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Abstract

It is hard to define quantum field theories in higher dimensions. For example,
gauge theories are non-renormalizable in d > 4. In worse cases it is not even
possible to give a lagrangian description to systems of degrees of freedom
that are known to exist from indirect arguments, for example string theory.

It is the case of the popular (2, 0), a six-dimensional conformal field the-
ory living on the worldvolume of M5-branes. Despite its bizarre nature,
attempts to understand this theory more deeply led to some really reward-
ing achievements. For example, compactifications on Riemann surfaces with
punctures give a class of N = 2 four-dimensional CFT’s with amazing du-
ality properties. Compactifications on three and four-manifolds also have
interesting applications.

The subject of this thesis is the study of a class of six-dimensional CFT’s
that are less supersymmetric and even more mysterious, the (1, 0) theo-
ries. Infinitely many and non-lagrangian, they are conjectured to exist on
intersecting systems of NS5-, D6-, and D8-branes, but their holographic in-
terpretation was lacking for a long time.

Collecting the results of a series of recent papers [1–5], we are finally able
to give these CFT’s a complete supergravity description. Their duals are
all possible AdS7 solutions in massive IIA, which are all known analytically.
The internal space M3 is topologically a three-sphere with SU(2) isometry,
dual to the R-symmetry of the CFT.

We also classify all possible compactifications of these solutions, obtained
wrapping the branes on two, three and four-manifolds of negative curvature,
leading to AdS5, AdS4 and AdS3 vacua. Moreover, complete flows connecting
AdS7 to the lower dimensional vacua can be constructed, suggesting the
existence of a renormalization group flow between the six-dimensional CFT
at high energies and CFT’s in four, three, two dimensions at low energies.
Even though these lower dimensional theories are not yet known, they can
now be studied holographically. The AdS4 solutions are also interesting as
four-dimensional vacua with localized sources.

As a by-product, the compactification procedure is so universal it suggests
to consider a reduction Ansatz of type IIA supergravity on M3. The resulting
effective theory is minimal gauged supergravity in seven dimensions, a theory
with sixteen supercharges and an SU(2) gauge field. It can be embedded in
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type IIA in infinitely many ways, independently on the details of M3 and
thereby on the specific choice of brane configuration. This implies that the
seven-dimensional theory is a sector common to all the (1, 0) theories and
the (2, 0) itself. We can thus claim to have a universal consistent truncation
for 6d/7d gauge/gravity duals.
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Chapter 1

Motivations

The study of field theories at strong coupling is a challenging subject. For
example, understanding confinement in quantum chromodynamics (QCD) is
still one of the most relevant open problems in physics. Although it is known
that in the QCD vacuum the fundamental degrees of freedom (gluons and
quarks) condensate into color singlets, no analytic proof exists. Some useful
insights on this mechanism and on the possible behavior of field theories
at low energy can be obtained introducing supersymmetry. This essentially
amounts to enlarging the spacetime symmetry to also include the fermionic
symmetries, which requires a proper completion of the Lagrangian by the
addition of extra fields.

Supersymmetry makes the theory more constrained and manageable, es-
pecially at the quantum level, allowing to derive exact results. Increasing the
amount of supersymmetry the constraints become stronger and stronger, so
much so that in some cases it is possible to control the full renormalization
group (RG) flow. An enlightening example is given by the Seiberg-Witten
theory [6, 7], a supersymmetric extension of QCD with gauge group SU(2).
This theory is so under control that it is possible to determine an exact
low-energy effective action. Enlarging further the amount to supersymme-
try leads to N = 4 super–Yang–Mills (SYM), the maximally supersymmetric
extension of QCD. This theory is so constrained that the β function describ-
ing the RG flow vanishes, namely the theory is scale invariant also at the
quantum level.

The aforementioned theories, like many other interesting supersymmet-
ric field theories, can be realized explicitly in the realm of string theory.
The string theory perspective can help a lot in understanding some crucial
features, especially thanks to its many amazing duality properties.

Indeed, much of the progress seen in the last years in the subject of quan-
tum field theory is tightly connected to the beautiful concept of holography.
First introduced by ’t Hooft and Susskind, the holographic principle states
that the degrees of freedom of a (p + 2)-dimensional quantum gravity are
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much more reduced than we naively think, and will be comparable to those
of quantum many body systems in (p+ 1)-dimensions [8, 9].

The first explicit realization of the holographic principle in string theory
is due to Maldacena, and goes under the name of AdS/CFT correspondence
[10]. The original statement of the correspondence is that type IIB string
theory on AdS5 ×S5 background is dual to N = 4 SYM in four dimensions.
This conjecture generalizes to the statement that a theory of quantum gravity
in (p+2)-dimensional Anti-de Sitter space is dual to a conformal field theory
in (p+ 1)-dimensions, living on its boundary.

Perhaps the most striking feature of AdS/CFT is that it is a weak/strong
duality, namely it relates string theory at weak coupling to a conformal field
theory in the strong coupling regime, and vice versa. Crucially, string theory
at weak coupling is described by ten-dimensional supergravity, which is much
simpler and manageable. Supergravity can thus be very helpful to investigate
some aspects of CFT’s at strong coupling.

After its formulation, AdS/CFT has been understood more deeply with a
precise map between the observables on the two sides and a prescription for
comparing physical quantities and amplitudes [11,12]. For example, dimen-
sions of operators in conformal field theory are given by masses of particles
in supergravity. Over the last twenty years much progress has been made in
writing the so-called holographic dictionary.

Moreover, the correspondence has been extended to the non-conformal
realm. Indeed, the duality between supergravity (and string theory) on AdS
space and boundary conformal field theory also relates the thermodynamics
of N = 4 SYM to the thermodynamics of Schwarzschild black holes in Anti-
de Sitter space. In this picture, quantum phenomena such as confinement
and spontaneous symmetry breaking can be explained in terms of classical
geometry [13].

Holography and black hole physics are deeply intertwined. The histor-
ical origin of the concept of holography is the beautiful analogy that was
discovered between the laws of black hole dynamics and the laws of ther-
modynamics. In this context it was found that the entropy of a black hole
is not proportional to its volume, but to its area of the event horizon Σ
(the famous Bekenstein-Hawking formula [14,15]). The precise statement of
the AdS/CFT correspondence shed some light on this formula, at least for
AdS black holes. In some cases, holography even allowed to re-derive the
Bekenstein Hawking entropy formula by counting black hole microstates.
For black holes in three dimensions (the so-called BTZ black hole [16]) this
was achieved using basic properties of conformal feld theories in two dimen-
sions [17]. It is thus understood that the AdS/CFT correspondence not only
has nice field theory applications, but can also be useful to investigate some
long standing problems in quantum gravity.

Another challenge which is deeply connected to holography in string the-
ory is understanding higher dimensional quantum field theories. These are
often non-renormalizable, so they only make sense as low-energy descrip-
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tion of a more complete theory, much as the Fermi Lagrangian for weak
interactions is described at high energies by the standard model [18,19]. Re-
markably, string theory plays the role of ultraviolet completion for a large
variety of interesting field theories in d > 4.

A relevant case is Yang-Mills in six dimensions, which is non-renormalizable
and becomes strongly coupled at high energies. A possible alternative is to
use a two-form gauge field instead of the usual vector. Its nonabelian for-
mulation is still unclear, but string theory predicts that a super-conformal
completion of such a field actually exists on the worldvolume of N coincident
M5-branes.

This mysterious theory is expected to enjoy (2, 0) supersymmetry, but
the corresponding Lagrangian is not known. Nonetheless its study led to im-
portant discoveries in the last decade. For example, its compactifications on
Riemann surfaces with punctures produce a class of N = 2 four-dimensional
CFT’s with beautiful duality properties [20, 21] and a description in terms
of a curve inspired by the Seiberg-Witten theory.

Another important class of six-dimensional CFT’s can be realized in
string theory, the so-called (1, 0) theories. Infinitely many and non-Lagrangian,
these are the less supersymmetric cousins of the (2, 0). About twenty years
ago they were conjectured to arise from complicated brane configurations
in type IIA, involving D6-, NS5- and D8-branes [22], but their holographic
description was lacking for a long time.

Understanding these theories holographically is thus an interesting chal-
lenge from the point of view of both for quantum field theory and string
theory. According to the AdS/CFT dictionary, the supergravity description
allows to count the degrees of freedom via the holographic free energy and to
explore the spectrum of operators that are dual to masses of particles. Also,
we can have some intuition on the possible lower dimensional CFT’s arising
as compactifications of the (1, 0) theories, and perhaps pave the way for a
further improvement in the understanding of dualities in four dimensions.
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Chapter 2

Introduction and summary
of the results

In this section we try to give to the reader the key ingredients that are
necessary to understand the results of our work. We first give a quick intro-
duction to string theory and to its low-energy limit, supergravity, with an
eye to the subject of dualities. After a quick review of D-branes and other
types of fundamental degrees of freedom in string theory, we explain how
the AdS/CFT correspondence was formulated using D3-branes. We finally
move to holography for six-dimensional field theories, with a summary of our
results.

STRING THEORY

String theory was formulated back in the 1970’s with the goal of unifying in
a single model all the four fundamental interaction in nature: Gravitational
electromagnetic, weak and strong. This unification is expected by theoretical
physicists to take place at high energy scales, where gravitational quantum
effects are supposed to become relevant. A natural scale is given by the
Planck mass, which is of the order of 1019 GeV.

String theory is a theory of quantum gravity that arises from the quanti-
zation of one-dimensional objects, called strings, moving in spacetime sweep-
ing out a surface called worldsheet. Roughly speaking, the string action is
obtained by integrating the surface element swept by the string and mul-
tiplying it by a factor called string tension which is proportional to (ls)

−2,
where ls is the string length, the only dimensionful parameter of the the-
ory. This is nothing but the generalization of the action for a relativistic
point-like particle with mass moving in spacetime along a trajectory. To
be more precise one has to introduce an equivalent worldsheet action which
can be quantized, and then complete this action to be supersymmetric by
adding a fermionic part. We are not going to give any details, which can
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be found in many textbooks like [23, 24]. We just stress that one could also
try to generalize this action to p-dimensional extended objects sweeping out
a (p + 1)-dimensional worldvolume, however strings are very special in this
sense because their two-dimensional worldsheet theories are renormalizable,
which doesn’t happen for p 6= 1.

To be more precise, the vibration modes of a string produce a number of
quantum states including a massless spin-2 particle, a candidate to describe
the graviton.

The fact that fundamental objects are extended rather than point-like
particles constitutes a huge difference with respect to quantum field theories
like the Standard Model: this is the key feature which allows to solve the
problem of ultraviolet divergences.

In addition string theory shows a number of new aspects like supersym-
metry, a spacetime symmetry mapping bosons into fermions, which extends
the Poincaré algebra adding fermionic generators, called supercharges, that
satisfy anti-commutation rules.

String theory also requires the presence of extra dimensions, more pre-
cisely it predicts the dimension of spacetime to be ten. In fact there are five
different consistent supersymmetric string theories living in ten dimensions,
which are related to one another through a web of dualities, each one being
a different phase of a unique underlying theory living in eleven dimensions,
known as M -theory, which at the state of art seems a possible candidate for
a theory of everything.

SUPERGRAVITY as LOW ENERGY LIMIT

The mode expansion of the string is defined in terms of the string length ls.
In particular the masses of all states other than the massless ones become
very large for ls → 0, which corresponds to taking the low-energy limit.
In this limit, it is a good approximation to replace string theory with an
effective theory describing the interactions of the massless modes only. This
is known to be ten-dimensional supergravity, whose degrees of freedom are
the graviton and its massless supersymmetric partners. More precisely, each
possible formulation of string theory has different supergravity as low-energy
limit.

In what follows we will be dealing with type IIA string theory, which
is described by type IIA at low energy. The latter is essentially a super-
symmetric model for gravity coupled to a scalar field φ called dilaton and
to generalized gauge fields. In type IIA there are odd degree gauge fields
C1, C3 with corresponding field strengths F̃2 = dC1, F̃4 = dC3, plus a two-
form gauge field B with field strength H = dB. The bosonic part of the
action reads:
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SIIA =
1

(2π)7l8s

∫
d10x

√
−|g|

(
e−2φ

(
R+ 4(∂φ)2 − 1

2
H3

)
− 1

2

(
F̃ 2

2 + F̃ 2
4

))
− 1

(2π)7l8s

∫
B ∧ F̃4 ∧ F̃4.

(2.0.1)

This action is non-renormalizable as it contains, for example, the Hilbert-
Einstein term. However this is not a problem in the picture of string theory,
where supergravity is not meant to be a fundamental theory, but simply a
low-energy description.

Notice that the supergravity action contains a second parameter given by
the vacuum expectation value of the dilaton gs = 〈eφ〉 which can be arbitrary
since there is no potential for φ. gs determines the string coupling constant
and controls string interactions and quantum corrections.

The second interesting ten-dimensional supergravity is type IIB, the low-
energy effective theory for type IIB string theory. The bosonic field content
is similar to that of type IIA, we just need to replace the odd degree form
fields with even degree ones: C0, C2, C4, with corresponding field strengths
F̃1, F̃3, F̃5. We don’t report the action of type IIB supergravity, which can
be found in many textbooks, for example [23,24].

Moving to the fermionic fields, both type II supergravities have two spin
3/2 gra-vitinos ψ1

M , ψ
2
M and two spin 1/2 dilatinos λ1, λ2. The two gravitinos

have the same chirality in type IIB and opposite chirality in type IIA, and
the same works for the dilatinos. In other words type IIA supergravity is a
chiral theory, while type IIB is not.

The supersymmetry transformations of type II supergravity are:

δψ1
M =

(
DM +

1

4
HM

)
ε1 +

eφ

16
FΓMΓε2,

δψ2
M =

(
DM −

1

4
HM

)
ε2 − eφ

16
λ(F )ΓMΓε1,

ΓMδψ1
M − δλ1 =

(
D − ∂φ− 1

4
H

)
ε1, (2.0.2)

ΓMδψ2
M − δλ2 =

(
D − ∂φ+

1

4
H

)
ε2,

where we have collected all the fluxes into a single mixed degree differential
form F̃ =

∑
p F̃p, and we have defined F ≡ eB∧F̃ . More precisely the formal

sum F contains both the electric fluxes Fp and their magnetic duals F10−p.
These are not independent, but they are related by the electro-magnetic
duality constraint which reads: Fp = λ ? F10−p, where the operator λ acts
on a p-form as: λFp = (−)Int(p/2)Fp.

All the quantities in Eq. (2.0.2) must be understood as bi-spinors, that is
to say we have to apply to each differential form the so-called Clifford map,
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that associates to dxM the corresponding generator of the SO(9,1) algebra
ΓM .

The supersymmetry infinitesimal generators εi are two Majorana fermions
with the same chirality in type IIB and opposite chirality in type IIA. The
covariant derivative which acts on the supersymmetry parameters contains
the spin connection: DM = ∂M + 1

4ω
ab
MΓab.

Supersymmetric solutions of the equations of motion, which means so-
lutions which are invariant under supersymmetry transformations, can be
found setting to zero all the variations in (2.0.2). This leads to four equa-
tions involving the fluxes F and H, the supersymmetry parameters εi, the
dilaton φ and implicitly also the metric. Once one solves these equations
together with the Bianchi identities for the fluxes: (d−H∧)F = 0, dH = 0,
then the equations of motion follow automatically.

To be more precise, it is also possible to introduce an extra ingredient:
sources that compatible with supersymmetry. This kind of sources are the
so-called D-branes, which we will explain shortly.

M-THEORY and STRING DUALITIES

We saw in the last section that the supergravity action is obtained as a low-
energy limit of string theory, and that this limit is implemented by sending
to zero the string length ls. We also saw that there is another dimensionless
parameter in the action, the string coupling gs. At this point one could ask
what happens varying this parameter. The answer is that, at strong string
coupling, string theory reveals a new phase described by a theory living in
eleven dimensions, which is called M-theory.

The simplest way to explain this statement is to consider supergravity
in eleven dimensions: there exists a unique eleven-dimensional maximal su-
pergravity, which is also called the mother of all supergravities. The field
content of this theory is surprisingly simple: the bosons are the graviton
and a three-form gauge field A3 with field strength G4 = dA3, and all the
fermionic degrees of freedom are contained into a single gravitino.

The bosonic action of 11-dimensional supergravity, which reads

S =
1

(2π)8l9p

(∫
d11x

√
−|g|

(
R− 1

2
G2

4

)
− 1

6

∫
A3 ∧G4 ∧G4

)
, (2.0.3)

is related to the actions of the various lower dimensional supergravities. The
most direct connection is between 11-dimensional supergravity and type IIA
supergravity: compactifying the eleventh dimension on a circle we get a
spacetime which is topologically an S1 fibred over a ten-dimensional manifold
M10:

S1 // M11

��
M10

(2.0.4)
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Indeed, applying to the action (2.0.3) a dimensional reduction along the
S1 we get exactly type IIA supergravity, with the following identification
between the parameters of the two theories: lp = (gs)

1/3ls, with lp being the
Planck length in eleven dimensions, the only parameter appearing in (2.0.3).

Upon reduction the graviton in eleven dimensions gives the graviton in
ten dimensions, plus the dilaton φ and the gauge field C1, according to:

ds2
11 = e−2φ/3ds2

10 + e4φ/3(dz + C1)2 , (2.0.5)

while the generalized gauge field A3 gives both B and C3. Finally, reducing
the eleven-dimensional gravitino gives all the fermionic degrees of type IIA,
with right chiralities. It thus seems reasonable to conjecture that:

lim
gs→∞

IIA = 11d sugra. (2.0.6)

In other words when string theory is strongly coupled it is better de-
scribed by an eleven-dimensional theory, whose low-energy limit is given by
eleven-dimensional supergravity. To be more precise one should also con-
sider the whole spectrum of string theory, also containing non-perturbative
extended objects called D-branes. We will give a brief introduction to these
objects shortly. This correspondence between two apparently different the-
ories is a first example of duality, called S-duality.

At this point one would like to derive type IIB string theory from the
eleven-dimensional theory as well. This can be accomplished in two steps
involving a second type of duality relating type IIA and type IIB, called
T -duality. It is a perturbative duality relating type IIA string theory on
M9 × S1

R to type IIB on M9 × S1
1/R, where we used a compact notation

to indicate the dual circles S1
R and S1

1/R, which have radius R and 1/R

respectively. Combining T and S-duality we get that M-theory on M9 × T 2

is dual to type IIB on M9 × S1.

This is just a taste of dualities in string theory, which is a very complex
and fascinating subject. It can be shown that all the five different string
theories living in ten dimensions can be mapped into one another and also
into M-theory via duality. This very exciting feature is the reason why
M-theory is thought to be the unique underlying theory living in eleven
dimensions which could describe a theory of everything. For a complete
treatment of this subject see for example [23,24].

For completness, we have to mention that there exists a generalization of
type IIA supergravity which will play an important role in this work. It is
called massive type IIA supergravity, and it is obtained introducing a zero-
form flux F0, the so-called Romans mass. F0 is a special flux: it cannot be
written as the derivative of a gauge potential, but it can be thought of as
the dual of a spacetime-filling flux F10 = dC9.

In absence of electric sources for F10, the free-field equations would be
d ? F10 = 0, which implies that the Romans mass is a constant, therefore
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there are no propagating degrees of freedom associated to it. Still we can
add F0 to the Lagrangian and think of it as another free parameter.

As conjectured in [25], massive type IIA shows a striking feature: it
cannot be strongly coupled. There is indeed a general argument which shows
that the dilaton cannot be made arbitrarily large for a solution of type IIA
supergravity with non-zero Romans mass, which means that there cannot be
a lift to M-theory.

D-BRANES and M-BRANES

String theory has a variety of classical solutions corresponding to extended
black holes, called black p-branes. These are charged massive objects that
extend in p-spacelike directions and interact with the gravitational and gauge
fields, just like charged black holes in general relativity. The equation of
motion for a (p+ 2)-form field strength in presence of a localized p-brane in
type II supergravity is:

d ? Fp+2 = δp−brane . (2.0.7)

As in electro-magnetism, we can measure the charge by the flux on a
sphere surrounding the source. For an extended object with (p + 1) space-
time directions, the transverse space is R9−p and the correct definition is∫
S8−p ∗Fp+2 = N .

The most general p-brane solution in flat space can be found in many
textbooks, for example [23, 24]; it has a singularity surrounded by an inner
and an outer horizons, similarly to Kerr black holes. When the two horizons
are coincident we speak of extremal p-branes, or Dp-branes. These are
essentially a generalization of extremal black holes in general relativity. The
corresponding type II supergravity solution can be written as

ds2
10 = H(ρ)−1/2ds2

R1,p +H(ρ)1/2
(
dρ2 + ρ2ds2

S8−p

)
, (2.0.8)

Cp+1 = H(ρ)volR1,p , (2.0.9)

eφ = gSH(ρ)(3−p)/4 , (2.0.10)

H(ρ) = 1 +
cpgsNl

7−p
s

ρ7−p , (2.0.11)

where ρ is the radial direction in the transverse space R9−p and R1,p paramet-
rizes the so-called worldvolume of the Dp-brane. The symmetry of the
solution is SO(9-p) × ISO(1,p), corresponding to rotations in the transverse
space and to the Poincaré group in the worldvolume. The function H(ρ) is
an harmonic function in the transverse space to the Dp-brane, just like in
the case of black holes in general relativity. The quantity cp is a dimensional
factor given by cp = (2

√
π)5−pΓ

(
7−p

2

)
.

This solution has a physical singularity at ρ = 0 where the source is
located and two coincident horizons at: (ρ+)7−p = cpgsN(ls)

7−p. In general
relativity extremal black holes saturate the bound M ≥ |Q|, coming from the
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requirement for the absence of a naked singularity. In the case of Dp-branes
we have saturation of analogous bound:

M ≥ N

(2π)pgsl
p+1
s

, (2.0.12)

where M is the mass and N is the charge. It is not surprising that extremal
solutions preserve part of the supersymmetry of the theory; this is also the
case in four dimensions, where the extremal Reissner-Nordstrom black hole is
a supersymmetric solution of N = 2 supergravity which preserves half of the
supersymmetry. Analogously the Dp-brane solution of type IIA supergravity
preserves sixteen of the thirty-two supercharges.

The saturation of the aforementioned bound is what defines a so-called
BPS state. BPS states are protected by supersymmetry, so they cannot
disappear from the spectrum and they must be regarded as fundamental
degrees of freedom.

Indeed, there are some extra degrees of freedom living on the worldvol-
ume of D-branes. So far we have discussed these objects using the classical
supergravity, but this description is only appropriate when the curvature of
the brane geometry is small compared to the string scale, so that stringy
corrections are negligible. Since the strength of the curvature is character-
ized by ρ+, this requires ρ+ � ls. To suppress string loop corrections, the
effective string coupling gs also needs to be kept small.

Alternatively, D-branes can be defined from the worldsheet perspective
as planes on which open strings can end; the letter D is for Dirichlet, the
type of boundary condition that one has to impose on some of the worldsheet
scalars on these open strings.

By quantizing open strings ending on extended planes we indeed find
massless excitations corresponding to a vector multiplet with sixteen super-
charges. We also find a tower of massive string modes with squared masses
of order 1/l2s . The effective action for worldvolume fields and the interac-
tion with the background can be determined by the open plus closed string
perturbative expansion. Its bosonic part reads

SDp =
1

lp+1
s

∫
dxp+1

(
e−φ

√
det (g + 2πl2sf +B) + e2πl2s+B

∑
k

Ck| p+1

)
,

(2.0.13)
where f is the brane worldvolume field strength. The first term is called
the Dirac-Born-Infeld action; If φ is constant and if B = 0 = f , this term
is just the ordinary volume of the (p + 1)-dimensional worldvolume. The
second term is called the Wess-Zumino term and generalizes to an extended
object the coupling

∫
dxA of the electro-magnetic potential A to a point-like

particle with one-dimensional worldline.
By expanding up to two-derivatives in the gauge fields this Lagrangian,

we get an effective action for gauge fields: the U(N) gauge theory in (p+ 1)-
dimensions with sixteen supercharges, where N is the number of coincident
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Dp-branes. We can thus say that multiple D-branes allow to realize non-
abelian gauge theories in string theory. Historically, the p-branes were orig-
inally found as classical solutions to supergravity, and later it was pointed
out by Polchinski that D-branes give their full string theoretical description.

It is worth giving a list of all possible types of branes that are allowed in
string theory [26]:

D0 D2 D4 D6 D8 (IIA) , (2.0.14)

D1 D3 D5 D7 D9 (IIB) .

As we mentioned, from the point of view of supergravity a Dp-brane is
en electric source for an Fp+2 generalized field strength, as defined by Eq.
(2.0.7). Analogously, according to electro-magnetic duality, a D(6−p)-brane
is a magnetic source, since: d ? F8−p = dFp+2 = δD(6−p). Something special
happens for D8-branes, which couple to a spacetime filling flux F10 = ?F0;
this is exceptional in that it doesn’t have any propagating degrees of freedom,
so this is a parameter, rather than a field. In the presence of D8-branes the
Romans mass is piecewise constant, since it can jump in the points where
the D8’s are located, according to: dF0 = δD8.

There are also solitonic objects we didn’t mention so far, like the NS5-
brane. One way of understanding this object is as the dual to the fundamen-
tal string F1; the F1 is indeed an electric source for the two-form gauge field
B through a coupling of the type

∫
B in the string action, where the integral

is taken on the string worldsheet. The NS5-brane can be understood as the
magnetic dual of the fundamental string, that is to say as a magnetic source
for the B-field according to: dH = δNS5.

To complete the possible spectrum of membranes we still have to consider
M-theory. As we mentioned, eleven-dimensional supergravity has a four-
form flux G4; analogously to what happens for D-branes, a two-dimensional
membrane called M2-brane can act as electric source for this flux according
to: d ? G4 = δM2. Vice versa, a five-dimensional membrane or M5-brane is
the magnetic dual source.

Indeed, there exist supersymmetric solutions of eleven-dimensional super-
gravity with localized sources corresponding to these membranes. Here we
only give the solution corresponding to a stack of N coincident M5-branes,
which will be useful for later purposes. It reads

ds2
11 = H(ρ)−1/3ds2

R1,5 +H(ρ)2/3
(
dρ2 + ρ2ds2

S4

)
, (2.0.15)

G4 = NvolS4 , (2.0.16)

H(ρ) = 1 +
πNl3p
ρ3

. (2.0.17)

M-branes are the possible solitonic objects in M-theory. They are actu-
ally the fundamental degrees of freedom of M-theory, the analogue of the
fundamental string F1 in string theory. Unfortunately, their sigma model
is very hard to quantize, but we might think that if we were able to do so,
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they would give rise to a quantum gravity theory that reduces to eleven-
dimensional supergravity at low energies, just like superstrings give rise to
supergravity at low energies in ten dimensions.

Indeed, it is easy to understand an M2-brane as the S-dual of a funda-
mental string: this is achieved wrapping the M2 along the eleventh compact
direction in (2.0.4), so that it looks like a string to a ten-dimensional ob-
server. Playing with S-duality it is possible to obtain all types of D-branes
in type IIA string theory; for example if an M2 doesn’t wrap the eleventh
direction along which we reduce, it looks like a D2-brane in ten dimensions.
Similarly, reducing an M5-brane to ten dimensions gives a D4 if the M5 is
wrapped along x11, an NS5 otherwise.

We are still missing two types of D-branes: D0’s and D6’s. States with k
D0-branes can be understood as Kaluza-Klein tower of masses for the extra
S1 in (2.0.4). But what about a D6-brane? This is a magnetic source for
F2 whose gauge field A1 describes the connection for the fibration (2.0.4),
namely it becomes a part of the eleven-dimensional metric. This means the
D6 itself becomes a feature of the manifold M11, we can say that it lifts to
pure geometry.

Finally there are D8-branes in type IIA supergravity, but these don’t
have a counterpart in eleven dimensions, since they are sources for the Ro-
mans mass F0, and we already mentioned that massive type IIA supergravity
cannot lift to M-theory.

THE CORRESPONDENCE AdS/CFT

String theory provides us with a powerful tool for the study of conformal field
theories in various dimensions: the AdS/CFT correspondence, an explicit
realization of the so-called holographic principle. Holography claims that the
degrees of freedom in (p + 2)-dimensional quantum gravity are much more
reduced than we naively think, and will be comparable to those of quantum
many body systems in (p + 1)-dimensions [8, 9]. This was essentially found
by remembering that the entropy of a black hole is not proportional to its
volume, but to its area of the event horizon Σ (the Bekenstein-Hawking
formula [14,15]):

SBH =
Area(Σ)

4GN
,

where GN is the Newton constant.

AdS/CFT [27] is an example of gauge gravity duality, that relates a
theory of quantum gravity in Anti-de Sitter space in (p+ 2)-dimensions to a
conformal field theory in (p+1)-dimensions living on its boundary. Crucially,
AdS/CFT is a weak strong duality, that is to say it relates the gravity theory
at weak coupling to a field theory in the strong coupling regime and vice
versa. This means that it is somehow possible to use gravity to investigate
strongly coupled CFT’s through holography.
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The original Maldacena conjecture states that N = 4 super-Yang-Mills
is dual to the type IIB string background AdS5 × S5. N = 4 SYM is the
maximally supersymmetric extension of QCD; thanks to supersymmetry the
theory is so constrained that the β function describing the renormalization
group flow vanishes, so that the theory turns out to be scale invariant also at
the quantum level. The conjecture arose from the observation that the two
theories can be obtained by the same decoupling limit ls → 0, performed on
the worldvolume theory and on the back-reacted metric in spacetime.

Let us briefly explain how. In the string theory realm, N = 4 SYM
with gauge group U(N) can be realized as low-energy effective action for N
parallel D3-branes in Type IIB. This can be seen expanding in powers of ls
the action for the coupled brane/bulk system (2.0.13), and taking the limit
ls → 0. Indeed, it turns out that the interactions between the gauge fields
living on the brane and the gravity degrees of freedom can be neglected, and
the Lagrangian reduces to that of N = 4 SYM.

On the other hand we saw that a D3-brane is a BPS solution of the
equation of motion of type IIB supergravity, whose metric is given by Eq.
(2.0.8) for p = 3. We can now perform the decoupling limit for this solution,
which turns out to be equivalent to taking ρ→ 0 and zooming on the region
where the branes sit. For this reason this procedure is called a near-horizon
limit. We get

ds2
10 = R2

(
ds2
AdS5

+ ds2
S5

)
, R2 = l2s

√
4πNgs . (2.0.18)

What happened is that the radial direction ρ of the transverse space R6

joined the parallel directions to the brane to give the AdS5 metric in Poincaré

coordinates: ds2
AdS5

= dρ2

ρ2 + ρ2ds2
R1,3 . In this limit the physical singularity

in ρ = 0 corresponding to the point where the D3 was located disappeared,
but we are left with a constant five-form flux along the volume of AdS5.
Crucially, the near horizon geometry has supersymmetry enhancement to
thirty-two supercharges, the maximal possible amount.

We can understand the correspondence intuitively looking at the symme-
tries on the two sides. N = 4 SYM is a superconformal theory with conformal
symmetry O(4,2), which coincides with the isometry group of AdS5 on the
gravity side. The R-symmetry group SU(4)R is mapped into the isometry
group of the five-sphere SO(6) ∼ SU(4). Finally N = 4 has 16 supercharges
and 16 conformal supercharges, for a total of 32 supercharges which is the
same amount of supersymmetry enjoyed by the AdS5 × S5 solution in type
IIB supergravity. If we want to use a compact expression, we can say that
the symmetry on both sides is the superconformal group SU(2,2|4).

In order to understand the correspondence more deeply, it is also impor-
tant to compare the parameters in the two theories. We first have to identify
the Yang-Mills coupling as: 4πgs = g2

YM . A useful parameter for the study
of the large N limit of field theories is the so-called t’Hooft coupling, which
is defined ad: x = g2

YMN . The parameters on the CFT side can be matched
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with the two string parameters gs and ls. From Eq. (2.0.18), we get:

x

N
= 4πgs ,

√
x =

R2

l2s
. (2.0.19)

The dual string theory is useful when it is weakly coupled, that is to say
when it is described by type IIB supergravity. This happens in the combined
limits gs → 0, the regime in which quantum loops corrections are suppressed,
and ls/R → 0, which corresponds to neglecting higher derivatives terms
in the supergravity Lagrangian and massive modes in the string expansion.
This regime corresponds to the large N limit and the strong coupling x→∞
of the CFT. In other words we can say that AdS/CFT is a weak/strong
duality. This is a crucial feature of this duality, which opens to the possibility
of making computations for field theories at strong coupling using classical
supergravity.

HOLOGRAPHY for SIX-DIMENSIONAL THEORIES

So far we have considered only one particular example of AdS/CFT corre-
spondence, but many more explicit realizations of the duality can be con-
structed using D-branes and M-branes. Taking a near horizon limit is a
general method for obtaining the gravity dual of the gauge theory living on
a set of branes. This works every time the limit is able to decouple consis-
tently brane and bulk physics. The simplest possibility is given by a stack
of coincident branes in flat spacetime, but we can find many other examples
with less supersymmetry by placing branes on non-trivial singularities [28]
or considering more complicated sets of intersecting branes [29]. This allows
to realize a large variety of interesting conformal field theories in the context
of string theory.

The subject of this thesis is the holographic study of six-dimensional theo-
ries. The most famous example of CFT6 is the one living on the worldvolume
of N multiple M5-branes, which goes under the name of (2, 0) theory. No
Lagrangian description is available for it, but its impenetrability is only ap-
parent. Indeed, much has been learned about this theory in the last decade,
for example it is known that its degrees of freedom scale like N3.

Despite the difficulties that one finds in describing its gauge degrees of
freedom, the holographic dual of the (2, 0) theory is defined in a simple way
as near horizon geometry of the M5-brane solution (2.0.15). Taking the
limit lp → 0 we get the maximally supersymmetric vacuum AdS7 × S4 of
eleven-dimensional supergravity. This reads

ds2
11 = R2

(
ds2
AdS7

+
1

4
ds2
S4

)
, R = 2lp(πN)1/3 , (2.0.20)

where ds2
AdS7

= dρ2

ρ2 +ρ2ds2
R1,5 . Again, the physical singularity in ρ = 0 where

the branes were located disappeared. The solution also has a constant a four-
form flux G4 proportional to the volume of the four-sphere, with flux integer
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N . The SO(5) isometry of the four-sphere is dual to the Sp(2) R-symmetry
of the (2, 0) theory.

It is very instructive for our purposes to reduce the M5-solution (2.0.20)
to type IIA supergravity, according to the reduction Ansatz (2.0.5). To
achieve this we parametrize the S4 as a warped product of S1 and S3, and
then use Hopf coordinates for S3, that is to say we see the three-sphere as a
non-trivial fibration of a circle over a two-sphere.

All in all, ds2
S4 = dα2 + sinα2ds2

S3 = dα2 + sinα2( 1
4ds

2
S2 + (dz + A1)2),

where dA1 = − 1
2volS2 . As shown in App. B, reducing along the vector ∂z

breaks half of the supersymmetry. The resulting geometry in ten dimensions
is described by the metric:

R3

2
sinα

(
ds2
AdS7

+
1

4

(
dα2 +

1

4
sinα2ds2

S2

))
, (2.0.21)

with two-form flux F2 ∼ volS2 and three-form H proportional to the volume
of the internal manifold M3. Notice that (2.0.21) might appear problematic
for two reasons. First of all, the warping function goes to zero at the two poles
α = 0, α = π; second, the internal metric is singular at poles because of the
1/4 factor in front of ds2

S2 . However these singularities can be interpreted
physically as D6 and anti-D6 singularities! To see this let us expand the

solution around the pole α = 0; we get: ds2
M3
∼ α(dα2 + α2

4 ds
2
S2), which

after the change of coordinates α = ρ1/2 gives the same type of singular
behavior of the D6-brane solution of Eq. (2.0.8).

It is not surprising that a D6 is lifted to pure geometry in eleven di-
mensions, but what happened to the M5-branes? We mentioned that the
S-dual of an M5-brane is an NS5-brane, whenever the M5 does not wrap
the eleventh dimension. Indeed, the solution (2.0.21) has a non-vanishing H
with flux integer N ; this signals the presence of N coincident NS5’s which
disappeared in the near horizon limit.

Summarizing, reducing the M5-solution to type IIA supergravity we got
a new brane configuration involving both D6’s and NS5’s. More precisely,
before the near horizon limit the configuration should be given by a stack of
N coincident NS5-branes, with a D6-brane ending on them from both sides.
The NS5’s extend along the directions x0, ..., x5 that parametrize R1,5 in
Eq. (2.0.15), while the D6’s also extend along the radial coordinate ρ of R5,
which becomes the radial coordinate of AdS7 after the near horizon limit.

As conjectured long ago in [22], the degrees of freedom of the NS5-D6 sys-
tem are described in the decoupling limit by a (1, 0) six-dimensional confor-
mal field theory, with R-symmetry group Sp(1) corresponding to the SO(3)
isometry of the two-sphere.

Infinite more possible (1, 0) theories can be engineered in type IIA. Per-
haps the simplest generalization occurs when one introduces orbifold singu-
larities [30–32]. From the holographic perspective, however, these theories
are not very different: their dual is simply AdS7 × S4/Zk [33,34]. When we
reduce it to ten dimensions, we get the metric (2.0.21) rescaled by a factor
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of 1/k, which corresponds to two stacks of k D6’s and k anti-D6’s at the two
poles. This brane configuration is represented in figure (2.1) together with
a sketch of the internal manifold.N

k

k

N

∼ =
(a)

N

k

k

N

∼ =

(b)

Figure 2.1: In (a), a sketch of the internal manifold M3 in Eq. (2.0.21);
the cusps represents the D6 stacks. In (b), the brane configuration whose
near-horizon should originate Eq. (2.0.21). The dot represents a stack of N
coincident NS5-branes; the horizontal lines represent k D6-branes ending on
them.

More general theories with (1, 0) supersymmetry can be obtained in the
AdS/CFT setup via configurations involving NS5, D6, and also D8-branes.
Indeed, the advantage of the IIA description is that one can modify the
setup to add Dirichlet boundary conditions for the seven-dimensional gauge
theory on the D6-branes, by having them end on two stacks of D8-branes. In
the decoupling limit these configurations give rise to AdS7 vacua in massive
type IIA supergravity, which were found relatively recently: first numerically
in [1], then analytically in [2]. Their interpretation as the duals of the (1, 0)
CFT’s was given in [35]. Up to orbifolds and orientifolds, these are the most
general AdS7 solutions in perturbative type II supergravity. The internal
space M3 is an S2 fibration over an interval, parametrized by a coordinate
r ∈ [r−, r+]:

e2Ads2
AdS7

+ dr2 + e2Av2ds2
S2 . (2.0.22)

A (the “warping”) and v are functions of r; so is the dilaton φ. The
S2 has a round metric, and its isometry group is the SU(2) R-symmetry of
the (1, 0) CFT6. It shrinks at the endpoints r± of the interval. The fluxes
have all the components compatible with the R-symmetry: F0, F2 ∝ volS2 ,
H ∝ dr ∧ volS2 . We will explain how to obtain this infinite class of analytic
solutions in the next chapter; here we just give a simple example. The metric
can be written as

nD6

F0

√
ρ

(
4

3
ds2

AdS7
+

dρ2

4ρ(3− ρ)
+
ρ

3

(3− ρ)

(12− ρ2)
ds2
S2

)
, (2.0.23)

where ρ ∈ [0, 3]. Around ρ = 0 the metric behaves as ∼ 16
√
ρds2

AdS7
+

1√
ρ (dρ2 + ρ2ds2

S2), which is the correct behavior near a stack of D6-branes

wrapping AdS7. On the other hand around ρ = 3, the internal metric turns
into flat space: dρ̃2 + ρ̃2ds2

S2 , after the change of coordinates ρ̃ =
√
ρ− 3, so

we get a regular point.
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(a) (b)

Figure 2.2: In (a), a sketch of the internal M3 in Eq. (2.0.23); the cusp
represents the single D6 stack. In (b), the brane configuration whose near-
horizon should originate Eq. (2.0.23). The dot represents a stack of N NS5-
branes; the horizontal lines represent nD6 D6-branes ending on them.

Having a holographic description for the (1, 0) CFT6’s makes it possible
to investigate some aspects of these theories, which are still unknown in large
part due to the lack of a Lagrangian description. For example, we can count
their degrees of freedom.

A common way of estimating the number of degrees of freedom using
holography in any dimension is to introduce a cut-off in AdS, and estimate
the Bekenstein-Hawking entropy. In a warped compactification with non-
constant dilaton, this is given by the integral: F0,6 =

∫
M3

volM3
e5A−2φ.

This quantity can be computed explicitly.

In the case of the (2, 0) theory, Eq (2.0.20), we reproduce the N3 scaling
behavior: F0,6 = 128

3 π4N3; for its Zk orbifold, this number is multiplied by
k2. In the case of Fig. 2.2(a), using Eq. (2.0.23) we get F0,6 = 512

45 π
4n2

D6N
3.

More general solutions, also involving D8-branes are described in chapter 3.

UNIVERSAL CONSISTENT TRUNCATION

Interesting phenomena arise upon compactification of six-dimensional theo-
ries to lower dimensions. For example, reducing the (2, 0) theory on a T 2

gives again N = 4 super-Yang-Mills. More interestingly, compactifying on a
Riemann surface Σg, one breaks conformal invariance, but the resulting four-
dimensional theory flows in the infrared to an N = 2 conformal field theory.
Theories obtained this way have interesting duality properties encoded by
Σg [20, 36].

On the gravity side, the holographic duals of the compactifications of the
(2, 0) theory can be obtained by replacing AdS7 with either AdS5×Σ2 [37,38]
or AdS4 × Σ3 [39–41], where Σ2 is a Riemann surface and Σ3 is a compact
quotient of hyperbolic space. In both these cases the internal S4 is also
distorted in a certain way.

It is natural to wonder whether a similar process can also be applied to
the AdS7 solutions of Eq. (2.0.22). This would indicate that the correspond-
ing (1, 0) CFTs give rise upon compactifications to CFTs in four and three
dimensions, just like for the (2, 0) theory. In recent work [3,4] we found that
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this can indeed be done.
In the process of doing so, we were able to find analytic expressions for

the AdS7 solutions themselves, and analytic maps ψ5, ψ4 from those to the
AdS5 × Σ2 and AdS4 × Σ3 solutions. These maps are invertible and they
can be composed. So in the end we have three new classes of infinitely
many backgrounds with analytic expressions, holographically dual to CFTs
in six, four, and three dimensions, with respectively eight, four, and two
supercharges.

The map ψ4 associates the AdS7 metric, Eq. (2.0.22), to√
5

8

[
5

8
e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

e2Av2

1− 6v2
Ds2

S2

]
, (2.0.24)

with Σ3 a compact quotient of hyperbolic space with constant curvature.
S2 is now fibered over Σ3, in a way associated to its tangent bundle; even
though the S2 is still round, the total internal space has no isometries. The
solution has now four supercharges; it is dual to an N = 1 CFT3. The fluxes
acquire also components along Σ3.

Similarly, the map ψ5 takes the metric, Eq. (2.0.22), to√
3

4

[
3

4
e2A

(
ds2

AdS5
+ ds2

Σ2

)
+ dr2 +

e2Av2

1− 4v2
Ds2

S2

]
, (2.0.25)

with Σ2 a Riemann surface. S2 is fibered over Σ2 via one of its U(1) isome-
tries; the isometry group is now this U(1), which is the R-symmetry of the
N = 1 superalgebra of the CFT4. Again the fluxes acquire components
along Σ2.

This is how the AdS7 solutions get mapped to AdS4 and AdS5 solutions.
What is perhaps nicer than expected is that this map is universal. Namely,
even though there are infinitely many AdS7 solutions, the map to obtain
the AdS5 and AdS4 metric is always the same. Moreover, the two maps are
very similar to each other: they differ only by the value of certain numerical
factors.

Indeed, this universality can be extended to a complete reduction Ansatz
for massive type IIA supergravity on the internal manifold M3, where AdS7

gets replaced by any seven-dimensional metric gµν , and the internal space
gets distorted in a way that depends on a single scalar parameterX according
to the following formula:

X
15
2 e2Ads2

7 +X
5
2

(
dr2 +

e2Av2

1 + 16v2(X5 − 1)
Ds2

S2

)
, (2.0.26)

where X takes different values for the three classes of vacua: X5={1, 3
4 ,

5
8},

for AdS7, AdS5, AdS4 respectively.
The resulting seven-dimensional effective theory has bosonic fields X and

gµν themselves, together with a three-form potential, and an SU(2) gauge
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field which is related to the fibration of the internal space over the seven
external dimensions. This effective theory is the so-called minimal gauged
supergravity in seven dimensions [42,43], which describes the dynamics of (a
gauged version of) the gravity multiplet with sixteen supercharges and has
AdS7 as maximally supersymmetric vacuum.

It is a subsector of the bigger “maximal” [44] theory, which describes the
gravity multiplet with thirty-two supercharges and has gauge group SO(5).
Both theories can be obtained [45, 46] as consistent truncations from eleven
dimensions.

Here we describe how to obtain the minimal theory from massive IIA,
in infinitely many ways, corresponding to the infinite possible brane config-
urations involving NS5’s, D6’s and D8’s. In each of these reductions, the
supersymmetric AdS7 vacuum is one of the solutions (2.0.22). This is per-
haps surprising, but the idea is that, in reducing, we are only using the
ordinary differential equation (ODE) that the internal geometry has to solve
in the vacuum, and not the details of the individual solution.

Vice versa, we can uplift to massive IIA any solution of the seven-
dimensional supergravity, in infinitely many ways. For example, minimal
gauged supergravity also has “Renormalization Group (RG) flow” solutions
that connect the above AdS5 and AdS4 backgrounds to the AdS7 maxi-
mally supersymmetric vacuum. This shows conclusively that the solutions
(2.0.24, 2.0.25) are indeed dual to compactifications on Σ2 and Σ3 of the
six-dimensional (1, 0) CFT’s.

Minimal gauged supergravity also admits AdS3×Σ4 solutions, preserving
N = 1 and N = 2 supersymmetry. In the latter case Σ4 is a Kähler–Einstein
manifold of negative constant curvature, while in the former case Σ4 is (a
compact quotient of) hyperbolic space H4. The corresponding CFT duals
are two-dimensional theories with (0, 2) and (0, 1) supersymmetry. Uplifting
these solutions yields new AdS3 solutions of massive IIA supergravity. On the
field theory side, this implies that all the six-dimensional CFT’s of [22,35,47]
can be compactified on four-manifolds Σ4 to produce two-dimensional CFT’s.

The universal character of the truncation implies that supergravity in
seven dimensions describes a sector common to all the six-dimensional (1, 0)
CFT’s engineered by NS5–D6–D8-brane intersections, including also the
(2, 0) theory itself, described by the original M-theory reduction of [45]. This
is just a first step towards a more complete understanding of these mysterious
theories. Beyond this common sector, discerning finer differences between
the CFT6’s would require more sophisticated reduction procedures, where
one keeps more internal modes. For example, the Kaluza–Klein spectrum
of the AdS7 ×M3 backgrounds, beyond the massless modes, can be used to
analyze the spectrum of the dual operators.



Chapter 3

All AdS7 solutions of type
II supergravity

As we stressed in the introduction, the study of six-dimensional conformal
field theories is a challenging subject. Even thought they cannot be given a
Lagrangian description, some examples are known to exist thanks to string
theory. This is the case for the (2, 0)-superconformal field theory living on
the worldvolume of M5-branes.

This prompts the question of whether other non-trivial six-dimensional
theories exist. There are in fact several other string theory constructions
[22, 31, 33, 47] that would engineer such theories. Progress has also been
made (see for example [48,49]) in writing explicitly their classical actions.

Holography offers another way to establish the existence of superconfor-
mal theories in six dimensions, looking for supersymmetric AdS7 solutions in
string theory. In this section we explain how these solutions can be obtained.
As we anticipated, M-theory has only an AdS7 × S4 (which is holographi-
cally dual to the (2, 0) theory) or an orbifold thereof. That leaves us with
AdS7 ×M3 in IIA with non-zero Romans mass F0 6= 0 (which cannot be
lifted to M-theory) or in IIB. These solutions were classified in [1]; the result
is that there are no such solutions in IIB, while infinitely many do exist in
IIA with non-zero Romans mass F0.

The supersymmetry equations for a AdS7 vacua can be derived using
generalized geometry techniques, first introduced in four dimensions in [50]
with the so-called pure spinor formalism. Analogous pure spinor equations
were derived in [51] for Mink6 ×M4. Viewing AdS7 as a warped product
of Mink6 with a line allowed then to obtain a system valid for AdS7 ×M3.
A similar trick was applied in [52] to derive a system for AdS5 ×M5 from
Mink4 ×M6. The AdS7 system is written in terms of differential forms sat-
isfying some algebraic constraints; mathematically, these constraints mean
that the forms define a generalized identity×identity structure on TM3⊕T ∗M3

,
which in turn can be written in terms of a vielbein {ea} and some angles.
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Unlike the previous cases, supersymmetry puts strong constraints on the
geometry of the internal manifold without any assumption. Indeed, the
equations determine explicitly the vielbein {ea} in terms of derivatives of
our parameterization function. This gives a local, explicit form for the met-
ric, without any Ansatz. The resulting metric describes an S2 fibration over
a one-dimensional space. This feature has a nice holographic interpretation:
these solutions are dual to (1, 0) superconformal theory has an Sp(1)∼=SU(2)
R-symmetry group, which should appear as the isometry group of the inter-
nal space M3.

The existence of a solution was then reduced to a system of coupled
ODEs, which at first were studied numerically. Later on compactifications
to AdS4 and AdS5 were considered in [3, 4]. Remarkably, the AdS5 system
of equations turned out much simpler than the ones in AdS7 and AdS4; so
much so that it was possible to integrate it analytically! Meanwhile, it was
possible to map the system of ODE’s for the AdS7 vacua to those in AdS4

and AdS5. Making use of these maps, we were able to produce AdS7 and
AdS4 solutions as well.

All in all, an infinite class of analytic AdS7 solutions can be given. Their
holographic interpretation was given in [35]; they are dual to the super-
conformal (1, 0) theories in six dimensions, describing the degrees of freedom
of brane systems involving NS5’s, D6’s and D8’s first considered in [22].

3.1 Supersymmetry and pure spinors in d = 3

In this section, we give a system of pure spinor equations in three dimen-
sions that is equivalent to preserved supersymmetry for solutions of the type
AdS7×M3. This was derived by a commonly-used trick: namely, by consid-
ering AdSd+1 as a warped product of Minkd and R.

3.1.1 Pure spinor equations for AdS7 ×M3

Preserved supersymmetry for Mink4 ×M6 was found [50] to be equivalent
to the existence on M6 of an SU(3) × SU(3) structure satisfying certain
differential equations reminiscent of generalized complex geometry [53, 54].
Similar methods can be useful in other dimensions. For Mink6×M4 solutions,
[51] found a system in terms of SU(2) × SU(2) structure on M4, described
by a pair of pure spinors φ1,2.

We would like to classify solutions of the type AdS7 × M3. These in
general will have a metric

ds2
10 = e2Ads2

AdS7
+ ds2

M3
, (3.1.1)

where A is a warping function. A genuine AdS7 solution is one where not
only the metric is of the form (2.0.22), but where there are also no fields
that break its SO(6,2) invariance. This can be easily achieved by additional
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assumptions: for example, A should be a function of M3. The fluxes F and
H, should now be forms on M3. For IIA, F = F0 + F2 + F4: in order not
to break SO(6, 2), we impose F4 = 0, since it would necessarily have a leg
along AdS7; for IIB, F = F1 + F3.

Moving to fermions, a decomposition of gamma matrices appropriate to
seven-dimensional compactifications reads

γ(7+3)
µ = γ(7)

µ ⊗ 1⊗ σ2 ,

γ
(7+3)
i+6 = 1⊗ γi ⊗ σ1 ,

(3.1.2)

where γ
(7)
µ , µ = 0, . . . , 6, are a basis of seven-dimensional gamma matrices,

and γi, i = 1, 2, 3, are a basis of gamma matrices in three dimensions (which
in flat indices can be taken to be the Pauli matrices). For a supersymmetric
solution of the form AdS7 ×M3, the supersymmetry parameters are of the
form

ε
(7+3)
1 = (ζ ⊗ χ1 + ζc ⊗ χc1)⊗ v+ ,

ε
(7+3)
2 = (ζ ⊗ χ2 ∓ ζc ⊗ χc2)⊗ v∓ .

(3.1.3)

Here, χ1,2 are spinors on M3, with χc1,2 ≡ B3χ
∗
1,2 their Majorana con-

jugates; a possible choice of B3 is B3 = σ2. ζ is a spinor on AdS7, and
ζc ≡ B7ζ

∗ is its Majorana conjugate; there exists a choice of B7 which is
real and satisfies B7γµ = γ∗µB7. (It also obeys B7B

∗
7 = −1, which is the

famous statement that one cannot impose the Majorana condition in seven
Lorentzian dimensions.) The ten-dimensional conjugation matrix can then
be taken to be B10 = B7 ⊗ B3 ⊗ σ3; the last factor in (3.1.3), v±, are then

spinors chosen in such a way as to give the ε
(7+3)
i the correct chirality, and

to make them Majorana. They satisfy: σ3v± = ±v±.
The presence of the cosmological constant in seven dimensions means

that ζ is not constant, but rather that it satisfies the so-called Killing spinor
equation, which for RAdS = 1 reads

∇µζ =
1

2
γ(7)
µ ζ . (3.1.4)

One class of solutions to this equation [55,56] is simply of the form

ζ+ = ρ1/2ζ0
+ , (3.1.5)

where here ρ is the radial coordinate of AdS7 in Poincaré coordinates, which
express AdS7 as a warped product of Mink6 and R. ζ0

+ is a spinor constant
along Mink6 and such that γρ̂ζ

0
+ = ζ0

+ (the hat denoting a flat index).
Following the approach of generalized geometry, many of the data of a

supergravity vacuum can be encoded in a pair of pure spinors ψ1, ψ2 , which
are defined as the following bispinors:

ψ1 = χ1 ⊗ χ†2 , ψ2 = χ1 ⊗ χc †2 . (3.1.6)
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Using the Clifford map, which associates to each generator of the SO(3)
algebra σi a dxi, it is possible to see bispinors as differential forms. Dealing
with differential forms is much simpler than dealing with spinors, reason
why the approach of generalized geometry is a very useful strategy to find
supersymmetric vacua in any dimensions.

ψ1,2 are differential forms on M3, but not just any forms. (3.1.6) imply
that they should obey some algebraic constraints. Those constraints could
be interpreted in a fancy way as saying that they define an identity×identity
structure on TM3

⊕ T ∗M3
. However, three-dimensional spinorial geometry is

simple enough that we can avoid such language: rather, in Sec. 3.1.2 we will
give a parameterization that will allow us to solve all the algebraic constraints
resulting from (3.1.6).

It was proved in [1] that the supersymmetry transformations of type II
supergravity for an AdS7×M3 vacuum are equivalent to the following system
of pure spinor equations:

dHIm(e3A−φψ1
±) = −2e2A−φReψ1

∓ , (3.1.7a)

dHRe(e5A−φψ1
±) = 4e4A−φImψ1

∓ , (3.1.7b)

dH(e5A−φψ2
±) = −4ie4A−φψ2

∓ , (3.1.7c)

± 1

8
eφ ∗3 λF = dA ∧ Imψ1

± + e−AReψ1
∓ , (3.1.7d)

dA ∧ Reψ1
∓ = 0 , (3.1.7e)

(ψ1,2
+ , ψ1,2

− ) = − i
2

; (3.1.7f)

again with the upper sign for IIA, and the lower for IIB.
These equations were actually derived from the analogous system for a

Mink6 × M4 solution, using the trick that a supersymmetric AdS7 × M3

solution can be viewed as a supersymmetric Mink6 ×M4 solution. (3.1.7)
can also be obtained directly from the ten-dimensional system in [57], but
other equations also appear, and extra work is needed to show that those
extra equations are redundant.

In (3.1.7) the cosmological constant of AdS7 does not appear directly,
since we have taken its radius to be one in (2.0.22). We did so because a
non-unit radius can be reabsorbed in the factor e2A in (3.1.1).

Before we can solve (3.1.7), we have to solve the algebraic constraints
that follow from the definition of ψ1,2 in (3.1.6); we will now turn to this
problem.

3.1.2 Parameterization of the pure spinors

This subsection is taken from [1, Sec. 3]. We have just obtained a system
of differential equations, (3.1.7), that is equivalent to supersymmetry for an
AdS7 ×M3 solution. The ψ1,2 appearing in that system are not arbitrary
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forms; they should have the property that they can be rewritten as bispinors
(via the Clifford map dxi1 ∧ . . .∧dxik 7→ γi1...ik) as in (3.1.6). In this section,
we will obtain a parameterization for the most general set of ψ1,2 that has
this property. This will allow us to analyze (3.1.7) more explicitly in Sec.
3.2.

We will begin with a quick review of the case χ1 = χ2, and then show
how to attack the more general situation where χ1 6= χ2.

One spinor

We will use the Pauli matrices σi as three-dimensional gamma matrices, and
use B3 = σ2 as a conjugation matrix (so that B3σi = −σtiB3 = −σ∗iB3). We
will define

χc ≡ B3χ
∗ , χ ≡ χtB3 ; (3.1.8)

notice that χc † = χtB†3 = χ.

We will now evaluate ψ1,2 in (3.1.6) when χ1 = χ2 ≡ χ; also, χ is
normalized to one. Notice first a general point about the Clifford map
αk = 1

k!αi1...ikdx
i1 ∧ . . . ∧ dxik 7→��αk ≡ 1

k!αi1...ikγ
i1...ik in three dimensions

(and, more generally, in any odd dimension). Unlike what happens in even
dimensions, the antisymmetrized gamma matrices γi1...ik are a redundant
basis for bispinors. For example, we see that the slash of the volume form is
a number: ��vol3 = σ1σ2σ3 = i. More generally we have

�α = −i��∗λα . (3.1.9)

In other words, when we identify a form with its image under the Clifford
map, we lose some information: we effectively have an equivalence α ∼=
−i ∗ λα. When evaluating ψ1,2, we can give the corresponding forms as an
even form, or as an odd form, or as a mix of the two.

Let us first consider χ⊗χ†. We can choose to express it as an odd form.
In its Fierz expansion, both its one-form part and its three-form part are a
priori non-zero; we can parameterize them as

χ⊗ χ† =
1

2
(e3 − ivol3) . (3.1.10)

(We can also write this in a mixed even/odd form as χ ⊗ χ† = 1
2 (1 + e3);

recall that the right hand sides have to be understood with a Clifford map
applied to them.) e3 is clearly a real vector, whose name has been chosen
for later convenience. The fact that the three-form part is simply − i

2vol3
follows from ||χ|| = 1. Notice also that

e3χ = σiχe
i
3 = σiχχ

†σiχ =
1

2
(−e3 − 3ivol3)χ ⇒ e3χ = χ , (3.1.11)
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where we have used (3.1.10), and that σiαkσ
i = (−)k(3−2k)αk on a k-form.

(3.1.11) also implies that e3 has norm one.1

Coming now to χ ⊗ χ, we notice that the three-form part in its Fierz
expansion is zero, since χχ = χtB3χ = 0. The one-form part is now a priori
no longer real; so we write

χ⊗ χ =
1

2
(e1 + ie2) . (3.1.12)

Similar manipulations as in (3.1.11) show that (e1 + ie2)χ = 0; using this,
we get that

ei · ej = δij . (3.1.13)

In other words, {ei} is a vielbein, as notation would suggest.

Two spinors

We will now analyze the case with two spinors χ1 6= χ2 (again both with
norm one). We will proceed in a similar fashion as in [58, Sec. 3.1].

Our aim is to parameterize the bispinors ψ1,2 in (3.1.6). Let us first con-

sider their zero-form parts, χ†2χ1 and χc †2 χ1. The parameterization (3.1.11)
can be applied to both χ1 and χ2, resulting in two one-forms ei3. (This no-
tation is a bit inconvenient, but these two one-forms will cease to be useful
very soon.) Using then (3.1.10) twice, we see that

|χ†2χ1|2 = χ†2χ1χ
†
1χ2 = Tr(χ1χ

†
1χ2χ

†
2) =

1

4
Tr
(
(1 + e1

3)(1 + e2
3)
)

=
1

2
(1+e1

3·e2
3) .

(3.1.14)
Similarly we have

|χc †2 χ1|2 = Tr(χ1χ
c †
1 χ2χ

c †
2 ) =

1

4
Tr
(
(1 + e1

3)(1− e2
3)
)

= 1− |χ†2χ1|2 .
(3.1.15)

Both |χ†2χ1|2 and |χc †2 χ1|2 are positive and ≤ 1. Thus we can parameterize

χ†2χ1 = eia cos(ψ), χc †2 χ1 = eib sin(ψ). (The name of this angle should not
be confused with the forms ψ1,2.) By suitably multiplying χ1 and χ2 by two
phases, we can assume a = −π2 and b = π

2 ; we will reinstate generic values
of these phases at the very end. Thus we have

χ†2χ1 = −i cos(ψ) , χc †2 χ1 = i sin(ψ) . (3.1.16)

Just as in [58, Sec. 3.1], we can now introduce

χ0 =
1

2
(χ1 − iχ2) , χ̃0 =

1

2
(χ1 + iχ2) . (3.1.17)

1An alternative, perhaps more amusing, way of seeing this is to consider χ⊗χ† as a two-
by-two spinorial matrix. It has rank one, which will be true if and only if its determinant
is one. Using that det(A) = 1

2
(Tr(A)2−Tr(A2)) for 2×2 matrices, one gets easily that e3

has norm one.
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In three Euclidean dimensions, a spinor and its conjugate form a (pointwise)
basis of the space of spinors. For example, χ0 and χc0 are a basis. We can
then expand χ̃0 on this basis. Actually, its projection on χ0 vanishes, due
to (3.1.16): χ†0χ̃0 = i

4 (χ†1χ2 + χ†2χ1) = 0. With a few more steps we get

χ̃0 =
χc †0 χ̃0

||χ0||2
χc0 = tan

(
ψ

2

)
χc0 . (3.1.18)

We can now invert (3.1.17) for χ1 and χ2, and use (3.1.18). It is actually

more symmetric-looking to define χ0 ≡ cos
(
ψ
2

)
χ, to get

χ1 = cos

(
ψ

2

)
χ+ sin

(
ψ

2

)
χc , χ2 = i

(
cos

(
ψ

2

)
χ− sin

(
ψ

2

)
χc
)
.

(3.1.19)
We have thus obtained a parameterization of two spinors χ1 and χ2 in terms
of a single spinor χ and of an angle ψ. Let us count our parameters, to see if
our result makes sense. A spinor χ of norm 1 accounts for 3 real parameters;
ψ is one more. We should also recall we have rotated both χ1,2 by a phase at
the beginning of our computation, to make things easier. We have a grand
total of 6 real parameters, which is correct for two spinors of norm 1 in three
dimensions.

We can now use the parameterization (3.1.19), and the bilinears (3.1.10),
(3.1.12) previously obtained. As a result we get:

χ1 ⊗ χ†2 = − i
2

[e3 − i sin(ψ)e2 − i cos(ψ)vol3] . (3.1.20)

A computation along these lines allows us to evaluate χ1 ⊗ χ2 as well. We
can also reinstate at this point the phases of χ1 and χ2, absorbing the overall
factor −i. The bilinear in (3.1.20) is expressed as an odd form, but we can
also express it as a mixed even/odd form. Recalling the definition (3.1.6),
we get:

ψ1 =
eiϕ1

2
(cos(ψ) + e3) , ψ2 =

eiϕ2

2
(sin(ψ) + e1 + i cos(ψ)e2) , (3.1.21)

where the two- and three-form components are obtained via Hodge duality,
Eq. (3.1.9). Notice that the normalization condition (3.1.7f) is satisfied
automatically.

Armed with this parameterization, we will now attack the system (3.1.7)
for AdS7 ×M3 solutions.

3.2 Constrained geometry on M3

In the previous section, we have obtained the system (3.1.7), equivalent to
supersymmetry for AdS7×M3 solutions. The ψ1,2

± appearing in that system
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are not just any forms; they should have the property that they can be
written as bispinors as in (3.1.6). Also, we have obtained a parameterization
for the most general set of ψ1,2

± that fulfills that constraint; it is (3.1.21),
where {ei} is a vielbein.

Thus we can now use (3.1.21) into the differential system (3.1.7), and
explore its consequences.

3.2.1 Metric and Fluxes

We will start by looking at the equations in (3.1.7) that do not involve any
fluxes. These are (3.1.7e), and the lowest-component form part of (3.1.7a),
(3.1.7b) and (3.1.7c).

First of all, we can observe quite quickly that the IIB case cannot possibly
work. (3.1.7a), (3.1.7b) and (3.1.7c) all have a zero-form part coming from
their right-hand side, which, using (3.1.21), read respectively

cos(ψ) cos(ϕ1) = 0 , cos(ψ) sin(ϕ1) = 0 , sin(ψ)eiϕ2 = 0 . (3.2.22)

These cannot be satisfied for any choice of ψ, ϕ1 and ϕ2. Thus we can
already exclude the IIB case.2

Having disposed of IIB so quickly, we will devote the rest of the analysis
to IIA. Actually, we already know that we can get something new only
with non-zero Romans mass, F0 6= 0. This is because for F0 = 0 we can
lift to an eleven-dimensional supergravity solution AdS7 × N4. There, we
only have a four-form flux G4 at our disposal, and the only way not to
break the SO(6,2) invariance of AdS7 is to switch it on along the internal
four-manifold N4. This is the Freund–Rubin Ansatz, which requires N4 to
admit a Killing spinor. This means that the cone C(N4) over N4 admits a
covariantly constant spinor; but in five dimensions the only manifold with
restricted holonomy is R5 (or one of its orbifolds, of the form R4/Γ × R).
Thus we know already that all solutions with F0 = 0 lift to AdS7 × S4 (or
AdS7 × S4/Γ) in eleven dimensions. We will thus focus on F0 6= 0, and use
the case F0 = 0 as a control.

In IIA, the lowest-degree equations of (3.1.7a), (3.1.7b) and (3.1.7c) are
one-forms; they are less dramatic than (3.2.22), but still rather interesting.
Using (3.1.21), after some manipulations we get

e1 = −1

4
eA sin(ψ)dϕ2 , e2 =

1

4
eA(dψ + tan(ψ)d(5A− φ)) ,

e3 =
1

4
eA
(
− cos(ψ)dϕ1 +

cot(ϕ1)

cos(ψ)
d(5A− φ)

)
.

(3.2.23)

2This quick death is reminiscent of the fate of AdS4 × M6 with SU(3) structure in
IIB. The system in [50] has a zero-form equation and two-form equation coming from the
right-hand side of its fluxless equation, which look like cos(θ) = 0 = sin(θ)J , where θ is
an angle similar to ψ in (3.1.21). This is consistent with a no-go found with lengthier
computations in [59].
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Notice that (3.2.23) determine the vielbein. Usually (i.e. in other dimen-
sions), the geometrical part of the differential system coming from super-
symmetry gives the derivative of the forms defining the metric. In this case,
the forms themselves are determined in terms of derivatives of the angles ap-
pearing in our parameterizations. This will allow us to give a more complete
and concrete classification than is usually possible.

The metric ds2
M3

= eaea, following from (3.2.23) looks quite complicated.
However, it simplifies enormously after a proper redefinition of the variables.
We first trade the two angles (ψ,ϕ1) for (x, θ) as:

sin θ ≡ sinψ√
1− x2

, x ≡ cos(ψ) sin(ϕ1) . (3.2.24)

We then introduce a new coordinate r, defined as in terms of the warping

function and the dilaton as: dr = 4eA
√

1−x2

4x−eA+φF0
dA, so that the metric now

reads

ds2
M3

= dr2 +
1

16
e2A(1− x2)ds2

S2 , ds2
S2 = dθ2 + sin2(θ)dϕ2 . (3.2.25)

Without any Ansatz, the metric has taken the form of a fibration of a
round S2, with coordinates {θ, ϕ = π−ϕ2}, over an interval with coordinate
r which has been defined in such a way that grr = 1. In other words, r
measures the distance along the base of the S2 fibration. All the remaining
functions: A, x and φ have become functions of r.

Notice that none of the scalars appearing in (3.2.25) were originally in-
tended as coordinates, but rather as functions in the parameterization of the
pure spinors ψ1,2. Usually, one would then need to introduce coordinates in-
dependently, and to make an Ansatz about how all functions should depend
on those coordinates, sometimes imposing the presence of some particular
isometry group in the process. Here, on the other hand, the functions we
have introduced are suggesting themselves as coordinates to us rather auto-
matically.

It is not hard to understand why this S2 has emerged. The holographic
dual of any solutions we might find is a (1, 0) CFT in six dimensions. Such
a theory would have SU(2) R-symmetry; an SU(2) isometry group should
then appear naturally on the gravity side as well. This is what we are seeing
in (3.2.25).

The fact that the S2 in (3.2.25) is rotated by R-symmetry also helps to
explain a possible puzzle about IIB. Often, given a IIA solution, one can
produce a IIB one via T-duality along an isometry. All the Killing vectors of
the S2 in (3.2.25) vanish in two points; T-dualizing along any such direction
would produce a non-compact solution in IIB, but still a valid one. But the
IIB case died very quickly; there are no solutions, not even non-compact or
singular ones. Here is how this puzzle is resolved. Since the SU(2) isometry
group of the S2 is an R-symmetry, supercharges transform as a doublet under
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it (we will see this more explicitly in subsection 3.2.2). Thus even the strange
IIB geometry produced by T-duality along a U(1) isometry of S2 would not
be supersymmetric.

Before we proceed in our analysis, some further constraints are coming
from the purely geometrical equations. These involve the differentials of the
functions x,A, φ. They can be summarized in the following two equations

xdx = (1 + x2)dφ− (5 + x2)dA , dφ ∧ dA = 0 , (3.2.26)

where dA can also be expressed in terms of the new radial coordinate r in the
same way we did to rewrite the local metric in (3.2.25). These two equations
imply that both x and φ are functionally dependent on A, and thus on r.

So far we have analyzed the purely geometrical equations. We still have
to look at equation (3.1.7d), which gives us the RR flux. First we compute
F0, which gives

F0 = 4xe−A−φ
3− ∂Aφ

5− 2x2 − ∂Aφ
. (3.2.27)

The Bianchi identity for F0 says that it should be (piecewise) constant. It will
thus be convenient to use this equation to eliminate ∂Aφ from our equations.

We move to the two-form flux F2, which is determined by the supersym-
metry variations to be:

F2 =
1

4

√
1− x2eA−φ

(
−1 +

F0

4
xeA+φ

)
volS2 , (3.2.28)

where
volS2 = sin(θ)dθ ∧ dϕ (3.2.29)

is the only two-form which is compatible with the SU(2) symmetry that
naturally emerged in the metric (3.2.25).

For later purposes, it is useful to give a definition to the coefficients of
the two-form flux, isolating the dependence on the Romans mass:

F2 ≡ (p− qF0) volS2 . (3.2.30)

The function q will play a crucial role in the discussion of flux quantiza-
tion. Moreover, we will see that the supersymmetry variations will eventually
reduce to a single elementary differential equation for q. Nicely, q also has a
nice geometrical interpretation:

q ≡ 1

4
eA
√

1− x2 = e−φradius(S2) . (3.2.31)

Finally, let us look at the three-form part of (3.1.7a), (3.1.7b) and (3.1.7c).
One of them can be used to determine H:

H = −(6e−A + xF0e
φ)volM3

, (3.2.32)

where volM3 is the volume form of the metric ds2
M3

in (3.2.25).
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Our analysis of the fluxes is not over: we should of course now impose
the equation of motion and the Bianchi identities. The equation of motion
for F2, d ∗ F2 +H ∗ F0 = 0, follows automatically from (3.1.7d), much as it
happens in the pure spinor system for AdS4 ×M6 solutions [50]. We should
then impose the Bianchi identity for F2, which reads dF2 −HF0 = 0 (away
from sources). This does not follow manifestly from (3.1.7d), but in fact it is
a consequence of the explicit expressions (3.2.27, 3.2.28) and (3.2.32) above.
When F0 6= 0, it also implies that the B field such that H = dB can be
locally written as

B2 =
F2

F0
+ b , (3.2.33)

for a closed two-form b. As we show in the next section, using a gauge
transformation, it can be assumed to be proportional (by a constant) to
volS2 ; we then have that it is a constant, ∂rb = 0. The equation of motion
for H, which reads for us d(e7A−2φ ∗3 H) = e7AF0 ∗3 F2 (again away from
sources), is also automatically satisfied, as shown in general in [60].

Let us now sum up the results of our analysis of (3.1.7). Most of the
supersymmetry equations determined some fields: the vielbein (3.2.23) and
the fluxes (3.2.28), (3.2.32). There are still two genuine differential equa-
tions to be solved to obtain a supersymmetric solution, coming from (3.2.26,
3.2.27). These constraints can be rewritten as a coupled system of ordinary
differential equations on the radial coordinate r. We will present and solve
this system analytically in the next section.

Right now we would like to understand more clearly the induced geometry
on the internal space. We start with a small detour to see how the R-
symmetry SU(2) emerges in the pure spinors ψ1,2.

3.2.2 Spinors

We have just seen that the metric takes the particularly simple form (3.2.25)
in coordinates (r, β, θ2); the appearance of the S2 is related to the SU(2)
R-symmetry group of the (1, 0) holographic dual.

Since these coordinates are so successful with the metric, let us see
whether they also simplify the pure spinors ψ1,2. We can start by the zero-
form parts of (3.1.21), which read

ψ1
0 = ix+

√
1− x2 cos(θ) , ψ2

0 =
√

1− x2 sin(θ)eiϕ . (3.2.34)

Recalling that (θ, ϕ) are the polar coordinates on the S2 (see the expression
of ds2

S2 in (3.2.25)), we recognize in (3.2.34) the appearance of the ` = 1
spherical harmonics

yi = {sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)} . (3.2.35)

Notice that y3 appears in ψ1 = χ1 ⊗ χ†2, while y1 + iy2 appears in ψ2 =

χ1 ⊗ χc †2 . This suggests that we introduce a 2×2 matrix of bispinors. From
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(3.1.3) we see that for IIA
(
χ1

χc1

)
and

(
χ2

−χc2

)
are both SU(2) doublets, so that

it is natural to define

Ψ =

(
χ1

χc1

)
⊗(χ†2 ,−χc †2 ) =

(
ψ1 ψ2

−(−)deg(ψ2)∗ −(−)deg(ψ1)∗

)
, (3.2.36)

where (−)deg acts as ± on a even (odd) form. The even form part can then
be written as

Ψab
+ = iImψ1

+ Id2 +
(
Reψ2

+σ1 − Imψ2
+σ2 + Reψ1

+σ3

)
, (3.2.37a)

where σα are the Pauli matrices while the odd form part is

Ψab
− = Reψ1

− Id2 + i
(
Imψ2

−σ1 + Reψ2
−σ2 + Imψ1

−σ3

)
. (3.2.37b)

(3.2.37) shows more explicitly how the R-symmetry SU(2) acts on the bispinors
Ψab, which split between a singlet and a triplet. If we go back to our origi-
nal system (3.1.7), we see that (3.1.7a), (3.1.7d), (3.1.7e) each behave as a
singlet, while (3.1.7b), (3.1.7c) behave as a triplet — thanks also to the fact
that the factor e5A−φ appears in both those equations.

More concretely, (3.2.34) can now be written as

Ψab
0 = ix Id2 +

√
1− x2 yiσi ; (3.2.38a)

the one-form part reads

Ψab
1 =

√
1− x2dr Id2 + i

[
xyidr +

1

4
eA
√

1− x2 dyi
]
σi . (3.2.38b)

The rest of Ψab can be determined by (3.1.9): Ψab
3 = −i∗3 Ψab

0 = −iΨab
0 vol3,

Ψab
2 = −i∗3 Ψab

1 . (The three-dimensional Hodge star can be easily computed
from (3.2.25).)

So the SU(2) symmetry is also manifest at the level of the pure spinors,
once the geometrical constraints coming from the supersymmetry conditions
have been imposed. In particular, the matrix Ψ is manifestly invariant under
this symmetry. Going back to the definition (3.2.36), this implies that the
symmetry acts on the doublets (χ1, χ

c
1)t and (χ2, −χc2)t in the fundamental

representation. From Eq. (3.1.3), we deduce that (ξ, ξc)t are also a doublet
under the R-symmetry, in such a way to make the ten-dimensional spinors
(ε1, ε2) invariant.

Having fixed the transformation properties of the full spinor Ansatz, we
can now go further. Comparing the expression of the pure spinors on M3

fixed by supersymmetry (3.2.38) and their definition (3.1.6) in terms of the
basis spinors, we can a posteriori determine χ1, χ2 explicitly. We choose
the following representation of the three-dimensional gamma matrices: γ1 =
σ3 , γ2 = σ1, γ3 = σ2. This choice is also motivated by the reduction of the
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massless solution AdS7×S4 from eleven dimension, as described in App. B.
With this choice, we get:

χ1 = −ie−iπ2 σ3ei
α
2 σ

3

χS2 , χ2 = e−i
α
2 σ

3

χS2 , (3.2.39)

where we have introduced a new angle: α ≡ arcsinx. Perhaps not surpris-
ingly, the two spinors turned out to be proportional to the S2 Killing spinor,
up to a unitary transformation that depends on the radial coordinate only.
The Killing spinor on S2 can be written as

χS2 = e
iθ
2 σ

1

e
ϕ
2 σ

12

χ0 , (3.2.40)

for some constant spinor χ0. It satisfies the Killing spinor equation on the
two-sphere ∇µχS2 = i

2γµχS2 , with γ1 = σ1, γ2 = σ2 in flat indices, and the
covariant derivative is defined with respect to the round metric in (3.2.25).

Nicely, in App. B we show that the explicit expression for the spinors
of the massless solution is the same as the one we got here. In the massless
case the angle α has a natural interpretation as coordinate parametrizing a
circle S1 inside S4 in hyperspherical coordinates, Eq. (A.1.2).

3.2.3 Topology

We saw that the internal manifold M3 is constrained by supersymmetry to
be an S2 fibration over an interval (3.2.25). The SU(2) isometry group of
the S2 is to be identified holographically with the R-symmetry group of the
(1, 0)-superconformal dual theory. For holographic applications, we would
actually like to know whether the total space of the S2-fibration can be made
compact.

A natural way of compactifying it would be making the two-sphere shrink
at the two end points of the interval , say rN and rS; the topology3 of M3

would then be S3. The next question to be asked is how should the sphere
shrink. In absence of sources, it has to shrink in a regular way, that is to say
with a local behavior for the metric around r ∼ rN of the type:

ds2
M3
∼ dρ2 + ρ2ds2

S2 , (3.2.41)

for ρ a function of (r−rN ). In other words, a regular solution behaves locally
like R3 near the pole.

Another possibility is to allow for sources located at the two poles, which
would result in a physical singularity in the metric. Once again, the possible
sources and thereby the ways the sphere can shrink are dictated by super-
symmetry. We already mentioned in the introduction that the only sources
that are compatible with supersymmetry are Dp-branes. Moreover, for an
AdS7 ×M3 spacetime the sources cannot break either the AdS7 isometries

3Another possible strategy would be for r to be periodically identified, so that the
topology of M3 would become S1 × S2. As shown in [4, Eq.(4.24)], this is actually
impossible as a consequence of the the supersymmetry equations.



34

or the S2 ones. In type IIA this leave us with two possibilities: a D6-brane
extending along AdS7 or a D8-brane extending along AdS7 and wrapping
the two-sphere.

In the case of a D6-brane, the local behavior for the metric around a pole
can be deduced from the corresponding solution in flat space in Eq. (2.0.8)
for p = 6. Around ρ = 0 the internal metric has the following behavior:

ds2
M3
∼ ρ−1/2(dρ2 + ρ2ds2

S2) . (3.2.42)

This is a first possibility for a singular behavior at poles in presence of a
D6-brane.

Actually there is a further possible type of source that we haven’t men-
tioned so far which is compatible with supersymmetry: the orientifold
plane. An Op-plane is defined in string theory as fixed locus of a cer-
tain involution (a map whose square is the identity). Op-planes are not
dynamical (unlike D-branes), and have a negative charge: charge(Op) =
-2p−5charge(Dp). This makes them, in a sense, sources of anti-gravity.

The metric for an Op-plane can be obtained in a simple way from the
metric for a Dp-brane. We are interested in O6-planes, the only ones that are
compatible with the spacetime symmetry in the case of AdS7. The metric
describing an O6 in flat space is very similar to that of a D6-brane (2.0.8),
we just need to modify it to H(ρ) = 1− ρ0

ρ .
The function H has to be positive, so the O6 solution is defined only for

ρ > ρ0, ρ0 being the point where the plane is located. Expanding around
ρ ∼ ρ0 we get the following local behavior for the internal metric:

ds2
M3
∼ ρ̃1/2(dρ̃2 + ρ2

0ds
2
S2) , (3.2.43)

where ρ̃ = ρ− ρ0. This is a second possible singular behavior at poles with
a corresponding physical interpretation.

3.2.4 Quantization

For completeness we also have to look at the quantization conditions for the
fluxes, which give further constraints. A D6-brane is a magnetic source for
the two-form flux, so it makes sense to measure the induced charge integrat-
ing F2 on a sphere at the pole surrounding the source as:

n2 =
1

2π

∫
S2

F̃2 , (3.2.44)

where we have introduced the modified curvature: F̃2 ≡ F2 − BF0. This
formula can be seen as a quantization condition to be imposed on the local
expression for the fluxes (3.2.28), some kind of generalization of a Dirac
quantization condition for the magnetic monopole. If the integral is taken
around the source the integer n2 represents the number of D6-branes. The
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quantization condition in presence of an O6-plane is Eq. (3.2.44) with n2 =
−2.

As we are looking for solutions with non-vanishing Romans mass, an
analogous quantization condition needs to be imposed on this (piecewise)
constant zero-form flux:

n0 = 2πF0 . (3.2.45)

Finally, we saw that supersymmetry in AdS7 also requires the presence
of a non-vanishing three-form flux H, given by Eq. (3.2.32). Similarly to F2

and F0, this flux obeys its own quantization condition which can be written
as:

N = − 1

4π2

∫
M3

H . (3.2.46)

What is the interpretation of the integer N in terms of branes? As we
already mentioned in the introduction, the solutions that we are about to
present are dual to the (1, 0) theories. In the AdS/CFT setup, these arise
from brane configurations involving D6, D8 and NS5-branes, engineered ac-
cording to [22]. What happens is that in the near horizon limit the NS5-
branes disappear, leaving as a trace a non-vanishing three-form flux H. The
flux integer N has thus a clear interpretation before the near horizon geom-
etry as the number of coincident NS5-branes on which the D6 can end.

Actually, N is related to the number of D6-branes by a simple formula
that can be derived from the Bianchi identities for F2, which in our situation
read dF2 −HF0 = δD6. Integrating this gives

n2 = Nn0 , (3.2.47)

which gives a general constraint for a brane configuration consisting of n2

D6-branes ending on N NS5-branes.

Introducing D8-branes

Things get more involved if we also allow for the presence of D8-branes.
As we mentioned, these are somehow special since they couple to a non-
dynamical filed like F0. Also, a stack of D8-branes can carry a worldvolume
gauge field-strength f2 (not to be confused with the RR field-strength F2),
which induces a D6-brane charge distribution on it. The field f2 also obeys
a quantization condition:

µ =
1

2π

∫
S2

f2 , (3.2.48)

where µ is interpreted as the D6-brane charge induced on the worldvolume
of the D8-brane; this is the Chern class of a gauge bundle, and as such it is
an integer. D8-branes with the same µ will be stabilized by supersymmetry
on top of each other.

The Bianchi identity for the RR fluxes in presence of a D6-D8 bound
state reads dF̃ = 1

2πn8e
2πf2δD8, where F̃ = F0 + F̃2 and n8 is the number of
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D8-branes in the stack. The zero-form part of this equation can be rewritten
as: dF0 = 1

2πn8δD8, meaning that F0 is piecewise constant and it can jump
in the points where the D8’s are located. Integrating across the stack gives:

∆n0 = n8 . (3.2.49)

Moreover, integrating the two-form part of the Bianchi identity across the
D8’s gives ∆F̃2 = n8f2. Taking into account (3.2.44, 3.2.48), this equation
can be rewritten as the following constraints between the flux integers before
and after the stack:

∆n2 = µ∆n0 . (3.2.50)

This is not yet enough to ensure that the full solution has a well defined
behavior in the presence of D8-branes. Since learned that F0 can jump
according to (3.2.49), we have to make sure that all the functions entering
the metric are continuous together with their first derivative. Discontinuities
are only allowed in the second derivatives.

Imposing that the B field does not jump is trickier. First, recall that it
can be written as B = F2

F0
+ b as in (3.2.33), when F0 6= 0. Combining this

with the flux quantization condition (3.2.44) we get:

b = − n2

2F0
volS2 . (3.2.51)

It is clear that such a term can jump across a D8 stack. Let us consider
the F2/F0 term. Looking at the expression (3.2.28) for F2 determined by
the supersymmetry equations, we can rewrite the B-field as:

B2 =

(
p− q

F0
− n2

2F0

)
volS2 . (3.2.52)

Let us call (n0, n2) the flux integers on one side of the D8 stack, and
(ñ0, ñ2) the fluxes on the other side. Let us at first assume that both n0 and
ñ0 are non-zero. Then, equating B on the two sides, we see that p cancels
out, and we get the following constraint:

q|r=rD8 =
ñ2n0 − n2ñ0

2(ñ0 − n0)
. (3.2.53)

Here we understood how to impose continuity of the B-field. In general
it would actually be allowed to jump by a gauge transformation. Indeed,
B is not technically a two-form, but a ‘connection on a gerbe’, in the sense
that it transforms non-trivially on chart intersections: on U ∩U ′, BU −BU ′
can be a ‘small’ gauge transformation dλ, for λ a 1-form, or more generally
a ‘large’ gauge transformation, namely a two-form whose periods are integer
multiples of 4π2. In our case, if we cover S3 with two patches UN and
US, around the equator we can have BN − BS = NπvolS2 . In this case
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∫
S3 H = BN−BS = NπvolS2 = (4π2)N , in agreement with flux quantization

for H. One way of taking care of this is to define

b̂(r) ≡ 1

4π

∫
S2
r

B2 , (3.2.54)

which has period π. Large gauge transformations can then be written as

b̂→ b̂+ kπ . (3.2.55)

It is clear that the flux integer n2 also transforms under large gauge trans-
formation. According to equation (3.2.51) we get:

n2 → n2 − kn0 . (3.2.56)

Nicely, the constraint (3.2.53) is invariant under large gauge transformation.
A practical use of this type of transformation is that we can use it to set to
zero b where this is needed, for example when we have a regular pole. In this
case the term F2/F0 is clearly regular as it is, without the addition of b; this
suggests that one should set b = 0. To make this more precise, consider the
limit

lim
r→0

∫
∆r

H = lim
r→0

∫
S2
r

B2 , (3.2.57)

where ∆r is a three-dimensional ball such that ∂∆r = S2
r . In correspondence

of a regular pole the right hand side of this equation is equal to
∫
S2 b, which

is constant. This constant signals a delta in H. We are thus forced to
perform a large gauge transformation that takes b → 0, which also implies
from (3.2.51) that n2 → 0. Everything is thus consistent, since there are
actually no D6-branes located at a regular pole.

Since (3.2.53) was found by imposing that B should be continuous, it
looks easy to impose the condition on flux quantization. However, in presence
of D8’s one might encounter a region where F0 = 0; generically such a region
will exist. In such a region, (3.2.33) cannot be used; we have to resort to
the expression for the B-field of the massless solution. This allows to write
a general expression for the integral of H, as shown in [35, Eq.(4.7)].

N ≡ − 1

4π2

∫
H = (|µn|+ |µn+1|) +

1

4π
e2A(x=0)(|xn|+ |xn+1|) , (3.2.58)

where xn and xn+1 are the values of x7 at the branes D8n and D8n+1.

3.3 Analytic Solutions

We saw in the last section how strong the constraints imposed by supersym-
metry are on the geometry of the internal manifold. Indeed, without any
Ansatz the internal space M3 is determined to be a fibration of a round S2
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over an interval with coordinate r, as defined by Eq. (3.2.25). What is left
to be determined is the r-dependence of the functions entering the metric:
the dilaton φ, the warping function A and the variable x. This is described
by the following set of coupled ordinary differential equations (ODE’s):

∂rφ =
1

4

e−A√
1− x2

(12x+ (2x2 − 5)F0e
A+φ) ,

∂rx = −1

2
e−A

√
1− x2(4 + xF0e

A+φ) ,

∂rA =
1

4

e−A√
1− x2

(4x− F0e
A+φ) .

(3.3.59)

The existence of a supersymmetric solution of the form AdS7 ×M3 in
IIA is reduced to solving this system. More precisely these equations can be
derived from the requirement of F0 being a constant, where the expression for
F0 is (3.2.27), plus the algebraic constraint between the differentials, (3.2.26).
A third condition is given by the definition of the r coordinate in terms of
the warping factor A, which was necessary to rewrite the internal metric
as in (3.2.25). Combining these three conditions one gets to the system of
ODE’s (3.3.59).

Providing an analytic solutions to the system (3.3.59) required a long
detour. At first this was studied numerically in [1], and a holographic inter-
pretation to its solutions was given in [35]. Later on it was shown that the
system of ODE’s for an AdS7 vacuum is in one to one correspondence with
an analogous system derived in [4, Eq.(5.15)] for a class of AdS5 solutions in
type IIA supergravity. The latter was solved analytically, so analytic solu-
tions were pulled back to AdS7 as well. Actually, this correspondence shows
the AdS5 solutions of [4] can be interpreted as compactifications the AdS7

solutions that we are discussing here. The map between the two systems is
given by:

eφ7 =

(
3

4

)1/4
eφ5√

1− 1
4x

2
5

, eA7 =

(
4

3

)3/4

eA5 ,

x7 =

(
3

4

)1/2
x5√

1− 1
4x

2
5

, r7 =

(
4

3

)1/4

r5 .

(3.3.60)

We can translate this map into words by saying that to any solution {φ5, x5,
A5} one can associate a solution {φ7, x7, A7}, where it is understood that
the indices 7 and 5 label the dimension of the corresponding AdS factors.
Remarkably, the AdS5 system was reduced to a single second order ODE of
the following form:

∂y(q2) =
2

9
F0 , q ≡ −4y

√
β

∂yβ
. (3.3.61)
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The function q turns out to be the same function that we have defined in
(3.2.31), with a clear geometric interpretation and a crucial role in the discus-
sion of flux quantization. We have also introduced a new radial coordinate

y, defined as dy =
√
βe−3A5dr5 =

(
4
3

)2√
βe−3A7dr7.

Notably, the differential equation (3.3.61) can be solved analytically in
an elementary way for q2 a linear function of 2

9F0(y − y0). The functions
(φ7, A7, x7) are then determined in terms of q thorough β in the following
way:

eA7 =
2

3

(
−β
′

y

)1/4

, x7 =

√
−yβ′

4β − yβ′ , eφ7 =
(−β′/y)5/4

12
√

4β − yβ′ . (3.3.62)

From now on we drop the index labeling the dimension of the AdS factor,
and we go back to the original notation where (φ,A, x) are the functions
entering the AdS7 system (3.3.59). We are finally ready to present a fully
general analytic solution to the supersymmetry equations for an AdS7×M3

solution in type IIA supergravity.

3.3.1 General solution

Given a solution for β to the second order ODE, (3.3.61), all the functions
entering the system (3.3.59) are also determined as (3.3.62). The AdS7

metric itself can rewritten in terms of β in a quite simple way:

ds2
10 =

4

9

√
−β
′

y

(
ds2
AdS7

− 1

16

β′dy2

yβ
+

β

16β − 4yβ′
ds2
S2

)
. (3.3.63)

Analogously, it is possible to give an expression for the dilaton and fluxes
in full generality in terms of the function β only. We get:

F2 = y

√
β

β′

(
4− F0

18y

(β′)2

4β − yβ′
)

volS2 ,

H = −9

(
− y

β′

)1/4(
1 +

F0

108y

(β′)2

4β − yβ′
)

volM3
,

eφ =
(−β′/y)5/4

12
√

4β − yβ′ .

(3.3.64)

The simplest analytic solution to equation (3.3.61) is the one with F0 = 0.
As we show in the next subsection, the metric associated to this solution
through (3.3.63) is the reduction of the AdS7 × S4/Zk solution of eleven-
dimensional supergravity. It has a stack of k D6-branes at y = y0 and a
stack of k anti-D6-branes at y = −y0, both in correspondence of a double
zero of the function β, which reads:

β =
2

k
(y2 − y2

0)2 . (3.3.65)
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Infinite more brane configurations are possible if we turn on a non-
vanishing Romans mass F0 6= 0. Remarkably, it is possible to provide a
fully general solution for β, depending on two parameters.

An accurate study in [4] shows that the behavior of the solution is well
understood in terms of b2, a parameter related to the second derivative of the
function β in y0. The second parameter is y0 itself, which we will assume to
be positive. The general solution can be written analytically as the following
polynomial expression in y:

β =
y3

0

b32F0

(√
ŷ − 6

)2 (
ŷ + 6

√
ŷ + 6b2 − 72

)2

, (3.3.66)

where we have defined ŷ ≡ 2b2

(
y
y0
− 1
)

+ 36. Expanding around y ∼ y0 we

get β ∼ y0
F0
b2(y− y0)2, so we recognize b2 as the second derivative of β in y0.

We can already understand what is going on in y = y0. Plugging the
expression for β in the ten-dimensional metric (3.3.63) and expanding around

this point we get ds2
M3
∼ dy2√

y−y0
+(y−y0)3/2ds2

S2 . Upon defining ρ = y−y0,

we get precisely the local behavior corresponding to a D6 singularity, as
defined by Eq. (3.2.42). So we learn that a double zero in β signals the
presence of a D6 stack.

Nicely, the presence of a D6 stack in y = y0 is a feature common to
all of the massive solutions, which can then be classified according to the
behavior at the second pole. Three distinct classes can be obtained varying
the parameter b2:

� If 0 < b2 < 12, the solution is defined in the interval y ∈ [y1, y0].

The second pole is located at y1 = y0

(
27−2b2−3

√
81−2b2

b2

)
, with range

−y0 < y1 < − 1
2y0. The function β has a double zero at both extrema,

which means that the solutions within this class have two D6 stacks.

Unlike in the massless case, the number of D6 is not the same on the two
sides. Let these numbers be (ñ2, n2). We have to take into account the
two constraints coming from the flux quantization condition (3.2.44)
at both poles. These fix the parameters y0 and b2 in terms of the two
integers in the following way:

y0 =
3n2

2

4F0

(
1− ñ2

2n2
− ñ2

2

2n2
2

)
, b2 = 12

(
1− ñ2

2n2
− ñ2

2

2n2
2

)
. (3.3.67)

Notice that these expressions are symmetric under (ñ2, n2)→ (−ñ2,−n2).
There are thus two possible ranges for the two flux integers that give
rise to a meaningful solution, the first one given by:

{n2 > 0, −2n2 < ñ2 < −n2 ∪ 0 < ñ2 < n2} .

The second possible range is obtained applying (ñ2, n2)→ (−ñ2,−n2),
that is to say considering the symmetric region with respect to the
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origin in the plane parametrized by the two integers. We get:

{n2 < 0, n2 < ñ2 < 0 ∪ −n2 < ñ2 < −2n2} .

Notice that in the massless case the only accessible region in the
(ñ2, n2) plane was the line ñ2 = n2. Turning on a non-vanishing Ro-
mans mass allows to obtain infinite new solutions, so that a vast region
in the plane (n2, ñ2) can now be filled (perhaps we should call it lattice
instead of plane, since both n2 and ñ2 take integer values).

� If 12 < b2 < 18, the solution is defined for y ∈ [y1, y0], where the second
pole is located at y1 = y0

(
1− 18

b2

)
, with range − 1

2y0 < y1 < 0. In this
case we have a double zero at y0, and an O6 singularity (see (3.2.43)) at
y1, corresponding to a local expansion of the form β ∼ β0+O(

√
y − y1).

We thus obtained a second class of solutions with one D6 stack at
one end, and an O6 at the other extremum. Again we have to im-
pose proper quantization conditions at poles, where the two-form field
strength has flux integers (−2, n2). We get:

y0 =
3n2

2

4F0

(
1 +

1

1 + 2n2

)
, b2 = 12

(
1 +

1

1 + 2n2

)
. (3.3.68)

The allowed range for the flux integer is n2 6= 0.

� In the limiting case, b2 = 12, the solution is defined for y ∈ [− 1
2y0, y0];

in this case we have the usual double zero in y = y0 and a single zero
in y = − 1

2y0. The latter corresponds to a regular point, with local
behavior for the metric defined by (3.2.41).

The solutions belonging to this class thus have only one stack of n2

coincident D6-branes located at y = y0, with a regular point on the
other side. This results in the following quantization condition:

y0 =
3n2

2

4F0
. (3.3.69)

Notice that this constraint coincides with the more general one given
in Eq. (3.3.67) for ñ2 = 0. The allowed range for the flux integer is
simply n2 6= 0.

Having concluded this preliminary analysis, we are now ready to start writ-
ing explicit solutions corresponding to these three classes. The nice result
of the present analysis is that all possible AdS7 solutions of massive type
IIA supergravity are eventually classified by the values of two flux integers
(ñ2, n2), namely each solution corresponds to a point on a lattice.
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3.3.2 Massless solution

It is straightforward to find a solution in the case where F0 = 0. Indeed,
a simple expression is available for β, given by Eq. (3.3.65). Plugging that
expression into (3.3.63) gives the following internal space metric:

ds2
M3

=
4

9k

1√
y2

0 − y2

(
dy2 +

(y2
0 − y2)2

4y2
0

ds2
S2

)
. (3.3.70)

As we anticipated in the introduction, the solution with F0 = 0 can be
lifted to eleven dimensions to the AdS7 × S4/Zk corresponding to the near
horizon geometry of a stack of M5-branes probing a R5/Zk singularity. This
can be seen applying a proper change of variable: y = y0 cosα, provided
the identification y0 = 9

32R
3. All in all, we get the following metric on the

internal space:

ds2
M3

=
R3

8k
sin(α)

(
dα2 +

1

4
sin2(α)ds2

S2

)
. (3.3.71)

As promised, this is nothing but the Zk quotient of the M5 near horizon
geometry (2.0.21) reduced to ten dimensions.

At first sight Eq. (3.3.71) might appear problematic for two reasons.
First of all, the warping function goes to zero at the two poles α = {0, π};
second, the internal metric is singular at poles because of the 1/4 factor in
front of ds2

S2 .
However these singularities can be interpreted physically as due to the

presence of D6’s and anti-D6’s. To see this let us expand the solution around

the pole α = 0; we get: ds2
M3
∼ α(dα2 + α2

4 ds
2
S2), which after the change

of coordinates α = ρ1/2 gives the same type of singular behavior of the
D6-brane solution of Eq. (2.0.8).

The presence of D6’s could actually be inferred more directly looking at
the fluxes. Indeed, plugging the solution (3.3.65) into Eq. (3.3.64) we get:

F2 = −1

2
kvolS2 , H = − 3

32

R3

k
sin3(α)dα ∧ volS2 . (3.3.72)

The integral of F2 over the S2 is constant and equal to −2πk. We can take
the S2 close to the north or the south pole, where it signals the presence of
D6-brane charge. More precisely, there are k anti-D6-branes at the north
pole and k D6-branes at the south pole, as represented in Fig. 2.1.

One crucial difference with the usual D6 behavior, however, is the pres-
ence of the three-form H. From (3.3.72) we see that it does not vanish near
the D6. Rather, it diverges. Indeed, if we expand it around α = 0, using the
coordinate ρ = α2 that makes manifest the D6 behavior in the metric, we
get: H ∼ ρ−

1
4 volM3

. We should remember, in any case, that this solution
is non-singular in eleven dimensions; the diverging behavior is cured by M-
theory, just like the divergence of the curvature at the poles, where the D6
stacks are located.
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For completeness we also give the expression for the dilaton:

eφ =

(
R sinα

2k

)3/2

. (3.3.73)

Expanding around α = 0 this behaves like eφ ∼ ρ3/4, which is precisely
what we expected from the D6-brane solution in flat space of Eq. (2.0.8).

This solution, and its brane interpretation, is shown in Fig. 2.1.

3.3.3 One D6 stack

The simplest example of solution with F0 6= 0 is the one with a single D6
stack, corresponding to the general massive solution (3.3.66) for the choice
b2 = 12. The resulting solution is β = 4

F0
(y − y0)2(2y + y0), which has a

single zero at y = −y0/2 and a double zero at y = y0. The metric on the
internal space takes the following simple form:

ds2
M3

=
1√
3F0

1√
(y0 + 2y)2(y0 − y)

(
dy2 +

1

3

(y0 − y)2(y0 + 2y)2

2y2
0 + 2yy0 − y2

ds2
S2

)
,

(3.3.74)
where, consistently with Eq. (3.3.69), we choose both y0 and F0 to be
positive. Equivalently one could choose them to be both negative.

We find it clearer to present the solution in terms of a new radial co-
ordinate ρ, defined as y = y0

(
1− ρ

2

)
, with range ρ ∈ [0, 3]. As a result,

β =
y30
F0
ρ2(3 − ρ). Taking into account the quantization condition (3.3.69),

the metric on the total takes the following form:

ds2
10 =

n2

F0

√
ρ

(
4

3
ds2

AdS7
+

dρ2

4ρ(3− ρ)
+
ρ

3

(3− ρ)

(12− ρ2)
ds2
S2

)
. (3.3.75)

Around ρ = 0 the metric behaves as ∼ 16
√
ρds2

AdS7
+ 1√

ρ (dρ2 + ρ2ds2
S2),

which is the correct behavior near a stack of D6-branes wrapping AdS7.
On the other hand around ρ = 3, the internal metric turns into flat space:
dρ̃2 + ρ̃2ds2

S2 , after the change of coordinates ρ̃ =
√
ρ− 3, so we get a regular

point.
We can convince ourselves that this is the case by looking at the flux F2,

which can be read off from Eq. (3.3.64). We get:

F2 =
n2(3− ρ)3/2(6− ρ)√

3(−12 + ρ2)
volS2 . (3.3.76)

Near ρ = 0 this behaves as F2 ∼ −n2

2 volS2 , which is precisely the behavior
for a stack of n2 D6-branes, as we just saw in (3.3.72). On the other hand,
near the regular point ρ = 3 the F2 vanishes, as it should since no source
is localized there. We can thus see that the quantization condition works
correctly. This brane configuration and a sketch for the internal space is
represented in Fig. 2.2.
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It is also possible to write a compact expression for the three-form flux:

H =

√
3F0

n2
√
ρ

(
36 + 4ρ− 5ρ2

−12 + ρ2

)
volM3

. (3.3.77)

The behavior at the two extrema is the one we would expect: around
ρ = 0 it shows a divergent behavior H ∼ ρ−1/4volM3 , which is precisely
the same type of divergence we had in the massless case in presence of a
D6-brane. Around the regular pole ρ = 3 it goes to a constant value.

Finally, the dilaton is determined as:

e4φ =
16ρ3

n2
2F

2
0 (12− ρ2)2

, (3.3.78)

which goes to a constant value at the regular point ρ = 3 and goes to zero
at the second pole as eφ ∼ ρ3/4, which is the correct behavior near a D6
singularity, as defined by the D6 solution in flat space (2.0.8).

This solution, and its brane interpretation, is shown in Fig. 2.2.

3.3.4 O6/D6

The next possibility is to have a massive solution with a D6 stacks at one
pole and an orientifold plane at the other. This type of solutions belong to
the class 12 < b2 < 18. The D6 stack is located at y = y0, the O6 sits at
y = y1. The flux integers at the two poles are (−2, n2).

Again, instead of discussing this class in full generality, we find it clearer
to present a single solution specifying the flux integer to be n2 = 6. In other
words we discuss here a solution with an O6 plane at one side, and a stack of
six D6-branes on the other side. According to formula (3.3.68), this choice
is equivalent to fixing the parameters as: (y0, b2) = ( 243

8F0
, 27

2 ). As a result,

we get that the O6 plane is located at y1 = − 1
3y0.

The local behavior at poles can be better understood introducing a new
radial coordinate ρ with range ρ ∈ [0, 2], defined by y = y0

3 (ρ2 − 1). In

terms of the new coordinate we have β =
8y30

27F0
(2−ρ)2(1+ρ)4. The resulting

internal space metric is

ds2
M3

=
1

F0

√
27ρ

(2− ρ)(1 + ρ)2

(
dρ2 +

(2− ρ)2(1 + ρ)

(9− 3ρ)
ds2
S2

)
. (3.3.79)

Around ρ = 0 it behaves as∼ ρ1/2(dρ2+ 4
9ds

2
S2), which is the correct behavior

for an O6 singularity, as defined by equation (3.2.43). Around ρ = 2 the
internal metric behaves as ∼ 1√

ρ−2
(dρ2 + (ρ − 2)2ds2

S2), which signals the

presence of a D6 stack.
Let us check that the flux F2 is properly quantized. It takes the following

form:

F2 =
3

ρ− 3
volS2 . (3.3.80)
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Near ρ = 2 we get F2 ∼ −3volS2 , which is precisely the behavior for a stack
of six D6-brane. On the other hand, near ρ = 0 we get F2 ∼ −volS2 , which
corresponds to an O6-plane.

We can also check that the flux H behaves correctly. The general expres-
sion is:

H =

√
F0

ρ3/4

(4− 15ρ+ 5ρ2)

(3− ρ)(6 + 9ρ− 3ρ3)1/4
volM3 . (3.3.81)

Around the D6 singularity ρ = 2 we get H ∼ (ρ− 2)−1/4volM3
, while in

correspondence of the O6-plane ρ = 0 it shows a different divergent behavior:
H ∼ ρ−3/4volM3

.
Finally, the dilaton is determined as:

e4φ =
16(2− ρ)3

27F 2
0 (3− ρ)2ρ3

, (3.3.82)

which reproduces the correct D6 behavior eφ ∼ (ρ − 2)3/4 around ρ = 2,
while at the pole ρ = 0 where the orientifold plane is located it goes like
eφ ∼ ρ−3/4. This singular behavior is precisely what we expect from the
solution for an O6 in flat space. The latter is very similar to the D6-brane
solution (2.0.8), provided a change of sign in the harmonic function H, which
now reads: H(ρ) = 1− ρ0

ρ . Expanding the corresponding expression for the

dilaton around ρ = ρ0 we get eφ ∼ (ρ − ρ0)−3/4, in agreement with the
present analysis.

A sketch describing the geometry of the internal manifold for the D6/O6
solution is represented in Fig. 4.1.

3.3.5 Two D6 stacks

The last class of solutions is the one with two D6 stacks, corresponding to
0 < b2 < 12. The two stacks are located at y1 and y0, with flux integers
(ñ2, n2). Such a situation would not be possible in the massless case, where
the flux integers on the two sides are equal. However, as we already stressed,
adding a non-vanishing Romans mass allows to obtain infinite more solutions.

Again, instead of discussing this class in full generality, we find it clearer
to give a single example, specifying the flux integers to be (ñ2, n2) = (1, 2).
In other words we present a solution with a stack of two D6-branes at one
pole and a single D6 at the other pole. According to formula (3.3.67), this
fixes the two parameters as: (y0, b2) = ( 15

8F0
, 15

2 ). As a result, the second

stack is located at y1 = − 4
5y0.

We introduce a new coordinate ρ with range ρ ∈ [1, 2], defined as y =
y0
5 (3ρ2 − 7). As a result β =

216y30
125F0

(2 − ρ)2(1 − ρ)2(3 + ρ)2, and the metric
reads

ds2
M3

=
1

F0

√
3ρ

(7ρ− 6− ρ3)

(
dρ2 +

(7ρ− 6− ρ3)2

(49− 72ρ+ 42ρ2 − 3ρ4)
ds2
S2

)
.

(3.3.83)
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Around ρ = 1 this behaves as ∼ 1√
ρ−1

(dρ2+(ρ−1)2ds2
S2), which is the correct

behavior near a stack of D6-branes. The same happens around ρ = 2.
We can check that number of D6 at poles are (ñ2 = 1, n2 = 2). As

always this can be done looking at the two-form flux, which has the following
expression:

F2 =
(21− 49ρ+ 27ρ2 − 7ρ3)

(49− 72ρ+ 42ρ2 − 3ρ4)
volS2 . (3.3.84)

Near ρ = 1 this behaves as F2 ∼ −1
2 volS2 , which is precisely the behavior for

a single D6-brane, as we just saw in (3.3.72). On the other hand, near ρ = 2
we get F2 ∼ volS2 , which corresponds to a stack of two D6-branes.

It is also possible to write a rational expression for H:

H =

√
F0

√
3

ρ3/4

(84 + 49ρ− 252ρ2 + 182ρ3 − 15ρ5)

(−49 + 72ρ− 42ρ2 + 3ρ4)(−6 + 7ρ− ρ3)1/4
volM3

. (3.3.85)

This doesn’t look particularly enlightening, nonetheless we can check that
the singular behavior near the two poles ρ ∼ 1 and ρ ∼ 2 is the expected
one in presence of a D6 stack, that is to say H ∼ (ρ − 1)−1/4volM3 and
H ∼ (ρ− 2)−1/4volM3 .

Finally, the dilaton is determined as:

e4φ =
48

F 2
0 ρ

3

(7ρ− 6− ρ3)3

(49− 72ρ+ 42ρ2 − 3ρ4)2
, (3.3.86)

which goes like eφ ∼ (ρ− 1)3/4 around ρ = 1 and like eφ ∼ (ρ− 2)3/4 around
ρ = 2, a further confirm that we are in presence of two D6 stacks.

3.4 Solutions with D8

So far we presented various types of solutions with localized D6-branes and
orientifold planes. One can also obtain metrics with arbitrary numbers of
D8-branes. This is achieved by gluing together copies of the metrics we have
obtained so far, and by tuning properly the parameters in such a way to
respect a set of constraints that we have already worked out in subsection
3.2.4.

Let us briefly review these constraints. Like for any type of source, the
D8’s backreaction will give rise to a singularity. In particular, they give rise
to a jump in the Romans mass F0, which turns out to be piecewise constant
according to Eq. (3.2.49). The flux integer n2 can also jump across a D8, as
described by Eq. (3.2.50). This is mainly due to the fact that a D8-brane
carries a D6-brane charge µ on its worldvolume.

These two conditions are not enough to ensure that the full solution has
a well defined behavior. Indeed, despite the jump in the Romans mass,
the metric has to be made continuous, imposing suitable conditions in the
points where the stacks of D8’s are located. Continuity of the metric requires
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imposing that the function β is continuous with its first derivative β′ across
the stack.

Also, there is an extra constraint coming from the requirement of continu-
ity for the B field across the D8-stack. We already analyzed this condition
in detail, and we were able to translate it into a simple equation for the
function q, (3.2.31).

3.4.1 One D8 stack

To begin with we present a solution with a single D8 stack. This can be
obtained by gluing two metrics of the type (3.3.74). Since the quantization
conditions will change in presence of D8’s, it is better to stick to the original
coordinate y = y0(1− ρ

2 ). We will assume

y0 > 0 , F0 > 0 ; ỹ0 < 0 , F̃0 < 0 . (3.4.87)

Let us call (n0, n2) and (ñ0, ñ2) the flux integers before and after the D8. For
simplicity let us also assume ñ2 = 0, so that no large gauge transformations
are needed on that side. As we remarked in subsection 3.2.4, ∆n2 = ñ2−n2 =
−n2 should be an integer multiple of ∆n0 = ñ0 − n0 = n8, according to
∆n2 = µ∆n0, µ ∈ Z. To take care of flux quantization, it is enough to also
demand that n2 = Nn0, for N integer.

According to the discussion at the end of subsection 3.2.4, in this case
at the North Pole we get b̂ = −πN ; since this is an integer multiple of π, it
can be brought to zero by using large gauge transformations. Together, the
conditions we have imposed determine

ñ0 = n0

(
1− N

µ

)
. (3.4.88)

Putting together two copies of (3.3.74), we can write the following ex-
pression for the internal space metric:

ds2
M3

=


1√
3F0

1√
(y0 + 2y)2(y0 − y)

(
dy2 +

1

3

(y0 − y)2(y0 + 2y)2

2y2
0 + 2yy0 − y2

ds2
S2

)
,

1√
−3F̃0

1√
(ỹ0 + 2y)2(y − ỹ0)

(
dy2 +

1

3

(ỹ0 − y)2(ỹ0 + 2y)2

2ỹ2
0 + 2yỹ0 − y2

ds2
S2

)
,

(3.4.89)
where the first line corresponds to the range −y02 < y < yD8, and the second

line to yD8 < y < − ỹ02 . Our job is not over yet, since we still have to impose
continuity of the metric and the dilaton (or, equivalently, continuity of β
and β′), plus the analogue condition for the B field, Eq. (3.2.53). Taking
these three conditions into account amounts to fixing the positions of the
two regular points and the position of the D8 stack as follows:

y0 = 3F0π
2(N2 − µ2) , ỹ0 = −3F0π

2(N − µ)(2N − µ) ,

yD8 = 3F0π
2(N − 2µ)(N − µ) .

(3.4.90)
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The allowed range for the two integers N and µ can be obtained by
imposing the following set of constraints: {y0 > 0, ỹ0 < 0, − 1

2y0 < yD8 <
− 1

2 ỹ0}. As a result, we get the bound N > µ.
This solution, and its brane interpretation, is shown in Fig. 3.1.

(a)
. . .k k k k

(b)

Figure 3.1: In (a), a sketch of the internal M3 in the solution with one
D8-brane stack, represented by a “crease”. In (b), the corresponding brane
configuration. The vertical lines represent the D8-branes; the stack has
n0 = 2 branes with |µ| = 3.

3.4.2 Two D8 stacks

We can also consider a configuration with two D8 stacks. We will take it to
by symmetric, in the sense that the flux integers before the first D8 stack will
be (n0, 0), between the two stacks (0, n2 = −k < 0), and after the second
stack (−n0, 0). Notice that we have a massless region in the middle, which
implies a more involved quantization condition for the flux H, described by
Eq. (3.2.58).

A proper solution describing this brane configuration can be obtained
gluing together the metrics in three different regions. The metric in the two
external regions is described by Eq. (3.3.74), while for the massless region
between the two D8 stacks we must consider Eq. (3.3.70).

Again we will assume y0 > 0; the positions of the two D8 stacks will be
yD8 > 0 and yD8′ = −yD8 < 0. The result is the following:

ds2
M3

=



1√
3F0

1√
(y0 + 2y)2(y0 − y)

(
dy2 +

1

3

(y0 − y)2(y0 + 2y)2

2y2
0 + 2yy0 − y2

ds2
S2

)
,

4

9k

1√
ỹ2

0 − y2

(
dy2 +

(ỹ2
0 − y2)2

4ỹ2
0

ds2
S2

)
,

1√
3F0

1√
(−y0 + 2y)2(y0 + y)

(
dy2 +

1

3

(y0 + y)2(−y0 + 2y)2

2y2
0 − 2yy0 − y2

ds2
S2

)
,

(3.4.91)
where the first line corresponds to the external region −y02 < y < −yD8, the
middle line to the region between the two stacks −yD8 < y < yD8, and the
last line to the second exterior region yD8 < y < y0

2 .
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We now have three unknowns: ỹ0, y0, yD8. Continuity of β and β′ this
time only imposes one condition; we then have (3.2.53) and the condition
(3.2.58). We get

y0 =
9

2
kπ(N − µ) , yD8 =

9

4
kπ(N − 2µ) ,

ỹ0 =
9

4
kπ2

√
N2 − 4

3
µ2 ,

(3.4.92)

where in this case µ = k
n0

. Notice that the in this case the bound in [35,
Eq.(4.10)] (which can also be found by (3.2.58)) implies N > 2µ, which is
precisely the condition that one obtains imposing {y0 > 0, yD8 > 0, ỹ0 > 0}.

This solution, and its brane interpretation, is represented in Fig. 3.2.

(a) (b)

Figure 3.2: In (a), a sketch of the internal M3 in the solution with two D8-
brane stacks, represented by two “creases”. In (b), the corresponding brane
configuration. The vertical lines represent the D8-branes; each stack has
n0 = 2 branes with |µ| = 3.

It would now be possible to produce solutions with a larger number of
D8’s. It is in fact possible to introduce an arbitrary number of them, although
there are certain constraints on their numbers and their D6 charges [35,
Sec. 4]. The most general solution can be labeled by the choice of two
Young diagrams; there is also a one-to-one correspondence with the brane
configurations in [22, 47]. One can in fact think of the AdS7 solutions as a
particular near-horizon limit of the brane configurations. For more details,
see [35]. For these more general solutions, we expect to have to glue together
not only pieces of the solution in subsection 3.3.3 and of the massless solution,
but also pieces of the more complicated solutions described by the general
form of the function β in (3.3.66), like those described in subsections 3.3.4
and 3.3.5.

3.5 Field theory interpretation

In this section we have found infinitely many new AdS7 solutions in massive
IIA, describing the near horizon geometries of brane configurations involving
NS5-, D6- and D8-branes. The importance of these brane configurations was
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known since a long time [22], and now they finally have a proper supergravity
description.

The importance of these solutions is mainly due to their holographic
interpretation: they are dual to the (1, 0) conformal field theories in six
dimensions, living on the aforementioned bound states of branes. At the
level of the symmetries, the correspondence maps the Sp(1) R-symmetry
group on the field theory side to the SU(2) isometries of the internal space
of the supergravity solutions.

As we anticipated in the introduction, very little is known about the
(1,0) theories since they lack a Lagrangian description. Having found their
holographic duals can thus be crucial to extract some information on these
mysterious theories.

Here, we will limit ourselves to pointing out a couple of preliminary results
about the number of degrees of freedom.

A common way of estimating the number of degrees of freedom using
holography in any dimension is to introduce a cut-off in AdS, and estimate
the Bekenstein–Hawking entropy (see for example [61, Sec. 3.1.3]). This leads

to
R5

AdS7

GN,7
in AdS7, where GN,7 is Newton’s constant in seven dimensions. The

latter can be computed as 1
g2s

vol10−d. In a warped compactification with

non-constant dilaton, both RAdS and gs are non-constant, and should be
integrated over the internal space. In our case, for AdS7 this leads to

F0,6 ≡
∫
e5A−2φvolM3

. (3.5.93)

These can be thought of as the coefficient in the thermal partition function,
F = F0,6V T

6, where V is the volume of space and T is temperature. These
computations however are basically the same for the coefficients in the Weyl
anomaly, at least at leading order (i.e. in the supergravity approximation).

We have not computed F0,6 in full generality for the (1, 0) theories. This
would now be possible in principle, since the analytic expressions are now
known. Here we present the results corresponding to some particularly rele-
vant brane configurations.

One first example is the solution described by the metric (3.3.75). The
corresponding brane configuration according to the identification in [35] con-
sists in k D6’s ending on N = k

n0
NS5-branes; see figure 3.3(a). We get

F0,6 =
512

45
k2π4N3 , (3.5.94)

which reassuringly goes like N3. (By way of comparison, for the massless
case one gets F0,6 = 128

3 k2π4N3.)
We also computed F0,6 for the solution (3.4.91), which has two D8’s and a

massless region between them. The corresponding brane configuration would
be N NS5-branes in the middle with k = µn0 D6’s sticking out of them,
ending on n0 D8-branes both on the left and on the right; see figure 3.3(b).
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(a) (b)

Figure 3.3: Brane configurations for two sample theories. The circles rep-
resent stacks of N NS5-branes; the horizontal lines represent D6-branes;
the vertical lines represent D8-branes. In the second case, on each side
we have n0 = 2 D8-branes; |µ| = 3 D6-branes end on each, for a total of
k = n0|µ| = 6.

This case was considered in [35, Sec. 5], where approximate expressions for
F0,6 were computed, using perturbation theory around the massless limit.
Using (3.4.91) we can now obtain the exact result:

F0,6 =
128

3
k2π4

(
N3 − 4Nµ2 +

16

5
µ3

)
. (3.5.95)

This agrees with [35, Sec. 5], but is now exact. Recall that µ = k
n0

; since
this number can be large, the second and third term are also large, and are
not competing with stringy corrections. Stringy corrections will modify this
result with terms linear in N and probably in µ.
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Chapter 4

AdS4 compactifications of
AdS7 solutions in type IIA
supergravity

In many string theoretic constructions, the presence of extended sources such
as D-branes or O-planes is a crucial ingredient. In compactifications, for ex-
amples, O-planes are thought to be important to overcome no-go arguments
that forbid de Sitter (or even Minkowski with non-trivial flux) compactifi-
cations [37, 62, 63]. However, in most cases these sources back-react on the
metric in a way which destroys whatever symmetries were previously present,
and makes it prohibitively hard to find a full solution to the equations of mo-
tion.

To overcome this problem, sources are often “smeared” over the internal
space: namely, they are assumed to occur in a continuous distribution with
varying positions, much like the individual electrons on a charged piece of
conductor. While this is fine for D-branes, it is incompatible with the defini-
tion of an O-plane, which must in fact lie at the fixed locus of an involution.
When the smearing trick is performed on O-planes, it is usually done with
the hope that it might be a good indicator of whether a non-smeared solu-
tion exists. It is hence interesting to find solutions with localized (i.e. non
smeared) sources, even ones where the cosmological constant is negative.
Although there already exists one family of supersymmetric AdS4 solutions
with localized sources, in type IIB supergravity [29], such examples remain
rare.

In this chapter, we are going to present a class of infinitely many new su-
persymmetric AdS4 solutions with localized sources, in type IIA supergravity

53
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with Romans mass parameter F0. As an example:

(1 + ρ)

F0

√
15(2− ρ)

8ρ

(
5

2
ds2
AdS4

+ 2ds2
Σ3

+
3ρ dρ2

(2− ρ)(1 + ρ)2
+

2ρ(2− ρ)Ds2
S2

(6− 2ρ+ ρ2)

)
,

(4.0.1)
with ρ ∈ [0, 2], Σ3 a compact hyperbolic three-manifold, and Ds2

S2 the round
S2 metric fibred over Σ3 in a certain way.1 This has a stack of D6-branes at
ρ = 2, and a localized orientifold plane at ρ = 0, so that the topology of the
space M3 described by ρ and the S2 is that of an S3. We will also present
analytic solutions with a single D6 stack and a regular point on the other
extremum of the interval, solutions with two D6 stacks, and with D8-branes.
Moreover, we will present numerical solutions where Σ3 can be replaced with
an S3, and also where sources can even be absent; in particular we will have
a family of completely regular solutions with topology AdS4 × S3 × S3, but
different from the one in [64].

As we anticipated in the introduction, the various classes of AdS4 analytic
solutions that we will present were found as compactifications of the AdS7

solutions described the previous chapter. In view of the issues explained
above with localized branes, it was indeed interesting to ask whether those
findings could be somehow transported to four dimensions. (In a series of
interesting papers [65–68], an AdS7 ×M3 setup similar to [1] was examined
to understand the differences between localized and smeared branes.) For
this, we needed to somehow replace AdS7 with AdS4×Σ3, where Σ3 is some
new compact three-manifold.

The holographic duals of the AdS7 solutions in [1, 35] were argued in
[35] to be CFT6’s arising from NS5-D6-D8-brane configurations studied long
ago [22, 47]. Replace AdS7 with AdS4 × Σ3 sounds like compactifying the
CFT6 to a CFT3, on a three-manifold Σ3. This is more commonly done
from a CFT6 to a CFT4, thus replacing AdS7 with AdS5 × Σ2. A famous
example is the Maldacena-Nuñez solution [37], which is dual to a “twisted”
compactification of the (2, 0) theory on a Riemann surface. But it is also
possible to compactify the (2, 0) theories on a hyperbolic three-manifold:
the solution dual to this is in fact even older, going back to [39] (later being
lifted to eleven dimensions in [40, 41]). In that case the study of twisted
compactification on three-manifolds led to the formulation of the so-called
3d-3d correspondence of [69].

1The word “fibred” has different meanings in different contexts. In this paper, we will
use the topological meaning of the word. Namely, there is a fibre bundle E5 whose fibre is
S2 and whose base is Σ3; the connection terms in Ds2

S2 (see (4.2.13) below) signal that the
bundle is topologically non-trivial. The interval I parameterized by y is not topologically
fibred, but it can formally be included in a bigger fibre bundle with fibre M3 and base
Σ3. Sometimes one wants to refine the definition of fibration by including the metric data;
even for a space M1 ×M2 that is topologically a product, one sometimes says that M1

is fibred over M2 if the metric on M1 depends on the coordinates on M2. In this second
sense, we should rather say that the whole fibre bundle E5 is itself fibred over the interval
I.
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Perhaps not surprisingly, we found that the same happens for the (1, 0)
theories, that is to say they naturally compactify on three-dimensional Ein-
stein manifolds of negative curvature. This might eventually lead to a gen-
eralization of the aforementioned correspondence. (Notice however that su-
persymmetry is lower, namely N = 1.) It would thus be interesting to
understand what the resulting CFT3’s are; some useful information can now
be extracted from our solutions using holographic techniques. For example
there exists a universal way of counting their degrees of freedom, that are
related to the degrees of freedom of the corresponding CFT6 via a simple
formula given by Eq. (4.3.75).

4.1 Supersymmetry and pure spinors in d = 6

The AdS4 solutions that we will present in this chapter were found making
use of generalized geometry techniques, to so-called pure spinor formalism.
It was developed after the discovery of Calabi-Yau compactifications, when
the importance of having a geometric interpretation of the data of a given
vacuum became evident. In the Calabi-Yau case it was possible to solve
the supersymmetry equations for N = 2 Minkowski vacua without fluxes in
terms of an SU(3) structure on the internal manifold. Such a structure can
be expressed either in terms of one spinor η, or equivalently in terms of a
pair of forms (J,Ω) living on the internal space M6.

In general working with differential forms turns out to be much simpler
then working with spinors, especially in more complicated situations like the
study of flux compactifications. As understood in [50], that the data of any
N = 1 four-dimensional vacuum can be encoded into a pair of polyforms
Φ±, the pure spinors, that define an SU(3)×SU(3) structure on the internal
manifold M6. Following this approach, the supersymmetry equations can be
rewritten as an elegant set of differential equations for Φ±, the so-called pure
spinor equations.

We will now give a quick review of the essentials of the pure spinor
formalism, specifying it to the case of AdS4 compactifications in type IIA
supergravity. For a more complete introduction to pure spinors see for ex-
ample [70].

4.1.1 Pure spinor equations for AdS4 ×M6

A warped AdS4 compactification is a spacetime of the form

ds2
10 = e2Ads2

AdS4
+ ds2

6 , (4.1.2)

where ds2
6 is the metric on the internal space M6, and A is a function of

M6 called warping. In general M6 can be fibered non-trivially over AdS4.
All the other fields are constrained by the requirement that the full solution
has to preserve the AdS4 isometries. The dilaton can be a function of the
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internal space only; the various fluxes can only have components along the
internal space, apart from F4 that is allowed to have a component along the
volume form of the external space.

Moving to fermions, the topology of M10 = M4×M6 induces a decompo-
sition of the spinor bundle Σ10 = Σ4×Σ6. The corresponding decomposition
for the ten-dimensional gamma matrices is the following:

γ(4+6)
µ = γ(4)

µ ⊗ 1 ,

γ
(4+6)
i+3 = γ(4) ⊗ γi ,

(4.1.3)

where γ
(4)
µ , µ = 0, . . . , 3, are a basis of four-dimensional gamma matrices,

and γi, i = 1, . . . , 6, are a basis of gamma matrices in six dimensions.
In type IIA supergravity the two ten-dimensional supersymmetry param-

eters have opposite chirality, and they can be parametrized as follows:

ε1 = ζ+η
1
+ + c.c. , ε2 = ζ+η

2
− + c.c , (4.1.4)

where ζ+ is a four-dimensional spinor and η1, η2 are a two spinors on the
internal space with opposite chirality.

We can define the pure spinors Φ± as the following pair of bispinors on
the internal space:

Φ− ≡ η1
+ ⊗

(
η2
−
)†

, Φ+ ≡ η1
+ ⊗

(
η2c

+

)†
. (4.1.5)

As usual we can apply the Clifford map dxi1 ∧ . . . ∧ dxik → γi1...ik in order
to transform bispinors into forms. Indeed, in this equation the subscript ±
denotes even/odd forms. From the point of view of generalized geometry,
the pair of polyforms Φ± can be understood as an SU(3) × SU(3) structure
on the internal space.

Remarkably, under the AdS4 compactification Ansatz the complicated
set of supersymmetry equations of type IIA supergravity, Eq. (2.0.2), can
be rewritten as the following elegant set of equations:

dHΦ+ = −2e−AReΦ− , J+·dH
(
e−3AImΦ−

)
= −5e−4AReΦ++F , dHF = δ ,

(4.1.6)
that go under the name of pure spinor equations [50, 71]. The differential
operator dH is defined as dH ≡ d − H∧, and J+ is an algebraic operator
associated in a certain way to Φ+. This operator is reviewed for example [71],
and more concretely in [72, Sec. 5].

4.1.2 Parametrization of the pure spinors

We already mentioned that the pair of polyforms Φ± can be understood
as defining an SU(3)×SU(3) structure on the internal space. Actually, in
some cases it is more convenient to write the pure spinors in terms of a so-
called SU(2) structure on M6. This is given by a complex one-form z, plus
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a complex two-form ω and a real two-form j satisfying the following set of
algebraic constraints:

ω ∧ ω̄ = j2 , ω2 = 0 . (4.1.7)

The parametrization of Φ± in terms of the SU(2) structure goes under the
name of Dielectric Ansatz :

e−b0Φ+ = ρ eiθe−iJψ , e−b0Φ− = ρ tanψ z ∧ eiωψ , (4.1.8)

where ψ is the angle between the two spinors η1,2, and ρ is a real number
that determines the norm of the pure spinors. We have also defined the
forms:

Jψ ≡
1

cosψ
j +

i

2
z ∧ z̄ , ωψ ≡

1

sinψ

(
Reω + i

Imω

cosψ

)
, b0 = tanψImω ,

(4.1.9)
where the real two-form b0 is called the intrinsic b-field associated to the
pair Φ±. One can always obtain a pure spinor pair with vanishing intrinsic
b0 by the action of a so-called b-transform:

Φ± → Φ0
± = e−b0∧Φ± . (4.1.10)

This operation turns out to be a symmetry of the pure spinor equations
provided that also the physical NS three-form flux H and the internal2 RR
flux F =

∑
k F2k are transformed to the corresponding auxiliary fluxes given

by:

H0 = H − db0 , F 0 = e−b0F. (4.1.11)

It is easy to see that one can equivalently solve the pure spinor equations
(4.1.6) for the set of auxiliary fields {Φ0

±, F
0, H0} and then perform an

inverse b-transform (4.1.10) to get the physical fluxes.
Using the parametrization (4.1.8), the pure spinor equations have been

rewritten in a more manageable form in [72, Sec. 5.2]. More concretely, the
system (4.1.6) was reduced to the action of the operator J−1

ψ x, whose action

on a form consists in contracting it with the bivector J−1
ψ with inverse Jψ in

(4.1.9). This operator is analyzed in detail in appendix C.

4.2 Compactification Ansatz

In this section we specify the discussion to the case that we are interested
in, namely to AdS4 solutions that arise as compactifications of the AdS7

solutions dual to the (1, 0) theories, that we described in detail in the previous
chapter.

2We mean by this the flux with no legs along AdS4; this determines via Hodge duality
the external flux, namely the one with legs along AdS4.
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The field theory perspective can help us a lot in formulating a proper
compactification Ansatz for the bosonic and fermionic fields. Indeed, in-
spired by the AdS4 solution [39, 41], that describe the compactification of
the (2, 0) theory on a maximally symmetric three-manifold Σ3, we were able
to formulate an analogous Ansatz which would be holographically dual to
compactifying the (1, 0) CFT6 on Σ3.

The crucial point is that the compactification procedure has to preserve
some supersymmetry. An old strategy consists in a partial “twist” of the
theory. Roughly speaking, fields with an R-symmetry index are considered
to be sections of a certain R-symmetry bundle E, which is then chosen such
that E ⊗ S (with S the spinor bundle) admits a global section. This global
section (which can then taken to be constant, up to a gauge transformation)
is then a preserved supercharge. For brane theories, often the procedure also
has a geometrical interpretation: E can be interpreted as the normal bundle
to the brane [73]. Thus the twisting corresponds roughly to how one wraps
the brane.

More concretely, the twisting procedure will have to reflect that for us
the internal manifold M6 will be a fibration of M3 over Σ3, as represented
by the following graph:

M3
� � // M6

��
Σ3 .

(4.2.12)

In the next three subsections we will describe the details of this fibration,
first at the level of the metric, then at the level of the spinors, and finally at
the level of pure spinors.

4.2.1 Metric

There is a natural way of fibering the round two-sphere in M3 over the three-
manifold Σ3, which amounts to twisting its SU(2) symmetry by mixing it
with the SU(2) local Lorentz group on the tangent bundle to Σ3. For this
purpose it is useful to write the S2 metric in terms of the spherical harmonics
(3.2.35) as ds2

S2 = dyidyi.

In these coordinates, the fibered metric on the two-sphere is obtained
replacing the ordinary derivative dyi with an SU(2) covariant derivative Dyi

as follows:

Ds2
S2 = DyiDyi , Dyi = dyi + εijkyjAk , (4.2.13)

where we introduced a triplet of vectors Ai that describe the connection of
the SU(2) bundle. These are forms on the base space Σ3, that are related to
the spin connection by

Ai =
1

2
εijkωjk . (4.2.14)
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The covariant volume form of the two-sphere is associated to the metric
(4.2.13) according to:

vol2 ≡
1

2
εijkyiDyjk . (4.2.15)

Notice that we are assuming that the shape of the two-sphere does not
get distorted in the compactification procedure. This assumption is also con-
firmed by a detailed study of the already existing AdS4×Σ3 compactification
in eleven-dimensional supergravity, which can be reduced to ten dimensions
preserving N = 1 supersymmetry, as described in appendix A.

We will also assume Σ3 to be a maximally symmetric space, or a quo-
tient thereof. In three dimensions, this constraint implies that the two-form
Riemann tensor, defined as Rij ≡ 1

2R
ij
µνdx

µν , is related to the orthonormal

frame {ei} by: Rij = R
6 e

ij , where R is the Ricci scalar and eij ≡ ei ∧ ej .3
Under this assumptions, we can determine the curvature associated to the
SU(2) bundle to be the following two-form on Σ3:

F i2 ≡ dAi −
1

2
εijkAjAk =

R

12
εijkejk . (4.2.16)

Our Ansatz for the ten-dimensional metric is obtained from the AdS7

one (3.1.1, 3.2.25) by replacing AdS7 with AdS4 × Σ3, and by fibering the
internal space according to (4.2.13). We also expect some deformations,
so we introduce extra warpings which we assume to depend on the radial
coordinate only. All in all:4

ds2
10 = e2Ads2

AdS4
+ g2ds2

Σ3
+ dr2 + f2Ds2

S2 , (4.2.17)

where ds2
Σ3

= eiei and the fibered metric on the two-sphere was defined in
(4.2.13).

Notice that the SO(3) symmetry of the original AdS7 solution is broken
by the twisting procedure, consistently with our compactification solutions
being N = 1 AdS4 vacua. Indeed, even though the SO(3) remains as a
symmetry of the fiber, it is not a symmetry of the full solution.5 The ten-
dimensional metric (4.2.17) is now invariant under a simultaneous SO(3)

3We are using the same notation for the vielbein on Σ3 that we introduced in the
previous section for the vielbein on M3, which however was determined by supersymmetry
to be (3.2.23). From now {ei} will label the triad on Σ3 without any source of confusion.

4Notice that we are using the same name as for the AdS7 solutions (3.1.1, 3.2.25) for
the warping factor A and the radial coordinate r, but of course these are in principle
different quantities in AdS4. Actually, we will be able to find a map between the AdS7

solutions and the AdS4 compactifications, as described in subsection 4.3.1. This map will
fix the four-dimensional warping A4 in terms of the corresponding seven-dimensional one
A7, and the radial coordinate r4 will be determined in terms of r7 as well. Here and in
the rest of this thesis we prefer to drop the indices that label the dimension of the AdS
factor when they are not necessary, to make the expressions more readble.

5If E is the total space of an F -fibration over a base space B, the isometries of B are
promoted to isometries of E, but often the isometries of F are not. To see this, write
the metric on E as ds2E = gFijDx

iDxj + gB , where xi and gFij are the coordinates and

metric on F , and Dxi ≡ dxi + Ai; Ai is a connection on B, which takes values in the
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local Lorentz transformation on Σ3, and an identical SO(3) rotation acting
on the S2. This “diagonal” SO(3) acts on the vielbein ei of Σ3 and on the
yi in (3.2.35) as:

ei → Oijej , yi → Oijyj . (SO(3)D) (4.2.18)

This “twisted symmetry” will also play a crucial role in formulating our
Ansatz for the supersymmetry parameters in the next section.

It is thus worth to make a list of the differential forms on the internal
space that are invariant under this transformation. Not surprisingly, the
polyforms Φ± will turn out to belong to this class. Starting from one-forms,
there are only two of them that are SO(3)D invariant:

{dr, yiei} . (4.2.19)

A third possible candidate is vanishing: yiDyi = 0. Making use of the
Cartan structure equation, that under the identification (4.2.14) reads dei =
εijkejAk, it is easy to see that: d(yiei) = Dyiei. This suggests that the
subspace of invariant forms is closed under derivation, which is indeed the
case.

Moving on to two-forms the structure becomes richer as there are five
SO(3)D invariant combinations living on M6 that are given by:

{vol2 , y
iF i2 , eiDyi , ei ? Dyi , dr yiei} , (4.2.20)

where ?Dyi are defined as the Hodge dual forms of Dyi on the two-sphere,
where the Hodge operator is computed with respect to the volume (4.2.15),
that is to say: ?Dyi ≡ −εijkyjDyk.

For later purposes, it is useful to compute the exterior derivatives of
these forms. We already know that eiDyi is an exact form, being equal to
−d(yiei). It is also possible to identify a two-form which is closed but not
exact; since d(yiF i2) = −d(vol2) = F i2Dyi, it follows that:

d(vol2 + yiF i2) = 0 . (4.2.21)

In the space spanned by SO(3)D invariant two-forms, this is the only non-
trivial closed form. To complete the list of derivation rules, we also have:
d(ei ? Dyi) = 2yiei(vol2 − yiF i2).

Finally it is worth noticing that there exist a triplet of forms that are a
natural candidate for a possible SU(2) structure on M6. Indeed, the following
algebraic relations are valid:

(eiDyi)2 = (ei ? Dyi)2 = (vol2 −
6

R
yiF i2)2 , (4.2.22)

space of isometries of F . Now it can be shown that an isometry ξ of F preserves the total
metric gE if and only if dξ+ [ξ, A] = 0, where the bracket is the Lie bracket of vectors on
F ; in other words, if ξ is a covariantly constant section of the bundle ad(E), the adjoint
bundle associated to E. If F = S1, the Lie bracket vanishes and one can take ξ to be
constant over B. With more complicated F ’s, ad(E) is often non-trivial and does not have
a non-trivial global section; thus ξ cannot be promoted to an isometry of E.
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meaning that there are three two-forms that square to the same four-form
and that are orthogonal to each other, just like the forms {j,Reω, Imω} in
formula (4.1.7). In fact, as we will see shortly, the pure spinors will turn out
to be defined in terms of these forms.

4.2.2 Spinors

In the first chapter of this thesis we derived an explicit expression for the
supercharges of the AdS7 ×M3 solutions. In particular, we saw how the
SU(2) isometry of the S2, which is the R-symmetry of the solution, acts
on the internal and external spinors. This is implemented by having

(
ζ
ζc

)
transform as a doublet, and at the same time the internal spinors:

χ1a ≡
(

χ1

χ1c

)
∈ 2 , χ2a ≡

(
χ2

−χ2c

)
∈ 2 , (4.2.23)

where we introduced the SU(2) spinor index: a = {1, 2}.
We now want to decompose the AdS7 supercharges in a way which is ap-

propriate to describe an AdS4 compactification. This is easily accomplished
with ζAdS7

→ ζAdS4
⊗ χ̃, where χ̃ is a complex spinor on the three-manifold

Σ3 and the Killing spinor on AdS4 is a real non-chiral spinor that we can
write as: ζAdS4 = ζ + ζ∗.

The corresponding gamma matrices decomposition is: γ
(7)
µ = γ

(4)
µ ⊗

1 , γ
(7)
i+3 = γ(4) ⊗ γ̃i, where γ̃i is a representation of the SO(3) algebra asso-

ciated to the tangent space of Σ3. The charge conjugation matrix on this
basis is B(7) = 1⊗ iσ2.

If we now plug this decomposition into the ten-dimensional gamma ma-
trices (3.1.2), we immediately realize that a change of basis is needed in order
to get a proper 10 = 4 + 6 representation of the type of Eq. (4.1.3). We thus
rotate the ten-dimensional spinors according to ε → Oε, where the change
of basis is parametrized by a matrix of the form: O = 1√

2
(1 + iρ), where

ρ2 = 1 in such a way that O−1 = O∗ = 1√
2
(1 − iρ). The corresponding

transformation law for the gamma matrices is Γ→ OΓO−1, which amounts
to: Γ → Γ if Γ and ρ commute, and to: Γ → iρΓ if Γ and ρ anticommute.
The charge conjugation matrix transforms as B → OB(O∗)−1.

A proper choice is ρ = γ(4)⊗ 1⊗ 1⊗σ2, which leads to our final 4 + 3 + 3
gamma matrices representation:

Γ(4+3+3)
µ = iγ(4)γ(4)

µ ⊗ 1⊗ 1⊗ 1 ,

Γ
(4+3+3)
i+3 = γ(4) ⊗ γ̃i ⊗ 1⊗ σ2 , (4.2.24)

Γ
(4+3+3)
i+6 = γ(4) ⊗ 1⊗ γi ⊗ σ3 ,

where the index i = {1, 2, 3} runs over both the manifold Σ3 where the branes
are wrapped and on M3, and γi and γ̃i are in principle two different represen-
tations of the SO(3) algebra. In this basis chirality and charge conjugation
are represented as: Γ = γ(4) ⊗ 1⊗ 1⊗ (−σ1) , B = 1⊗ iσ2 ⊗ iσ2 ⊗ σ3.
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The resulting transformed supercharges are:

ε1+ = ζ+(χ̃χ1 + χ̃cχ1c)w+ +c.c. , ε2− = ζ+(χ̃χ2− χ̃cχ2c)w−+c.c. , (4.2.25)

where w± are eigenvectors of −σ1, namely w± = 1√
2
(v+ ∓ v−).

As we anticipated in the previous section, it is very convenient to rewrite
our spinor Ansatz in such a way as to make the twisted symmetry (4.2.18)
manifest. We already know from (4.2.23) the transformation properties for
χ1 and χ2, and we also know that the AdS4 spinor ζ has to be invariant,
since we are looking for N = 1 solutions.

Therefore it seems natural to assume that the spinor χ̃ living on Σ3

transforms under local Lorentz transformation on Σ3 in such a way as to
compensate the variation of χa under S2 isometry. To this aim we introduce

a new SU(2) doublet χ̃a ≡
(
χ̃
χ̃c

)
transforming in the 2̄.6 At this point it

is crucial to notice that both χ̃ and its conjugate also carry a spacetime
spinor index α = {1, 2}. Here we are assuming that they also transform
as a doublet, which amounts to imposing a condition on them, the twisting
condition:

U∗abχ̃bα = χ̃aβUβα . (4.2.26)

This constraint is solved by choosing the spinor to be equal to the epsilon
tensor:7

χ̃aα = εaα =

(
0 1
−1 0

)
. (4.2.28)

Remarkably, this expression coincides with the explicit form for the twisted
spinor which is given in the AdS4×Σ3 solutions of seven-dimensional gauged
supergravity in [39].

To summarize, we achieved the goal of rewriting the two six-dimensional
internal spinors of Eq. (4.1.4) in a form which is manifestly invariant under
the twisted SU(2) symmetry:

η1
+ = χ̃aχ1aw+ , η2

− = χ̃aχ2aw− , (4.2.29)

which also implies that the four-dimensional spinor ζ is a singlet, as we
expect for an N = 1 vacuum in four dimensions.

6Of course the SU(2) representations 2 and its conjugate 2̄ are equivalent. What we
want to highlight here is that if χa transform as χa → Uabχb then χ̃a has to transform

as χ̃a → U∗abχ̃b in such a way to make the product χ̃aχa invariant.
7We can be a bit more explicit by choosing a representation for the gamma matrices

on the tangent space to Σ3 to be σ̃i = −(σi)∗. We then define the spinor rotation matrix
with respect to the euclidean rotation matrix in the following way:

Oijσj = U†σiU , Oij σ̃j = UT σ̃iU∗ . (4.2.27)

This identity implies that the spinor χ̃, which is defined with respect to the generators in
the σ̃i representation, transforms under local Lorentz transformation as χ̃α → (UT )αβ χ̃β .
We also want χ̃ and its conjugate to transform as a doublet under the same symmetry:
χ̃a → U∗abχ̃b. Then the full spinor along Σ3 is represented by a 2× 2 matrix χ̃aα, which
gets constrained by setting the two transformation laws to be equivalent; this leads to
(4.2.26).
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4.2.3 Pure spinors on M6 = Σ3 ×M3

In the last section we formulated a compactification Ansatz for both the
metric and the spinors, now we move our attention to the pure spinor Ansatz.

We already introduced a possible parametrization for Φ± in terms of a
triplet of forms {z, j, ω}, defining a so-called SU(2) structure on M6. That
parametrization, (4.1.8), is valid in general. Our goal is now to determine
those forms explicitly for the particular case of our interest, namely for an
internal manifold given by the non-trivial bundle M3 → Σ3. Not surprisingly,
our final Ansatz will be naturally written in terms of the set of SO(3)D

invariant forms of subsection 4.2.1.
Also, understanding the 6 = 3 + 3 splitting of the internal space at the

level of pure spinors will require some generalized geometry techniques in
three dimensions, which we already reviewed in section 3.1.

Pure spinors on Σ3 and M3

The first step is formulating an Ansatz for the bispinors living on the three-
manifolds Σ3 andM3. We will later be able to reassemble the three-dimensional
pure spinors into the six-dimensional ones.

We already know form the spinor Ansatz (4.2.25) that there is a crucial
difference between the two three-dimensional factors: namely, we have one
single spinor χ̃ on Σ3, while we have two spinors χ1, χ2 on M3.

We start from the space Σ3. It makes sense to define three-dimensional
bispinors in a similar way as in Eq. (3.1.6). Namely, on Σ3:

ψ̃1 = χ̃⊗ χ̃† , ψ̃2 = χ̃⊗ χ̃c† . (4.2.30)

Following the approach of subsection 3.2.2, it is much more convenient
to organize the bispinors in the following 2× 2 matrix:

Ψ̃ ≡
(

χ̃
χ̃c

)
⊗ (χ̃ , χ̃c)

†
=

(
ψ̃1 ψ̃2

−(−)deg(ψ̃2)∗ (−)deg(ψ̃1)∗

)
, (4.2.31)

where (−)deg acts as ± on even (odd) forms. The advantage of this choice is
that now we can expand these 2 × 2 hermitean matrices on the basis σ̃µ =
(1, σ̃i), where σ̃i = −(σi)∗ are the SU(2) generators in the 2̄ representation.

We can then use the explicit parametrization for ψ̃1 and ψ̃2 given in Eq.
(3.1.21). In this case we have one single spinor χ̃ on Σ3, so we can simplify
those expressions assuming ψ = 0, θ1 = 0, θ2 = 0; the result is very compact
and elegant:

Ψ̃0 = 1 , Ψ̃1 = −eiσ̃i . (4.2.32)

The subscript indicates the degree of the forms. The remaining components
of Ψ̃ are determined via Hodge duality as Ψ̃2 = −i ?3 Ψ̃1, Ψ̃3 = −i ?3 Ψ̃0.
Notice that the expressions (4.2.32) are automatically covariant under the
SO(3) of local Lorentz transformations even before solving the supersym-
metry equations; with some abuse of language, we will say that they are



64

covariant “off-shell”. Indeed if we perform a local Lorentz transformation
ei → Oijej , it is clear that this can be traded with σ̃i → (OT )ij σ̃j = U∗σ̃iUT ,
namely the matrix Ψ̃ transforms covariantly as Ψ̃→ U∗Ψ̃UT .

Things are a bit more complicated on M3 where we have two spinors
χ1, χ2. What happens is that the expression for Ψ is not automatically
covariant under the SU(2) that rotates the S2. However, as shown in (3.2.38),
it became covariant “on shell”, meaning after solving the supersymmetry
equations. This in effect means that the analysis there started with random
spinors on the S2, and that imposing supersymmetry also required them to
be Killing spinors when restricted to the S2.

Here we will just assume the SU(2) covariance from the start. We will
simply take the expression for the bispinors (3.2.38) and covariantize it by
replacing dyi with Dyi = dy+ εijkyjAk. We must also substitute the radius
of the two-sphere for the AdS7 solution with the AdS4 one, that is to say:
1
4e
A
√

1− x2 → f . All in all, we get:8

Ψ0 = ix 1 +
√

1− x2 yiσi , Ψ1 =
√

1− x2dr 1 + i
(
xyidr + f Dyi

)
σi .

(4.2.33)
Again the remaining components are determined by covariantizing the Hodge
duals Ψ2 = −i ?3 Ψ1 , Ψ3 = −i ?3 Ψ0.

The matrix Ψ now transforms covariantly under the diagonal symmetry
in (4.2.18), which we can trade for

σi → (OT )ijσj = UσiU† . (4.2.34)

This implies Ψ→ UΨU†.

Assembling the pure spinors on Σ3 and M3

We will now assemble the pure spinors (4.2.33) and (4.2.32) that we have
found on Σ3 and M3, and find expression for the six-dimensional pure spinors
(4.1.5).

We start from the odd form Φ−, that we rewrite as:

Φ− = η1
+ ⊗ η2†

− =

6∑
k=0

1

8k!
η2†
− γMk...M1 η

1
+dx

M1...Mk

=
1

8

3∑
q=0

3∑
k=0

1

q! k!
η2†
− γMq...M1

γM̃k...M̃1
η1

+dx
M̃1...M̃kdxM1...Mq .

(4.2.35)

We now plug into this formula the spinor Ansatz (4.2.29), together with the

8Like in the case of formula (4.2.17), we gave the quantity x the same name that it
had for the AdS7 solutions. These two quantities are in principle different, and indeed we
will see how x4 can be determined in terms of x7 making use of a supersymmetric map
described in subsection 4.3.1.
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explicit gamma matrix representation given in (4.2.24), and get:9

Φ− =
1

2

[(
χ̃b ⊗ χ̃a†

)
+

(
χb1 ⊗ χa†2

)
−

+ i
(
χ̃b ⊗ χ̃a†

)
−

(
χb1 ⊗ χa†2

)
+

]
.

(4.2.36)
Comparing this expression with the 3d bispinor matrices we defined in (4.2.31),
we realize that we can write more compactly

Φ− =
1

2
tr
(

Ψ̃T
+Ψ− + iΨ̃T

−Ψ+

)
. (4.2.37)

An analogous expression can be obtained for the even pure spinor Φ+:

Φ+ = i η1
+ ⊗ (η2c

+ )† =
1

2
tr
(

Ψ̃T
−Ψ− − i Ψ̃T

+Ψ+

)
, (4.2.38)

where the i factor in the definition is chosen in order to get a real zero-form
part Φ0. Notice that the pure spinors Φ± are naturally invariant under the
twisted symmetry (4.2.18), as they should be. This can be seen by assembling
the transformation rules we found for Ψ̃ and Ψ in the previous section:

Ψ→ UΨU† , Ψ̃→ U∗Ψ̃UT =⇒ Φ± invariant . (4.2.39)

The next step is plugging into Φ± the explicit expressions for the matrices
Ψab and Ψ̃ab we gave in (4.2.33) and (4.2.32). As expected, the pure spinors
turn out to be naturally expressed in terms of the twisted forms that we
introduced in subsection 4.2.1, decorated properly with the warping functions
f, g that we introduced in the internal metric. In particular they can be
written in the dielectric form (4.1.8), where the complex one-form z is given
by: z = dr + ig yiei, and the two-forms {j, ω} are

j = −fg ei ?Dyi , Reω = −fg eiDyi , Imω = f2vol2−
6g2

R
yiF i2 . (4.2.40)

From (4.2.22) we see that these forms satisfy the set of algebraic constraints
that define an SU(2) structure, Eq. (4.1.7).10

We also get the following identification: x = cosψ, where ψ is the angle
in (4.2.33). This provides a natural interpretation of the variable x in terms
of the angle between the two six-dimensional spinors.

Finally, we also get a vanishing phase θ = 0, which means that we are in
the special case considered in [72, Sec. 5.2]. The pure spinor equations were

9(4.2.36) is obtained after some manipulations that involve computing the quantity
w−σ

q
3σ
k
2w+ , which is equal to 0 if q+ k is even, to 1 if k is even and q is odd, and to i if

k is ood and q even.
10There are other linear combinations of the triplet of forms (4.2.22) that satisfy (4.1.7).

One can see that the coefficient of j and ω along dr ∧ yiei has to vanish; the remaining
coefficients describe a set of quadratic equations, which can be interpreted as describing
a frame {Reω, Imω, j} in a four-dimensional space of signature (3, 1). This might lead to
a more general class of solutions, which however would not be interpreted as compactifi-
cations of the AdS7 solutions of [1].
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analyzed in detail there; (5.16)–(5.18) in that paper give the constraints on
the geometry and the fluxes in terms of the SU(2) structure {z, j, ω}. Recall
that before using the equations in that form we have to transform Φ± to
the corresponding pair Φ0

± with vanishing intrinsic b-field, as in (4.1.10). We
also have to rescale the pure spinors as Φ± → e3A−φΦ±, which amounts to
fixing their norm in (4.1.8) to ρ = e3A−φ cosψ as in [72, Eq. 2.2]. Using the
results of appendix C, after some work the supersymmetry equations reduce
to a coupled system of ODE’s which we now proceed to give.

4.2.4 The system of ODEs

Using the pure spinor Ansatz we formulated in the last section we were able
to reduce the supersymmetry equations to a coupled system of five ODEs,
which is necessary and sufficient to find an AdS4 solution. We will write this
general system later, in Sec. 4.4.

Indeed, our compactification Ansatz is not over, since we are now go-
ing to impose a certain constraint, which turns out to further simplify the
supersymmetry equations.

Originally we found a simplification by noticing empirically that many
solutions to the general system of ODE had a constant ratio between the
functions g and eA in (4.2.17), which are the “radii” of Σ3 and of AdS4

respectively. We thus assumed that ge−A is constant.

As usual for a dynamical system, if one imposes a constraint one needs
to worry about possible “secondary constraints”; in our case, we need to
check what happens when we impose ∂r(ge

−A) = 0. We do get a secondary

constraint: it turns out that fe−A√
1−x2

needs to be constant as well. In principle

we could get now a third constraint as well, but imposing compatibility with
the general system of ODE’s (4.4.77) of this second constraint we simply end
up fixing both constants.

This procedure actually only works when Σ3 has Ricci scalar R < 0;
without loss of generality we then fix R = −6. The result is then

f =
2

5
eA
√

1− x2 , g =
2√
5
eA . (4.2.41)

In other words, within the five-dimensional space spanned by the parameters
{f, g,
A, x, φ}, we have found a three-dimensional subspace that is left invariant
by the flow, with the restriction that Σ3 has to be an Einstein space of
negative curvature.

A posteriori this assumption is quite natural, and indeed it was later
found very useful for the AdS5 solutions of [4] as well. A rough justification
is as follows. The holographic dual of putting a CFT6 on R3 × Σ3 would

consist in replacing ds2
AdS7

= dρ2

ρ2 + ρ2ds2
R6 with dρ2

ρ2 + ρ2(ds2
R3 + ds2

Σ3
). In

the IR, if this leads to a CFT3, one would expect that the ρ2 in front of
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ds2
Σ3

somehow disappears; our Ansatz is somehow that it does not also get
multiplied by a further function of Σ3, or worse.

The general system now simplifies quite a bit; after eliminating f and
g using (4.2.41), it only involves the warping factor A, the dilaton φ and
the angle between the two six-dimensional spinors x = cosψ. Moreover, two
equations become redundant. The system then becomes

∂rφ =
1

8

e−A√
1− x2

(
21x− 6x3 + 2(5− 2x2)F0e

A+φ
)
,

∂rx =
1

4
e−A

√
1− x2

(
3x2 − 8 + 2xF0e

A+φ
)
, (4.2.42)

∂rA =
1

8

e−A√
1− x2

(
5x+ 2eA+φF0

)
.

Notice that this system looks very similar to the corresponding BPS
equations in AdS7 given in (3.3.59). As we will see shortly, this similarity
can be made more explicit. Also, with the constraints (4.2.41), the full ten-
dimensional metric (4.2.17) becomes

ds2
10 = e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

4(1− x2)

25
e2ADs2

S2 . (4.2.43)

Notice the similarity with the general form of the AdS7 metric (3.2.25).
Let us also give the form of the fluxes here. Their general expression, for

the choice (4.2.41), looks quite simple:

F2 = −q
(
vol2 + yiF i2

)
− 2F0

5
xqeA+φvol2 ,

F4 = −2

5
qeA dr F i2 ? Dyi +

2

5
xq2eA+φ yiF i2vol2 , (4.2.44)

H =
2

5
eA dr yiF i2 +

2

5
xqeA+φ F i2Dyi −

(
3(x2 − 3)

2
e−A + xF0e

φ

)
volM3 .

These expressions are again very similar to the fluxes for the AdS7 solu-
tions of subsection 3.2.1. There, F2 only had a component along the volume
of the S2, H only had a component along the volume of the internal manifold
M3, which is defined according to the internal metric in (4.2.43). In analogy
with the AdS7 case we have defined:

q ≡ 2

5

√
1− x2eA−φ = radius(S2) e−φ . (4.2.45)

It is not by chance that we gave the two quantities the same name.
Indeed, as we are about to explain, they will turn out to be the same function.

4.3 Analytic solutions

In this section we give an infinite class of analytic solutions for the AdS4×Σ3

compactifications of the AdS7 solutions of type IIA supergravity. These
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are dual to compactifications of the (1, 0) CFT6 on a three-manifold Σ3 to
some N = 1 CFT3. Also, Σ3 is constrained to be a maximally symmetric
and has negative curvature. In the compactification procedure part of the
supersymmetry is preserved imposing a twisting condition that breaks the
original SU(2) R-symmetry completely.

These analytic solutions describe near horizon geometries of brane sys-
tems involving NS5’s, D6’s and D8’s wrapped on a the compact three-
manifold Σ3. It is also possible to include orientifold planes. Beyond their
field theory interpretation, these solutions are clearly also interesting as four-
dimensional vacua with localized sources.

As in the case of the AdS7 solutions of [1] that we presented in the
previous chapter, we were able to solve the BPS equations analytically after
the discovery of a surprising map between the AdS7 system and the one
obtained after the compactification to AdS4. This map was then generalized
to a second map between the AdS7 system and the one describing AdS5

compactifications. The latter was then solved analytically in [4]. Using the
maps it was finally possible to produce analytic solutions also in seven and
four dimensions.

4.3.1 Supersymmetric maps

We have noticed already a few similarities with the AdS7 solutions of [1]. In
particular, the ODE system in seven dimensions (3.3.59) looks very similar to
the one we obtained compactifying to four dimensions, (4.2.42). Remarkably,
the two systems are mapped into each other by:

eA4 =

(
5

8

)3/4

eA7 , eφ4 =

(
8

5

)1/4
eφ7√

1 + 3
5x

2
7

,

r4 =

(
5

8

)1/4

r7 , x4 =

(
8

5

)1/2
x7√

1 + 3
5x

2
7

.

(4.3.46)

Actually the requirement that the two systems are mapped into each other
leaves one parameter free, which we fixed by requiring that the function q,
defined in AdS7 as (3.2.31), transforms into the analogue q of (4.2.45) in
AdS4. This quantity played a crucial role in the discussion of flux quantiza-
tion of the AdS7 solution. The identification q7 = q4, will essentially imply
that flux quantization works in the same way in four dimensions.

Acting with the map (4.3.46) on the metric Ansatz (4.2.43) allows to
define a one to one correspondence between an AdS7 solution of the form
(3.2.25) and its AdS4 compactification according to:

e2Ads2
AdS7

+ dr2 +
1− x2

16
e2Ads2

S2 →√
5

8

[
5

8
e2A

(
ds2

AdS4
+

4

5
ds2

Σ3

)
+ dr2 +

1− x2

2(5 + 3x2)
e2ADs2

S2

]
.

(4.3.47)
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For completeness we also have to mention that the map also implies a

change of sign in the Romans mass, that is to say we find that F
(4)
0 = −F (7)

0 .
In what follows we will drop the annoying index labeling the dimension of

the AdS factors, and we will stick to the convention that F0 = F
(7)
0 , to make

the comparison easier with the AdS7 solutions we presented previously.
The map (4.3.46) also inspired a similar map for the AdS7 to AdS5 com-

pactifications on Riemann surfaces (3.3.60). Combining the two maps we
get:

eA4 =

(
5

6

)3/4

eA5 , eφ4 =

(
6

5

)1/4
eφ5√
1 +

x2
5

5

,

r4 =

(
5

6

)1/4

r5 , x4 =

(
6

5

)1/2
x5√

1 +
x2
5

5

.

(4.3.48)

This allows to associate to each AdS5 solution an AdS4 one, and vice
versa. Once again the map has one free parameter which is fixed by requir-
ing that q4 = 2

5e
A−φ√1− x2 transforms into q5 = 1

3e
A−φ√1− x2. With

this choice q is a universal quantity for the AdS7 solutions and all of their
compactifications:

q4 = q5 = q7 . (4.3.49)

In summary, the result of this section is that there is a one-to-one corre-
spondence between solutions of the reduced BPS system (4.2.42) and solu-
tions of the BPS system for AdS7 solutions in [1, Eq.(4.17)]. Moreover, [4,
Sec. 5.2] establishes that there is a one-to-one correspondence of AdS7 solu-
tions with AdS5 × Σ2 solutions, with Σ2 a Riemann surface:

AdS4 × Σ3 ↔ AdS7 ↔ AdS5 × Σ2 . (4.3.50)

All in all, using these maps three infinite classes of analytic solutions can
be found in AdS7, AdS5 and AdS4, describing the holographic duals of the
(1, 0) CFT6’s and their compactifications on Riemann surfaces Σg to N = 1
CFT4’s and on hyperbolic three-manifolds Σ3 to N = 1 CFT3’s.

This universality hides something deeper. As we will show in the next
chapter, it can be generalized to a full reduction Ansatz for type IIA su-
pergravity on the internal manifold M3. Remarkably, the reduction leads
to minimal gauged supergravity in seven dimensions, a theory with sixteen
supercharges and an SU(2) gauge field. This works independently on the
details of M3, that is to say independently on the particular choice of brane
configurations.

4.3.2 General solution

We now present the infinite class of AdS4 analytic solutions, taking advantage
of the complete analysis that we already performed in section 3.3 for the AdS7

solutions.
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Combining the map (4.3.46) and Eq. (3.3.62), any AdS4 vacuum can be
expressed in terms of a single function β, the same function we introduced
to describe the AdS7 solutions, whose general expression is given by Eq.
(3.3.66).

Given a β, the ten-dimensional metric is completely determined as:11

ds2
10 =

4

9

√
−5β′

8y

(
5

8
ds2
AdS4

+
1

2
ds2

Σ3
− 1

16

β′dy2

yβ
+

βDs2
S2

10β − 4yβ′

)
. (4.3.52)

Analogously, it is possible to give an expression for the dilaton and fluxes
in full generality in terms of the function β only. We get:

F2 = 4y

√
β

β′
(
vol2 + yiF i2

)
− F0

9

(
β′
√
β

5β − 2yβ′

)
vol2 ,

F4 =
1

9
dy F i2 ? Dyi +

4

9

(
yβ

5β − 2yβ′

)
yiF i2vol2 ,

H =
β′

36y
√
β
yiF i2dy −

( 1
9

√
ββ′

5β − 2yβ′

)
F i2Dyi +

27β − 36
5 yβ

′ − F0

12yβ
′2(

−β′
10y

)1/4

(5β − 2yβ′)

 volM3
,

eφ =

(
5

2

)1/4
(−β′/y)5/4

12
√

5β − 2yβ′
,

(4.3.53)

where everything is written in terms of the set of SO(3)D invariant forms
which were defined in subsection 4.2.1.

One last step is needed. In fact, before we are able to claim that the map
(4.3.50) is also a correspondence between solutions, we should also check
that flux quantization is respected by it. Fortunately, thanks to the map
(which leaves q invariant) the quantization conditions involving F2 and B
work essentially the same.

We can still write B = F2

F0
+ b, for b a closed two-form, which in AdS7

was proportional to volS2 . In compactifying to AdS4 the sphere gets fibered
over Σ3, so it makes sense to define a covariant volume, (4.2.15), which is no
longer closed.

As we explained in subsection 4.2.1, we can construct a new closed two-
form by adding a term which has legs along Σ3. This form is: (vol2 +

11To be more precise, plugging the solution (3.3.62) for the AdS7 system into (4.3.46)
we get the following solution for the AdS4 one:

eA4 =
53/4

6

(
−
∂yβ

2y

)1/4

, x4 =

√
−2y∂yβ

5β − 2y∂yβ
, eφ4 =

(
5

2

)1/4 (−∂yβ/y)5/4

12
√

5β − 2y∂yβ
.

(4.3.51)
Plugging this into the general expressions for the AdS4 metric (4.2.43) we get Eq. (4.3.52).
Similarly, the final expressions for the fluxes in (4.3.53) are obtained plugging the solution
(4.3.51) into (4.2.44).
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yiF i2). The quantization condition (3.2.51) is then simply replaced by b =
− n2

2F0
(vol2 + yiF i2), and everything else works the same. Even the subtle

formula for the quantization of H in presence of D8’s, Eq. (3.2.58), is left
unchanged by the map.

What is new with respect to the AdS7 solutions is the presence of a four-
form flux F4, so we have to check that this is properly quantized. It is better
to consider the modified flux F̃4 = F4−B∧F2 + 1

2B
2F0. This can be written

in terms of a gauge potential as F̃4 = dC3, for

C3 =
1

2F0

(
q2 − n2

2

4

)
F i2 ? Dyi , (4.3.54)

where n2 is the flux integer for F̃2 as defined by Eq. (3.2.44). Near a
regular point, regularity of B and F2 implies that n2 should be zero, and
that q → 0. Moreover, one can see from (4.2.42) that q starts linearly in the
radial coordinate, so that in the end C3 ∼ r2yieiejDyj = xieiejDxj , where
now the xi ≡ ryi are coordinates on R3; so C̃3 is a regular form, and F̃4 has
no periods in this case. In presence of sources, the discussion changes a bit.
Flux quantization now requires the flux integrals to be integer for cycles that
do not intersect the sources. We can take such cycles to be at fixed y; then
the only relevant term in F̃4 is proportional to the form: vol2 ∧ yiF i2, whose
integral vanishes because

∫
S2 y

i = 0.

All in all we do not have extra conditions to be imposed with respect to
the AdS7 solutions. This means that the classification of the possible ana-
lytic solutions works exactly in the same way as described in section (3.3.1),
including the formulas for the quantization of the parameters {b2, y0}. This
means that the AdS4 vacua are also classified by the flux integers (ñ2, n2) at
the two poles.

We can thus have AdS4 solutions with one D6 stack at one pole and a reg-
ular point at the other, solutions with two D6 stacks, and solutions with one
D6 stack and an orientifold plane at the opposite extremum. These provide
interesting examples of four-dimensional vacua with localized sources.

4.3.3 Massless solution

It is straightforward to find a solution in the case where F0 = 0. Indeed,
a simple expression is available for β, given by Eq. (3.3.65). Plugging that
expression into (4.3.52) gives the following internal space metric:

ds2
M3

=

√
5

8

4

9k

1√
y2

0 − y2

(
dy2 +

2(y2
0 − y2)2

5y2
0 + 3y2

Ds2
S2

)
. (4.3.55)

As shown in App. A, this solution can be lifted to eleven dimensions to
the AdS4 solution corresponding to the near horizon geometry of a stack of
M5-branes wrapped on Σ3. This can be seen applying a proper change of
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variable y = y0 cosα, and with the following identification: y0 = 9
32R

3. All
in all, we get the following metric on the internal space:

ds2
M3

=

√
5

8

R3

8k
sin(α)

(
dα2 +

sin2(α)

10 + 6 cos2 α
Ds2

S2

)
. (4.3.56)

The behavior at poles of this metric is precisely the same ad in the AdS7

case, we have two singularities at the poles α = 0, α = π, that can be
interpreted physically as D6 and anti-D6 singularities.

The presence of D6’s can also be deduced looking at the fluxes. Indeed,
plugging the solution (3.3.65) into Eq. (4.3.53) we get:

F2 = −k
2

(
vol2 + yiF i2

)
, (4.3.57)

F4 =
9R3 sinα

32
F i2 ? Dyidα+

R3 cosα sin2 α

8(5 + 3 cos2 α)
yiF i2vol2 . (4.3.58)

The integral of F2 over the S2 is constant and equal to −2πk. We can take
the S2 close to the north or the south pole, where it signals the presence of
D6-brane charge. More precisely, there are k anti-D6-branes at the north
pole and k D6-branes at the south pole. The flux F4 is regular at both poles,
where both its components → 0.

The three-form flux H has the following expression:

H =
R3 sinα

16k
yiF i2dα +

R3 cosα sin2 α

4k(5 + 3 cos2 α)
F i2Dyi ,

− 3R3(31 + cos 2α) sin3 α

8k(13 + 3 cos 2α)2
dαvol2 .

(4.3.59)

Around the poles where the D6 stacks are located, the first two components
→ 0, while the third one shows the same divergent behavior that we had
for the AdS7 massless solution. Indeed, if we expand it around α = 0 and
introduce the coordinate ρ = α2, we get: H ∼ ρ−

1
4 volM3

. We should re-
member, in any case, that this solution is non-singular in eleven dimensions;
the diverging behavior is cured by M-theory, just like the divergence of the
curvature at the poles, where the D6 stacks are located.

A possible expression for the B field is

B = −R
3 cosα

16k
yiF i2 −

R3 cosα(9− cos2 α)

16k(5 + 3 cos2 α)
vol2 . (4.3.60)

We actually used this expression in checking that (3.2.58) is also the correct
flux quantization condition for AdS4.

For completeness we also give the expression for the dilaton:

e4φ =

(
5

8

) 1
2 R3 sin3 α

5 + 3 cos2 α
. (4.3.61)

Expanding around α = 0 we get eφ ∼ ρ3/4, which is precisely what we
expected from the D6-brane solution in flat space of Eq. (2.0.8).
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4.3.4 One D6 stack

Again, the simplest example of solution with F0 6= 0 is the one with a
single D6 stack, corresponding to the general massive solution (3.3.66) for
the choice b2 = 12. The resulting β has a single zero at y = −y0/2 and a
double zero at y = y0. The metric on the internal space has the following
simple form:

ds2
M3

=

√
5

24F0

1√
(y0 + 2y)2(y0 − y)

(
dy2 +

4

3

(y0 − y)2(y0 + 2y)2

5y2
0 + 5yy0 − 2y2

Ds2
S2

)
.

(4.3.62)
In analogy with what we did for the AdS7 solution, we introduce a new

radial coordinate ρ = 2(1 − y
y0

), with range ρ ∈ [0, 3]. Taking into account

the quantization condition (3.3.69), the metric on the total space becomes:

ds2
10 =

n2

F0

√
5ρ

8

(
5

6
ds2

AdS4
+

2

3
ds2

Σ3
+

dρ2

4ρ(3− ρ)
+

2ρ(3− ρ)

3(24− 9ρ+ ρ2)
Ds2

S2

)
.

(4.3.63)
Around ρ = 0 the internal metric behaves as 1√

ρ (dρ2 + ρ2Ds2
S2), showing

a physical singularity corresponding to a stack of D6-branes. On the other
hand, around ρ = 3 the internal metric turns into flat space: dρ̃2 + ρ̃2Ds2

S2 ,
after the change of coordinates ρ̃ =

√
ρ− 3. So we get a regular point.

The Ramond-Ramond fluxes can be expressed as:

F2 = −n2

2

√
1− ρ

3

(
vol2 + yiF i2

)
+ n2

√
1− ρ

3

(
(2− ρ)ρ

24− 9ρ+ ρ2

)
vol2,

F4 =
3n2

2

8F0
F i2 ? Dyidρ+

n2
2

6F0

ρ(6− 5ρ+ ρ2)

(24− 9ρ+ ρ2)
yiF i2vol2 . (4.3.64)

Near ρ = 0 the two-form flux has a component F2 ∼ −n2

2 vol2, which signals
the presence a stack of n2 D6-branes, as in (3.3.72). On the other hand, near
the regular point F2 vanishes, as it should since no source is localized there.

We can thus see that the quantization conditions that we have imposed
on the AdS7 solutions work correctly also in AdS4.

Moving to the four-form flux, the first term goes to a constant value at
both poles, while the second term goes to zero linearly near the D6 stack
ρ = 0 and quadratically at the regular point ρ̃ = 0.

The expression for the three-form flux is a bit more involved, but still it
reproduces the expected behavior. We have:

H =− n2

18

√
1− ρ

3
yiF i2dρ+

n2

F0

√
1− ρ

3

ρ(2− ρ)

(24− 9ρ+ ρ2)
F i2Dyi

+

(
18F 2

0

125n2
2ρ

)1/4(
144− 29ρ+ ρ2

24− 9ρ+ ρ2

)
volM3 .

(4.3.65)

The first term goes to a constant value both around the D6 stack ρ = 0
and at the regular point ρ̃ = 0. The second term goes to zero linearly at
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both extrema, using coordinates ρ and ρ̃ respectively. The third term is
the relevant one, and it reproduces the same behavior that we had in AdS7:
around ρ = 0 it is divergent: H ∼ ρ−1/4volM3 , around the regular pole it
goes to a constant value.

Finally, the dilaton is determined as:

e4φ =
40ρ3

n2
2F

2
0 (24− 9ρ+ ρ2)2

, (4.3.66)

which goes to a constant value at the regular point ρ = 3 and goes to zero
as eφ ∼ ρ3/4 at ρ = 0, as expected near a D6 stack, as defined by the D6
solution in flat space (2.0.8).

4.3.5 O6/D6

The solution that we present here is particularly relevant as a rare example
of four-dimensional vacuum with a localized orientifold plane. It belongs to
the second class of analytic solutions, with one D6 stack is located at y = y0

and an orientifold plane at y = y1. Our analysis will proceed in the exact
same way as in subsection 3.3.4 for the corresponding AdS7 solution.

Again, instead of discussing this class in full generality, we just give a
single example corresponding to the choice of flux integer n2 = 6. In other
words we present a solution with an O6 plane at one side, and a stack of
six D6-branes on the other side. Infinite more possibilities can be obtained
varying n2, which is allowed to take any integer value except for zero.

We introduce a radial coordinate ρ defined by y = y0
3 (ρ2−1), with range

ρ ∈ [0, 2]. The internal space metric corresponding to this solution takes the
form:

ds2
M3

=
3

F0

√
15ρ

8(2− ρ)(1 + ρ)2

(
dρ2 +

2(2− ρ)2(1 + ρ)2

3(6− 2ρ+ ρ2)
Ds2

S2

)
. (4.3.67)

Around ρ = 0 this behaves as ∼ ρ1/2(dρ2 + 4
9Ds

2
S2), which is the correct

behavior for an O6 plane, as defined by equation (3.2.43). Around ρ = 2 it
goes like ∼ 1√

ρ−2
(dρ2 + (ρ − 2)2Ds2

S2), so we get the usual D6 stack. The

complete ten-dimensional metric is the one given in the introduction, Eq.
(4.0.1).

The Ramond-Ramond fluxes take the following form:

F2 = −3

2
ρ
(
vol2 + yiF i2

)
− 3(2− ρ)(1− ρ2)

6− 2ρ+ ρ2
vol2, (4.3.68)

F4 = − 9ρ

4F0
F i2 ? Dyidρ−

9ρ(2− ρ)(1− ρ2)

2F0(6− 2ρ+ ρ2)
yiF i2vol2 . (4.3.69)

Near ρ = 2 the two-form flux behaves as F2 ∼ −3
(
vol2 + yiF i2

)
, which

integrated on the two-sphere reproduces the behavior for a stack of six D6-
branes. On the other hand, near ρ = 0 we get F2 ∼ −vol2, which corresponds
to the charge of an O6.
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Figure 4.1: A sketch of the internal M3 in the solution with an orientifold
plane at one pole, and one D6 stack at the other pole.

The four-form flux has a first term that goes to zero where the orientifold
is located and to a constant in correspondence of the D6 stack. The second
term goes to zero linearly at both extrema.

Again the expression for the three-form flux H is more involved. It reads:

H =− 3

2F0
yiF i2dρ−

3(2− ρ)(1− ρ2)

F0(6− 2ρ+ ρ2)
F i2Dyi

+

(
2F 2

0 (5ρ)−3

6 + 9ρ− 3ρ2

)1/4(
20 + 26ρ− 2ρ2 + ρ3

6− 2ρ+ ρ2

)
volM3

.

(4.3.70)

The first term goes to a constant value at both poles, the second term is
constant near the orientifold plane and vanishes linearly around the D6 stack
ρ = 2. The relevant term is the one proportional to the internal volume, the
third one. Around the D6 singularity ρ ∼ 2 it behaves as ∼ (ρ−2)−1/4volM3 ,
while in correspondence of the O6 plane ρ ∼ 0 it shows a different divergent
behavior: ∼ ρ−3/4volM3

. These are the same type of singularities that we
found for the corresponding AdS7 solution.

Finally, the dilaton is determined as:

e4φ =
40(2− ρ)3(1 + ρ)2

27F 2
0 ρ

3(6− 2ρ+ ρ2)2
, (4.3.71)

which reproduces the correct D6 behavior eφ ∼ (ρ−2)3/4 around ρ = 2, while
at the pole ρ = 0 where the orientifold plane is located it goes like eφ ∼ ρ−3/4.
As described at the end of subsection 3.3.4, this singular behavior is precisely
what we expect in presence of an O6 source.

4.3.6 Two D6 stacks

The last possibility we are left to explore is to have a massive solution with
two D6 stacks localized at the two poles y = y1 and y = y0, with correspond-
ing flux integers (ñ2, n2). Our analysis will proceed in the exact same way
as in subsection 3.3.5 for the corresponding AdS7 solution.

We do not discuss the most general solution, which would look rather
complicated. We find it clearer to give a simple example, the one corre-
sponding to the choice of flux integers (ñ2, n2) = (1, 2). In other words we
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present a solution with a stack of two D6-branes at one pole and a single D6
at the other pole. According to formula (3.3.67), this particular choice of
flux integers translates into the following quantization condition on the two
parameters: (y0, b2) = ( 15

8F0
, 15

2 ). The first stack is located at y = y0, the

second at y1 = − 4
5y0.

We introduce a new radial coordinate ρ defined in terms of y as y =
y0
5 (3ρ2 − 7), with range ρ ∈ [1, 2]. As a result, we get:

ds2
M3

=
1

F0

√
15ρ

8(7ρ− 6− ρ3)

(
dρ2 +

2(7ρ− 6− ρ3)2

(98− 90ρ+ 21ρ2 + 3ρ4)
ds2
S2

)
.

(4.3.72)
Around ρ = 1 this goes like ∼ 1√

ρ−1
(dρ2 +(ρ−1)2ds2

S2), which is the correct

behavior near a stack of D6-branes. The same happens around ρ = 2.
The Ramond-Ramond fluxes are:

F2 = −1

2
ρ
(
vol2 + yiF i2

)
+

(
42− 49ρ− 18ρ2 + 28ρ3 − 3ρ5

98− 90ρ+ 21ρ2 + 3ρ4

)
vol2 ,

F4 = − ρ

4F0
F i2 ? Dyidρ+

ρ

2F0

(
42− 49ρ− 18ρ2 + 28ρ3 − 3ρ5

98− 90ρ+ 21ρ2 + 3ρ4

)
yiF i2vol2 .

(4.3.73)

Near ρ = 1, the two-form flux has a component ∼ −1
2 vol2, which signals the

presence a single D6-brane. Analogously, near ρ = 2 we get a component
∼ volS2 , corresponding to a stack of two D6-branes.

The first term in F4 goes o a constant value at both poles, while the
second term goes to zero linearly near each D6 stack. We do not report
the three-form flux for this solution, which we however checked to behave
correctly.

Finally, the dilaton is:

e4φ =
120(−6 + 7ρ− ρ3)3

F 2
0 ρ

3(98− 90ρ+ 21ρ2 + 3ρ4)2
, (4.3.74)

which goes like eφ ∼ (ρ− 1)3/4 around ρ = 1 and like eφ ∼ (ρ− 2)3/4 around
ρ = 2. This is a further confirm that we are in presence of two D6 stacks at
the two poles.

4.3.7 Field theory interpretation

Let us summarize the solutions in this section, and make a few comments
about their field theory interpretation.

We have found an infinite class of AdS4 ×M6 solutions, where M6 is a
fibration of M3 over Σ3; M3 is topologically ∼= S3, while Σ3 is a compact
quotient of hyperbolic space. These solutions are in one-to-one correspon-
dence (4.3.46) with the AdS7 solutions of [1]. In particular, the metric on
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our M3 is related to the internal manifolds in those AdS7 solutions in the
simple way (4.3.47). It is a fibration of a round S2 over an interval, and as
such it has SO(3) isometry group.

Our main aim was to find AdS4 solutions dual to twisted compactifica-
tions of the (1, 0) CFT6 dual to the AdS7 solutions. Because of the fibration
structure of our solutions (which was part of our Ansatz), and of the one-
to-one correspondence (which came out as a result), the solutions we found
seem to be exactly what we were looking for.

We can contrast our solutions with the known massless one [41], this
time from a field theory perspective. For the N = 1 AdS4 solution of eleven-
dimensional supergravity (A.2.5), the internal space has SO(4)= SU(2)L ×
SU(2)R symmetry, and twisting mixes the SU(2)L factor with the SU(2)
of local Lorentz transformations on Σ3, leaving an SU(2) which is a flavor
symmetry. There is no R-symmetry because the CFT3 is only N = 1 super-
symmetric.

For our solutions (and indeed for the ten-dimensional reduction of the
massless solution, studied in App. A), the isometry of the internal space is
already just SU(2); twisting mixes it with the SU(2) of Σ3, so that in the
end we have no flavor or R-symmetry. (Again this is in no contradiction
with the fact that the CFT3 is only N = 1.) From the point of view of
the gravity solution, the metric (4.2.43) has an S2 factor, but the fact that
it is non-trivially fibred means that the total space does not have SO(3)
isometries: the presence of the connection breaks it. Even looking at the
fluxes (4.2.44), we see that they contain components which break the SO(3)
of the S2. Indeed, they are written in terms of a set of forms that are invariant
under “twisted symmetry” (4.2.18), which of course cannot be considered an
isometry: it is a mix of a local Lorentz transformation (which happens point
by point on Σ3) and of an internal rotation.

As an application, it is possible to count the number of degrees of freedom
of the CFT3, which parallels a similar observation in [4]. One can count the
number of degrees of freedom of a CFTd via the coefficient F0,d in the free
energy Fd = F0,dT

dVol, where T is the temperature. Holographically this
evaluates to the integral of e5A−2φ over M3 for the CFT6, and over M6 for
the CFT3. Using the map (4.3.46), one finds easily that

F0,3 =

(
5

8

)4

Vol(Σ3)F0,6 . (4.3.75)

In other words, the ratio of degrees of freedom is universal. Since the AdS7

solutions are now analytic, one can evaluate F0,6 explicitly; the results are
given in section 3.5. This might help find the CFT3.

However, the CFT3’s are only N = 1 supersymmetric, and have no fla-
vor symmetry. For this reason, perhaps our solutions are more interesting as
gravity solutions with localized sources; this was indeed our initial motiva-
tion. With this in mind, we will now return to our original system (4.4.77),
and see if we can find more interesting solutions, irrespectively of their field



78

theory interpretation.

4.4 Attractor solutions

In the last section we obtained a very large set of analytic solutions, in one-
to-one correspondence with the AdS7 solutions of [1] and the AdS5 solutions
of [4], with a clear holographic interpretation. From the point of view of
the geometry, those solutions are characterized by the requirement that the
symmetric space Σ3 needs to hyperbolic.

In this section we will present another set of solutions, which depend on a
larger number of parameters; we call them “attractor solutions”, for reasons
that will become clear. They are only known numerically. They exist for all
values (positive, null, negative) of the curvature of Σ3, although a positive
sign appears to be preferred. As stated in the introduction, this solution
does not appear to be the same as the AdS4×S3×S3 solution of [64]. (One
might also speculate of some duality to the IIB AdS4 × S3 × S3 solution
of [74], but we could not find any immediate relationship.)

The first sign that this class will be larger is that we will not impose
the constraints (4.2.41) any longer. So we will have to revert to the original
system of five ODEs. It will also not be possible any more to simplify the
form of the metric like we did in (4.2.43), and we will have to keep the
original form

ds2
10 = e2Ads2

AdS4
+ g2ds2

Σ3
+ dr2 + f2DyiDyi. (4.4.76)

4.4.1 The system of ODEs

The result of our analysis is that the pure spinor equations reduce, under the
compactification Ansatz of section 4.2, to a system of five coupled ODE’s
in five variables: the three warping functions in the metric {f, g, A}, the
dilaton φ, and the angle between the two six-dimensional spinors x = cosψ.
All of these functions depend on the radial coordinate r only. The system
reads(
fg2 e−A

cosψ

)′
=

Rf2 + 6g2

6 eA cos2 ψ
,

(
g e−A

)′
=
eA(Rf2 + 6g2 sin2 ψ)− 12fg2 sinψ

6fg e2A cosψ
,

(
f e−φ

)′
=

12fg2(eA sinψ − f)

eA(Rf2 − 6g2 sin2 ψ)
F0 , (4.4.77)

(
g e3A

)′
=
ge3A cosψ

f
+

12g3e2A+φ(f − eA sinψ)

(Rf2 − 6g2 sin2 ψ)
F0 ,(

g3e3A

f2

)′
=
ge3AR cosψ

2f
− 2g3e2A+φ

(
6fg2(cos2 ψ − 3) + eA sinψ(Rf2 + 12g2)

)
f2(Rf2 − 6g2 sin2 ψ)

F0 .
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We already mentioned in the previous section that a certain three-dimen-
sional submanifold of the space of parameters is invariant under (4.4.77); this
submanifold is defined by the set of constraints (4.2.41). On that submanifold
the system was then reduced to a much more manageable system, so it was
possible to solve it analytically.

Another interesting comparison can be made. Indeed, notice that in the
massless limit F0 → 0 the first, fourth and fifth equation of this system re-
produce the analogous equations in 11d supergravity given by [41, Eq.(9.71)–
(9.73)]. The third fixes the function f in terms of the dilaton and the second
is solved imposing the on shell constraints (4.2.41).

It so happens that the Bianchi identities for the fluxes are automatically
satisfied. So (4.4.77) is the complete system we need to satisfy in order to
find an AdS4 solution.

Moreover, given a solution of (4.4.77), one can always find another rescaled
solution for which the curvature and string coupling are both small, so that
the supergravity approximation we are using in this paper is justified. This
can be done by using the transformations [35, Eq.(4.2)–(4.3)]; the first is
F0 → nF0, φ → φ − log n, which is a symmetry of (4.4.77); the second has
to be supplemented with transformation law for f and g:

(A, f, g, φ, x, r)→ (A+ ∆A, e∆Af, e∆Ag, φ−∆A, x, e∆Ar) . (4.4.78)

In what follows we will give some example of numerical solutions to
(4.4.77), without giving the details of our analysis here. We refer to [3, Sec.
5] for a more complete description.

4.4.2 Numeric solutions

We studied numerically the system (4.4.77) with all three boundary condi-
tions we discussed in subsection 3.2.3, corresponding to D6 singularity, O6
singularity and regular point. We allowed the manifold Σ3 to have positive,
null and negative curvature.

In what follows we will present the possible types of solutions correspond-
ing to Σ3 = S3, but the behavior is essentially the same for T 3 and H3. We
expected to have to perform some fine-tuning in order to obtain a physical
solution, arriving at one of the same three boundary conditions at the other
pole. Indeed one often ends up at the other pole with a singularity that we
cannot interpret physically, where numerically one sees f ∼ r1/3, g ∼ r−1/3,
eA ∼ r−1/3.

Even more often, however, one in fact ends up more or less automatically
at the other pole with a regular point. This happens for a large open set in
the space of the free parameters allowed by the possible boundary conditions
(two for the regular boundary condition, three for the D6 and O6). In most
other cases, one has instead to perform a number of fine tunings. In the
present case, the regular point appears to be an attractor.
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We show some examples of numerical solutions in figures 4.2 and 4.3(a).
In all these cases, we started from the left with the relevant perturbative
solution corresponding to a D6 stack, an O6 plane, or a regular point, and
continued numerically. The solution then ends by itself in a point where
f = 0 and the other functions go to constant values. Some solutions appear
to display one or more mild kinks on the way to the attractor; one might
worry about their effect on the curvature, but recall how (4.4.78) can be used
to make the curvature as small as one wishes.

2 4
r

2

4

6

(a)

2 4
r

5

(b)

Figure 4.2: Massive attractor solutions. In (a) we see a solution with two
regular poles, and n0 = −10 (as usual, F0 = n0

2π ). We plot f (orange), eφ

(green), eA (black), g (purple), x = cosψ (dashed). In (b) a solution with a
stack of n2 = 10 D6-branes at the north pole (left), and a regular point at
the south pole (right); again n0 = −10, and N = − 1

4π2

∫
H = −1. In both

cases, R = 6, so Σ3 = S3.

It also appears to be equally easy to obtain solutions with D8-branes.
Their position is again fixed by (3.2.53), and the attractor mechanism ap-
pears again at the south pole. An example is given in 4.3(b).
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Figure 4.3: Massive attractor solutions. In (a) we see a solution with an O6
at the north pole (left), and a regular point at the south pole (right). In (b)
a solution with two regular poles with a D8 stack in the middle (which is
the sharp kink towards r ∼ 1, most visible in the black and purple lines). In
both cases, R = 6, so Σ3 = S3.

The O6 case in particular would appear promising to obtain examples
with “separation of scales”. In AdS4 compactifications, the Kaluza–Klein
scale mKK is usually of the same order of the cosmological constant Λ, which
is obviously unphysical. One might object that the negative sign of Λ is even
more unphysical. However, sometimes one manages to modify the AdS vac-
uum by adding some extra ingredient, which turns the cosmological constant
positive [75]; the lack of separation of scales might then be inherited by the
resulting de Sitter as well.12 The presence of this phenomenon would also be
interesting from the point of view of the CFT dual, since it would imply the
presence of a large gap in operator dimensions. A few examples have been
put forward where there is separation of scales (see for example [76–78]), but

12We thank T. Van Riet for interesting discussions on this point.
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they usually rely on the smeared O6 we mentioned in the introduction to
this chapter (although see [79] and the strategy in [80]). With the simplest
solution of figure 4.3(a), which only has a single O6, we have not been able to
achieve separation of scales, but by combining it with the other ingredients
(D8-branes, and perhaps D6-branes at the other end) it might be possible.
It would be interesting to explore this further.



Chapter 5

Universal consistent
truncation for 6d/7d
gauge/gravity duals

Let us briefly summarize our original motivations, and the results that we
have obtained so far on holography for six-dimensional conformal field the-
ories.

Conformal field theories in dimensions higher than four are still compar-
atively mysterious; there is usually no Lagrangian description. This is the
case for example for the (2, 0)-supersymmetric theory living on the world-
volume of coincident M5-branes. Some indirect information can be obtained
by compactifying the theory. Reducing it on a T 2 gives N = 4 super-
Yang–Mills. Reducing it on a Riemann surface produces a vast “class S” of
four-dimensional theories with very interesting duality properties [20,21,81].
One can similarly compactify down to three [69] and to two [82] dimensions.

Similar phenomena occur with different six-dimensional CFT’s. Perhaps
the simplest generalization of the (2, 0) theory occurs when one introduces
orbifold singularities [30–32]; the study of their compactifications on Rie-
mann surfaces is just starting [83–85]. From the holographic perspective,
however, these theories are not very different from the (2, 0) theory: their
dual is simply AdS7 × S4/Zk [33, 34].

However, an interesting further generalization can be obtained via NS5–
D6–D8-brane systems [22, 47].1 This class consists of (1, 0) CFT’s which
are non-Lagrangian, but which can be described by a quiver on a “tensor
branch”. Their holographic duals were found relatively recently: first nu-
merically in [1], then analytically in [2]. Their interpretation as the duals
of the CFT’s described above was given in [35]. Up to orbifolds and ori-
entifolds, these are the most general AdS7 solutions in perturbative type II

1One can engineer six-dimensional field theories also in F-theory [86–88].
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supergravity.

Although the compactifications of these theories to lower dimensions are
not yet known, they can already be studied holographically: the correspond-
ing AdS5 and AdS4 solutions were found respectively in [4] and [3]. These
solutions are similar in spirit to the duals of the compactifications of the (2, 0)
theory [37–40]: namely, AdS7 gets replaced by AdS5×Σ2 or AdS4×Σ3, and
the internal space gets distorted in a certain way. What is perhaps nicer
than expected is that this distortion is “universal”. Namely, even though
there are infinitely many AdS7 solutions, the map to obtain the AdS5 and
AdS4 metric is always the same, as described in section 4.3.1. Moreover, the
two maps are very similar to each other: they differ only by the value of
certain numerical factors.

In the last part of this thesis, we greatly extend this universality [5]. We
promote the maps to a more general Ansatz, where AdS7 gets replaced by any
seven-dimensional metric gµν , and the internal space gets distorted in a way
that depends on a single scalar parameter X. This Ansatz in fact becomes
nothing but a reduction to a seven-dimensional effective theory. Its bosonic
fields are X and gµν themselves, together with a three-form potential, and
an SU(2) gauge field which is related to the fibration of the internal space
over the seven external dimensions.

This effective theory is the so-called minimal gauged supergravity in seven
dimensions [42, 43], which describes the dynamics of (a gauged version of)
the gravity multiplet with sixteen supercharges. It is a subsector of the
bigger “maximal” [44] theory, which describes the gravity multiplet with
thirty-two supercharges and has gauge group SO(5). Both theories can be
obtained [45,46] as consistent truncations from eleven dimensions.

Here we find that the minimal theory can also be obtained from massive
IIA, in infinitely many ways. In each of these reductions, the supersymmetric
AdS7 vacuum is one of the solutions in [1,2]. This is perhaps surprising, but
the idea is that, in reducing, we are only using the ordinary differential
equation (ODE) that the internal geometry has to solve in the vacuum, and
not the details of the individual solution. Moreover, since our reduction
procedure consists in comparing equations of motion, we have a direct proof
that these are all consistent truncations of massive IIA.

Thus we can uplift to massive IIA any solution of the seven-dimensional
supergravity, in infinitely many ways. For example, the theory has AdS5×Σ2

[37]2 and AdS4 × Σ3 [39] solutions. They uplift to those of [3, 4]. In this
sense we are explaining and extending the universality noticed in those pa-
pers. Minimal gauged supergravity also has “Renormalization Group (RG)
flow” solutions that connect the above backgrounds to the AdS7 maximally
supersymmetric vacuum. This shows conclusively that the solutions of [3,4]
are indeed dual to compactifications on Σ2 and Σ3 of the six-dimensional
(1, 0) CFT’s.

2This solution was actually obtained in the maximal theory, with SO(5) gauge group,
but it is possible to show that it survives in the minimal theory.
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Minimal gauged supergravity also admits AdS3×Σ4 solutions, preserving
N = 1 and N = 2 supersymmetry. In the latter case Σ4 is a Kähler–Einstein
manifold of negative constant curvature, while in the former case Σ4 is (a
compact quotient of) hyperbolic space H4. The corresponding CFT duals are
two-dimensional (0, 2) and (0, 1) CFTs. Uplifting these solutions yields new
AdS3 solutions of massive IIA supergravity. On the field theory side, this
implies that all the six-dimensional CFT’s of [22,35,47] can be compactified
on four-manifolds Σ4 to produce two-dimensional CFT’s.

Finally, minimal gauged supergravity has a second vacuum, which is
not supersymmetric. This means that there are also non-supersymmetric
analytical AdS7 solutions in massive IIA. It would be interesting to ana-
lyze them further, for example by comparing them with the numerical non-
supersymmetric solutions of [68].

5.1 A seven-dimensional effective theory

There exist many examples of consistent truncations of eleven-dimensional
supergravity and type IIA supergravities to lower dimensional gauged su-
pergravities. The oldest example is due to De Wit and Nicolai [89], who
were able to formulate a complete reduction Ansatz for eleven-dimensional
supergravity on S7 to maximal gauged supergravity in four dimensions. The
latter has SO(8) R-symmetry, which corresponds to the isometry of the in-
ternal space upon which the reduction is performed. It has an AdS4 vacuum
that is lifted to eleven dimensions to the AdS4 × S7 solution describing the
near horizon geometry of a stack of M2-branes in flat space.

Analogously, reducing eleven-dimensional supergravity on S4 with a proper
Ansatz leads to maximal gauged supergravity in seven dimensions, a theory
with SO(5) gauge group and AdS7 vacuum [46]. This lifts to eleven dimen-
sions to the maximally supersymmetric background corresponding to the
near horizon geometry of a stack of M5-branes, described in App. A.

We now wonder if a similar phenomenon can take place for the class of
AdS7 solutions that we have been dealing with so far, that describe near
horizon geometries of more complicated systems of intersecting NS5-D6-D8-
branes. In other words we ask if a seven-dimensional effective theory can exist
that is obtained as consistent truncation of massive type IIA supergravity
on a three-manifold M3, of the topology of a three-sphere with singularities
at poles. What is certainly different with respect to the above mentioned
cases is that we have infinite possible choices of of M3, one for each brane
configuration. This makes our attempt even more challenging.

As a first step we have to identify a seven-dimensional supergravity that
could play the role of effective theory. Such identification is possible ana-
lyzing the symmetries that it is expected to enjoy. A common feature to
all of the AdS7 solutions is that the internal space M3 has SU(2) isometry
group, corresponding to a round two-sphere. This suggests that, if a consis-
tent truncation exists to a seven-dimensional theory, this is bound to have
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SU(2) R-symmetry. Also, it must have sixteen supercharges, since this is the
amount of supersymmetry of our vacua in type IIA supergravity.

Happily, a theory with the desired features exists and goes under the
name of minimal gauged supergravity in seven dimensions [42]. It describes
the dynamics of an N = 1 gravity multiplet with gauged SU(2) R-symmetry.

The bosonic fields are the graviton gµν , a triplet of one-forms Ai, i =
1, 2, 3 transforming in the adjoint representation of SU(2), a single scalar X
and a three-form A3. The corresponding Lagrangian is3

L = R− 5X−2 ∗ dX ∧ dX − V (X) ∗ 1− 1
2X

4 ∗ F4 ∧ F4 (5.1.1)

− 1
2X
−2 ∗ F i2 ∧ F i2 + 1

2F i2 ∧ F i2 ∧ A3 −
g

2
√

2
F4 ∧ A3 ,

where F i2 = dAi − 1
2gε

ijkAj ∧ Ak and F4 = dA3 are the field strengths of
Ai and A3 respectively, and V (X) is the scalar potential defined in terms of
the coupling constant g as4

V (X) =
g2

X8

(
1

4
− 2X5 − 2X10

)
. (5.1.3)

This potential has two extrema: a maximum at X5 = 1 and a minimum
at X5 = 1

2 ; only the former is supersymmetric [43], and the corresponding
solution is the maximally supersymmetric AdS7 vacuum.

Varying the lagrangian (5.1.1) one gets the following set of equations of
motion for the scalar and gauge fields:

0 = d(X−1 ∗7 dX) + 1
5g

2(X−8 − 3X−3 + 2X2)vol7 (5.1.4a)

− 1
5X

4 ∗7 F4 ∧ F4 + 1
10X

−2 ∗7 F i2 ∧ F i2 ,
0 = d(X4 ∗7 F4) + 1√

2
gF4 − 1

2F i2 ∧ F i2 , (5.1.4b)

0 = D(X−2 ∗7 F i2)−F i2 ∧ F4 , (5.1.4c)

3A canonically normalized kinetic term for the scalar field can be obtained after the

redefinition X = eϕ/
√
10. The resulting scalar ϕ is rescaled by a factor of 1√

2
with respect

to the original paper. The same rescaling also applies to the form fields.
4In the original paper there is one more parameter h called topological mass, and a

more general potential which can be written using our normalizations as:

V (ϕ) = 2h2X−8 − 4
√

2hgX−3 − 2g2X2 . (5.1.2)

The constant h here is also rescaled by a factor of 1
4

. Whenever the ratio h/g is positive,

this scalar potential has two extrema a maximum at X−5 = 1
2
√
2

g
h

and a minimum at

X−5 = 1√
2

g
h

; only the former is supersymmetric [43]. Without loss of generality we fixed

this parameter in terms of the coupling constant as: h = g

2
√
2

.

There is a dual formulation of the theory with a two- instead of a three-form. In this
case, the topological mass and the corresponding term in the Lagrangian are absent and
the scalar potential has no critical points. In [90] it was shown that this version can be
embedded in ten-dimensional type I supergravity.
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plus the Einstein equations for the graviton:

0 = Rµν − 5X−2∂µX∂νX − 1
20g

2
(
X−8 − 8X−3 − 8X2

)
gµν

− 1
2X
−2
(
F i2µ · F i2ν − 1

5F i2
2
gµν

)
− 1

2X
4
(
F4µ · F4ν − 3

5F2
4 gµν

)
.

(5.1.5)

The fermionic fields of minimal gauged supergravity in seven dimensions
are the gravitino ψµa, µ = 1, . . . , 7 and the dilatino λa. They are symplectic-
Majorana spinors transforming as SU(2) doublets; a = 1, 2 is the symplectic-
Majorana/SU(2) index. The supersymmetry variations of the fermions read

δξψµa = (∇µ + ig(Aµ)a
b)ξb + i

10
√

2
X−1 (γµ

α1α2 − 8δµ
α1γα2) (F2α1α2

)a
bξb

+ 1
160X

2
(
γµ
α1α2α3α4 − 8

3δµ
α1γα2α3α3

)
F4α1α2α3α4

ξa +mγµξa ,
(5.1.6a)

δξλa =
√

5
2 X

−1
�∂Xξa − i√

10
X−1(��F2)a

bξb + 1
2
√

5
X2

��F4ξa

−
√

5(m+ g

4
√

2
X−4)ξa , (5.1.6b)

where the gauge fields carry adjoint SU(2) index according to (A)a
b =

1
2Ai(σi)ab and analogously their field strengths obey (F2)a

b = 1
2F i2(σi)a

b, σi

being the Pauli matrices. For simplicity we also defined the following scalar
tensor

m = − g

5
√

2

(
X +

1

4X4

)
. (5.1.7)

Having identified minimal gauged supergravity as a possible effective the-
ory, we must now show how this can be obtained as a consistent truncation
of massive type IIA supergravity on M3. This requires the formulation of a
complete reduction Ansatz for the fermions and bosons living in ten dimen-
sions.

5.2 Consistent truncation of type IIA
supergravity on M3

In this section we present the Ansatz for the Kaluza-Klein reduction of mas-
sive IIA supergravity on M3, to the seven-dimensional minimal gauged su-
pergravity. Our approach to verifying the consistency of the reduction (or
truncation) is to substitute the Ansatz into the ten-dimensional equations of
motion and show that these are satisfied provided that the seven-dimensional
equations of motion are satisfied. Vice versa, any solution of the lower di-
mensional theory can be uplifted on M3 to an exact solution of the higher
dimensional theory. This is described in subsection 5.2.2.

In subsection 5.2.3 we take a further step and show that any supersym-
metric solution of the seven-dimensional theory uplifts to a solution that also
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preserves supersymmetry. We provide a decomposition Ansatz for the ten-
dimensional supersymmetry parameters and require that the supersymmetry
variations of the fermion fields of IIA supergravity vanish. This condition
yields a set of equations for the seven-dimensional part of the supersymmetry
parameters: it is exactly the set of equations one obtains by setting to zero
the supersymmetry variations of the fermion fields of the seven-dimensional
minimal gauged supergravity. Vice versa, any spinor ξa such that the lower
dimensional supersymmetry transformations (5.1.6) vanish can be uplifted so
that the higher dimensional supersymmetry transformations vanish as well.

5.2.1 Motivation

Our starting point is the universality observed in the AdS7 solutions of mas-
sive type IIA supergravity dual to the (1, 0) theories and their twisted com-
pactifications.

First, although there are infinitely many AdS7 solutions corresponding
to infinite possible brane configurations, they all share a few fundamental
features. The internal space M3 is an S2-fibration over an interval, whose
coordinate we called r. The S2 shrinks at the two endpoints of this interval,
so that M3 has the topology of an S3 with SU(2) isometry.

Second, there is a universal way of compactifying these solutions to
AdS5 × Σ2 and AdS4 × Σ3, based on the existence of a one to one map be-
tween the system of ODE’s describing the AdS7 vacua and the corresponding
systems in lower dimensions. Again, even though there are infinitely many
AdS7 solutions, the map to obtain the AdS5 and AdS4 solution is always the
same.

Moreover, the two maps look very similar to each other and they only
differ for some numerical factor that parametrize the distortion of the internal
space. This similarity can be made more explicit by writing a single formula
that describes both maps in a unified way. For an AdS7 → AdS7−d × Σd
compactification we have

eA → X
15
4 eA , x→ x√

w
,

eφ → X
5
4
eφ√
w
, r → X

5
4 r ,

(5.2.8)

where the functions {A, φ, x} parametrize the AdS7 solutions and their de-
pendence on the radial coordinate r is ruled by the system of ODE’s (3.3.59).

Also, X is a numerical factor that takes values X5 = {1, 3
4 ,

5
8} for the

AdS7, AdS5 and AdS4 solutions respectively. The distortion of the internal
manifold is encoded into a single warping function w, defined in terms of X
as

w ≡ X5(1− x2) + x2 . (5.2.9)

As a result of this analysis, it is possible to write a single formula de-
scribing the three classes of solutions in type IIA supergravity that we have
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discussed so far. We have:

ds2
10 = X

15
2 e2Ads2

7 +X
5
2 ds2

M3
, ds2

M3
= dr2 +

1− x2

16w
e2ADs2

S2 , (5.2.10)

ds2
7 =


ds2

AdS7

ds2
AdS5

+ 1
3ds

2
Σ2

ds2
AdS4

+ 4
5ds

2
Σ3

, X5 =


1

3/4

5/8

,

where ds2
Σ2

and ds2
Σ3

are metrics of unit radius. The SU(2) covariant metric
on the two-sphere can be written in angular coordinates in terms of the three
Killing vectors: K1 = cot θ cosψ∂ψ + sinψ∂θ, K2 = cot θ sinψ∂ψ − cosψ∂θ
and K3 = −∂ψ. We get

Ds2
S2 = (dθ +Kθ

i Ai)2 + sin2 θ(dψ +Kψ
i Ai)2 . (5.2.11)

The S2 is fibered over Σ2 or Σ3, with the U(1) spin connection of Σ2 twisting
a U(1) isometry inside the full SU(2) isometry of S2 in the first case, and
the SU(2) spin connection of Σ3 twisting the whole isometry in the second.

As a result, the field strengths F i2 = dAi − 1
2ε
ijkAj ∧Ak are determined

to be F i2 = −e1e2δi3 for the AdS5 solutions and F i2 = − 1
2ε
ijkejek in AdS4,

where ei are the vielbein on Σ2 and Σ3 respectively. The F i2’s are instead
vanishing for the AdS7 solutions.

We mentioned that there exist infinite possible analytic solutions for each
class of vacua, each one corresponding to a different brane configuration.
Indeed, according to the analysis of section 3.3, a fully general solution to
the supersymmetry variations for the AdS7 vacua can be given in terms of
a single function β. This function depends essentially on two flux integers
(ñ2, n2), that count the number of coincident D6-branes located at the two
poles in the internal space where the S2 shrinks. For every choice of integers
we have an analytic solution for β, Eq. (3.3.66, 3.3.67).

As a result, the-dimensional metric (5.2.10) can be written in terms of β
and the constant parameter X as:

ds2
10 =

4

9

√
−X

5β′

y

(
X5 ds2

7 −
1

16

β′dy2

yβ
+

β

16X5β − 4yβ′
Ds2

S2

)
, (5.2.12)

where y is a new radial coordinate defined as: dy =
(

4
3

)2√
βe−3Adr.

So far we have focused on bosonic fields only. Remarkably, with some
effort we were also able to derive explicit expressions for the spinors χ1 and χ2

on the internal manifold M3, both for the AdS7 solutions and for their AdS4

compactifications. Perhaps not surprisingly, it turns out that the spinors
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(5.2.13) also transform according to the map (5.2.8), so that it is possible
write a general expression for the internal spinors that reads

χ1 = −ie−iπ2 σ3ei
α
2 σ3χS2 , χ2 = e−i

α
2 σ3χS2 , (5.2.13)

where the angle α is a function of the radial coordinate r, defined as:

α = arcsin

(
x√
w

)
. (5.2.14)

To conclude the present analysis, it is worth to remind the holographic
interpretation of the three classes of solutions (5.2.10). The AdS7 solutions
are dual to the (1, 0) theories in six dimensions, while the ones in AdS5 and
AdS4 are dual to their twisted compactifications to N = 1 CFT4’s and to
N = 1 CFT3’s respectively.

The supergravity description allows to give an estimate of the number of
degrees of freedom of these conformal field theories. Indeed, the holographic
free energy F0,6 of the (1, 0) theories can be computed explicitly, as shown in
section 3.5 for some brane configurations. Nicely, this quantity also has nice
transformation properties under the map (5.2.8), so it is possible to write a
universal formula for the free energies of the lower dimensional CFT’s:

F0,6−d = X20Vol(Σd)F0,6 . (5.2.15)

Having listed all these properties, there is now enough evidence that a
consistent truncation of massive type IIA supergravity on M3 to a seven-
dimensional theory should be possible. We can thus proceed in formulating
a complete reduction Ansatz.

5.2.2 Bosonic Ansatz

As a start, an Ansatz for the ten-dimensional metric can be easily deduced
from (5.2.10). We just need to introduce some normalization factors that
are necessary to obtain the correct seven-dimensional theory. So we write

`−1ds2
10 = 1

8g
2X−

1
2 e2Ads2

7 +X
5
2 ds2

M3
, (5.2.16)

where the internal space metric is expressed in terms of the warping function

w as in Eq. (5.2.10). We have rescaled the full metric by a factor ` ≡ 8
√

2
g3 ,

which depends on an extra parameter g that will turn out to be the coupling
constant in seven dimensions.

The covariantized metric Ds2
S2 is defined in the same way as in (5.2.11),

with the only difference that the gauge fields Ai should also be rescaled by a
factor of g. We can switch from angular coordinates to spherical harmonics
according to (3.2.35), and rewrite the metric on the two-sphere as

Ds2
S2 ≡ DyiDyi , Dyi ≡ dyi + εijkyjgAk . (5.2.17)
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The Ansatz for the dilaton Φ is again dictated by the map (4.3.46). After
a proper rescaling, it reads

e2Φ = `
X

5
2

w
e2φ . (5.2.18)

Here and in what follows, φ is the dilaton for the AdS7 solution, whose
dependence on the radial coordinate r is described by the system of ODE’s
(3.3.59).

Formulating an Ansatz for the reduction of the fluxes takes some more
effort. A lot of information can be extracted from the expressions of the
fluxes of the AdS4 solutions (4.2.44), or better from their transformed under
the map (4.3.46). However, this is not enough to construct a fully general
Ansatz.

For example there might be extra terms proportional to the derivative of
X, the candidate to become the scalar field of minimal gauged supergravity
in seven dimensions. This type of terms would be vanishing for all the
solutions that we have considered so far, since X takes constant values.

We must also include terms proportional to the four-form F4 = dA3

appearing in the seven-dimensional Lagrangian (5.1.1). Such terms are also
not present in our compactification solutions, since they would break their
symmetry.

How to construct the extra terms? Some intuition can be gained from
[45], where it is shown how to embed minimal gauged supergravity in seven
dimensions into eleven-dimensional supergravity. This implicitly tells us how
to embed it in type IIA supergravity with vanishing Romans mass, according
to the standard 11d to 10d reduction. In particular, reducing to type IIA the
four-form field strength [45, Eq. 8] helped us formulate a complete Ansatz
for the ten-dimensional fluxes.

Collecting our knowledge, the Ansatz for the Neveu-Schwarz potential B
is

`−1B = e2Ax
√

1− x2

16w
vol2 −

1

2
eAdr ∧ (A1 − 1

2y
iAi) , (5.2.19)

where the covariant volume form is defined with respect to the metric (5.2.11)
as vol2 ≡ 1

2ε
ijkyiDyjk, and A1 is defined via dA1 = − 1

2volS2 . As shown
in App. A, this is nothing but the connection on the bundle S1 → S2,
describing S3 in Hopf coordinates.

Given (5.2.19), the three-form flux H = dB reads

`−1H =
{

(2− 6X5 + 4X10)x2 − 2X5 − 4X10
}
w−1e−AvolM3

−X5w−1`F0 e
φxvolM3

− 1

16
w−1e2Ax

√
1− x2gF i2 ∧Dyi

−1

4
eAdr ∧ yigF i2 −

5

16
X4w−2e2Ax(1− x2)

3
2 dX ∧ vol2 , (5.2.20)

where the volume of the internal manifold volM3
is defined with respect to

the metric in Eq. (5.2.10).
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The Ansätze for the Ramond-Ramond fluxes are

F2 = −q
(
vol2 + yigF i2

)
+

1

16
w−1`F0 e

2Ax
√

1− x2vol2 , (5.2.21a)

`−1F4 = −q
2
eAdr ∧X4g2 ∗7 F4 − `−1 1

2
e3A−φxF4 (5.2.21b)

− q

16
w−1e2Ax

√
1− x2yigF i2 ∧ vol2 −

q

4
eAdr ∧ εijkgF i2 ∧ yjDyk ,

where q was defined in (3.2.31). F2 and F4 must satisfy the Bianchi identities
in the form

dF2 −HF0 = 0 , dF4 −H ∧ F2 = 0 . (5.2.22)

A way to see that this is the case for the above expressions is to note that

F2 −BF0 = dC1 , (5.2.23a)

F4 −
1

2F0
F2 ∧ F2 = dC3 , (5.2.23b)

where

C1 = 2q(A1 − 1
2y
iAi) , (5.2.24a)

C3 = − q2

2F0
(εijkgF i2yjDyk + g2ω3)− 1

2
e3A−φxA3 . (5.2.24b)

ω3 ≡ Ai ∧ F i2 + 1
6gε

ijkAi ∧ Aj ∧ Ak, satisfying dω3 = F i2 ∧ F i2. In deriving
(5.2.23b) one has to take into account the “odd dimensional self-duality”
equation [91]

X4 ∗7 F4 = − 1√
2
gA3 + 1

2ω3 . (5.2.25)

Armed with this bosonic Ansatz, we can now proceed in the reduction to
seven dimensions. What we will actually do is to show that it is possible to
derive the equations of motion of the seven-dimensional theory by plugging
our Ansatz into the equations of motion of massive type IIA supergravity.

We haven’t written these equations explicitly anywhere in this thesis, so
it is worth to spend a few lines to fix the notation and conventions that we
are adopting.

We employ the democratic formulation [92] of type II supergravity and
work in the string frame. The equations of motion of the fluxes are

(d+H∧) ∗ F = 0 , d(e−2Φ ∗H)− 1
2

∑
p

∗Fp ∧ Fp−2 = 0 , (5.2.26)

where F ≡∑p=0,2,4,6,8,10 Fp. The Einstein equations are

RMN + 2∇M∇NΦ− 1
2HM ·HN − 1

4e
2ΦFM · FN = 0 , (5.2.27)

where FM · FN ≡ 1
(p−1)!

∑
p (Fp)M

M1...Mp−1(Fp)NM1...Mp−1
and similarly for

HM ·HN . Finally the dilaton equation is

∇2Φ− (∇Φ)2 + 1
4R− 1

8H
2 = 0 . (5.2.28)



93

Happily, substituting the Ansätze into the flux and dilaton equations of
motion, we were able to reproduce the set of equations (5.1.4) of minimal
gauged supergravity.

In particular, (5.1.4b) and (5.1.4c) come from the equations of motion of
F4 and F2 respectively, while both equations of motion of H and Φ give rise
to (5.1.4a).

In order to reduce the Einstein equations, we had to compute the Rie-
mann and subsequently the Ricci tensor via the curvature two-form RAB =
dωAB + ωAC ∧ ωCB ; the spin connection ωAB is that of the orthonormal
frame introduced in [5, App. A]. After a lengthy calculation we find that
the ten-dimensional Einstein equations, upon using (5.1.4a), reduce to the
Einstein equations in seven dimensions, Eq. (5.1.5).

5.2.3 Fermionic Ansatz

In this section we take a further step. We prove that the reduction of massive
type IIA supergravity to minimal gauged supergravity in seven dimensions
also works at the level of supersymmetry. In other words we rederive the
supersymmetry variations of the seven-dimensional theory starting form the
ten-dimensional ones, after formulating a complete spinor Ansatz.

A proper decomposition for the ten-dimensional supersymmetry param-
eters is

ε1 = (ξ ⊗ χ1 + ξc ⊗ χc1)⊗ |↑〉 , ε2 = (ξ ⊗ χ2 − ξc ⊗ χc2)⊗ |↓〉 , (5.2.29)

where the factors |↑〉 and |↓〉 are eigenvalues of the matrix σ3 which carry
the chirality of the full spinor, according to the following decomposition for
the ten-dimensional gamma matrices:

γ(7+3)
µ = γ(7)

µ ⊗ 1⊗ σ2 ,

γ
(7+3)
i+6 = 1⊗ σi ⊗ σ1 .

(5.2.30)

Here γ
(7)
µ , µ = 0, . . . , 6, are a basis of seven-dimensional gamma matrices,

and σi, i = 1, 2, 3, are the Pauli matrices. Chirality is represented in this
basis by the matrix Γ(7+3) = 1⊗ 1⊗ σ3.

The present decomposition (5.2.29) is analogous to the spinor decom-
position (3.1.3) for the AdS7 solutions, with the difference that here ξ is
any seven-dimensional spinor, which coincides with the AdS7 Killing spinor
(3.1.5) only on the vacuum. Still, the seven-dimensional spinor mantains its
transformation properties under the SU(2) R-symmetry, that is to say ξ and
its conjugate ξc transform as a doublet: ξa ≡ (ξ, ξc).

Moreover, explicit expressions for the internal spinors are already avail-
able, Eq. (5.2.13). We simply rescale by a factor of eA/2, the resulting
normalization being: ‖χ1‖2 = ‖χ2‖2 = eA. The transformation properties
under the SU(2) R-symmetry are also known: we can define two doublets
χ1
a and χ2

a, according to (4.2.23).
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We can now plug this Ansatz into the supersymmetry variations of mas-
sive type IIA supergravity. In our conventions, the dilatino variations read:

δΨ1M =
(
∇M − 1

4HM

)
ε1 − 1

16e
ΦFΓM ε2 ,

δΨ2M =
(
∇M + 1

4HM

)
ε2 − 1

16e
Φλ(F )ΓM ε1 , (5.2.31)

where fermion fields with a subscript 1 have positive chirality, whereas fermion
fields with a subscript 2 have negative chirality. The suppressed indices of
the fluxes are contracted with anti-symmetric products of gamma matrices.

λ is an operator acting on a p-form as λ(Fp) = (−1)[
p
2 ]Fp, where the square

brackets denote the integer part of p
2 . The supersymmetry transformations

of the dilatini are

δλ1 =
(
∂Φ− 1

2H
)
ε1 − 1

16e
ΦΓMFΓM ε2 ,

δλ2 =
(
∂Φ + 1

2H
)
ε2 − 1

16e
ΦΓMλ(F )ΓM ε1 . (5.2.32)

Setting the dilatino variations (5.2.32) to zero with our spinor Ansatz
gives

0 = 5
2X
−1

�∂Xξa+ 1
2X

2
��F4ξa− i√

2
X−1(��F2

i)a
bξb− 1√

2
g(X−4−X)ξa , (5.2.33)

whereas setting the gravitino variations (5.2.31) to zero amounts to the above
equation for the internal components and to

0 = (∇µ + ig(Aiµ)a
b)ξb + i

10
√

2
X−1 (γµ

α1α2 − 8δµ
α1γα2) (F i2α1α2

)abξb

+ 1
160X

2
(
γµ
α1α2α3α4 − 8

3δµ
α1γα2α3α4

)
F4α1α2α3α4

ξa +mγµξa , (5.2.34)

for the external ones. These constraints on ξa are no other than those that
one obtains by setting to zero the supersymmetry variations of minimal
gauged supergravity in seven dimensions, Eq. (5.1.6).

Thus, preserved supersymmetry in seven dimensions guarantees preserved
supersymmetry in ten.

5.3 New solutions of type IIA supergravity

In this section we discuss supersymmetric solutions of seven-dimensional
minimal gauged supergravity that uplift to new solutions of massive IIA in
ten dimensions via the formulas presented in the previous section.

In particular we focus on those solutions that are relevant for the holo-
graphic description of the (1, 0) theories and their compactifications.

The nicest result in this sense is the existence of two AdS3 solutions which
uplift to new AdS3 solutions of massive type IIA supergravity, with N = 1
and N = 2 supersymmetry. More precisely, for each of the two solutions we
can associate an infinite class of analytic solutions in ten dimensions. These
are dual to twisted compactification of the (1, 0) theories on four-manifolds
of negative curvature.
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We also recover AdS5 and AdS4 solutions which uplift to the ten-dimensional
ones presented in the previous chapters. What is new about these vacua from
the seven-dimensional perspective is that they are connected to the vacuum
of the theory via holographic RG-flow. Indeed, interpolating solutions have
been constructed for all the lower dimensional Anti-de Sitter vacua, included
the AdS3 ones.

The existence of these interpolating solutions is a further proof that the
original solutions of type IIA supergravity of [3, 4] are dual to twisted com-
pactifications of six-dimensional (1, 0) theories on Σ2 and Σ3 manifolds of
negative curvature.

5.3.1 Interpolating solutions

N = 1 and N = 2 supersymmetric AdS5 × H2 solutions were first found
in [37], in a certain truncation of the maximal gauged supergravity in seven
dimensions, keeping two scalars and two U(1) gauge vector fields. In the case
of the N = 1 solution, the two scalars and the two gauge vector fields are
set to be equal and thus the solution can also be embedded5 in the minimal
theory of section 5.1.

The AdS5 ×H2 geometry is a subset of warped product geometries

ds2
7 = e2f1(r)(dr2 + ds2

R3,1) + e2f2(r)ds2
H2 , (5.3.35)

with a boundary condition for f1 and f2 as r → 0, f1 ∼ f2 ∼ log r. That
is, asymptotically or in the UV the metric approaches AdS7 with an R3,1 ×
H2 boundary. In order to preserve supersymmetry, the U(1) gauge field is
identified with the spin connection of H2 while f1 and f2 (as well as the
scalar) are subject to a set of ODEs — these can be found in [37, Eq. (27)].

The latter admit an AdS5 ×H2 solution, which (in our language) reads

ds2
7 =

8

g2
X8
(
ds2

AdS5
+ 1

3ds
2
H2

)
, X5 =

3

4
, (5.3.36)

with the field strength of the U(1) gauge field gF i2 = −volH2 δi3, while the
three-form potential is equal to zero. In [38], it was shown numerically
(within a broader context) that the AdS5×H2 solution arises as the IR fixed
point of an RG flow that connects it to the AdS7 region.

From the ten-dimensional perspective it makes more sense to consider
compact quotients of H2, obtained modding out by discrete subgroups of
the isometry group PSl(2,R), so as to obtain a Riemann surface Σ2 of genus
g ≥ 2. Indeed, the ten-dimensional lifts of the seven-dimensional solution
(5.3.36) describe near horizon geometries for systems of NS5-D6-D8-branes
wrapped on Riemann surfaces of [4].

5The translation between the languages of [37, appendix 7.3] and section 5.1 is: m ≡
g√
2

, λ1 = λ2 = −φ/2 ≡ ϕ

2
√
10

.
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An N = 1 supersymmetric AdS4 × H3 solution of seven-dimensional
minimal gauged supergravity was found long ago in [39]. The metric and
the scalar field of the solution read

ds2
7 =

8

g2
X8
(
ds2

AdS4
+ 4

5ds
2
H3

)
, X5 =

5

8
. (5.3.37)

The SU(2) gauge field is identified with the SU(2) spin connection ωij of
H3 via gAi = 1

2ε
ijkωjk. The field strength is then gF i2 = 1

2ε
ijkRjk, where

Rjk is the curvature two-form of the spin connection, while the three-form
potential is zero.

Again, one can quotient H3 by a discrete subgroup of its isometry group
PSl(2,C) to obtain a compact three-manifold Σ3 of constant negative cur-
vature. The resulting AdS4 × Σ3 solution lifts to to the ten-dimensional
solutions of [3] presented in the previous chapter.

It was shown numerically [40] — in an analogous analysis to that for the
AdS5 × H2 solution — that the solution (5.3.37) also arises as the IR fixed
point of an “RG flow geometry”,

ds2
7 = e2f1(r)(dr2 + ds2

R2,1) + e2f2(r)ds2
H3 , (5.3.38)

with f1 ∼ f2 ∼ log r in the UV and the corresponding values for the AdS4×
H3 solution in the IR.

The existence of the above RG flow solutions in the seven-dimensional
minimal gauged supergravity, in conjunction with the consistent truncation
of massive IIA supergravity presented in this chapter, shows that the AdS5

and AdS4 solutions of [3, 4] are connected to the AdS7 ones of [1] by RG
flows. This ultimately proves that the solutions of [3, 4] are dual to com-
pactifications of six-dimensional (1, 0) theories on Σ2 and Σ3 manifolds of
negative curvature.

5.3.2 AdS3 solutions

We now turn to the supersymmetric AdS3 solutions. The first one is AdS3×
H4 preserving two (real) supercharges. The metric and the scalar field of the
solution read

ds2
7 =

2

g2
X−2

(
ds2

AdS3
+ 4

7ds
2
H4

)
, X5 =

7

12
. (5.3.39)

The SU(2) gauge field equals the self-dual part of the SO(4) spin connection
of H4.

gAi = 1
2ε
ijkωjk + ωi4 . (5.3.40)

The field strength is then gF i2 = 1
2ε
ijkRjk +Ri4. Finally, the four-form flux

is proportional to the volume of H4:

F4 =
3
√

2

g3
volH4 . (5.3.41)
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The second one is AdS3 ×M4, where M4 is Kähler–Einstein of constant
negative curvature −4 (for example H2 ×H2), preserving four supercharges.
The metric and the scalar field of the solution read

ds2
7 =

2

g2
X−2

(
ds2

AdS3
+ 4

3ds
2
M4

)
, X5 =

4

3
. (5.3.42)

Only a U(1) ⊂ SU(2) gauge field is non-zero and is identified with the
center U(1) component of the U(2) spin connection of M4, or equivalently
with the Kähler connection on the canonical bundle of M4. Taking the spin
connection of the center U(1) to be the truncation of the self-dual part of
the spin connection we can write

gAi = (ω12 + ω34)δi3 . (5.3.43)

The field strength is then identified with the Ricci form of M4. Finally, the
four-form flux is proportional to the volume of M4:

F4 =

√
2

g3
volM4

. (5.3.44)

Using the Ansatz presented in the previous section, these two AdS3 vacua
lift to two new infinite classes of analytic solutions of massive type IIA su-
pergravity, with N = 2 and N = 1.

In addition, the above AdS3 solutions were also found in [93] as the IR
fixed points of RG flows constructed in certain truncations of the maxi-
mal seven-dimensional gauged supergravity. When uplifted to M-theory, the
AdS3 ×M4 solution arises from M5-branes wrapping Kähler four-cycles in
Calabi–Yau four-folds while the AdS3 × H4 one from M5-branes wrapping
Cayley four-cycles in manifolds of Spin(7) holonomy. The scalar and gauge
field sector of the truncations can be identified with the corresponding ones
of the minimal theory, while the three-form potential sector is formulated in
a dual frame, via (5.2.25). The AdS3 ×M4 solution was also constructed
with different methods in [94].

5.3.3 Field theory interpretation

Let us conclude with a few words on the field theory duals of the two AdS3

solutions we described in this section, or better of the two infinite classes of
solutions that are obtained via their ten-dimensional lift, which describe near
horizon geometries for intersecting systems of NS5-D6-D8-branes wrapped
on four-manifolds.

In analogy with the AdS5 and AdS4 solutions, these two classes of so-
lutions are naturally interpreted as dual to twisted compactifications of the
(1, 0) theories.

In the case of the N = 1 AdS3 compactification, (5.3.39), the SU(2) R-
symmetry of the original AdS7 solution is completely broken by the gauge
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fields (5.3.40). Since no R-symmetry is left, the dual field theory should be
a two-dimensional (0, 1) CFT.

The second AdS3 solution, (5.3.42), enjoys N = 2 supersymmetry. In
this case only a U(1) gauge field is switched on; its commutant in SU(2)R

is the U(1) itself. This signals that the IIA uplift still has a U(1) isometry;
this is the R-symmetry of the dual theory, which should then be a (0, 2)
CFT2 this time. It would be interesting to study these theories, perhaps
generalizing [82].

Unfortunately, they are not known. Nonetheless, our results might help
find them. Indeed, using the AdS/CFT dictionary it is possible to count
their degrees of freedom through an object called holographic free energy.
This is easily computed using the formalism described in this thesis, and in
particular specifying formula (5.2.15) to the case of the above AdS3 solutions.
The corresponding two classes of CFT2’s have free energy

F0,2 =
3

56
vol(Σ4) F0,6 , (5.3.45)

in the N = 1 case, and

F0,2 =
3

128
vol(Σg)vol(Σg̃) F0,6 , (5.3.46)

for the N = 2 case, where we specified M4 to be the product of two Riemann
surfaces of genus g, g̃ ≥ 2. Their volume can be computed using the Gauss-
Bonnet theorem.

The quantity F0,6 is the free energy of the corresponding (1, 0) theory.
We have computed this quantity explicitly for some particularly relevant
configuration of branes, see section 3.5. It shows the expected N3 scaling
behavior, with O(N) corrections. An analogous computation can be repeated
for all the possible brane configurations. In the case represented in Fig. 2.1,
corresponding to the reduction to ten dimensions of the geometry describ-
ing M5-branes wrapped on four-manifolds, a precise holographic matching
between the free energy computed in supergravity and the central charge of
the corresponding CFT2’s has been performed in [95].



Chapter 6

Conclusions

The AdS/CFT correspondence is the most powerful tool that physicists are
equipped with to study conformal field theories. In this work we took advan-
tage of this explicit realization of the holographic principle in string theory
to investigate a class of non-Lagrangian six-dimensional theories.

Recently, important discoveries on this research field have been accom-
plished. The study of the theory living on the worldvolume of multiple M5-
branes, the famous (2, 0), led to great achievements both from the stringy
perspective and for quantum field theory. It has been found that its twisted
compactifications produce a vast “class S” of N = 2 four-dimensional theo-
ries, with beautiful duality properties [20,21,81]. These arise as the IR limit
of M5-branes wrapping a Riemann surface with punctures. Interesting du-
ality properties were also unveiled studying compactifications on hyperbolic
three-manifolds [69]. This goes under the name of 3d-3d correspondence.

The (2, 0) are just a subset of the CFT’s in six dimensions. Another im-
portant class is given by the less supersymmetric (1, 0), which are infinitely
many and even more mysterious. They are known to exist from string the-
ory arguments, as they are expected to describe the degrees of freedom of
intersecting systems of NS5-D6-D8-branes [22].

Thanks to our work, we finally have a corresponding complete holographic
description. Their supergravity duals are the AdS7 vacua in massive type
IIA supergravity [1, 2]. The internal space has the topology of an S3 with
only SU(2) isometry and physical singularities in the points where brane
sources are located.

The supergravity description allows to extract some important informa-
tion. For example we can give a rough estimate of their degrees of freedom
computing the holographic free energy. An analytic result is now available
for this quantity; it shows the expected N3 scaling with O(N) corrections.

Thanks to our efforts, a complete holographic description for the twisted
compactifications of the (1, 0) theories is also known. They turn out to
naturally compactify on Einstein manifolds of negative curvature.
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Indeed, four distinct classes of AdS7−d×Σd solutions arise wrapping the
above mentioned brane systems on compact quotients of hyperbolic mani-
folds of dimension d = {2, 3, 4}. These are in one to one correspondence
to the AdS7 vacua via a surprising map that relates the BPS equations in
different dimensions [3]. According to this map, the internal manifold M3

gets distorted in a universal way parametrized by a constant X that takes a
different value for each class.

In the compactification procedure, supersymmetry is partially preserved
with a twist of the SU(2) isometry of the internal space with the local Lorentz
group of Σd.

The AdS5 solutions have a residual U(1) isometry, corresponding to the
R-symmetry of the dual CFT4’s which enjoy N = 1 supersymmetry [4]. The
AdS4 ones have no residual R-symmetry [3]. Their holographic duals are then
some N = 1 supersymmetric theories in three dimensions. Besides their field
theoretical interpretation, our AdS4 solutions are clearly also interesting as
four-dimensional vacua with localized sources, especially if we consider that
orientifold planes can enter the game. Finally, two classes of AdS3 solutions
exist that are dual to CFT2’s with (0, 1) and (0, 2) supersymmetry [5].

None of these lower dimensional CFT’s are known, but they are expected
to sit at the IR point of an RG-flow connecting them to the corresponding
(1, 0) theory in the UV. We managed to reproduce these flows holographically
with four classes of interpolating solutions.

Moreover, we were also able to compute their free energy. As a result we
found that the ratio between the degrees of freedom of the six-dimensional
theory and those of the CFT’s in lower dimensions is constant, and it is
proportional to the volume of Σd, according to formula (5.2.15).

The universality observed in the compactification procedure can be greatly
extended: it can be promoted to a complete reduction Ansatz of type IIA
supergravity on the internal manifold M3. The resulting effective theory is
minimal gauged supergravity in seven dimensions, a theory with a single
scalar and SU(2) R-symmetry.

We mentioned that there are infinite possible geometries for M3, each
one corresponding to a specific system of intersecting branes. Remarkably,
the reduction works independently on the particular choice of brane con-
figuration. In other words it is possible to reduce type IIA supergravity to
seven dimensions in infinitely many ways. This is perhaps surprising, but the
idea is that, in reducing, we are only using the ordinary differential equation
(ODE) that the internal geometry has to solve in the vacuum, and not the
details of the individual solution [5].

The universal character of this truncation implies that supergravity in
seven dimensions describes a sector common to all the six-dimensional (1, 0)
CFT’s engineered by NS5-D6-D8-brane intersections, including also the (2, 0)
theory itself, described by the original M-theory reduction.1

1A similar “common sector” phenomenon is witnessed in five dimensions, where it
was found that for every AdS5 solutions of IIB there is a consistent truncation down to
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Beyond this common sector, discerning finer differences between the
CFT6’s would require more sophisticated reduction procedures, where one
keeps more internal modes. These might be gravity modes, or they could
come from the D6- and D8-branes which are present in all the IIA vacua
of [1, 2]. In both cases, one would end up coupling the minimal theory to
vector multiplets.2

Via the gauge/gravity duality, our work paves the way for a broader
study of the aforementioned six-dimensional field theories. Asymptotically
locally Anti-de Sitter solutions of seven-dimensional gauged supergravity can
probe regions away from the superconformal fixed point. The Kaluza–Klein
spectrum of the AdS7 ×M3 backgrounds, beyond the massless modes, can
be used to analyze the spectrum of the dual operators.

Finally, since the minimal seven-dimensional gauged supergravity can
also be embedded in M-theory [45], lessons learned from the more extensively
studied AdS7/CFT6 correspondence stemming from the dynamics of M5-
branes can guide us in the study of its (1, 0) cousin in the massive IIA theory.
It would be particularly interesting to include punctures. This might lead to
some generalization of the correspondence between CFT6 and CFT4 similar
to the celebrated class S theories [20].

minimal five-dimensional supergravity [96]. In the same paper, it was conjectured that
this phenomenon should hold in any dimensions; our results prove their conjecture in
dimension seven. For certain internal manifolds, it is possible to excite more modes and
get bigger theories, e.g. for Sasaki–Einstein reductions [97].

2 [98] argues however that the massive IIA vacua cannot be truncated either to the
maximal theory, with gauge group SO(5), nor to a theory with gauge group SO(4) [99]
(which can be obtained as reduction from M-theory [100,101]).
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Appendix A

Massless solutions from
11d

A.1 M5-branes in flat spacetime

In this appendix we describe in detail the reduction to ten dimension of the
M-theory background describing the near horizon geometry of M5-branes.
This provides a first example of gravity dual of a (1, 0) CFT6 in type IIA su-
pergravity, and can also pave our way in understanding the possible features
of more general solutions in ten dimensions.

The (2, 0) theory on the M5 worldvolume is dual to the AdS7×S4 back-
ground:

ds2
11 = R2

(
ds2

AdS7
+

1

4
ds2
S4

)
. (A.1.1)

There are two different coordinate systems on S4 that are appropriate
to study two different types of AdS4 compactifications of this solution on
three-manifold, with N = 1 and N = 2 supersymmetry. For the N = 1
compactification, it is convenient to write the S4 as:

ds2
S4 = dα2 + sin2 αds2

S3 , (A.1.2)

where the metric on the S3 can be written in terms of the Maurer–Cartan
forms as ds2

S3 = 1
4σ

iσi, with dσi = 1
2ε
ijkσjk. Alternatively we can choose

Hopf coordinates, which are already appropriate to study the reduction to
ten dimensions:

ds2
S3 =

1

4
ds2
S2 + (dz +A1)2 , (A.1.3)

where the connection A1 = cos(θ)dϕ, is such that dA1 = − 1
2volS2 . The

transformation rules between these two sets of coordinates is given in detail
later on in this appendix.
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We can reduce the M5 bear horizon geometry to type IIA supergravity,
according to the Ansatz (2.0.5). We get the following ten-dimensional metric:

ds2
10 =

R3

2k
sin(α)

[
ds2
AdS7

+
1

4

(
dα2 +

1

4
sin2(α)ds2

S2

)]
. (A.1.4)

The dilaton is determined by e2φ/3 = R
2k sin(α). In App. B we show that

reducing along the vector ∂z preserves half of the original supersymmetry,
so that this ten-dimensional solution has sixteen supercharges. Indeed, it is
dual to a (1, 0) theory. Also, the residual isometry of the internal space in
(A.1.4) is SU(2), the symmetry of the two-sphere, which is dual to the Sp(1)
R-symmetry of the CFT6.

As shown in detail in subsection 3.3.2, the internal space is singular at
the two poles {α = 0, α = π}, where a D6-brane and an anti-D6 brane are
located. The presence of these sources can be easily inferred looking at the
two-form flux F2 = − 1

2volS2 , whose integral over S2 is equal to −2π.
We can actually generalize this construction a bit by considering the

orbifold S4/Zk, where Zk is taken to be a subgroup of the U(1) generated
by ∂z. This is equivalent to multiplying the (dz + A1) term in (A.1.4) by a
factor of 1/k2. The corresponding solution in ten dimensions and its field
theory interpretation are described in Fig. (2.1). It again has two physical
singularities at the poles, where two stacks of k D6-branes are located.

A.2 M5-branes wrapped on three-manifolds

Two types of compactifications on three-manifolds of this fully BPS back-
ground have been considered in the literature, preserving N = 1 and N = 2
supersymmetry in four dimensions. The N = 1 solution corresponds to
breaking of the SO(5) isometry group of the S4 to SO(4), while in the
N = 2 case the subgroup preserved is SO(3)×SO(2). These will be the
isometry groups of the fiber metric; the fact that the S4 is fibred over Σ3

will break the isometry group further, down to a flavor SU(2) in the N = 1
case and down to SO(2) (which is then the R-symmetry group) in the N = 2
case.

Geometrically, the N = 1 solution can be thought of as arising when
one wraps an M5 stack on a submanifold R3 × Σ3 ⊂ R4× a G2 manifold;
supersymmetry demands Σ3 to be an “associative” submanifold. In this
case, four of the five scalars transverse to the M5 span directions in the
G2 manifold, corresponding to the SO(4); these scalars will be “twisted”,
meaning that they are really sections of the normal bundle. The remaining
scalar represents the transverse direction inside the R4, and is not fibred. The
N = 2 solution, on the other hand, arises when wrapping an M5 stack on a
submanifold R3 × Σ3 ⊂ R5× Calabi–Yau6; supersymmetry demands Σ3 to
be a “special Lagrangian” submanifold. In this case, three scalars are inside
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the CY6, and two trivial ones are in the flat directions; this corresponds to
the SO(2)×SO(3).

Compactifications on hyperbolic three-manifolds Σ3 were studied in [41],
lifting an earlier solution in [39], preserving either four or eight supercharges.1

After wrapping the M5 on Σ3, which corresponds to replacing AdS7 with
AdS4 × Σ3, the metric of the S4 will be deformed in such a way that the
original SO(5) isometry will be broken to the subgroups mentioned above.
Part of the residual symmetry gets mixed with the local Lorentz group of
the three-manifold where the M5 is wrapped, meaning that a subspace of S4

which is left untouched by the supersymmetric deformation gets fibered over
Σ3. In the N = 1 case, the S4 metric (A.1.2) gets deformed in such a way
as to preserve the shape of the S3:

ds2
(
S4
N=1

)
= dα2 +

8 sin2 α

5 + 3 cos2 α
Ds2

S3 . (A.2.5)

The upper case on Ds2
S3 means that the S3 is now fibred over Σ3. In terms

of the Maurer–Cartan forms:

Ds2
S3 =

1

4
µiµi , (A.2.6)

where µi = σi − Ai, and the Ai are related to the spin connection on the
base space Σ3 by Ai = 1

2ε
ijkωjk.

It would be useful to rewrite this metric in Hopf coordinates, in view
of the reduction to ten dimensions to be performed along the Hopf fiber.
In order to do this we need to compute the components of the one-forms
µi along the S2. This is achieved by introducing parallel and orthogonal
projectors:

P ij‖ = δij − yiyj , P ij⊥ = yiyj , (A.2.7)

which satisfy P‖ + P⊥ = 1, where yi are the spherical harmonics that
parametrize the S2, (3.2.35). The corresponding decomposition for the one-
forms µi is the following:

µi = εijkyjDyk + 2yiDz . (A.2.8)

z is the coordinate on the Hopf fiber; we introduced SU(2) covariant deriva-
tives Dyi = dyi + εijkyjAk and Dz = dz + A1 − 1

2y
kAk. Applying this

decomposition to (A.2.6) we can finally obtained the S3 fibered metric in
Hopf coordinates:

Ds2
3 = Dz2 +

1

4
Ds2

S2 , Ds2
S2 = DyiDyi , (A.2.9)

1Punctures along Σ3 can also be introduced; they were studied in the probe approxi-
mation in [102].
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The complete metric describing the N = 1 AdS4 twisted compactification
of (A.1.1) can finally be rewritten as follows:

m2ds2
11 =

(
5 + 3 cos2 α

8

)1/3(
ds2

AdS4
+

4

5
ds2

Σ3
+

2

5
ds2

(
S4
N=1

))
,

(A.2.10)
where the three-manifold Σ3 is constrained by supersymmetry to be a (com-
pact quotient of) a maximally symmetric space of negative curvature, with
Ricci scalar R normalized to −6. The constant m is fixed in terms of the
radius of the AdS7 solution by the relation m3R3 =

(
8
5

)2
.

We can reduce along the direction z to ten dimensions preserving super-
symmetry. The ten-dimensional metric reads

ds2
10 =

(
5

8

) 3
2 R3

2
sinα

(
ds2

AdS4
+

4

5
ds2

Σ3
+

2

5
dα2 +

4

5

sin2 α

3 cos2 α+ 5
Ds2

S2

)
.

(A.2.11)
An accurate analysis reveals that at the two poles we have a D6 and an
anti-D6 stack wrapping Σ3. This ten-dimensional solution is dual to an
N = 1 CFT3 with no R-symmetry obtained by twisting the (1, 0) theory dual
to (A.1.4) on the three-manifold Σ3. Indeed, this solution has no internal
isometry since the SU(2) is completely broken by the twisting procedure.
More details on this solution, explicit expressions for the dilaton and the
fluxes are given in subsection 3.3.2.

Another possibility would be reducing to ten dimensions the N = 2 AdS4

solution of [41]. However it was shown in [3] that this cannot be done without
breaking supersymmetry.



Appendix B

Massless spinors from 11d

B.1 Killing spinor on S4

In this appendix we will follow [1, App. B]. The AdS7 × S4 is a familiar
Freund–Rubin solution; the flux is taken to be proportional to the internal
volume form, G4 = gvolS4 . The eleven-dimensional supersymmetry trans-
formation reads: ∇M ε11 + 1

144GNPQR(γNPQRM − 8γNPQδRM )ε11 = 0; de-

composing ε11 =
∑4
a=1 ζa ⊗ ηa + c.c., and using (3.1.4), one reduces the

requirement of supersymmetry (for RAdS = 1) to taking g = 3/4, and to the
equation

(∇m −
1

2
γγm)η = 0 (B.1.1)

on S4, where we have used the standard decomposition for the eleven-

dimensional gamma matrices: Γ
(7+4)
µ = γ

(7)
µ ⊗ γ , Γ

(7+4)
m+6 = 1⊗ γm .

This is an alternative form of the Killing spinor equation; it was solved in
[103] in any dimension. However, we are using different coordinates, adapted
to the S1 reduction used in App. A; we will here solve (B.1.1) again, using
more or less the same method.

The idea is to start from the easiest components of the equation, and to
work one’s way to the more complicated ones. Our coordinates in section
A are {α, z, θ, ϕ}, with z being the reduction coordinate and θ and ϕ are
spherical coordinates on S2.

Our vielbein, as defined by Eq. (A.1.2), reads: e1 = dα, e2 = 1
2 sin(α)dθ,

e3 = 1
2 sin(α) sin(θ)dϕ, e4 = 1

2 sin(α)(dz + cos(θ)dϕ). We begin with the α
component of (B.1.1):

∂αη =
1

2
γγ1η ⇒ η = e

1
2αγγ1η1 . (B.1.2)

The next component we use is(
∂θ −

1

4
cos(α)

)
η =

1

4
sin(α)γγ2η . (B.1.3)
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This can be manipulated as follows:

0 =

(
∂θ −

1

4
eαγγ1γ12

)
η = e

1
2αγγ1

(
∂θ −

1

4
γ12

)
η1 ⇒ η1 = e

1
4 θγ12η2 .

(B.1.4)
We proceed in a similar way for the two remaining coordinates; the details
are complicated, and we omit them here. The final result is

ηS4 = exp
[α

2
γγ1

]
exp

[
θ

4
γ12 +

θ − π
4

γ34

]
exp

[
z + ϕ

4
γ13 +

z− ϕ
4

γ24

]
η0 .

(B.1.5)
where η0 is a constant spinor.

In order to reduce this spinor to ten dimensions along the z direction,
we have to impose the condition ∂zη = 0, which is easily achieved imposing
the projection (γ13 + γ24)η0 = 0, which is equivalent to γη0 = −η0. This
projection keeps only half of the components, those with negative chirality,
so that the solution is half BPS in ten dimensions.

B.2 Reduction to M3

We now choose the following decomposition for the 4d gamma matrices:

γ1 = σ3 ⊗ σ1, γ2 = σ1 ⊗ σ1, γ3 = σ2 ⊗ σ1, γ4 = 1⊗ σ3 , (B.2.6)

where σi are the Pauli matrices. The condition γη0 = −η0 is easily solved by
η0 = (χ0 ,−iχ0). With some more effort, the full S4 Killing spinor (B.1.5)
turns out to admit a natural decomposition in terms of a Killing spinor on
the two-sphere which is left untouched by the reduction to ten dimensions,
Eq. (A.1.4). We get:

ηS4 =

(
−i e i2 (α−π)σ3

χS2

e−
i
2ασ

3

χS2

)
, (B.2.7)

where χS2 is the S2 Killing spinor that can be written explicitly as χS2 =
e
iθ
2 σ

1

e
ϕ
2 σ

12

χ̃0, for a new constant spinor which is related to the old one by
a simple unitary transformation: χ̃0 = 1

2 (1 − iσ1)(1 + iσ3)χ0. Notice that
the spinor dependence on the coordinate α is factorized in an overall unitary
transformation.

The gamma matrix representation that we chose is already appropriate
for the reduction from eleven to ten dimensions of the spinor (B.2.7). Indeed,
chirality in ten dimensions is given by the eigenvalues of γ4, which in our
basis is γ4 = 1 ⊕ −1. The spinor η decomposes as (χ1, χ2), or equivalently
as η = χ1 ⊗ v+ +χ2 ⊗ v−, where v± are σ3 eigenvectors and the two spinors
on M3 are given by

χ1 = −ie−iπ2 σ3ei
α
2 σ

3

χS2 , χ2 = e−i
α
2 σ

3

χS2 . (B.2.8)
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So we succeeded in showing how the AdS7×S4 background can be reduced
to ten dimensions preserving half of the supersymmetry. We also got a very
elegant expression for the internal spinors in ten dimensions, which make
manifest their transformation property under the residual isometry group
SU(2) of the two-sphere, dual to the Sp(1) R-symmetry of the (1, 0) theory.
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Appendix C

J−1ψ Operator

In [72, Sec. 5.2], the pure spinor equations (4.1.6) were massaged for the
particular case needed in this thesis. All we need now is to compute the
action of the J−1

ψ x operator on the two- and four-forms defined in subsection

4.2.1. J−1
ψ is a bi-vector defined as the inverse of the two-form Jψ entering the

dielectric expression (4.1.8), which for our class of solutions can be expanded
as: Jψ = j1 e

i ? Dyi + j2 dr y
iei, with coefficients j2 = − fg

cosψ and j3 = g.

It is natural to choose f i ≡ j2Dyi − j3yidr as basis of one-forms on M3

and the vielbein ei as basis on Σ3, so that we can write Jψ as:

Jψ = ei ∧ f i . (C.0.1)

Equivalently, the inverse operator can be expanded on the dual basis of
vectors as:

J−1
ψ x= F ixEix , (C.0.2)

where the basis of forms and dual vectors satisfy:

F ixf j = δij , F ixej = 0 , Eixf j = 0 , Eixej = δij . (C.0.3)

We now compute the dual vectors to be:

F i =
1

j2
vi − 1

j3
yidr , Ei = Ei0 − vjyk(Ei0xω

jk) . (C.0.4)

Ei0 are the dual vectors to ei on the base space satisfying Ei0xe
j = δij . The

vectors vi are given by

v1 = cos θ cosϕ∂θ−
sinϕ

sin θ
∂ϕ , v

2 = cos θ sinϕ∂θ+
cosϕ

sin θ
∂ϕ , v

3 = − sin θ∂θ ;

(C.0.5)
they satisfy vixDyj = δij − yiyj . (They also happen to be conformal Killing
vectors on S2: LvigS2 = −2yigS2 .)
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It is now straightforward to compute the action of J−1
ψ on the set of

twisted two-forms:

J−1
ψ x vol2 = 0 , J−1

ψ x eiDyi =
2

j2
, J−1

ψ x dr yiei =
1

j3
,

J−1
ψ x ẽi ? Dyi = 0 , J−1

ψ x yiF i2 = 0 .

(C.0.6)

We finally compute the action of J−1
ψ on some the four-forms, which are also

needed in the pure spinor equations:

J−1
ψ x dr yiei vol2 =

1

j3
vol2 , J−1

ψ x yiF i2vol2 =
R

6j2
eiDyi ,

J−1
ψ x dr volΣ =

1

j3
yiF i2 .

(C.0.7)
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