to ED, we aimed define
reliable neuroimaging biomarkers useful to distinguish individual with diagnosis of ED
patients from CN by means of structural T1-weighted MR images.



2.4.1 Participants

In this study, we considered a total of 103 patients with a first diagnosis of ED
made by two specialized psychiatrists from 2011 to 2012. Clinical diagnosis was made
through the Structured Clinical Interview for Diagnosis (SCID) for DSM-IV-TR. Inclusion
criteria of patients to this research project were the following: (1) age range from 18 to
40 vyears; (2) female gender and (3) right-handedness. Exclusion criteria were: (1)
neurological illness (such as Epilepsy or mental retardation); (2) Axis Il disorders (using
the SCID-Il for DSM-IV-TR) to exclude comorbidity with personality disorders; (3)
presence of brain lesions and history of cerebro-vascular disease, head trauma or
hypertension; (4) psychotropic medication; (5) drug or alcohol abuse; (6)
claustrophobia; (7) past recovery for ED symptoms or psychiatric disorders. After the
evaluation of inclusion/exclusion criteria, 17 females with ED resulted to be eligible
and were enrolled in this study. In particular, the group of 17 ED patients was
composed of 11 patients with BN and 6 patients with AN (according to DSM-IV criteria
for AN/BN restrictive-type). For all patients, duration of illness was rather short (mean
duration: 16 + 5 months).

The considered CN group to be compared with ED was composed of 81 healthy
volunteers who were recruited by local advertisements. Inclusion criteria of CN to this
research project were the following: 1) no previous histories of neurological or
psychiatric diseases or abnormal brain MRIs; 2) being inside the normal range of the
Italian version of Minnesota Multiphasic Personality Inventory-2 (MMPI-2) (Hathaway
and McKinley, 1943). After the evaluation of inclusion/exclusion criteria, 17 CN females
resulted to be eligible and were enrolled in this study. This group had similar
demographical characteristics with respect to the enrolled ED patients. Potential
confounding factors were also considered, including BMI, which was previously
demonstrated to influence brain anatomy (Taki et al., 2008). In order to taking into
account these factors, CN and ED patients were individually pair-matched according to
their age, educational level and BMI (+ 2). For further information, see the
supplementary materials of the paper by Cerasa et al. (Cerasa et al., 2015).

In order to participate in this study, all participants gave written informed
consent. This study was approved by the Local Ethical Committee according to the
declaration of Helsinki.

2.4.2 Psychiatric assessment

All enrolled participants completed a battery of self-evaluation questionnaires.
This battery included the following tests:

Eating Disorders Inventory-2 (EDI-2). a worldwide validated questionnaire that
provides a multidimensional evaluation of the psychological characteristics of AN and
BN (Garner, 1991);

Traumatic Experiences Checklist (TEC): a self-report measure addressing
potentially traumatizing events (Nijenhuis et al., 2002). Different scores can be
calculated including a cumulative score and scores for emotional neglect, emotional
abuse, physical abuse, sexual harassment, sexual abuse and bodily threat from a
person;



Dissociative Experiences Scale v. Il (DES-1): a lifetime 28-item, self-rating
guestionnaire developed specifically as a screening instrument to identify subjects that
are likely to have dissociative symptoms (Bernstein and Putnam, 1986);

Somatoform Dissociation Questionnaire-20 (SDQ-20): a self-rating scale
developed to the investigated somatic component of dissociation. The SDQ-20
discriminates between dissociative and affective disorders (mood and anxiety
disorders) and psychotic symptoms, but a cut-off score is not available (Nijenhuis et al.,
1996);

Parental bonding instrument (PBI): PBI is a self-reporting scale with 25 items to
rate paternal or maternal attitude during the first 16 years and has four items
comprising care and overprotection factors (Parker et al., 1979). The Italian version of
PBI was used to assess perceived parental rearing styles;

Eating attitude test-26 (EAT-26): a 26-item self-rated questionnaire for
evaluating ED-related symptoms (Garner and Garfinkel, 1979). The results are
presented as a total score (range, 0-78);

Body Image Dimensional Assessment (BIDA): a silhouette-based scale that starts
from neutral figural stimuli and attributes a direct quantitative value to the subject’s
own current and ideal body image, the most sexually attractive figure and the most
common figure of same-gender-and-age fellows (Segura-Garcia et al., 2012);

Hamilton rating scale for anxiety (HAM-A): assessment of anxiety symptomes;

Beck Depression Inventory (BDI): definition of the depression status.

Statistical analysis was performed with STATISTICA Version 6.0
(www.statsoft.com). Assumptions for normality were tested for all continuous
variables by using the Kolmogorov—Smirnov test. All variables were normally
distributed, except for educational level. Then, Unpaired t-test and Mann—-Whitney U-
test were applied appropriately to assess potential differences between groups for all
demographic and psychological variables. All statistical analyses had a 2-tailed alpha
level of < 0.05 for defining significance.

2.4.2 MR images

Brain MRI scans were performed according to the routine protocol of the
Institute of Neurology, University “Magna Graecia”, Catanzaro. Structural MRI images
were acquired by a 3T scanner with an 8-channel head coil (Discovery MR-750, GE,
Milwaukee, WI, USA), using a 3D T1-weighted spoiled gradient echo sequence with the
following parameters: TR: 9.2 ms, TE: 3.7 ms, flip angle 12°, voxel-size 1x1x1 mm?.
Subjects were positioned to lie comfortably in the scanner with a forehead-restraining
strap and various foam pads to ensure head fixation. All acquired images were visually
inspected by expert physicians and neuroradiologists to ensure that no signal artifacts
were shown.

Original images were then imported into the Matlab platform (Matlab version
R2011b, The MathWorks, Natick, MA) through the ‘Tools For NIfTI And ANALYZE
Image’ toolbox (http://www.mathworks.com/matlabcentral/fileexchange/8797).

As for Application I, MR images underwent a pre-processing phase, which was
performed by means of the VBMS8 toolbox (Gaser et al.,, 1999) implemented in the
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SPM8 software package (Ashburner and Friston, 2000). This pre-processing consisted
of 4 steps: 1) cropping, 2) re-orientation, 3) skull-stripping and 4) spatial non-linear
normalization to MNI standard space, performed by co-registration to the MNI
template (MNI152_T1 1mm_brain) (Grabner et al.,, 2006). At the end of this step,
image size was of 121x145x121.

After this phase of spatial pre-processing, images underwent smoothing using an
isotropic Gaussian kernel with FWHM of 8 mm?>. Resulting non-modulated whole-brain
images were used as input to the classifier.

We also automatically calculated the total gray matter (GM) and white matter
(WM), as well as cerebrospinal fluid (CSF) volumes, by means of VBMS.

2.4.3 The classifier

Classification was performed through the ML method described in Section 2.1
and visually outlined in Figure 2.1.1. Specifically, pre-processed whole-brain MR
images underwent feature extraction and selection by means of PCA and FDR. After
this step, extracted and ranked features were used as input to the SVM classifier.

The classification of ED vs. CN was performed using a number k of PCA
coefficients, where k runs from 1 to the total number of extracted PCA coefficients. As
for the other applications, a linear kernel was used.

2.4.4 Performance evaluation

In order to evaluate the performance of the supervised machine-learning
method, k-fold CV was performed with k = {10, 20}.

Accuracy, Specificity and Sensitivity were computed over the first k PCA
coefficients, where k runs from 1 to the total number of extracted PCA coefficients, as
in 2.2.1-2.2.3. It is worth noting that, for each round of CV, image pre-processing and
feature extraction were performed separately on the training and the testing sets.

2.4.5 Diagnostic MR-related biomarkers

In order to identify potential MR-related biomarkers for the diagnosis of ED,
extraction of voxel based pattern distribution of MR image differences between ED
and CN was performed according to the procedure described in section 2.1.3 for the
computation of activation pattern in backward classification models. The resulting map
was normalized to a range between 0 and 1, expressed by a proper color scale and
superimposed on a standard stereotactic brain for spatial localization.



2.5 Other applications

2.5.1 Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental
disorder with multiple causes, courses, and a wide range in symptom severity (Amaral
et al., 2008).

Persistent deficits in social communication and interaction and presence of
restricted, repetitive patterns of behavior, interests, or activities (DSM V, American
Psychiatric Association, 2013) are the main features of ASD. However, motor
impairments associated with ASD must not be forgotten, as they show high prevalence
(79%) and can have a significant impact on quality of life and social development (Lai
et al,, 2014).

Motor abnormalities in ASD may have a very early onset in development
(Teitelbaum et al., 1998, Brian et al., 2008) and they are often apparent over time
(Fournier et al., 2010; Van Waelvelde et al., 2010) being a pervasive feature of the
disorder. Recent studies have additionally provided proof for the specificity of motor
impairments identified in high-functioning children with ASD compared to children
with attention deficit/hyperactivity (ADHD) (Izawa et al., 2012; Ament et al., 2014) and
to Typically Developing (TD) children matched by nonverbal IQ and receptive language
(Whyatt & Craig, 2013). Overall, these findings suggest that motor abnormalities could
be a consistent marker of ASD (Dowd et al., 2010). Different motor deficits have been
reported in ASD, including hand movements such as reaching (e.g., Mari et al. 2003;
Glazebrook et al. 2006; Forti et al. 2011), eye-hand coordination (e.g. Glazebrook et al.,
2009; Crippa et al., 2013) and also anomalies in walking patterns (e.g., Rinehart et al.
2006; Nobile et al. 2011). The severity of motor deficits seems to be correlated with
the degree of social withdrawal and the severity of symptoms (Freitag et al. 2007).
Motor control has even been supposed to play a central role for social interaction and
communication (Leary & Hill, 1996). Indeed, as highlighted by Minshew et al. (2004)
studies on motor function could help elucidating the neurobiological basis and even
improving the diagnostic definition of ASD.

Currently, clinical diagnosis of ASD is based on the clinical judgment of symptoms
and on semistructured, play-based behavioral observations (Lord et al., 2000) including
standardized interviews or questionnaires (e.g., Lord et al., 1994). Recently, there has
been growing interest in the predictive value of neurobiological and behavioral
measures in ASD in order to identify a well-defined phenotype of individuals and,
possibly, to enable the perspective of computer-aided diagnosis of ASD.

In this Section, the application of the implemented ML method to ASD using
kinematic data registered during a movement task is shown. The aim of this work,
whose results were published in the paper by Crippa et al. (2015), is to show that the
proposed classifier can be adapted to manage data from different modalities from MR
images.

On the other side, from a clinical point of view, this study represents a proof-of-
concept study to determine whether a simple upper-limb movement can be useful to



accurately classify low-functioning children with ASD (age ranging from 2 to 4 years). In
particular, the ML method was applied for the classification of preschool children with
ASD vs. typically developing (TD) children through kinematic data collected during a
reach-grasp-drop task (described in subsection 2.5.1.2).

The choice of analyzing a simple motor task instead of more complex cognitive
functioning-related tasks was made because the motor system can be more easily
probed in low-functioning ASD children with respect to systems underlying complex
cognitive functions.

Moreover, in addition to studying the predictive value of the ML method in
classifying ASD vs. TD through this data, | applied feature selection coupled with a
posteriori classification results to identify a limited set of kinematic features able to
perform ASD vs. TD classification alone. These findings could suggest the hypothesis of
a motor signature of autism.

2.5.1.1 Participants

In this study, we enrolled a total of 15 preschool-aged children with ASD and 15
TD children. The two considered groups were matched by mental age. IQ and mental
age were assessed at the Child Psychopathology Unit of the Scientific Institute IRCCS
Eugenio Medea by means of the Griffiths Mental Development Scales (Griffiths, 1970),
as routinely made in the clinical practice with low-functioning children. In particular,
this test is used since a poor score on the Griffiths scales at 1 and/or 2 years has been
demonstrated to be a good predictor of impairment at school age (Barnett et al.,
2004). All participants had normal or corrected-to-normal vision and were drug-naive.

The participants in the ASD group were recruited over a period of 18 months. All
participants in the clinical group had been previously diagnosed by a medical doctor
specialized in child neuropsychiatry with expertise in autism. Diagnosis was made
according with the criteria described in the Diagnostic and Statistical Manual of Mental
Disorders-IV TR (American Psychiatric Association, 2000). The diagnoses were then
confirmed independently by a child psychologist through direct observation and
discussion with each child’s parents. Seven children had been administered the Autism
Diagnostic Observation Schedule (ADOS; Lord et al., 2000).

The participants in the control group were recruited by local pediatricians and
from kindergartens to be mentally age-matched to the clinical sample from the
normally developing population. The choice to match ASD and TD children by mental
age was made following the assumption that it usually predicts the ability to
understand task instructions, to use appropriate strategies and to inhibit inappropriate
responses (Jarrold and Brock, 2004). TD children had no previous history of
social/communicative disorders, developmental abnormalities, or medical disorders
with central nervous system implications. All of the participants’ legal guardians gave
their informed written consent prior to the children’s participation. The research was
approved by the ethics board of our institute in accordance with the Declaration of
Helsinki.



2.5.1.2 Procedure, apparatus and kinematic data acquisition

The procedure for the acquisition of movement data is describe below. The
participants sat in front of a table of variable height, which was adjusted basing on the
dimensions of the trunk of each child. The experimenter sat at the opposite side of the
table, with one parent present in the room. At the beginning of each trial, the
children’s hands were resting at a set position 20 cm away from the ball support. The
experimental task, that is visually described in Figure 2.5.1, roughly consisted of
reaching a ball, grasping it and dropping it in a hole. Specifically, the participant
grasped a rubber ball (6 cm diameter) that was placed over a support. This movement
can be described as a reach-to-grasp movement, after which the participant drops the
ball in a hole (7 cm diameter). The hole was located inside a see-through square box
(21 cm high, 20 cm wide) and was large enough not to require fine movements.

For each participant, 10 trials were achieved: 5 consecutive trials on the left side
(left hand) and 5 consecutive trials on the right side (right hand). The order of trial
blocks was counterbalanced between participants. In order to visually illustrate the
task (i.e., reach for the ball, grasp it and drop it in the hole) without any verbal cue to
the participant, the experimenter performed the task. Practice trials, the number of
which varied individually, were given to participants before recording in order to verify
the children’s understanding of the task. The participants were allowed to interrupt
the experiment at will in order to rest. The experimental task was simple and
interesting enough to ensure the full motivation and compliance of all participants
across groups.

Fig 2.5.1 The experimental task consisted of grasping a rubber ball (2) that was placed over a
support (see 1, a); that is, a reach-to-grasp movement before they dropped it in a hole (3). The
hole (1, c) was located inside a see-through square box (21 cm high, 20 cm wide) and was large
enough not to require fine movements. The goal area is transparent to allow seeing through. 4
markers are placed on the basket under the goal area, 2 on the ball and 3 on each hand
(attached to the ulnar and radial surfaces of the participant’s wrist and to the hand dorsum on
the 4th and 5th metacarpals)

Kinematic data of the movements of each participant were registered and
acquired through an optoelectronic system (The SMART D from BTS Bioengineering®
Garbagnate Milanese, Italy). In order to track the movement of the participants during
the task, passive markers (1 cm) were attached to the ulnar and radial surfaces of the
participants’ wrists and to the hand dorsum on the fourth and fifth metacarpals (as
depicted in Figure 2.5.1). Moreover, 2 markers were placed on the ball and 4 markers
were placed on the box edges under the goal area. Three-dimensional kinematic data



were then collected by 8 infrared-motion analysis cameras (4 per side at 2.5 m from
participants) at 60 Hz, with a spatial accuracy less than 0.2 mm. All raw data were first
preprocessed through Matlab (Mathworks® Natick, MA, USA); a fifth-order
Butterworth, 8-Hz low-pass filter was applied, and movement segmentation and
parameters estimation were computed.

After acquisition and preprocessing of kinematic data, the overall movement was
divided into 2 sub-movements: Sub-movement 1—the movement necessary to reach
the ball and place it on its support; Sub-movement 2— the movement to transport the
ball from its support to the target box hole. For each of these sub-movements,
statistics pertaining to a set of dependent measures was collected: (a) total movement
duration (TD), (b) number of movement units' (MU), (c) peak velocity (PV), (d) time of
PV from sub-movement onset (tPV), (e) peak acceleration (PA), (f) time of PA (tPA), (g)
peak deceleration (PD), and (h) time of peak deceleration (tPD). Moreover, final
movement accuracy was evaluated by the wrist inclination at the time of the ball drop
(delta_WA), which was calculated as the angle between the palm and the vertical axis
of the coordinate system (more precisely, the difference between WA at the end of
the transport phase and at the time of peak deceleration). In sum, 17 kinematic
measures were collected and these measures were used as input features to the ML
classifier.

2.5.1.3 Data analysis

In order to compare the two groups of children on all kinematic measures with
Group (ASD vs. TD) as a between-participant factor, an analysis of covariance
(ANCOVA) was first performed (after checking that assumptions were not violated). IQ
and chronological age were considered as between-participant covariates. The alpha
level was set to .05 for all data analyses. Effect sizes for ANCOVA are reported using
partial eta squared (npz).

2.5.1.4 The classifier

In order to classify ASD vs. TD, we used a modified version of the ML method
described in Section 2.1. In particular, in this case feature extraction (PCA) was not
applied, as the number of features collected in this study (17) was already small
enough to allow classification without the need of feature reduction. On the other
side, feature selection was applied in order to select a subset of relevant features to be
used for classification.

Because of this, the method used in this work involved 2 steps: 1) feature
selection and 2) classification. Feature selection was performed by means of the FDR
criterion in order to understand which of the collected kinematic features were the
most important for the discrimination between ASD and TD. Ranked features were
then used as input to SVM for the classification of ASD vs. TD.

' A movement unit is defined as an acceleration phase followed by a deceleration phase higher than
10mm/s, starting from the moment at which the increase or decrease in cumulative velocity is over
20mm/s (Von Hofsten, 1991; Thelen, Corbetta, & Spencer, 1996).



2.5.1.5 Performance evaluation and extraction of the most

discriminant features

Performance of the classification algorithm was assessed for the classification of
ASD vs. TD by using a LOO strategy, which was applied in this case as explained in 2.2.4
for Application I. A schematic description of the whole procedure is shown in Figure
2.5.2. It is worth noting that in this case, differently from applications I-lll, the step of
feature extraction is not performed.
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Fig 2.5.2 Flowchart representing the main steps of the ML method applied to ASD, i.e., feature
selection and classification (for both training and testing/prediction phases in the LOO process)

In order to quantify the performance of the proposed classification algorithm,
the accuracy, specificity, and sensitivity rates of the classifier when the first i selected
features are used, were computed as in 2.2.1-2.2.3. As explained in subsection 2.2.4,
accuracy of classification measures the rate of correctly classified samples in both
positive (ASD) and negative (TD) classes. Specificity and sensitivity measure the rate of
correctly classified samples in the positive (ASD) and in the negative (TD) class,
respectively.

We then studied the dependency of accuracy, specificity, and sensitivity on the
number i of selected features. The maximum values of accuracy, specificity, and
sensitivity obtained in this way and referred to as maximum accuracy, specificity, and
sensitivity, allowed the definition of the most discriminative features for the
classification of ASD vs. TD.

Overall mean accuracy, specificity, and sensitivity rates were calculated as mean
values of accuracy, specificity, and sensitivity over a number of features ranging from 1
to F, where F is the whole number of features (17).



2.6 Scalability, computational efficiency and use of
cloud computing

In order to test the computational efficiency of the implemented ML algorithm
for the classification of structural MR images, | used MRI data acquired in Application Il
to AD.

The operational time required by 1) the whole pre-processing and training of the
classifier (including feature extraction and feature selection) and 2) the testing phase
(including preprocessing and classification of the new dataset) was measured using the
tic and toc functions implemented in Matlab. The operational time for the ML
algorithm was measured while running on a system with 32 CPUs at 2.00 GhZ. The
whole dataset for the 3 considered classification groups was used: AD vs. CN dataset
(299 subjects), MClc vs. CN dataset (238 subjects) and MClc vs. MCInc dataset (210
subjects).



Chapter 3.
RESULTS AND DISCUSSION

3.1 Application I: Parkinson’s Disease

3.1.1 Participants

In Table 3.1.1, demographic and clinical features about PD, PSP and CN groups
included in this study are reported. As it can be seen, no significant differences were
detected for demographical data among groups. However, as assessed by higher
scores of UPDRS and H&Y scales, the group of patients with diagnosis of PSP showed a
more rapid disease progression (with a fatal prognosis after few years) and a more
critical clinical status in terms of motor disability with respect to PD patients.

Table 3.1.1 Demographic and clinical data of enrolled subjects.

Variables CN PD PSP p values
N° 28 28 28
Gender (% males) 54% 54% 64%

Age (years) 67.5%+7.1 68.2+5 69.4+£5.7 n.s.
Disease Duration (years) - 8.0+4.38 3.0+1.6 <0.001"
Age at Onset (years) - 60.8+5.6 67.2+3.0 <0.001"
UPDRS-ME - 24 (10-45) | 34(24-47) <0.001°
H&Y - 3(1-4) 4(3-5) <0.001°
MMSE 26.51+2.1 25.7+£1.9 24+4.8 <0.001*

Note: Data are given as mean values (SD) or median values (range) when appropriate. = One-way

ANOVA. "= Unpaired t test. 5= Mann-Whitney test. UPDRS-ME: Unified Parkinson Disease Rating Scale-
Motor Examination in “off” phase (off medications overnight). H&Y: Hoehn-Yahr. MMSE: Mini Mental
State Examination.

3.1.2 MR images

Considering MRI studies, all subjects had no evidence of vascular lesions as
evaluated in Fluid Attenuated Inversion Recovery (FLAIR) and by T2-weighted MRI.
Both PD and PSP patients showed no evident structural abnormalities, and CN subjects
had normal MRI scanning.



3.1.3 The classifier

In Figure 3.1.1, the 1-st, 2-nd and 3-rd extracted PCA coefficients are shown, as a
representative example, for the PSP versus PD (28 vs. 28) classification (in this case,
the total number of extracted PCA coefficients was equal to 55).

As a representative example, in Figure 3.1.2 the optimal separating hyper-plane
(i.e., the decision function) designed by SVM for PSP (28) versus PD (28) group
separation is shown.

3.1.4 Performance evaluation

In Table 3.1.2, accuracy, specificity and sensitivity of the implemented ML
algorithm are reported for the classification of PD versus CN, PSP versus CN and PSP
versus PD, when using LOO validation approach. Overall Mean Accuracy, Specificity
and Sensitivity rates were calculated over a number of principal components ranging
from 1 to 55. Overall Mean Accuracy (Specificity/Sensitivity) were 85.8 (86.0/86.0),
89.1 (89.1/89.5) and 88.9 (88.5/89.5)% for the classification of PD versus CN, PSP
versus CN and PSP versus PD, respectively.

Figure 3.1.3 shows the considered metrics (accuracy, specificity and sensitivity)
as a function of the number of principal components when using LOO validation
approach. Data are shown, as a representative example, for a number of principal
components ranging from 1 to 55 and for the classification of PSP versus PD. As
expected, accuracy, specificity and sensitivity rates increase with the number of
considered principal components, reaching a plateau. This can be explained by the use
of the FDR criterion, which allows noisy information to be contained only in a small
fraction of eigenvectors (the last eigenvectors). For instance, without applying the FDR
criterion, the relevant information would be contained in the first few eigenvectors,
while the remaining eigenvectors would only contribute with noisy information
(Alvarez et al., 2009).

The range of principal components for which accuracy, specificity and sensitivity
fell above 80% (Accuracy>80, Specificity>80 and Sensitivity>80) was found to be from
30 to 52 components, when using LOO validation approach. In this range, for each of
the three classifications, Accuracy>80 was > 83.9%, with mean Accuracy>80 = {92.7;
97.0; 98.2}% for the classification of PD versus CN, PSP versus CN and PSP versus PD,
respectively. Specificity>80 was > 81.3%, with mean Specificity>80 = {92.3; 98.2;
98.8}% for the classification of PD versus CN, PSP versus CN and PSP versus PD,
respectively. Sensitivity>80 was > 80.6%, with mean Sensitivity>80 = {93.4; 95.9;
97.8}% for the classification of PD versus CN, PSP versus CN and PSP versus PD,
respectively.
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Figure 3.1.1 PCA coefficients for the PSP versus PD binary labeled group (1st, 2nd and 3rd
components).
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Figure 3.1.2 Optimal separating hyper-plane for the PSP versus PD binary labeled group (1st,
2nd and 3rd components).



Table 3.1.2 Accuracy, Specificity and Sensitivity rates of SVM using LOO validation.

Overall Mean Overall Mean Overall Mean
Accuracy (%) Specificity (%) Sensitivity (%)
Accuracysgg (%) Specificitysgo (%) Sensitivitysgo (%)
Mean (Min/Max) Mean (Min/Max) Mean (Min/Max)
PD vs. Controls 858 86.0 86.0
' 92.7 (83.9/100) 92.3 (81.3/100) 93.4 (80.6/100)
89.1 89.1 89.5
PSP vs. I
SPvs. Controls 97.0 (92.9/100) 98.2 (92.9/100) 95.9 (90.0/100)
88.9 88.5 89.5
PSP vs. PD
v 98.2 (94.6/100) 98.8 (96.3/100) 97.8 (93.1/100)
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Figure 3.1.3 Accuracy, Specificity and Sensitivity rates (%) of SVM versus Number of PCA
components in LOO validation.

In Table 3.1.3, accuracy, specificity and sensitivity of the implemented ML
algorithm are reported for the classification of PD versus CN, PSP versus CN and PSP
versus PD, when using half-splitting validation approach. Overall Mean Accuracy,
Specificity and Sensitivity rates were calculated over a number of principal
components ranging from 1 to 28. Overall Mean Accuracy (Specificity/Sensitivity) were
83.2 (81.9/85.4), 86.2 (92.1/82.9) and 84.7 (87.5/83.8)% for the classification of PD
versus CN, PSP versus CN and PSP versus PD, respectively.

The range of principal components for which accuracy, specificity and sensitivity
fell above 80% (Accuracy>80, Specificity>80 and Sensitivity>80) was found to be from
16 to 26 components when using half-splitting validation approach. In this range, for
each of the three classifications, Accuracy>80 was > 85.7%, with mean Accuracy>80 =
{93.5; 92.2; 92.2}% for the classification of PD versus CN, PSP versus CN and PSP versus
PD, respectively. Specificity>80 was > 82.4%, with mean Specificity>80 = {90.6; 92.5;



91.3}% for the classification of PD versus CN, PSP versus CN and PSP versus PD,
respectively. Sensitivity>80 was > 85.7%, with mean Sensitivity>80 = {97.4; 92.4;
94.4}% for the classification of PD versus CN, PSP versus CN and PSP versus PD,
respectively.

Table 3.1.3 Accuracy, Specificity and Sensitivity rates of SVM using half-splitting

validation.

Overall Mean

Overall Mean

Overall Mean

PSP vs. PD

Accuracy (%) Specificity (%) Sensitivity (%)
Accuracysgg (%) Specificitysgo (%) Sensitivitysgo (%)
Mean (Min/Max) Mean (Min/Max) Mean (Min/Max)
PD vs. Controls 83.2 81.9 85.4
' 93.5 (89.3/100) 90.6 (82.4/100) 97.4 (92.3/100)
86.2 92.1 82.9
PSP vs. [
SP'vs. Controls 92.2 (85.7/96.4) 92.5 (85.7/100) 92.4 (85.7/100)
84.7 87.5 83.8

92.2 (89.3/96.4)

91.3 (82.4/100)

94.4 (86.7/100)

Classification performance reported above was consistent with previous studies,
such as studies using manual morphological metrics (e.g., Massey et al., 2013;
Quattrone et al., 2008; Oba et al., 2005; Schulz et al., 1999) or studies applying SVM to
MRI data (Focke et al., 2011; Haller et al., 2012).

Interestingly, the most difficult task in literature among those explored in this
section seems to be the discrimination between PD and CN. For example, in the study
by Focke and colleagues (2011), the classification performance for the diagnosis of PD
(PD vs. CN) was reported to be only marginally better than chance. Haller et al. (2012;
2013) applied SVM to Diffusion Tensor Imaging (DTI) and susceptibility-weighted
images, obtaining classification performances comparable to those reported in this
work for the diagnosis of PD. However, in these later works the clinical classification
was made using a cohort of parkinsonisms that was heterogeneous in the group of
patients and without considering CN subjects.

3.1.5 Diagnostic MR-related biomarkers

Figure 3.1.4 shows maps of voxel-based pattern distribution displaying the
importance of each voxel for the SVM classification of PD versus CN (28 vs. 28), PSP
versus CN (28 vs. 28) and PSP versus PD (28 vs. 28). The pattern is expressed according
to the color scales reported in the figure.

When considering the direct classification of PD versus CN and PSP versus CN by
SVM, the pattern distribution of the most important voxels for group separation was
similar for both PD and PSP patients, as shown in the upper part of Figure 3.1.4.
However, it is worth noting that, only for the classification of PD versus CN, SVM



classification revealed significant voxels within the medial part of the midbrain
(encompassing the substantia nigra) and the caudal part of the pons.

For the differential classification of PSP versus PD by SVM, the most important
voxels were found to be localized in the midbrain, pons, corpus callosum and
thalamus, as shown in the bottom part of Figure 3.1.4.

Overall, brain regions detected as the most important to perform classification of
PD versus PSP (i.e., midbrain, pons, corpus callosum and thalamus) are highly
consistent with typical neuropathological (Steele et al., 1964) and imaging findings
described in patients with PSP (Shi et al., 2013; Messina et al., 2012). Indeed, the
volumetric atrophy of the brainstem plays a pivotal role in PSP, representing a
hallmark of this pathology (Oba et al., 2005). Moreover, recent studies aiming to
quantify white matter pathology in PSP by means of Diffusion Tensor Imaging (DTI),
highlighted the involvement of the corpus callosum. The relevance of this finding is
given by the fact that corpus callosum is the largest white matter tract in the brain,
enabling interhemispheric communication, particularly with respect to motor
coordination, and it is one of the damaged tracts in PSP (Knake et al., 2010; Canu et al.,
2011).
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Figure 3.1.4 Maps of voxel-based pattern distribution of brain structural differences (sagittal
view, threshold = 60%). The importance of each voxel in the SVM classification is expressed
according to the color scale. A, PD versus CN; B, PSP versus CN; C, PSP versus PD; PD:
Parkinson’s Disease; PSP: Progressive Supranuclear Palsy; CN: healthy controls.

For the classification of PD versus CN by SVM, a more widespread pattern was
highlighted by our analysis, involving several cerebral regions. This result seems to
confirm the hypothesis that PD is a more heterogeneous clinical phenotype,
characterized by several neural pathologies which may be topographically separated.
Among the most important areas for the classification of PD versus CN highlighted by



our analysis, the medial part of the midbrain (encompassing the substantia nigra) and
the caudal part of the pons are consistent with findings reported in the Braak’s
neuroanatomical model of the PD (Braak et al. 2003). Post-mortem studies by Braak
and colleagues (see Del Tredici et al., 2002), based on the analysis of Lewy neuritis and
Lewy bodies accumulation (that is, a proteic hallmark of PD), showed that various
cerebral structures are damaged in a consistent and repeated pattern before
substantia nigra. In a six-stage model of disease proposed by Braak et al. (2004), PD
would begin (stage 1) in the medulla oblongata and in the olfactory bulb, and it would
progress (stage 2) in a caudo-rostral pattern. Substantia nigra would be affected only
during the onset of the motor symptoms (stage 3), which are often detected in the first
neurological visit of the patient. Nevertheless, to date only one study (Jubault et al.,
2009) about structural neuroimaging investigating the neural basis of PD did describe
the occurrence of anatomical changes in this region. It is worth noting that most of the
studies that have investigated structural abnormalities in PD were performed using
standard mass-univariate analytical methods. The main advantage of SVM in this point
is that it is able to take into account inter-regional correlations, being sensitive to
subtle and spatially distributed differences in this way. This represents the optimal
framework for investigating neurological diseases, in which a distributed network of
regions is affected.

3.2 Application llI: Alzheimer’'s Disease

3.2.1 Participants

No significant differences were found for age (Student’s t-test with significance
level at 0.05) and gender (Pearson’s chi-square test with significance level at 0.05)
among the groups of participants. On the other side, for MMSE scores, significant
differences were found between patients (AD, MClc) and CN using a Student’s t-test
with p<0.0001. This is consistent with previous studies that considered the same
groups of ADNI subjects (Cuingnet et al., 2012).

3.2.2 MR images

In Figure 3.2.1, the results of co-registration to the MNI template and
segmentation into GM and WM tissue probability maps are shown for a representative
MR image of a patient with MClc. Sagittal view of the original MR volume (A), same
slice co-registered to the MNI space (B), and same slice segmented into GM (C) and
WM (D) tissue probability maps are shown.

Overall, co-registration and segmentation were correctly performed for all MR
images involved in this study, with no artifacts at visual inspection.

3.2.3 The classifier
In Figure 3.2.2, PCA coefficients resulting from feature extraction and feature
selection are shown as a representative example for the classification of AD vs. CN. 1%,



2" and 3" components are shown when using GM tissue probability map and an
isotropic Gaussian kernel with 10 mm?> FWHM for smoothing. In this case, the number
of the extracted PC was 141.

Figure 3.2.1 Sagittal image of a MR scan from a MClc patient: (A) original image; (B) same
slice, deskulled and co-registered to the MNI space; same slice, segmented into Gray Matter
(GM) (C) and into White Matter (WM) (D).

The explained variance as a function of the number of considered principal
components is shown in Figures 3.2.3-3.2.4, as representative example. Figure 3.3.3
shows the explained variance before sorting principal components according to their
FDR, while Figure 3.3.4 shows the explained variance after sorting principal
components according to their FDR. Plots are shown for the classification of AD versus
CN, MClc versus CN and MClc versus MCInc when using GM tissue probability maps
and no smoothing. As it can be seen looking at these two figures, the trend of
explained variance as a function of the number of considered PCs was modified by the
application of FDR-analysis. In particular, FDR ranking allowed the most discriminative
information for class separation to be contained in the first few principal components.
This is shown, for example, by the step in the explained variance in correspondence
with a low number of components for the classification of both AD versus CN and MClc
versus CN in Figure 3.2.4.
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Figure 3.2.2 PCA coefficients for the comparison between AD (o symbol) and CN (x symbol)
when using GM tissue probability map and an isotropic Gaussian kernel with 10 mm3 FWHM
for smoothing. 1st, 2nd and 3rd components are shown.
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Figure 3.2.3 Explained Variance as a function of the number of considered Principal

Components, when using GM tissue probability map and no smoothing, for the following
comparisons: AD vs. CN, MClc vs. CN, MClc vs. MCinc.
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Figure 3.2.4 Explained Variance as a function of the number of considered Principal
Components sorted in accordance to their FDR, when using GM tissue probability map and no
smoothing, for the following comparisons: AD vs. CN, MClc vs. CN, MClc vs. MCinc.

In Figure 3.2.5, a representative example of the hyper-plane separating AD from
CN subjects is shown when using the following parameters: 3 PCA coefficients, GM
tissue probability map and an isotropic Gaussian kernel with 10 mm?® FWHM for
smoothing. The number of subjects involved in this case was 142, including 67 AD and
75 CN, while the total number of extracted PCA coefficients was 141.

3.2.4 Optimization of classification and performance evaluation

Figures 3.2.6-3.2.8 show E (i.e., 1 — Balanced Accuracy) as a function of the
applied smoothing (FWHM — mm?) and of the number of PCA coefficients. Plots are
shown for the classification of AD versus CN, MClc versus CN and MClc versus MClnc
when using GM tissue probability maps.

In Table 3.2.1, optimal parameters resulting from classifier optimization are
reported. For all the classifications (AD versus CN, MClc versus CN, MClc versus
MCInc), minimum values of E (for the 20 rounds of the nested 20-fold CV) were
obtained —mostly— when using GM tissue probability maps (with a frequency of 100%
for AD versus CN, 85% for MClc versus CN and 80% for MClc versus MCInc). On the
other side, the number of PCA coefficients and the FWHM value of the isotropic
Gaussian kernel for smoothing resulted to be different among the 20 rounds.

For the classification of AD versus CN, the best set of optimal parameters
among the 20 rounds was: GM tissue probability map; 10 mm? FWHM of the isotropic
Gaussian kernel for smoothing; 127 PCA coefficients. When using these parameters, E



reached its minimum value of 0.08. For the classification of MClc versus CN, the best
set of optimal parameters among the 20 rounds was: GM tissue probability map; 6
mm?> FWHM of the isotropic Gaussian kernel for smoothing; 67 PCA coefficients. When
using these parameters, E reached its minimum value of 0.14. For the classification of
MClc versus MClInc, the best set of optimal parameters among the 20 rounds was: GM
tissue probability map; 2 mm® FWHM of the isotropic Gaussian kernel for smoothing;
34 PCA coefficients. When using these parameters, E reached its minimum value of
0.27.
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Figure 3.2.5 Hyper-plane plane separating AD (o symbol) from CN (x symbol) PCA coefficients (3
PCA coefficients), and defined Support Vectors (o symbol), when using GM tissue probability
map and an isotropic Gaussian kernel with 10 mm3 FWHM for smoothing. 1st, 2nd and 3rd
components are shown.

The Overall Balanced Accuracy (averaged across all the 20 rounds of the nested
20-fold CV) was 0.76 + 0.11 for the classification of AD vs. CN, 0.72 + 0.12 for the
classification of MClc vs. CN, 0.66 + 0.16 for the classification of MClc vs. MCinc,
respectively.

Since MMSE resulted significantly different between CN and patients (i.e., AD
and MCic), we tested our ML method after including MMSE as additional feature
(besides MR data) to be given as input to the implemented classification algorithm.
Balanced Accuracy resulted to be affected by the inclusion of MMSE among the input
features (from 0.76 + 0.11 to 0.99 + 0.03 for AD vs. CN, from 0.72 £+ 0.12 t0 0.78 + 0.16
for MClc vs. CN, from 0.66 + 0.16 to 0.60 + 0.17 for MClc vs. MCInc). This result is not
surprising, given the distribution of the MMSE scores among groups that is shown in
Figure 3.2.9.
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Figure 3.2.6 E (1 — Balanced Accuracy) as a function of smoothing (FWHM — mm3) and number
of PCA coefficients for the comparison between AD and CN when using GM.
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Figure 3.2.7 E (1 — Balanced Accuracy) as a function of smoothing (FWHM — mm3) and number
of PCA coefficients for the comparison between MClc and CN when using GM.
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Figure 3.2.9 Scatter plot reporting MIMSE scores for the training (TR) and testing (TS) subsets of
CN (red), AD (green), MClc (blue) and MCinc (light blue) groups of subjects. For each MMSE
score, the dimension of the circles in the plot is proportional to the number of subjects who
obtained that score.

In Figure 3.2.10, the explained variance is shown as a function of the number of
considered principal components after sorting them according to their FDR. Data are
shown for the classification of AD versus CN (blue), MClc versus CN (green) and MClc
versus MClInc (red) when using the optimal configuration highlighted (in bold) for each
classification in Table 3.2.1. For the classification of AD versus CN, the percentage of
variance explained by the first 127 components was 98%; for the classification of MClc
versus CN, the percentage of variance explained by the first 67 components was 74%;
for the classification of MClc versus MClinc, the percentage of variance explained by
the first 34 components was 50%.

In the paper published by Cuingnet and coworkers (2011), the same group of
ADNI subjects employed in the work described in this section was used with the aim of
evaluating and comparing the performances of different ML methods for the
classification of AD. In that case, the dataset was half-splitted in order to use one half
of the original dastaset to estimate the optimal hyperparameters of the classifiers and
the remaining half of the original dataset to evaluate the classification performances. It
must be noted that, among the 28 algorithm configurations tested by Cuingnet and
colleagues, only one reported a Balanced Accuracy higher than 0.66 (that is, the one
obtained in our work) for the classification of MClc vs. MClnc.



Table 3.2.1 Classification error and optimal parameters (Tissue map, Smoothing,
Number of PCA coefficients) for each of the 20 rounds of the inner training-and-
validation loop (best configuration in bold).

C . E Ti Smoothing PCA
omparison I5sU€ map FWHM [mm?] coefficients
0.10 GM 6 6
0.08 GM 10 127
0.12 GM 10 41
0.11 GM 4 62
0.11 GM 6 75
0.15 GM 2 64
0.13 GM 8 69
0.12 GM 4 32
0.12 GM 2 67
0.11 GM 2 50
AD Vs. CN 0.12 GM 4 48
0.09 GM 4 54
0.13 GM 8 35
0.12 GM 2 118
0.12 GM 4 46
0.13 GM 2 22
0.12 GM 2 135
0.15 GM 6 49
0.11 GM 6 54
0.12 GM 12 30
0.19 GM 8 26
0.17 GM 2 25
0.20 GM 2 94
0.19 GM 4 53
0.22 WB 2 14
0.20 WB 10 57
0.15 GM 4 62
0.15 GM 10 22
0.21 GM 10 75
0.19 GM 10 32
MClc vs. CN 0.14 oM 6 67
0.19 GM 4 13
0.19 WB 6 64
0.17 GM 10 80
0.22 GM 8 28
0.18 GM 12 21
0.19 GM 12 16
0.19 GM 10 81
0.19 GM 8 76
0.19 GM 8 101
0.30 GM 2 9
0.31 GM 10 19
0.33 WB 12 34
0.34 GM 4 34
0.32 GM 8 16
0.30 GM 6 17
0.33 WB 2 21
0.28 GM 6 10
0.27 GM 2 34
0.31 WM 4 4
MClc vs. MClInc 031 &M N 16
0.32 GM 8 31
0.32 GM 8 23
0.30 GM 4 46
0.34 GM 8 33
0.33 GM 8 2
0.32 WB 4 34
0.28 GM 10 5
0.30 GM 8 8
0.30 GM 2 84
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Figure 3.2.10 Explained Variance, when using the best set of optimal parameters, as a function

of the number of considered Principal Components sorted in accordance to their FDR, for the
following comparisons: AD vs. CN, MClc vs. CN, MClc vs. MCinc.

3.2.5 Diagnostic MR-related biomarkers

Figures 3.2.11-3.2.13 show voxel-based pattern distribution maps for the three
following classification: 1) AD versus CN, 2) MClc versus CN, 3) MClc versus MClInc. The
pattern of differences (normalized to a range between 0 and 1) is expressed according
to the color scales.

Figure 3.2.11 shows the pattern of differences between AD and CN. As it can be
seen, voxels influencing the classification of AD with respect to CN are localized in the
temporal pole, superior and medial temporal cortex, including hippocampus and
entorhinal cortex, amygdala, thalamus, putamen, caudate, insular cortex, gyrus rectus,
lateral orbitofrontal cortex, superior and inferior frontal cortex, anterior cingulate
cortex, precuneus and in the posterior cerebellar lobule.

Considering the classification of MClc versus CN, the major part of voxel-based
pattern distribution was similar to the one previously found in AD, as shown in Figure
3.2.12.

In the direct classification of the two MCI groups (MClc versus MCinc), we only
detected voxels influencing classification of MClc with respect to MClinc, as it can be
seen in Figure 3.2.13. In other words, in the brain of the patients with MCInc no
anatomical changes useful to increase the accuracy of classification were detected.
Overall, the major part of voxel-based pattern distribution was similar to the one
detected in the previous MClc versus CN classification.



The anatomical features detected in this application of the proposed ML method
to the classification of AD are in line with previous research showing the precedence of
pathologic changes in the temporal and parietal cortex (Braak and Braak, 1991;
Schroeter et al., 2009), both in terms of spatial localization and extent.

Figure 3.2.11 Voxel-based pattern distribution map (axial view) for the classification between
AD and CN. Voxel-based pattern distribution (normalized to a range between 0 and 1) is
expressed according to the color scale (threshold = 50%) and superimposed on a standard
stereotactic brain for spatial localization.

A recent meta-analysis (Schroeter et al., 2009) focusing on the characterization
of the prototypical neural substrates of AD and its prodromal stage amnesty MCIl using
neuroimaging data, showed that the following features resulted to be important for
the discrimination of AD versus CN and MCI versus CN, respectively:

(a) reduction in glucose utilization and perfusion in the inferior parietal lobules,
posterior superior temporal sulcus, precuneus, posterior cingulate cortex, anterior
medial frontal cortex, anterior cingulate gyrus and right inferior temporal sulcus;
hypometabolism in the right frontal pole, left posterior middle frontal gyrus and left
hippocampal head; gray matter atrophy in both amygdalae, both anterior hippocampal
formations, entorhinal areas, medial thalamus, posterior insula, left middle temporal
gyrus and superior temporal sulcus, when comparing AD (826 patients) versus CN
(1097 subjects);



(b) reduction of glucose utilization and perfusion in the inferior parietal lobules
and the posterior cingulate cortex and precuneus; hypometabolism in the left anterior
superior insula; gray matter atrophy in the left temporal pole, anterior superior
temporal sulcus, right amygdala and gyrus rectus, when comparing MCI (525 patients)
versus CN (1087 subjects).

$8686866686

Figure 3.2.12 VVoxel-based pattern distribution map (axial view) for the classification between
MClc and CN. Voxel-based pattern distribution (normalized to a range between 0 and 1) is
expressed according to the color scale (threshold = 45%) and superimposed on a standard
stereotactic brain for spatial localization.

In our study, the computation of diagnostic MR-related biomarkers showed only
one brain region that seems to be not usually related to AD, i.e., the cerebellum.
Specifically, our method identified the posterior lobule of the cerebellum as important
area for the classification of AD and MCI. Atrophy of the cerebellum has been pointed
out as important neuroimaging marker for AD in very few studies (Thomann et al.,
2008a; Nigro et al., 2014). However, many studies based on histo-pathological analysis
showed the presence of degenerative changes in the cerebellum of patients with AD
compared to CN (Li et al., 1999; Wegiel et al.,, 2000; Wang et al., 2002). These
degenerative changes include reduced Purkinje cell density, atrophy of the molecular
and granular cell layer, and a higher number of amyloid plaques in the cerebellar
cortex of patients with AD with respect to CN.

Moreover, in a paper by Thomann and colleagues (Thomann et al., 2008b)
cognitive performance of patients with AD was found to be significantly correlated



with volumes of posterior cerebellar lobes. This result seems to be in line with the one
found in this work, as our ML method detected anatomical changes only in the
posterior lobule of the cerebellum.
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Figure 3.2.13 Voxel-based pattern distribution map (axial view) for the classification between
MClc and MClinc. Voxel-based pattern distribution (normalized to a range between 0 and 1) is
expressed according to the color scale (threshold = 35%) and superimposed on a standard
stereotactic brain for spatial localization.

In general, the pattern detected by the method developed in this work was similar for
the investigated classification tasks (i.e., AD vs. CN, MClc vs. CN and MClc vs. MClinc).
This findings suggest that the use of a DSS such as the implemented ML method may
impact on the sensitivity (rather than on the specificity) in the detection of AD-related
features. As a consequence of this, we could make the further hypothesis that the
problem of how to perform diagnosis of AD at a very early stage (MCI) by MRI data
seems to be a matter of increasing the detectability of structural MR biomarkers. If this
hypothesis was confirmed by other studies, then the use of high-resolution MRI
systems combined with advanced ML algorithms for image processing would allow to
move the diagnostic role of MRI from the clinical to the preclinical stage of AD. This
should encourage the development and implementation of more advanced pattern
recognition algorithms, but also of MRI systems with improved sensitivity, increased
resolution and better S/N ratio.



3.3 Application lll: Eating Disorders

3.3.1 Participants and psychiatric assessment

Compared with age-/sex-/BMI-matched CN, ED patients did not show global
anatomical atrophies in white or gray matter brain volumetry. At a behavioral level, ED
group was characterized by a well-known psychopathological profile, as it reported in
Table 3.3.1 and in Supplementary Materials of the paper by Cerasa et al. (2015). In
particular, as demonstrated by EDI-2, ED patients had higher scores for (a) drive for
thinness scale (t= 4.45; p-level < 0.00001); (b) bulimia scale (t= 2.69; p-level = 0.01); (c)
interoceptive awareness scale (t= 3.81; p-level = 0.0006); (d) asceticism scale (t= 3.81;
p-level = 0.0006); (e) body dissatisfaction (t=3.5; p-level = 0.001); (f) interpersonal
distrust scale (t= 2.07; p-level = 0.04) and (g) impulse regulation scale (t= 2.46; p-level =
0.02). No significant differences were detected for Perfectionism, Ineffectiveness,
Maturity Fears and Social Insecurity scales, in agreement with previous studies
(Amianto et al., 2013).

3.3.2 The classifier

None of the acquired MR images was excluded from this study due to problems
with image quality or problems occurred during pre-processing (especially,
normalization to the template).

In Figure 3.3.1a, 1-st and 2-nd extracted PCA coefficients that showed the
highest FDR for the classification of ED versus CN are plotted. Data are shown from a
single round of CV as a representative example. In this case, the number of subject
involved was equal to 31 (16 ED and 15 CN) and the total number of extracted PCA
coefficients was equal to 30. The analysis of variance showed that the percentage of
variance retained by the first principal component was equal to 27.0%, while the
number of extracted principal components accounting for 50% and 95% of the whole
variance was 6 and 27, respectively.

In Table 3.3.2, FDR values of the 30 features (PCA coefficients) used for the
classification of ED versus CN are reported. Data from a single round of CV are shown,
as a representative example. As it can be seen, in this case the highest FDR value was
reached by 8™ pcA coefficient, which accordingly resulted the most important feature
for the classification of ED versus CN.

In Figure 3.3.1b, 1-st and 2-nd extracted PCA coefficients that showed the
highest FDR (i.e., after FDR raking) are plotted jointly with 1-st and 2-nd extracted PCA
coefficients considered before FDR ranking. As it can be seen from this plot, FDR allows
improving binary group separation by identifying the most discriminative features for a
given classification task (in this case, ED versus CN).

Figure 3.3.2 shows the predictive (or decision) function for the classification of
ED versus CN resulting from the training phase of the classifier (1-st and 2-nd
components with highest FDR are plotted).



Table 3.3.1 Demographic characteristics

Demographical data

Variables ED (n°17) CN (n°17) P-level
Age (years) 30.2+5.6 30.1+5.5 0.95
Educational level (years) 17 (13-21) 17 (13-21) 0.88
BMI 23.6+8.2 24.1+4.8 0.79
MRI data
Total GM Volume 587.3+37.5 608.88 +42.1 0.11
Total WM Volume 486.5 £ 63.1 489.6 £41.6 0.86
Total CSF Volume 188.3 £ 28.7 187 +£23.2 0.88
Clinical Data
HAMA 14.6 +13 4+22 0.04
BDI 16.8 +10.1 6.3+4.7 0.0004
DES 14.32+12.4 5.12+4 0.007
EAT-26 23.3+14.4 6.35+3.2 0.00004
SDQ-20 28.64 +14.8 206+1.1 0.03
BIDA 29.9+19.4 199111 0.24
Clinical Data EDI-2 scale
DRIVE FOR THINNESS 9.4+6.3 1.2+13 0.0001
BULIMIA 3.47+45 0.1+0.5 0.01
INTEROCEPTIVE AWARENESS 7.9+6.2 0.7+1.2 0.0006
ASCETICISM 5.6 +3.8 2+1.1 0.0006
BODY DISSATISFACTION 129+7.2 6.1+29 0.001
PERFECTIONISM 43+39 3.3+3.1 0.41
INTERPERSONAL DISTRUST 3.6+3.1 14+1.2 0.04
IMPULSE REGULATION 3.67+4.9 06+14 0.02
INEFFECTIVENESS 3.5+5.2 1.2+2.6 0.12
MATURITY FEARS 52+3 394126 0.13
SOCIAL INSECURITY 3.53+3.2 21%2 0.22

Data are given as mean values (SD) or median values (range) when appropriate. BMI: Body-
Mass Index; GM: Gray Matter; WM: White Matter; CSF: cerebrospinal fluid ; PBI: Parental
bonding instrument; STAI: State-Trait Anxiety Inventory; HAMA: Hamilton rating scale for
anxiety; BDI: Beck Depression Inventory; DES: Dissociative Experiences Scale; EAT-26: Eating
attitude test-26; SDQ-20: Somatoform Dissociation Questionnaire-2; BIDA: Body Image
Dimensional Assessment; EDI-2: Eating Disorder Inventory-2. Total brain MRI parameters have

been calculated using VBMS tool.
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Figure 3.3.1 Plot of the PCA coefficients that showed the highest FDR (A) and joint plot of the
PCA coefficients before (triangles) and after (circles) FDR ranking (B) for the ED versus CN group
discrimination (1-st and 2-nd components). Data from a single round of CV are shown as a
representative example.

3.3.3 Performance evaluation

As explained in subsection 2.4.4, classification performance in terms of accuracy,
specificity and sensitivity for ED versus CN were obtained through 10-fold and 20-fold
CVv.

When considering 20-fold CV, classification performance were computed over a
number of PCA coefficients ranging from 1 to 32. Accuracy, specificity and sensitivity
reached their best values of 0.85, 0.73 and 0.93, respectively, when using 31 PCA
coefficients.

When considering 10-fold CV, classification performance were computed over a
number of PCA coefficients ranging from 1 to 30. Accuracy, specificity and sensitivity



reached their best values of 0.80, 0.72 and 0.96, respectively, when using 21 PCA

coefficients.

Table 3.3.2 FDR values of the 30 features (PCA coefficients) used for the ED versus CN
discrimination. Data from a single round of CV are shown as a representative example.

PCA coefficient (#) FDR PCA coefficient (#) FDR
1 0.2052 16 0.0176
2 0.0172 17 0.0279
3 0.0021 18 0.0188
4 0.1286 19 0.0206
5 0.0005 20 0.0511
6 0.0786 21 0.0369
7 0.1484 22 0.0001
8 0.3923 23 0.0200
9 0.0354 24 0.0052
10 0.0137 25 0.1839
11 0.0919 26 0.0431
12 0.3376 27 0.0015
13 0.1057 28 0.0250
14 0.0002 29 0.0321
15 0.0128 30 0.0171

In Figure 3.3.3, accuracy, specificity and sensitivity rates are plotted as a function
of the number of employed PCA coefficients for the classification of ED versus CN. As
expected, the performance of the classification algorithm increases with the number

of employed PCA coefficients.
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components with highest FDR). Data from a single round of CV are shown as a representative

example.
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Figure 3.3.3 Accuracy, Specificity and Sensitivity of classification as a function of the number of
employed PCA coefficients for the ED versus CN group discrimination (20-fold CV).

The classification accuracy reported above as obtained by the implemented ML
algorithm for the automatic classification of ED vs. CN resulted to be comparable to or
higher than those reported in published studies aiming at the classification of
psychiatric disorders by means of ML: for example, 80-85% reported by Castellani et
al. (2012) for the classification of schizophrenic patients; 81% reported by Almeida et
al. (2013) for the classification of depression disorders; 75% reported by Pettersson-
Yeo et al. (2013) for the classification of first-episode psychosis.

3.3.4 Diagnostic MR-related biomarkers

Figure 3.3.4 below shows the voxel-based pattern distribution map of brain
structural differences for the classification of ED versus CN. The pattern of differences
was mainly localized in the occipital cortex and the posterior cerebellar lobule. Other
brain regions involved were in regulation of emotional processing known to be
damaged in ED patients were detected: precuneus, sensorimotor and premotor
cortices as well as the ACC and OFC.

Among the regions highlighted above, the cerebellum is a multidimensional brain
structure that is involved in various functions, including motor, cognitive and
emotional functions. The role of the cerebellum in visceral and autonomic regulation
has been highlighted (Mahler et al., 1993; Zhu et al., 2008). In particular, the cerebellar
vermis has a role in appetite regulation and in feeding behavior. This region is
connected with limbic brain structures in an extensive way. Connected regions include
hippocampus, parahippocampal gyrus, amygdala, thalamus, cingulate and prefrontal
cortices (Middleton et al., 2001). Several structural neuroimaging studies (e.g. Boghi et
al, 2011; Suchan et al, 2010; Husain et al, 1992) described the presence of GM volume
loss mainly in AN, thus demonstrating the involvement of the cerebellum in ED, with a
particular role played by the vermis subregion. A more recent study, conducted by
Amianto and colleagues (Amianto et al., 2013) using resting state fMRI, demonstrated



the presence of altered intrinsic connectivity of the cerebellar vermis in both patients
with AN and BN. As it can be read in this paper, there might be a relation between the
resulting dysfunctional neural pattern and some psychopathological aspects that are
altered in ED patients (e.g., drive for thinness).

Eating disorders vs healthy controls

Figure 3.3.4 Voxel-based pattern distribution map of brain structural differences between ED
patients and CN (sagittal view, threshold = 50%). Voxel-based pattern distribution (normalized
to a range between 0 and 1) is expressed according to the color scale and superimposed on a
standard stereotactic brain for spatial localization.

The ACC, together with the OFC, are two regions taking part in the ventral limbic
circuit, together with the amygdala, insula and ventral striatum, which are important
for identifying the emotional significance of appetizing stimuli for inhibiting impulsive
behaviors (Marsch et al., 2015) and regulating reward systems (Avena and Bocarsly,
2012). The current neuroimaging literature mainly highlights the role of this neural
network in pathophysiological mechanisms of BN. Indeed, the lack of control and the
impulsivity in BN could be explained by the alterations of mesolimbic reward response
mechanisms, which are neurophysiologically expressed through dysfunctional activities
in the ACC and OFC regions (Brooks et al, 2012; Friederich et al, 2013). However,
fronto-striatal neural circuit dysfunctions related to altered reward processing were
also described in patients with AN (Keating et al, 2012), thus raising a different
perspective in which stimuli that are otherwise aversive for healthy controls (e.g., self-
starvation, emaciated body image), are considered as rewarding stimuli able to
activate relevant reward linked brain regions in patients with AN.

The involvement of the visual cortex is another key site associated with ED.
Indeed, altered functional activity of the occipital lobe has been reported in both AN
and BN individuals (Brooks et al., 2011). However, body image disturbance is
considered one of the core characteristics of AN. Several neuroimaging studies have
described the neurobiological correlates of this symptom, defining the presence of a
specific neural network involved in body processing: the fusiform area, the inferior
temporal sulcus and the primary visual cortex. Recent evidences (Suchan et al, 2013)
demonstrated altered effective connectivity between these regions in patients with AN
during the viewing of bodies.



Finally, abnormal neural changes in the precuneus and sensorimotor/premotor
cortices have already been described in both patients with AN and BN (Gaudio et al.,
2011; Amianto et al, 2013; Suchan et al, 2013). Using body images of slim fashion
models to induce a self-other body shape comparison, in the paper by Friederich et al.
Friederich et al., 2013) it was shown that AN patients had a higher activation of the
premotor cortex. Amianto et al. (2013) found altered gray matter volume in the
paracentral lobule, precuneus and somatosensory regions when comparing AN and BN
patients, as well as the whole ED group, with respect to controls. Altered neural
changes in brain areas involved in sensorimotor functions and visuo-proprioceptive
information processing may either represent the physiological consequence of physical
hyperactivity typical of ED patients or as a dysfunction related to the body awareness.
Body awareness is a complex cognition underpinned by aspects of visual perception,
proprioception, and touch (Berlucchi and Aglioti, 2013). The processing of the body
image concept requires integration of the different types of body-related perceptual
experience and processing of information related to peripersonal space. The presence
of altered anatomical changes in these regions together with visual cortex has been
interpreted as a dysfunctional processing of somatosensory information about the
perceived body size (Gaudio et al., 2011; Favaro et al., 2012).

3.4 Other applications
3.4.1 Autism Spectrum Disorder

3.4.1.1 Participants
Table 3.4.1 summarizes demographic, cognitive, and clinical characteristics of the
participants.

3.4.1.2 Data analysis

The analysis confirmed the validity of mental age matching (p > 0.05). Gender
was also balanced between ASD and TD groups, as there were 3 girls in the ASD group
and 2 girls in the healthy control group (x*(1) = .240; p > 0.05). 1Q and chronological
age were not balanced across groups (both p < 0.001), as expected.

In Table 3.4.2 kinematic feature values of the two groups of children (ASD and
TD) included in the study are reported jointly with the results of ANCOVA calculated on
all kinematic measures. Even after controlling for between-participant differences in 1Q
and chronological age, several significant group differences were identified for the
kinematic variables.

3.4.1.3 The classifier

Figure 3.4.1 shows, as a representative example, the optimal separating hyper-
plane for the classification of ASD vs. TD participants as resulting from the training
phase of the ML method.



Table 3.4.1 Demographics of the participants

ASD ™ t(1,28) p

N 15 15

Females : Males 3:12 2:13

Chronological Age® 3;5+7,7 2:6 +5,2 -4.55 <.001
(2,8 - 4;6) (1,7 -2;9)

Mental Age® 2,6 £5,7 2,7%£5,9 .513 n.s.
(1,7 -3;4) (1,6 - 3;2)

1Q° 75+ 13,4 105 +12,7 6.52 <.001
(51 - 96) (81-119)

ADOS*

Social 11+£2,2 -

Communication 7+1,5 -

SBRI 2+1,6 -

ASD = autism group; TD = typically developing group; 1Q and mental age were assessed using the
Griffiths Mental Development Scales (Griffiths, 1970).

a Mean years; months + standard deviation (range)

b Mean * standard deviation (range)

¢ ADOS autism diagnostic observation schedule, Lord et al. (2000)

d Stereotyped Behavior and Restricted Interests scale.
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Figure 3.4.1 Optimal separating hyper-plane for the Autism group (ASD) versus typically
developing groups (TD) (1st, 2nd and 3rd components) is shown as a representative example of
the training phase of the machine-learning method



Table 3.4.2 Kinematic data were initially analyzed through an ANCOVA with Group
(ASD vs. TD) as a between-participant factor, and with 1Q and chronological age as
covariates. The alpha level was set to .05 for all data analyses. Table depicts group
means and standard deviations for kinematic variables, values of F test, p values and
effect sizes reported using partial eta squared (npz).

Submovement 1 ASD TD F (1,26) Sig. r].o2

. M 1.91 1.70
Movement Units (sD) | (0.62) (0.37) <1.0 n.s. .012

. M 0.69 0.66
Total Movement Duration (sD) | (0.14) (0.12) <1.0 n.s. .010

. M 0.46 0.59
Peak Velocity (D) | (0.12) (0.17) 5.626 <0.05 .178

Time of Peak Velocity (;\g) (8.3171) (8'22) <1.0 n.s. .036

. M 3.18 4.26
Peak Acceleration (D) | (0.93) (1.52) 7.884 <0.01 233

. . M 0.21 0.16
Time of Peak Acceleration (D) | (0.07) (0.05) <1.0 n.s. .031

. M -3.59 -3.93
Peak Deceleration (D) | (1.28) (1.44) <1.0 n.s. .067

. ) M 0.47 0.44
Time of Peak Deceleration (D) | (0.08) (0.06) <1.0 n.s. .017

Submovement 2

. M 3.45 1.76
Movement Units (sD) | (1.78) (0.39) 4.408 <0.05 .145

. M 1.35 0.79
Total Movement Duration (sD) | (0.44) (0.15) 13.832 =0,001 .347

. M 0.61 0.76
Peak Velocity (D) | (0.15) (0.16) 13.475 =0,001 .341

Time of Peak Velocity (;\g) (g'ﬁ) (g'g;) 18.501 <0,001 416

. M 3.85 5.58
Peak Acceleration (D) | (1.13) (1.94) 12.416 <0,01 .323

. . M 0.23 0.13
Time of Peak Acceleration (D) | (0.20) (0.04) 6.303 <0.05 .195

. . M -3.29 -4.27
Pick Deceleration (D) | (1.15) (1.88) 2.632 n.s. .092

. . M 0.75 0.51
Time of Peak Deceleration (sD) | (0.24) (0.11) 26.652 <0,001 .506

. M -4.25 -25
Wrist Angle (D) | (16.34) | (12.40) 6.604 <0.05 .203

ASD = autism group; TD = typically developing group;




3.4.1.4 Performance evaluation and extraction of the most
discriminant features

Table 3.4.3 shows accuracy, specificity, and sensitivity of the machine-learning
method for the comparison of ASD versus TD.

Table 3.4.3 Accuracy, Specificity and Sensitivity rates of SVM using LOO validation.

Maximum
Accuracy (%)

(# selected features)

Maximum
Specificity (%)

(# selected features)

Maximum
Sensitivity (%)

(# selected features)

Overall Mean

Overall Mean

Overall Mean

Accuracy (%) Specificity (%) Sensitivity (%)
96.7 (7) 93.8(7) 100.0 (7)
ASD vs. TD
84.9 89.1 82.2

ASD = autism group; TD = typically developing group. The maximum values reached by Accuracy,
Specificity and Sensitivity were referred to as Maximum Accuracy, Specificity and Sensitivity rates.
Accuracy, Specificity and Sensitivity reached their maximum values using 7 features, all related to the
second part of the movement -Sub movement 2-: (1) Total Duration; (2) delta Wrist Angle; (3) number of
Movement Units; (4) time of Peak Deceleration; (5) Peak Acceleration; (6) time of Peak Velocity; (7) Peak
Velocity.

The implemented ML method was able to classify participants by diagnosis
reaching a maximum accuracy of 96.7% (specificity 93.8% and sensitivity 100%) when 7
features selected by the FDR-based technique were given as input to the classifier.
Overall mean accuracy, specificity, and sensitivity rates were calculated over a number
of selected features ranging from one to 17 (the whole number of features). The
overall mean classification accuracy (specificity/sensitivity) for ASD vs. TD was 84.9%
(89.1%/ 82.2%).

The dependence of the metrics on the number of considered features is shown
in Figure 3.4.2. The resulting data are shown for a number of features ranging from 1
to 17. As it can be seen, accuracy, specificity and sensitivity increase with the number
of selected features, reaching their maximum values when considering the 7 selected
features by FDR.

Although diagnosis of ASD is particularly difficult in young, low-functioning
children (even through the standard diagnostic procedure), classification performance
achieved in this work suggest the validity of the proposed method to classify preschool
this disorder on the basis of a motor task.

As explained in subsection 2.5.1.5, besides evaluating the classification
performance of the implemented method, our analysis allowed us to identify which



kinematic features gave the greatest contribution to the classification of ASD versus
TD.

In order to classify ASD versus TD, 7 out of 17 features were sufficient, reaching
an accuracy of 96.7%. These 7 features are (in descending order) (1) total duration, (2)
delta wrist angle, (3) number of movement units, (4) time of peak deceleration, (5)
peak acceleration, (6) time of peak velocity and (7) peak velocity of the sub-movement
2. It is worth noting that all these 7 kinematic features are related to the sub-
movement 2, i.e., the second part of the movement, aimed to transport the ball from a
support to the target hole before dropping it. In particular, the top 3 features resulting
from this analysis indicate that the movements of children with ASD are slower and
more fragmented, leading to inappropriate hand inclination for ball-drops during the
final phases of hand transport. These findings are in line and extend previously
published results, showing the difficulty of translating intention into a motor chain
aiming at an action goal in children with ASD (Cattaneo et al., 2007; Fabbri-Destro et
al., 2009; Forti et al., 2011).
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Figure 3.4.2 Graph showing classification Accuracy, Specificity and Sensitivity rates (%) of SVM
(Y-axis) in relation of the number of considered features (X-axis). As expected, Accuracy,
Specificity and Sensitivity rates increased with the number of selected features. The
classification accuracy reached a Maximum Accuracy of 96.7% (Specificity 93.8%, and
Sensitivity 100%) utilizing seven features. All of these 7 kinematic features are related to the
second part of the movement Sub movement 2 (i.e., the movement to transport the ball from a
support to the target hole in which the ball was to be dropped), suggesting that goal oriented
movements may be critical in separating children with ASD from typically developing children.

When considering all of the N rounds (30) of the LOO validation approach, the
most discriminative features between the two groups are (in descending order): Total
Duration sub movement 2, Delta Wrist Angle, Movement Units sub movement 2, time
of Peak Deceleration sub movement 2, Peak Acceleration sub movement 2, time of
Peak Velocity sub movement 2, Peak Velocity sub movement 2, Peak Velocity sub



movement 1, time of Peak Acceleration sub movement 1, Peak Acceleration sub
movement 1, time of Peak Acceleration sub movement 2, Peak Deceleration sub
movement 2, time of Peak Velocity sub movement 1, Movement Units sub movement
1, time of Peak Deceleration sub movement 1, Peak Deceleration sub movement 1,
Total Duration sub movement 1.

Findings reported in this subsection may suggest that (automatic) identification
of children with ASD could be performed by using a limited set of kinematic features.
Furthermore, this could even lead to the hypothesis of a possible motor signature of
ASD related to disrupted planning movement sequences.

3.5 Scalability, computational efficiency and use of
cloud computing

The operational time required by the whole pre-processing and training of the
classifier (including feature extraction and feature selection) for the classification of AD
versus CN (299 subjects), MClc versus CN (238 subjects) and MClc versus MClnc (210
subjects) was 31.7, 21.7 and 21.2 seconds, respectively.

The operational time required by the testing phase (including preprocessing and
classification of the new dataset) was 1.5 seconds per subject on average.

Both training and testing were performed using the optimal parameters
computed in subsection 3.2.4 and reported in Table 3.2.1.

One of the critical aspects of advanced algorithms in medicine, as highlighted in
Chapter 1, regards the translation from bench to bedside, i.e., from research to clinical
practice. Two questions from the data reported just above may arise: what would be
the operational costs using larger (big data) datasets? and what would be the
operational costs in the daily clinical practice, i.e., if no advanced computing systems
are available? These questions may remain unanswered, unless new efforts for
improving the computational power of both advanced (for big data research) and
common (for use in clinical practice) systems are made.

However, it is worth to underline here that the use of centralized web-based
services in general may solve the problem of the translation of advanced competence
(i.e., ML algorithms) from research to clinic, this problem consisting of two main issues:
1) the high operational costs; 2) the need of experience in developing and
implementing these advanced algorithms. All this would be bypassed by the use of a
unique centralized system 1) able to deal with big data and 2) managed by experienced
researchers in this field.

In order to partially answer to these needs, during this thesis | have been
developing a web-based service for the early diagnosis of AD. This service is entirely
based on data and methods used in Application Il (Sections 2.3 and 3.2), and it is able
to perform single-subject prediction of membership to the pathological (AD, MClic) or
healthy (MClInc, CN) class using structural MRI data.



The web-based service is hosted by the servers of our laboratory, which consist
of a system with 32 CPUs running at 2.00 GhZ, as described in Section 2.5. The user-
side workflow of the service consists of 3 steps: a) login, b) patient information entry
and c) upload of MRI data. A schematic user-side workflow of the service is shown in
Figure 3.5.1, while a screenshot of the Upload page is reported in Figure 3.5.2.

Surname (first 3 letters),

birth date and sex nii
V V
Vv Vv
Add 3
= Z Upload Automatic
@ oo > [ e, > @ T > | coiresion
\'A
Vv

@ .pdf report sent via e-mail
to the registered user

Figure 3.5.1 Schematic user-side workflow of the service
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SVM for neurodegenerative diseases

Please, upload your patient file according to supported data formats (.nii)

Scegli file |

Figure 3.5.2 Screenshot of the Upload page

The service was  tested by clinicians of the Institute of
Neurology, University Magna Graecia, Catanzaro, and it can be found on the website
of our laboratory (http://inlab.ibfm.cnr.it/svm_service.php), where it is available, after
registration, for use in clinical practice.




Chapter 4.
CONCLUSIONS AND OUTLOOK

During this thesis | developed and implemented a ML method able to classify
patients by means of their structural MRI data. The efficacy of this method was tested
on different pathologies.

Specifically, we were able to perform differential diagnosis of PD (see Application
|, Sections 2.2 and 3.1), early diagnosis and prognosis of AD (see Application I, Section
2.3 and 3.2) and diagnosis of ED (see Application lll, Sections 2.4 and 3.3). Classification
performances achieved in these applications resulted to be significantly higher than
chance, but also higher than or comparable to those achieved by other automatic
classification methods (see Chapter 3 for details).

A distinctive characteristic of the implemented ML method was the possibility of
computing which of the features (in this case, which voxels) given as input resulted to
be the most significant for group discrimination, thus allowing the generation of image
maps of voxel-based pattern distribution of brain structural differences between two
given groups or conditions. The importance of this further analysis is given by the
possibility of identifying potential biomarkers for the diagnosis of a pathology. This
analysis was conducted for all reported applications (PD, AD and ED), returning results
in line with previously published studies (Application | and Application II), but also
highlighting new possible biomarkers for the diagnosis of the considered pathologies
(Application Il and Application Ill), as detailed in Chapter 3.

Furthermore, this method was adapted to be used for the automatic diagnosis of
ASD through kinematic features collected during a movement task. Also in this case,
classification performance resulted to be high.

At the end of this work, | have also been developing a web-based service for the
early diagnosis of AD, that is entirely based on the methods developed in this thesis
and that makes use of data collected in Application Il (Sections 2.3 and 3.2). This
service is hosted by the servers of our laboratory and it is already available on the
website http://inlab.ibfm.cnr.it for use in clinical practice.



The implemented ML methods described in this whole thesis achieved high
performance in general, but it cannot surely be the best classifier for all situations and
for all pathologies. In this sense, it would be of great interest to study the applications
of this method to other pathologies. Another point of interest would be the adaptation
of the implemented method to work with data coming from other modalities than
MRI, in order to explore its discriminative power when coupled with different sets of
data, as already performed for ASD.

As mentioned in Chapters 1 and 2, the implemented ML method is only able to
perform binary classification, this feature directly descending from a core
characteristic of the SVM algorithm. Because of this, another possible way to improve
the implemented ML algorithm would be the introduction of the possibility to perform
classification among more than two groups (e.g. direct classification among PD, PSP
and CN). This could be achieved through the construction and validation of decision
algorithm based on the One-Versus-One (OVO) or One-Versus-All (OVA) strategies. A
derivation of this technique was already used during the implementation of the web-
based service.

Further improvements could be performed on the whole algorithm of
classification by improving single phases of the ML algorithm separately. For example,
it could be useful to explore other methods to extract or select significant features
from data.

Finally, given the implemented ML method for the prediction of the belonging
class of unseen subjects, it would be very interesting to implement the possibility of
extracting the belonging probability of each subject to his predicted class. In this way,
such an algorithm would not only be able to perform (early) diagnosis and prognosis,
but it would also allow to study the staging of a pathology in a patient, this being one
of the main issues of personalized medicine.
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HIGHLIGHTS

® The algorithm allows individual differential diagnosis of PD and PSP by means of MR images.

® The algorithm does not require a priori hypotheses of where useful information may be coded in the images.
® (lassification accuracy was significantly higher compared to other published methods.

® The algorithm was able to obtain voxel-based morphological biomarkers of PD and PSP.
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ABSTRACT

Background: Supervised machine learning has been proposed as a revolutionary approach for identify-
ing sensitive medical image biomarkers (or combination of them) allowing for automatic diagnosis of
individual subjects. The aim of this work was to assess the feasibility of a supervised machine learning
algorithm for the assisted diagnosis of patients with clinically diagnosed Parkinson’s disease (PD) and
Progressive Supranuclear Palsy (PSP).
Method: Morphological T1-weighted Magnetic Resonance Images (MRIs) of PD patients (28), PSP patients
(28) and healthy control subjects (28) were used by a supervised machine learning algorithm based
on the combination of Principal Components Analysis as feature extraction technique and on Support
Vector Machines as classification algorithm. The algorithm was able to obtain voxel-based morphological
biomarkers of PD and PSP.
Results: The algorithm allowed individual diagnosis of PD versus controls, PSP versus controls and PSP
versus PD with an Accuracy, Specificity and Sensitivity > 90%. Voxels influencing classification between
PD and PSP patients involved midbrain, pons, corpus callosum and thalamus, four critical regions known
to be strongly involved in the pathophysiological mechanisms of PSP.
Comparison with existing methods: Classification accuracy of individual PSP patients was consistent with
previous manual morphological metrics and with other supervised machine learning application to MRI
data, whereas accuracy in the detection of individual PD patients was significantly higher with our
classification method.
Conclusions: The algorithm provides excellent discrimination of PD patients from PSP patients at an
individual level, thus encouraging the application of computer-based diagnosis in clinical practice.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Parkinson’s disease (PD) is the second most common neurode-
generative disease affecting millions of people worldwide. The
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primary objective in the clinical practice of PD is to achieve an
individual differential diagnosis, in order to tailor the best individ-
ual treatment. PD clinical diagnosis is particularly prone to errors
(Tolosa et al., 2006), as an array of motor symptoms can also
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be present in other parkinsonian conditions such as Progressive
Supranuclear Palsy (PSP). For instance, PSP patients are clinically
similar to PD patients, however, are less responsive to treatment
and they have a more rapid disease progression. Among the various
forms of parkinsonisms, PSP is one of the most difficult to clinically
disentangle from idiopathic PD, particularly in early disease stages,
when the typical clinical signs are not clearly evident (Gelb et al.,
1999; Litvan et al., 1996).

To date, individual diagnosis of PSP is predominantly based
on patients’ clinical history where standard brain magnetic res-
onance imaging (MRI) protocols are routinely employed only to
exclude concomitant diseases, resulting in poor diagnostic accu-
racy, sensitivity and specificity, given that images are only visually
inspected (Tolosa et al., 2006; Jankovic, 2008). In the past 20
years, a considerable effort has been put into the development of
advanced neuroimaging processing techniques in order to identify
neuroimaging biomarkers which could be then used for enhancing
the diagnostic confidence of clinical diagnosis. Although signifi-
cant results have been obtained (Shi et al., 2013), most studies
have reported differences between patients and controls only at
a group level, thus with a very limited translation to an individ-
ual diagnosis in more clinical settings. For this reason, attention
has recently been directed toward alternative approaches to the
analyses of neuroimaging data.

In the last few years, there has been a growing interest within
the neuroimaging community in classification methods, includ-
ing machine-learning algorithms. These techniques are based on
algorithms able to automatically extract multiple information from
image sets without requiring a priori hypotheses of where this
information may be coded in the images. The main aim of these
methods is to classify individual structural or functional brain
images by maximizing the distance between groups of images. Sev-
eral studies have assessed the diagnostic value of these techniques,
e.g.for the diagnosis of the Alzheimer’s disease (Kloppel et al., 2008;
Magnin et al., 2009) and Mild Cognitive Impairment (Teipel et al.,
2007), and have showed promising findings.

The aim of this study is to implement a supervised machine-
learning method able to perform individual differential diagnosis of
PD and PSP by means of structural T1-weighted MRIs. This method
was based on Principal Component Analysis (PCA) underlying the
feature extraction technique (Habeck et al., 2008; Salas-Gonzalez
et al., 2010) and on Support Vector Machines (SVMs) for classifica-
tion purposes (Scholkopf and Smola, 2001; Lopez et al., 2011). In
order to identify potential MRI-related biomarkers useful for the
diagnosis of PD and PSP, we also generated image maps of pat-
tern distribution of brain structural differences, which reflect the
importance of each image voxel for the SVM classification.

2. Materials and methods
2.1. Clinical and MRI studies

In this retrospective study we enrolled 56 patients and 28
healthy control subjects. All study procedures and ethical aspects
were approved by the institutional review board. Written informed
consent was obtained from all subjects.

All patients and the healthy control subjects were examined by
neurologists with more than ten years of experience in movement
disorders. Age at onset, disease duration and severity of symp-
toms, as assessed by the Unified Parkinson’s Disease Rating Scale
(UPDRS), and the Hoehn-Yahr (H&Y) stage, were recorded. The
Mini Mental State Examination (MMSE) was used to assess general
cognitive status. The group of 56 patients consisted of 28 patients
with clinically diagnosed PD (Gelb et al., 1999) and 28 patients with
clinical diagnosis of probable or possible PSP (Litvan et al., 1996).

The healthy control subjects had no history of neurologic or psy-
chiatric diseases, with normal neurological examinations. The 28
healthy control subjects were of similar age as both patient groups.

One brain structural MRI study was performed for each sub-
ject by a 1.5-T unit (Signa NV/I; GE Medical Systems, USA). MRI
data were acquired using a 3D T1-weighted spoiled gradient echo
sequence with the following parameters: TR=15.2 ms; TE=6.7 ms;
flip angle = 15°; FOV = 24 cm. Slice thickness was of 1.2 mm and each
slice had aresolution of 256 x 256 pixels. AT1-weighted 3D dataset
was obtained for each subject. Motion artifacts were negligible for
all scans by visual inspection.

2.2. The machine-learning method

A machine-learning method able to perform individual differ-
ential diagnosis of PD and PSP by means of structural T1-weighted
Magnetic Resonance Images (MRI) was implemented. This method
was based on Principal Component Analysis (PCA) as feature
extraction technique and on Support Vector Machines (SVMs) as
classification algorithm (Scholkopf and Smola, 2001; Lopez et al.,
2011). Both these phases were implemented using the Matlab plat-
form (Matlab version R2011b, The MathWorks, Natick, MA).

2.2.1. Image pre-processing

Original datasets were cropped, re-oriented and converted
from DICOM format to 3D NIfTI format using the dcm2nii tool
included in the MRICron software (http://www.mccauslandcenter.
sc.edu/mricro/mricron/). After that, the pre-processing procedure
mainly consisted of 2 steps: (1) skull stripping, which was achieved
using the BET tool of the FSL 4.1 software (Smith et al., 2004;
Jenkinson et al., 2012), and (2) normalization to MNI space,
which was performed by co-registration to the MNI template
(MNI152_T1_1mm_brain) (Grabner et al., 2006) included in the FSL
4.1 software.

Images were then imported into the Matlab platform using
the ‘Tools For NIfTI And ANALYZE Image’ toolbox (http://
www.mathworks.com/matlabcentral/fileexchange/8797). No
smoothing or segmentation were applied. Resulting images
were limited within a bounding box. Final whole-brain volumes
consisted of 145 x 178 x 133 voxels.

2.2.2. Feature extraction

Feature extraction was implemented by applying spatial trans-
formations on the images in order to reduce data dimensions
without losing relevant information.

We used PCA to extract the most significant features from our
MRI datasets (Habeck et al., 2008; Alvarez et al.,, 2009; Salas-
Gonzalez et al., 2010). PCA is a standard technique which consists
in applying an orthogonal transformation to a dataset of (possibly)
correlated variables to obtain a set of values of linearly uncorrelated
(orthogonal) variables. These values are called ‘principal compo-
nents’ of the original dataset.

The application of PCA involves a second step: the projection
itself, which reduces the original number of features to a much
lower number of so-called PCA coefficients. These coefficients are
the ones used for classification.

Mathematically, let us define X to be a dataset of 3D brain images
X;, where i varies from 1 to N, N being the number of images in the
dataset. Let’s suppose that each image X; is given in the form of a
vector of dimension V (in our study V is the total number of voxels
of each image, V=145 x 178 x 133), so that the dimension of X is
N x V, and that the dataset X has zero mean (in case dataset X had
non-zero mean, then the average Xy, would be subtracted from each
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image X;). Now, PCA-space is defined as the space which is spanned
by the eigenvectors of the covariance matrix C of the dataset X:

c=Xx-XT

Finally, PCA coefficients can be extracted by projecting each
image onto the PCA-space (Alvarez et al., 2009).

Application of PCA to a given dataset results in a number of prin-
cipal components which is at most equal to the number of the lower
dimension of the data matrix —1. If N is the number of subjects in
the dataset, there will only be N —1 eigenvectors (principal com-
ponents) with non-zero eigenvalues. The other eigenvectors have
a zero eigenvalue associated, so it does not make sense to consider
them.

Once the original data are projected onto PCA coefficients or
scores, these coefficients (low dimension representation of the
samples) and associated labels can be considered to understand
which principal components are more discriminative. For this pur-
pose principal components were ordered in a decreasing order,
according to their Fisher Discriminant Ratio (FDR):

2
FDR = (“12_7“2)

2
07 +03

where p; and aiz denote the mean and the variance of the i-th class,
respectively.

2.2.3. Classification algorithm

We used a classification algorithm based on Support Vector
Machines (SVMs) (Scholkopfetal.,2002; Vapnik, 1995, 1998, 1999).
Let’s suppose that we have a set of training data each one consisting
of a pair: an input vector x, e R¥, n=1,... N and the corresponding
label or target value t, € {+/— 1}. The aim of a SVM is to estimate
a decision function which will correctly classify unseen examples
(x, t). To do this, SVMs design the optimal separating hyper-plane
in terms of distance between classes, that is, a hyper-plane which
is maximally distant from the two classes to be separated (this is
why it is also called maximal margin hyper-plane). The decision
function for an unseen example x is then given by

N
YOO = an-tn- k(X xa) +b
n=1

where N is the number of samples in the training set, a, is a weight
constant, k(x, xp) is a kernel function and b is a threshold param-
eter. This decision function returns the predicted class y(x) of the
unseen example x. In this way, this hyper-plane is able to discrim-
inate binary labeled training datasets and to subsequently classify
unseen data as belonging to one or the other of the two training
classes.

In our work, the SVM classifier was implemented using algo-
rithms of the biolearning toolbox of Matlab. Datasets were divided
into three binary labeled groups: PD versus Controls, PSP versus
Controls and PSP versus PD. The training step was performed using
the principal components and the associated labels of each dataset
as features for the SVM (Lopez et al., 2011). A linear kernel was
chosen as the more general form and for the purpose of improving
computational efficiency. The training of the classifier was carried
out for a number i of principal components ranging from 1 to PC,
where PC is the whole number of extracted principal components.

2.3. Validation of the classifier

Validation of the classification algorithm was performed by a
cross-validation strategy. In cross-validation, the data is partitioned
into complementary subsets: the training set and the testing set.
The training of the classifier is performed on the training set; the

validation of the classifier is performed on the testing set. Multiple
rounds of cross-validation can then be performed using different
partitions. In this study we used Leave-One-Out (LOO) validation,
that is a particular case of cross-validation in which the testing
set is made up of only one sample of the dataset and the training
set is made up of the remaining samples of the dataset (N—1). In
this way, all samples in the dataset can be tested in turn if the total
number of rounds equals the number of samples in the dataset. LOO
is a widely used validation approach because it returns an almost
unbiased estimate of the probability of test error of a classification
algorithm (e.g. Vapnik, 1998; Chapelle et al., 1999).

Moreover, the use of the same number of subjects for training
and classification is somewhat controversial. Given the fair amount
of subjects available in our study, we also adopted another vali-
dation method using N/2 randomly chosen subjects for training the
classifier and the remaining N/2 subjects for testing.

Validation was carried out by the two methods for each of the
three binary labeled groups and for a number i of principal com-
ponents ranging from 1 to PC, where PC is the whole number of
extracted principal components (N — 1 or N/2). Accuracy, Specificity
and Sensitivity rates were computed for each binary labeled group
over the first i principal components as follows:

T
Accuracy; = %

e X
Specificity; = )ﬁ
- Y
Sensitivity; = %

RC +Awc

Tbeing the total number of classified images; Tgc being the total
number of classified images that underwent Right Classification
(RC); Xgc being the number of images belonging to the first binary
labeled group that underwent Right Classification (RC); Xyc being
the number of images belonging to the first binary labeled group
that underwent Wrong Classification (WC); Ygc being the number
of classified images belonging to the second binary labeled group
that underwent RC; Yy being the number of images belonging to
the second binary labeled group that underwent WC.

Overall Mean Accuracy, Specificity and Sensitivity rates were
obtained as mean values calculated over a number of principal com-
ponents ranging from 1 to PC, where PC is the whole number of
extracted principal components.

The dependence of Accuracy, Specificity and Sensitivity on the
number of principal components was studied.

Accuracy-gg, Specificity.gg and Sensitivity.gg rates (mean,
minimum and maximum values) were calculated over a range of
principal components for which Accuracy, Specificity and Sensitiv-
ity fell above 80% for each of the three binary labeled groups.

2.4. Voxel-based pattern distribution

Using the whole number of subjects in the dataset (28 PD, 28
PSP and 28 Controls) and for each binary labeled group, we gen-
erated image maps of voxel-based pattern distribution of brain
structural differences, which reflect the importance of each image
voxel for the SVM classification. This allowed the identification of
MRI-related biomarkers useful for the diagnosis of PD and PSP.

During the training step, the SVM classifier calculates a specific
weight for each of the images, reflecting the importance of that
image for binary separation. This weight is non-zero only for sup-
port vectors, while its sign is positive for support vectors belonging
to the first binary labeled group and negative for support vectors
belonging to the second binary labeled group.
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Table 1
Demographic and clinical data of enrolled subjects.

Variables HC PD PSP p values
N° 28 28 28

Gender (% males) 54% 54% 64%

Age (years) 67.5+7.1 68.2+5 69.4+5.7 n.s.
Disease duration (years) - 8.0+4.8 3.0+1.6 <0.001?
Age at onset (years) - 60.8 £5.6 67.2+3.0 <0.001°
UPDRS-ME - 24(10-45) 34(24-47) <0.001°
H&Y - 3(1-4) 4(3-5) <0.001°
MMSE 265+2.1 257419 24+48 <0.001¢

Note: Data are given as mean values (SD) or median values (range) when appropri-
ate.
UPDRS-ME, Unified Parkinson Disease Rating Scale-Motor Examination in “off”
phase (off medications overnight); H&Y, Hoehn-Yahr; MMSE, Mini Mental State
Examination.

2 Unpaired t test.

b Mann-Whitney test.

¢ One-way ANOVA.

Each image of the training set was multiplied with the corre-
sponding weight and summed on a voxel basis, resulting in a map
of values reflecting the importance of each voxel for SVM binary
group discrimination (Kloppel et al., 2008; Focke et al., 2011). The
resulting map was superimposed onto a standard stereotactic brain
for visualization and localization purposes.

3. Results
3.1. Clinical and MRI studies

Data on demographic and clinical features of all patients and
control subjects included in the study are listed in Table 1. Although
no significant differences were detected among groups in demo-
graphical data, as expected, PSP patients were characterized by a
more rapid disease progression (with a fatal prognosis after few
years) and by a more critical clinical status with respect to PD
patients in terms of motor disability, as assessed by higher UPDRS
and H&Y scores.

Considering MRI studies, all subjects had no evidence of vascular
lesions as evaluated in Fluid Attenuated Inversion Recovery (FLAIR)
and by T2-weighted MRI. Healthy control subjects had normal MRI
scanning. Both PD and PSP patients showed no evident structural
abnormalities.
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3.2. The machine-learning method

3.2.1. Features extraction

Fig. 1 shows the 1-st, 2-nd and 3-rd PCA coefficients extracted,
as representative examples, for the PSP (28) versus PD (28) binary
labeled group (for this comparison, the total number of extracted
PCA coefficients was equal to 55).

3.2.2. Classification algorithm

Fig. 2 shows the optimal separating hyper-plane resulting from
the SVM classification algorithm trained for the PSP (28) versus PD
(28) binary labeled group.

3.3. Validation of the classifier

Table 2 shows Accuracy, Specificity and Sensitivity of the SVM
classifier for PD versus Controls, PSP versus Controls and PSP versus
PD binary labeled groups obtained using LOO validation. Overall
Mean Accuracy, Specificity and Sensitivity rates were calculated
over a number of principal components ranging from 1 to 55. Over-
all Mean Accuracy (Specificity/Sensitivity) were 85.8 (86.0/86.0),
89.1 (89.1/89.5) and 88.9 (88.5/89.5)% for PD versus Controls, PSP
versus Controls and PSP versus PD binary labeled groups, respec-
tively.

Fig. 3 shows how the metrics depend on the number of princi-
pal components in LOO validation, as a representative example.
In this case, results are shown for a number of principal com-
ponents ranging from 1 to 55 and for the PSP versus PD binary
labeled group. As expected, Accuracy, Specificity and Sensitivity
rates increase with the number of considered principal compo-
nents. This occurs because, in our method, the dimension of the
feature space is enhanced with a covariance eigenvalue criterion
coupled with an FDR criterion, allowing noisy information to be
contained only in a small fraction of the eigenvectors (the last
eigenvectors). For instance, without an FDR process, the relevant
information would be contained in the few first eigenvectors and
the rest of the eigenvectors would only contribute with noisy infor-
mation (Alvarez et al., 2009).

The range of principal components for which Accuracy, Speci-
ficity and Sensitivity fell above 80% (Accuracy-gg, Specificity-gg
and Sensitivity. gg) was found from 30 to 52 components in LOO
validation. In this range, for each of the binary labeled groups,
Accuracy.gg was found>83.9% (mean Accuracy.gg: 92.7, 97.0
and 98.2% for PD versus Controls, PSP versus Controls and PSP

X PD
Q©Psp

1-ST COMPONENT

Fig. 1. PCA coefficients for the PSP versus PD binary labeled group (1st, 2nd and 3rd components).



234

3-RD COMPONENT

2-ND COMPONENT

C. Salvatore et al. / Journal of Neuroscience Methods 222 (2014) 230-237

[l Optimal Separating Hyperplane

O Support Vectors

1-ST COMPONENT

Fig. 2. Optimal separating hyper-plane for the PSP versus PD binary labeled group (1st, 2nd and 3rd components).

Table 2
Accuracy, Specificity and Sensitivity rates of SVM using LOO validation.

Overall Mean Accuracy (%)
Accuracy-go (%) Mean (Min/Max)

Overall Mean Specificity (%)
Specificity-gp (%) Mean (Min/Max)

Overall Mean Sensitivity (%)
Sensitivity-go (%) Mean (Min/Max)

oD ve. Control 85.8

vs. Controls 92.7 (83.9/100.0)
PSP vs. Control 89.1

vs. Controls 97.0 (92.9/100.0)
PSP vs. PD 88.9

Vs. 98.2 (94.6/100.0)

86.0 86.0
92.3 (81.3/100.0) 93.4(80.6/100.0)
89.1 89.5
98.2 (92.9/100.0) 95.9/(90.0/100.0)
88.5 89.5
98.8 (96.3/100.0) 97.8(93.1/100.0)

versus PD binary labeled groups, respectively). Specificity. gg was
found >81.3% (mean Specificity-gg: 92.3, 98.2 and 98.8% for PD
versus Controls, PSP versus Controls and PSP versus PD binary
labeled groups, respectively). Sensitivity.go was found >80.6%
(mean Sensitivity-gg: 93.4, 95.9 and 97.8% for PD versus Con-
trols, PSP versus Controls and PSP versus PD binary labeled
groups, respectively). Furthermore, there is always at least one

number of employed principal components for which Accuracy- g,
Specificity- gp and Sensitivity. gg values reach 100%.

Table 3 shows Accuracy, Specificity and Sensitivity of the SVM
classifier for PD versus Controls, PSP versus Controls and PSP versus
PD binary labeled groups obtained using N/2 randomly chosen
subjects for training the classifier and the remaining N/2 sub-
jects for testing. Overall Mean Accuracy, Specificity and Sensitivity
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Fig. 3. Accuracy, Specificity and Sensitivity rates (%) of SVM versus Number of PCA components in LOO validation.
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Table 3
Accuracy, Specificity and Sensitivity rates of SVM using N/2 subjects for training and N/2 subjects for testing.
Overall Mean Accuracy (%) Overall Mean Specificity (%) Overall Mean Sensitivity (%)
Accuracy-go (%) Mean (Min/Max) Specificity-go (%) Mean (Min/Max) Sensitivity-go (%) Mean (Min/Max)
PD vs. Control 83.2 81.9 854
vs. Controls 93.5 (89.3/100) 90.6 (82.4/100) 97.4 (92.3/100)
PSP vs. G | 86.2 92.1 829
vs. Controls 92.2 (85.7/96.4) 92.5 (85.7/100) 92.4(85.7/100)
84.7 87.5 83.8
PSPvs.PD 92.2(89.3/96.4) 91.3 (82.4/100) 94.4 (86.7/100)

rates were calculated over a number of principal components ran-
ging from 1 to 28. Overall Mean Accuracy (Specificity/Sensitivity)
were 83.2 (81.9/85.4), 86.2 (92.1/82.9) and 84.7 (87.5/83.8)% for
PD versus Controls, PSP versus Controls and PSP versus PD binary
labeled groups, respectively.

The range of principal components for which Accuracy, Speci-
ficity and Sensitivity fell above 80% (Accuracy-gg, Specificity-gg
and Sensitivity.gg) was found from 16 to 26 components when
using N/2 randomly chosen subjects for training the classifier and
the remaining N/2 subjects for testing. In this range, for each of
the binary labeled groups, Accuracy-gg was found >85.7% (mean
Accuracy.gp: 93.5, 92.2 and 92.2% for PD versus Controls, PSP
versus Controls and PSP versus PD binary labeled groups, respec-
tively). Specificity- gg was found > 82.4% (mean Specificity- gg: 90.6,
92.5 and 91.3% for PD versus Controls, PSP versus Controls and
PSP versus PD binary labeled groups, respectively). Sensitivity- gg
was found >85.7% (mean Sensitivity.gg: 97.4, 92.4 and 94.4% for
PD versus Controls, PSP versus Controls and PSP versus PD binary
labeled groups, respectively). All the considered parameters proved
the good performance of the classification algorithm with respect
to all three binary labeled groups.

3.4. Voxel-based pattern distribution

Fig. 4 shows, maps of voxel-based pattern distribution display-
ing the influence of each voxel for the classification in the PD (28)
versus Controls (28), in the PSP (28) versus Controls (28) and in

the PSP (28) versus PD (28) comparisons. The pattern of differ-
ences is expressed according to the color scales. The most relevant
finding concerned the separation of patients with PD with respect
to patients with PSP. As showed in the bottom part of the Fig. 4,
voxels influencing the classification between PD and PSP patients
are localized in the midbrain, pons, corpus callosum and thalamus.
When considering instead the direct comparisons with healthy
controls, the voxel-based pattern distribution was similar for both
PD and PSP patients, although it is important to highlight that SVM
classification revealed significant voxels within the medial part of
the midbrain (encompassing the substantia nigra) and the caudal
part of the pons only for PD as compared to controls (upper part of
the Fig. 4).

4. Discussion

Effective and accurate diagnosis of PD or PSP, a critical clinical
variant of PD, by means of MRI biomarkers has recently attracted
strong attention. So far, several biomarkers have been shown to be
sensitive to the diagnosis of PD as compared to PSP. For instance,
morphological abnormalities in the brainstem as well as in the cere-
bellar peduncles, have been demonstrated to be useful markers ina
clinical context (Massey et al., 2013; Quattrone et al., 2008; Schulz
et al., 1999). However, the only validated MRI-based measurement
employed in clinical practice of PD derives from conventional MRI
using manual morphometric quantification. In the above - men-
tioned studies it has been shown by using different approaches,

PD Vs HC

-

’

PSP Vs HC

Fig. 4. Maps of voxel-based pattern distribution of brain structural differences (sagittal view, threshold = 60%). The importance of each voxel in the SVM classification is
expressed according to the color scale. A, PD versus Controls; B, PSP versus controls; C, PSP versus PD; PD, Parkinson’s disease; PSP, Progressive Supranuclear Palsy.
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that the diameter or area of the brainstem subregions represent the
simplest morphological feature on the basis of which a differential
diagnosis of PD with respect to PSP can be performed. Although
manual segmentation is currently considered as the gold standard
approach to determine the morphology of brain regions, this tech-
nique is time-consuming, dependent on the raters’ experience and
limited to few specific regions-of-interest. For this reason, the
implementation of supervised whole-brain automatic classifica-
tion methods (Haller et al., 2011) is an essential step for improving
clinical management of neurological patients, as well as, in longi-
tudinal and prospective studies.

SVM has been proposed as a revolutionary approach for identi-
fying sensitive biomarkers (or a combination between them) that
allow for automatic discrimination of individual subjects. In this
study, we considered a SVM algorithm using structural neuroimag-
ing data at a whole brain level, reaching an excellent individual
classification, both in the comparisons between PSP patients with
PD patients (mean accuracy >92.5) and, in the comparison between
PD and healthy controls (mean accuracy >92.7%). To the best of
our knowledge, the classification accuracy in the discrimination
of individual PSP patients was consistent with previous manual
morphological metrics (Massey et al., 2013; Quattrone et al., 2008;
Oba et al., 2005; Schulz et al., 1999) and with other SVM applica-
tion to MRI data (Focke et al., 2011; Haller et al., 2012), whereas
the accuracy in the detection of individual PD patients was signifi-
cantly higher. For instance, in one first study (Focke et al., 2011), the
best classification accuracy achieved ~ 97% (considering only white
matter tissue) and was obtained for the comparison between PSP
vs. PD using T1-weighted MRI data, while separation from the PD
and the control cohort was only marginally better than chance. Suc-
cessively, Haller and colleagues (2012,2013) applying SVM to other
MRI parameters (DTI and susceptibility-weighted images) reported
classification accuracies in the individual diagnosis of PD compa-
rable to our findings. However, it is important to bear in mind that
in these later works, the clinical classification was made without
considering healthy controls and including a heterogeneous cohort
of parkinsonisms in the same group of patients, i.e. joining PSP cases
with patients affected by multiple system atrophy (MSA) with-
out considering that these disorders are characterized by distinct
patterns of brain atrophy (Messina et al., 2011).

Our study has several strengths that may have improved our
discrimination analysis. First, the larger sample of PSP patients
investigated (n° 28) with respect to other studies (n° 10 in Focke
etal,,2011; n° 1inHalleretal.,2012 and n° 1 in Haller et al., 2013).
Second, the clinical consistency of our group selection where only
PSP patients were enrolled without conflating our analysis with the
inclusion of other parkinsonian variants, such as MSA, dementia
with Lewy Body, vascular Parkinsonism and atypical tremor (Focke
et al,, 2011; Haller et al., 2012, 2013). Third, the balance between
classes (i.e., we choose the same number of samples in each class),
allowing the system to learn without biases due to unequal sam-
ples.

Another point of relevance of our work is that we also studied
the relevance of each brain voxel with respect to the classifica-
tion analysis, thus allowing to identify regions critically involved
in the pathophysiological mechanisms of PD and PSP. Indeed, brain
regions that allowed to perform the best discrimination between
PD and PSP were: midbrain, pons, corpus callosum and thalamus.
These features are highly consistent with typical neuropathological
(Steele et al., 1964) and imaging findings described in patients with
PSP (Shietal., 2013; Messinaetal.,2011), where a key role is played
by the volumetric atrophy of the brainstem, which represents a
hallmark of PSP (Oba et al., 2005). More recently, studies using dif-
fusion tensor imaging (DTI) for quantifying white matter pathology
in PSP, highlighted the involvement of the corpus callosum as well.
This finding is of particular relevance since corpus callosum is the

largest white matter tract in the brain, enabling interhemispheric
communication, particularly with respect to motor coordination,
and is one of the tract that is known to be damaged in PSP (Knake
etal., 2010; Canu et al., 2011).

As far as the spatial pattern of the SVM classification between
PD and controls is concerned, more widespread patterns involving
several cerebral regions were found in our analysis, thus confirming
that PD is a more heterogeneous clinical phenotype that might
be characterized by several and topographically separated neural
pathologies. Of note, SVM revealed significant voxels within the
medial part of the midbrain (encompassing the substantia nigra)
and the caudal part of the pons. This finding is consistent with
the Braak’s neuroanatomical model of the PD (Braak et al., 2003).
Post-mortem studies by Braak and colleagues (Del Tredici et al.,
2002), based on the analysis of Lewy neuritis and Lewy bodies
accumulation, a proteic hallmark of PD, have shown that various
cerebral structures are damaged before substantia nigra in a consis-
tent and repeated pattern. In a six-stage model (Braak et al., 2004),
PD would initially begin in the medulla oblongata (stage 1) and in
the olfactory bulb, and progresses in a caudo-rostral pattern (stage
2), affecting substantia nigra in stage 3 only, corresponding to the
onset of the motor symptoms, often revealed by the first visit of the
patient to a neurologist. However, previous structural neuroimag-
ing studies investigating the neural basis of PD did not describe
the occurrence of anatomical changes in this region (a part from
a single study, Jubault et al., 2009). It must be acknowledged, that
most of the studies that have investigated structural abnormalities
in PD, as those previously reported, are based on standard mass-
univariate analytical methods, applied in structural neuroimaging
(i.e. voxel based morphometry). The SVM technique has one main
advantage over these techniques: it takes inter-regional correla-
tions into account and therefore is sensitive to differences that
are subtle and spatially distributed; as such, it provides an ideal
framework for investigating neurological disorders that affect a
distributed network of regions.

In conclusion, our findings, together with those provided by
other colleagues (Focke et al., 2011; Haller et al., 2012, 2013) offer
new avenues for encouraging the application of computer-based
diagnosis in clinical practice of PD.
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Magnetic resonance imaging
biomarkers for the early diagnosis of
Alzheimer’s disease: a machine
learning approach

Christian Salvatore’, Antonio Cerasa?, Petronilla Battista’, Maria C. Gilardi’,
Aldo Quattrone?, Isabella Castiglioni™ and
the Alzheimer’s Disease Neuroimaging Initiative

" Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, ltaly, 2 Neuroimaging
Research Unit, Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Catanzaro, Italy,
3 Department of Mediical Sciences, Institute of Neurology, University “Magna Graecia”, Catanzaro, Italy

Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as to lessen the time and cost of clinical trials. Magnetic
Resonance (MR)-related biomarkers have been recently identified by the use of machine
learning methods for the in vivo differential diagnosis of AD. However, the vast majority
of neuroimaging papers investigating this topic are focused on the difference between
AD and patients with mild cognitive impairment (MCI), not considering the impact of
MCI patients who will (MClc) or not convert (MCInc) to AD. Morphological T1-weighted
MRIs of 137 AD, 76 MClc, 134 MCinc, and 162 healthy controls (CN) selected
from the Alzheimer’s disease neuroimaging initiative (ADNI) cohort, were used by an
optimized machine learning algorithm. Voxels influencing the classification between these
AD-related pre-clinical phases involved hippocampus, entorhinal cortex, basal ganglia,
gyrus rectus, precuneus, and cerebellum, all critical regions known to be strongly involved
in the pathophysiological mechanisms of AD. Classification accuracy was 76% AD vs.
CN, 72% MCilc vs. CN, 66% MClc vs. MCInc (nested 20-fold cross validation). Our data
encourage the application of computer-based diagnosis in clinical practice of AD opening
new prospective in the early management of AD patients.

Keywords: Alzheimer’s disease, mild cognitive impairment, magnetic resonance imaging, support vector machine,
structural neuroimaging biomarkers, machine learning, automatic classification, artificial intelligence

Introduction

The increase in life expectancy and the prevalence of age-related cognitive disorders have led
to great interest in studying normal and pathological aging with the aim to individuate early
predictors of degenerative disorders, differential diagnosis, and efficacies of pharmacological and
cognitive approaches in the treatment of these disorders. Indeed, considering the great burden of
degenerative diseases on national healthcare systems in terms of cost and therapies, research aimed
at improving the early and differential diagnosis of these pathologies is mandatory.
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MRI biomarkers of early AD

Alzheimer’s Disease (AD) is the first most common
neurodegenerative disease affecting millions of people
worldwide (Martin et al., 2012). Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as to lessen the time
and cost of clinical trials. To date, individual diagnosis of
AD is predominantly based on the clinical examination and
neuropsychological assessment (Knopman et al., 2001; Blennow
et al.,, 2006), but definite diagnosis can only be performed by
post-mortem analysis.

In the 1980s, the National Institute of Neurologic and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS-ADRDA)
developed clinical diagnostic criteria for AD by applying a
binary approach to diagnosis. According to this approach, a
cognitive impairment is necessary for the diagnosis of AD,
with definite, probable and possible categories (McKhann et al.,
1984). Neuropathological data based on senile plaques and
neurofibrillary tangles were afterwards introduced (Hyman and
Trojanowski, 1997).

In 2011, revised diagnostic criteria for AD have been
developed by the National Institute on Aging-Alzheimer’s
Association workgroup. These revised diagnostic criteria have
replaced the binary approach for a more biological definition
of AD: additional supportive features can be obtained by
neurogenetic testing, measurement of cerebrospinal fluid
(CSF), amyloid and tau, and by neuronal injury biomarkers
as measured by neuroimaging studies, including Positron
Emission Tomography (PET) and Magnetic Resonance Imaging
(MRI). PET and MR changes provide measurements of
metabolism/amyloid markers (Fox and Schott, 2004; Jagust
et al., 2006) and of atrophic regions, respectively, in order to
identify AD, even before dementia is apparent (Albert et al.,
2011; Sperling et al., 2011).

Due to the non- invasiveness of MR modality, a considerable
effort has been put into the development of advanced MR
image processing techniques in order to identify MR-related
biomarkers which could be used for enhancing the accuracy
of clinical diagnosis of AD. Most studies which were focused
on the identification of MR image differences between patients
with a clinical diagnosis of AD and healthy subjects were based
on a priori-defined regions of interest or on mass univariate
image analysis methods (e.g., Voxel Based Morphometry, Busatto
et al., 2003; Karas et al., 2003; Ishii et al., 2005). However, both
approaches are not able to detect spatially distributed pattern of
brain anatomy.

In order to overcome these limitations, in the last few years,
there has been a growing interest within the neuroimaging
community toward alternative approaches to the analyses
of neuroimaging data by considering multivariate pattern
analysis, including machine-learning algorithms. Due to their
multivariate properties, machine-learning techniques are able
to automatically extract multiple information from image sets
without requiring a priori hypotheses of where this information
may be coded in the images. Several studies have assessed the
diagnostic value of these techniques in the classification of AD

by cerebral MRI studies (Davatzikos et al., 2008; Kloppel et al.,
2008; Gerardin et al., 2009; Cuingnet et al., 2011; Hidalgo-Mufoz
et al., 2014), showing promising results also for the prediction
of conversion in the early stages of disease (Tufail et al., 2012;
Moradi et al., 2015). Among these studies, Kloppel et al. (2008)
used machine learning classification and structural MR images
for the extraction of spatially-distributed multivariate diagnostic
biomarkers. Specifically, the authors were able to identify MR-
related biomarkers useful for the differential diagnosis of AD with
respect to Fronto-Temporal Lobar Degeneration and normality.

However, early diagnosis of AD by structural MR imaging
studies is currently an open challenge due to the difficulty of
quantifying patterns of structural change during early stages
of AD or during clinically normal stages (Davatzikos et al.,
2008). Patients suffering from AD at a prodromal stage are
often clinically classified as Mild Cognitive Impairment (MCI),
but not all MCI patients convert into AD. A meta-analysis of
research and clinical reports suggests that the rate of conversion
of MCI to AD is around 5-10% per year (Mitchell and Shiri-
Feshki, 2009). Criteria for MCI have been developed (Albert et al.,
2011) and various forms have been described (Petersen et al.,
1999). Detecting the transition from the asymptomatic phase
to symptomatic pre-dementia phase or from the symptomatic
pre-dementia phase to dementia onset in the clinical setting is
a non-trivial issue (Albert et al., 2011). This causes a diagnostic
uncertainty for the early stage of disease.

For this objective, it seems crucial to identify multivariate MR-
related diagnostic biomarkers that are able to accurately diagnose
MCI converter (MCIc) and MCI non converter (MCInc) with
respect to AD and normality. Therefore, different morphological
characteristics between normal aging and MCI may be identified
by a specific and sensitive analysis of MR images, by revealing
which are the most informative image features supporting an
early diagnosis (Davatzikos et al., 2008).

In this work we propose a machine learning method able to
extract spatially distributed multivariate diagnostic biomarkers
from structural MR brain images to be used for the early
and accurate diagnosis of AD. In particular, our method is
able to identify MRI-related biomarkers of MCI subjects which
will convert into AD, opening new prospective in the early
management of AD patients.

Materials and Methods

Participants

Subjects included in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). We enrolled 162 cognitively normal elderly
controls (CN), 137 patients with diagnosis of AD, 76 patients
with diagnosis of MCI who converted to AD within 18 months
(MCIc) and 134 patients with diagnosis of MCI who did not
convert to AD within 18 months (MClnc). MCI patients who
had been followed less than 18 months were not considered.
Demographic and clinical data (sex, age and mini-mental score)
for each group are shown in Table1 (see http://adni.loni.usc.
edu/study-design/background-rationale/ for further description
of groups). A total of 509 subjects from 41 different radiology
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TABLE 1 | Demographic and clinical data for the considered groups of participants.

Group type # Subjects Age Gender MMSE score # Centers
mean =+ std [range] # Males/# Females mean =+ std [range]

CN 162 76.3 £ 5.4 [60-90] 76 M/86 F 29.2 £+ 1.0 [25-30] 40

MClnc 134 74.5 + 7.2 [58-88] 84 M/50 F 27.2 + 1.7 [24-30] 36

MClc 76 74.8 £ 7.4 [565-88] 43 M/33 F 26.5 + 1.9 [23-30] 30

AD 137 76.0 £7.3 [55-91] 67 M/70F 23.2 £2.0[18-27] 39

centers were considered. Identification Numbers (IDs) of each
subject involved in this study are reported in Supplementary
Tables S1-S4. The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public private
partnership. The primary goal of ADNI has been to test whether
serial MR, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD.

According to the ADNI inclusion criteria, enrolled subjects
were all between 55 and 90 years of age and spoke either
English or Spanish. Each subject was willing, able to perform
all test procedures described in the protocol and had a study
partner able to provide an independent evaluation of functioning.
Inclusion criteria for CN were: Mini Mental State Examination
(MMSE) scores between 24 and 30; Clinical Dementia Rating
(CDR) (Morris, 1993) of zero; absence of depression, MCI
and dementia. Inclusion criteria for MCI were: MMSE scores
between 24 and 30; CDR of 0.5; objective memory loss,
measured by education adjusted scores on Wechsler Memory
Scale Logical Memory II (Wechsler, 1987), absence of significant
levels of impairment in other cognitive domains; absence
of dementia. Inclusion criteria for AD were: MMSE scores
between 20 and 26; CDR of 0.5 or 1.0; NINCDS/ADRDA
criteria for probable AD (McKhann et al., 1984; Dubois et al,,
2007). Detailed description of inclusion/exclusion criteria can
be found in the ADNI protocol (http://www.adni-info.org/
Scientists/ ADNIStudyProcedures.aspx).

MR Images

T1-weighted structural MR images of all selected subjects
were obtained from the ADNI dataset. In order to allow
standardization of images from different sites and platforms, we
only used images which had undergone: (1) geometry correction
for gradient nonlinearity, by 3D gradwarp correction (Jovicich
et al., 2006); and (2) intensity correction for non-uniformity,
by Bl non-uniformity correction (Narayana et al., 1988). T1-
weighted structural MR images of each subject were acquired
according to the ADNI acquisition protocol (Jack et al., 2008).
MR imaging examinations were performed at 1.5 T. Scans from
the baseline visit (when available) or from the screening visit.
According to the ADNI protocol, MR imaging examination
was performed twice per visit. Scans were then rated by the
ADNI investigators of the ADNI MR imaging quality control

center at the Mayo Clinic on the basis of blurring/ghosting,
flow artifact, intensity, and homogeneity, signal-to-noise ratio
(SNR), susceptibility artifacts, and gray-white/cerebrospinal fluid
contrast (Jack et al., 2008). In this work, we used the image which
was rated as the best quality scan for each subject. 3D MR images
were downloaded from the ADNI dataset in 3D NIfTT format.

A pre-processing procedure, which mainly aimed at the
spatial normalization of all MR images by co-registration to a
standard template was applied. All pre-processing procedures
were applied to MR images by means of the VBMS8 software
package (Ashburner and Friston, 2000). First steps of pre-
processing consisted in: (1) image re-orientation; (2) cropping;
(3) skull-stripping; (4) image normalization to MNI standard
space, which was performed by co-registration to the MNI
template (MNI152 T1 1mm brain) (Grabner et al., 2006;
O’Hanlon et al., 2013). After co-registration to the MNI template,
MR images had a size of 121 x 145 x 121 voxels. Each image
was then segmented into Gray Matter (GM) and White Matter
(WM) tissue probability maps. Resulting images (whole-brain,
GM and WM) were smoothed using an isotropic Gaussian kernel
with Full Width at Half Maximum (FWHM) ranging from 2 to
12 mm? (step: 2 mm?).

The Classifier

In order to classify the different groups of subjects by means
of their T1-weighted structural (whole-brain, GM and WM) we
used a machine learning classifier previously implemented by
our group (Salvatore et al., 2014). The whole process consists
of 2 steps: (1) feature extraction and selection from the MR
images of the subjects, which aimed at the selection of the most
discriminative features by Principal Components Analysis (PCA)
coupled with a Fisher Discriminant Ratio (FDR) criterion (Lépez
et al,, 2011), and (2) single-subject classification, which aimed at
the classification of the subjects on the basis of a predictive model
generated for the separation of the different subject groups by
means of the most discriminative features (Kloppel et al., 2008;
Salvatore et al., 2014).

Feature Extraction and Selection

In order to identify the most discriminative features among
groups, an automatic feature extraction technique was applied
to MR images (whole-brain, GM and WM). This technique
also allowed to reduce the number of features to be handled
without losing relevant information for discrimination, and thus
to enhance computational performances of the machine learning
algorithm.
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PCA was implemented to perform feature extraction (Habeck
et al., 2008; Lopez et al, 2011). This technique is based
on two consecutive steps: (1) application of an orthogonal
transformation to a dataset of (possibly) correlated variables; this
operation results in a set of values of orthogonal (uncorrelated)
variables, which are referred to as Principal Components of the
original dataset and which define the so-called PCA subspace; (2)
projection of each variable of the original dataset onto the PCA
subspace; this operation results in the reduction of the original
set of observed variables into a smaller set of features, which
are referred to as PCA coefficients and which can be used in
subsequent analyses. The total number of PCA coefficients is
equal to the number of Principal Components extracted from the
original dataset.

Mathematically, if we consider a dataset A composed of S
samples, with each sample being a collection of N variables,
then the dimension of the dataset is S x N. By computing
the eigenvectors of the covariance matrix of the dataset A,
PCA subspace can be defined as the space spanned by these
eigenvectors. Application of PCA to the dataset A results in a
number of Principal Components (i.e., of eigenvectors) with non-
zero eigenvalues which is at most equal to the value of the smaller
dimension of the dataset-1. Principal Components are sorted
in descending order according to the proportion of variance
explained, with the constraint for them to be orthogonal with
each other.

In this study, datasets were composed of S samples (MR
images), where the dimension N of each pre-processed MR image
was 121 x 145 x 121 voxels. Application of PCA to our datasets
resulted in a number of Principal Components with non-zero
eigenvalues which was at most equal to the number S of samples
in each dataset-1. The dimension of each dataset after application
of PCAwas S x (S-1).

PCA coeflicients resulting from the feature extraction process
were then sorted in a descending order according to their FDR,
which gives information about the class discriminatory power of
a given component. For each component, FDR can be calculated
as follows:

2
FpR= L= H2)" (1)
oy +o5
where u; and oiz are the mean and the variance of the ith class,
respectively.

The explained variance was studied as a function of the
number of considered principal components before and after
sorting them in accordance to their FDR, in order to show the
impact of FDR-analysis on PCA coeflicients.

Classification

The classification algorithm of the proposed machine learning
method was based on Support Vector Machines (SVM)
(Scholkopf and Smola, 2002). The aim of SVM is to find
a predictive model which is able to perform binary group
separation. This predictive model is represented by a hyper-plane
which can be computed using a set of data input to SVM for its
training (training data). The set of training data consists of: (1)
a vector of samples belonging to two different classes and (2) the

corresponding vector of labels (two labels, each label identifies
one class). SVM is able to compute a predictive model for the
classification of a new sample to one or to the other of the two
classes. Specifically, the predicted class y for the sample x is given
by the following relation:

N
YX) = Wty k(e x0) + b )

n=1

where N is the number of samples included in the training
set; wy, is a weight assigned by SVM to each sample # in the
training set during the training phase; t, is the label of the
sample n of the training set; k(x, x,) is a kernel function; b is
a threshold parameter. The main difference among SVM and
other classification methods is that the hyper-plane computed by
SVM is the one which maximizes the separation between the two
classes.

In this work, we used the Matlab platform to both implement
and optimize the SVM classifier. We used a linear kernel for all
analyses. Our code also included algorithms of the biolearning
toolbox of Matlab.

Optimization of Classification and Evaluation of
Accuracy

An optimization was performed with the purpose of finding the
best parameter configuration for the classification of the different
groups of subjects. A Nested Cross Validation (Nested CV) was
used. In this approach, the original dataset is split into k subsets
of (possibly) equal size. An inner training-and-validation loop
for parameter estimation and optimization is performed using k-
1 subsets, and an outer test loop for performance evaluation is
performed using the kth held-out subset. This procedure is then
repeated k times, until all k subsets are used once for performance
evaluation.

In this study, we performed nested 20-fold CV using 19/20
of the original data for the inner training and validation loop
allowing parameter estimation and optimization. For each inner
loop, these 19/20 subsets were randomly split in half in order
to perform training and validation on two independent datasets.
The trained and optimized model and parameter set were then
used to predict the held-out 1/20 subset.

For each round, the optimal parameters (which brain tissue,
which level of filtering, how many PCA coefficients) were chosen
as those for which the classification error (E) was minimized.
Specifically, we aimed at minimizing the quantity given by,

E =1 — Balanced Accuracy (3)

Balanced Accuracy = % (Specificity + Sensitivity) — (4)
as a function of the following parameters: (1) tissue map (whole-
brain, GM and WM); (2) smoothing (FWHM = 2, 4, 6, 8, 10,
12 mm?, or no smoothing); (3) number of PCA coefficients (from
1 to PC, where PC is the total number of extracted coefficients).

For each of the 20 separate rounds of the outer loop, Balanced
Accuracy was calculated and results were averaged across all 20
rounds (Overall Balanced Accuracy).
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Parameter optimization and accuracy evaluation were
performed for the three following comparisons: (1) AD vs. CN,
(2) MClc vs. CN, and (3) MClIc vs. MClnc.

It is worth noting that pre-processing, feature extraction and
feature selection steps were performed separately on the datasets
used in the inner training-and-validation loop and in the outer
test loop, in order to avoid over-fitting problems (Kuncheva,
2004).

Diagnostic MR-related Biomarkers

Extraction of MR-related biomarkers was carried out according
to the following procedure. For each round of the inner
training-and-validation loop, maps of voxel-based pattern
distribution of MR image differences among groups of subjects
were generated for the optimized configuration (minimum E),
thus obtaining 20 maps. These maps were averaged in order to
obtain the final map. This procedure was applied to the three
following comparisons: (1) AD vs. CN, (2) MClIc vs. CN, and (3)
MClIc vs. MClnc.

The importance of each considered sample for the
classification was computed on the basis of the predictive
model generated by our SVM (Kloppel et al., 2008; Focke et al.,
2011; Salvatore et al., 2014). As specified in Equation (2), the
weight wy,, assigned by the SVM to the sample n during the
training phase of the classification, indicates the importance of
that sample for the computation of the separating hyper-plane
and, thus, indicates the importance of that sample for the
separation of the two considered groups. It is worth noting that
the weight w, assigned by SVM to the sample n is non-zero
only for support vectors, being respectively positive or negative
depending on the class to which the sample n belongs. Each
sample 7 of the training set was multiplied by the corresponding
assigned weight w,. Resulting weighted samples were added
in order to generate a vector representing the weight of each
feature for the classification. In order to ensure the correct
interpretation of weights assigned by SVM, we then applied
the method proposed by Haufe and colleagues to compute
activation patterns for backward models as described in Haufe
etal. (2014). The computed pattern was finally transformed back
from the PCA space to the MR-images space, resulting in a map
of voxel-based pattern distribution of MR image differences
among groups.

Voxel-based pattern distribution (normalized to a range
between 0 and 1) was represented by a proper color scale
and superimposed on a standard stereotactic brain for spatial
localization. In this way, MR-related diagnostic biomarkers for
the diagnosis of AD (AD vs. CN) and for the early diagnosis of
AD (MClIc vs. CN, and MClIc vs. MCInc) were identified.

Results

Participants

Groups of participants did not show significant differences
for age (Students t-test with significance level at 0.05) and
gender (Pearson’s chi-square test with significance level at 0.05).
Significant differences for MMSE scores were found between CN
and patients (AD, MClIc) (Student’s t-test with p < 0.0001),

consistently with previous studies considering the same groups
of ADNI subjects (Cuingnet et al., 2011).

MR Images

Co-registration of all MRI images to the MNI template and
segmentation into GM and WM tissue probability maps were
performed correctly. Figure 1 shows results of these procedures
for a representative MR image of a MClc patient. Sagittal view
of the original volume (A), the slice co-registered to the MNI
space (B), the GM tissue probability map (C) and the WM tissue
probability map (D) are shown.

The Classifier

Feature Extraction and Selection

Figure 2 shows a representative example of PCA coefficients
resulting from the feature extraction and selection obtained
from the comparison between AD and CN. Ist, 2nd, and 3rd
components are shown when using GM tissue probability map
and an isotropic Gaussian kernel with 10mm? FWHM for
smoothing. The number of the extracted PC was 141.

Figures 3, 4 show, as representative examples, the explained
variance as a function of the number of considered PCs, before
(Figure 3) and after (Figure4) sorting them in accordance
to their FDR. Plots are shown for the comparisons between
AD and CN, MClIc, and CN, MClIc, and MCInc when using
GM tissue probability maps and no smoothing. The trend of
explained variance as a function of the number of considered PCs
was modified by the application of FDR-analysis. In particular,
FDR-analysis allowed the most discriminative information for
class separation to be contained in the first few principal
components. This is shown by the step in the explained variance
in correspondence with a low number of components for the
comparisons between AD vs. CN and MClc vs. CN (Figure 4).

FIGURE 1 | Sagittal image of a MR scan from a MClc patient:

(A) original image; (B) same slice, deskulled and co-registered to the
MNI space; same slice, segmented into Gray Matter (GM) (C) and into
White Matter (WM) (D).
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Classification

In Figure5, a representative example of the hyper-plane
separating AD from CN subjects is shown when using 3 PCA
coeflicients, GM tissue probability map and an isotropic Gaussian
kernel with 10mm? FWHM for smoothing. The number of
subjects involved was 142 (67 AD, 75 CN) and the total number
of extracted PCA coefficients was 141.

Optimization of Classification and Evaluation of
Accuracy
Figures 6-8 show E (1 - Balanced Accuracy) as a function
of applied smoothing (FWHM - mm?®) and number of PCA
coefficients when using GM tissue probability maps. Plots are
shown for the comparisons between AD and CN, MClIc, and CN,
MClIc, and MClnc.

Optimal parameters resulting from classifier optimization are
reported in Table 2. For all the comparisons, minimum values
of E were obtained mostly when using GM tissue probability

3-rd COMPONENT

FIGURE 2 | PCA coefficients for the comparison between AD (o
symbol) and CN (x symbol) when using GM tissue probability map and
an isotropic Gaussian kernel with 10 mm3 FWHM for smoothing. 1st,
2nd, and 3rd components are shown.
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FIGURE 3 | Explained Variance as a function of the number of
considered Principal Components, when using GM tissue probability
map and no smoothing, for the following comparisons: AD vs. CN,
MClc vs. CN, MClc vs. MCinc.

maps (frequency of 100% for AD vs. CN, 85% for MClIc vs. CN,
80% for MClIc vs. MClnc). For the comparison between AD and
CN, the best set of optimal parameters among the 20 rounds
was: GM tissue probability map; 10 mm* FWHM of the isotropic
Gaussian kernel for smoothing; 127 PCA coefficients. When
using these parameters, E reached its minimum value of 0.08. For
the comparison between MClc and CN, the best set of optimal
parameters among the 20 rounds was: GM tissue probability map;
6 mm?> FWHM of the isotropic Gaussian kernel for smoothing;
67 PCA coeflicients. When using these parameters, E reached
its minimum value of 0.14. For the comparison between MClIc
and MClnc, the best set of optimal parameters among the 20
rounds was: GM tissue probability map; 2 mm?® FWHM of the
isotropic Gaussian kernel for smoothing; 34 PCA coefficients.
When using these parameters, E reached its minimum value
of 0.27.
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FIGURE 4 | Explained Variance as a function of the number of
considered principal components sorted in accordance to their FDR,
when using GM tissue probability map and no smoothing, for the
following comparisons: AD vs. CN, MClIc vs. CN, MClc vs. MClinc.
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FIGURE 5 | Hyper-plane plane separating AD (o symbol) from CN
(x symbol) PCA coefficients (3 PCA coefficients), and defined
Support Vectors (O symbol), when using GM tissue probability
map and an isotropic Gaussian kernel with 10mm3 FWHM for
smoothing. 1st, 2nd, and 3rd components are shown.
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FIGURE 7 | E (1 - Balanced Accuracy) as a function of smoothing (FWHM - mm?3) and number of PCA coefficients for the comparison between MClc
and CN when using GM.

?
o
3 058
Q
<
o
[}
(%)
5
3
; 0.27
T
° 12
Cca 50 2 8M o)
Coeffi .. 4 cWHM -
ffICIents 100 0 : smoot\'“ng ¥

FIGURE 8 | E (1 - Balanced Accuracy) as a function of smoothing (FWHM - mm3) and number of PCA coefficients for the comparison between MClc

and MCInc when using GM.
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TABLE 2 | Classification error and optimal parameters (Tissue map,
Smoothing, Number of PCA coefficients) for each of the 20 rounds of the
inner training-and-validation loop (best configuration in bold).

Comparison E Tissue Smoothing PCA
map FWHM [mm3] coefficients
AD vs. CN 0.10 GM 6 6
0.08 GM 10 127
0.12 GM 10 41
0.11 GM 4 62
0.11 GM 6 75
0.15 GM 2 64
0.13 GM 8 69
0.12 GM 4 32
0.12 GM 2 67
0.11 GM 2 50
0.12 GM 4 48
0.09 GM 4 54
0.13 GM 8 35
0.12 GM 2 118
0.12 GM 4 46
0.13 GM 2 22
0.12 GM 2 135
0.15 GM 6 49
0.11 GM 6 54
0.12 GM 12 30
MClc vs. CN 0.19 GM 8 26
0.17 GM 2 25
0.20 GM 2 94
0.19 GM 4 53
0.22 WB 2 14
0.20 WB 10 57
0.15 GM 4 62
0.15 GM 10 22
0.21 GM 10 75
0.19 GM 10 32
0.14 GM 6 67
0.19 GM 4 13
0.19 WB 6 64
0.17 GM 10 80
0.22 GM 8 28
0.18 GM 12 21
0.19 GM 12 16
0.19 GM 10 81
0.19 GM 8 76
0.19 GM 8 101
MClc vs. MCInc 0.30 GM 2 9
0.31 GM 10 19
0.33 WB 12 34
0.34 GM 4 34
0.32 GM 8 16
0.30 GM 6 17
0.33 WwB 2 21
0.28 GM 6 10
0.27 GM 2 34
0.31 WM 4 4
0.31 GM 2 16
0.32 GM 8 31
0.32 GM 8 23
0.30 GM 4 46
0.34 GM 8 33
0.33 GM 8 2
0.32 WB 4 34
0.28 GM 10 5
0.30 GM 8 8
0.30 GM 2 84
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FIGURE 9 | Explained Variance, when using the best set of optimal
parameters, as a function of the number of considered principal
components sorted in accordance to their FDR, for the following
comparisons: AD vs. CN, MClc vs. CN, MCic vs. MCinc.

The operational time required by the whole pre-processing
and training of the classifier (including feature extraction and
selection) using the best set of optimal parameters, as measured
by the tic and toc functions implemented in Matlab (version
R2015a) and running on a system with 32 CPUs at 2.00 GHz,
was 31.7s for the comparison between AD and CN, 21.7s
for the comparison between MCIc and CN and 21.2s for the
comparison between MCIc and MClnc. The testing phase,
including preprocessing and classification of the new dataset,
took 1.5s per subject on average.

The Overall Balanced Accuracy (averaged across all 20
rounds) was 0.76 & 0.11 for the classification of AD vs. CN,
0.72 % 0.12 for the classification of MCIc vs. CN, 0.66 £ 0.16
for the classification of MCIc vs. MClng, respectively.

Since MMSE resulted significantly different between CN and
patients (AD, MClc), we have also tested our classification
algorithm after incorporating MMSE as additional feature.
Balanced Accuracy resulted to be affected (from 0.76 £ 0.11 to
0.99 £ 0.03 for AD vs. CN, from 0.72 £ 0.12 to 0.78 + 0.16
for MClIc vs. CN, from 0.66 & 0.16 to 0.60 £ 0.17 for MClc vs.
MClnc).

Figure 9 shows the explained variance as a function of
the number of considered PC sorted in accordance to their
FDR. Plots are shown for the comparisons between AD and
CN, MCIc and CN, MCIc and MCInc when using the best
configuration highlighted in Table 2. For AD vs. CN comparison,
the percentage of variance explained by the first 127 components
was 98%; for MClIc vs. CN comparison, the percentage of variance
explained by the first 67 components was 74%; for MClc vs.
MClInc comparison, the percentage of variance explained by the
first 34 components was 50%.

Diagnostic MR-related Biomarkers

Figures 10-12 show voxel-based pattern distribution maps for
the three following classification: (1) AD vs. CN, (2) MClc vs.
CN, (3) MClIc vs. MClInc. The pattern of differences (normalized
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FIGURE 10 | Voxel-based pattern distribution map (axial view) for the classification between AD and CN. Voxel-based pattern distribution (normalized to a
range between 0 and 1) is expressed according to the color scale (threshold = 50%) and superimposed on a standard stereotactic brain for spatial localization.

FIGURE 11 | Voxel-based pattern distribution map (axial view) for the classification between MClc and CN. Voxel-based pattern distribution (normalized to
a range between 0 and 1) is expressed according to the color scale (threshold = 45%) and superimposed on a standard stereotactic brain for spatial localization.
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FIGURE 12 | Voxel-based pattern distribution map (axial view) for the classification between MClc and MClinc. Voxel-based pattern distribution (normalized
to a range between 0 and 1) is expressed according to the color scale (threshold = 35%) and superimposed on a standard stereotactic brain for spatial localization.

to a range between 0 and 1) is expressed according to the color
scales.

Voxels influencing the classification of AD with respect to
CN (Figure 10) are localized in the temporal pole, superior
temporal cortex, medial temporal cortex including hippocampus
and entorhinal cortex, amygdala, thalamus, putamen, caudate,
insular cortex, gyrus rectus, lateral orbitofrontal cortex, inferior
frontal cortex, superior frontal cortex, anterior cingulate cortex,
precuneus, and in the posterior cerebellar lobule.

Considering the comparison between MCIc and CN
individuals (Figure 11), the major part of voxel-based pattern
distribution was similar to the one previously found in AD.

Finally, in the direct comparisons between the two MCI
groups (Figure12) we detected only voxels influencing
classification of the MCIc with respect to MClInc. In other words,
there were no anatomical changes in the MClInc’s brain useful to
increase the accuracy of classification. Overall, the major part of
voxel-based pattern distribution was similar to the one detected
in the previous MClIc vs. CN contrast.

Discussion and Conclusions

The localization and spatial extent of the anatomical features
identified in our study are in line with previous research showing
the precedence of pathologic changes in the temporal and
parietal cortex (Braak and Braak, 1991; Schroeter et al., 2009).
In fact, a recent neuroimaging meta-analysis (Schroeter et al,
2009) aimed at characterizing the prototypical neural substrates

of AD and its prodromal stage amnestic MCI reported the
presence of:

(a) Reduction of glucose utilization and perfusion in the inferior
parietal lobules and the posterior cingulate cortex and
precuneus; hypometabolism was detected in the left anterior
superior insula; whereas gray matter atrophy was found
in the left temporal pole/anterior superior temporal sulcus,
right amygdala, and gyrus rectus when 525 MCI patients
were compared with 1097 healthy controls.

Reductions in glucose utilization and perfusion coincided
in the inferior parietal lobules, posterior superior temporal
sulcus, precuneus, posterior cingulate cortex, anterior medial
frontal cortex, anterior cingulate gyrus and right inferior
temporal sulcus; hypometabolism was in the right frontal
pole, left posterior middle frontal gyrus and left hippocampal
head; whereas gray matter atrophy was found in the
both amygdalae, both anterior hippocampal formations,
entorhinal areas, medial thalamus, posterior insula, and left
middle temporal gyrus/superior temporal sulcus when 826
AD patients were compared with 1097 healthy controls.

(b)

The only brain region revealed by our pattern recognition
analysis not typically related to AD-like atrophy was the
cerebellum. The cerebellum is a region generally rather neglected
in AD research. Atrophy of this region has been sparsely
reported in neuroimaging studies (Thomann et al, 2008a;
Nigro et al., 2014), although there is considerable number of
histo-pathological studies that demonstrated the presence of
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degenerative changes (Li et al., 1999; Wegiel et al., 2000; Wang
etal., 2002). These alterations mainly comprise reduced Purkinje
cell density, atrophy of the molecular and granular cell layer as
well as a large number of amyloid plaques in the cerebellar cortex
of AD compared to controls. Moreover the fact that we detected
only anatomical changes in the posterior lobule of the cerebellum
corroborated our findings, since cognitive performance in AD
patients was found to be significantly correlated with volumes of
posterior cerebellar lobes (Thomann et al., 2008b).

The development of computer-based automatic methods for
the accurate classification of patients in early phase of AD from
imaging data has attracted strong interest from the clinical
community in the last few years, since its possible critical impact
on clinical management and practice (i.e., identification of new
biomarkers). Many of these classification methods are based on
SVM, a set of algorithms that uses supervised learning of pattern
recognition in a training set to build a classifier able to predict
the category to which a new example belongs. One of the most
important challenging in this field of study is to define automated
methods to discriminate MCI patients progressing later to AD
from patients who will not (Schroeter et al., 2009). For this
reason, this study was aimed at assessing the powerful of machine
learning methods in discriminating MCI at a risk state of AD.

In our work we used nested CV to measure the performance
of our classifier. Nested CV avoids optimistically biased estimates
of performance that may arise from the use of the same
CV for parameter estimation and performance evaluation.
Specifically, when model parameters are estimated by means
of the performance evaluation criterion, then these estimates
depend on (1) improvements in generalization performance and
(2) statistical features of the particular dataset on which the
performance are evaluated. This may result in under-estimates of
the CV error. Moreover, in ordinary CV, parameter estimation
is performed prior to model building, which could lead to an
optimistic evaluation of the performance of the classifier. On
the other side, in nested CV parameter estimation is performed
simultaneously to performance evaluation (Cawley and Talbot,
2010).

Performances of our classification algorithm evaluated by
nested 20-fold CV were 0.76 for AD vs. CN, 0.72 for MCIc vs. CN,
and 0.66 for MClIc vs. MClnc. In their published study, Cuingnet
et al. (2011) evaluated the performance of ten different machine
learning methods (28 algorithm configurations) by using the
same group of ADNI subjects employed in our work, splitting
datasets in two equal sample groups and using one group to
estimate the optimal value of hyperparameters and the other
group to evaluate the performance of the classifier. Performances
reached by our algorithm for the three classifications (AD vs.
CN, MCIc vs. CN, and MCIc vs. MCInc) are better than
27/28 algorithm configurations, since 27 algorithms have a
Balanced Accuracy lower than 0.66 for the MClc vs. MClnc
comparison.

The use of our classifier is limited to the early diagnosis of
AD. Notwithstanding the vast majority of brain regions identified
by our multivariate pattern recognition analysis have been
also described to be involved in neurodegenerative processes
underlying other dementia disorders (e.g., Fronto-Temporal

Lobar Degeneration), machine learning has been also found
accurate when applied to MR images for the differential diagnosis
of AD (e.g., Kloppel et al., 2008). The clinical use of such a
machine learning approach (early and differential diagnosis of
AD) should require the training of a multicategory classifier
(Beom Choi et al., 2014) on MR images from CN and different
dementia patients (e.g., MCIc, MClnc, AD, FTD).

The main innovative result of our work was the extraction of
MR-related biomarkers for the early diagnosis of AD by means
of machine learning. We assessed the relevance of each brain
voxel with respect to the classification analysis, thus allowing
regions critically involved in the pathophysiological mechanisms
of AD to be identified. Notably, the vast majority of brain regions
allowing to perform the best discrimination between AD and
CN, as well as between MClIc and CN, were the same regions
allowing the discrimination between the two critical forms of
MCI, i.e., MCIc and MClnc. In other words, the AD-like atrophy
patterns characterized by combined pathological changes within
the temporal cortex, hippocampus, entorhinal cortex, thalamus,
insular cortex, anterior cingulate cortex, orbitofrontal cortex, and
precuneus, allowed distinguishing clinically- and cognitively-
matched MCI patients progressing to AD from those who
will not.

In conclusion, we demonstrated that an advanced
neuroimaging approach based on machine learning is able
to accurately classify patients who will or will not develop AD
by means of structural MRI data and to extract MR-related
biomarkers of AD. Moreover, our advanced neuroimaging
study allows us to perform a challenging reflection. Due to
the similarity between AD-like atrophy patterns with those
detected in MCI who will convert in AD, we can derive that
the machine learning approach impacts on the sensitivity of
AD-related features rather than specificity. This would suggest
that the problem of how to perform diagnosis of AD at a very
early stage by MRI seems to be a matter of increasing the
MRI detectability of structural biomarkers. For this reason, both
current generation MRI systems combined with advanced images
processing algorithms and future generation MRI systems with
improved sensitivity (e.g., increased MRI resolution and better
S/N ratio) will —definitely- move MRI diagnostic role from
clinical to pre-clinical stage of AD.
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Abstract: The emergence of Alzheimer’s Disease (AD) as a consequence of increasing aging population make urgent the
availability of methods for the early and accurate diagnosis. Magnetic Resonance Imaging (MRI) could be used as in vivo,
non invasive tool to identify sensitive and specific markers of very early AD progression. In recent years, multivariate
pattern analysis (MVPA) and machine-learning algorithms have attracted strong interest within the neuroimaging
community, as they allow automatic classification of imaging data with higher performance than univariate statistical
analysis. An exhaustive search of PubMed, Web of Science and Medline records was performed. in this work, in order to
retrieve studies focused on the potential role of MRI inaiding the clinician in early diagnosis of AD by using Support
Vector Machines (SVMs) as MVPA automated classification method. A total of 30 studies emerged, published from 2008
to date. This review aims to give a state-of-the-art overview about SVM for the early and differential diagnosis of AD-
related pathologies by means of MRI data, starting from preliminary steps such as image pre-processing, feature
extraction and feature selection, and ending with classification, validation strategies and extraction of MRI-related
biomarkers. The main advantages and drawbacks of the different techniques were explored. Results obtained by the
reviewed studies were reported in terms of classification performance and biomarker outcomes, in order to shed light on
the parameters that accompany normal and pathological aging. Unresolved issues and possible future directions were
finally pointed out.

Keywords: Alzheimer’s Disease, Automatic classification, Automatic diagnosis, Machine learning, Magnetic Resonance

Imaging, Mild Cognitive Impairment, Structural neuroimaging biomarkers, Support Vector Machine

1. INTRODUCTION

Alzheimer’s Disease (AD) is the most frequent
neurodegenerative disorder in the elderly population, putting
forward early and accurate diagnosis as one of the main
challenges in medicine to date. Therefore, research increased
the focus on earlier stages of disease, and it has become clear
the importance of biomarkers of AD since they precede
cognitive and behavioral symptoms by years [1]. These
evidences have prompted a revision of the established
research diagnostic criteria for AD dementia that had served
so well since 1984 [2]. These criteria were mainly focused
on typical form of AD that arises with an insidious onset of
episodic memory impairment bound to the selective atrophy
of limbic regions, progressively involving other neocortical
regions over time causing multiple cognitive impairments [3-
6]

New revised criteria [7] considered not only the typical AD
phenotype but also a more complete pattern of cognitive
aging, and the inclusion of intermediate stage of mild
cognitive impairment (MCI) that precedes dementia [8].
Other atypical phenotypes are considered, such as the visual
variant of AD (corresponding to posterior cortical atrophy)
or the language variant (corresponding to logopenic
progressive aphasia). These clinical profiles are also
consistent with MCI due to AD [8] [6], although they may
evolve in different form of dementia. Furthermore, a
prodromal, even earlier, period of preclinical AD could be
identified by the presence of biomarkers detected in vivo in
asymptomatic subjects, years before the onset of cognitive
decline [9-11].

Among the biomarkers for the early diagnosis of AD at the
prodromal disease stage, revised research diagnostic criteria
propose biomarkers from in vivo neuroimaging techniques,
including Magnetic Resonance Imaging (MRI) biomarkers,



2

as additional supportive features to clinical data [12] [11].
Structural MRI measurements in patients with AD showed
brain atrophy over regions including entorhinal cortex,
hippocampus, lateral and inferior temporal structures,
anterior and posterior cingulate [13].

Methods to measure MRI-related biomarkers consist into
neuroimage processing methods and include a variety of
algorithms. Until the last few years, methods used to analyze
neuroimaging data were mainly based on Region-of-interest
measures, image segmentation and mass univariate statistical
approaches, e.g. Voxel-Based Morphometry [14]. Recently,
advances in statistical learning have led to a growing interest
in multivariate pattern analysis (MVPA). This approach aims
at the prediction of a single variable of interest (e.g. AD vs.
controls) from the analysis and comparison of distributed
patterns of activity.

The main advantage of MVPA-based approaches is that,
given their multivariate nature, they are able to detect
spatially distributed activations and cerebral patterns over a
set of pixels, which results in a relatively higher sensitivity
than conventional univariate analysis [15][16][22].

Among MVPA approaches, Support Vector Machines
(SVMs) [17] [18] showed promising results in the automatic
classification of medical images, e.g. [19], mainly for the
classification of non-pathological vs. pathological images or
for the classification of images belonging to different
subtypes of disease.

When applied to AD patients using structural MRI images,
SVM showed high potential in the classification of ‘AD vs.
normal subjects as well as in the prediction of conversion to
AD in patients with MCI (e.g. [20]). These results. make
SVM comparable to a well-trained neuroradiologist  in
classify typical Alzheimer’s disease [20] and a potential
diagnostic tool in a clinical setting to support the early and
differential diagnosis of AD [21] [22].

However, several approaches have been proposed for the
automatic early and differential classification of patients with
AD-related pathologies using structural MRI and SVM. The
main differences among these approaches involve: 1) pre-
processing methods of MRI images (e.g., different kernel
type or different kernel size for smoothing); 2) feature
extraction techniques (e.g. voxel-level  approaches,
anatomical measurements, data-driven techniques); 3)
feature selection techniques (e.g. a priori Regions Of Interest
(ROIs), univariate feature selection, a posteriori approaches
and other data-driven techniques); 4) kernels for the SVM
classification; 5) validation procedures; 6) the possibility to
map the importance of each MRI image voxel for the
classification,-i.e.; to identify cerebral patterns of differences
between the two considered subject groups [23].

In this review, we focused on the potential role of MRI in the
classification AD-related pathologies by means of SVM. A
total of 30 studies emerged from an exhaustive search of
PubMed, Web of Science and Medline records, published
from 2008 to 2014. This paper aims to provide a systematic
overview about the SVM approaches in the automatic
classification of AD and in the prediction of conversion from
MCI to AD. Both main achievements in terms of
classification performance (e.g., accuracy, specificity and
sensitivity) and limitations are described, including: 1) the
effects of pre-processing on classification performances; 2)

the effects of feature extraction and selection methods, 3) the
effects of classification and validation procedures, 4) the
interpretation of maps showing the importance of each MRI
image voxel for the classification.

2. PRE-PROCESSING

Classification of medical images always requires pre-
processing procedures, which are needed for image
standardization purposes.. For example, co-registration of
images and spatial normalization to a standard anatomical
space are useful since they allow voxel-based comparison
among two or more images, and voxel-based spatial
localization in a standard reference atlas, respectively.

However, there are some other pre-processing steps which
could lead 'to an improvement in image classification
performances.  Among these, smoothing is a widely used
strategy in medical image analysis that allows inter-subject
differences and noisy on images to be reduced. This process
consists in averaging the signal intensity of each voxel with
the intensities of its neighbors, often using a filter (e.g.
Gaussian). Smoothing aids- normalizing the error
distribution, and this is a mandatory condition for image
analysis by inferences based on parametric tests. Smoothing
is-able to improve the signal-to-noise ratio and to account for
local transformation errors which may occur during spatial
co-registration [24].

Among the studies based on SVM and considered in this
review, 10 applied smoothing (i.e. [6][24-33]). Among these,
Vemuri-et al. [25] applied an 8 mm FWHM Gaussian
smoothing followed by an 8 mm isotropic down-sampling
step that was performed by simple averaging. Characteristics
of smoothing processing employed in the considered studies
are summarized in Table 1 for AD vs. CN and in Table 2 for
other comparisons.

3. FEATURE EXTRACTION

The main advantage of multivariate pattern analysis with
respect to conventional univariate analysis is that they are
able to classify samples by working in multidimensional
spaces. This results in a relatively higher sensitivity, because
a larger amount of information can be considered during the
construction of the classifier. However, MVPA-based
algorithms must be able to manage high data dimension.

Only a small number of SVM-based studies for the
classification of MRI brain images directly makes use of
information at a voxel level, e.g. pixel intensities from the
whole brain or probability values from segmented tissues.
The great majority of these studies involve a feature
extraction step, which is aimed at reducing the dimension of
the data to be handled without losing relevant information.

Feature extraction is the operation of generating a new set of
features as a function of the original input data. The new set
of features should have the following characteristics with
respect to the original input data: 1) reduced redundancy, by
removing those features carrying no more information than
the selected subset; 2) increased relevance (or reduced
irrelevance), by removing those features that do not provide
useful information for class discrimination (independently



from the selected subset); 3) reduced dimensions, as a
consequence of points 1) and 2).

This operation results in two main advantages. First, the
reduction of the number of features to be handled by the
classification algorithm usually enhances classification
performance; this is only possible if the feature extraction
technique is able to retain significant information for
discrimination while discarding irrelevant and redundant
information. Second, the reduction of the dimension of the
feature set may result in a decrease of computational costs
for the learning process.

In this section, we first describe those approaches that
directly make use of information at a voxel level, such as
voxel intensities from the whole brain, or voxel probability
values from segmented tissues. Then, a survey of the most
common feature extraction techniques is included: features
as measured by anatomical structures on images, data-driven
feature extraction techniques, hybrid feature extraction
methods, with a brief description of those techniques that
integrate features extracted from structural MR images with
other information (e.g. demographic and clinical data).
Feature extraction techniques employed by each considered
study are summarized in Tables 1-2 for AD vs. CN and for
other comparisons, respectively.

3.1. Voxel-level approaches: whole brain and tissue
segmentation

In this category, we can include those approaches that
directly use information at a voxel level for the classification
of MRI brain images.

Methods that use voxel intensities from the whole brain for
the classification of MRI images in AD are not widespread
in literature. The main advantage of these methods is that no
information is excluded a priori from the classification
process. On the other side, this involves the use of redundant
or irrelevant information for classification, which may lead
to a decrease of the discrimination accuracy.

Methods that use probability values from segmented tissues
are widely used.. These methods involve a processing of
images , which aims at segmenting whole brain MR images
into tissue probability maps, such as Gray Matter (GM),
White Matter (WM), Cerebrospinal Fluid (CSF) or
Ventricles (VN). Segmentation into tissue probability maps
is made using fully-automated algorithms, such as Statistical
Parametric Mapping (SPM—Wellcome Trust Centre for
Neuroimaging, Institute of Neurology, UCL, London UK—
http://www fil.ion.ucl.ac.uk/spm). [34-36]. Most studies
focused on classification of AD use GM map because it has
been proven to be strongly “involved in the
pathophysiological mechanisms of early and late AD [37]
[38]. Indeed, recent studies on-AD classification have shown
good discrimination performances when using GM (e.g.
[39]). Among the considered studies on AD classification by
means of SVM and MRI, Kloppel et al. [23], Magnin et al.
[40], Abdulkadir et al. [41] and Retico et al. [33] used GM.
Plant et al. [27], Dukart et al. [30] and Hidalgo-Munoz et al.
[42] used both GM and WM; Fan et al. [24], Vemuri et al.
[25] and Davatzikos et al. [24] used GM, WM and CSF;
Varol et al. [43] used GM, WM and VN. In order to reduce
the number of voxels within segmented maps, other studies
included in this review used the above mentioned tissue
segmentation methods in combination with feature extraction
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techniques [28] [31][44-48]. In the following sections a brief
description of these feature extraction methods is presented.

3.2. Anatomical measurements

Feature extraction by anatomical measurements on structural
MRIs is a widely used approach in the analysis and
classification of AD (e.g. [21]). Among all possible
anatomical measurements, volume and thickness of several
cerebral regions have been shown to be reduced in AD
patients as a consequence of brain atrophy. Oliveira et al.
[49] measured the volume of cortical and subcortical
structures as features for the classification of AD. Raamana
et al. [32] used cortical thickness features. Schmitter et al.
[50] used volume measurements of predetermined regions
(i.e., left and right hippocampi, left and right temporal GM
areas, lateral 3 and 4 ventricles, total GM and total CSF) as
features for the early and differential diagnosis of AD.

Also cortical curvature represents a measure of interest,
because its reduction has been observed as a possible effect
of increased sulcal widening [51]. Diciotti et al. [52]
measured the cortical thickness and mean curvature of
predefined cortical structures together with the volume of
predefined cortical and subcortical structures. In their work,
each volume measurement was further normalized to the
total intracranial volume in order to remove possible intra-
subject differences due to dissimilarities in overall head size
[53].

On the basis of previous studies about AD-related
pathologies (e.g. [54-60]), Costafreda et al. [61] restricted
their analysis by extracting shape features of the
hippocampal region. Cui et al. [62] measured volume,
thickness, curvature, surface area and folding of different
regions (i.e., subcortical structures, brain stem, cerebellum
and cerebral cortex) for the early classification of AD.

Other studies used anatomical measurements in combination
with other feature extraction techniques[29] [31] [44] [46-
48]. Among these, Ferrarini et al. [44] applied a local
analysis of shape differences between AD and CN
populations as feature extraction technique after tissue
segmentation. Yang et al. [47] extracted shape features from
structural MRIs in order capture the variation of anatomical
shape that cannot be described using only volumetric
measurements. Ota et al. [31] used mean GM density
calculated over predetermined ROIs. In the study by Farhan
et al. [48], the volume of GM, WM and CSF together with
the size of hippocampi were extracted from MR images and
used as features for classification.

3.3. Data-driven feature extraction techniques

This category includes those techniques that perform feature
extraction starting from all available data and work after data
analytical or geometrical transformation. This approach is
particularly useful to identify patterns in data, as it allows to
highlight similarities and differences even in high-
dimensional sets. However, data-driven approaches may lead
to the generation of a predictive model tailored for a
particular dataset and lacking of generalization ability.

Among the published works considered in this review,
Duchesne et al. [63], Wilson et al. [28] and Yang et al. [47]
used Principal Components Analysis (PCA). PCA is a quite
common feature extraction technique in neuroimaging
studies (e.g. [64-66]) that is based on an orthogonal
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transformation of a given dataset from a set of (possibly)
correlated variables to a set of orthogonal (uncorrelated)
variables, called principal components of the original dataset.
Principal components are the eigenvectors of the covariance
matrix of the dataset. The main feature of principal
components is that they are sorted in descending order
according to the proportion of variance explained, with the
constraint for them to be orthogonal with each other. The
maximum number of principal components which can be
extracted from a dataset is always equal to the number of
original variables and the sub-space defined by the principal
components is called PCA subspace. Final features are
extracted by projecting the original dataset onto the PCA
subspace and they are called PCA coefficients of the original
dataset. PCA is useful to reduce the dimension of the
features to be handled without losing relevant information.

Another data-driven feature extraction approach is
Independent Component Analysis (ICA) that aims at
separating data into maximally independent groups by
expressing a set of random variables as a linear combination
of non-normal and statistically independent components. In
this way, a multivariate signal (observation) can be separated
into additive subcomponents (source) characterized by
minimum mutual information [67]. In particular, spatial-ICA
(SICA) aims at achieving maximal independence in space.
SICA was used by Yang et al. [45] as feature extraction
technique, as it satisfies the assumption that each structural
MR image can be expressed as linear combination of
spatially and statistically independent images.

Other studies used different data-driven feature extraction
techniques for the classification of AD patients. Gerardin et
al. [68] computed spherical harmonics coefficients to. model
the shape of the hippocampi and then used these coefficients
as features for the classification process. Wolz et al. [29]
used tensor-based morphometry [69] [70] and manifold-
based learning [71] coupled with anatomical measurements
to extract the features used to perform classification.

3.4. Hybrid feature extraction methods

Feature extraction approaches described above are not
exclusive with one another. Several studies perform feature
extraction by means of more than one method in succession,
in order to take advantage of the strengths of each method.
Among the considered studies, 8 used more than one feature
extraction approach: Ferrarini et al [44], Wilson et al. [28],
Wolz et al. [29], Yang et al. [45], Zhang et al. [46], Yang et
al. [47], Farhan et al. [48], Ota et al. [31].

It is worth noting that many. studies used features extracted
from structural MR images in combination with data
obtained by means of other modalities, e.g. demographic,
clinical and Positron Emission Tomography (PET) data or
neuropsychological and functional measures. For example,
Nho et al. [72] integrated features obtained by anatomical
measurements on predetermined ROIs with clinical features
for the classification of patients with AD and MCI. Cui et al.
[73] combined MRI features with CSF biomarkers and
neuropsychological measurements. However, in this review
we have not included this category of multi-modality
approaches.

4. FEATURE SELECTION

Feature selection has the same purposes of feature extraction,
such as dimensionality reduction and removal of redundant
and irrelevant data. For this reason, feature extraction and
feature selection are often confused. The main difference
between feature extraction and selection is that the first
generates a new set of features as a function of the original
input data, while the second selects a subset of features from
the original input data. As a consequence of this, feature
selection does not suffer from problems of interpreting
results, which is typical -of some feature extraction
techniques. On the contrary, feature selection can even aid
the interpretation of predictive models, because it restricts
the dataset to a subset of discriminative features without
operating any transformation on them.

Besides reducing computational costs and improving model
interpretability, selection of a subset of relevant features
from the original dataset before the generation of the
predictive model also helps reducing overfitting problems,
which brings to a better evaluation of the generalization
ability of the classifier.

In this section, we give a description of the most common
feature selection methods, by listing them into five distinct
categories: 1) a priori Regions Of Interest (ROIls); 2)
univariate feature selection; 3) a posteriori feature selection;
4) other data-driven feature selection techniques; 5) hybrid
feature selection methods. We highlight that feature selection
can be considered an optional step when input data contain
redundant or irrelevant information for the learning process,
while feature extraction is a mandatory step for pattern
recognition algorithms to classify high dimensional data.
Among the studies considered in this paper, seven do not
apply feature selection. In addition to these studies, Kloppel
et al. [23] assessed the performances of a classification
method with and without a feature selection process. For
each of the considered studies, Tables 1-2 summarize the
adopted feature selection techniques for AD vs. CN and for
other comparisons, respectively.

4.1. A priori Regions-Of-Interest

Feature selection can use a priori knowledge of some
information when involves local restriction to anatomical
regions which are known to carry discriminative
information. In this sense, a priori ROIs-based approaches
have the advantage that selected features are relevant for
classification. Because of this restriction to predetermined
regions, ROI selection can even aid the interpretation of the
results obtained by the classification.

Discriminative ROIs can be chosen on the basis of the results
of previous studies. In the case of AD, relevant ROIs can be
selected according to previous findings from neuroimaging
studies, e.g. regions of brain atrophy from MRI, and regions
with reduced glucose absorption from Fluorodeoxyglucose
(**FDG)-PET, respectively.

The main drawback of this approach is that a priori
anatomical constraints may also exclude discriminative
information. This could bring to the generation of an
incomplete predictive model.

On the basis of previous literature (e.g. [74]), some studies
restricted their analysis to the hippocampal region.
Costafreda et al. [61] focused on hippocampi, thus obtaining
information about the discriminative power of hippocampal
subregions for the diagnosis of AD. In the study by Farhan et



al. [48], size information was extracted over the hippocampal
region (together with anatomical measurements of GM, WM
and CSF) and subsequently used as feature for classification.
Gerardin et al. [68] segmented both the hippocampus and the
amygdala ROIs using a previously implemented fully-
automated method [75] [76]; this method was based on prior
knowledge on the location of these two structures.

Duchesne et al. [63] choose the medial temporal lobe area as
a priori ROI for the classification of AD vs. CN. Kloppel et
al. [23] compared the performance of SVM classification
obtained using grey matter from the whole brain with the one
obtained using grey matter of antero-medial lobe volume of
interest.

In the study by Chincarini et al. [77], ROI extraction was
performed by means of rigid registration and matching to a
Voxel Of Interest (VOIg template [78]. Selection was based
on previous MRI and **FDG-PET findings relevant to AD-
related pathology [79-82]. A priori selected ROIs included
temporal lobe structures affected in early AD (hippocampus,
enthorinal cortex, amygdale, middle and inferior temporal
gyrus, insula, superior temporal gyrus), but also a control
region which is almost unaffected in early AD (rolandic). It
is interesting to note that the authors suggested the
application of their algorithm to other ROIs not considered
in their work, in order to explore and detect brain regions,
which could be affected by early atrophic changes (e.g.
thalamus or parietal cortex).

Diciotti et al. [52] constrained their analysis to a priori
chosen cortical (e.g. temporo-parietal lobes) and subcortical
(e.g. hippocampus and amygdala) regions. Selected areas
were determined on the basis of well-known structural
biomarkers of early AD [60]. In this way, twentyfive cortical
and two subcortical ROIs were selected per cerebral
hemisphere. Also Cui et al. [73] restricted their analysis to a
predetermined number of cortical and subcortical structures
that were automatically parcelled by processing each MRI
scan with a free-available automatic software tool
(FreeSurfer software package,
http://surfer.nmr.mgh.harvard.edu/). In the paper by Cui et
al. [62], feature extraction was performed over subcortical
structures, brain stem, cerebellum and cerebral cortex.

Dukart et al. [30] performed a priori ROI selection on the
basis of the results of a coordinate-based voxel-wise meta-
analysis involving 1351 AD patients and 1097 CN subjects
[83]. The aim of this meta-analysis was to identify the
?rototypical network of AD. by seeking MRI-related and
8FDG-PET-related biomarkers. ROIs selected by Dukart et
al. represented the maxima of atrophy or reductions in
glucose metabolism in AD, and included posterior insula,
medial thalamus, hippocampal body/tail, middle temporal
gyrus, superior-temporal - sulcus, ~amygdala, anterior
hippocampal formation, uncus and (trans-) enthorinal area.

Ota et al. [31] extracted the mean GM density of
predetermined ROIs for the early diagnosis of AD. These
ROIs were chosen on the basis of three different brain
atlases, ‘with the aim of comparing the corresponding
performances of classification.

Schmitter et al.. [50] used total GM and total CSF
information as well as features extracted from a priori
chosen ROls, i.e. left and right hippocampi, left and right
temporal GM areas and lateral 3 and 4 ventricles.
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On the other hand, some studies use an exclusive ROI
approach, i.e., they select a ROI to be excluded from the
classification process. Vemuri et al. [25] removed the
cerebellum from the input dataset while retaining all other
structures for subsequent analyses. An automatic parcellation
process was performed by Magnin et al. [40]; in this case,
the ROI of the cerebellum was excluded because it was
partially cut off in some of the MR images. Also Zhang et al.
[46] removed the cerebellum, and then obtained 93 ROI
regions by applying spatial registration to a manually
labelled template [84].

4.2. Univariate feature selection

A practical way to perform feature selection on structural
MR images is applying univariate statistics to the features in
order to rank them from the most to the least discriminative
ones on a specific classification problem. In this way, a
threshold can be applied to remove the less discriminative
features but retaining the most relevant ones on the basis of
statistical results.

This approach can be applied to the features extracted by
means of one of the methods described in section 3, but it
can be also applied directly to image voxels that can be
ranked one by one and then selected. An obvious downside
of this approach is that the power of multivariate tools such
as SVM is likely to be reduced by the application of an
univariate feature selection method before the classification
process. Moreover,  this method may cause lack of
generalization because features are selected on a particular
dataset.

Two studies among the ones considered in this paper
performed feature selection by means of univariate statistics.
Geradin et al. [68] computed Student's t-tests to determine
which features conveyed relevant information for
discrimination of AD and MCI. Their approach involved the
use of a bagging strategy [85] [86]. Features with the highest
T-values were selected as features to be used for the SVM
classification process.

In the study by Varol et al. [43], Welch’s t-test was used in
order to directly rank image voxels according to their
discriminative power with respect to class labels. Voxels
ranked by their t-score were used to construct nested feature
sets, i.e. an ensemble of sets where each set is contained in
the subsequent one. In this way, the first set only contains
voxels with the highest ranking, while the last one contains
all voxels. These nested feature sets were then used to
construct an SVM ensemble model.

4.3. A posteriori feature selection

This category includes all those approaches that perform
feature selection a posteriori with respect to classification. In
this case, features are selected according to their
discriminative power on the basis of the results of
classification.

A typical algorithm is the following: 1) features are divided
into multiple subsets; 2) classification is repeated iteratively
by varying the subset of the features; 3) for each iteration
(i.e., for each subset of features used), a given parameter
(e.g. accuracy of classification) is calculated, in order to
quantify the goodness of classification; 4) the subset of most
discriminative features is the one for which the calculated
parameter is maximized.
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This technique of feature selection performs selection on the
basis of a particular dataset, which may lead to lack of
generalization ability. Being a posteriori process, this
method is part of the evaluating process of the classification
performance. Thus, the choice of the evaluating process (see
Section 6) is of great importance to avoid over-fitting, e.g.
when the same dataset is used, in a a posteriori feature
selection process, for both training and testing the classifier

In Fan et al. [24] and Davatzikos et al. [24], the classification
error rate was used as parameter to perform a posteriori
feature selection. Oliveira et al. [49] performed feature
selection using the F-score as parameter to quantify the
goodness of a subset of features. Cui et al. [73] applied a
posteriori selection of features after ranking them using a
data-driven approach. The optimal feature subset was then
identified by maximizing the Area Under the ROC Curve
(AUC) for SVM classification. Also in the second
considered study by Cui et al. [62], an AUC-based a
posteriori feature selection was used.

In the study by Vemuri et al. [25], the weight assigned by
SVM during classification is used as parameter to perform
feature selection. In this way, a weight-based feature ranking
was obtained [87], reflecting their importance for
classification. By applying a threshold, features with low
magnitude weights were discarded from the dataset while
features with high magnitude weights were retained. As the
authors wrote, this method is particularly interesting when
applied directly to voxel-level data, because it is able to
consider at the same time all the voxel locations and to rank
them according to their importance for classification alone,
i.e. independently from their position. In this way, voxels
affected by the disease can be identified even if they are
located in independent anatomic regions.

Also Hidalgo-Munoz et al. [42] used the weight assigned by
SVM to determine the relative importance of each feature. In
their work, they employed a Recursive Feature Elimination
(RFE) strategy [88], that is a technique in which features are
iteratively removed in order to find the optimal subset of
data for classification. Specifically, they divided the feature
set into different subsets and then applied the RFE strategy
to each subset. For each subset, features were ordered
according to the weight vector returned by SVM, and the
less relevant features were discarded. The use of different
subsets helps avoiding biased results and increasing the
generalization ability of the predictive model. Also Retico et
al. [33] adopted a RFE approach by ranking features
according to the weight returned by SVM. In Ota et al. [31],
RFE was performed by ranking features via an accuracy-
based criterion.

4.4, Other data-driven feature selection techniques

In this category, we include all other approaches that
perform feature selection starting from a particular dataset
and operating data transformation,

Methods used  for selecting feature by data-driven
approaches are very similar to data-driven feature extraction
techniques: described in section 3. In some cases, methods
used for feature extraction can be useful as feature selection
techniques as well. For example, by using PCA, extracted
PCA coefficients are ranked according to the percentage of
explained variance, and this criterion can be used in order to
select the most discriminative features.

As for feature extraction approaches, feature selection by
data-driven techniques allows similarities and differences in
high-dimensional datasets to be identified, but it may bring
to the generation of models with poor generalization ability.

Fan et al. [24] and Davatzikos et al. [24] performed feature
selection by computing a measure of voxel discriminative
power (using the Pearson correlation coefficient) and spatial
consistency.

Plant et al. [27] selected the most relevant features by rating
their interestingness for class separation using the
Information Gain approach [89] [90]. After that, they also
applied a clustering technique [91] in order to-identify sets of
contiguous voxels with high discriminatory power and to
remove noisy information.

In the work by Cui et al. [73], feature ranking was performed
by means of the minimum redundancy and maximum
relevance (MRMR) method [92] [93]. This ranking step was
followed by an a posteriori feature selection strategy.

Chincarini et al. [77] used Random Forest (RF) classifier
[94] to compute the weight (i.e. relative importance) of each
feature for RF classification. In this way, they obtained an
Important Features Map (IFM) identifying relevant voxels
for the classification of AD and MCI. The application of a
threshold to the IFM thus allowed removing irrelevant
features.

In the second considered work by Cui et al. [62], feature
selection included a step based on Fisher scores, that were
calculated for each feature (higher Fisher scores correspond
to higher discriminative power between different groups).
The optimal subset of features was chosen according to the
scores calculated for each feature.

4.5. Hybrid feature selection methods

As for feature extraction, also feature selection can be
performed using more than one method in succession, with
the aim of exploiting the selective power of each approach.
Among the considered studies, eight studies used more than
one feature selection approach, i.e, Fan et al. [24], Vemuri et
al. [25], Davatzikos et al. [24], Gerardin et al. [68],
Chincarini et al. [77], Cui et al. [73] [62], Ota et al. [31].

5. CLASSIFICATION BY SVM

SVM algorithm was introduced by Vapkin and colleagues
[4]. SVM is a binary classifier which aims at generating a
predictive model for the discrimination of new samples.

Let us suppose to have a set of training data consisting of a
vector of N samples belonging to two classes and the
corresponding vector of class labels (e.g. -1 and +1 for
control and patient class, respectively). SVM generates a
hyper-plane able to discriminate between the two classes of
training dataset. The main advantage of this classification
approach is that SVM minimizes the empirical classification
error and maximizes the separation distance between the two
training classes, that is why the decision function is often
called maximum margin hyper-plane. This hyper-plane is
described by the following function:

y) =" w, -t, -k(x,x,)+b



where N is the number of samples in the training dataset; w
is a weight assigned by SVM during the training phase to
each training sample, reflecting its importance for classes
discrimination; t is the class label of the training sample;
k(x,xn) is a kernel function; b is a bias parameter. Samples
of the two classes which lie on the margin of the hyper-plane
are called support vector, and they are the only samples for
which the assigned weight w is non-zero. The function above
is the predictive model generated by SVM, and it returns the
class label y for an unseen sample x.

In the modified version of SVM published by Cortes and
Vapkin [95], the idea of soft margin was introduced, which
is useful when training classes cannot be sharply
discriminated. In this case, the soft margin approach allows
to misclassify a fraction of training samples, while
preserving the ability of the hyper-plane to maximizing its
distance from the nearest samples of the two classes.

The main parameter to be set in a SVM classifier is the
kernel function, which is mostly set as linear, polynomial or
Gaussian Radial Basis Function (RBF). Linear kernels are
defined as

k(Xiixj)=(Xi 'Xj)

while (homogeneous and
kernels are given by

inhomogeneous) polynomial
d
k(xiixj) = (Xi 'Xj)

k(X %;) = (X - x; +1)°

and Gaussian RBF kernels have the following form

2

k(xi,xj)zexp(—yuxi—xju ) y>0

As pointed out by Orru et al. [96], non-linear kernels are
thought to be more flexible than linear kernels in solving
difficult discrimination problems, which reflects in better
classification performance. This flexibility can lead, on the
other side, to over-fitting problems, as non-linear kernels
may not result in a higher generalization power when
classifying unseen samples. This drawback is highlighted
when the sample size is small. Thus, in neuroimaging
classification problems, linear kernels are usually preferred.
This is also due to the consideration that, when the sample
size is small with respect to the number of features involved,
a linear decision function separating the data can easily be
found [97] [98]-

Other parameters to be optimized are those related to the
choice of the kernel, e.g. vy when using Gaussian RBF.
Moreover, another parameter to be optimized is the soft
margin regularization constant C [95].

Both kernel function and related parameters can be set to
default values before the classification process. Another
option is to perform parameter optimization, which can be
accomplished using a grid search approach. In this approach,
a subset of the parameter space is defined, and classification
performances are evaluated for each parameter
configuration. The configuration corresponding to the best
classification performance is chosen as the optimal one. It is
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important to note that data used for parameter optimization
should not be the same used for training and testing the
classifier, because this could lead to a biased estimate of the
generalization error.

Table 1 and Table 2 summarize the kernel used the
considered papers, for AD vs. CN and for other comparisons,
respectively. Among the considered studies, 13 used a linear
kernel and 13 used RBF. When multiple kernels were used
in order to compare the results of classification, only the
kernel function corresponding to the best performance was
reported.

6. VALIDATION @ AND
DIFFERENT TECHNIQUES

One of the most important-issues about the generation of a
predictive model is its validation, because a good validation
process - allows to correctly quantify the discriminatory
power of a given model, which also gives the possibility to
compare classification techniques based on different
approaches. For example, if parameter selection, training of
the predictive model and validation are performed using the
same dataset, the generated classifier will probably show
limited generalization ability when classifying unseen
samples. In this sense, a minimally biased estimate of the
true diagnostic performance of the classifier is needed.

COMPARISON  OF

In this section, Cross Validation (CV) techniques are
described in contrast with train-and-test (T&T) approaches.
A brief description of the most popular metrics in literature
for the quantification of the discriminatory power of a model
is given.

6.1. Cross validation

This approach is the most popular among validation
techniques because it allows to quantify the discriminatory
power of a predictive model even if the size of the dataset is
small. The use of CV has been suggested for the assessment
of the generalization ability of a predictive model in machine
learning methods, because it is able to decrease image
variability problems [42] [99] [100]. Moreover, the
probability of the test error of a classifier estimated using
this approach is almost unbiased [101].

CV involves partitioning the original dataset into
complementary subsets, the training set and the testing set.
The training set is used to train the classifier, while the
testing set is used to validate the generated predictive model.
By using different partitions of the original dataset, multiple
rounds of CV can be performed, which can aid reducing the
variability of the partitioned subsets. Results obtained from
multiple rounds can then simply be averaged in order to
obtain a quantification of the performance of the classifier.

One type of CV approach is the so called k-fold CV, in
which the original dataset is randomly partitioned into k
subsets of equal size. The training of the classifier is
performed using k-1 subsets, while the testing is performed
using the remaining subset. The procedure is then repeated k
times, until all subsets are used once as testing set. The
advantage of this particular type of CV is that each sample of
the original dataset is used once for validation, with all
samples being used for both training and testing phases.
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Leave-One-Out (LOO) CV can be considered a particular
form of k-fold CV in which k equals the number of samples
in the original dataset. In LOO, the training of the classifier
is performed using n-1 samples of the original dataset; while
the testing is performed using the remaining samples (n
being the total number of samples in the original dataset).
The procedure is then repeated n times, until all samples are
used once for validation.

Among the studies considered in this paper, 9 used CV ([28],
[77], [61], [46], [62], [52], [48], [42], [33]) and 15 used LOO
([63], [24], [44], [23], [68], [49], [27], [41], [29], [6], [30],
[47], [31], [50]).

Magnin et al. [40] used a particular bootstrapping approach
in which train and test data were randomly drawn without
replacement from the original dataset, and a correct
classification rate was calculated from classification results.
This procedure was repeated 5000 times, so that each sample
was classified using different combinations of training data.
A mean correct classification rate was calculated at the end
of the whole procedure.

6.2. Train-and-test

This kind of procedure is used when the number of samples
in the original dataset is high enough to allow its splitting
into two subsets including different samples, which can be
used to train and test the classifier. Specifically, this
approach involves partitioning the original dataset into 2
complementary subsets, the training set and the testing set.
The first set is used to train the classifier, the second is used
for validation. When using this approach, over-training
problems are reduced because the training and the testing
sets are completely independent. Anyway, results could be
related to the particular choice of the partition into training
and testing subsets.

In the case of AD studies, an interesting approach is the one
used by Plant et al. [27] and by Cui et al. [73], who
generated a predictive model for the classification of MCI-
converter (MClIc) vs. MCI-non converter (MCInc) by
training their classifier on independent sets of AD patients
and controls.

Among the studies considered in this review 13 performed
training and testing of the classifier using two independent
subsets ([44], [23]; [25], [68], [27], [41], [61], [73], [45],
[43], [30], [32], [33]).

6.3. Metrics

Among all the metrics used in classification studies to
quantify the diagnostic performance of a classifier, the most
popular are accuracy, sensitivity, specificity and AUC. These
statistical measures will be described in the case of binary
classifiers.

Accuracy of classification is a simple measure of the number
of correctly classified samples (for both classes) divided by
the total number of classified samples. If the error rate is
defined as the number of misclassified samples (both
classes) divided by the total number of classified samples, it
is evident that accuracy and error rate are complementary
measures. Accuracy is the most used metric in classification
problems.

Two metrics of great importance in medicine are sensitivity
and specificity, as they measure the rate of correctly

classified samples in the positive and negative class,
respectively (e.g. AD class and Controls class). Sensitivity
(also known as True Positive Rate or Recall) is given by the
number of correctly classified samples belonging to the
positive class (true positives) divided by the total number of
samples belonging to the positive class (true positives plus
false negatives). Specificity (also known as True Negative
Rate) is given by the number of correctly classified samples
belonging to the negative class (true negatives) divided by
the total number of samples belonging to the negative class
(true negatives plus false positives). Here, true positive
(negative) gives the number of correctly classified samples
belonging to the positive (negative) class, while false
positive (negative) gives the number of misclassified
samples belonging to the negative (positive) class.

Another important metric in classification problems is given
by the study of the Receiver Operating Characteristic (ROC)
curve [102] [103]. For a binary classifier, A ROC curve is a
plot of the true positive rate (sensitivity) against the false
positive rate (1 — specificity), which can be obtained at
different setting thresholds. AUC gives a quantification of
the classifier performance, with a higher statistical
consistency than accuracy [104].

Table 1 and Table 2 show classification results of the
considered 'methods in terms of accuracy, sensitivity,
specificity and AUC (when available) for AD vs. CN and for
other comparisons, respectively.

Figure 1 shows accuracy as a function of the considered
study for AD vs. CN classification. A distinction between
results obtained ‘using CV or T&T strategy is made
according to the legend.

Figure 2 shows specificity and sensitivity rates as a function
of the considered study for AD vs. CN classification. A
distinction between results obtained using CV or T&T
strategy is made according to the legend.

Figure 3 shows accuracy, specificity and sensitivity rates as a
function of the considered study for MCic vs. MCinc
classification. A distinction between results obtained using
CV or T&T strategy is made according to the legend.

In Figure 4, a boxplot shows the results of AD vs. CN
classification in terms of accuracy for the studies considered
in this review as a function of pre-processing: with and
without smoothing. Figure 5 shows a boxplot reporting the
results of AD vs. CN classification in terms of accuracy as a
function of the applied SVM kernel function: linear and
Gaussian RBF function. In Figure 6, the results in terms of
accuracy of CV and T&T classification strategies for the
considered studies are reported using a boxplot. The
following comparisons were considered: AD vs. CN (left)
and MClc vs. MClInc (right).

7. EXTRACTION OF BIOMARKERS

Once the predictive model is generated and validated, it can
be used as a tool to determine which of the input features
were the most important for class discrimination. In the case
of MR images of AD patients, this results in the extraction of
sMRI-related biomarkers for the (early and/or differential)
diagnosis of AD.



Extraction of biomarkers from neuroimages is an important
characteristic because it also serves as an additional
qualitative validation of the generated predictive model if the
findings mirror the expected pattern distribution of
anatomical changes in AD or if they return biologically
sensible results.

Methods to extract biomarkers by means of SVMs can
substantially be divided into two categories based on two
different approaches: 1) extraction of those biomarkers
maximizing feature classification performance, and 2) weigh
maps. In the following sections, we considered only studies
using these two approaches and reported the resulting
findings.

7.1. Extraction by feature classification performance

This technique performs feature extraction according to the
performance of the predictive model by varying the subset of
features used for classification. This approach is strictly
related to a posteriori feature selection described in Section
4. In several studies (e.g. [49]) a posteriori feature selection
and biomarker extraction overlap, as the feature selected
according to the classification performance are also
presented as possible biomarkers. In this case, results of
feature selection and biomarker extraction are the same.

The typical algorithm of extraction by feature classification
performance follows the same steps used for a posteriori
feature selection: 1) features are divided into multiple
subsets; 2) classification is repeated iteratively by varying
the subset of used features; 3) for each iteration, the subset
used for classification is changed and a given parameter is
measured, in order to quantify the goodness of classification;
4) features for which classification performance was
maximized are extracted as possible biomarkers.

Among the studies described in this paper, Oliveira et al.
[49], Cui et al. [73] [62] and Chincarini et al. [77] used AUC
as measure of the classification performance. Diciotti et al.
[52] used accuracy, sensitivity and specificity rates. Farhan
et al. [48] used accuracy rates of classification. Ota et al. [31]
performed an accuracy-based RFE to select the most
important features for the classification of MClc vs. MClnc.
These features were highlighted as possible biomarkers for
early and differential diagnosis of AD.

SVM, as a classification method, has proven to be effective
for the identification of functional and structural parameters
that can be indicators of biological process underlying the
pathology of AD [96] [105]. In particular, neuroimaging
MRI values are able to identify atrophied area specifics for
AD progression.

Different comparisons-arose from the literature and here are
taken into consideration: AD vs CN, MCI vs. NC, MClc vs.
MClinc, AD.vs. MCI.

When studies compared AD vs. CN, features influencing the
classification involved:

1. hippocampi [40] [49] [77], area of left hippocampus
[48]

2. - parahippocampal gyrus [40]
amygdala [77]

4. anterior and posterior corpus callosum, right lateral
ventricular horn [49]

5. middle inferior temporal gyrus [77]

When studies compared MCI vs. CN or MClc vs. CN,
features influencing the classification involved:

1. hippocampus, amigdala, left middle inferior

temporal gyrus [77]

2. right straight gyrus, right supramarginal gyrus, right
short insular gyri, left orbital gyri, left angular gyrus
[62]

When studies compared MCIlc and MClinc, features
influencing the classification involved:

1. left ~hippocampus [77] [31],
hippocampi [73],

right and left

2. left middle inferior temporal gyrus [77], right and
left middle temporal gyrus [73]

3.. amygdala, insula [77]

4. left enthorinal cortex, right inferior parietal cortex,
left retrosplenial cortex [73]

5. left.inferior occipital gyrus, left parahippocammpal
gyrus, - right- middle frontal gyrus, right middle
occipital gyrus, left superior occipital gyrus, right
supramarginal - gyrus, left angular gyrus, left
precentral gyrus, right caudate [31]

Only one study [52] performed extraction of biomarkers for
the comparisons between mild AD and CN and between
mild AD and MCI. Features influencing the classification for
both comparisons involved cortical and subcortical volumes.

7.2. Weight maps

A different approach with respect to extraction by feature
classification performance can be followed when using SVM
classifiers (e.g. [23] [66]). During the training phase, SVM
classifiers assign a specific weight to each sample of the
input dataset, according to its importance for the generation
of the predictive model and, hence, for class discrimination.
By multiplying each sample for its weight and by summing
them, a map of the most discriminative features can be
obtained. When using medical images as samples and image
voxels as features of each sample, by multiplying each image
for its weight and by summing them on a voxel basis results
in a map reflecting the relevance of each voxel for
classification. By overlapping the resulting map onto a
standard anatomical template, possible biomarkers can be
identified. It is worth noting that the weight calculated by
SVM is non-zero only for support vectors, while it has
positive or negative sign depending on the class to which the
sample belongs.

Although the potential of this technique, the difficulty in the
interpretation of SVM weight maps still remains an open
issue in neuroimaging research [22]. Several studies tried to
apply arbitrary thresholds or statistical tests to the weight
maps, these approaches improving model interpretability.
However, as stressed by Schrouff et al. [22], the debate
about this point is still open, because, given the multivariate
nature of SVMs, spatial inference on weight maps by means



10

of univariate statistics should be avoided. In particular, the
SVM model is constructed from the combination of all
weights, which are not independent one another as in
statistical parametric maps.

Kloppel et al. [23] used this technique to extract possible
biomarkers not only for the AD vs. CN but also for the AD
vs. FTD comparisons by using whole brain GM images. In
this case, classification depended on voxels in frontal as well
as parietal areas. Davatzikos et al. [24] extracted biomarkers
comparing MCI vs. CN by using a particular approach based
on the gradient of SVM decision function. GM clusters
influencing the classification involved the lateral and inferior
parts of hippocampi, the bilateral superior, the middle and
inferior temporal gyri, the bilateral orbitofrontal, left
fusiform gyrus, right collateral sulcus, posterior cingulate.
They also found voxels of reduced WM volumes in the
inferior temporal gyri, middle and superior frontal gyri.

Costafreda et al. [61] performed extraction of biomarkers by
means of a method based on the distance of samples from
the SVM separating hyper-plane for the classification of AD.
More recently, Retico et al. [33] used a weight map approach
for biomarkers extraction in AD vs. CN.

Hidalgo-Munoz et al. [42] used the weight assigned by SVM
to determine the relative importance of each feature by
means of the RFE strategy (Section 4) in combination with-a
feature classification performance approach using accuracy
as measure of the goodness of classification.

Among the studies considered in this review, features
influencing the classification between AD and CN involved:

1. parahippocampal gyrus [23] [25] [33] [42]
2. middle temporal gyrus [25] [33]

3. hippocampi [42], bilateral atrophy in lateral and
medial aspects of hippocampal head, lesser extent
in hippocampal body [61]

amygdala [42] [33]
insula [25] [42]
parietal cortex [23], parietal lobe [25]

N o o &

lenticular nucleus [42], lentiform nucleus (putamen)
[33]

8. temporal-parietal association cortex,
cingulate/precuneus, temporal lobe [25]

posterior

9. entorhinal cortex, fusiform gyrus [42]

10. uncus, inferior frontal gyrus, declive, middle frontal
gyrus, superior temporal gyrus, [33]

When studies compared MCI and CN, features influencing
the classification involved:

1. lateral and inferior parts of hippocampi, bilateral
superior, middle and inferior temporal gyri, bilateral
orbito-frontal, left fusiform gyrus, right collateral
sulcus, posterior cingulated, middle and superior
frontal gyri [24]

Only one study [23] performed extraction of biomarkers for
the comparisons between AD and FTD. Features influencing
the classification involved frontal and parietal areas.

In Table 3, employed technique for the extraction of
biomarkers and corresponding findings in terms of
anatomical structures for each of the considered studies and
for AD vs. CN comparison are shown. Method and results of
biomarkers extraction in these studies for other comparisons,
i.e. MCI vs. CN, MClc vs. CN, MClc vs.-MClinc, mild AD
vs. CN, mild AD vs. MCl and AD vs. FTD are shown in
Table 4.

In Fig. 7, results of biomarker extraction for the considered
studies are visually. summarized for  the following
comparisons: AD vs. CN (triangles), MCI vs. CN (circles)
and MClc vs. MClInc (squares). It’s worth noting that we
only specified the name of a structure if the number of
studies reporting its finding was greater than one (i.e., at
least two studies). Marker size is proportional to the number
of studies reporting each structure (from 1 to 6). Lateral (top)
and medial (bottom) views are shown. Reported structures
are not intended to be localized in the left or right
hemisphere.

8. DISCUSSION

Over the past decade, there has been a huge interest for the
implementation of supervised whole brain automatic
classification methods in order to detect and classify,
through a computer algorithm, specific patterns related to
AD corresponding to a sensitive biomarkers (or a
combination of them).

In this paper, we considered 30 studies that used SVM for
the classification of AD-related pathologies by means of
MRI data. A trend of the 30 publications on this topic (SVM
and AD) found from 2008 to date and included in this review
is shown in Figure 8, including studies investigating or not
on potential MRI-related biomarkers of AD.

As a general results, the SVM method , allowed
discriminating between AD and CN, MCI and CN, AD and
FTD. However, SVM allowed also predicting conversion
from MCI to AD. Only very few studies tried to discriminate
between different forms of early-onset of dementia: Wilson
et al. [28] considered the utility of SVM and MR images to
discriminate three linguistic variants (progressive non-fluent
aphasia, semantic dementia and logopenic progressive
aphasia) of Primary Progressive Aphasia (PPA). Ridgway et
al., [6] investigated how to differentiate between posterior
cortical atrophy, typical amnestic AD and logopenic
progressive aphasia from MRI studies by SVM. Gerardin et
al. [68] and Raamana et al. [32] focused on the SVM
classification of single- (amnestic) and multi-domain MCI.
These findings could represent a valid support for clinicians
given the difficulty to distinguish among these early variants
in the clinical practice.

The most popular techniques of pre-processing, feature
extraction and feature selection were described, together
with different validation and biomarker extraction strategies.
The main advantages and limitations were pointed out during
the review, and the results obtained by the 30 considered
papers were shown in Tables 1-4 and Fig. 1-3.



The effects of smoothing on classification performances
were briefly described in section 2. Results obtained by this
review process allow us to give a more quantitative
description of the effects related to the use of pre-processing
steps. As shown in Fig. 4 for the comparison between AD
and CN, the difference between studies which make use or
not use of smoothing is not significant in terms of accuracy. .
Nevertheless, the median value of accuracy for studies which
make use of smoothing was found to be slightly higher than
in those which do not make use of smoothing (0.95 and 0.88,
respectively).

Unlike most SVM parameters that can be optimized
iteratively, the choice of a kernel function for SVM
classification is usually made a priori. Among the
considered studies, 13 used a linear function and 13 a
Gaussian RBF kernel function (4 studies did not provide
kernel information)Linear kernels are could reduce
overfitting problems, while RBF should improve model
flexibility, this resulting in higher classification accuracy
[96]., No significant difference between linear and RBF
kernels was found in terms of accuracy of classification of
AD vs. CN (Fig. 5) However, the median accuracy using a
linear kernel function was found to be slightly lower than the
median accuracy for RBF kernel (0.88 and 0.91,
respectively).

Another important aspect to be discussed is the use of
different validation strategies, i.e., CV or T&T. As described
in section 6, the probability of the test error of a classifier
estimated using CV is almost unbiased [4] [101]. On the
other side, in T&T training and testing sets are completely
independent, and this helps reducing over-fitting problems.
As shown in Fig. 6, for both AD vs. CN and MClc vs.
MClInc comparisons, there are no significant differences
between accuracy obtained via both CV and T&T strategies.
However, it is interesting to note that median accuracy
obtained using CV were always higher than median accuracy
obtained using T&T. Specifically, ~for the comparison
between AD and CN, median accuracy were 0.90 and 0.87
when using CV and T&T, respectively; for the comparison
between MClc and MClnc, median accuracy were 0.78 and
0.62 when using CV and T&T, respectively. Moreover, as
shown in Figures 1-3 and Tables 1-2, , it can be seen that
accuracy obtained via T&T were always lower than or (at
most) equal to accuracy obtained via CV (i.e., studies # 4, 8,
12 and 23 in Figures 1-2 and study # 10 in Fig. 3).

The use of SVM analysis based on structural images also
offers the possibility to objectively identify MRI-related
biomarkers through a group comparison. Therefore, in this
systematic review, we also briefly reported 14 studies that
applied SVM. method in order to detect the more important
patterns of difference for AD classification and that could
lead to the identification of possible MRI-related biomarkers.

Why it should be important to detect biomarkers in an early
disease phase?

As already commented in the introduction, there is growing a
widespread consensus. about the fact that brain changes
associated with AD could be distinguished years before the
onset of the clinical manifestation [106] [107] [9] [74] [11],
leaving cognitive  symptoms as the last stage of the
pathological process [108]. In such scenario, MRI could
provide crucial information about the status of disease
bringing out the grade of volume atrophy. MRI biomarkers
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have been shown to be sensitive to the diagnosis of AD, for
instance morphological abnormalities in the medial temporal
lobes (e.g. the entorhinal cortex), the posterior cingulate
gyrus, and the temporal—parietal associative areas have been
demonstrated to be useful markers ina clinical setting [109]
[110]. However, these MRI-based measures derive from a
manual quantification performed by trained
neuroradiologists, such visual inspection being susceptible of
bias since the human eye is not able to detect little but
fundamental changes in the cerebral volume.

Some studies tried to compare manual performance of
classification with automatic methods highlighting SVM as
comparable to a well-trained neuroradiologist in classifying
typical AD patients, and even more sensible then a non-
trained one (e.g. [23]).

Tables 3-4 and figure 7 show areas identified by the authors
considered in our review. What clearly emerges is the lack
across the studies of a specific area for detecting AD,
although hippocampus and parahippocampal gyrus are the
most consistent findings among the studies comparing AD
vs. CN [40] [49] [77] [42] [48] [23] [25] [33]. This result is
consistent with those findings present in literature that
indicate hippocampus as one of the most affected structures
in AD-related pathologies (for a review see Jack et al. [74])
associated to learning and memory (in particular short term
topographical memory [111]), that are often involved in
typical-AD onset. Specifically, recent studies focus their
attention on hippocampal subregions, stating that the whole
structure may not be uniformly affected in AD (e.g. [112]).
Costafreda et al. [61] investigated the role of different
subregions of the hippocampi, finding that bilateral atrophy
affects both lateral and medial aspects of hippocampal head
and, in minor part, hippocampal body.

Other structures emerging among some studies, when taking
into account the comparison between AD and CN, are
amygdala, insula and lenticular nucelus [77] [42] [25] [33].
Amygdala atrophy is usually related to the earliest clinical
stages of AD [113], with potential relationships to anxiety
and irritability, and with a mutual dependence with the
hippocampus in encoding memories with emotional
connotation [114]. Moreover, AD patients are often affected
by autonomic instability, reduced behavioral control
(judgments regarding inner well-being) and visceral
dysfunction. All these functions are also regulated by insular
cortex [115]. The findings of hippocampal and
parahippocampal structures occur for AD vs. CN, MCI vs.
CN [24] [77] and MClc vs. MClinc [77] [73] [31].

As the structures above mentioned, middle-temporal gyrus is
reported as biomarker for different comparison (AD vs. CN,
MCI vs. CN, MClc vs. MClInc), but it is not possible to
consider it as univocal biomarker for one of these
comparisons. On the other hand, it is important to note that,
in literature, middle-temporal lobe atrophy was considered
for a long time as a biomarker able to predict dementia in
patients with MCI [116].

Parietal and frontal neocortices are usually affected later by
AD, and are associated with other cognitive functions, as
well as language, praxic, visuospatial and behavioral
impairments [13]. Among the studies considered in our
review, when considering AD vs. CN, parietal cortex was
found by Kloppel et al. [23] and Vemuri et al. [25], while
frontal areas were found by Retico et al. [33]. However,
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parietal and frontal areas were found as possible biomarkers
also for the comparisons between AD and FTD [23], MCI
and CN [24], MClc and MClnc [73] [31].

Surprisingly, very few studies (i.e., [25] [42] [24] [73] found
the structures of the limbic lobe (such as entorhinal cortex
and posterior cingulate gyrus), for AD vs. CN, MCI vs. CN
and MClc vs. MCInc) and these structures have been
already suggested as diagnostic markers for early AD [109].
From a pathophysiological point of view, the entorhinal
cortex is progressively interested by neurofibrillary
pathology and cell loss in early phase of AD, disconnecting
the hippocampus from neocortical regions [3] [117-120].

Overall, some structures arose more frequently than others
do. Notably, none of the above mentioned anatomical
regions is specific for just one of the comparisons; on the
other side, results are not completely consistent among all
the studies and a pool of areas are indicated by single
studies. This could be a consequence of the low sensitiveness
of the algorithms to detect the most involved areas in AD.
On the other hand, the overlapping of some reported regions
through different comparisons (see Figure 7) may suggest
that early detection of AD is a matter of sensitivity and that
MVPA approaches are potentially able to capture sensible
features supporting automatic and objective diagnosis.

Finally, we have identified some crucial points that are
considerable as possible directions for future studies.

SVM approach is highly affected from:

1) the lack of standardization. This involves MRI data
acquisition procedures, image pre-processing, feature
extraction and selection, classification and validation
approaches, approaches for extraction of biomarkers;

2) the inhomogeneity of the studied samples. This inovolves
for example, sample size, demographic and clinical features.
In this sense, the study by Cuingnet et al. [21] represents an
interesting example of comparison of different SVM-based
approaches for the classification. of AD on the same
population;

3) the exclusion of predetermined ROIls on the basis of
previous literature, which could exclude important areas
involved in the pathophysiological process of AD. For
example, it is interesting to note that, although some studies
[25] [46] excluded a priori the cerebellum, Retico et al. [33]
found part of the cerebellum as important region for the
discrimination of AD vs. CN;

4) the way of clinical diagnosis as gold standard for the
classification performance. It should note that in all
considered studies, the definition of the label for each class
was based on a probable diagnosis (not from a post-mortem
confirmation). This could introduce ‘a limitation on the
potential power of classifier.

9. CONCLUSIONS

In conclusion, a state-of-the-art overview about SVM for the
diagnosis of AD by means of MRI studies was provided in
this systematic review. The focus of our analysis was the
early and differential diagnosis of AD-related pathologies.
Since there is a strong need of AD diagnostic methods and
biomarkers in clinical practice, in order to properly manage
the patients and address them to the optimal care and

treatment. We have described the main advantages and
drawbacks of some SVM approaches and mapped the SVM-
derived biomarkers of early AD, as pointed out from 30
studies published on this matter.

Our findings lead to shed light on parameters that
accompany normal and pathological aging.

However, although SVM could represent-a breakthrough in
the way to perform AD diagnosis, there are still some issues
that need to be clarified and future directions that could be
investigated before the adoption of SVM-based AD
diagnosis in the clinical practice.
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Figure 2 Specificity (Spe.) and sensitivity (Sen.) rates as a function of the considered study (numbered #) for AD vs. CN
classification. Validation strategies: CV (squares), T&T (circles). Specificity and sensitivity rates are indicated in red and
green, respectively.
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Figure 4 Boxplot showing results for AD vs. CN comparison in terms of accuracy as a function of the applied pre-processing
(with or without smoothing).
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Figure 5 Boxplot showing results for AD vs. CN comparison in tern.s of accuiccy as 2 function of the SVM kernel function
(linear or RBF).

12 Y ! i I T ]

11

T

o
(o]
T

1

Accuracy

©
~
I

o
[©)
T

o
8]
T

2
S
]

-

1 |

| |
CcVv T&T CcVv T&T
AD vs. CN MClc vs. MCinc
rigure 6 Boxplot siawing results of cross validation (CV) and train-and-test (T&T) strategies in terms of accuracy for the
fohewing compaiisons: .AD vs. CN (left), MClc vs. MClInc (right).




20

Parietal cortex

Orbito-frontal N
gyrus I ‘
not shown) Insula K
( ) (not shown)  Middic femporal gv.us

Faranippocampar Cyrus

Lenticular nucleus /VJ

Amygdala
Hippocampus

P ADvs.CN <>MCIvs.CN @ MCIc vs. MCInc

Number of studies reporting the area



21

Figure 7 An overview of the whole-brain anatomical regions obtained by the considered studies as possible biomarkers for the
following comparisons: AD vs. CN (triangles), MCI vs. CN (circles), MClc vs. MCInc (squares). The name of each structure is
specified only if the number of studies reporting its finding was greater than one. Marker size is proportion=. to the wumber of
studies reporting each structure (from 1 to 6). Lateral (top) and medial (bottom) views are shown.
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a function of the year.
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Table 1 Methods of pre-processing (smoothing), feature extraction, feature selection, classification (kernel function), validation in the reviewed
studies (ordered by year) and corresponding results in terms of Accuracy (Acc), Specificity (Spe), Sensitivity (Sen) and AUC for the comparison
between AD and CN

'?;ggf)r Smoothing Feature extraction Feature selection Kernel | Validation | Acc | Spe | Sen | AUC
Duchesne . A priori .
(2008) - Data-driven ROIs Linear LOO 92 - - -
Fan 3 , . Pearson correlation and spatial consistency ) _
(2008) 8 mm’® FWHM Tissue segmentation + A posteriori RBF LOO .94 97
Ferrarini . . . . . LOO .86 | .82 | .90 -
(2008) - Tissue segmentation + Shape modeling Permutation test Linear T&T - - =6 -
i Linear LOO 96 | 94 | 97 -
Kloppel Tissue segmentation T&T %6 1 .93 1 -
2008 i R
( ) A priori ROIs Linear LOO 94 | 91 | .97
T&T 71 ] 93] 50 -
vemnuri 8 mm® FWHM
(2008) + Tissue Segmentation A priori ROIs + A posteriori Linear T&T - .86 | .86 -
Down-sampling
Magnin ; Relative weight of GM w.r.t. WM and CSF A priori ROIs RBF | BOOWUaD | o5 | g7 | gp | .
(2009) resampling
Gerardin . . N\ - LOO 94 | 92 | .96 -
(2009) - Spherical harmonics A priori ROIs + Univariate RBF T&T 58 | 92 | 84 -
%‘gfg)a - Anatomical measurements A posteriori RBF LOO 88 | .85 | .93 -
(;Balnot) 10 mm® FWHM Tissue segmentation Data-driven Linear LOO 90 | .78 | 97 -
Abdulkadir - Tissue segmentation - Linear LOO 88 | - - -
(2011) g TeT | 85| - | - | -
Chincarini - Filtering A priori ROIs + Data-driven n.s. cv - 94 | .89 97
(2011)
C(ggrle)da - Anatomical measurements A priori ROIs RBF Ccv .85 - - -
Wolz 20 mm® EWHM Anatomical measurements ) RBE LOO 86 | 78 | 94 )

(2011)

+ Data-driven
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Al Smoothing Feature extraction Feature selection Kernel | Validation | Acc | Spe | Sen | AUC

(year)

Yang ) Whole brain + Data-driven i ns T&T 77 | .80 | .74 -

(2011) Tissue segmentation + Data-driven ~ T&T 81| .80 | .82 -

Zhang Tissue segmentation _— .

(2011) ) + Anatomical measurements A priori ROIs Finar cv 86 | 86 | 86 )

Varol _ . o ) _ T&T

(2012) - Tissue segmentation Univariate feature selection Linear | (ensemble | .88 | .90 | .86 .94

classifier)

Dukart 12 mm® FWHM Tissue segmentation A priori ROIs Linear LOO 88 | - _ _

(2013) T&T 73 | 61| .86 -

Yan Tissue segmentation

(2013) - + Anatomical measurements - RBF LOO 94 | 94 | 94 -

+ Data-driven

Farhan Tissue segmentation -

(2014) ) + Anatomical measurements A PR ROIs RpF cv 94 1 88 )
Hidalgo-

Munoz - Tissue segmentation RFE Linear Ccv 1 - - -

(2014)

(Rze(z)tllzc; (nfalli\s/f}larll\ﬂ) Tissue segmentation RFE Linear Ccv - - - .89
S((:Qg]llit)er - Anatomical measurements A priori ROIs Linear LOO - 91 | .86 -

Acc: accuracy; Spe: specificity; Sen: sensitivity; AUC: Area Under the ROC Curve; FWHM: Full Width at Half Maximum; ROI: Region Of
Interest; RBF: Radial Basis Function; CV: Cross Validation; LOO: Leave-One-Out; T&T: train-and-test; n.s.: not specified by the authors.
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Table 2 Methods of pre-processing (smoothing), feature extraction, feature selection, classification (kernel function), validation in the reviewed
studies (ordered by year) and corresponding results in terms of Accuracy (Acc), Specificity (Spe), Sensitivity (Sen) and AUC for other
comparisons than AD vs. CN

AHTES Smoothing Feature extraction Feature selection Kernel Comparisons Validation Acc | Spe | Sen | AUC
(year)
Fan 8 mm? . . Pearson correlation and spatial consistency MCl vs. CN LOO .82 - - .85
(2008) FWHM Tissue segmentation + A posteriori RBF AD v MCI 00 57 - - ~6
Davatzikos ) Tissue Segmentation Pearson correlation and s_pat_lal consistency RBE MCI vs CN LOO 90 ) i )
(2008) + A posteriori
Kloooel i Linear mild AD vs.CN LOO 81 | 93 | 61 -
(20%%) - Tissue segmentation AD vs. FTD T&T 89 | .95 | .83 -
A priori ROIs Linear mild AD vs. CN LOO 86 | .91 | .76 -
Gerardin . . A priori ROIs LOO 83 | .84 | .83 -
(2009) - Spherical harmonics + Univariate RBF aMCl vs. CN T&T 80 | 80 | 80 -
MCl vs. CN LOO .98 1 .96 -
Plant 10 mm’ Tissue segmentation Data-driven Linear -0 % ' - i
(2010) FWHM g MClIc vs. MClnc T&T
(train on 50 | 46 | 56 -
AD vs. CN)
LPA vs.CN cVv 1 1 1 1
Wilson 8 mm? Tissue segmentation i Linear LPA Vs SD o, 92 92 92 98
(2010) FWHM + Data-driven VS. : : : :
LPA vs. PNFA Cv 81 81 81 .88
Chincarini ) Filtering (intensity A priori ROIs s MClc vs. CN cvV - .80 | .89 .92
(2011) and textural features) + Data-driven B MClc vs. MCinc - 65 | .72 74
. T&T
C‘E%‘Irle)da - m’i;‘:;?;“%‘;'ts A priori ROIs RBF MClc vs. MClnc (trainon | 80 | 80 | 77 | -
AD vs. CN)
Cui Anatomical A PR Ol T&T
(2011) - measurements + Data-driven RBF MClc vs. MCinc (train on .62 | .66 | .57 .65
+ A posteriori AD vs. CN)
Wolz 20 mmé Anatomical MClc vs. CN LOO 82 | 67 | .93 -
(2011) FWHM Te[";‘;ged”:ﬁ/gﬁ ; RBF MCIc vs. MCInc LOO 60 | 14 | 92 | -
Whole brain
Yang \ + Data-driven _ L MCI vs. CN T&T 721 73| .71 -
(2011) Tissue segmentation MCI vs. CN T&T 711 69 | 73 )

+ Data-driven
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Author

(year) Smoothing Feature extraction Feature selection Kernel Comparisons Validation Acc | Spe | Sen | AUC
Zhan Tissue segmentation
(20119) - + Anatomical A priori ROIs Linear MCI vs. CN CVv q2-| .60 | .79 -
measurements
Cui Anatomical A priori R.OIS
- + Data-driven RBF MCI vs. CN Ccv .64 | .64 | .64 73
(2012) measurements -
+ A posteriori
Diciotti Anatomical o mild AD vs. CN cv .86 | .90 | .82 -
(2012) ) measurements A priori ROIs RBF mild AD vs. MCI cV 74 | 71 | 2| -
Ridgway 20 mm® Anatomical FLAtvs. LPA LOO - - - 85
(2012) FWHM measurements i N-% LPA vs_J0 »Q0 - - ' .78
PCA vs. tAD LOO - - - 76
Tissue segmentation
Yang . + Anatomical . RBF MCI vs. CN LOO 80 | 89 | 94| -
(2013) measurements
+ Data-driven
Tissue segmentation -
Ota 8 mm? : A priori ROIs
(2014) FWHM ;223:22;?5 + RFE (accuracy-based) REQ MCIc\Qeinc LOO 78 .19t )
Raamana 10 mm? Anatomical SUBMC| vs. CN T&T S0 | 44 | 58 52
(2014) FWHM measurements - n.s. md-aMCI vs. CN T&T 61 | .60 | .62 .66
sd-aMCI vs. md-aMCI T&T 53 | B3 | 53 54
; Gaussian T&T
n.s. issue segmentation weight-base inear CVvs. nc rain on - - - :
?2‘3'104‘; ( T tat RFE (weight-based) L MClc vs. MCI (t 71
FWHM) AD vs. CN)
MCI vs. CN LOO - 83 | .69 -
AD vs. MCI LOO - 67 | .69 -
Schmitter Anatomical \ . . MClc vs. MCinc
(2014) ) measurements AP ROIs Linear within 2 years LOO R i
MClic vs. MClinc LOO ) 66 | 75 )

within 3 years

Acc: accuracy; Spe: specificity; Sen: sensitivity; AUC: Area Under the ROC Curve; FWHM: Full Width at Half Maximum; ROI: Region Of
Interest; RBF: Radial Basis Function, MCI: Mild Cognitive Impairment; CN: Controls; AD: Alzheimer’s Disease; FTD: Fronto-Temporal lobar
Degeneration; aMCI: amnestic MCI; MClc: MCI-converter; MClinc: MCI-non converter; LPA: Logopenic Progressive Aphasia; SD: Semantic
Dementia; PNFA: Progressive Non-Fluent Aphasia; PCALt: Posterior Cortical Atrophy; tAD: typical AD; sd-aMCI: single domain amnestic
MCI; md-aMCl: multi domain amnestic MCI; CV: Cross Validation; LOO: Leave-One-Out; T&T: train-and-test; n.s.: not specified by the

authors.
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Table 3: Method and results of biomarkers extraction for AD vs. CN in the reviewed studies

AT Extraction of biomarkers Biomarkers
(year)
Ig%%%‘;' Weight map GM: parahippocampal gyrus, parietal cortex
. GM: medial temporal lobe, temporal-parietal association cortex,
Vemuri . L .
(2008) Weight map posterior cmgulate/precungus, insula. _
WM: temporal lobe, parahippocampal gyrus, parietal lobe
Magnin Feature classification GM: hippocamous. parahippocampal avrus
(2009) performance - NIPP pus, p PP pal gy
Oliveira Feature classification GM: anterior and posterior corpus callosum,
(2010) performance left and right hippocampus, right lateral ventricular horn
Chincarini Feature classification GM: .ROIs including (ra.nked .by |r_nportance) hippocampus (1), amygdala
(2011) performance (r), hippocampus (r), middle inferior temporal gyrus (I), amygdala (l),
middle inferior temporal gyrus (r)
Costafreda Weidht ma GM: bilateral atrophy in lateral and medial aspects of hippocampal head,
(2011) g P lesser extent in hippocampal body
Farhan Feature classification . .
(2014) performance GM: area of left hippocampus
H,\'/Iduar:gg' Weight map + Feature GM: hippocampi, entorhinal cortex, parahippocampal region, insular
(2014) classification performance cortex, amygdala, lenticular nucleus, fusiform gyrus
. GM:23 main regions including uncus, inferior frontal gyrus, declive,
Retico . - . .
Weight map middle frontal gyrus, parahippocampal gyrus (amygdala), superior
(2014) : ;
temporal gyrus, middle temporal gyrus, lentiform nucleus (putamen)

GM: Gray Matter; WM: White Matter.

Table 4: Method and results of biomarkers extraction in the reviewed studies for MCI vs. CN, MClc vs.
CN, MClc vs. MCinc, mild AD vs. CN, mild AD vs. MCIl and AD vs. FTD



Author

Extraction of biomarkers Biomarkers
(year)
MCI vs. CN
GM: Lateral and inferior parts of hippocampi, bilateral superior, middle and
Davatzikos . inferior temporal gyri, bilateral orbitofrontal gyrus, left fusiform gyrus, right
Weight map S
(2008) collateral sulcus, posterior cingulate
WM: inferior temporal gyri, middle and superior frontal gyri
Cui Feature classification GM: right straight gyrus, right supramarginal gyrus, right short insular gyri,
(2012) performance left orbital gyri, left angular gyrus
MClc vs. CN
Chincarini Feature classification GM: ROIs including (ranked by importance) middle inferior temporal gyrus
(2011) performance (1), hippocampus (l), amygdala (r)
MClc vs. MClnc
Chincarini Feature classification GM: ROIs including (ranked by importance) middle inferior temporal gyrus
(2011) performance (I, hippocampus (), amygdala (r), insula (I)
. . GM (ranked by selection frequency): left entorhinal cortex, right middle
Cui Feature classification | iaht and left hi it inferi otal
(2011) performance temporal gyrus, right and left hippocampus, right inferior parietal cortex,
left retrosplenial cortex, left middle temporal gyrus
GM: 37 ROIs including inferior occipital gyrus (1), parahippocammpal gyrus
Ota Feature classification (I, middle frontal gyrus (r), middle occipital gyrus (r), superior occipital gyrus
(2014) performance (), supramarginal gyrus (r), angular gyrus (I), precentral gyrus (l), caudate (r),
hippocampus (1)
mild AD vs. CN
Diciotti Feature classification . . )
(2012) performance GM: subcortical and cortical volumes
mild AD vs. MCI
Diciott Feature classifioggon GM: subcortical and cortical volumes
(2012) performance
AD vs. FTD
Kloppel Weight map GM: frontal and parietal areas
(2008) '
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MCI: Mild Cognitive Impairment; MClc: MCI-converter; MCinc: MCI-non converter; GM: Gray Matter;
WM: White Matter.
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Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess
the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of
patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing
structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia
nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis
of ED versus HC with an Accuracy > 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the
classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices,
and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED.
Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-
known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational

implementation of this new multivariate approach in the clinical practice.

1. Introduction

Eating disorders (ED) are typically adolescent-onset psychi-
atric conditions that cause serious disturbances to everyday
diet, such as eating extremely small amounts of food or
severely overeating. Female gender has been demonstrated as
a potent risk factor for eating disorders [1], but how much
this association can be attributed to biological rather than
social factors is uncertain [2]. The most investigated clinical
phenotypes of ED are anorexia nervosa (AN) and bulimia
nervosa (BN). AN is a serious mental disorder that leads to
death in approximately 10% of cases [3]. According to the new
DSM-5 criteria, to be diagnosed as having AN a person must
display (a) persistent restriction of energy intake relative to
requirements leading to a significantly low body weight; (b)

intense fear of gaining weight or becoming fat, even though
they are underweight; and (c) disturbance in the way in which
one’s body weight or shape is experienced, undue influence
of body weight or shape on self-evaluation, or denial of the
seriousness of the current low body weight. Otherwise, BN is
characterized by frequent episodes of binge eating followed
by inappropriate behaviors such as self-induced vomiting to
avoid weight gain. DSM-V criteria reduce the frequency of
binge eating and compensatory behaviors that people with
BN must exhibit, to once a week from twice weekly as
specified in DSM-IV.

To date, individual diagnosis of ED is based only on a
clinical interview complemented by physical, psychopatho-
logical, and behavioral examinations aimed at assessing the
existence of physical, emotional, behavioral and cognitive


https://www.researchgate.net/publication/9043993_Review_of_the_Prevalence_and_Incidence_of_Eating_Disorders?el=1_x_8&enrichId=rgreq-1aab05c4-3a8c-4d3a-b32e-9d35bcfaaf7c&enrichSource=Y292ZXJQYWdlOzI4MjMyMzUyNjtBUzoyOTYzODExNDQxNTgyMTdAMTQ0NzY3NDE3OTg3NQ==
https://www.researchgate.net/publication/11923205_Epidemiology_and_mortality_of_eating_disorders?el=1_x_8&enrichId=rgreq-1aab05c4-3a8c-4d3a-b32e-9d35bcfaaf7c&enrichSource=Y292ZXJQYWdlOzI4MjMyMzUyNjtBUzoyOTYzODExNDQxNTgyMTdAMTQ0NzY3NDE3OTg3NQ==

disturbances. However, ED diagnosis is unstable, with clinical
features changing over time (i.e., weight normalization [11])
and often switching from anorexia to bulimia [4]. For this
reason, there is an urgent need to identify biomarkers which
may be used for helping and improving early diagnosis,
treatment planning, and monitoring of disease progression.
In the past 10 years, considerable effort has been expended in
developing advanced neuroimaging methods. As a result, a
plethora of functional and structural neuroimaging studies
have been performed to unravel the pathophysiological
mechanisms of ED [5-9]. Whereas the vast majority of these
studies reported in AN patients global reductions of total
gray and white matter [10], as well as cortical thickness [11],
a number of recent studies have emphasized regional group
differences. What has been proposed was that AN patients are
characterized by widespread brain abnormalities involving
(a) the mesolimbic regions (striatum, hippocampus, amyg-
dala, and cerebellum), (b) the dorsolateral prefrontal cortex,
(c) the visual cortex, and (d) the cerebellum [12]. Otherwise,
neuroimaging literature about BN summarizes the presence
of specific involvement of the reward neural system (ventral
striatum, nucleus caudate, anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC)), hypothesizing that during binge
eating a person must consume greater quantities of food to
achieve the feeling of satisfaction, like an addict [13-15].

Although significant results have been achieved, the
disadvantage of these studies is that they reported neurobi-
ological abnormalities comparing patients and controls at a
group level, with consequently limited clinical translation at
the individual level. For this reason, attention has recently
turned toward alternative kinds of analyses of neuroimaging
data. In the last few years, there has been growing interest
within the neuroimaging community in classification meth-
ods, including machine learning methods. These techniques
are based on algorithms able to automatically extract multiple
pieces of information from image sets without requiring a-
priori hypotheses of where they may be found on images. The
aim of these methods is to maximize the distance between
image groups in order to classify individual structural or
functional brain images. Several studies have assessed the
clinical relevance of these techniques showing very promising
findings mainly in the neurological realm. For instance,
machine learning techniques are able to identify very reli-
able imaging biomarkers allowing individual diagnoses of
Alzheimer’s disease [16, 17], Mild Cognitive Impairment
[18], and Parkinson’s disease [19, 20] with an Accuracy of
above 90%. In the psychiatric realm, this kind of advanced
neuroimaging method is in its relative infancy. Although
some interesting applications have been made in patients
with posttraumatic stress disorders [21], depression disorders
[22], and first-episode psychosis [23], there are no studies
investigating the potential role of these methods in ED.

For this reason, this study was aimed at employing a vali-
dated supervised machine learning method to define reliable
neuroimaging biomarkers useful to distinguish individual
with diagnosis of ED patients from healthy controls (HC) by
means of structural T1-weighted magnetic resonance images
(MRIs). This method makes uses of Principal Components
Analysis (PCA) in order to extract the most informative
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features from MR images [24], while the Support Vector
Machine (SVM) approach was used to perform classification
[25]. Maps of voxel-based pattern distribution of structural
brain differences were generated. These maps show the sig-
nificance of each image voxel for SVM group discrimination.

2. Methods

2.1. Participants. From 2011 to 2012, a total of 103 patients
presenting a first diagnosis of ED were enrolled in this study.
All patients were diagnosed by two psychiatrists specialized
in ED using the Structured Clinical Interview for Diagnosis
(SCID) for DSM-IV-TR. After reviewing the diagnostic infor-
mation, the psychiatrists made a final diagnosis of ED subtype
and proposed the patient’s participation in this research
project. Inclusion criteria were as follows: (1) age range from
18 to 40 years, (2) being female, and (3) right-handedness.
Exclusion criteria were as follows: (1) neurological illness
(such as Epilepsy or mental retardation); (2) Axis II disorders
(using the SCID-II for DSM-IV-TR) to exclude comorbidity
with personality disorders; (3) presence of brain lesions
as well as history of cerebrovascular disease, head trauma,
or hypertension; (4) psychotropic medication; (5) drug or
alcohol abuse; (6) claustrophobia; and (7) past recovery
from ED symptoms or psychiatric disorders. After a careful
evaluation of these criteria, 17 females with ED were eligible
for this study. This group included 11 patients fulfilling DSM-
IV criteria for BN and six patients fulfilled DSM-IV criteria
for AN restrictive-type. Duration of illness was rather short
for all patients (mean duration: 16 + 5 months).

ED patients were compared with a group of HC. Eighty-
one healthy volunteers were recruited by local advertise-
ments. Inclusion criteria for the HC recruitment were as fol-
lows: (1) no previous histories of neurological or psychiatric
diseases or abnormal brain MRIs and (2) being within the
normal range on the Italian version of Minnesota Multiphasic
Personality Inventory-2 (MMPI-2) [26]. From this large
group, we only enrolled subjects having similar demographi-
cal characteristics of those detected in ED patients. Particular
attention was paid to potential confounding factors, such as
BMI, previously demonstrated to influence brain anatomy
[27]. Thus, ED and HC individuals were individually pair-
matched by a computer-generated program, according to
their age, educational level, and BMI (£2) (for further
information, see Supplementary Materials available online
at http://dx.doi.org/10.1155/2015/924814). A total sample of
seventeen female HC was then enrolled in this study.

All participants gave written informed consent to par-
ticipate in the present study, approved by the Local Ethical
Committee according to the Declaration of Helsinki.

2.1.1. Psychiatric Assessment. Before entering the study, par-
ticipants completed a battery of self-evaluation question-
naires that included the following.

Eating Disorders Inventory-2 (EDI-2). It is a worldwide
validated questionnaire that provides a multidimensional
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evaluation of the psychological characteristics of AN and BN
[28].

Traumatic Experiences Checklist (TEC). It is a self-report
measure addressing potentially traumatizing events [29].
Different scores can be calculated including a cumulative
score and scores for emotional neglect, emotional abuse,
physical abuse, sexual harassment, sexual abuse, and bodily
threat from a person.

Dissociative Experiences Scale v. II (DES-II). 1t is a lifetime
28-item, self-rating questionnaire developed specifically as a
screening instrument to identify subjects that are likely to
have dissociative symptoms [30].

Somatoform Dissociation Questionnaire-20 (SDQ-20). It is a
self-rating scale developed to the investigated somatic com-
ponent of dissociation. The SDQ-20 discriminates between
dissociative and affective disorders (mood and anxiety dis-
orders) and psychotic symptoms, but a cut-off score is not
available [31].

Parental Bonding Instrument (PBI). Perceived parental rear-
ing styles were assessed using the Italian version of PBI. PBI
is a self-reporting scale with 25 items to rate paternal or
maternal attitude during the first 16 years and has four items
comprising care and overprotection factors [32].

Eating Attitude Test-26 (EAT-26). It is a 26-item self-rated
questionnaire for evaluating ED-related symptoms [33]. The
results are presented as a total score (range, 0-78).

Body Image Dimensional Assessment (BIDA). The BIDA is a
silhouette-based scale that starts from neutral figural stimuli
and attributes a direct quantitative value to the subject’s own
current and ideal body image, the most sexually attractive
figure, and the most common figure of same-gender-and-age
fellows [34].

Finally, for assessing anxiety symptoms, we employed
the Hamilton rating scale for anxiety (HAM-A), whereas for
defining depression status we employed the Beck Depression
Inventory (BDI).

2.1.2. MRI Acquisition. Brain MRI was performed according
to our routine protocol by a 3T scanner with an 8-channel
head coil (Discovery MR-750, GE, Milwaukee, WI, USA).
Structural MRI data were acquired using a 3D Tl-weighted
spoiled gradient echo sequence with the following param-
eters: TR: 9.2ms, TE: 3.7 ms, flip angle 12°, and voxel-size
1 x 1 x 1mm”. Subjects were positioned to lie comfortably
in the scanner with a forehead-restraining strap and various
foam pads to ensure head fixation. All acquired images were
visually inspected by expert physicians and neuroradiologists
to ensure that none showed signal artifacts.

2.2. Classification of MRI Studies: The Machine Learning
Method. We employed a validated supervised machinelearn-
ing method [20] for the individual differential diagnosis of

ED. PCA was applied to whole-brain structural T1-weighted
MRIs in order to extract the most informative features for
class discrimination, while a SVM algorithm [25] was used
to perform classification.

2.2.1. Image Preprocessing. Using the “Tools For NIfTI And
ANALYZE Image” toolbox (http://www.mathworks.com/
matlabcentral/fileexchange/8797), original images were
imported into the Matlab platform (Matlab version R2011b,
The MathWorks, Natick, MA).

Image preprocessing was achieved by means of the VBMS8
toolbox [35] implemented in the SPM8 software package [36].
This step involved (1) reorientation; (2) cropping; (3) skull-
stripping; (4) spatial nonlinear normalization to the MNI152
reference space; (5) smoothing using a Gaussian kernel with
full-width at half maximum of 8 x 8 x 8 mm. Resulting
nonmodulated whole-brain images were used as input to the
feature extraction procedure. Final volume size was of 121 x
145 x 121 voxels. VBMS8 was also employed to automatically
calculate the total gray matter (GM) and white matter (WM),
as well as cerebrospinal fluid (CSF) volumes.

It is worth noting that all images were visually controlled
after each step of the preprocessing flow in order to identify
possible problems occurring as a consequence of the applied
operations.

2.2.2. Feature Extraction. After preprocessing, PCA was
applied to structural T1-weighted MRIs considering whole
brain, in order to select the most informative features for class
discrimination [24, 37]. PCA mainly consists of two steps: the
first step is the application of an orthogonal transformation
to the dataset, which results in a set of values of linearly
uncorrelated variables, or eigenvectors, called “principal
components”; extracted principal components are ordered
by their variance. The maximum number of eigenvectors
that can be extracted with a nonzero associated eigenvalue is
related to the lower sample dimension of the dataset. In this
case, the number of extracted eigenvectors with a nonzero
associated eigenvalue can at most be equal to N — 1, N being
the number of subjects involved.

The second step is the projection of the dataset itself into
the PCA subspace, which heavily decreases the number of
features to be handled. Features resulting from this analysis
are called PCA coefficients, and they are the ones used
for classification in place of the original dataset [38]. For
group comparison, we also studied the percentage of retained
variance as a function of the number of considered principal
components.

Obtained PCA coefficients were finally ordered according
to their Fisher Discriminant Ratio (FDR), with the aim of
identifying the most discriminative PCA coefficients. Indeed,
FDR provides information about the class discriminatory
power of a given component, that is, the ability of each
component to separate the samples belonging to the two
classes. FDR was calculated as follows:

2
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u; and o} being the mean and the variance of the ith class,
respectively.

2.2.3. Classification Algorithm. SVM algorithm was used to
perform classification [20, 25, 39]. Given a set of training data,
each piece consisting of an input vector x;RY (where i runs
from 1 to the number N of samples) and the corresponding
label ¢; {1}, the task of the SVM is then to compute the
optimal separating hyperplane between the two training
classes that will be able to classify unseen examples (x, t) in a
correct way. This is done in terms of distance between classes;
that is, the optimal separating hyperplane is computed so
that its distance from the two training classes to be divided
is maximized. The optimal separating hyperplane will then
be used as a decision function to classify unseen data as
belonging to one of the two training classes. Mathematically,
the decision function is defined as follows:

N
y(x)=Ya, t, f(xx,)+b. @)
n=1
N is the number of samples belonging to the training set; a,,
is a weight constant; f(x, x,,) is the kernel function; b is a
threshold parameter. Using this decision function, class y(x)
for unseen data (x, t) can be predicted.

The implementation of the SVM classification algorithm
was carried out using the biolearning toolbox in Matlab.
Original datasets were divided into two discrimination
groups: ED versus HC. The extracted PCA coefficients and
the corresponding labels were used as features to train the
classification algorithm [20]. A number k of PCA coeflicients
was used, where k runs from 1 to the total number Np. of
extracted PCA coefficients. A linear kernel was chosen for
two reasons: (1) it is able to improve generalization ability;
(2) it is the only kernel function that allows the computation
of weights and, thus, the generation of voxel-based pattern
distribution maps of brain structural differences.

2.2.4. Performances of the Classifier. In order to evaluate the
performance of the supervised machine learning method,
subjects were randomly divided into 20 subsets, each one
containing the same proportion of class labels. Evaluation
was performed via 20-fold Cross-Validation (CV), by which
in turn the training of the classifier was performed using 19
subsets and the testing was performed using the remaining
one. This procedure was then repeated 20 times, until all sub-
sets were used once as testing set. In addition, classification
performance was also evaluated by 10-fold CV.

Accuracy, Specificity, and Sensitivity were computed over
the first k PCA coefficients, where k runs from 1 to the total
number Np of extracted PCA coefficients, as follows:

N,
Accuracy,; = %,
A
Specificity, = ﬁ, (3)
cc t Prc
B
Sensitivity, = ﬁ,
cc T Arc
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where N is the total number of images which underwent
classification; N is the total number of Correctly Classified
(CC) images; A ¢ is the number of CC images belonging to
the first group; A is the number of Incorrectly Classified
(IC) images belonging to the first group; B¢ is the number of
CC images belonging to the second group; B is the number
of IC images belonging to the second group. It is worth noting
that for each round of CV, image preprocessing and feature
extraction were performed separately on the training and
the testing sets. Accuracy was evaluated as a function of the
number of employed PCA coefficients.

2.2.5. Voxel-Based Pattern Distribution. For each discrimi-
nation group, maps of voxel-based pattern distribution of
brain structural differences were generated. These maps
show how significant each image voxel is for SVM group
discrimination [20]. In the training phase, in fact, SVM
assigns a specific weight to each sample (i.e., the vector of
extracted PCA coeflicients of each subject) in the training
set, this weight reflecting the importance of that sample for
group discrimination. In our case, deriving discriminative
voxels basing on the SVM weights cannot be done in a direct
way, because we use PCA coefficients as input to the SVM
instead of image voxels. In order to do this, an intermediate
step was needed, that is, back-projection of each sample (i.e.,
PCA coeflicients) from the PCA space to the voxel space.
Through this operation, we obtained a back-projected image
of the brain of each subject in the voxel space. Finally, maps
of values showing the importance of each voxel for group
discrimination based on the SVM weights were then obtained
by multiplying each back-projected brain of the training set
with the corresponding weight assigned by SVM and by
summing the results on a voxel basis [16, 20].

However, the multivariate SVM algorithm was not
designed to provide single features and their importance. As
a consequence, the method to derive discriminative features
from the SVM model is a tweak that should be used with cau-
tion, because the interpretation of weights assigned by SVM
during the training phase could lead to incorrect conclusions.
In order to avoid this, we applied the method proposed
by Haufe and colleagues to compute activation patterns for
backward models [40]. This method ensures the correct
interpretation of weights assigned by SVM. Accordingly, in
addition to the weight map, we obtained a map of voxel-based
pattern distribution of MR image differences between ED and
HC.

Both the weight map and the voxel-based pattern dis-
tribution obtained using the method proposed by Haufe
and colleagues [40] were normalized to a range between 0
and 1, expressed by a proper color scale and superimposed
on a standard stereotactic brain for spatial localization.
This approach allowed the identification of new MR-related
biomarkers for the diagnosis of ED patients (see Supplemen-
tary Materials for further information).

2.2.6. Statistical Analysis. Statistical analysis was performed
with STATISTICA Version 6.0 (http://www.statsoft.com/).
Assumptions for normality were tested for all continuous
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variables by using the Kolmogorov-Smirnov test. All variables
were normally distributed, except for educational level. Then,
Unpaired t-test and Mann-Whitney U test were applied
appropriately to assess potential differences between groups
for all demographic clinical and MRI variables. All statistical
analyses had a 2-tailed alpha level of <0.05 for defining
significance.

3. Results

3.1 Clinical Data. Compared with age-/sex-/BMI-matched
controls, ED patients did not show global anatomical atro-
phies in white or gray matter brain volumetry. At a behavioral
level, ED group displayed a well-known psychopathological
profile (Table 1 and Supplementary Materials). In particular,
EDI-2 demonstrated that ED patients had higher scores for
(a) drive for thinness scale (t = 4.45; p-level < 0.00001);
(b) bulimia scale (t = 2.69; p-level = 0.01); (c) interoceptive
awareness scale (t = 3.81; p-level = 0.0006); (d) asceticism
scale (t = 3.81; p-level = 0.0006); (e) body dissatisfaction (t =
3.5; p-level = 0.001); (f) interpersonal distrust scale (t = 2.07;
p-level = 0.04); and (g) impulse regulation scale (t = 2.46;
p-level = 0.02). Otherwise, no significant differences were
detected for Perfectionism, Ineffectiveness, Maturity Fears,
and Social Insecurity scales, in agreement with previous
studies [13].

3.2. The Machine Learning Method. Among MR images
acquired for this study, no images were excluded from the
subsequent analysis due to problems with image quality or
problems occurred during preprocessing. As a representative
example, Ist and 2nd extracted PCA coefficients that showed
the highest FDR are plotted in Figure 1(a) for the ED versus
HC group discrimination (data from a single round of CV).
In this case, the number of subject involved was equal to 31 (16
ED, 15 HC). The total number of extracted PCA coeflicients
was equal to 30. The analysis of variance for the ED versus HC
group discrimination showed that the percentage of variance
retained by the first principal component was equal to
27.0%, while the number of extracted principal components
accounting for 50% and 95% of the whole variance was 6 and
27, respectively.

Table 2 shows FDR values of the 30 features (PCA
coefticients) used for the ED versus HC group discrimination.
Data from a single round of CV are shown as a representative
example. As it can be seen, in this case the 8th PCA coefficient
showed the highest FDR value, thus resulting the most
important feature for group discrimination.

In Figure 1(b), Ist and 2nd extracted PCA coeflicients that
showed the highest FDR (i.e., after FDR raking) are plotted
jointly with Ist and 2nd extracted PCA coefficients (before
FDR ranking). As it is shown in this plot, FDR allows finding
those features for which discrimination between groups is
maximized.

3.3. Classification Algorithm. Figure 2 shows the decision
function resulting from the SVM training phase for the ED
versus HC group discrimination (Ist and 2nd components
with highest FDR).

5
TaBLE 1: Demographic characteristics.
Variables ED (n=17) HC (n=17) P-level
Demographical data
Age (years) 30.2+5.6 30.1+5.5 0.95
Educational level 17 (13-21) 17 (13-21) 0.88
(years)
BMI 23.6 +8.2 241+ 4.8 0.79
MRI data
Total GM Volume 5873 + 375 608.88 +42.1 0.11
Total WM Volume 486.5 + 63.1 489.6 + 41.6 0.86
Total CSF Volume 188.3 £ 28.7 187 +23.2 0.88
Clinical data
HAMA 14.6 £13 4+22 0.04"
BDI 16.8 £10.1 6.3+4.7 0.0004"
DES 14.32 +12.4 512+4 0.007"
EAT-26 233+14.4 6.35+3.2 0.00004"
SDQ-20 28.64 +14.8 20.6 + 1.1 0.03*
BIDA 29.9+19.4 199+11 0.24
Clinical data EDI-2 scale
Drive for thinness 94+6.3 1.2+13 0.0001"
Bulimia 347 £4.5 0.1+0.5 0.01"
Interoceptive 79 +6.2 07412 0.0006°
awareness
Asceticism 56 +£3.8 2+11 0.0006"
Body dissatisfaction 129+ 72 6.1+29 0.001"
Perfectionism 43+39 33+31 0.41
Interpersonal distrust 3.6 +31 14+12 0.04"
Impulse regulation 3.67 +4.9 0.6 +1.4 0.02"
Ineffectiveness 35+£52 1.2+2.6 0.12
Maturity fears 52+3 394+2.6 0.13
Social insecurity 3.53+3.2 21+2 0.22

Data are given as mean values (SD) or median values (range) when appro-
priate.

BMI: Body Mass Index; GM: gray matter; WM: white matter; CSF: cere-
brospinal fluid; PBI: parental bonding instrument; STAI: State-Trait Anxiety
Inventory; HAMA: Hamilton rating scale for anxiety; BDI: Beck Depression
Inventory; DES: Dissociative Experiences Scale; EAT-26: eating attitude
test-26; SDQ-20: Somatoform Dissociation Questionnaire-2; BIDA: Body
Image Dimensional Assessment; EDI-2: Eating Disorder Inventory-2. Total
brain MRI parameters have been calculated using VBMS tool. *Significant
difference.

3.4. Performances of the Classifier. When considering 20-
fold CV approach, Accuracy, Specificity and Sensitivity of
the classifier for ED versus HC group discrimination were
calculated over a number of PCA coefficients ranging from
1to 32. When using 31 PCA coeflicients, Accuracy, Specificity
and Sensitivity reached their best values of 0.85, 0.73 and 0.93,
respectively.

Figure 3 shows Accuracy, Specificity and Sensitivity as a
function of the number of employed PCA coefficients for
the ED versus HC group discrimination. As expected, the
performance of the classification algorithm increases with the
number of employed PCA coefficients.



6
100 f o i ]
© o @
o)
- 50 + ° OO ° e ]
=] o o ®
2 ® o e
) 0 ® o i
‘é‘* °
S s ° ° o 0® ) |
~100 } @ o 1
]
—-150 . . . . .
-150 -100 =50 0 50 100 150
1st component
o Controls
@ Patients

()

Behavioural Neurology

300 [ A A

200 | A A
= A
g 100y £.°050 a L A
a. ol A @ A
g A A A ® A A A
S _100} Ao aTg A A
2 A
& 200} Ay

A
~300 | R
~1000 500 0 500 1000

1st component

A Controls (before FDR)
A Patients (before FDR)

(b)

@ Controls (after FDR)
@ Patients (after FDR)

FIGURE 1: Plot of the PCA coefficients that showed the highest FDR (a) and joint plot of the PCA coefficients before (triangles) and after
(circles) FDR ranking (b) for the ED versus HC group discrimination (Ist and 2nd components). Data from a single round of CV are shown

as a representative example.
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FIGURE 2: Decision function for the ED versus HC group discrim-
ination (Ist and 2nd components with highest FDR). Data from a
single round of CV are shown as a representative example.
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FIGURE 3: Accuracy, Specificity, and Sensitivity of classification as
a function of the number of employed PCA coefficients for the ED
versus HC group discrimination (20-fold CV).

When considering 10-fold CV approach, Accuracy, Speci-
ficity and Sensitivity of the classifier for ED versus HC
group discrimination were calculated over a number of PCA
coefficients ranging from 1 to 30. In this case, when using
21 PCA coeflicients, Accuracy, Specificity and Sensitivity
reached their best values of 0.80, 0.72 and 0.96, respectively.

3.5. Voxel-Based Pattern Distribution. Figure 4 shows the
voxel-based pattern distribution map of brain structural
differences between ED patients and HC. The pattern of
differences emerged mainly in the occipital cortex and the
posterior cerebellar lobule. Moreover, other brain regions
involved in regulation of emotional processing known to be
damaged in ED patients were detected: precuneus, sensori-
motor and premotor cortices as well as the ACC and OFC.

4, Discussion

The pathophysiological mechanisms underlying ED remain
a matter of debate. In the last few years, several meta-
analyses have tried to summarize the large amount of evi-
dence coming from behavioral and neuroimaging realms,
providing different key of lectures. At a behavioral level,
taking into account the clinical heterogeneity of ED sub-
types, a large amount of literature highlights the AN-related
psychopathology characterized by excessive Perfectionism,
cognitive-behavioral rigidity, asceticism, ruminations, obses-
sions about food and excessive concerns about weight and
shape, whereas BN patients would seem to be character-
ized by an impulsivity trait with a combination of height-
ened sensitivity to reward and impaired inhibitory control
[15, 41, 42]. As concerns neuroimaging findings, although
important pathological markers have been found describing
neurobiological differences between AN and BN subtypes,
the majority of these findings has never been translated
into clinical practice. For this reason, the implementation
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Eating disorders versus healthy controls

FIGURE 4: Voxel-based pattern distribution map of brain structural differences between ED patients and healthy controls (sagittal view,
threshold = 50%). Voxel-based pattern distribution (normalized to a range between 0 and 1) is expressed according to the color scale and

superimposed on a standard stereotactic brain for spatial localization.

TaBLE 2: FDR values of the 30 features (PCA coeflicients) used for
the ED versus HC discrimination.

PCA coefficient (#) FDR

1 0.2052
2 0.0172
3 0.0021
4 0.1286
5 0.0005
6 0.0786
7 0.1484
8 0.3923
9 0.0354
10 0.0137
1 0.0919
12 0.3376
13 0.1057
14 0.0002
15 0.0128
16 0.0176
17 0.0279
18 0.0188
19 0.0206
20 0.0511
21 0.0369
22 0.0001
23 0.0200
24 0.0052
25 0.1839
26 0.0431
27 0.0015
28 0.0250
29 0.0321
30 0.0171

Data from a single round of CV are shown as a representative example.

of supervised whole-brain automatic classification methods
may become an essential step for improving clinical manage-
ment of psychiatric patients in longitudinal and prospective

studies [43]. SVM has been proposed as a new approach for
identifying sensitive biomarkers (or combinations of them)
that allow for automatic discrimination of individual subjects.
In this work we proposed, for the first time, a SVM algorithm
that, working on structural neuroimaging data at a whole-
brain level, reached an optimal individual classification in
the comparisons between ED patients with controls. The
strengths of this work were: (a) the detected pattern of neural
abnormalities that allowed the SVM approach to reach this
great Accuracy involved well-known brain regions strongly
involved in the pathophysiological mechanisms of ED [5-
9, 12]; (b) the classification Accuracy in the discrimination
of all individual ED patients with respect to controls was
equal or higher than those detected in previous studies
employing machine learning to classify other psychiatric
disorders: ~80-85% in schizophrenic patients [21], 81% in
depression disorders [22] and ~75% in first-episode psychosis
[23]; (c) the employment of HC matched for BMI, a critical
variable known to influence brain anatomy [27] and sparsely
controlled in other neuroimaging studies investigating ED
patients.

Pattern recognition analysis used to classify ED patients
from HC depicted mainly the involvement of the: (a)
cerebellum, (b) reward-related cortical regions, (c) occipital
cortex and (d) sensorimotor cortex. (a) The cerebellum is
a multidimensional brain region involved in a plethora of
motor, cognitive and emotional functions. Recent studies
have also highlighted the role of the cerebellum in visceral
and autonomic regulation, specifically the cerebellar vermis,
which has a role in feeding behavior and appetite regulation
[44, 45]. This region is extensively connected with limbic
brain structures, such as the hippocampus, parahippocampal
gyrus, amygdala, thalamus, cingulate and prefrontal cortices
[46]. The involvement of the cerebellum (mainly the vermis
subregion) in ED has been consistently demonstrated in sev-
eral structural neuroimaging studies describing the presence
of GM volume loss mainly in AN [47-49]. Moreover a recent
resting state fMRI study [13], demonstrated the presence
of altered intrinsic connectivity of the cerebellar vermis in
both AN and BN patients. These authors hypothesized that
this dysfunctional neural pattern might be related to some



psychopathological aspects of ED (i.e., the drive thinness)
that is pathologically altered in all ED patients. (b) The ACC,
together with the OFC, are two regions taking part in the
ventral limbic circuit, together with the amygdala, insula
and ventral striatum, which are important for identifying the
emotional significance of appetizing stimuli for inhibiting
impulsive behaviors [14] and regulating reward systems [50].
The current neuroimaging literature mainly highlights the
role of this neural network in pathophysiological mecha-
nisms of BN, in which the alterations of mesolimbic reward
response mechanisms could explain the lack of control and
the impulsivity that are often present in BN patients and that
are neurophysiologically expressed through dysfunctional
activities in the ACC and OFC regions [15, 41]. However,
fronto-striatal neural circuit dysfunctions related to altered
reward processing have also described in AN patients [51],
thus raising a different perspective in which stimuli that are
otherwise aversive for healthy controls (e.g., self-starvation,
emaciated body image) are considered rewarding and activate
relevant reward linked brain regions in AN patients. (c)
The involvement of the visual cortex is another key site
associated with ED. Although altered functional activity of
the occipital lobe has been reported in both AN and BN
individuals [52], body image disturbance is fundamentally
considered one of the core characteristics of AN. Several
neuroimaging studies have described the neurobiological
correlates of this symptom, defining the presence of a specific
neural network involved in body processing: the fusiform
area, the inferior temporal sulcus and the primary visual
cortex. Recent evidence [53] demonstrated altered effective
connectivity between these regions in AN patients during
the viewing of bodies. (d) Finally, abnormal neural changes
in the precuneus and sensorimotor/premotor cortices have
been already described in both AN and BN patients [6, 13,
53]. Friederich et al. [41] showed that, using body images
of slim fashion models to induce a self-other body shape
comparison, AN patients had a higher activation of the
premotor cortex. Again, Amianto et al, [13] found altered
gray matter volume in the paracentral lobule, precuneus
and somatosensory regions when comparing AN and BN
patients, as well as the whole ED group, with respect to
controls. Altered neural changes in brain areas involved
in sensorimotor functions and visuo-proprioceptive infor-
mation processing may either represent the physiological
consequence of physical hyperactivity typical of ED patients
[13] or as a dysfunction related to the body awareness. Body
awareness is a complex cognition underpinned by aspects
of visual perception, proprioception, and touch [54]. The
processing of the body image concept requires integration
of the different types of body-related perceptual experience
and processing of information related to peripersonal space.
The presence of altered anatomical changes in these regions
together with visual cortex, has been interpreted as a dys-
functional processing of somatosensory information about
the perceived body size [6, 55].

One important limitation of this study needs to be
considered in discussion of our data: the clinical subtypes of
the enrolled ED and the size of these groups. Considering
a hypothetical structure of ED as a spectrum (in line with
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the trans-diagnostic approach of the DSM-V), in this study
we enrolled the two extremes of the model. ED is not a
uniform disorder characterized by a high heterogeneity in
clinical phenotypes. For instance, the 60% of those who
exhibit pathological ED behaviors but who do not meet
the full criteria for AN or BN, are instead diagnosed as
“eating Disorder Not Otherwise Specified” [56]. Again, the
diagnosis is further complicated by the presence of other
major psychiatric conditions [57], by disease duration [47]
and severity of illness [58]. All this evidence highlights that
our findings cannot be generalized to all ED populations.
Moreover, the small sample size of AN patients as well as the
fact that we only included outpatients with a lower disease
duration and with mild severity of illness (BMI ~ 17) might
have affected the magnitude of our classification Accuracy.
Therefore, to sustain the usefulness of SVM application
in clinical practice of ED, further studies are warranted
employing a larger and heterogeneous sample. Despite this
methodological limitation, it is important to highlight that
the severe inclusion criteria employed in this study, albeit
with a restricted sample selection, eliminated potential con-
founders (i.e., BMI), thus helping with the interpretation of
the results.

In conclusion, our study demonstrates for the first time
that using standard morphological brain images, SVM is
able to extract neuroimaging biomarkers, which allow to
accurately classify individuals with ED. Although we used
this method in a diagnostic perspective, the rationale for
applying machine learning methods in this psychiatric realm
is to allow inferences to be made at the level of the individual
for monitoring disease progression as well as improving
prevention and treatment decisions. We believe that our
preliminary findings offer new avenues for encouraging the
application of these multivariate neuroimaging approaches
in clinical practice, mainly to differentiate different ED
phenotypes.
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Abstract In the present work, we have undertaken a
proof-of-concept study to determine whether a simple
upper-limb movement could be useful to accurately clas-
sify low-functioning children with autism spectrum disor-
der (ASD) aged 2-4. To answer this question, we
developed a supervised machine-learning method to cor-
rectly discriminate 15 preschool children with ASD from
15 typically developing children by means of kinematic
analysis of a simple reach-to-drop task. Our method
reached a maximum classification accuracy of 96.7 % with
seven features related to the goal-oriented part of the
movement. These preliminary findings offer insight into a
possible motor signature of ASD that may be potentially
useful in identifying a well-defined subset of patients,
reducing the clinical heterogeneity within the broad
behavioral phenotype.
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Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous
neurodevelopmental disorder with multiple causes, cour-
ses, and a wide range in symptom severity (Amaral et al.
2008). Although the core features of ASD are persistent
deficits in social communication and interaction and the
presence of restricted, repetitive patterns of behavior,
interests, or activities (DSM V, American Psychiatric
Association 2013), it is of great importance not to ignore
the motor impairments associated with ASD as they are
highly prevalent, at 79 %, and can have a significant
impact on quality of life and social development (Lai et al.
2014). Motor abnormalities in ASD may occur very early
in development (Teitelbaum et al. 1998, Brian et al. 2008)
and be apparent over time (Fournier et al. 2010; Van
Waelvelde et al. 2010) being a pervasive feature of the
disorder. Recent studies have also provided evidence for
the specificity of motor impairments identified in high-
functioning children with ASD compared to children with
attention deficit/hyperactivity (ADHD) (Izawa et al. 2012;
Ament et al. 2014) and to typically developing children
matched by nonverbal 1Q and receptive language (Whyatt
and Craig 2013). Overall, these findings suggest that motor
abnormalities could be a consistent marker of ASD (Dowd
et al. 2012). A number of different motor deficits have been
reported in ASD, including anomalies in walking patterns
(e.g., Rinehart and McGinley 2010; Nobile et al. 2011),
hand movements such as reaching (e.g., Mari et al. 2003;
Glazebrook et al. 2006; Forti et al. 2011), and eye-hand
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coordination (e.g., Glazebrook et al. 2009; Crippa et al.
2013). The severity of motor deficits correlates with the
degree of social withdrawal and the severity of symptoms
(Freitag et al. 2007). Motor control has even been specu-
lated to be crucial for communication and social interaction
(Leary and Hill 1996). Indeed, Minshew et al. (2004)
proposed that studies on motor function could have sig-
nificant potential in elucidating the neurobiological basis
and even improving the diagnostic definition of ASD.

Currently, the gold standard for the diagnosis of ASD
has been formalized with the clinical judgment of symp-
toms and with semistructured, play-based behavioral
observations (Lord et al. 2000) and standardized interviews
or questionnaires (e.g., Lord et al. 1994). However, recent
studies have started to explore the predictive value of
neurobiological as well as behavioral measures in ASD in
order to identify a well-defined phenotype of individuals
and—possibly—to enable a computer-aided diagnosis
perspective. These studies typically implement pattern
classification methods that are based on machine-learning
algorithms to predict or classify individuals of different
groups by maximizing the distance between groups of
datasets. Machine learning commonly refers to all proce-
dures that train a computer algorithm to identify a complex
pattern of data (i.e., “features”) that can then be used to
predict group membership of new subjects (e.g., patients
vs. controls). Machine-learning techniques based, for
example, on support vector machines (SVMs; Vapnik
1995) require a well-characterized dataset in the training
phase in order to extract the classification algorithm that
best separates the groups (i.e., the “hyperplane” or
“decision function”). In the testing phase, the classification
algorithm can be used to predict the class membership of a
participant not involved in the training procedure (e.g.,
whether a new child has ASD). Pattern classification
methods can also identify complex patterns of anomalies
not efficiently recognized by other univariate statistical
methods. Thus, the use of pattern recognition methods to
predict group membership should not be considered merely
in a potentially “diagnostic” perspective but also as a
useful tool used to develop objective measures for each
individual from a set of sample data. Most of the studies
have applied pattern classification methods to neuroana-
tomical data measured by structural magnetic resonance
(MRI; Ecker et al. 2010a, b) or by diffusion tensor imaging
(Lange et al. 2010; Ingalhalikar et al. 2011; Deshpande
et al. 2013), although Oller et al. (2010) analysis of data
regarding automated vocal analysis produced promising
results.

In the present work, we have undertaken a proof-of-
concept study to determine whether a simple upper-limb
movement could be useful to accurately classify low-
functioning children with ASD who are between the ages

of 2 and 4. In order to answer this question, we developed a
supervised machine-learning method to identify preschool
children with ASD and correctly discriminate them from
typically developing children by means of kinematic ana-
lysis of a simple reach, grasp and drop task. We decided to
analyze this simple motor task because the motor system
can be more easily probed in low-functioning autistic
children than systems that underlie complex cognitive
functions. In addition to the potential predictive value of
our machine-learning method in exploring the clinical
relevance of simple upper-limb movement measures in
ASD, we could identify a limited set of kinematic char-
acteristics that even suggests the hypothesis of a motor
signature of autism.

Methods
Participants

Fifteen preschool-aged children with autism (ASD) were
compared to fifteen typically developing (TD) children
who were matched by mental age. IQ and mental age were
assessed in our institute by using the Griffiths Mental
Development Scales (Griffiths 1970) as a part of the rou-
tine clinical practice with low-functioning children. A poor
score on the Griffiths scales at 1 and/or 2 years has been
demonstrated to be a good predictor of impairment at
school age (Barnett et al. 2004). All participants had nor-
mal or corrected-to-normal vision and were drug-naive.
The participants in the ASD group were recruited at our
institute over an 18-month period. All participants in the
clinical group had been previously diagnosed according
with the criteria described in the Diagnostic and Statistical
Manual of Mental Disorders-IV TR (American Psychiatric
Association 2000) by a medical doctor specialized in child
neuropsychiatry with expertise in autism. The diagnoses
were then confirmed independently by a child psychologist
through direct observation and discussion with each child’s
parents. Seven children had been administered the Autism
Diagnostic Observation Schedule (ADOS; Lord et al.
2000). The participants in the control group were recruited
by local pediatricians and from kindergartens to be men-
tally age-matched to the clinical sample from the normally
developing population. We decided to include, as a com-
parison group, typically developing children matched by
mental age, following the assumption that mental age
usually predict ability to understand task instructions, use
appropriate strategies and inhibit inappropriate responses
(Jarrold and Brock 2004). The TD children had no previous
history of social/communicative disorders, developmental
abnormalities, or medical disorders with central nervous
system implications. All of the participants’ legal guardians
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Fig. 1 The experimental task consisted of grasping a rubber ball (2)
that was placed over a support (see 1, a); that is, a reach-to-grasp
movement before they dropped it in a hole (3). The hole (1, c) was
located inside a see-through square box (21 cm high, 20 cm wide)
and was large enough not to require fine movements. The goal area is

gave their informed written consent prior to the children’s
participation. The research was approved by the ethics
board of our institute in accordance with the Declaration of
Helsinki.

Procedure

The participants sat in front of a table of variable height,
which was adjusted to the base of the children’s trunk. The
experimenter sat at the opposite side of the table, and one
parent was present in the room. All trials started with the
children’s hands resting at a set position 20 cm away from
the ball support. The experimental task consisted of
grasping a rubber ball (6-cm diameter) that was placed over
a support (see Fig. 1a); that is, a reach-to-grasp movement
before they dropped it in a hole (7-cm diameter). The hole
(see Fig. 1b) was located inside a see-through square box
(21 cm high, 20 cm wide; see Fig. 1) and was large enough
not to require fine movements. Ten trials per participant
were conducted: five consecutive trials on the left side (and
left hand) and five consecutive trials on the right side (and
right hand). The order of trial blocks was counterbalanced
between participants. The experimenter performed the task
first in order to overtly illustrate the task demand (i.e.,
reach for the ball, grasp it and drop it in the hole) without
any verbal cue. Practice trials, the number of which varied
individually, were given to participants before recording in
order to verify the children’s understanding of the task. The
participants were allowed to interrupt the experiment at
will in order to rest. The experimental task was simple and
interesting enough to ensure the full motivation and com-
pliance of all participants across groups.

Apparatus
An optoelectronic system (The SMART D from BTS

Bioengineering® Garbagnate Milanese, Italy) was used to
acquire the kinematics data. Three-dimensional kinematic

@ Springer

transparent to allow seeing through. 4 markers are placed on the
basket under the goal area, 2 on the ball and 3 on each hand (attached
to the ulnar and radial surfaces of the participant’s wrist and to the
hand dorsum on the 4th and 5th metacarpals)

data were collected by eight infrared-motion analysis
cameras at 60 Hz (spatial accuracy <0.2 mm), located four
per side at 2.5 m from the participants. Passive markers
(1 cm) were attached to the ulnar and radial surfaces of the
participants’ wrists and to the hand dorsum on the fourth
and fifth metacarpals (see Fig. 1). Moreover, two markers
were placed on the ball and four on the box edges under the
goal area. All raw data were first preprocessed with Matlab
(Mathworks® Natick, MA, USA); a fifth-order Butter-
worth, 8-Hz low-pass filter was applied, and movement
segmentation and parameters estimation were computed
with self-written software.

The overall movement was divided into two sub-
movements: Sub-movement I—the movement necessary to
reach the ball and place it on its support; Sub-movement
2—the movement to transport the ball from its support to
the target box hole where the ball was to be dropped. For
each of these sub-movements, statistics pertaining to a set
of dependent measures was collected: (a) total movement
duration (TD), (b) number of movement units' (MU),
(c) peak velocity (PV), (d) time of PV from sub-movement
onset (tPV), (e) peak acceleration (PA), (f) time of PA
(tPA), (g) peak deceleration (PD), and (h) time of peak
deceleration (tPD). Moreover, final movement accuracy
was evaluated by the wrist inclination at the time of the ball
drop (delta_WA), calculated as the angle between the palm
and the vertical axis of the coordinate system (more pre-
cisely, the difference between the WA at the end of the
transport phase and the WA at the time of peak decelera-
tion). These 17 kinematic measures were used as input
features for the pattern classification procedure.

! A movement unit is defined as an acceleration phase followed by a
deceleration phase higher than 10 mm/s, starting from the moment at
which the increase or decrease in cumulative velocity is over 20 mm/s
(Von Hofsten 1991; Thelen et al. 1996).
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Data Analysis

After checking that the assumptions were not violated, an
analysis of covariance (ANCOVA) was carried out to
compare the two groups of children on all kinematic
measures with Group (ASD vs. TD) as a between-partici-
pant factor, and with IQ and chronological age as between-
participant covariates. The alpha level was set to .05 for all
data analyses. Effect sizes for ANCOVA are reported using
partial eta squared (ng).

The Machine-Learning Method

A pattern classification method based on a machine-learning
algorithm was used to classify ASD versus TD by maxi-
mizing the distance between the two groups of datasets. A
validated supervised machine-learning method (Salvatore
et al. 2013) was used. The method involves two different
steps: (1) feature selection, the process of selecting a subset
of relevant features to be used for classification, and (2)
classification, the process of using the selected features to
separate the two considered groups of subjects (ASD vs. TD).

Feature Selection

In order to understand which of the collected kinematic
features were more discriminative for the ASD versus TD
comparison, feature selection was implemented by using a
Fisher discriminant ratio (FDR)-based technique (Padilla
et al. 2012).

By this technique, for each subject, the collected fea-
tures and the “label” associated to that subject on a clinical
diagnosis basis (i.e., ASD or TD) were considered to cal-
culate a score (FDR score) for each feature.

Specifically, for the feature i, the FDR score was cal-
culated using the following formula:

2
(Hi_asp — Mi—p)
2

FDR; = =
Oi_asp T Oi_1p

where p;_,gp and u;_pp, are the mean value of the feature
i calculated across the whole ASD and TD datasets,
respectively. o7 ,qp and o7 ,, are the variance of the
feature i calculated across the whole ASD and TD datasets,
respectively.

Ranked features were then sorted in a decreasing order,
from the most to the least discriminative, according to their
FDR score.

Classification Algorithm

Classification of ASD and TD subjects was performed using
a Support Vector Machine (SVM) approach (Scholkopf

et al. 2000; Vapnik 1995, 1998; Vapnik and Chapelle 1999,
Lopez et al. 2011), already optimized and validated in a
clinical setting (Salvatore et al. 2013).

The aim of the considered SVM is to generate a model
able to (1) learn from the selected features of labeled sub-
jects how to discriminate subjects of different groups (binary
labeled training datasets), and (2) correctly classify, by
means of the same selected features, new unlabeled subjects
as belonging to one of the two groups (ASD or TD).

The learning process of the classifier consists of a
training phase in which the selected features of the ASD
and TD subjects are two training datasets associated to the
ASD and TD labels, respectively.

Mathematically, if we have training data consisting of a
vector x; € RV,i =1,...,N and the associated binary label
yi € {£1} (e.g., +1 for ASD, —1 for TD), then SVM uses
the principle of structural risk minimization to design an
optimal hyperplane (OH) that maximizes the distance
between the two training groups and that separates them.
The lower the distance of a training subject from the OH,
the more important that training subject to define the OH.
Thus, the distance identifies the “weight” of that training
subject in the definition of OH.

The OH can then be used as model to classify new
subjects, i.e., subjects for which the label is unknown.

Mathematically, the model used for the identification of
the binary label ¥ of a new subject x, as a result of the
classification of that new subject, is given by the following
function:

N
V()= ai-yik(x,x) +b
i=1

a; being the weight of the training subject x;, y; being the
binary label of the training subject i, k(x, x;) being a linear
kernel function, b being a threshold parameter called bias,
and N being the number of training subjects. We chose to
employ a linear kernel because it represents the more
general form of a decision function and because it ensures
better computational efficiency.

In this study, the whole machine-learning method was
implemented on the Matlab platform (Matlab version
R2013b, The MathWorks, Natick, MA). In particular, we
used functions of the biolearning toolbox of Matlab to
implement the classification algorithm.

Performance of the Classification Algorithm

Performance of the classification algorithm was assessed by
using a cross-validation strategy. In general, cross validation
involves splitting the original dataset into two complemen-
tary subsets: a training set and a testing set. The training set
is a set of data associated to a label and used to perform the
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training of the classifier (as already described in the previous
section); the testing set is a set of data not associated to a
label and used to perform the validation of the classifier. By
considering different partitions of the data, multiple rounds
of cross-validation can then be performed.

In a particular case of cross-validation, called leave-one-
out (LOO) cross-validation, the testing set is solely com-
posed of one sample of the original dataset and the training
set is made up of the remaining samples of the original
dataset (N — 1). Therefore, if we want to test all N samples
in the original dataset, then it is sufficient that the number
of rounds to be performed equals the number N of samples
in the original dataset. LOO is a widely used validation
approach in literature because it has been proven able to
return an almost unbiased estimate of the probability of
error (e.g., Vapnik 1998; Chapelle et al. 1999).

In this study, validation of the classifier for the ASD
versus TD comparison was performed by using an LOO
cross-validation strategy for a number i of selected features
running from one to the whole number of features (i.e., 17).
A schematic description of the whole procedure is shown
in Fig. 2.

In order to quantify the performance of the proposed
classification algorithm, the accuracy, specificity, and sensi-
tivity rates were computed. Accuracy of classification mea-
sures the rate of correctly classified samples in both positive
(ASD) and negative (TD) classes. Specificity and sensitivity
measure the rate of correctly classified samples in the posi-
tive (ASD) and in the negative (TD) class, respectively.

Mathematically, the accuracy, specificity and sensitivity
of the classifier when the first i selected features are used,
were computed as follows:

NCC
Accuracy; = N
o Ni5
Specificity; = m

Fig. 2 Flowchart of
preprocessing, support vector

regression and leave-one- T
subject-out procedures ﬁ
I
N
I
N
G
N - 1 labeled
subjects
| e e m—m————————— e
l==z=z=z=z=z=z=z====z=z=z=z=z==z=z=z=z=z==z
1
1
i
E1
i
T 1
1! Left-out unlabeled
N : subject
Gl
1
1

! Kinematic data
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Feature selection

I ——

Sensitivity, — —VaSD
ensitivity; = NCC 1 NIC
where N is the total number of classified subjects; NCC is
the total number of correctly classified (CC) subjects, N5
is the number of TD samples that were CC as belonging to
the TD gr (true negatives), NL5 is the number of TD
samples that were incorrectly classified (IC) as belonging
to the ASD class (false positives); N5, is the number of
ASD samples that were CC as belonging to the ASD class
(true positives), N, is the number of ASD samples that
were IC as belonging to the TD class (false negatives).

We then studied the dependency of accuracy, specificity,
and sensitivity on the number i of selected features.

The maximum values reached for accuracy, specificity,
and sensitivity, referred to as maximum accuracy, speci-
ficity, and sensitivity, allowed the definition of the most
discriminative features.

Overall mean accuracy, specificity, and sensitivity rates
were calculated as mean values of accuracy, specificity,
and sensitivity as follows:

| £
Overall mean accuracy = — - Accuracy;
y== ; Vi

1

Overall mean specificity = 7

F
Z Specificity;
i=1

N B S
Overall mean sensitivity = 7 ZSensmvztyi
i—1

where F is the whole number of features (17).

Results

Data on the demographic, cognitive, and clinical charac-
teristics of the participants are summarized in Table 1.

Selected ranked features + labels

Predicted label

Selected ranked features
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Table 1 Demographics of the participants

ASD TD t(1,28) p
N 15 15
Females:males 3:12 2:13
Chronological age® 3.5+ 7.7 26+52 —4.55 <.001
(2.8-4.6) (1.7-2.9)
Mental age® 26+57 27+£59 513 n.s.
(1.7-3.4) (1.6-3.2)
Q° 75+ 134 1054 127 652 <.001
(51-96) (81-119)
ADOS®
Social 11 +£22 —
Communication 7+15 —
SBRI 2+ 16 -

ASD autism group, TD typically developing group; IQ and mental
age were assessed using the Griffiths Mental Development Scales
(Griffiths 1970)

* Mean years; months =+ standard deviation (range)
® Mean = standard deviation (range)
¢ ADOS autism diagnostic observation schedule, Lord et al. (2000)

4 Stereotyped Behavior and Restricted Interests scale

The validity of mental age matching was confirmed
(p > 0.05). Gender was also balanced between groups, as
there were 3 girls in the ASD group and 2 girls in the healthy
control group (xX(1) = .240; p > 0.05). As expected, IQ and
chronological age were not balanced across groups (both
p < 0.001). Table 2 shows kinematic feature values of the

two groups of children included in the study (ASD vs. TD) and
the results of ANCOVA calculated on all kinematic measures.
We found several significant group differences based on the
kinematic variables even after having controlled for between-
participant differences in 1Q and chronological age.

The Machine-Learning Method
Classification Algorithm

In Fig. 3, the optimal hyper-plane separating ASD from TD
participants is shown as a representative example of the
training phase of the machine-learning method.

Performance of the Classification Algorithm

In Table 3, the accuracy, specificity, and sensitivity of the
machine-learning method for the comparison of ASD
versus TD are reported.

The machine-learning method was able to successfully
classify participants by diagnosis. The classification accuracy
reached a maximum accuracy of 96.7 % (specificity 93.8 %
and sensitivity 100 %) by using seven features selected by
the Fisher discriminant ratio-based technique. Overall mean
accuracy, specificity, and sensitivity rates were also calcu-
lated over a number of selected features ranging from one to
17 (the whole number of features). The overall mean clas-
sification accuracy (specificity/sensitivity) was 84.9 %
(mean specificity 89.1 % and mean sensitivity 82.2 %).

Table 2 Kinematic data were

initially analyzed through an

ANCOVA with Group (ASD vs.
TD) as a between-participant
factor, and with IQ and
chronological age as covariates

Bold value indicates
significant contrasts

The alpha level was set to .05
for all data analyses. Table
depicts group means and
standard deviations for
kinematic variables, values of
F test, p values and effect sizes
reported using partial eta
squared (ng)

ASD autism group, TD typically
developing group

ASD TD F(1,26)  Sig. m

Submovement 1

Movement units M (SD) 1.91 (0.62) 1.70 (0.37) <1.0 n.s. .012
Total movement duration M (SD) 0.69 (0.14) 0.66 (0.12) <1.0 n.s. .010
Peak velocity M (SD) 0.46 (0.12) 0.59 (0.17) 5,626 <0.05 178
Time of peak velocity M (SD) 0.34 (0.07) 0.31 (0.04) <1.0 n.s. .036
Peak acceleration M (SD) 3.18 (0.93) 4.26 (1.52) 7,884 <0.01 233
Time of peak acceleration M (SD) 0.21 (0.07) 0.16 (0.05) <1.0 n.s. .031
Peak deceleration M (SD) —3.59 (1.28) —3.93 (1.44) <1.0 n.s. .067
Time of peak deceleration =~ M (SD) 0.47 (0.08) 0.44 (0.06) <1.0 n.s. .017
Submovement 2

Movement units M (SD) 3.45 (1.78) 1.76 (0.39) 4,408 <0.05 145
Total movement duration M (SD) 1.35 (0.44) 0.79 (0.15) 13,832 =0.001  .347
Peak velocity M (SD) 0.61 (0.15) 0.76 (0.16) 13,475 =0.001 .341
Time of peak velocity M (SD) 0.41 (0.14) 0.31 (0.05) 18.501 <0.001 416
Peak acceleration M (SD) 3.85 (1.13) 5.58 (1.94) 12,416 <0.01 323
Time of peak acceleration M (SD) 0.23 (0.20) 0.13 (0.04) 6,303 <0.05 195
Pick deceleration M (SD) —3.29 (1.15) —4.27 (1.88) 2,632 n.s. .092
Time of peak deceleration M (SD) 0.75 (0.24) 0.51 (0.11) 26,652 <0.001 .506
Wrist angle M (SD) —4.25(16.34) —25 (12.40) 6,604 <0.05 203
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Table 3 Accuracy, specificity and densitivity rates of SVM using LOO validation

Maximum accuracy (%)
(# selected features)
Overall mean accuracy (%)

Maximum specificity (%)
(# selected features)
Overall mean specificity (%)

Maximum sensitivity (%)
(# selected features)
Overall mean sensitivity (%)

ASD versus TD 96.7 (7) 93.8 (7) 100.0 (7)
84.9 89.1 82.2

ASD autism group, 7D typically developing group. The maximum values reached by accuracy, specificity and sensitivity were referred to as
maximum accuracy, specificity and sensitivity rates. Accuracy, specificity and sensitivity reached their maximum values using 7 features, all
related to the second part of the movement—Sub movement 2: (1) Total Duration; (2) delta Wrist Angle; (3) number of Movement Units; (4)

time of Peak Deceleration; (5) Peak Acceleration; (6) time of Peak Velocity; (7) Peak Velocity

In Fig. 4, the dependence of the metrics on the number
of considered features is shown. The resulting data are
shown for a number of features ranging from one to 17. As
expected, accuracy, specificity, and sensitivity rates
increase with the number of selected features, reaching
their maximum values when considering seven selected
features.

Besides calculating the accuracy of the SVM method,
we were particularly interested in identifying which kine-
matic features contributed toward the classification. Our
analysis showed that seven of 17 features were sufficient to
classify autism with a 96.7 % accuracy rate. All of these
seven kinematic features are related to the second part of
the movement, sub-movement 2 (i.e., the movement to
transport the ball from a support to the target hole in which
the ball was to be dropped): (1) total duration; (2) delta
wrist angle; (3) number of movement units; (4) time of
peak deceleration; (5) peak acceleration; (6) time of peak
velocity; and (7) peak velocity. Finally, the most discrim-
inative features between the two groups when considering
all of the N rounds (30) of the LOO cross-validation
strategy are reported here in descending order: Total
Duration sub movement 2, Delta Wrist Angle, Movement
Units sub movement 2, time of Peak Deceleration sub
movement 2, Peak Acceleration sub movement 2, time of
Peak Velocity sub movement 2, Peak Velocity sub

@ Springer

movement 2, Peak Velocity sub movement 1, time of Peak
Acceleration sub movement 1, Peak Acceleration sub
movement 1, time of Peak Acceleration sub movement 2,
Peak Deceleration sub movement 2, time of Peak Velocity
sub movement 1, Movement Units sub movement 1, time
of Peak Deceleration sub movement 1, Peak Deceleration
sub movement 1, Total Duration sub movement 1.

Discussion

Autism spectrum disorder is currently diagnosed on the
basis of symptoms as qualitatively judged by clinicians and
by means of semistructured observations (ADOS) and
standardized interviews or questionnaires (ADI-R). Given
this gold standard for the diagnosis of ASD, the use of
pattern recognition methods to predict group membership
has recently attracted strong attention, not only from a
computer-aided diagnosis perspective, but also as suitable
tool to define objective, quantitative measures of the dis-
order. Previous works have investigated the predictive
value of neurobiological and behavioral measures in
patients with ASD. The purpose of the present study was to
explore the ability of the kinematic analysis of a simple
upper-limb movement to correctly discriminate young low-
functioning children with ASD from typically developing
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Fig. 4 Graph showing classification accuracy, specificity and sensi-
tivity rates (%) of SVM (Y-axis) in relation of the number of
considered features (X-axis). As expected, accuracy, specificity and
sensitivity rates increased with the number of selected features. The
classification accuracy reached a maximum accuracy of 96.7 %
(specificity 93.8 %, and sensitivity 100 %) utilizing seven features.

children. To achieve this goal, we applied our validated
supervised machine-learning procedure (Salvatore et al.
2013) to the kinematic analysis of a simple reach, grasp,
and drop task performed by preschool children with ASD
in comparison to their mental-age-matched, typically
developing peers.

The SVM algorithm reached a good mean individual
classification in the comparisons between children with
ASD and healthy controls (overall mean accuracy =
84.9 %, with overall mean specificity = 89.1 % and
overall mean sensitivity = 82.2 %), with a maximum
accuracy of 96.7 % (with maximum specificity of 93.8 %
and maximum sensitivity of 100 %). The classification
accuracy that was achieved in this study is consistent with
previous SVM applications to MRI data (Ecker et al.
2010a, b) and to diffusion tensor imaging (DTI) data (In-
galhalikar et al. 2011; Deshpande et al. 2013) or with
quadratic discriminant function application on diffusion
tensor asymmetries (Lange et al. 2010). Our results are also
consistent with the findings of Oller et al. (2010), who
derived algorithms that were based on linear discriminant
analysis by using an automated analysis of the acoustic
characteristics of babble and early language to discriminate
typical from language disordered development, such as
autism or language delay. Thus, the present findings clearly
show the feasibility and the applicability of our SVM
method in correctly classifying preschool children with
ASD on the basis of a motor task. Indeed, an autism
diagnosis is particularly difficult in young, low-functioning
children with autism, even using the gold standard

T T T T

——ACCURACY
——SPECIFICITY| |
——SENSITIVITY |

1 1 1 1 L 1 Il 1 §
9 10 11 12 13 14 15 16 17

FEATURES

All of these seven kinematic features are related to the second part of
the movement—sub-movement 2—the movement to transport the ball
from a support to the target hole in which the ball was to be dropped.
Such suggests that goal-oriented movements may be critical in
separating children with ASD from typically developing children

diagnostic procedure. Our motor measure might have
potential clinical application in such cases, thus providing
useful information for clinicians to support a diagnostic
decision. A point of relevance of our work, in fact, is that
we decided to study the predictive value of a simple reach,
grasp, and drop task, because the motor system can be
more easily evaluated (i.e., even in young low-functioning
children with ASD) than other more complex systems (e.g.,
cognitive functions). Indeed, because of the easiness and
self-explanatory nature of the task, all participants were
able to fully understand the experimental demand and to
complete the movement successfully. Furthermore, kine-
matics analysis provides a constraint-free, non-intrusive
environment for a challenging clinical population such as
ASD in comparison with a magnetic resonance examina-
tion that is mostly used in previous pattern-recognition
applications. Lastly, kinematic analysis is also a more
convenient and less expensive technology than MRI to
implement in a clinical setting equipped with an opto-
electronic system to acquire kinematic data. Indeed, the
task can be easily administered by any professional who
works with children. Testing sessions last 15 min, and data
analysis can be performed by a trained bioengineer in
approximately 30 min for each subject.

Using feature selection, we also found the best classi-
fication accuracy of 96.7 % with seven features which had
the highest discriminative ability between the groups. All
of these seven kinematic features are related to the second
part of the movement—sub-movement 2—in which the
child transported the ball from a support to the target hole
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where the ball was to be dropped. This suggests that goal-
oriented movements may be critical in separating children
with ASD from typically developing children. More spe-
cifically, the top three features within the seven kinematic
characteristics of sub-movement 2—time duration, move-
ment units, and wrist angle—indicate respectively slower
and more fragmented movements in children with ASD
with inappropriate hand inclination for ball-drops during
the final phases of hand transport. Thus, our results extend
previous investigations in ASD that report the difficulty of
translating intention into a motor chain leading to the
action goal (Cattaneo et al. 2007; Fabbri-Destro et al. 2009;
Forti et al. 2011). These findings demonstrate that a limited
set of kinematic characteristics could reliably identify
children with ASD in order to describe a well-defined
phenotype of individuals within a complex and highly
heterogeneous disorder, even suggesting a possible motor
signature of autism related to disrupted planning movement
sequences.

Despite our promising results, some methodological
limitations of the present exploratory study should be
considered. The main limitation is related to the small
sample sizes of participant groups; the present findings,
therefore, need to be replicated in a larger sample in order
to validate the present SVM method by using a data set
upon which it has not trained. Another potential limitation
of this study is that our SVM classification is highly spe-
cific to the sample employed in training the classifier (i.e.,
preschool children with ASD). Future studies involving
females with ASD, children with high-functioning autism,
and adult patients are needed to generalize our findings to
the heterogeneous spectrum of the disorder. Although we
found that our significant between-groups differences were
not dependent on 1Q and chronological age, it could be
worthwhile in future studies to train the computer algo-
rithm with data from age-matched typically developing
participants as well. Unfortunately, we did not collect
ADOS scores from the entire clinical sample; thus, we
could not perform a correlation analysis between our sig-
nificant findings and the clinical characteristics of children
with ASD. Future extensions of this work should also
include other neurodevelopmental conditions (e.g., intel-
lectual disability, developmental delays without intellec-
tual disability, or developmental coordination disorders) in
order to verify the classifier specificity to ASD, rather than
a neurodevelopmental disorder in general. Indeed, some
studies have recently indicated the specificity of motor
difficulties in older high-functioning children with ASD
compared to children with ADHD (Izawa et al. 2012;
Ament et al. 2014) and to healthy children matched by
nonverbal 1Q and receptive language (Whyatt and Craig
2013). Finally, it should be noted that the predictive values
of classification methods are restrained by the base rate of
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neurodevelopmental disorder in the population (Bishop
2010; Heneghan 2010; Yerys and Pennington 2011).
Therefore, caution is needed when comparing classifica-
tion-based accuracy values to the conventional diagnostic
measures.

Nevertheless, although the present results should be
considered preliminary, this study represents a “proof-of-
concept” that kinematic analysis of simple upper-limb
movement can reliably identify preschool-aged, low-func-
tioning children with ASD. The significant predictive value
of our SVM classification approach might be valuable to
support the clinical practice of diagnosing ASD, thus
encouraging a computer-aided diagnosis perspective.
Moreover, our findings offer insight on a possible motor
signature of autism that is potentially useful to identify a
well-defined subset of patients, thus reducing the clinical
heterogeneity within the broad behavioral phenotype. This
may guide further exploration of neuropathology of the
disorder with neuroimaging techniques or genetic analysis.
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Digital technologies have opened new opportunities for psychological testing, allowing new computerized testing tools to be
developed and/or paper and pencil testing tools to be translated to new computerized devices. The question that rises is whether
these implementations may introduce some technology-specific effects to be considered in neuropsychological evaluations. Two
core aspects have been investigated in this work: the efficacy of tests and the clinical ecology of their administration (the
ability to measure real-world test performance), specifically (1) the testing efficacy of a computerized test when response to
stimuli is measured using a touch-screen compared to a conventional mouse-control response device; (2) the testing efficacy of
a computerized test with respect to different input modalities (visual versus verbal); and (3) the ecology of two computerized
assessment modalities (touch-screen and mouse-control), including preference measurements of participants. Our results suggest
that (1) touch-screen devices are suitable for administering experimental tasks requiring precise timings for detection, (2) intrinsic
nature of neuropsychological tests should always be respected in terms of stimuli presentation when translated to new digitalized
environment, and (3) touch-screen devices result in ecological instruments being proposed for the computerized administration

of neuropsychological tests with a high level of preference from elderly people.

1. Introduction

Computerized neuropsychological tests have been used in
research for almost fifty years [1]. Although many different
test batteries have been developed and new batteries are
introduced every year for clinical screening, not sufficient
normative data and standardized psychometric measures
are yet available [2]. Conversely, paper and pencil tests are
widely approved and are still regarded as keynote tools for
neuropsychological assessment, due to their high validity and
reliability [3]. Paper and pencil neuropsychological tests are
based on the presence of a neuropsychologist, essential for the
assessment of cognitive abilities, especially for the evaluation
of a person with brain injury or cognitive impairment and
for the selection, administration, and interpretation of tests.
Although suffering from some levels of subjectivity, variabil-
ity, and long times (due to the fact that it is often necessary
to do a screening and also a diagnostic deepening), paper

and pencil tests have been validated for the administration
of reliable tests able to pinpoint a potential deficit involving
a specific cognitive ability, or to discriminate among impair-
ments in different cognitive domains [4]. However, neuropsy-
chological evaluation can also provide information concern-
ing normal brain functioning and allows monitoring the
cognitive status of an individual, especially throughout older
age. Therefore, its results are extremely important to trace a
continuum of normal functioning in the aging population,
not only in presence of pathologies. Documenting changes in
cognition is, indeed, an important issue in neuropsychologi-
cal assessment, as the clinician/researcher is often called upon
to determine if and when cognitive functioning has changed.
Another important advantage of the conventional paper
and pencil neuropsychological assessment is their ecological
validity. In the context of neuropsychological testing, ecolog-
ical validity refers to the degree to which test performance
corresponds to real-world performance. Validity does not
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apply to the test itself, but to the inferences that are drawn
from the test [5, 6]. Most importantly, clinical sensitivity
allowing neuropsychologist to capture potential shades in
a specific domain and to trace a specific cognitive profile
may results difficult to be translated in a computer-based
assessment. Despite these numerous advantages, traditional
paper and pencil tools show some limitations particularly
when assessing cognitive changes in a relatively short follow-
up period. The most commonly administered tests usually
do not provide alternative forms of administration [7], thus
precluding to repeat testing over short intervals (e.g., <6
months) [8]. Other specific limitations concern the intrinsic
nature of the tools and include: assisting the setting and
manually computing scoring by the experimenter [9], long
duration of the assessment, potential bias related to different
examiners [10], impossibility to provide a precise time control
on stimuli presentation and/or the lack of an accurate
measurement of motor response accuracy [11], and greater
costs. Although there are specific tests for the assessment
of attentional and executive functions which can evaluate
individual components and can diagnose specific deficits [12],
some executive/attention abilities could take advantage from
the use of a computerized tool, in particular in the assessment
of response inhibition, resistance to distraction, planning,
problem solving, working memory operations, and mental
set shifting divided attention.

All of these limitations could be overcome by a comput-
erized assessment, on condition that efficacies and ecolog-
ical measurements are carried out. About these issues, the
American Psychological Association (APA) has recognized
the importance of computerized psychological testing and
has suggested how to implement and interpret computerized
test results in its guidelines [13]. Furthermore, computerized
assessment of cognitive functions can be self-administered
and can have a shorter duration (e.g., by reducing “dead”
times in stimuli presentation). They may have great valid-
ity and reliability due to their great objectivity, precision,
and standardization. Computerized performance can also
minimize the so called “floor and ceiling effects”, occurring
when differences among participant performance are not
fully captured; thus, they can provide more standardized
measures of subject performance, crucial for example, for an
accurate and early detection of specific pathological disease
(e.g., dementia) [14].

It appears clearly that computerized testing will represent
an essential part of the clinical setting in the nearest future,
above all, in screening procedures, on condition that these
new instruments and their results are governed by experts.

Feasible, efficacious, and ecological computerized test-
ing could allow clear pictures of normal cognition to be
measured and monitored also at home, pinpointing specific
deficits in each cognitive domain in aging people. Validated
computerized tools could also provide stronger grounding
to overcome the lack of a consensus regarding the feasi-
bility and testing efficacy related to the different types of
technological solutions and settings and/or response layouts
chosen for the assessment. For instance, a more ecological
technological solution can overcome one important obstacle
to the wide use of computerized assessment attributable to
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the familiarity with technological devices [11], while a more
ecological setting in the nearest future could partially allow
the administration of the tests without the support of a
specialized clinician, or the tests could be potentially self-
administered or assessed by a caregiver at home.

The aims of this study were to evaluate the following:

(1) the testing efficacy of a computerized test (in a
representative case of executive function assessment)
when response to stimuli is measured using a touch
screen compared to a conventional mouse-control
response device;

(2) the testing efficacy (the efficacy of the neuropsycho-
logical test) of a computerized test (in a representative
case of memory function assessment) with respect to
two different input modalities: a visual presentation
modality of the test, replicating the most diffused
digital versions of the test, and a verbal presentation
modality, replicating the classical clinical administra-
tion of the test;

(3) the ecology of both computerized assessment modal-
ities (touch-screen tablet and mouse-control PC),
including preference measurements of participants.

2. Related Works

Computerized cognitive batteries are already available and
used for the screening and the assessment of dementia.
Some of these instruments were appropriately created for the
assessment of cognitive decline in dementia; other ones were
adapted to fulfill this role in aging. Some tools are designed
for research use, and others tools have been designed mainly
for clinical use, some of them already implemented in clinical
guidelines.

An interesting review [2] reported seventeen comput-
erized test batteries used in the measurement of cognitive
abilities of adults. Some of these tools are able to run only on
a PC/laptop and others are available only on web sites.

Among these tools:

(1) CNS vital signs [15] battery is developed as a routine
clinical screening instrument. It includes seven tests:
verbal and visual memory, finger tapping, symbol
digit coding, Stroop test, test of shifting attention, and
continuous performance test.

(2) CogState [16] battery was developed as a dementia
screening instrument and it is implemented as a card
game form. The participant plays different games that
are adapted accordingly to performance. CogState
requires an active internet connection to generate
a report. The participant’s data are uploaded and
analyzed. Then a report is generated and e-mailed
back to the provider.

(3) NeuroTrax [17] includes custom software on the
local testing computer and serves as a platform for
interactive cognitive tests that provide precise accu-
racy and reaction time data. The level of difficulty
is graded. The NeuroTrax tests different cognitive
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TABLE 1: Features of computerized cognitive batteries cited in Section 2. Hardware, input modality, and context of use information are

provided.

Battery name Hardware used Input modality Use

CNS vital signs PC/laptop Keyboard Research use

CogState PCllaptop/tablet Keyboard Research use
(Web based)

Neurotrax PC/laptop (web based) Keyboard/mouse Clinical use (AACN consensus)

IntegNeuro PC/laptop Keyboard Research use

Touch panel dementia PC/laptop Touch screen Research use

assessment scale

CADi iPad Touch screen Research use

CANTAB mobile iPad Touch screen Research use

domains, memory (verbal and nonverbal), executive
function, visual spatial skills, verbal fluency, attention,
information processing, and motor skills. The tests
were designed for use with the older adults. Responses
are collected with the mouse or with the number pad
on the keyboard. NeuroTrax also generates a report
containing raw and standardized scores immediately
following testing. Administrative features are web
based.

(4) IntegNeuro [18], in brief, investigates the following
domains of cognitive function: sensorimotor, ver-
bal and language, memory, executive planning, and
attention. Scoring of responses is obtained by using
an automated software program. Trained research
assistants conducted the hand scoring of some tests
and oversight is implemented to monitor accuracy.

(5) Touch panel dementia assessment scale [19] hardware
comprises a 14-inch touch panel display and computer
devices built into one case. The TDAS runs on Win-
dows OS and was bundled with a custom program
made with reference to the ADAS-cog with the elderly
under the control of a physician.

More recently, screening tools for assessment of cognitive
impairment able to run on an iPad tablet device have made
their appearance as well. They can be downloaded and are
self-administrable (see Table 1).

CADi [20] and CANTAB mobile [21] are the first two
tools which exploited this technology. The CADi consists of
10 very brief tests; the purpose is to provide a mass screening
in the Japanese population in a relatively short time and
with overall cost substantially lower than paper and pencil
based examination. The most important limit of this tool is
the cultural background underlying the validation, as it is
available only in Japanese language. Notwithstanding, there
are 18 different language versions of the CANTAB mobile
tool; it comprises focused screening tests able to investigate
only episodic memory and learning abilities (PAL task).

3. Materials and Methods

3.1. Participants. A group of 38 healthy participants was
recruited among the Italian elderly population (20 males; age

range = 53 : 87; age mean = 64.474; standard deviation [SD] =
+8.462; education range = 5:19; education mean = 11,263;
[SD] = +4.131).

Participants with any history of neurological illnesses and
a Mini mental state examination (MMSE) score lower than 26
were excluded from the study (MMSE range = 26 : 30; MMSE
mean = 28,711; [SD] = +1.183) (see Table 2). Informed consent
was obtained from all participants.

3.2. Hardware Device. In order to compare the participant
responses from neuropsychological assessment delivered
through mouse-control PC and touch-screen tablet, we used
an Asus T100T notebook PC (CPU: quad core Intel Atom
processor, RAM: 2 GB, Screen: 10.1" HD, and screen reso-
lution 1366768 with multitouch). This device consists of a
10.1inches tablet running a Windows 8.1 OS which can be
used as a standalone touch-screen device or, combined with
a mobile dock, as a “standard” PC with conventional input
peripherals (mouse and keyboard).

3.3. Software and Scripting. The experimental tasks were
implemented and administered using the presentation soft-
ware (http://www.neurobs.com/). This is an object-oriented
programming language allowing a sharp control on stimuli
presentation (e.g., objects presentation timing and random-
ization of trials) and on response tracking. Experimental
paradigms are set up through scripts consisting of two logical
components: (i) a Scenario Definition Language (SDL) where
the objects of the task (i.e., stimuli organized with hierarchical
levels of complexity) are defined along with their specific
timing and response matching and a (ii) Presentation Control
Language (PCL) where objects presentation parameters are
controlled (e.g., possibility to present stimuli through loops,
conditionals, and subroutines for trials randomization). An
additional third component, the SDL header, is used to
specify general parameters, that is, those values which will
be used as default for the presentation of all stimuli unless
a different specification is given in the stimulus definition
(e.g., default font size, background color, stimuli duration and
timing, logfiles specifications, and so forth).

Presentation tracks and stores information about stimuli
administration timing and participant response behaviors
(i.e., the response given by the subject) in terms of response
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TABLE 2: Age, education, and MMSE scores are provided for the whole (N = 38) group (left column). Independent sample Students ¢-tests
values for these variables are shown for the AVLT (verbal versus visual) input modality groups (center column) and for the ANT (touch versus

mouse) response modality groups.

AVLT groups ANT groups
Overall group N =38 N =38
N =38 visual group (11 M/8 F) touch group (10 M/9 F)
20 M/18 F verbal group (9 M/10 F) mouse group (9 M/10 F)
Student’s ¢-test (P values) Student’s ¢-test (P values)
mean 64.474
Age st dev 8.462 0.970 0.831
range 53:87
mean 11.263
Education st dev 4.131 0.487 0.970
range 5:19
mean 28.91
MMSE stdev 0.67 0.344 0.272
range 28 : 30

classification and reaction times. Information is subsequently
analyzed using ad hoc data processing procedures in order to
assess participant performance.

Parameters to be measured for response behaviors of
participants are defined by the experimenter and specified
in terms of (i) input device/s used by the participant and (ii)
response buttons, in GUI’s dedicated response setting panel,
associated to the selected device to be recalled in the SDL
component. Contextually to our experimental setting, two
“response layouts” (i.e., mouse-control or touch-screen) were
configured in the following manner.

(i) A “mouse response layout” where the docking-
station built-in trackpad mouse was specified as
input device, and pressing one of the two mouse
buttons was specified as response behavior; two
distinct classes of responses were coded, each one
associated to a specific button press (i.e., pressing the
left and right mouse buttons). Each response class
was recorded and directly matched with the stimulus
target response in order to assess the responses
accuracy.

(ii) A “touch response layout” where the capacitive screen
surface was specified as input device, and the screen
press was specified as response behavior: in this
case this was the only available class of response.
The two (i.e., left and right) response classes were
obtained through data after processing: X and Y
coordinates were registered each time the subject gave
a response to a target stimulus and the X coordinate
was used to estimate whether the response occurred
on the left or right portion of the screen; positive
X corresponded to right touch screen press, and
negative X corresponded to left touch screen press.

3.4. The Neuropsychological Tests

3.4.1. The Attentional Networks Test (ANT). The attentional
network test (ANT) [22] is designed to test three different
attentional networks, namely, the executive control and the
alerting and the orienting components of attention.

Each trial starts with a fixation point and ends with the
target stimulus, consisting of an array of five contiguous
arrows; the participant is asked to state as fast as possible the
direction (i.e., left or right) of the central arrow (see Figure 1).

The array can be defined according to a congruency
factor (depending on the direction of the arrows flanking the
central, target stimulus) and a spatial factor depending upon
whether the array can occur either above or below the fixation
point or at the center of the screen; further the presentation of
the array can be cued or not by an asterisk (see Figure 1 for a
detailed description of all experimental conditions). Different
combinations of these experimental factors are selectively
used to assess the efficiency of the three different networks
(i.e., executive control and alerting and orienting component)
through accuracy and reaction times (RT) analysis as follows.

(i) Conflict effect (CE) is assessed by subtracting RTs
belonging to congruent trials (flanking arrows point-
ing in the same direction of the central target arrow)
from RTs belonging to incongruent trials (flanking
arrows pointing in the opposite direction of the
central target arrow).

(ii) Alerting effect (AE) is calculated by subtracting mean
RT of the double cued trials (target trial presentation
is preceded by two spatial cues occurring contem-
porarily above and below the fixation point) from
the mean RT of the no cue trials (target trial is not
preceded by any cue).

(iii) Orienting effect (OE) is calculated by subtracting the
mean RT of the central cue condition (target trial
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FIGURE I: (a) Attentional network test experimental conditions are shown; each trial presented during the task is a combination of congruency
(3 levels, on top) and cue (4 levels, below) conditions (adapted from [22]). (b) An example of, spatially cued, incongruent trial is presented;
stimuli timings and interstimulus interval of this customized version of the task are provided below each stimulus (adapted from [23]).

is preceded by a cue occurring at the center of the
screen) from the mean RT belonging to the spatial
cue condition (target trial is preceded by a spatial cue
occurring either above or below the fixation point,
depending on the position of the incoming target
trial).

3.4.2. 'The Auditory Verbal Learning Test (AVLT). The Rey
Auditory Verbal Learning Test [24] assesses the long-term
verbal memory or the ability to learn and store in long-
term memory unstructured verbal material. It consists of 5
consecutive repetitions for learning the material and then a
long delay free recall 15 minutes later. The test consists of 15
unrelated words presented orally. First, the participant has
to memorize this list of 15 words and immediately try to
recall them after each presentation (immediate recall, IR).
Second, after 15 minutes, in the meanwhile the participant
is performing nonverbal tests, the participant is asked to
recall the same list (delayed recall, DR). Finally, the subject
is presented with a longer list of distracter words and asked
to recall the previously learned words (recognition task). The
Italian test has three alternatives but completely equivalent
lists [25].

An interference task not involving verbal or memory
cognition is administered between the third (i.e., last) IR
session and the DR session.

3.5. Testing Efficacy I: Executive Function Assessment (ANT).
Given our purpose to compare the testing efficacy of a
computerized test administered by touch-screen tablet versus
conventional mouse-control PC, we created two versions of
the ANT task: the first one for the mouse layout response
and the second for the touch layout response (see Section 3.3
Software and Scripting).

Both versions were programmed using the presentation
software and shared the exact same picture stimuli, stimuli
timings, and randomization criteria; they were thus virtually
equal, differing only for the input devices layout configura-
tion.

3.5.1. Mouse-Control PC Implementation. Each experimental
condition of the ANT task was represented by 8 trials,
resulting in a total of 96 [(3 congruency x 4 cue) x 8] trials
for each experimental condition.

To this extent an array of 96 trials was specified, each
trial consisting of a variable number of component stimuli,
depending on the experimental condition.

Each trial was thus specified in terms of (i) stimuli objects,
(i) time intervals occurring between successive stimuli, and
(iii) target response (see Figure 1).

The trial presentation order was specified using a fully
randomized design. A set of three different interstimulus
intervals (ISI) (min value 1873 ms, max value 4964 ms) was
also specified; this means that a different time interval could
occur between successive trials in order to avoid habituation
effects. Two response buttons were assigned, and the par-
ticipant was required to press as fast as possible the left or
right mouse button (depending on the target trial type, as
previously described).

Responses accuracy was coded in a logfile by comparing
participant’s response to a given target stimulus to the
expected response for that stimulus, coded in the stimulus
parameters in the SDL.

Stimuli presentation and response timing and accuracy
were also recorded.

3.5.2. Touch-Screen Tablet Implementation. A touch version
of the ANT task was implemented using the same number
of trials, experimental design, and randomization order of
the ANT task in the mouse-control PC implementation.
The only difference between the touch layout version and
the mouse layout version resides in the response device
assigned to the participant. While in the mouse version
the participant was asked to respond by pressing the two
mouse buttons, in this touch version of the task he/she was
required to press the left most or right most part of the screen
with the thumbs, handling the touch device with both the
hands. Touch location was coded as previously described



(e.g., negative X means a touch occurred in the left portion of
the screen and corresponds to the left mouse button press).

3.6. Testing Efficacy II: Memory Function Assessment (AVLT).
Given our purpose to assess the efficacy of different modali-
ties (i.e., verbal versus visual implementation) of a computer-
ized test administered by a touch-screen tablet, two versions
of the AVLT were created: (1) one verbal version (Verbal
AVLT Task), consisting in the presentation of auditory stimuli
and requiring the subjects to verbally recall answers (which
were both recorded and coded by the tester), thus replicating
the conventional administration of AVLT used in clinical
context, and (2) one visual version (Visual AVLT Task),
consisting in the presentation of visual list of words on the
screen and requiring the subjects to recognize target stimuli by
touching the screen when a presented target word appeared.
We have chosen not to calibrate the level of difficulty for
the recognition test stimuli to be equivalent to that of the
recall stimuli in order to detect any differences between the

two stimuli presentation modalities, including the level of
difficulty.

3.6.1. AVLT Equivalent Lists Creation. Since both lexical and
psycholinguistic variables can influence behavioral perfor-
mance, the characteristics of the original 15 Rey list words
were extracted and analyzed in order to create 5 alternatives
but completely equivalent lists. Words frequency values for
the original 15 words were determined from the Italian
lexicon [26], while for the familiarity (FAM), concreteness
(CNCQ), age of acquisition (AoA), and imageability (IMG),
values were extracted from the MoA database [27]. For
each variable the mean of the distribution of values for
the fifteen words and the interquartile range (75-25) was
computed. Only the words falling in this range and with
values for at least three variables overlapping with those of
each word were selected. Following this criteria, 50 words
were selected and matched to 10 original words included in
the original Rey list. The 50 words were subsequently divided
into 5 lists, each containing 10 words. Lists were balanced
and statistically matched to the original Rey list. A one-
way ANOVA analysis revealed no significant difference for
(i) word length (F(5,54) = 0.095, P = 0.993), (ii) FAM
(F(5,54) = 0.856, P = 0.517), (iii) CNC (F(5,54) = 1.146,
P = 0.348), (iv) AoA (F(5,54) = 1,416, P = 0.233), and
(v) IMG (F(5,54) = 1.096, P = 0.373). Bonferroni post hoc
corrections for pairs of lists revealed no significant difference
between lists for none of the above-mentioned variables (all P
values <1). Semantic or phonemic similarities between words
within each list were also excluded.

Among these five lists, two were selected as target stimuli
lists, while words belonging to the remaining three lists were
used as filler words for the recognition part of the visual
version of AVLT (see Section 3.6.3). Each of the two-target
lists was pseudorandomized according to three different word
orders to control for possible word list sequence effects. Thus,
one out of the resulting 6 lists (i.e., two words sets, each
randomized three times) was selected as target list for each
participant in both versions of the task.
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3.6.2. Verbal AVLT Task by the Touch-Screen Tablet. A list of
10 target words was presented verbally to the participants.
Specifically, the words were administered as auditory signal,
and the sound was generated using a text-to-speech software
(Audacity, the free cross-platform sound editor software,
http://www.audacity.sourceforge.net/), and recorded, refined
and normalized in order to equalize all words in terms of
voice quality and volume.

After each presentation the participant was asked to
verbally recall as much words as possible.

The participant was tested three times consecutively
as in [19] for the immediate memory recall and once for
the delayed memory component. Vocal recordings of target
words were used as stimuli in this task version and were
administered through the integrated speakers of the touch
screen tablet. Stimuli were presented consecutively with an
interstimulus interval (ISI) of 3000 ms occurring between one
stimulus and the next one. Recall sessions were tested using
a voice recording script in order to store an audio logfile
of participant responses. Parallel to the sound recording,
the 10 target words were constantly displayed on the screen
only for the experimenter view, allowing making an online
monitoring of given responses by the experimenter (this
made the task not purely computerized).

3.6.3. Visual AVLT Task by the Touch-Screen Tablet. In the
visual version of the task a total number of 10 target words
were presented to the participant. Immediately after viewing
these 10 target stimuli he/she was presented with the same 10
words randomized together with another set of 10 fillers (i.e.,
words not present in the targets lists) and asked to touch the
screen each time he/she recognized an item belonging to the
previously presented list. The same setting was used for the
delayed part of the task, with the only exception that he/she
was presented with the same 10 words randomized together
with another set of 20 fillers, including the 10 fillers presented
before. We chose 20 fillers for the delayed task because we
tripled the number of the target words (10). This approach has
been adopted in the original paper and pencil Rey auditory
verbal test [24].

Prior to task administration, the experimenter handed
the tablet to the participant, who was therefore actively
required to use the testing apparatus while the experimenter
would only passively control upon subject’s performance.

Stimuli were presented as white words (with a font size
of 36 points) at the center of a black screen and lasted for
3000 ms.; an ISI of 2000 ms occurred between one stimulus
and the next one.

Accuracies were estimated by comparing each stimulus
code (i.e., target or filler) to subject response and stored in a
logfile.

3.7. Experimental Design for Testing Efficacy. A combination
of one AVLT version (i.e., visual or verbal) and one ANT (i.e.,
touch or mouse) layout was administered to each subject,
resulting in a factorial design in which (i) 19 subjects (10
males) performed the touch response layout of ANT and the
other 19 subjects (9 males) performed the mouse response
layout, and (ii) 19 out of 38 subjects (11 males) performed
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the visual version of AVLT while the remaining 18 subjects
(9 males) performed the verbal version of AVLT.

Groups were statistically matched for age, education,
and MMSE and no significant difference emerged when
comparing the (i) mouse versus touch group (age P = 0.831;
education P = 0.970; and MMSE P = 0.272) and the (ii)
verbal versus visual group (age P = 0.970; education P =
0.487; and MMSE P = 0.344).

AVLT lists were randomly and evenly distributed across
subjects for both verbal and visual versions of the task. Each
subject was first asked to complete the immediate memory
recall/recognition of AVLT and was tested 15 minutes later
for the delayed, long-term retrieval component [24].

Two experimental runs of ANT (7 minutes each) were
administered in between the two AVLT components as
interference task, that is, a task critically involving neither the
verbal nor the learning cognitive resources recruited during
AVLT.

3.8. Ecology: Satisfaction Survey. After the administration
of the tests, independently from the test (AVLT or ANT)
and response layout (touch or mouse), participants were
required to complete a satisfaction survey. The survey
is a l6-item self-report questionnaire that uses a 5-point
Likert scale (for the complete list of items of the ques-
tionnaire see Supplementary Materials available online at
http://dx.doi.org/10.1155/2014/804723).

The survey measured the following: the participant fre-
quency of use of touch-screen tablet and of mouse-controlled
PC (items 1, 2, and 3), the participant qualitative perception
of the familiarity with the touch-screen tablet (item 4),
the participant qualitative perception of the comfortableness
with the touch-screen tablet (items 5, 6, and 7), the participant
qualitative perception of the testing environment (items 8
and 9), the participant fatigue of using sensory functions
while interacting with the touch-screen tablet (items 10,
11, 12, 13, and 14), the participant fatigue of maintaining
the concentration while interacting with the touch-screen
tablet (item 15), and the participant time perception of the
neuropsychological tests (item 16).

Items administration was customized depending on the
experimental (i.e., different combinations of touch or non-
touch versions of AVLT and ANT) setting of each participant.

4. Data Analysis

4.1. Testing Efficacy I. Executive Function Assessment. In
order to assess possible differences between the two settings
(touch-screen tablet versus mouse-control PC), we evaluated
the recorded hardware uncertainties to control for specific
setting effects (touch versus mouse) on stimulus presentation.
Hardware uncertainties are provided by the presentation soft-
ware giving information on how the hardware is managing
stimuli presentation and if some hardware-based source of
variability is altering the script management by the software.
Specifically, for each Presentation event in the logfile (except
for pause, resume, and quit events), presentation provides a
time of occurrence T' (ms) and an uncertainty dT (ms). These
two numbers provide bounds on the time of occurrence of

a presentation event. If Hardware uncertainties dT' remain
less than 0.6 ms the response script is running as expected
(http://www.neurobs.com/, Presentation help). Metrics mea-
sured by hardware uncertainties refer to time responses of
the device to the stimuli software presentation, independently
from the subject response to stimuli presentation.

4.1.1. Data Screening. Concerning the ANT, we considered
the distributions of reaction times (RT) and accuracies.
Specifically, with respect to reaction times (RT), any trial with
recorded RT that fell two SDs above or below the calculated
RT mean (RT > mean + 2SD) (RT < mean *+ 2SD) was
rejected.

With respect to accuracy each experimental condition
with measured accuracy that fell under 80% was rejected.

4.1.2. Statistical Analysis. Based on the selected datasets, we
performed a 3 x 2 repeated measures ANCOVA with effect
type (i.e., conflict effect, alerting effect, and orienting effect)
as within-subjects factor with three levels.

A between-subjects factor was considered, namely, the
participant group with two levels (mouse versus touch lay-
out). Although groups were sampled with comparable values
of MMSE, age, and education (see Section 3.7 Experimental
Design for Testing Efficacy for groups comparisons statistics)
these variables were included as covariates, in order to
account for their potential influence on task performance. We
assessed the main effect of group of participants, covariates,
and exclusively interactions with the between-subjects factor
(i.e., group of participants).

4.2. Testing Efficacy II: Memory Function Assessment. Con-
cerning the verbal AVLT, vocal recordings were listened to
and classified as correct or incorrect, while, for the visual
AVLT, responses to target stimuli were stored in a logfile and
successively coded as correct or incorrect.

Accuracies for the three immediate recall sessions (i.e.,
IR-1,1R-2, and IR-3) and the delayed recognition session (DR)
were coded as percentages. Analyses of equality between
verbal and visual AVLT were performed with a Mann-
Whitney U test (nonparametric) for independent samples
(i.e., according to AVLT verbal or visual condition) on the
arcsine-transformed percentages of accuracy (for each recall)
and the delayed session independently. Correlations between
the MMSE scores and the arcsine-transformed percentages
of correct responses for IR-1, IR-2, IR-3, and DR were then
evaluated using Kendall’s tau correlation coeflicient split by
AVLT verbal and AVLT visual conditions.

4.3. Ecology. Firstly, we performed one sample Wilcoxon
signed rank test for each of the 16 items, measured by the
survey administered to the participants, versus the middle
level of perceived scale quality (3 with respect of a scale max-
imum of 5). Furthermore, we investigated the relationship
between the level of preference of participants for the testing
environment (i.e., item 7, using the touch-screen tablet with
respect to an external device such as a mouse or a keyboard)



and the perceived degree of easiness when using a touch-
screen tablet (i.e., item 5) or the perceived degree of easiness
when touching the screen (i.e., item 6).

5. Results

5.1. Testing Efficacy I: Executive Function Assessment. No
anomaly linked to hardware management of stimuli presen-
tation was detected when screening both mouse and touch
logfiles.

5.1.1. Data Screening. All subjects had an RT outlier percent-
age <30% on each experimental condition and accuracies
were >80% for all participants; no subject was therefore
excluded from the analyses.

5.1.2. Statistical Analysis Results. Mean RTs for trial condi-
tions for the calculation of each of the three effects are sum-
marized in Table 3. The main effect of group of participants
was found not to be significant (F(1,33) = 0.008, P =
0.929) revealing that performances are comparable in terms
of overall RTs for the ANT with mouse or touch response
layout. No significant main effects of covariates were found
(MMSE F(1,33) = 0.049, P = 0.826; age F(1,33) = 1.221,
P = 0.277; and education F(1,33) = 0.359, P = 0.553).

The interaction between group of participants and effects
showed a trend toward significance (F(2,66) = 2.357, P =
0.116, Greenhouse-Geisser correction) and a plot of this 2-
way interaction showed a reduced CE and an incremental AE
and OE effect for the touch group (see Figure 2); pairwise,
post hoc comparisons revealed a trend towards significance
when considering CE differences between groups (mean
difference, Touch — Mouse = —37.280; P = 0.170) in terms
of a reduced CE for the touch, while the two groups differed
to a lesser degree for the OF (Mean Difference, Touch —
Mouse = 18,218; P = 0.232) and AE (Mean Difference,
Touch — Mouse = 16,418; P = 0.261).

5.2. Testing Efficacy II: Memory Function Assessment. No sig-
nificant differences were observed between verbal and visual
recall/recognition performances for IR-1 (Mann-Whitney
test; P = 0.365), IR-2 (Mann-Whitney test; P = 0.293), IR-
3 (Mann-Whitney test; P = 0.694), and DR (Mann-Whitney
test; P = 0.988).

For AVLT verbal, MMSE scores correlated with perfor-
mance on IR-1, IR-2 immediate and with the delayed recall
session; a trend towards correlation was found for the third
immediate recall session.

For AVLT visual, MMSE scores showed a correlation
trend with IR-1 and a significant correlation with IR-2, IR-3,
and DR.

For AVLT verbal allimmediate and delayed recall sessions
significantly correlated with age.

For AVLT visual, recognition sessions did not signifi-
cantly correlate with age.

For AVLT verbal, education scores significantly corre-
lated with all the immediate and the delayed recall sessions.
For AVLT visual, education scores did not correlate with
immediate recall sessions while a significant correlation was
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FIGURE 2: Plot of 2-way interaction group (mouse or touch) X effect
(conflict effect, orienting effect, and alerting effect). Mean RTs (y-
axis) for conflict Effect (Blue Line), orienting Effect (Green Line),
and alerting Effect (Brown Line) are shown for mouse (leftmost
dots) and touch (rightmost dots) performances (x-axis).

found with education for the delayed recall session. Table 4
summarizes correlations coefficients and statistical signifi-
cance between each AVLT recall session and socio demo-
graphics (age and education) and cognitive index (MMSE)
variables tested.

5.3. Ecology. Wilcoxon one sample signed rank test indicated
that the middle percentage of quality ratings was significantly
lower than 3 for item 1 (“how much do you use the tablet
in your daily life?” P = 0.003), for item 4 (did you feel
uncomfortable using the tablet?, P = 0.000), for item 10 (did
you feel fatigued while handling the tablet?, P = 0.000), for
item 12 (did you feel fatigued while touching the screen?,
P = 0.000), for item 13 (did you feel fatigued while listening
to vocal recordings?, P = 0.005), for item 14 (did you feel
fatigued producing a vocal response?, P = 0.001), and for
item 16 (did you feel the experiment had a too long duration?,
P =0.000), which is indicative of very low levels of uneasiness
(i.e., item 4) or fatigue of using sensory functions (i.e., items
12, 13, and 14) and a perceived very long duration of test
administration (i.e., item 16), notwithstanding a very low
use of a touch-screen tablet in everyday life (i.e., item 1).
The relationship between the preference for using the touch
screen (i.e., item 7) and the perceived degree of easiness
when using a tablet (i.e., item 5, Kendall’s tau = 0.484, P =
0.009) or the perceived degree of easiness when touching
the screen (i.e., item 6, Kendall’s tau = 0.397, P = 0.025)
were both significant (Kendall’s tau = 0.83, P = 0.02) (see
Supplementary Materials online for the complete items list).



Computational and Mathematical Methods in Medicine

TABLE 3: Mean RTs (along with SD) for each experimental condition used to calculate effects of ANT are shown in the table for both touch
(upper panel) and mouse (lower panel) versions of the task. Congruent trials are subtracted from incongruent trials in order to calculate

conflict effect, double cue trials are subtracted from no cue trials in
from central cue trials in order to calculate the orienting effect.

order to calculate the alerting effect, and spatial cue trials are subtracted

Trial type Mean SD Trial type Mean SD Effect Mean SD
Touch layout

Incongruent 1016.229 122.973 Congruent 890.436 125.071 Contflict effect 125.793 61.692

No cue 936.42 122.244 Double cue 914.954 127.472 Alerting effect 21.466 49.6

Central cue 932.806 117.579 Spatial cue 908.124 129.387 Orienting effect 24.682 34.646
Mouse layout

Incongruent 941.746 181.163 Congruent 786.627 109.758 Conflict effect 155.118 89.207

No cue 833.05 125.772 Double cue 828.475 135.419 Alerting effect 4.57 34.988

Central cue 830.022 129.443 Spatial cue 820.197 140.739 Orienting effect 9.825 54.498

TABLE 4: Results show correlations coefficients (upper values in cells) and statistical significance (lower values in cells) between each AVLT
recall session (i.e., IR-1, IR-2, IR-3, and DR) and sociodemographics (age and education) and cognitive index (MMSE) variables tested. The left
most panel of table shows statistics belonging to the group tested with verbal version of the AVLT while the rightmost panel shows statistics

belonging to the group tested with the visual version of the task.

Verbal Visual
IR-1(7) IR-2 (1) IR-3 (1) DR (1) IR-1(7) 1IR-2 (1) 1IR-3 (1) DR (1)
MMSE 0.633 0.492 0.373 0.406 0.246 0.579 0.451 0.407
(P=0001"*) (P=0013") (P=0.040") (P=0.069) (P=0.195 (P=0.003") (P=0.020") (P=0.035")
Age -0.54 -0.479 —0.434 -0.353 —0.137 -0.19 0.007 -0.216
(P=0.031"") (P=0.008"") (P=0.050") (P=0.240) (P =0.448) (P =0.303) (P =0.970) (P =0.240)
Education 0.448 0.527 0.408 0.404 0.183 0.25 0.164 0.38
(P=0017*) (P=0.006") (P=0039*) (P=0034) (P=0332) (P=0197) (P=0.409) (P =0.049%)

(7 = Kendall’s tau. * Correlation is significant at the 0.05 level, 2-tailed).
(*" Correlation is significant at the 0.01 level, 2-tailed).

6. Discussion

As general consideration, for the purpose of our work, we
have chosen two representative tests to assess two main
objectives.

We investigated the memory domain, given that the
earlier cognitive symptoms reported in Alzheimer’s disease,
the most common form of dementia, involve memory [28].
Therefore, the majority of tools have focused mainly on
this cognitive ability and have implemented tests tailored
at investigating memory impairments, of which, the most
clinically validated and commonly employed in a clinical
setting is the AVLT test. Furthermore, memory impairments,
in particular, are a cardinal feature of the majority of dementia
syndromes.

We investigated the executive function domain by the use
of the ANT, as a useful test for assessing differences between
responses, given that it encompasses three different effects
relying on three different cognitive mechanisms (i.e., conflict
effect, alerting effect, and orienting effect) [29].

The first aim of the present study was to evaluate the test-
ing efficacy of a computerized neuropsychological assessment
when implemented on a touch-screen device.

To this aim, we created and tested two different experi-
mental settings in terms of response layout; specifically, two
identical versions of an experimentally validated attentional

task (i.e., ANT; [22, 23]), differing only in terms of response
modality were implemented: one version of the task required
subjects to give a response with a mouse device while the
other one by using a touch screen. This was made in order
to directly compare the testing efficacy of a psychological
test (in our case the evaluation of executive function) when
administered by a touch-screen device with respect to a more
conventional mouse-control PC.

Comparisons of reaction times between subjects using
touch screen or mouse and of their test performance revealed
no significant overall differences, suggesting that touch
screen and mouse can be equally chosen as response devices,
since they grant the same experimental outcome. These
findings strengthen the results highlighted by Sears and
Shneiderman [30] who, although under different experimen-
tal conditions, compared touch-screen response layout versus
mouse response layout. Their results suggested substantial
comparability between these two input devices. Our finding,
consistently with results from other authors, is of particular
interest, given that the touch-screen technology is currently
widely spreading, also among the elderly population. Touch-
screen tablets are innovative technological solutions which
are emerging also as devices for healthcare intervention.
Healthcare services are indeed progressively showing an
increasing interest in translating services into touch-screen
based environment [31, 32]. From this perspective it is an
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important topic to test if such devices can guarantee the
same testing efficacy of more conventional and extensively
validated devices, as mouse-control PC, which are still today
used in clinical environment to administer neuropsycholog-
ical tests. Our work, despite being validated on a limited
number of subjects, suggests that this technological solution
is feasible for test administration.

The second aim of our work was to evaluate the testing
efficacy of a computerized test (in a representative case of
memory function assessment) when administered by the
touch-screen tablet with respect to two different experimental
settings in terms of stimuli presentation.

To this aim, we created and tested two different versions
of AVLT, a widely standardized and validated neuropsycho-
logical test: (i) a visual version, replicating the visual porting
of this task which is currently used by a set of different
digital neuropsychological training batteries [19, 33]: in this
versions stimuli were presented visually and subjects were
asked to recognize memorized stimuli among other nontarget
stimuli and (ii) a verbal version, replicating the “classical”
administration of the task in the clinical context: in this
version stimuli were presented verbally and subjects were
asked to freely recall all the memorized target stimuli. This
was done with the purpose to assess the effects of the stimuli
presentation modality on the efficacy of test (in our case the
evaluation of memory function).

Our results for the verbal version of AVLT showed
significant correlations between MMSE scores and perfor-
mance on IR-1, IR-2 immediate and with the delayed recall
session. A trend towards significance was found for the third
immediate recall session (IR-3). Similarly, results for the
visual version of AVLT showed a correlation trend between
MMSE scores and performance with IR-1 and a significant
correlation with IR-2, IR-3 and with the delayed recall session.
For AVLT verbal, all immediate and delayed recall sessions
showed an inverse and significant correlation with age (i.e.,
lower scores of age correspond to higher values of recall
performance); education scores significantly and positively
correlated with all immediate and the delayed recall sessions
(i.e., higher values of education correspond to higher values
of recall performance). For AVLT visual, a significant and
direct correlation with recognition performance scores was
found only with education for the delayed recall session
and no significant correlations were found between age and
performance on both immediate and delayed recognitions
(see Table 4 for detailed results).

Opverall these results suggest that both implementations of
the test (i.e., visual and verbal) are affordable measures of the
general cognitive status, directly correlated with a measure
of general cognitive status assessment (i.e., MMSE); from
this point of view they can be both considered affordable
tools for a broad cognitive assessment. In spite of this only
the verbal version of the task showed a correlation with
the sociodemographical data of our sample (i.e., an inverse
correlation with age and direct correlation with education).

It should be in fact recognized that we have not compared
verbal with “pure” visual stimuli presentation, since filler
words were presented during the task: under this light the
two tasks share some common features but differ for others in
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terms of both experimental setting and underlying cognitive
processes.

In fact the verbal version requires an active retrieval
from memory of the presented stimuli, while the visual
version requires the recognition and discrimination of the
memorized target stimuli among other nontarget stimuli.
From this point of view they require the subject to use
different strategies to be solved and thus may involve different
brain networks (e.g., [34]). For example from the memory
point of view the visual modality could be easier since the
subject is provided with a cue (namely, the target stimulus
is directly presented to the subject) but at the same time
it requires the inhibition of distracters and may be more
difficult in terms of executive functioning cognitive load
(namely, the subject has to discriminate the target stimulus
among other nontarget words).

Another crucial aspect concerning the introduction of
new technological solutions in the everyday life is the degree
of ecology and the level of preference of the computer-
ized assessment modalities regarding the administration of
the neuropsychological tests. Although some authors found
significant draw backs to touch screens in the elderly [35]
others (e.g., [31]) reported that touch-screen devices are ideal
instruments for assessing populations with low technological
familiarity, such as elders and patients. Our results on elderly
and healthy participants confirm this finding, considering
that our subjects felt comfortable using the touch-screen
device and did not experience unease or fatigue feelings while
performing the tests. Crucially, all subjects possessed low
familiarity with such devices and, in some cases, it was their
first experience of physical interaction with a touch-screen
tablet.

Given the performance comparability between responses
using mouse and touch, it is important to introduce some
considerations for future evaluation regarding whether (and
under which circumstances) it is preferable to choose one or
the other response layout.

While no main effect of group was highlighted, our
analysis revealed that subjects performing the ANT task using
the touch response layout showed a tendency towards an
advantage for all three effects accounted by the task and,
namely, a trend towards a significant reduction of conflict
effect and slightly larger alerting and orienting effects (see
Figure 2 and Table 3 for details).

However, it must be acknowledged that RTs from which
the effects are derived showed the same pattern for both the
mouse and the touch layout; namely, for the conflict effect
RTs are the longer with respect to congruent ones while for
alerting effect RTs measured following the double cue were
shorter with respect to when no cue was presented, and for
orienting effect responses after a spatial cue were faster with
respect to a cue presented centrally. This means that there is
no difference in terms of performance for all ANT conditions.
However, when assessing specific cognitive processes mea-
sured through the difference between RTs it appears that the
touch device may provide some benefits mainly on cognitive
control, enhancing performance on the more demanding trial
type. Namely, conflict effect is calculated by subtracting RTs
belonging to congruent trials (flanking arrows pointing in
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the same direction of the central target arrow) from RTs
belonging to incongruent trials (flanking arrows pointing
in the opposite direction of the central target arrow). To
this extent lower values of conflict effect indicate a higher
performance on cognitive conflict resolution.

This finding becomes of particular interest when consid-
ering the kind of trial associated to this reduction in the effect
size. Incongruent trials require the resolution of a cognitive
conflict to be solved and they are known to be the slowest
ANT experimental conditions in terms of response speed
[22].

Forlines et al. [36] showed that tasks requiring the use of
two hands (bimanual tasks, as the ANT) are better performed
when using touch-screen devices with respect to mouse-
control PC. To a similar extent Rogers et al. [37] found that
touch-screen devices are particularly suitable for response
collection when compared to another indirect response
device (namely, a rotary encoder).

Given our results, it is important to acknowledge this
proposed dichotomy between direct (the touch-screen, in
our case) and indirect response devices. When using a
direct input device, the distance between the subject (his/her
fingers) and the causal effect he/she carries on the envi-
ronment modification (touching stimuli on the screen, as
required by the task) is reduced. Touch-screen devices, in
this framework, lead a virtual environment to a more tangible
and ecological dimension. One possible consequence of such
phenomenon could be an increase in self-commitment or
in self-perceived efficacy towards the task, and this could
lead to an enhancement by establishing a direct link between
the subject and the task reality. In other words, a different
perception of the self-commitment could be associated with
responses given with direct input devices, shifting the task
environment perception into a more concrete entity on which
the subject acts as a physical agent. Thus, critically, the subject
involvement into the task could have been enhanced.

Under this light one would expect to observe a greater
effect for those trials requiring a greater cognitive demand
(i.e., incongruent trials). A greater involvement could trans-
late into greater resources dedicated to task solution. To this
extent, cognitively simpler trials (i.e., congruent trials) would
benefit less, since they do need less work to be solved; on the
contrary, trials requiring greater cognitive effort to be solved,
such as incongruent trials, would greatly benefit from such
resource availability.

Although this scenario is suggestive, some dedicated
experimental investigation is needed to shed light on the
cognitive basis of this behaviorally observed phenomenon.

These evidences, taken together with results on the
ease of their use highlighted by the survey, indicate touch-
screen devices as an ecological and suitable tool for the
computerized administration of neuropsychological tests.
Furthermore, other authors [35] showed that alternative
response input devices, such as a light pen or touch screen
are highly intuitive, and have the advantage of bypassing the
keyboard. They demonstrate how these devices allow subjects
to focus their attention directly on the video display terminal
and not have to shift their attention from the monitor to the
keyboard to locate a response key. Nevertheless, light pens
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and touch screens also have their disadvantages. They require
the subject to hold his or her arm in an “up” position and
move it along the screen. This can produce fatigue and some
variation in reaction time.

It should be noted that the computerized assessment
does not represent an alternative to the clinical setting.
However, it can contribute in a significant manner to the
traditional evaluation. Nevertheless, there is a need to further
detail some aspects of our investigation: (i) in order to
increase the inferential power and experimental validity of
our findings, the tests will need to be administered to a larger
number of participants; (ii) among these participants, specific
cognitively-impaired populations and physically-impaired
populations (e.g., those subjects with motor function deficit
from a brain injury that could affect the test performance)
will need to be tested in order to assess if these instruments
can be a valid and accessible tools in the clinical context,
and, (iii) most importantly, a dedicated version of cognitive
domain-specific tests will need to be implemented and case-
wise tested in order to detail whether, and to which extent,
they can be a valid alternative to more conventional pc-based
and/or pencil and paper testing approaches.

7. Conclusions and Future Perspectives

This work provides new data on the experimental feasibility
and clinical ecology of computerized neuropsychological
assessment by addressing the impact of the implementation
of different user interfaces and different stimuli presentation
modality.

In order to set up an innovative computerized testing
environment, while keeping it feasible and ecological, it is
fundamental to detail how this conversion process impacts
the experimental and clinical neuropsychological settings.
Although limited on approximately 40 healthy subjects and
experimented only on representative, not exhaustive, neu-
ropsychological tests (on memory and attention functions)
our evidences suggest that touch-screen devices can be
considered for the computerized administration of neuropsy-
chological tests.
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We have developed, optimized, and validated a method for partial volume effect (PVE) correction of oncological lesions in
positron emission tomography (PET) clinical studies, based on recovery coefficients (RC) and on PET measurements of lesion-to-
background ratio (L/B,,) and of lesion metabolic volume. An operator-independent technique, based on an optimised threshold of
the maximum lesion uptake, allows to define an isocontour around the lesion on PET images in order to measure both lesion
radioactivity uptake and lesion metabolic volume. RC are experimentally derived from PET measurements of hot spheres in
hot background, miming oncological lesions. RC were obtained as a function of PET measured sphere-to-background ratio and
PET measured sphere metabolic volume, both resulting from the threshold-isocontour technique. PVE correction of lesions of a
diameter ranging from 10 mm to 40 mm and for measured L/B,,, from 2 to 30 was performed using measured RC curves tailored at
answering the need to quantify a large variety of real oncological lesions by means of PET. Validation of the PVE correction method
resulted to be accurate (>89%) in clinical realistic conditions for lesion diameter > 1 cm, recovering >76% of radioactivity for lesion
diameter < 1 cm. Results from patient studies showed that the proposed PVE correction method is suitable and feasible and has an

impact on a clinical environment.

1. Introduction

Molecular imaging by positron emission tomography (PET)
and '®F-fluorodeoxyglucose ("*F-FDG) radiotracer is cur-
rently the most commonly used method for the detection and
metabolic characterisation of several oncological pathologies,
given the possibility to detect foci with an increased '*F-
FDG metabolism as those characterising tumour cells (e.g.,
(1, 2]).

In the PET clinical environment, diagnosis and tumor
staging are commonly assessed by qualitative visual inspec-
tion of '*F-FDG PET images [3-5]. Nevertheless, a quan-
titative analysis of '®F-FDG uptake in oncological lesions
has been proven to be useful to differentiate benign and
malignant tissues (e.g., [6]), to assess response to therapy [7-
9], and to predict tumour aggressiveness [10-13].

Despite these benefits, a quantitative approach for the
evaluation of PET oncological studies is not a common
practice in clinical routine due to the presence of partial
volume effect (PVE) on the PET images. PVE is a physical
limitation resulting from the poor spatial resolution of PET
systems (4-5mm) that strongly affects the estimation of
radioactivity concentration within structures less than two or
three times the PET spatial resolution [14, 15].

Several techniques have been advanced to compensate for
PVE in PET [15-20]. Among all PVE correction methods,
more common ones are based on multiplicative numeri-
cal factors (recovery coefficients, RC), recovering the local
radioactivity concentration within any small structure which
uptakes '"*F-FDG. RC can be derived from PET experimental
measurements of small radioactive objects in a priori known
object-to-background radioactivity concentration ratio.



PET experimental measurements of RC have been carried
out by using "*F-FDG radioactive spheres (hot spheres) [14].
RC coeflicients were obtained as the ratio between PET
measured-and-actual radioactivity concentration within the
hot spheres. This approach was applied to the PVE correction
of PET oncological lesions in real patients [21], since radioac-
tive spheres were considered suitable to simulate metabolic
active oncological lesions. Unfortunately, the method was
able to compensate only for the spread out (spill out) of
lesion '*F-FDG uptake into the surrounding background of
the patient body not accounting for the spread in (spill in) of
the background into the lesion, as it occurs in the body tissues
surrounding oncological lesions in a real scenario.

More realistic models were developed by combining RC
derived from hot spots in cold background, RC from cold
spots in hot background, and RC from hot spots in warm
background, allowing both spill out and spill in effects to
be accounted for (e.g., [15]), but were never applied to real
clinical studies.

In all cases, the applicability of RC-based PVE correction
methods to PET real oncological studies is still constrained by
two problems: the impossibility to estimate both the actual
lesion-to-background ratio (L/B) and the actual lesion vol-
ume of oncological lesions [22-25]. For instance, measured
PET images result intrinsically affected by PVE, and no
a priori known information about actual L/B is available
for in vivo patient studies. Furthermore, the estimation
of the actual volume of an oncological lesion is one of
the most debated issues in both the nuclear medicine and
radiology community even though it has been coped with
from different perspectives.

An RC-based PVE correction method devoted to onco-
logical studies which overcomes the need to actually deter-
mine L/B was proposed by Srinivas et al. [26]. They per-
formed PET measurements of hot spheres in hot background
and obtained RC as a function of measured L/B (L/B,,),
derived from the maximum value of lesion uptake. However,
RC curves were obtained as a function of the actual lesion
volume of the hot spheres representing a strong limit imposed
by the need to know the actual volume of lesions. As Srinivas
etal. suggest, when lesion density is different from the density
of the surrounding tissues, a CT study in the region of interest
can provide lesion anatomical volume. Current generation
multimodal computerized tomography (CT)-PET systems
allow to obtain anatomical volume of a lesion temporally
and spatially coregistered with the metabolic volume. Unfor-
tunately, a lesion is not always visible on CT images and
often CT anatomical volume and PET metabolic volume can
deviate [27-30].

The applicability of RC-based PVE correction method
to real oncological PET-CT images needs an estimation
of L/B from measured data. Therefore, another limit of
RC-based PVE correction methods is that the accuracy of
the chosen RC depends on the accuracy of the technique
used for the measurements of the lesion uptake [31]. For
instance, operator-dependent techniques for sphere uptake
measurements [24, 32-35] can induce operator-dependent
differences in the estimation of RC [16]. On the other hand,
operator-independent techniques [36-39] are more sensitive

BioMed Research International

to the noise level of PET images and require optimisation
strategies and accurate validation [16].

The aim of this work was the development of a method
for PVE correction tailored for clinical application to PET-
CT oncological studies. Our method is based on RC curves as
functions of PET L/B,, and of PET measured lesion volume,
both estimated by an operator-independent technique. The
proposed PVE correction method was assessed on both
anthropomorphic phantoms and in clinical "*F-FDG PET-
CT studies.

2. Materials and Methods

2.1. "8F-FDG PET Studies. ®F was produced by a cyclotron
(RDS Eclipse, Siemens Healthcare) with a fixed proton beam
of 11 MeV. "®F-FDG synthesis was obtained by nucleophilic
substitution in acidic medium and subsequent purification.

A dose measurement system (Dose calibrator Pet Dose,
Comecer) provided measurements of the amount of '*F-FDG
radioactivity (administered and residual) for all phantoms
and patient studies.

The multimodal PET-CT system (Discovery STE, Gen-
eral Electric Medical System), cross-calibrated with the dose
measurement system, was used for PET-CT measurements.
D-STE is a 3D hybrid system that combines a 16 multislice
helical CT scanner with a PET scanner of 280 bismuth oxygen
germinate crystals (4.7 x 6.3 x 30 mm”) arranged in 24 rings.
Transaxial field of view is 60 cm and 50 cm for PET and CT,
respectively. Axial field of view is 15.7 cm for PET.

Oncological protocol was set as follows: a SCOUT scan
at 40 mA, followed by a CT scan at 140 mV and 150 mA
(10 sec), and 3D PET scans (2.5 min/scan) for adjacent bed
positions. For each bed position, CT data were reconstructed
into a 512 x 512 x 47 matrix with a voxel size of 0.97 x
0.97 x 3.27 mm® [40]. For each bed position, PET data were
sampled into a 128 x 128 x 47 matrix with a voxel size of
4.7 x 4.7 x 3.27mm’ and reconstructed using a 3D ordered
subset expectation maximization algorithm (OSEM) with
corrections for random, scatter, and attenuation incorporated
into the iterative process.

2.2. Synthetic Oncological Lesions. Perspex spheres of differ-
ent diameters were used to simulate oncological lesions.

Six spheres (diameter = 10 mm, 13 mm, 17 mm, 23 mm,
29mm, and 37 mm) within an elliptical perspex cylinder
(dy = 24dcm, d, = 30cm, and h = 21 cm) [41] were used
for the estimation of RC.

Three spheres (diameter = 9.8, 12.3, and 15.6 mm) were
placed in different regions of different anthropomorphic
phantoms (thorax, breast, and brain) and were used for
the validation of the proposed PVE correction method
in clinical-like oncological studies. Specifically, the three
spheres were placed in

(1) a thorax-like phantom (d; = 20 cm, d, = 30 cm, and

h = 21 cm) with two cork parts simulating lungs and
a cardiac insert;

(2) a breast-like phantom consisting into the previously
described thorax phantom (no cardiac insert) and
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TABLE 1: Characteristics and available data of patients.

Patient group N Purpose Available data

Gastro 49 Tumor staging E-FDG PET-CT study (basal), tumor histotype (SRC, SC)
Breast 40 Tumor staging BE-FDG PET-CT study (basal), Mib-1
Head-neck 19 Tumor staging E-FDG PET-CT study (basal), DFS

Skeleton 29 Therapy monitoring Basal and follow-up *F-FDG PET-CT studies

into two plastic containers (cylinder equivalent radius
=3cm, h = 10 cm) miming breasts;

(3) brain-like phantom: the Hoffman 3D brain phantom
[15].

Three additional nonspherical lesions consisting of zeo-
lites were considered. Zeolites are porous aluminosilicate
minerals already used to simulate oncological lesions in
anthropomorphic phantoms assessed by '*F-FDG PET-CT
studies. When soaked into an aqueous solution of "*F-FDG,
they are able to absorb and not release BE_FDG molecule,
in a nonhomogeneous way for short soaking duration and in
a homogeneous way for long soaking duration [42]. Zeolites
with nonspherical shape and sphere-equivalent diameters
= 10.3mm, 9.9 mm, and 79 mm were placed in the breast
phantom and were used for the estimation of bias induced
by the proposed PVE correction method specifically for non-
spherical and nonuniform lesions. In particular, we simulated
one lesion with nonspherical shape and uniform uptake and
two lesions with nonspherical shape and nonuniform uptake.

2.3. Patients. One hundred and thirty-seven oncological
patients (46 males, 91 females, age: 28-86 years) were con-
sidered, requiring diagnostic investigation involving small
lesions (diameter < 4 cm) in different body districts.

All patients signed informed consent. They fasted for
twelve hours before the PET-CT exam. "*F-FDG adminis-
tered dose was prepared based on patient weight considering
an amount of 37 MBq for each 10kg. Administered and
residual radioactivity concentrations, administration time,
and patient body weight were recorded for each PET-CT
study.

108 patients underwent one basal '**F-FDG PET-CT study
for tumor staging purpose and they were subjected to radical
therapy (surgical intervention or radical radiotherapy); 29
patients underwent two BE_FDG PET-CT studies, before
and after receiving chemotherapy, for therapy monitoring
purpose. All PET-CT studies were performed according to
the oncological protocol (Section 2.1) and started 60 minutes
after the injection. A total of 149 oncological lesions were
assessed by "*F-FDG PET-CT images (49 lesions in gastric
and gastro-oesophageal regions, 40 lesions in breast, 19
lesions in head and neck regions, and 42 lesions in skeleton).

Histological and therapy-outcome data were considered.
Histological data were obtained from surgical intervention
of 89 patients, for example, tumour histotype. In particular,
for the gastric and gastro-oesophageal lesions, two histo-
types were considered: signet ring cell (SRC) carcinaoma

and squamous cell (SC) carcinaoma. For the breast lesions,
proliferation cell index MiB-1 was provided. Disease-free
survival (DFS) data at 24 months after therapy were obtained
for 19 patients with cancer in the head and neck regions and
treated with radical radiotherapy.

Table 1 describes the characteristics and the available data
of the considered patients.

2.4. The PVE Correction Method. The PVE correction meth-
od is based on recovery coefficients (RC) derived from PET
measured hot-lesion-to-hot-background ratio (L/B,,) and
PET measured lesion metabolic volume of the six spheres
within the elliptical perspex cylinder.

L/B,, is obtained by the ratio between the PET measured
sphere uptake and the PET measured background surround-
ing the sphere, resulting from the average over several circular
regions of interest (4) around the lesion.

RCare plotted as a function of L/B,,, and of PET measured
sphere metabolic volume.

The proposed PVE correction method acts at a regional
level and compensates the lesion uptake underestimation on
PET clinical images due to PVE by multiplying it by a proper
factor (F) defined as F = 1/RC.

For each lesion detected on the PET clinical images of
an oncological patient, F is assigned based upon the PET
measured L/B,, and the PET measured lesion metabolic
volume.

The PET measured sphere uptake, the PET measured
sphere metabolic volume, the PET measured lesion uptake,
and the PET measured lesion metabolic volume are all ob-
tained by the an operator-independent technique described
as follows.

2.5. The Operator-Independent Technique. An operator-inde-
pendent technique was developed allowing to obtain an
isocontour on that PET image including the maximum
lesion/sphere uptake. The isocontour is defined at a defi-
nite threshold of the maximum lesion/sphere uptake. Such
isocontour defines either the region of interest for the PET
measurement of sphere/lesion uptake or the circle-equivalent
section of a PET measured sphere/lesion spherical metabolic
volume (isocontour volume).

The threshold is chosen by an optimisation procedure
such that the PET measured metabolic volumes of spheres
match their actual metabolic volumes.

2.6. Optimization of the Operator-Independent Technique.
PET-CT independent measurements with the six spheres and
the PET-CT DSTE scanner were performed according to
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TABLE 2: Six spheres, one representative measurement: actual diameter, GS radioactivity concentration in the spheres and in the background

and the derived L/B.

d (mm) Cas sphere (MBg x mL™") Cas background (MBq x mL™) L/Bgs
10 0.07844 + 0.00666 0.01258 + 0.000555 6.3 % 0.65
13 0.07363 + 0.00555 0.01258 + 0.000555 5.9 +£0.56
17 0.06475 + 0.00222 0.01258 + 0.000555 52+0.35
23 0.06438 + 0.00185 0.01258 + 0.000555 5.2+0.34
29 0.05550 + 0.00111 0.01258 + 0.000555 4.4+0.27
37 0.05550 + 0.00037 0.01258 + 0.000555 4.4+0.26

the oncological protocol (Section 2.1) using an acquisition
time of 30 min/scan in order to minimize the noise level on
the PET images and considering 2 PET scans at 2 adjacent bed
positions (phantom A = 20 cm).

For each independent measurement, the spheres were
filled with different radioactivity concentrations of '*F-FDG
and dipped into the elliptical cylinder filled with a radioac-
tivity concentration of '*F-FDG of 0.01258 MBq x mL™'
(background).

PET measured metabolic volumes were calculated on
the PET images according to the described operator-
independent technique for thresholds at 50, 60, 70, and 80%
of the maximum sphere uptake. The percentage differences
between the actual sphere diameter and the derived sphere
diameter were calculated using a different threshold from
each PET measured volume.

The optimal threshold was chosen as the threshold giving
the lowest positive percentage differences. This procedure
warrants the actual sphere metabolic volume to be repre-
sented by the PET measured volume in the best possible way
and at the same time allows to exclude background compo-
nents.

2.7. RC Estimation. PET-CT independent measurements
with the six spheres and the PET-CT DSTE scanner were
performed as in Section 2.1.

Sphere and background radioactivity concentration
obtained with the dose measurement system was regarded as
the gold standard (GS), namely the best estimate of the actual
radioactivity concentration. L/Bgg ranged from 4 to 35 (Bgg
concentration from 0.0018 MBq x mL™" to 0.024 MBq x
mL™).

As a representative example, Table2 shows the GS
radioactivity concentrations in the spheres (Cgg_phere) and in
the background (Cgg packgrouna) and the derived L/Bg for one
of the measurements.

For all the independent PET-CT measurements, L/B,,
was calculated according to the operator-independent tech-
nique at the optimal threshold.

RC were calculated as the ratio between L/B,, and L/Bg.

RC curves were obtained by combining RC values as a
function of L/B,, and of sphere “isocontour” diameter.

The RC curves were fitted using a three-parameter hyper-
bolic function.

2.8. Validation of the PVE Correction Method

2.8.1. RC Noise Sensitiveness. 'The sensitiveness to noise level
on the PET images of the method to estimate RC was assessed.

PET-CT measurements were performed with the six
spheres with L/Bg ranging from 7 to 10, following oncolog-
ical protocol but using different acquisition times (2.5 min,
5 min, 10 min, 15 min, and 30 min).

For each sphere, RC was calculated at each acquisition
time, and percentage differences of RC over time were
obtained.

2.8.2. Residual Errors after PVE Correction. The accuracy
of the PVE correction method was assessed by evaluating
residual errors after PVE correction.

PET-CT measurements were performed with the three
synthetic spherical lesions and with the three synthetic zeo-
lites within the anthropomorphic phantoms, and background
was filled with different concentrations of "*F-FDG. L/B;
ranged from 4 to 35 for 31 independent experiments (Bgg con-
centration from 0.005 MBq x mL™" to 0.0012 MBq x mL™").

Zeolites were prepared as described in [42]. They were
soaked into an aqueous solution of *F-FDG with an actual
radioactivity concentration of 0.17 MBq x mL™". One zeolite
was soaked for 15 minutes to simulate a nonspherical but
homogeneous tumor. The other two zeolites were soaked only
for 5 seconds to simulate nonspherical heterogenous tumors.

Zeolite weights (dry weight before soaking and wet
weight after soaking) were measured by means of an ana-
Iytic balance. Absorbed radioactive solution volume was
estimated as the difference between wet and dry weights.
Zeolite volume was measured using Archimedes’ principle.
Radioactivity within zeolites was calculated as radioactivity
concentration of the "*F-FDG soaking solution multiplied
by the absorbed radioactive solution weight. Radioactivity
concentration within each zeolite was calculated as the ratio
between radioactivity within zeolite and zeolite volume.
Sphere-equivalent diameters were obtained from zeolite vol-
umes.

For each phantom lesion (both spheres and zeolites),
lesion optimised “isocontour” volume and L/B,, were mea-
sured on PET images.

The PVE-corrected radioactivity concentration within
spheres was obtained by multiplying the measured PVE-
affected radioactivity concentration by the proper F = 1/RC.
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Percentage residual errors, as the differences between
the GS and PVE-corrected radioactivity concentration, were
calculated.

2.9. Feasibility of the PVE Correction Method. Feasibility of
the PVE correction method was assessed by applying the PVE
correction to the PET-CT studies of the selected oncological
patients.

Qualitative and quantitative assessment was performed
under the guide of one expert nuclear medicine physician.
Body-weighted standardized uptake value (SUV) was pro-
vided and calculated as the tissue radioactivity concentration
corrected for the injected activity and body weight of the
patient [32]. SUV quantification with PVE correction was
performed for all considered lesions (149). During the mea-
surement of L/B,,, for each considered lesion, the nuclear
medicine physician was informed not to include any adjacent
high uptake organ in the background measurement.

Statistical correlation analysis was performed between
SUV (with and without PVE correction) and the histological
and therapy outcome data available for the 108 patients
subjected to radical therapy.

For the 29 patients subjected to chemotherapy, the
EORTC classification of response to treatment was provided
[43].

Table 3 briefly describes the kind of analysis performed
for the patient groups.

3. Results

3.1. Optimization of the Operator-Independent Technique.
Table 4 shows, for the PET measurements of the six spheres,
the percentage differences (%) between the actual sphere
diameter (d) and the sphere diameter derived from “isocon-
tour” volumes at 50, 60, 70, and 80%, averaged over L/B,,,.

The optimal threshold giving the lowest positive percent-
age difference was found to be the threshold at 60%. This
value represents a well compromise between a good sample
of the lesion actual volume and a good sample of the lesion
uptake, minimizing the possibility to include radioactivity
background in the sample. Indeed a 50% threshold for the
10 mm sphere gives a negative difference between the actual
sphere diameter and the sphere diameter derived from the
“isocontour” volume, estimating a lesion volume that is larger
than the true volume, thus bringing to include nontumour
tissues adjacent to the lesion.

3.2. RC Estimation. Figure 1 shows, for the six spheres, RC
curves (8) obtained for L/B,, from 2 to 29, with sphere
“isocontour” diameter derived from the optimal threshold
(60%) up to 4 cm. The fit was accurate (r square > 0.93) for
all RC curves.

Figure 2 shows, for sphere measurements, RC, error bar,
and fitting curve for L/B,, = 3. The accuracy of the fit can be
observed also qualitatively.

Results show that the underestimation of radiotracer
uptake due to PVE ranged from 26% up to 70% for the sphere
of 10 mm diameter, from —3% up to 32% for the sphere of

TABLE 3: Statistical analysis performed for the patient groups.

Patient Analysis

group

Gastro Correlation between SUV and histological
grade (Mann-Whitney test)
Correlation between SUV and Mib-1

Breast .
(Mann-Whitney test)

Head-neck Correlation between SUV and DFS (Log-rank
test)

Skeleton Classification of response to treatment
(EORTC evaluation)

1 L
0.8

1 1.5 2 2.5 3 3.5 4

deoop (cm)
---- L/B,, =28-29 ~s- L/B,, =8-11
~o- LIB,, =25-27 0. L/B,, =6-7
— L/B,, =17-19 @ LIB, =4-6
—+-. L/B,, = 14-16 % L/B,, =2-3

FIGURE 1: RC curves, threshold = 60%.

37 mm diameter, and from 30 to 2 for L/B,,, respectively.
This confirms the severity of the error and the need for PVE
correction.

Table 5 shows the percentage differences between the GS
(Cgs-sphere) and measured (Cgyy,) radioactivity concentrations
for the six spheres (one representative PET-CT measure-
ment). Cgg gpheres Coov> and L/B,,, are also presented.

3.3. Validation of the PVE Correction Method

3.3.1. RC Noise Sensitiveness. Figure 3 shows, for the sphere
with d = 13 mm, the percentage difference of RC over the
acquisition time (2.5, 5, 10, 15, and 30 min).

RC was found poorly sensitive to the noise level on the
PET images for acquisition times in the order of 30 min down
to 2.5min (percentage difference < 5%), proving the noise
independency of the method to estimate RC. This guarantees
the feasibility of our RC-based PVE correction method for
clinical studies of acquisition time from 2.5min (standard
whole-body PET scan/bed) up to 30 min.

3.3.2. Residual Errors after PVE Correction. Figure 4 shows
PET-CT representative images of the oncological phantoms
used for the validation of the PVE correction method.
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TABLE 4: Six spheres: percentage differences (%) between actual sphere diameter (d) and sphere diameter derived from “isocontour” volumes

at 50, 60, 70, and 80%.

d (mm) dspe, (Mm) % diff dgpe, (Mm) % diff dg0, (Mm) % diff dggo, (Mm) % diff
10 12 -20+£6.9 9 10+ 1.8 7 30+8.9 5 50+17.4
13 12 7.7+0.9 10 23.1+£2.0 8 385+3.2 7 46.2+5.1
17 16 5907 13 23.5+09 12 29409 10 412+ 1.5
23 19 174 +0.5 17 26.1+£0.8 15 348+ 14 13 409 +2.5
29 27 6.9+0.5 25 13.8£0.8 23 20.7+£0.9 19 174+ 1.0
37 34 8.1 +£0.03 32 13.2+£0.1 30 189+0.4 28 243+ 1.1
0.9 . . . : : : : For lesions with diameter > 1cm, the PVE correction
. | method was found with an accuracy > 91% in the thorax and
' breast. The method revealed an accuracy greater than 89% in
0.7 - 1 the brain.
0.6 L | For lesions with diameter < 1 cm, the residual error is of
24%, from an initial error of 70%. Thus, the method allows to
o 0SF 1 recover 76% of radioactivity.
® o4l | In case of zeolites, the PVE correction method confirms a
good accuracy in the uniform lesion (% residual error < 17%).
0.3 ] The method is not accurate for nonuniform lesions (zeolites
02 L l with nonuniform uptake (% residual error > 30%)).
0.1 1 3.4. Feasibility of the PVE Correction Method. For all 149
0 s - s - s - s lesions, it was possible to define the metabolic volume on PET

0 0.5 1 1.5 2 2.5 3 3.5 4
deoo, (cm)

FIGURE 2: RC curves, threshold = 60%, L/B,, = 3.

p d =13mm
g M J
2
2 « o
g 0 . . . .
5,4 10 20 30 40
=
=y
a L]
-6 -

tAcquisition (min)

FIGURE 3: Percentage difference of RC over acquisition time.

Figure 5 shows PET-CT representative images of the
oncological nonuniform and nonhomogeneus lesions (the
three zeolites) used for the estimation of bias of the PVE
correction method for nonspherical lesions. The uniform
uptake of the zeolite soaked in the radioactive solution for
15 minutes and the nonuniform uptake of the two zeolites
soaked for few seconds can be observed.

dgge, Of the spherical lesions ranged from 6 mm up to
12mm and L/B,, ranged from 8 to 18.

Table 6 shows residual errors (%) after PVE correction,
for all the lesions of the validation phantoms as percentage
differences between the GS and PVE-corrected radioactivity
concentration within the lesions. Cgg_ghere» Co%> L/ B,yp» and
actual diameter are also presented.

images. 100% of lesions were found to have an L/B,, in the
range of L/B,, measured from the spheres and lesion sphere-
equivalent diameters in the range of sphere-diameters of RC
curves.

97% of lesions were found to have a spherical functional
volume; 83% of lesions were found to have a uniform lesion
uptake.

Only for 25% of lesions, the lesion volume was visible on
CT images.

PVE correction was found to modify both the value of
SUV and of SUV variations during patient followup. After
PVE correction, SUV was found to be increased more than
25% in 31% of lesions with a percentage difference between
PVE-affected SUV and PVE-corrected SUV up to 120%. SUV
variations during followup were also found to be modified by
PVE correction of >50% for 67% of lesions and up to 200%.

PVE correction was found to increase the statistical
significance of statistical correlation tests (P changed signifi-
cantly) between SUV and prognostic factors as histopatho-
logical indexes (histological grade, cell proliferation index,
and therapy outcome indexes), allowing to identify a prog-
nostic value of SUV for the considered cohort of oncological
patients. As a consequence, SUV corrected with the proposed
PVE was able to stratify different groups of patients.

Table 7 summarizes the main results of the impact of
PVE correction on the considered correlation studies in the
oncological patients.

PVE was also found to have an impact on the classi-
fication of patient response to treatment based on EORTC
recommendations. Noteworthy, PVE correction changed the
response classification of 3 of the 19 patients with bone
metastasis (EORTC response classification: partial metabolic
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(a) (®) ()

FIGURE 4: PET-CT images for (a) thorax phantom, (b) breast phantom, and (c) brain phantom.

(a) (b)

FIGURE 5: PET-CT images for the oncological nonspherical lesions (zeolites).

response, PMR; stable metabolic disease, SMD; progressive
metabolic disease, PMD). In particular, one patient changed
from PMR to SMD, one patient from SMD to PMD, and one
patient from SMD to PMR.

Table 8 summarizes the main results on the impact of
PVE correction on the considered therapy response in the
oncological patients. Applying PVC, the average SUV values
increased more than 45%, proving the need for correction.

4. Discussion and Conclusions

Two aspects mainly characterise the proposed PVE correc-
tion method and differentiate it from other RC-based PVE
correction procedures.

(1) The Clinical Approach for the Design of PVE Correction.
The approach for the design of the PVE correction method
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TABLE 5: Six spheres, one representative measurement: % difference between GS radioactivity concentration and measured radioactivity
concentration and the derived L/B,,,.

d (mm) Cas sphere (MBq x mL™") Ceps (MBqx mL™) % diff L/B,,
10 0.078449 + 0.00666 0.02331 + 0.0037 70.3 £12.7 2004
13 0.07363 + 0.00555 0.03774 = 0.0074 425+6.4 33+05
17 0.06475 £+ 0.00222 0.03959 + 0.0037 39.0+4.9 35+04
23 0.06438 + 0.00185 0.04033 + 0.0074 374 +5.8 35+0.6
29 0.5550 £ 0.00111 0.03330 = 0.0037 40.0 £ 6.0 29+04
37 0.5550 + 0.00037 0.037774 + 0.0037 31.9+£3.8 33+£04
TABLE 6: Validation phantoms: % residual errors after PVE correction.
Phantom d (mm) Cos sphere (MBq X mL™) Cyos (MBg x mL™) % res L/B,,
9.8 0.8214 0.5883 £0.1036 24£50 17.8
12.3 0.3626 0.3293 £ 0.0333 9.8+£1.0 8.9
Thorax 12.3 0.6993 0.666 + 0.0629 49=+0.5 16.8
15.6 0.9065 0.8473 £ 0.0481 6.7+ 0.4 30
15.6 0.46028 0.45917 £ 0.06845 0.3 £0.04 9.2
9.8 0.0962 0.0777 £ 0.0074 16.6 £2.4 4.9
12.3 0.1184 0.1073 £ 0.0148 93+14 13.3
15.6 0.2479 0.2590 £ 0.0148 -4.5%0.3 8.3
Breast 15.6 0.4884 0.4662 + 0.0592 4.7+0.8 20.3
13.3" 0.0048" 0.0056 + 0.00001" -16.6 +2.9" 31"
10.3"* 0.0100"" 0.0070 + 0.00001*" 30.0 £5.1%" 2.8
9.9"* 0.0128"" 0.0049 + 0.00007"" 62.7 £11.1"" 24"
9.8 0.5402 0.4070 £ 0.0666 24+4.1 8.8
Brain 12.3 0.4555 0.4033 £0.1184 114 +3.3 12.8
12.3 0.4144 0.3663 £ 0.0703 11.2+2.2 11.9
15.6 0.3737 0.3552 £ 0.037 4.8+0.5 14.2

*Represents zeolites with uniform uptake; **represents zeolites with nonuniform uptake.

moved from considering information from real clinical PET-
CT studies, which is always available. The purpose of the
work was the development of a PVE correction method
allowing quantification of glucose metabolism in tumour
cells with the primary objective to be easily implementable
and usable in a clinical environment. Several studies showed
that PET-detected oncological lesions are not always visible
on CT images [27, 28] and this has also been confirmed by
our nuclear medicine physicians. Thus, information which is
always available is represented by data measurable on PET
images, for instance, PET L/B,, and PET measured lesion
volume. Following this consideration, our PVE correction
method was based on RC factors derived from PET measure-
ments of hot spheres in hot background, simulating lesions in
body tissue under PET study. RC curves were thus obtained
from PET L/B,, and from PET measured sphere volume, and
not from actual L/B or from actual sphere volume, as in the
case of all the rest of RC-based PVE correction methods. This
strategy allows to overcome the problem of being aware of the
actual L/B and the actual lesion volume.

(2) The Technique for the PET Measurement of L/B,, and
Lesion Metabolic Volume. A technique allowing PET mea-
surement of both lesion uptake (and thus PET L/B,,) and

lesion metabolic volume was developed, based on a technique
of threshold isocontours. Such technique is not aimed at
extracting the actual lesion metabolic volume but it is able
to provide a PET measurement of a lesion metabolic volume
(the “isocontour” volume) which is strongly dependant on
the actual metabolic volume (the larger the actual metabolic
volume, the “larger” the isocontour volume), however, being
independent of the operator. The optimal volume, that is
the volume defined by the optimal threshold, is the best
metabolic volume matching the actual lesion volume and
excluding at the same time the background uptake [30]. In
this work, we present results of an optimal threshold relative
to a 60% threshold. From the current literature [16], among
the studied thresholds (in the range of 50-80%), the “isocon-
tour” volume derived from a 60% threshold has been shown
to represent a well compromise between a good sample of
the lesion actual volume and a good sample of the lesion
uptake, minimizing the possibility to include radioactivity
background in the sample [36]. As assessed also by Krak
et al. [30], a 50% threshold leads to include nontumour
tissues, and this increases the possibility to include within
the lesion normal high uptake in localized areas (e.g., liver,
heart, and inflammatory tissues) that could be adjacent to
the lesion. Furthermore, a threshold greater than 75% shows
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TABLE 7: Oncological patients: results of SUV quantification with PVE correction on correlation studies between SUV and prognostic factors

(P is the result of statistical tests).

Patient group Lesion d (cm) SUV (g/cc) PVE-corrected SUV (g/cc) P after PVE correction
Gastro 215+ 117 3.27 +1.22 (SRC) P 005 5.57 + 3.22 (SRC) P 005
(0.99-6.25) 7.93 +5.01 (SC) 9.90 + 1.91 (SC)
Breast 157+ 0.5 2.28 +1.02 (Mib+) P 005 4.52 + 2.92 (Mib+) P <005
(1.1-3.2) 7.64 + 6.08 (Mib-) 9.30 + 7.40 (Mib-)
Head-neck 152405 <108 (lymph-) P > 0.05 <133 (lymph-) P <0.05

>10.8 (lymph+)

>13.3 (lymp+)

TaBLE 8: Oncological patients: results of SUV quantification with PVE correction on therapy response classification (EORTC). I means

pretreatment SUV; II means posttreatment SUV.

Patient group Lesion d (cm) SUV (g/cc) PVE-corrected SUV (g/cc) SUV% difference
1.55+0.5 4.7+1.9 () 6.6 +2.3 46.4 +29.7
Skeleton
(0.9-3.4) 42+ 1.9 (ID) 58+2.6 459 +28.7

“less reproducibility” than lower thresholds (the difference in
lesion metabolic volumes measured by PET at consecutive
days is >50% for a threshold of 75% and <25% for a threshold
of 60%, resp.)—both in terms of lesion metabolic volume and
SUV [30]. Our results, relative to a threshold of 60%, show
that the proposed PVE correction technique is accurate for
lesion diameter > 1 cm, considering that previous studies on
SUV reproducibility from oncological patients showed SUV
percentage errors up to 17% [40].
The advantages of our approach are as follows.

(A1) Consistency. There is a full consistency between the direct
procedure of obtaining RC from PET measurements with hot
spheres in hot background and the inverse procedure that
applies F = 1/RC factors for PVE correction of PET-detected
oncological lesions. This allows for the clinical implementa-
tion of the PVE correction method to real oncological studies.

(A2) Operator Independency. The operator independency
of the threshold technique for the PET measurement of
quantitative parameters (PET L/B,, and PET measured “iso-
contour” volume) required by our PVE correction method
guarantees reproducible measurements. Furthermore, the
use of metabolic volumes defined by a threshold technique
in clinical follow-up studies is suitable to show the effect of
metabolic change due to therapy. This instead is not true
for the CT detected anatomical volumes that may result
unmodified at followup. As a result, our PVE correction
method is more feasible for quantification of follow-up
studies than alternative strategies based on actual lesion
volume (e.g., [30]).

(A3) Applicability. The PVE correction method can be applied
for any PET-CT scanner in a simple manner, given that it lies
upon experimental measurements easy to be performed with
a PET scanner and a standard phantom of easy availability.
Anthropomorphic phantoms miming oncological lesions in
specific regions of the human body could be used to extract
RC factors more accurately for specific body regions (e.g.,
brain) or for a specific radiotracer (e.g., ' C-choline).

The disadvantages of our approach are as follows.

(DI1) Local Correction. As for all RC-based PVE correction
methods, our method applies PVE correction only at a
regional level, on the PET images. This means that the lesion
uptake is corrected using some information (PET L/B,, and
PET measured lesion volume) of that particular region. As
opposed to PVE correction methods which process PET
images for the creation of PET corrected images (e.g., [20,
44, 45]), our method requires the correction to be applied
separately to different lesions.

(D2) Noise Dependency. One of the drawbacks of the thresh-
old technique for the PET measurement of lesion uptake and
lesion metabolic volume is that the resulting defined region
can be dependent on the noise present in the PET images. The
threshold value for the radioactivity concentration (thus the
corresponding isocontour) is dependent on the maximum
value of the lesion uptake, being the threshold defined as
a percentage of this value. Optimisation strategies based on
smoothing or averaging techniques over the maximum could
be applied [16] in order to reduce this effect.

(D3) Lesion Roundness and Uniformity. RC values have been
obtained for hot spheres miming spherical and uniform
lesions. This limits the application of the proposed PVE
correction to oncological lesions which can be assumed to
be spherical and with a uniform uptake. Preliminary results
from our simulations on lesions with nonuniform uptake
(zeolites) indicated that the PVE correction method is very
sensitive to nonspherical and nonuniform lesions, while it can
work well in nonspherical but uniform lesions, consistently
with some results from Monte Carlo simulations proving
the suitability of RC-based PVE correction for nonspherical
lesions (e.g., [46, 47]). Considering our PET-CT clinical
studies, we found that this occurs for a limited number of
cases (96% of lesions were spherical and 80% with a uniform
uptake). For those lesions that have hypometabolic character-
istics (e.g., low grade tumour in the cerebral white matter),
other PVE correction methods (e.g., based on image-guided



10

segmentation or preprocessing) can be applied (e.g., [19, 20,
27, 48-51]).

However, for lesions that cannot be approximated to
spheres, our PVE correction approach should be used care-
fully and it needs optimization (e.g., new RC from nonspher-
ical objects) as well as validation (e.g., with anthropomorphic
phantoms including nonspherical objects). The same care
in the use of the considered RC-based PVE correction
must be applied to heterogeneous lesions. A recent study
that focused on the impact of PVE correction on tumor
heterogeneity suggests in this case the use of local image
deconvolution approach with expectation maximization and
spatially variant point spread function (e.g., [52]).

(D4) Background Uniformity. An important problem in prac-
tice is that the background is usually not uniform. High
uptake in localized areas (e.g., liver, heart, and inflammatory
tissues) could be present in regions adjacent to the lesion.
The use of a single threshold to segment metabolic lesion
volume, as proposed in our method, could include these
normal tissues. In the latter case, manual intervention could
be needed in order to exclude background tissues, thus
making our method more observer dependent.

We have developed, implemented, and assessed a method
for PVE correction of oncological lesions in PET clinical
studies, based on RC factors and PET L/B,, and PET
measured lesion metabolic volume.

Phantom measurements proved that PVE strongly affects
lesion quantification (up to 70%) and needs to be corrected.
Consistently with previous findings [26, 27, 53], we found
this effect to be increasing when sphere volume and L/B,,
decrease.

Measured RC curves allowed PVE correction to be
applied to lesions of diameter up to 40 mm and for PET L/B,,
from 2 to 30, answering the need of PET quantification for a
large variety of oncological lesions.

An operator independent technique was developed and
optimised for the PET measurement of lesion uptake and
of lesion metabolic volume. The technique is based on a
threshold that defined an isocontour with respect to the
maximum uptake on PET image. Such isocontour defines
either the region of interest for the PET measurement of
sphere/lesion uptake or the circle-equivalent section of a
PET measured sphere/lesion spherical metabolic volume
(isocontour volume).

Our residual errors obtained after the application of the
PVE correction method to anthropomorphic oncological
phantoms, compared with the errors on the measurement
of SUV (12%-13%) obtained by Krak et al. [30], proved
that our method is accurate (>89%) in clinical realistic
conditions for lesion diameter > lcm and it is able to
recover 76% of radioactivity for lesions diameter < 1cm in a
consistent way with the errors on the measurement of lesion
metabolic volume (>23%) estimated by Krak et al. Other
methods based on postreconstruction iterative techniques
[44], iterative deconvolution [43], image segmentation [18],
or multiresolution approach [20] implemented for PVE
correction mainly in neurodegenerative diseases show an
accuracy up to 98% for lesion diameter > 1 cm and up to 86%

BioMed Research International

for lesion diameter < 1cm. However, these methods require
images to be processed by dedicated software and are more
complex to be implemented in clinical routine than RC-based
methods, as previously discussed ((A3) Applicability) and also
commented by Soret et al. [16].

Patient studies showed that the proposed PVE correction
method is suitable and feasible in a clinical environment.
L/B,, and “optimal” isocontour volume at 60% threshold
of the maximum were used to obtain proper RC in order
to correct the PVE-affected SUV for all considered patient
lesions. The quantitative analysis was performed under the
guide of an expert nuclear medicine physician. We found
that at least 80% of selected lesions met the requirements of
roundness and uniformity for an accurate use of the proposed
PVE correction method. As expected, only few lesions were
clearly visible on CT images, confirming the need to define
lesion volume from PET images.

Considerations on SUV increase or decrease during
patient followup as an effect of a therapy is beyond the
purpose of this paper. However, our results suggest that the
use of PVE correction can be fruitful in staging oncological
disease and in monitoring oncological disease progression.

Our results suggest that the PVE correction has to be
applied if SUV is used to stratify patients on the basis of an
SUV cut-offt value and/or to classify lesion metabolic response
by means of SUV variations during followup. When SUV is
considered for diagnostic purposes (i.e., an absolute cut-oft
value of SUV to differentiate benign from malignant tumor),
the cutoff should be defined by accounting for PVE; otherwise
it could be inappropriate.

In conclusion, in this work, we developed a method for
PVE correction tailored for clinical application to PET-CT
oncological studies. Our method overcomes the problem
of considering actual L/B and actual lesion volume, being
grounded in RC curves determined as functions of PET
L/B,, and measured lesion volume, both estimated by an
optimized and validated operator-independent technique.
The proposed PVE correction method was applied to clinical
oncological '"*F-FDG PET-CT studies showing to have an
impact on the metabolic assessment of lesions.
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