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Chapter 1 

Introduction 

At the beginning of this century, the notion that the biological processes 

are orchestrated mainly by proteins has been challenged by the 

discovery that a large portion of the human transcriptome codes for 

transcripts that are not translated. 

This gave rise to a transcriptional landscape that is radically different to 

what was previously believed: recent works estimate that against a total 

of 62.1% of the human genome covered by processed transcript (74.7% 

by primary transcripts), exons of protein-coding genes cover only the 

2.94% of the genome [1]. 

In particular, long non-coding RNAs (lncRNAs) are defined as transcripts 

having low coding potential and longer than 200 bp [2]. The choice of 

this length threshold is somewhat arbitrary, but it is instrumental in order 

to separate lncRNAs from other non-coding RNA classes, such as 

microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting 

RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short 

RNAs. A more comprehensive list of different non-coding RNA 

categories is reported in Table 1. 

The majority of lncRNAs are transcribed, capped, spliced, and 

polyadenylated similarly to mRNAs [32]. They are defined after the 

transcriptional context they are located in, and in particular their 
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nomenclature is defined after the position they assume relative to 

protein coding genes (fig.1). There are - intronic lncRNAs, which 

originate from intronic regions, and they do not overlap any annotated 

exon, - antisense lncRNAs, that span at least one exon of a nearby 

protein coding, and are transcribed in the opposite direction, - 

bidirectional lncRNAs are transcripts that initiate in a divergent fashion 

from the promoter of a protein-coding gene and - intergenic lncRNAs, 

whose transcriptional units do not overlap any annotated protein coding 

genes [31]. 

In the context of this thesis, the main focus will be on this last category, 

as the study of lincRNAs does not suffer from the complications arising 

from the presence of overlapping coding genes, which make them less 

likely to originate from transcriptional noise or errors in RNA-seq data 

assembly. 
 

 

Fig.1: LncRNAs are defined after the position they assume relative to protein 

coding genes. 
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LncRNAs: mechanisms of action 

The mechanisms of action of lncRNAs have been broadly categorized 

by Wang and Chang [33] into four archetypes that summarize what has 

been observed in recent years. According to this categorization, 

lncRNAs can act as signals, decoys, guides, and scaffolds (fig.2).  

Signals: LncRNAs are transcribed by Pol II [32], as evidenced by the 

presence of 5' cap, polyadenylation and histone marks associated with 

Pol II elongation. Their expression is highly tissue/cell-specific if 

compared to protein coding transcripts [21,22], suggesting that lncRNAs 

expression is under tight transcriptional regulation. LncRNAs could 

therefore serve as molecular signals: this notion is supported by the fact 

that the expression of individual lncRNAs derives from the integration of 

molecular signals, environmental cues and regulatory processes.  

LncRNAs of this archetype are regarded as markers of functionally 

significant biological events, such as Xist (responsible for silencing one 

of the two X chromosomes in female mammals) [34], HOTAIR (involved 

in gene-silencing of the HOXD locus by PRC2) [35] and LincRNA-p21 

(promotes transcriptional repression in the canonical p53 pathway and 

induction of apoptosis) [36]. 

Decoys: lncRNAs may work as ‘‘decoys’’ by sequestering miRNAs and 

affecting their regulation of expressed genes. An example of this 

mechanism of action is provided by the tumor suppressor pseudogene 

PTENP1, whose 3' was found to bind the same set of regulatory miRNA 

sequences that normally target the tumor-suppressor gene PTEN [37]. 
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Guides:  there is emerging evidence that lncRNAs can also act as 

'guides' that direct the localization of ribonucleoprotein complexes to 

specific targets. Through the recruitment of regulatory complexes (both 

repressive (e.g., polycomb) and activating (MLL), lncRNAs can alter the 

epigenetic state of nearby regions (cis)  (Xist [34], lnc-MAF-4 [22]), 

thereby influencing gene expression.  

Moreover, lncRNAs can promote epigenetic change in trans: in this case 

target recognition can occur by lncRNA binding to target DNA as a 

RNA:DNA heteroduplex or as RNA:DNA:DNA triplex (HOTAIR [35], 

LincRNA-p21 [36]). 

Scaffold: The fourth archetypal class of lncRNAs is the scaffolds. 

Individual lncRNA transcripts of this class may bind to different effectors 

at the same time, generating a network of interactors that promote 

change in the cell and orchestrate gene expression regulation.  

As mentioned above, lncRNA HOTAIR promotes gene-silencing of the 

HOXD locus by interacting with PRC2. Additionally, it has been 

demonstrated that a portion of HOTAIR (700 nct of 3') also interacts with 

a second complex containing LSD1, that demethylates histone H3 on K4 

in a complementary suppressive action. 

It is therefore possible that lncRNA transcripts can fold to create local 

structural domains and rearrangements that specifically interact with 

different regulatory complexes to bring forth specific combinations of 

histone modifications on target gene chromatin. 
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Table 1: Major classes of short and long regulatory non-coding RNAs [2] 
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Fig.2: [33] Schematic Diagram of the Four Archetypes of LncRNA Mechanism 

 

LncRNAs: cross-species conservation (or lack 
thereof)  
In contrast to what has been reported for other non-coding RNA classes 

[42], long ncRNAs lack strong inter-species conservation. Overall, 

lncRNA sequences are less conserved than protein coding-genes, but 

more than introns or random intergenic regions [43]. 
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Moreover, the evolutionary linkage between lncRNAs in different species 

is difficult to infer since the majority of approaches for conservation 

studies are based on primary sequence analysis. LncRNAs evolve more 

rapidly than protein coding genes (at a sequence level) because the 

evolutionary constraints at play are different: primary sequences of 

coding transcripts are translated to functional proteins, so that genomic 

mutations may alter the aminoacidic code that will shape the tertiary 

structure of the protein. Conversely, lncRNAs exert their functions by 

physically associating with proteins, and point mutations at a genomic 

level may not impact on the overall tridimensional structure and 

functionality of the molecule. 

For these reasons, novel paradigms are needed to fully describe the 

multidimensional evolutionary linkage between lncRNAs in different 

species.  

Sequence-structure-function relationship: Based on the assumption 

that most lncRNAs will fold into complex secondary and tertiary 

structure, conservation can be found at the structural level [44]. 

Algorithms that use alphabets to codify structural spatial rearrangements 

of RNA molecules could be used to identify evolutionary relationships 

when analysis of nucleotide sequence is not conclusive. 

Another aspect that could be used to infer evolutionary relationships is 

functional conservation (for example, a lncRNA could be essential both 

in human and mouse), although the number of lncRNAs for which a 

functional characterization has been performed is too limited to exhibit a 

trend. Other approaches that have been proposed include conservation 
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analysis of the promotorial regions [46]  and analysis of syntenic 

transcription (this latter is used by LNCipedia [45]  and by the Ensembl 

pipeline (www.ensembl.org) for lncRNAs annotation).  
 

LncRNAs and the modulation of cellular plasticity in 
the immune system 

LncRNAs have emerged as key regulators both for innate and adaptive 

immune response [41].  

LincRNA-Cox2 [32] and THRIL [38] have been found to control TLR 

signaling in dendritic cells (DC) by activating and repressing gene 

transcription of critical immune response regulators and inflammatory-

response genes. 

  
In 2009, Guttman and colleagues identified 20 signal-specific lncRNAs 

in bone-marrow-derived in vitro DCs (BMDCs), 80% of which clustered 

with NF-kB signaling components in a systematic analysis of co-

regulated genes across several datasets [32]. 

Furthermore, another lncRNA (lnc-DC) [39] has been found to be highly 

upregulated during DC differentiation and to be selectively expressed in 

classical antigen-presenting DCs (cDCs). Through knockdown 

experiments, it has been demonstrated that ln-DC controls expression 

levels of genes involved in T cell activation (CD40, CD80), antigen 

presentation (HLA-DR), and cytokine secretion. 
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LncRNAs have been shown to play an important role in the adaptive 

immune response as well. An example of this is lincR-Ccr2-50 AS [40], 

whose knockdown in mice leads to downregulation of  key Th2 

chemokine-encoding genes Ccr1, Ccr2, Ccr3, and Ccr5. Moreover, Hu 

et al. [40] demonstrate that the network of transcripts modulated by 

lincR-Ccr2-50 AS show considerable overlap with that of the ‘‘master’’ 

Th2 cell transcription factor GATA-3. This supports the idea that 

lncRNAs may represent a second layer of Th-cell-specific gene 

regulation downstream of master transcription factors. 

Taken together, these results suggest that lineage specificity and 

dynamic expression of lncRNAs can be leveraged to gain insights on 

their role in immunological processes. Moreover, their unique 

characteristics would be useful in a therapeutic context, as the current 

picture of lncRNAs sees them as ‘drivers’ of regulatory processes that 

may be important to modulate in order to fight disease.  

This is particularly true in the case of the adaptive immune system, 

where the heterogeneity of cellular populations and the complexity of 

immune processes require the targeting of biological ‘switches’ that are 

specifically expressed and that can have a significant impact on cells 

differentiation and survival. 

Thus, the translational perspective of the work carried out in the context 

of this project (which is described in the ‘Conclusion’ section) is the 

determination of the the role of lncRNAs in peripheral tissue-resident 

regulatory T cells, and in particular those infiltrating the tumoral mass. 
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Regulatory T cells in nonlymphoid tissues 

The presence of regulatory T cells has been documented in several 

nonlymphoid tissues both in human and mice: skin, intestinal mucosa, 

lung, liver, adipose tissue, autoimmune target tissues, infected tissues, 

grafts, placenta, tumors, atherosclerotic plaques and injured muscle are 

just some examples [refs]. The scarcity of studies addressing peripheral 

Treg cells recruitment and the role/function they play in these districts 

makes difficult to generalize and derive common characteristics for 

them. Nevertheless, what emerges from recent studies is that tissue-

infiltrating Tregs retain overall suppressive functional characteristics (as 

evidenced by suppression assays) [48], and they are characterized by 

the expression of specific transcription factors, chemokine receptors or 

effector molecules which render them unique.  

The set of tissue-resident Treg cells that have been characterized is 

limited to the ones found in mice Visceral Adipose Tissue (VAT) [48] and 

the regenerating skeletal muscle [49]. 

Peripheral Tregs studied from VAT exhibit upregulation of IL-10 and 

CTLA-4, suggesting that they can control conventional CD4+ T cell and 

CD8+ T cell populations in the adipose tissue. Moreover, they may also 

exert control on co-resident myeloid cells, as suggested by an inverse 

correlation between the frequency of Treg cells and that of 

proinflammatory myeloid populations. 

Interestingly, VAT Treg cells activity is not limited to immunological 

processes. There is an increasing amount of evidence that VAT Tregs 

can exert control on metabolic indices, inhibiting local and systemic 
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insulin resistance and glucose intolerance. This effect is partly exerted 

by direct action of Treg cells on adipocytes, as the IL-10 they produce 

can engage receptors on adipocytes to downregulate proinflammatory 

cytokines and increase glucose uptake. 

Similarly, peripheral Treg cells accumulation in skeletal muscle after 

injuries seems to be instrumental to achieve a full recovery due to the 

non-immunological actions performed by Tregs, which overexpress 

amphiregulin, a growth factor that induces in vitro differentiation of 

satellite cells.  

TCR repertoire of peripheral Treg cells: it has been suggested that 

the localization of Treg cells in nonlymphoid tissues may be facilitated by 

the fact that their TCR repertoire is biased toward the recognition of self 

antigens. The pool of peripheral Treg cells would then be considerably 

expanded in pathological situations such as inflammation or cancer in 

which an enhanced presentation of self antigen can occur in periphery 

[49]. It makes sense to think that tumors may leverage this 'failsafe' 

mechanism to build up defenses against the attack of effector 

lymphocytes by recruiting Treg cells inside the tumoral mass. 
 

Transcriptomic analyses performed on peripheral Tregs (from the works 

referenced in this section) are all based on data produced with 

microarray technology, since no published RNA-seq dataset on 

peripheral Tregs is available at the time of writing (See Conclusion and 

future work)  
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Transcriptome profiling of tissue-resident Treg cells will represent an 

invaluable addition to the mass of experimental data that has already 

been produced on the subject, as it will uncover the features that make 

peripheral (and tumor infiltrating) Treg cells unique, and will pave the 

way to the development of ad hoc immunological treatments. 
     

 

Fig.3 Functions of tissue-resident Treg cells [49] 

 

 

RNA Next Generation Sequencing (NGS) and 
lncRNAs identification and characterization 

The recent developments of 'omics' technologies for the study of gene 

expression profiles have made available new tools for the accurate 

identification and characterization of lncRNAs. 
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RNA-Seq is an approach to transcriptome profiling that uses deep-

sequencing technologies to detect and accurately quantify RNA 

molecules originating from a genome at a given moment in time. 

For this reason, RNA-seq (and in general techniques using short reads 

to attempt transcriptome reconstruction) is quantitative in nature, and it 

has been used in recent years to accurately identify differentially 

expressed genes for a vast range of applications (transcriptome 

reconstruction, variants identification, definition of splicing isoforms...). 

With the advent of RNA-seq, it is now possible to virtually reconstruct an 

entire transcriptome, with a greater dynamic range than microarrays and 

with the possibility to discover new loci and new transcripts [3]. 

A standard protocol for the identification and the characterization of 

novel lncRNAs from RNA-seq data is reported in fig.4. 
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Fig.4: Standard protocol for the identification of lncRNAs from RNA-seq data. 

   

The following description of the protocol will not dwell on experimental 

considerations, as the main focus in the context of this thesis is the 

subsequent analysis of RNA-seq data and the computational strategies 

that must be implemented to reconstruct and characterize lncRNAs. 
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As listed in fig.4, the first step of the protocol is the selection of the polyA 

fraction from total purified RNA and the depletion of ribosomal RNA, 

followed by RNA fragmentation and (paired-end or single-end) 

sequencing.  

Paired-end vs. single-end sequencing: Short-reads sequencing 

technologies are limited by the length of the reads that are generated (a 

range that goes from 50 to 130 bp is common for Illumina technology). 

This means that transcripts (or more precisely, the cDNA molecules 

resulting from the fragmentation of the entire transcriptome) are not 

sequenced in their entirety, but instead they need to be reconstructed by 

the means of 'aligner' software that leverages the sequence information 

contained in the genome reference (hg38 assembly is currently used for 

human) to stitch back the transcripts to their original form. 

For this reason, the advantage of paired-end sequencing vs. single-end 

sequencing lies in the fact that both fragment ends are sequenced: this 

produces more alignable data and results in an overall higher probability 

to align to a reference genome. Moreover, paired-ends reads give 

precious information of the reciprocal distance of the same couple of 

reads, so that alternative splicing studies and the accurate detection of 

exon boundaries can be carried out in great detail. 

Align reads to a reference genome: Since the number of reads that 

are typically produced in a RNA-seq experiment ranges from 10 to 100 

millions, ad hoc software has been developed to perform mapping to a 

reference genome, such as Bowtie [5], Stampy [6], and GEM [8]. These 

tools achieve high performance by storing genomic coordinates of short 
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oligomers as an indexed genome using hash table indexing and 

compression with a Burrows-Wheeler transform. The accuracy of the 

final alignments is influenced by several factors which need to be taken 

into account. For instance, some read matches may be missed as the 

genome search performed by this class of algorithms is not exhaustive; 

moreover, the intrinsic variability of RNA deriving from single nucleotide 

polymorphisms (SNPs) or small indels can compromise the detection of 

a read-reference match. 

A number of reads derived from RNA fragments can map to two 

genomic regions with large gaps that span spliced introns. The accurate 

detection of novel intron-spanning junctions is important in the discovery 

of lncRNAs, and new programs that can adequately model the 

complexity of these transcripts have been released. These include 

STAR [7], MapSplice [9], GSNAP [10] and TopHat [11]. 

Though the overall mapping performances of these tools are 

comparable with one another, they are characterized by different 

requirements in terms of memory usage and execution time. For 

instance, GSNAP has been found [7] to have a poor mapped reads / 

hour ratio and large memory consumption, while STAR is the fastest 

mapper but also shows poor memory usage. 

Although TopHat exhibits the least accurate performance, it maintains 

the advantages of its speed and its lack of requirement for large 

amounts of memory: it is therefore the mapper of choice when 

computing power is limited. 
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With the increase of computational capabilities of research institutes and 

the advent of cloud computing solutions for genomic studies, STAR has 

been increasingly adopted for the analysis of a vast number of RNA-seq 

datasets. 

Reconstructing transcript models: In recent years, thousands of 

lncRNAs have been identified and characterized using RNA-seq 

[21,22,24]. The methods used belong to two broad categories: 

reference-based and assembly-first algorithms. With both these 

methods, it is possible to characterize alternative splicing events by 

analyzing the distribution of sequenced reads across splice junctions.  

In a reference-based strategy, RNA-seq reads are first aligned to a 

reference genome using a splice-aware aligner, such as Tophat [11], 

GSNAP [10] or STAR [7]. Then, the overlapping reads from each locus 

are clustered to build a graph representing all possible isoforms, and in 

the final step the graph is traversed to resolve individual isoforms (fig.). 

Examples of software using this strategy are Cufflinks [18] and Scripture 

[24]. 

In particular, Cufflinks creates a graph with all the reads that align to a 

locus, and traverses it to assemble isoforms by finding the minimum set 

of transcripts that 'explain' the intron junctions found within the reads. 

Conversely, Scripture creates a splice graph containing each base of a 

chromosome and adds edges between bases if there is a read joining 

these two, and then traverses the graph in order to identify paths that 

are statistically significant (transcripts). 
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From this follows that Cufflinks is more conservative in the choice of 

transcripts to reconstruct, while Scripture may generate a larger set of 

novel transcripts. 

The main advantage of a reference-based approach lies on the fact that 

the computational complexity of the transcript reconstruction problem is 

greatly reduced by the presence of a reference genome, so that this 

class of algorithms can be run on machines with only a few gigabytes of 

RAM. 
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Fig. 5:  Overview of the reference-based transcriptome assembly. The steps of 

the reference-based transcriptome strategy are shown using as an example 

the maize gene (GRMZM2G060216) [23].  
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The assembly-first strategy (used by Trinity [25] and Oases [26] among 

the others) does not use the reference genome, but leverages the 

redundancy of short-read sequencing to find overlaps between the reads 

and assembles them into transcripts. This class of algorithms assembles 

the dataset multiple times using an approach based on the De Bruijn 

graph. Once constructed, the graph can be traversed directly to 

assemble each isoform.  

In this approach, overlapping kmers of length k are generated from the 

reads: each kmer is assigned to a node in the De Brujin graph and 

edges are added between nodes if shifting a k-mer by one character 

creates an exact k-1 overlap between the two k-mers. Chains of 

adjacent nodes in the graph are collapsed into a single node when the 

first node has an out degree of one and the second node has an in 

degree on one. In the final step of the procedure the graph is traversed 

to assemble isoforms. 
 

LncRNAs tend to be lowly expressed and de novo assemblers tend not 

to perform well across their expression range. It has been reported [20] 

that a map-first strategy using Cufflinks outperforms de novo assembly 

in terms of the number of Ensembl-annotated full-length transcripts that 

are reconstructed. 

Nevertheless, assembly-first methodologies can be applied to cases 

where a genome reference is available in order to achieve higher 

sensitivity in the detection of novel transcripts [22]. A combined 
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approach that leverages the strengths of both mapping-first and 

assembly-first algorithms may lead to a better characterization of the 

transcriptional landscape of the samples being analyzed. 

Coding potential evaluation:  a number of strategies have been 

developed in order to separate protein coding genes from lncRNAs in 

the pool of transcripts that are reconstructed by de novo methodologies 

on RNA-seq data. The performance and the accuracy of such strategies 

varies (as they are based on slightly different assumptions and 

features), so that an integrative approach that evaluates consensus 

results from different methods should be used to achieve high specificity 

of the classification. 

A first step is taken to intersect newly reconstructed transcripts with 

protein domain database annotations such as PFAM [47]. Transcripts 

are translated in 6 frames (forward and reverse) in non strand-specific 

protocols to ensure that the ambiguity of strand attribution of de novo 

assemblers does not compromise the resolution power of the pipeline 

for the identification of novel lncRNAs. Transcripts presenting a PFAM 

match in one of the six frames are discarded from further selection.  

Another (complementary) strategy that is used for lncRNAs identification 

is based on the use of machine learning algorithms that evaluate the 

rate of evolutionary divergence for codon models in transcripts 

sequences. Protein-coding regions are under strong evolutionary 

pressure to preserve amino acid content, and they can be identified by 

analyzing synonymous mutation patterns with programs such as Codon 

Substitution Frequency (CSF) [27]. Its most recent implementation 
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(PhyloCSF [27]) generates a probabilistic model that examines the over-

representation of evolutionary signatures characteristic of alignments of 

conserved coding regions, such as the high frequencies of synonymous 

codon substitutions and conservative amino acid substitutions. 

A major drawback of the PhyloCSF [27] approach is the lengthy running 

time (that can be close to days for thousands of transcripts on a 

medium-size HPC cluster), so that the classification step may become 

the bottleneck of the entire pipeline. 

Other approaches have been recently developed for lncRNAs 

identification from RNA-seq data that rely on machine-learning 

algorithms and linguistic features analysis to provide reliable 

classification results and cut execution time by orders of magnitude. 

Among these iSeerna [29], CNCI [30] and CPAT [28] are increasingly 

used by the scientific community. 

In particular, CPAT [28] uses a logistic regression model built on four 

sequence features: open reading frame (ORF) size, open reading frame 

coverage, Fickett TESTCODE statistic and hexamer usage bias. 

The Fickett score is a linguistic feature that distinguishes protein-coding 

transcripts and lncRNAs according to the combinational effect of 

nucleotide composition and codon usage bias. The most discriminating 

feature though used by CPAT for classification is the hexamer score, 

which is related to the position of aminoacids in the three-dimensional 

structure of proteins. It evaluates the tendency of aminoacids (and 

hence, codons found in query transcripts) of shaping repetitions of 

patterns that are arranged to create protein structures.  
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 For a given hexamer sequence S=H1, H2, ... , Hm, the hexamer score is 

calculated as: 

𝐻𝑒𝑥𝑎𝑚𝑒𝑟𝑆𝑐𝑜𝑟𝑒   =   
1
𝑚 𝑙𝑜𝑔(

𝐹(𝐻!)
𝐹′(𝐻!)

)
!

!!!

 

 

which is the Log-likelihood ratio of the frequency of hexamers (64x64) 

under the coding (F) and noncoding (F’) hypothesis. 
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Fig.6: Overview of the de novo transcriptome assembly strategy  [23]. 

  

RNA-seq data: a statistical introductory overview of 
differential expression analysis 

 

 A typical RNA-seq experiment produces from 10 to 100 million reads 

that are aligned back to the reference genome (if available), and 

inferences are performed to estimate the expression of the transcript 

that generated a particular set of reads, which is of course a measure 

proportional to the concentration of that transcript in the cell. If we 

consider Ki to be the number of sequencing reads that have been 

assigned to a particular genomic region i, than the problem can be 

formulated as a draw of a colored ball from an urn, where there are as 

many colors as regions i and the urn represents a large pool of RNA 

fragments.  

The probabilities p for drawing a ball of each color from the urn are given 

by the frequencies according to which each region i is represented 

inside the pool. Probabilities p are not altered by the effect of 

subsequent draws, as the number of fragments needed for sequencing 

is much smaller than the total pool of RNA fragments in the pool. 

If we consider the reads assigned to a single genomic region Ki, these 

are distributed as a binomial random variable with number of trials N 

(number of total reads) and probability of success pi (the relative 

frequency of fragments in the total pool arising from i). As pi shrinks and 
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the number of trials N increases, the binomial distribution converges to a 

Poisson distribution with mean equal to Npi.  

In RNA-seq experiments, the number of 'draws' is on average >10 

millions and read counts for genomic region i are typically less than 

1/1000. This theoretical demonstration has been empirically supported 

by Marioni et al. [12], who showed that Poisson distribution fits the 

expression data for 99.5% of the genes analyzed.  

 
Fig.7 : The binomial distribution converges to the Poisson distribution for a 

large number of trials (N) and a small probability (p). Data shown are for a 

B=f(100,1/10) and P=f(10).  

     

Overdispersion of counts data generated from RNA-seq 
experiments: While the assumptions presented in the last paragraph 

are well suited for technical replicates, when dealing with biological 

replicates we need to account for extra source of variability in the data. 
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This is due to the fact that when producing biological replicates a new 

pool of DNA fragments is generated, which will not have an identical 

probability vector p⃗  of relative frequencies from various regions of the 

genome.  

Hence, these new experimental settings will be modeled after a mixture 

distribution, since a parameter of the Poisson distribution (the mean) 

varies according to another distribution. This other distribution was 

parameterized as a gamma distribution, as 1) it offers support for real 

non-negative numbers (counts data are of course non-negative integers) 

and 2) we can specify (at least) two parameters (both the mean and the 

variance). 

When the variance of a Poisson mixture distribution is greater than the 

mean, counts are said to be 'overdispersed', and modern algorithm for 

the analysis of RNA-seq data have been implemented to model this 

variability and produce a reliable identification of differentially expressed 

genes. 

Poisson/Gamma mixture and the negative binomial model: A 

Poisson/Gamma mixture distribution is most commonly referred to as 

the negative binomial distribution (a Poisson(λ) distribution, where λ is 

itself a random variable, distributed as a gamma distribution). 

The density for negative binomial distribution K~NB(μ,α) with μ>0 and 

α>0 is defined as: 
 

  𝑃(𝐾 = 𝑘)   = !(!!!/!)
!!!(!/!)

( !
!!!/!

)!(1+ 𝜇𝛼)!!/!        
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the mean and the variance of this distribution are given by: 

𝐸(𝐾) = 𝜇      ,   𝑉𝑎𝑟(𝐾) = 𝜇 + 𝛼𝜇! 

 The use of the negative binomial to study differential expression of 

genes from RNA-seq data was first introduced by Robinson et al [13], 

and Anders and Huber[14]. 

As 𝛼 → 0, the negative binomial distribution converges to a Poisson 

distribution, so that it can also be used to model technical replication 

alone if needed. 

Methodologies based on the read count negative binomial distribution 

assumption for differential expression analysis are EdgeR [13], DESeq 

(and DESeq2) [15], baySeq [16] and EBSeq [17]. The differential 

expression analysis performed with these software are all gene-based, 

while Cufflinks [see next section] also performs isoform-level analysis. 
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Fig.8 Negative binomial distribution 𝑁𝐵(𝜆,𝛼) with different 𝛼 (variance) values. 

As  𝛼 shrinks and tends to zero the distribution approximates a Poisson 

distribution ∼ 𝑃(𝜆). 

 

Cuffdiff assumptions for differential expression: Cuffdiff 2 [18] 

estimates expression at transcript level resolution and controls for 

variability and read mapping ambiguity by using a beta negative 

binomial model for fragment counts. The algorithm combines the 

uncertainty in each transcript’s fragment count with the overdispersion 

predicted to exist for that count by the global model of cross-replicate 

variability. 

The final model (beta negative binomial) arises from the mixture 

distribution of different beta distributions. 

If parameters of the beta distribution are 𝛼and 𝛽, and if 

𝑋/𝑝   ∼ 𝑁𝐵(𝑟,𝑝)   

where: 

𝑝 ∼ 𝐵(𝛼,𝛽) 

then the marginal distribution of X is a beta negative binomial 

distribution: 

 

 𝑋 ∼ 𝐵𝑁𝐵(𝑟,𝛼,𝛽) 

 

A comprehensive list of statistical assumptions used by the most widely 

used software for differential expression analysis is reported in Table 2 

[19]: 
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Normalization of RNA-seq data: As the total number of reads that are 

generated in a RNA-seq experiment differs due to technical/biological 

variability, genes quantification will be affected. 

A way to counteract this effect is to normalize gene expression data 

using a function of the library size from each sample by multiplying each 

gene read count value for a gene-specific normalization constant (𝑠!").  

These normalization constants 𝑠!" are considered constant within a 

sample, 𝑠!"   =    𝑠!, and are estimated with the median-of-ratios method:  

 

𝑠! =   
!"!"#$
!:!!!

!"#
! !

 with  𝐾! ( !
!!! 𝐾!")!/! 

This normalization methodology was first implemented in DESeq2 [15] 

and it is currently the default setting for Cuffdiff (Cufflinks suite) [18]. 
 

Method Version Normalization 
Read count 
distribution 
assumption 

Differential 
expression test 

edgeR 3.0.8 
TMM/Upper quartile/RLE 
(DESeq-like)/None (all 
scaling factors are set to 
be one) 

Negative 
binomial 
distribution 

Exact test 

DESeq 1.10.1 DESeq sizeFactors 
Negative 
binomial 
distribution 

Exact test 

baySeq 1.12.0 Scaling factors 
(quantile/TMM/total) 

Negative 
binomial 
distribution 

Assesses the posterior 
probabilities of models 
for differentially and 
non-differentially 
expressed genes via 
empirical Bayesian 
methods and then 
compares these 
posterior likelihoods 

NOIseq 1.1.4 RPKM/TMM/Upper 
quartile 

Nonparametric 
method 

Contrasts fold changes 
and absolute differences 
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within a condition to 
determine the null 
distribution and then 
compares the observed 
differences to this null 

SAMseq 
(samr) 2.0 

SAMseq specialized 
method based on the 
mean read count over 
the null features of the 
data set 

Nonparametric 
method 

Wilcoxon rank statistic 
and a resampling 
strategy 

Limma 3.14.4 TMM 
voom 
transformation 
of counts 

Empirical Bayes method 

Cuffdiff 2 
(Cufflinks) 

2.0.2-
beta 

Geometric (DESeq-
like)/quartile/classic-
fpkm 

Beta negative 
binomial 
distribution 

t-test 

EBSeq 1.1.7 DESeq median 
normalization 

Negative 
binomial 
distribution 

Evaluates the posterior 
probability of 
differentially and non-
differentially expressed 
entities (genes or 
isoforms) via empirical 
Bayesian methods 

 

Table 2: Comparison of software packages to detect differential expression 

[19] 

 

Modeling gene-wise dispersion estimates: as previously stated, the 

dispersion𝛼that characterizes read counts of genes needs to be 

estimated in the context of a negative binomial distribution model (this is 

true both for DESeq2 and Cuffdiff 2).  

The dispersion can be estimated by taking into account the relationship 

between mean and variance of gene counts (which is not a linear 

function in RNA-seq data). This information is incorporated in DESeq2 in 

a model that produces a posteriori (MAP) estimates of gene-wise 

dispersion. The process is articulated in three sequential steps: 1) count 

data for each gene is used to produce preliminary gene-wise dispersion 
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estimates by maximum-likelihood estimation, 2) a dispersion trend is fit 

over all genes using the following parametrization:  

 𝛼!"(𝜇)   =   
!!
!
  +   𝛼! 

3) the likelihood from (1) is combined with the trended prior (2) to give 

final a posteriori dispersion estimates. 
 

 
Fig.9: Dispersion estimation performed with DESeq2 [15]. Initial dispersion 

estimates are 'shifted' closer to the trended estimates by using a  

(computationally fast) approximation to a full empirical Bayes treatment (MLE= 

maximum-likelihood estimate, MAP=maximum a posteriori) 

 

Testing for differential expression: The quantitative information 

provided by RNA-seq can be summarized by the ratio of expression 

values in different groups/conditions, a metric that was (in microarray 
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data analysis the somewhat arbitrary 'twofold' change has been often 

used to denote 'differential' expression between different conditions). 

Cufflinks: Briefly, the log-transformed ratio of expression constitutes a 

test statistic that follows a standard normal distribution when divided by 

the variance of the transformed ratio. A two-sided test for significance 

against a null hypothesis that the ratio is unity (no change) is performed.  

DESeq2: In DESeq2, the 𝛽estimates (ratio of classes for a single gene 

or log fold changes) are calculated using a procedure that penalizes 

genes with low estimated mean values 𝜇!" or high dispersion estimates 

𝛼!, so that these are 'shrunken' toward zero. The same happens for 

datasets having limited degrees of freedom.  

A Wald test is then performed that compares the 𝛽 'shrunken' estimate 

divided by its estimated standard error SE to a standard normal 

distribution. 
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Scope of the thesis 

The work carried out in the context of this thesis represents the first 

comprehensive transcriptome analysis of human lymphocytes focusing 

on the expression of long intergenic non coding RNAs (lincRNAs). After 

deriving a list of 'signature' genes that are specifically expressed in the 

13 human lymphocyte subsets we analyzed through RNA-seq, we 

focused our attention on a TH1-specific lincRNA (linc-MAF-4) that we 

demonstrated to be involved in the maintenance of TH1 cell identity via 

an epigenetic-repression of MAF gene.  

The follow-up work described in Chapter 5 is aimed to the 

characterization of lncRNAs' involvement in regulatory processes for 

tumor-infiltrating lymphocytes (TIL).  
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Introduction 
 

Lymphocytes enable humans to fight and survive infections but are also 

major drivers of immune-mediated diseases, such as allergy and 

autoimmunity. These different types of immune responses are 

coordinated mostly by distinct CD4+ T cell subsets through signals 

delivered both by cytokines and by cell-to-cell contacts1. The 

developmental and differentiation programs of CD4+ T lymphocyte 

subsets with distinct effector functions have been extensively studied in 

terms of signaling pathways and transcriptional networks, and a certain 

degree of functional plasticity among different subsets has been 

established2. Indeed, flexibility of the CD4+ T cell subset in the 

expression of genes encoding cytokines and transcription factors allows 

the immune system to dynamically adapt to the many challenges it 

faces3. As CD4+ T lymphocyte subsets are no longer considered stable 

and terminally differentiated cell lineages, the question arises of how the 

phenotype and functions of lymphocytes can be modulated and whether 

such findings offer new therapeutic opportunities.    

In addition to the well-established role of transcription factors as 

instructive signals for cell differentiation toward a given lineage, other 

cues, such as epigenetic modifications, can regulate the maintenance of 
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cellular states4. In this context, noncoding RNAs are emerging as a new 

regulatory layer that affects both the development of the immune system 

and its function5, 6. Among the several classes of noncoding RNAs with a 

specific role in lymphocyte biology, microRNAs are the best 

characterized7, 8, 9, 10, 11. Although thousands of long intergenic 

noncoding RNAs (lincRNAs) have been identified in the mammalian 

genome by bioinformatics analyses of transcriptomic data12, 13, 14, their 

functional characterization is still largely incomplete. The functional 

studies performed so far have shown that lincRNAs contribute to the 

control of cell differentiation and to the maintenance of cell identity 

through different modes of action15. Nuclear lincRNAs act mainly 

through their association with chromatin-modifying complexes16, 17, 18, 

whereas cytoplasmic lincRNAs can modulate translational control19 and 

transcript stability20 directly by base-pairing with specific targets or 

indirectly as competing endogenous RNAs21, 22, 23. A few examples of 

functional lincRNAs in the mouse immune system have been described. 

A broad analysis investigating naive and memory CD8+ cells purified 

from mouse spleen with a custom array of lincRNAs has reported the 

identification of 96 lymphoid-specific lincRNAs and has suggested a role 

for lincRNAs in the differentiation and activation of lymphocytes24. The 

lincRNA NeST has been found to be downregulated during lymphocyte 

activation in a manner reciprocal to the expression of interferon-γ (IFN-γ) 

and to control susceptibility to infection with Theiler's virus and 

salmonella in mice through epigenetic regulation of the Ifng locus25, 26. 

Subsequently, mouse lincRNA-Cox2 was reported to be induced 
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downstream of signaling via Toll-like receptors and to mediate the 

activation and repression of distinct sets of genes that are targets of the 

immune system that encode molecules involved in inflammatory 

responses27. Another study of mouse thymocytes and mature peripheral 

T cells has allowed the identification of lincRNAs with specific 

expression patterns during T cell differentiation and of LincR-Ccr2-5′AS, 

a lincRNA specific to CD4+ T helper type 2 cells (TH2 cells) that is 

involved in regulating the migration of CD4+ TH2 lymphocytes28. 

Although such studies highlight the relevance of lincRNAs in regulating 

immune responses, a thorough analysis of their expression profile and 

function in the human immune system is still lacking. 

The present study was based on the analysis of 13 highly purified 

primary human lymphocytes subsets by high-throughput sequencing 

technologies for cDNA (RNA-seq analysis). We performed de novo 

transcriptome reconstruction (the creation of a transcriptome without the 

aid of a reference genome)29 and discovered over 500 previously 

unknown long intergenic noncoding RNAs (lincRNAs). We identified 

several lymphocyte subset–specific lincRNA signatures and found that 

expression of linc-MAF-4, a chromatin-associated, CD4+ TH1 cell–

specific lincRNA, correlated inversely with expression of the transcription 

factor c-Maf and that its downregulation skewed the differentiation of 

CD4+ T cells toward the TH2 phenotype. We provide the first 

comprehensive inventory, to our knowledge, of human lymphocyte 

lincRNAs and demonstrate that lincRNAs can be key to lymphocyte 
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differentiation. This resource will probably help in providing a better 

definition of the role of lincRNAs in the differentiation, plasticity and 

effector functions of lymphocytes. 

Discrimination of human lymphocyte subsets by lincRNAs 
To assess lincRNA expression in human primary lymphocytes, we 

extracted RNA from 13 lymphocyte cell subsets (Table 1) purified from 

peripheral blood mononuclear cells from five healthy donors11. We then 

analyzed the polyadenylated RNA fraction by paired-end RNA 

sequencing and obtained about 1.7 × 109 mapped 'reads'. To enrich for 

transcripts derived from true active genes, we applied an expression 

threshold of 0.21 FPKM (fragments per kilobases of exons per million 

fragments mapped), defined through the integration of RNA-seq data 

and data on chromatin states from the ENCODE (Encyclopedia of DNA 

Elements) project30. We found a total of 31,902 expressed genes 

(including both protein-coding genes and noncoding genes) in the 13 

subsets (Table 1 and Supplementary Fig. 1a), of which 4,201 were 

lincRNAs annotated in public resources12, 31 (Fig. 1). To identify 

previously unknown lincRNAs expressed in primary human 

lymphocytes, we used three de novotranscriptome–reconstruction 

strategies based on the combination of two different sequence mappers, 

TopHat and Star32, 33, with two different tools for de novo transcript 

assembly, Cufflinks and Trinity34, 35. We identified lincRNAs among the 

newly described transcripts by exploiting the following process. We 

selected transcripts that were longer than 200 nucleotides and 
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multiexonic that did not overlap with protein-coding genes (and thus 

excluded unreliable single-exon fragments assembled by RNA-seq). We 

excluded transcripts with a conserved protein-coding region and those 

with open reading frames encoding protein domains catalogued in the 

Pfam database of protein families36. We used PhyloCSF, a comparative 

genomics method that assesses multispecies nucleotide-sequence 

alignment on the basis of a formal statistical comparison of phylogenetic 

codon models37, which efficiently identifies noncoding RNAs, as 

demonstrated by ribosome-profiling experiments38. Finally, we defined a 

stringent new lincRNA set that included those genes for which at least 

one lincRNA isoform was reconstructed by two assemblers of three. 

Through this conservatively multilayered analysis we identified 563 

previously unknown lincRNA-encoding genes, which increased by 

11.8% the number of lincRNAs known to be expressed in human 

lymphocytes. The various classes of RNAs were evenly distributed 

among various lymphocyte subsets (Supplementary Fig. 1b), and the 

ratio of already annotated and newly identified lincRNAs was similar 

across different chromosomes (Supplementary Fig. 1c) and across 

various lymphocyte subsets (Supplementary Fig. 1d). As observed in 

various cell types12, 34, lincRNAs were also generally expressed at lower 

abundance than were protein-coding genes in human lymphocytes 

(Supplementary Fig. 1e). However, when we categorized transcripts on 

the basis of their cell-specific expression and non–cell-specific 

expression (Supplementary Fig. 1f), we found that cell-specific lincRNAs 
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and cell-specific protein-coding genes displayed similar expression 

levels (Supplementary Fig. 1e–g). 

Lymphocytes subsets display very different migratory abilities and 

effector functions, yet they are very closely related from the 

differentiation point of view. As lincRNAs are generally more tissue 

specific than are protein-coding genes12, 39, we assessed the lymphocyte 

cell–subset specificity of lincRNAs. We therefore classified genes 

according to their expression profiles by unsupervised K-means 

clustering and found that lincRNAs were defined by 15 clusters and 

protein-coding genes were defined by 24 clusters (Fig. 2a and 

Supplementary Fig. 2a). Notably, the frequency of genes assigned to the 

clusters specific for the various lymphocyte subsets was higher for 

lincRNAs (71%) than for protein-coding genes (34%) (Fig. 2b). This 

superiority stood out even when we compared lincRNAs with genes 

encoding membrane receptors (40%) (Fig. 2c), which are generally 

considered the most accurate markers of various lymphocyte subsets. 

We obtained similar results with the heuristic expression threshold of 

FPKM > 1 (Supplementary Fig. 2b). Thus, by RNA-seq analyses of 

highly purified subsets of primary T lymphocytes and B lymphocytes, we 

were able to provide a comprehensive landscape of lincRNA expression 

in human lymphocytes. By exploiting de novo transcriptome 

reconstruction, we discovered 563 previously unknown lincRNAs and 

found that lincRNAs were effective in marking lymphocyte identity. 
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Identification of lincRNA signatures in lymphocytes 
Next we investigated our data set for the presence of lincRNA 

signatures in the various lymphocyte subsets. We therefore looked for 

lincRNAs with a difference in expression of more than 2.5-fold in a given 

cell subset relative to their expression in all the other subsets (P< 0.05 

(nonparametric Kruskal-Wallis test)) that were expressed in at least 

three of five donors and found 172 lincRNAs that met these criteria (Fig. 

3a and Supplementary Table 1). We integrated the human transcriptome 

database with our newly identified transcripts and thus created a new 

reference with which to assess more thoroughly their expression in other 

human tissues. Assessing lincRNA signatures in a panel of 16 human 

tissues (from the Human BodyMap 2.0 project), we found that not only 

were lymphocyte signature lincRNAs expressed very poorly in 

nonlymphoid tissues but also most signature lincRNAs were not 

detectable even in lymphoid tissues (Fig. 3a,b). These findings 

emphasized the importance of assessing the expression of lincRNAs (as 

well as of any highly cell-specific transcripts) in purified primary cells 

rather than in total tissues in which a given cell subset–specific transcript 

is diluted by the transcripts of all the other cell types of the tissue. We 

note that the newly identified lincRNAs defined as signatures were more 

abundant (Fig. 3c) and more cell specific (Supplementary Table 1) than 

the already annotated lincRNAs defined as signatures. We present here 

data obtained from the CD4+ TH1 cell subset (Fig. 2b); we obtained 

similar results for all the other subsets (Supplementary Table 1). 
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Finally, to confirm and extend our signature data, we assessed 

expression of the signature lincRNAs of CD4+ TH1 cells (Fig. 3b) by 

quantitative RT-PCR of a new set of independent samples of primary 

human CD4+ naive cells, regulatory T cells and TH1 cells, as well as in 

naive CD4+ T cells that were activated in vitro and induced to 

differentiate toward the TH1 or TH2 phenotype. We confirmed specific-

subset expression for 90% of the CD4+ TH1 cell signature lincRNAs 

(Fig. 3d). Moreover, 90% of the CD4+ TH1 cell signature lincRNAs that 

were expressed in resting CD4+ TH1 cells purified ex vivo also had high 

expression in naive CD4+ T cells differentiated under TH1-polarizing 

conditions in vitro, whereas they had low expression in naive CD4+ T 

cells differentiated toward the TH2 phenotype in vitro (Fig. 3e). As a 

corollary to those findings, we observed by RNA-seq that the signature 

lincRNAs of CD4+ naive cells were mostly downregulated during 

differentiation toward the TH0 phenotypein vitro, whereas the signature 

lincRNAs of cells of the TH1, TH2 and TH17 subsets of helper T cells 

were mostly upregulated (Supplementary Fig. 3a). Together our data 

demonstrated that lincRNAs provided signatures of human lymphocyte 

subsets and suggested that human CD4+ T lymphocytes acquired most 

of their memory-specific lincRNA signatures during their activation-

driven differentiation from naive cells to memory cells. 

Downregulation of linc-MAF-4 skews CD4+ T cells toward TH2 cells 
As lincRNAs have been reported to influence the expression of 

neighboring genes25, 26, 28,40, we sought to determine whether protein-
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coding genes proximal to the signature lincRNAs of lymphocytes were 

involved in key cell functions. For this we used the FatiGO tool from the 

Babelomics suite for functional enrichment analysis41 and found that 

protein-coding genes adjacent to signature lincRNAs showed 

enrichment for gene ontology terms correlated with the activation of 

lymphocyte T cells (Fig. 4), which indicated a possible role for signature 

lincRNAs in lymphocyte function. To obtain proof of concept of this 

hypothesis, we chose to characterize in depth linc-MAF-4 (lnc-MAF-2 in 

the LNCipedia database42), a signature lincRNA of TH1 cells located 

139.5 kilobases upstream of MAF. This gene encodes transcription 

factor c-Maf, which is involved in TH2 differentiation43 but is also 

required for the efficient development of TH17 cells44 and controls 

transcription of the gene encoding interleukin 4 in CD4+ follicular helper 

T cells45. Our sequencing data showed that high expression of linc-MAF-

4 correlated with a low abundance of MAF transcripts in CD4+ TH1 cells; 

conversely, TH2 cells had low expression of linc-MAF-4 and abundant 

MAF transcripts (data not shown). The anti-correlation of expression 

between lincRNAs and their neighboring genes is not a common feature 

of all lincRNAs12, 16 and is probably restricted to a limited number of cis-

acting lincRNAs. We also confirmed this observation in our data set 

(data not shown). Moreover, we observed no correlation between the 

expression of linc-MAF-4 and its proximal upstream protein-coding 

genes CDYL2 and DYNLRB2 (Supplementary Fig. 4a). 
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We observed a similar inverse relation between linc-MAF-4 and MAF 

when we differentiated naive CD4+ T cells in vitro toward the TH1 or 

TH2 phenotype. In T lymphocytes differentiating toward the TH1 

phenotype, MAF transcripts increased up to day 3 and then decreased 

thereafter (Fig. 5a). Conversely, linc-MAF-4 was poorly expressed for 

the first 3 d but then increased progressively (Fig. 5a). In CD4+ T 

lymphocytes differentiating toward the TH2 phenotype, the abundance 

of both MAF transcripts and c-Maf protein increased constantly up to 

day 8, while Iinc-MAF-4 remained constantly low (Fig. 5a and 

Supplementary Fig. 4c), similar to what we observed for CD4+ T 

lymphocytes differentiating toward the TH17 phenotype (Supplementary 

Fig. 4d). 

We further characterized the transcriptional regulation of MAF by 

assessing the abundance of histone H3 trimethylated at Lys4 

(H3K4me3) and occupancy by RNA polymerase II at theMAF promoter 

region in TH1 and TH2 cells. Consistent with the higher active 

transcription ofMAF in CD4+ TH2 cells, we found enrichment for 

H3K4me3 in TH2 cells relative to its abundance in TH1 cells and that 

binding of RNA polymerase II at MAF promoter was higher in TH2 than 

in TH1 cells (Fig. 5b). Notably, knockdown of linc-MAF-4 in activated 

CD4+ naive T cells led to increased MAF expression (Fig. 5c and 

Supplementary Fig. 4e). All the results presented above indicated that 

modulation of MAF transcription in T cells depended on tuning of its 
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promoter setting, and suggested direct involvement of linc-MAF-4 in the 

regulation of MAF transcription. 

We then assessed the overall effect of the knockdown of linc-MAF-4 on 

the differentiation of CD4+ T cells by transcriptome profiling and gene 

set–enrichment analysis. We defined as reference gene sets the groups 

of genes upregulated in CD4+ naive T cells differentiated in vitro toward 

the TH1 or TH2 phenotype (Supplementary Table 2). We found that the 

CD4+TH2 cell gene set showed enrichment for genes overexpressed in 

cells in which linc-MAF-4 was knocked down, whereas the CD4+ TH1 

cell gene set showed depletion of those same genes (Fig. 5d). 

Concordant with those findings, the expression of GATA3 and IL4, two 

genes characteristic of TH2 cells, was increased after knockdown of 

linc-MAF-4 (Fig. 5e andSupplementary Fig. 4f). Together these results 

demonstrated that downregulation of linc-MAF-4 contributed to skewing 

of the differentiation of CD4+ T cells toward the TH2 phenotype. 

Epigenetic regulation of MAF transcription by linc-MAF-4 
Since the gene encoding linc-MAF-4 maps in relative proximity to MAF 

(within 139.5 kilobases), we sought to determine whether linc-MAF-4 

was able to downregulate MAFtranscription, and we investigated 

whether their genomic regions could physically interact. We exploited 

chromosome-conformation capture analysis to determine the relative 

crosslinking frequencies among regions of interest. We assessed the 

conformation of the genomic regions of the gene encoding linc-MAF-4 
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(called 'linc-MAF-4' here) and MAF in differentiated CD4+ TH1 cells. We 

used common reverse-primer mapping of the MAFpromoter region in 

combination with a set of primers spanning the locus and analyzed 

interactions by PCR. We detected specific interactions between the MAF 

promoter and the 5′ and 3′ end regions of linc-MAF-4 (Fig. 6a and 

Supplementary Fig. 5a,b), which indicated the existence of an in cis 

chromatin-looping conformation that brought linc-MAF-4 in close 

proximity to the MAF promoter. Notably, subcellular fractionation of 

CD4+ TH1 lymphocytes differentiated in vitro revealed considerable 

enrichment for linc-MAF-4 in the chromatin fraction (Fig. 6b). Because 

other chromatin-associated lincRNAs regulate neighboring genes by 

recruiting specific chromatin remodelers, we assessed by RNA-

immunoprecipitation assay the interaction of linc-MAF-4 with various 

chromatin modifiers, including activators and repressors (data not 

shown), and found specific enrichment for linc-MAF-4 in the 

immunoprecipitates of two chromatin modifiers, EZH2 and LSD1 (Fig. 6c 

and Supplementary Fig. 5c). In agreement with those findings, we found 

that knockdown of linc-MAF-4 in activated CD4+ naive T cells reduced 

the abundance of both EZH2 and LSD1 and correlated with lower 

enzymatic activity of EZH2 at the MAF promoter, as demonstrated by a 

lower abundance of H3K27me3 at this locus (Fig. 6d). Notably, the 

content of H3K27me3 was not diminished at either the MYOD1 promoter 

region (a known target of EZH2) or at a region within the chromatin loop 

between linc-MAF-4 and MAF marked by H3K27me3 (Supplementary 

Fig. 5d). Together these results demonstrated a long-distance 
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interaction between the genomic regions of linc-MAF-4 and MAF, 

through which linc-MAF-4 might act as a scaffold to recruit both EZH2 

and LSD1 and modulate the enzymatic activity of EZH2 on the MAF 

promoter and thus regulate its transcription (Fig. 6e). 

Mammalian genomes encode more long noncoding RNAs than initially 

thought16, 46, and the identification of lincRNAs with a role in cellular 

processes is growing steadily. As there are relatively few examples of 

functional long noncoding RNAs in the immune system24, 25, 26,27, 28, with 

the present study we have presented a comprehensive landscape of the 

expression of lincRNAs in 13 subsets of human primary lymphocytes. 

Moreover, we have identified a lincRNA (linc-MAF-4) that seemed to 

have a key role in the differentiation of CD4+ helper T cells. 

LincRNAs have been reported to have high tissue specificity12, and our 

study of lincRNA expression in highly pure primary human lymphocyte 

has provided added value because it allowed the identification of 

lincRNAs whose expression was restricted to a given lymphocyte cell 

subset. Notably, we found that lincRNAs defined cellular identity better 

than protein-coding genes did, including those that encode surface 

receptors that are generally considered the most precise markers of 

lymphocyte subsets. Due to their specificity of expression, human 

lymphocyte lincRNAs that are not yet annotated in public resources 

would have not been identified without de novo transcriptome 

reconstruction. Indeed, by exploiting three different de novo strategies, 
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we identified 563 previously unknown lincRNAs and increased by 11.8% 

the number of lincRNAs known to be expressed in human lymphocytes. 

As our conservative analysis was limited to 13 cellular subsets, it 

remains unclear how many novel lincRNAs could be identified by 

transcriptome analysis of all of the several hundreds of human cell 

types. 

We compared our data with published analyses of lincRNA expression 

in the mouse immune system28, exploiting the LNCipedia database42. 

We found that 51% of the human lincRNA signature was conserved in 

mice, which is similar to the overall conservation between human 

lincRNAs and mouse lincRNAs (60%). However, further studies will be 

needed to assess whether their function is also conserved. 

Given our findings, signature lincRNAs might be exploited to 

discriminate and differentiate at the molecular level those cell subsets 

that cannot be distinguished easily on the basis of cell surface markers 

because of their cellular heterogeneity, such as CD4+ regulatory T cells. 

However, as lincRNA expression in a tissue is averaged across all the 

cell types that compose that tissue, transcriptome analysis of 

unfractionated tissue-derived cells may underestimate the expression of 

cell-specific lincRNAs. In fact, the great majority of our lymphocyte 

lincRNA signatures could not be detected among RNA extracted from 

total lymphoid tissues (peripheral blood and lymph nodes), although 
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these same tissues contained cells from all of the lymphocytes subsets 

we assessed. 

The role of lincRNAs in differentiation has been described for various 

cell types17, 20, 23, 47,48. In the mouse immune system, it has been found 

that lincRNA expression changes during the differentiation of naive 

CD8+ T cells into memory CD8+ T cells24 and during the differentiation of 

naive CD4+ T cells into distinct lineages of helper T cells28. We have 

shown for human primary lymphocytes that activation-induced 

differentiation of CD4+ naive T cells was associated with increased 

expression of lincRNAs belonging to the CD4+ TH1 cell signature, which 

suggests that upregulation of TH1 cell lincRNAs is part of the cell-

differentiation transcriptional program. Indeed, linc-MAF-4, one of the 

TH1 cell signature lincRNAs, had low expression in TH2 cells, and its 

experimental downregulation skewed differentiating helper T cells 

toward a TH2 transcription profile. We found that linc-MAF-4 regulated 

transcription by exploiting a chromosome loop that brought its genomic 

region close to the promoter of MAF. We propose that the chromosome 

organization of this region allows a linc-MAF-4 transcript to recruit both 

EZH2 and LSD1 and to modulate the enzymatic activity of EZH2 that 

negatively regulates MAF transcription via a mechanism of action similar 

to that shown for the lincRNAs HOTAIR49 and MEG3 (ref. 50). We 

therefore have provided mechanistic proof of the concept that lincRNAs 

can be important regulators of CD4+ T cell differentiation. Given the 

number of specific lincRNAs expressed in various lymphocyte subsets, it 
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can be postulated that many other lincRNAs might contribute to cell 

differentiation and to the definition of identity in human lymphocytes. 

These findings and the high cell specificity of lincRNAs suggest that 

lincRNAs might be highly specific molecular targets for the development 

of new therapies for diseases (such as autoimmunity, allergy and 

cancer) in which altered CD4+ T cell functions have a pathogenic role. 

Discussion 

Purification of primary immunological cell subsets. 
Blood buffy coat cells of healthy donors were obtained from Fondazione 

Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale 

Maggiore Policlinico in Milan, and peripheral blood mononuclear cells 

were isolated by ficoll-hypaque density-gradient centrifugation. The 

ethical committee of Fondazione Istituto di Ricovero e Cura a Carattere 

Scientifico Ca'Granda Ospedale Maggiore Policlinico approved the use 

of peripheral blood mononuclear cells from healthy donors for research 

purposes, and informed consent was obtained from subjects. Human 

blood primary lymphocyte subsets were purified to a purity of >95% by 

cell sorting through the use of various combinations of surface markers 

(Table 1). For in vitro differentiation experiments, resting naive CD4+ T 

cells were purified to a purity of >95% by negative selection with 

magnetic beads with an isolation kit for human CD4+ Naive T cells 

(Miltenyi) and were stimulated with Dynabeads Human T-Activator 

CD3/CD28 (Life Technologies). Interleukin 2 (IL-2) was added at 20 



 59 

IU/ml (202-IL; R&D Systems). TH1 polarization was initiated with 10 

ng/ml IL-12 (219-IL; R&D Systems) and TH2-neutralizing antibody anti-

IL-4 (2 µg/ml; MAB3007; R&D Systems). TH2 polarization was induced 

by activation with phytohemagglutinin (4 µg/ml; L2769; Sigma) in the 

presence of IL-4 (10 ng/ml; 204-IL; R&D Systems), and neutralizing anti-

IFN-γ (2 µg/ml; MAB 285; R&D Systems) and anti-IL-12 (2 µg/ml; 

MAB219; R&D Systems). For intracellular staining of GATA-3 and c-Maf, 

cells were harvested and then were fixed for 30 min at 4 °C in 

Fixation/Permeabilization Buffer (eBioscience). Cells were stained for 30 

min at 4 °C with anti-GATA-3 (TWAJ; eBioscience) and anti-c-Maf 

(sym0F1; eBioscience) in washing buffer. Cells were then washed two 

times, resuspended in autoMACS buffer (Miltenyi) and analyzed by flow 

cytometry. 

RNA isolation and RNA sequencing. 
Total RNA was isolated with an mirVana Isolation Kit. Libraries for 

Illumina sequencing were constructed from 100 ng of total RNA with the 

Illumina TruSeq RNA Sample Preparation Kit v2 (Set A). The libraries 

generated were loaded on to the cBot automated clonal amplification 

system (Illumina) for clustering on a HiSeq Flow Cell v3. The libriaries 

clustered on a HiSeq Flow Cell v3 were then sequenced with a 

HiScanSQ optical imaging system (Illumina). A paired-end run (with a 

read length of 101 bases) was performed with an SBS Kit v3 DNA 

sequencing kit (Illumina). Real-time analysis and base calling was 

performed with HiSeq Control Software Version 1.5 (Illumina). 
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RNA-seq. 
RNA-seq data representative of 13 lymphocyte populations were 

collected for transcriptome reconstruction. Five biological replicates 

were analyzed for all populations except for CD8+TCM cells and CD5+ B 

cells (four samples). The whole data set was aligned to human genome 

assembly GRCh37 (Genome Reference Consortium Human Build 37) 

with TopHat software (version 1.4.1)33 for a total of over 1.7 × 109 

mapped paired-end reads (30 million reads per sample on average). 

These data were also mapped with the aligner STAR (version 2.2.0)32. 

RNA-seq data sets of 16 human tissues belonging to the Illumina 

Human BodyMap 2.0 project (ArrayExpress accession code E-MTAB-

513) were mapped according to the same criteria. 

Reference annotation. 
An initial custom reference annotation of unique, non-redundant 

transcripts was built by integration of the Ensembl database (version 67 

from May 2012) with the lincRNAs identified by another group13 through 

the use of the Cuffcompare tool (version 2.1.1) of the Cufflinks suite34. 

The annotated human lincRNAs were extracted from Ensembl through 

the use of the BioMart software suite (version 67) and were categorized 

by gene biotype 'lincRNA' (5,804 genes). Other classes of genes were 

integrated in the annotation: the list of protein-coding genes (21,976 

genes), the collection of receptor-encoding genes defined in BioMart 

under GO term GO:000487 (2,043 genes encoding molecules with 

receptor activity function) and the class of genes encoding molecules 
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involved in metabolic processes corresponding to GO term GO:0008152 

(7,756 genes). Hence, the complete reference annotation consisted of 

195,392 transcripts that referred to 62,641 genes, 11,170 of which were 

nonredundant lincRNA-encoding genes. 

De novo genome-based transcripts reconstruction. 
A comprehensive catalog of lincRNAs specifically expressed in human 

lymphocyte subsets was generated with a de novo genome-based 

transcripts reconstruction procedure by three different approaches. Two 

aligners were used: TopHat (version 1.4.1) and STAR (version 2.2.0). 

The de novo transcriptome assembly was performed on the aligned 

sequences (samples of the same population were concatenated into one 

'population alignment') generated by STAR and TopHat using Cufflinks 

(version 2.1.1) with reference annotation to guide the assembly (-g 

option) coupled with multi-read (-u option) and fragment-bias correction 

(-b option) to improve the accuracy with which transcript abundance was 

estimated. By this method, about 3 × 104 to 5 × 104 previously unknown 

transcripts were identified in each lymphocyte population. The third 

approach used genome-guided Trinity software (additional information 

available 

athttp://pasa.sourceforge.net/#A_ComprehensiveTranscriptome), which 

generates novel transcripts by local assembly on previously mapped 

reads from specific location. STAR was used instead of the Trinity 

default aligner29. Each candidate transcript was then processed via the 

PASA 'pipeline' (Program to Assemble Spliced Alignments; a genome 
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annotation tool), which reconstructs the complete transcript and gene 

structures, resolving incongruences derived from transcript 

misalignments and alternatively splices events, refining the reference 

annotation when there was enough evidence and proposing new 

transcripts and genes in case no previous annotation was able to 

explain the new data (Supplementary Note). 

Identification of previously unknown lincRNA-encoding genes. 
Annotated transcripts and previously unknown isoforms of known genes 

were discarded, and only previously unknown genes and their isoforms 

located in intergenic positions were retained. To filter out artifactual 

transcripts due to transcriptional noise or low polymerase fidelity, only 

multi-exonic transcripts longer than 200 bases were retained. Then, the 

HMMER3 algorithm36 was run for each transcript to identify occurrences 

of any protein family domain documented in the Pfam database (release 

26; both PfamA and PfamB were used). All six possible frames were 

considered for the analysis, and the matching transcripts were excluded 

from the final catalog. 

The coding potential for all the remaining transcripts was then evaluated 

by the PhyloCSF comparative genomics method (phylogenetic codon 

substitution frequency)37, which was run on a multiple sequence 

alignment of 29 mammalian genomes (in multi-alignment file (MAF) 

format) (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/) 

to obtain the open reading frames that encoded proteins of over 29 
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amino acids in length across all three reading frames and had the best 

scores. For efficient accessing of the MAFs, the biogem plugin of the 

bio-maf Ruby (MAF parser for the BioRuby open-source bioinformatics 

library for Ruby programming code; https://github.com/csw/bioruby-

maf)51 was used. This library provides indexed and sequential access to 

MAF data, and also performs fast manipulations on it and writes 

modified MAFs. Transcripts with at least one open reading frame with a 

PhyloCSF score of over 100 were excluded from the final catalog. The 

threshold of 100 for the PhyloCSF score was determined as described13 

to optimize specificity and sensitivity for the classification of coding and 

noncoding transcripts annotated in the RefSeq reference sequence 

database of the National Center for Biotechnology Information (RefSeq 

coding and RefSeq lincRNAs). A PhyloCSF score of 100 corresponds to 

a false-negative rate of 6% for coding genes (i.e., 6% of coding genes 

are classified as noncoding) and a false-positive rate of ~10% (i.e., 9.5% 

of noncoding transcripts are classified as coding). 

De novo transcriptome data integration. 
Duplicates among the transcripts identified with the same de novo 

method were resolved through the use of Cuffcompare (version 2.1.1). 

In the same way, the resulting three data sets were further merged to 

generate a nonredundant atlas of lincRNAs in human lymphocytes and 

only those genes identified by at least two of the three software 

programs used were considered. A unique name was given to each 

newly identified lincRNA gene composed by the prefix 'linc-' followed by 
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the Ensembl gene name of the nearest protein-coding gene (irrespective 

of the strand). The additional designation 'up' or 'down' defines the 

location of the lincRNA relative to the sense of transcription of the 

nearest protein-coding gene. In addition, either 'sense' or 'antisense' 

was added to describe the concordance of transcription between the 

lincRNA and its nearest coding gene. A numerical counter only of newly 

identified lincRNAs related to the same protein-coding gene is added as 

suffix (such as 'linc-geneX-(up|down)-(sense|antisense)_#n'). This final 

nonredundant catalog of newly identified lincRNAs includes 4,666 

previously unknown transcripts referencing 3,005 previously unknown 

genes. 

Definition of lincRNA signatures. 
Analysis of differences in expression among the 13 cell subsets profiled 

was performed with the Cuffdiff program of Cufflinks (version 2.1.1). This 

analysis was run using multi-read correction (-u option) and upper-

quartile normalization (–library-norm-method quartile) to improve 

robustness of 'calls' for differences in expression for less-abundant 

genes and transcripts. Only genes expressed at an FPKM value over 

0.21 (ref. 29) were considered in the downstream analysis to filter out 

genes that are merely byproducts of 'leaky' gene expression, 

sequencing errors, and/or off-target read mapping. After a pseudo-count 

of 1 was added to the raw FPKM value for each gene, with the 

application of log2 transformation and z-score normalization, K-means 

clustering with Euclidean metric was performed on lincRNA expression 
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values with the MultiExperiment Viewer tool (version 4.6) 

(Supplementary Note). The same procedure was then applied to the 

expression values of genes encoding proteins, products involved in 

metabolic processes and receptors. The Silhouette function52 was used 

to select an appropriate K value (number of clusters). K values ranging 

from 13 to 60 were tested, and the value associated with the highest 

Silhouette score for each class of genes was selected. The number of 

clusters that maximized the Silhouette score was 15 for lincRNA 

(Supplementary Fig. 2a), 24 for protein-coding genes, 23 genes 

encoding receptors and 36 for genes encoding products involved in 

metabolic processes. The centroid expression profile of each cluster 

was then evaluated to associate each cluster to a single cellular 

population (Fig. 2). 

To select specifically expressed lincRNA genes, K-means results were 

subsequently intersected with the JS score, a cell-specificity measure 

based on Jensen–Shannon divergence, and only the genes assigned to 

the same cellular population by both techniques were retained for further 

analysis (Supplementary Note). The estimation procedure for the JS 

score was adapted by the building of a reference model composed of 13 

cell subsets. For the lincRNAs selected, the intrapopulation consistency 

among different samples was subsequently evaluated to minimize the 

biological variability: only genes expressed in at least three of five of the 

samples profiled (or three of four replicates for CD8+ TCM cells and 

CD5+B cells) whose maximal expression value was >2.5-fold that in all 
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other lymphocyte subsets were considered. Finally, a nonparametric 

Kruskal-Wallis test was applied to select only lincRNA genes with a 

significant difference in expression across the medians of the different 

lymphocyte populations: a P value lower than 0.05 was considered, and 

the lincRNA genes that meet these selection criteria were selected as 

signature genes. 

GO enrichment analysis. 
A GO enrichment analysis was performed for biological process terms 

associated with protein-coding genes that were proximal to lincRNA 

signatures at the genomic level. For each lincRNA signature, the 

proximal protein-coding gene was selected regardless of the sense of 

transcription. The FatiGO tool of the Babelomics suite (version 4.3.0) 

was used to identify the GO terms that showed enrichment, among the 

158 protein-coding genes (input list). All protein-coding genes that were 

expressed in lymphocyte subsets (19,246 genes) (except the genes 

proximal to a lincRNA signature gene (input list)) defined the 

background list. Only GO terms with adjusted P value lower than 0.01 

were considered (10 GO terms). Moreover, we performed a GO 

semantic similarity analysis on the 51 GO terms with adjustedP value 

lower than 0.1, which resulted from previous analysis with the G-

SESAME (gene semantic similarity analysis and measurement) tool. 

This analysis provides as a result a symmetric matrix in which each 

value represents a score for similarity between GO term pairs. Then, we 
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carried out a hierarchical clustering based on semantic similarity matrix 

to group together all GO terms with common GO 'parent'. 

Transfection of siRNA into naive CD4+ T cells. 
300 nM fluorescein isothiocyanate (FITC)-labeled-siRNA targeting linc-

MAF-4 or FITC-labeled-AllStars negative control (Qiagen) was 

transfected into activated CD4+ naive T cells through the use of 

Lipofectamine 2000 according to the manufacturer's protocol (Life 

Technologies). FITC+ cells were sorted and lysed 72 h after transfection. 

siRNAs sequences are provided in Supplementary Table 3. 

Gene-expression analysis. 
Gene expression in transfected activated CD4+ naive cells was analyzed 

by Illumina Direct Hybridization Assays according to the standard 

protocol (Illumina). Total RNA was isolated, underwent quality control 

and was quantified as described above; for each sample, 500 ng total 

RNA was reverse transcribed according to the Illumina TotalPrep RNA 

Amplification kit (AMIL1791; LifeTechnologies) and cRNA was 

generated by 14 h of in vitro transcription. Samples were hybridized 

according to the standard Illumina protocol on Illumina HumanHT-12 v4 

Expression BeadChip arrays (BD-103-0204; Illumina). Scanning was 

performed on an Illumina HiScanSQ System and data were processed 

with Genome Studio; arrays underwent quantile normalization, with no 

subtraction of background values, and average signals were calculated 
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on the gene level data for genes whose detection P value was lower 

than 0.001 in at least one of the cohorts considered. 

Gene set–enrichment analysis (GSEA). 
GSEA is a statistical methodology used to evaluate whether a given 

gene set shows significant enrichment for a list of gene markers (ranked 

by their correlation with a phenotype of interest). To evaluate this degree 

of 'enrichment', the software calculates an enrichment score (ES) by 

moving down the ranked list; i.e., it increases the value of the sum if the 

marker is included in the gene set and decreases this value if the marker 

is not in the gene set. The value of the increase depends on the gene-

phenotype correlation. GSEA was performed by comparison of gene-

expression data obtained from activated CD4+ naive T cells transfected 

with siRNA specific for linc-MAF-4 or control siRNA. The experimentally 

generated data set from cells differentiated in vitro (in TH1- or TH2-

polarizing conditions) from CD4+ naive T cells of the same donors in 

which linc-MAF-4 was downregulated were used to construct reference 

gene sets for TH1 and TH2 cells. RNA for analysis of gene expression in 

differentiating TH1 and TH2 cells was collected 72 h after activation (i.e., 

the same time point of RNA collection in the linc-MAF-4-downregulation 

experiments), but a fraction of cells was further differentiated up to day 8 

to assess the production of IFN-γ and IL-13 by TH1 and TH2 cells. The 

TH1 and TH2 data sets were ranked as log2 ratios of the expression 

values for each gene in the two conditions (TH1/TH2), and the genes 

with the greatest upregulation or downregulation (with log2 ratios 
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ranging from |3| to |0.6|) were assigned to the TH1 or TH2 reference 

sets, respectively. 

Genes from the TH1 gene list that were downregulated in a comparison 

of TH1 cells versus cells transfected with control siRNA and genes from 

the TH2 gene list that were downregulated in a comparison of TH2 cells 

versus cells transfected with control siRNA were filtered out, which 

resulted in a TH1 cell–specific gene set (74 genes) and a TH2 cell–

specific gene set (141 genes) (Supplementary Table 2). GSEA was then 

performed on the data set for the comparison of cells transfected linc-

MAF-4-specific siRNA versus cells transfected with control siRNA. The 

metric used for the analysis is the log2 ratio of classes, with 1,000 gene 

set permutations for testing of significance. 

Quantitative RT-PCR analysis. 
For reverse transcription, equal amounts of DNA-free RNA (500 ng) 

were reverse-transcribed with SuperScript III in the conditions suggested 

by the manufacturer (LifeTechnologies). Diluted cDNA was then used as 

input for quantitative RT-PCR to assess the expression ofMAF 

(Hs00193519_m1), IL4 (Hs00174122_m1), GATA3 (Hs01651755_m1), 

TBX21(Hs00203436_m1), RORC (Hs01076119_m1), IL17 

(Hs00174383_m1), Linc00339(Hs04331223_m1), MALAT1 

(Hs01910177_s1), RNU2.1 (Hs03023892_g1) and 

GAPDH(Hs02758991_g1) with Inventoried TaqMan Gene Expression 

assays (LifeTechnologies). For assessment of linc-MAF-4 and 
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confirmation of CD4+ TH1 cell signature lincRNAs, specific primers were 

designed, and 2.5 µg RNA from CD4+ TH1 cells, regulatory T cells or 

naive cells was used for reverse transcription with SuperScript III 

(LifeTechnologies). Quantitative RT-PCR was performed on diluted 

cDNA with PowerSyberGreen (LifeTechnologies), and the specificity of 

each amplified product was monitored through the use of melting curves 

at the end of each amplification reaction. The primers used in 

quantitative PCR are listed inSupplementary Table 3. 

Cell fractionation. 
TH1 cells differentiated in vitro were resuspended for 10 min on ice in 

RLN1 buffer (50 mM Tris-HCl pH 8, 140 mM NaCl, 1.5 mM MgCl2, 0.5% 

NP-40) supplemented with SUPERaseIn (Ambion). After a centrifugation 

at 300g for 2 min, the supernatant was collected as the cytoplasmic 

fraction. The pellet was resuspended for 10 min on ice in RLN2 buffer 

(50 mM Tris-HCl, pH 8, 500 mM NaCl, 1.5 mM MgCl2 and 0.5% NP-40) 

supplemented with RNase inhibitors. Chromatin was pelletted at 

maximum speed for 3 min. The supernatant represented the nuclear 

fraction. All fractions were resuspended in TRIzol (Ambion) to a volume 

of 1 ml, and RNA was extracted following a standard protocol. 

RNA immunoprecipitation. 
TH1 cells differentiated in vitro underwent crosslinking by ultraviolet 

irradiation at 400 mJ/cm2in ice-cold Dulbecco's-PBS and then were 

pelleted at 1,350g for 5 min. The pellet was resuspended in ice-cold 
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lysis buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.5% NP-40) 

supplemented with 0.5 mM β-mercaptoethanol, Protease Inhibitor 

Cocktail Tablets cOmplete, EDTA-free (Roche) and SUPERaseIn 

(Ambion) and was incubated with rocking at 4 °C until lysis was 

complete. The debris were centrifuged at 13,000g for 10 min. The lysate 

was precleared for 30 min at 4 °C with Dynabeads Protein G (Novex) 

and then was incubated for 2 h with 7 µg anti-EZH2 (39875; Active 

Motif) or anti-LSD1 (ab17721; Abcam), or with anti-HA (sc7392; Santa 

Cruz) as mock control. The lysate was coupled for 1 h at 4 °C to 

Dynabeads Protein G (Novex). Immunoprecipitates were washed for five 

times with lysis buffer. RNA was then extracted according to the protocol 

of the mirVana miRNA Isolation Kit (Ambion). The abundance of RNA 

transcripts encoding linc-MAF-4 or the negative controls β-actin, RNU2.1 

and a region upstream the TSS of linc-MAF-4 (linc-MAF-4 control) was 

assessed by quantitative RT-PCR. 

Chromatin immunoprecipitation. 
TH1 and TH2 cells differentiated in vitro were crosslinked for 12 min in 

their medium with 1:10 dilution of fresh formaldehyde solution (50 mM 

HEPES-KOH, pH 7.5, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA and 

11% formaldehyde). Subsequently, they were treated for 5 min with 1:10 

dilution of 1.25 M glycine and were centrifuged at 1,350g for 5 min at 4 

°C. Cells were lysed at 4 °C in LB1 (50 mM HEPES-KOH, pH 7.5, 10 

mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40 and 0.25% Triton X-

100) supplemented with Protease Inhibitor Cocktail Tablets cOmplete, 
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EDTA-free (Roche) and phenylmethanesulfonyl fluoride (Sigma). Nuclei 

were pelleted at 1,350g for 5 min at 4 °C and were washed in LB2 (10 

mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA and 0.5 mM EGTA) 

supplemented protease inhibitors. Nuclei were again pelleted at 1,350g 

for 5 min at 4 °C and then were resuspended with a syringe in 200 µl 

LB3 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, 0.1% Na-deoxycholate and 0.5% N-lauroylscarcosine) 

supplemented with protease inhibitors. Cell debris were pelleted at 

20,000g for 10 min at 4 °C, followed by chromatin immunoprecipitation 

overnight at 4 °C in LB3 supplemented with 1% Triton X-100 and 

protease inhibitors, with anti-H3K4me3 (07-473; Millipore), anti-

H3K27me3 (07-449; Millipore), antibody to the RNA polymerase II STD 

repeat YSPTSPS (ab5408; Abcam), LSD1 (ab17721; Abcam), anti-

EZH2 (39875; Active Motif) or no antibody (as negative control) . The 

next day, Dynabeads Protein G (Novex) were added, followed by 

incubation for 2 h at 4 °C with rocking. Then, the beads were washed 

twice with low-salt wash buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 

0.1% SDS, 2 mM EDTA and 1% Triton X-100) and with a high-salt wash 

buffer (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 0.1% SDS, 2 mM EDTA 

and 1% Triton X-100). Samples obtained by immunoprecipitation with 

antibodies to histones (identified above) were also washed with a LiCl 

solution (10 mM Tris-HCl, pH 8.0, 250 mM LiCl, 1% NP-40 and 1 mM 

EDTA). All samples were finally washed with 50 mM NaCl in 1× Tris-

EDTA buffer. Elution was performed overnight at 65 °C in 50 mM Tris-

HCl pH 8.0, 10 mM EDTA and 1% SDS. Samples were treated for 2 h at 
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37 °C with 0.02 µg/µl RNase A (Sigma) and for 2 h at 55 °C with 0.04 

µg/µl proteinase K (Sigma). DNA was purified with phenol-chloroform 

extraction. 

Chromosome-conformation capture. 
For chromosome-conformation capture analysis53 cells were crosslinked 

and digested as describe above for chromatin immunoprecipitation. 

Nuclei resuspended in 500 µl of 1.2× NEB3 buffer (New England 

BioLabs) with 0.3% SDS were incubated at 37 °C for 1 h and then were 

incubated for another 1 h. with 2% Triton X-100. Samples underwent 

digestion overnight at 37 °C (with shaking) with 800 U of BglII (New 

England BioLabs). Digestion was checked by the separation of digested 

samples and undigested control samples by electrophoresis through a 

0.6% agarose gel. Then, the samples were incubated for 25 min at 65 

°C with 1.6% SDS and were incubated for 1 h at 37 °C with 1.15× 

ligation buffer (New England BioLabs) and 1% Triton X-100. Ligation 

with 1,000 U T4 DNA ligase (New England BioLabs) was performed for 

8 h at 16 °C and at 22 °C for 30 min. DNA was purified by phenol-

chloroform extraction after digestion with RNase A (Sigma) and 

proteinase K (Sigma). As controls, bacterial artificial chromosomes 

corresponding to the region of interested were digested overnight at 37 

°C with 100 U BglII in NEB3 buffer in a volume of 50 µl. Then, fragments 

underwent ligation overnight at 22 °C with 400 U T4 DNA ligase in a 

volume of 40 µl. PCR products amplified with GoTaq Flexi (Promega) for 

bacterial artificial chromosomes and samples were separated by 
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electrophoresis through 2.5% agarose gels and quantified with ImageJ 

software. Primers are listed in Supplementary Table 3. 

Statistical analysis. 
Unless indicated otherwise in the figure legend(s), a one-tailed, paired t-

test was performed on experimental data with Prism (GraphPad 

Software). For multiple comparisons of human lymphocytes subsets, a 

nonparametric Kruskal-Wallis test was used. Analysis of variance and 

Dunnet post-hoc test was applied for statistical analysis of RNA-

immunoprecipitation experiments in Figure 6c. 
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Figure and Table Legends 

Figure 1: For the identification of lincRNAs, RNA-seq data generated 

from 63 lymphocyte samples were processed by the quantification of 

lincRNAs already annotated in public resources (left) and by de novo 

genome-based transcripts reconstruction for the quantification of 

previously unknown lincRNAs expressed in human lymphocytes (right) 

through the use of reference annotation–based assembly by Cufflinks 

software with the aligners TopHat and STAR and by an approach that 

integrates Trinity and PASA software (bottom right). Only transcripts 

reconstructed by at least two assemblers were considered. Newly 
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identified transcripts were filtered with a computational analysis pipeline 

to select for lincRNAs. 

Figure 2: (a) Expression profiles of lincRNA and protein-coding genes 

across 13 human lymphocyte subsets (key at right; numbers above 

profile peaks correspond to key) according to K-means cluster definition. 

Black lines indicate mean expression of genes belonging to the same 

cluster. (b) Specificity of lincRNA-encoding genes (left) and protein-

coding genes (right) across 13 human lymphocyte populations (above 

columns); order of rows and columns based on K-means clustering; 

color intensity (key) indicates z-score log2-normalized raw FPKM counts 

estimated by Cufflinks software; numbers at top left indicate percent 

assigned to specific clusters (additional information,Supplementary Fig. 

2a). (c) Analysis as in b of genes encoding receptors (top) and 

molecules involved in metabolic processes (bottom). 

Figure 3: (a) Heat map of normalized expression values of lymphocyte 

signature lincRNAs selected on the basis of a difference in expression of 

>2.5-fold (relative to expression in all other subsets), intrapopulation 

consistency (expressed in at least three of five samples) and a P value 

of <0.05 (nonparametric Kruskal-Wallis test); normalized expression 

values were calculated as log2 ratio between expression in the 

lymphocyte subsets and in a panel of human lymphoid and nonlymphoid 

tissues of the Human BodyMap 2.0 project (additional information, 

Supplementary Table 1). (b) Expression of CD4+ TH1 cell signature 
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lincRNAs (presented as in a). S, sense; AS, antisense. (c) Expression of 

newly identified and previously annotated lincRNAs (key) in human 

lymphocyte subsets and lymphoid or nonlymphoid human tissues 

(presented as the 2.5–97.5 percentile). (d) Quantitative RT-PCR 

analysis of the expression of TH1 cell signature lincRNAs by primary 

CD4+naive cells (Naive), regulatory T cells (Treg) and TH1 cells (TH1) 

sorted from the peripheral blood mononuclear cells of healthy donors. 

(e) Quantitative RT-PCR analysis of the expression of TH1 cell signature 

lincRNAs over time in CD4+ naive T cells differentiated in TH1- or TH2-

polarizing conditions; results (average values) are presented as relative 

quantity (RQ) relative to expression at time zero. Data are from at least 

four experiments (a,b), one experiment with 63 independent samples 

(c), three independent experiments (d; average ± s.e.m.) or two 

independent experiments (e). 

Figure 4: Semantic similarity scores for all gene-ontology (GO) term 

pairs clustered by a hierarchical clustering method (left), with adjusted P 

values for each GO term (middle), as well as common ancestors (right); 

red bars indicate gene-ontology terms with significant enrichment. 

Figure 5: (a) Quantitative RT-PCR analysis of the expression of linc-

MAF-4 and MAF in activated CD4+naive T cells differentiated in TH1- or 

TH2-polarizing conditions (additional information,Supplementary Fig. 

4b,c). AU, arbitrary units. (b) Occupancy of H3K4me3 and RNA 

polymerase II at the MAF locus (top) or the control IFNG locus (bottom) 
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in CD4+ naive T cells differentiated in TH1- or TH2-polarizing conditions 

at day 8 after activation, analyzed by chromatin immunoprecipitation 

followed by quantitative PCR and presented relative to input DNA. (c) 

Quantitative RT-PCR analysis of the expression of linc-MAF-4 and MAF 

in activated CD4+ naive T cells (in the absence of polarizing cytokines) 

72 h after transfection of small interfering RNA (siRNA) targeting linc-

MAF-4 or control (ctrl) siRNA. (d) Gene set–enrichment analysis, 

presented as enrichment score profiles for genes in activated CD4+ 

naive T cells after transfection of siRNA targeting linc-MAF-4 or control 

siRNA compared with that of the CD4+ TH1 cell reference gene set or 

the TH2 cell reference gene set, respectively. Nominal P < 0.05. (e) 

Quantitative RT-PCR analysis of the expression of GATA3 and IL4 

transcripts in activated CD4+ naive T cells transfected with siRNA as in 

d. *P < 0.05 and **P < 0.01 (one-tailed t-test). Data are representative of 

four independent experiments (a; average ± s.e.m.) or are from at least 

five (b, top) or ten (b, bottom) independent experiments (average and 

s.e.m.), six independent experiments (c,e; average and s.e.m.) or four 

independent experiments (d; average). 

Figure 6: (a) Chromosome-conformation capture analysis of the 

interactions between a 'bait' region M1 (red line) at the 5′ end of MAF 

and 24 'prey' regions spanning the linc-MAF-4–MAF genomic locus (L1–

L24; horizontal axis) in CD4+ naive T cells differentiated in TH1-

polarizing conditions at day 8 after activation. Top, organization of the 

genomic locus. (b) Abundance of linc-MAF-4 transcripts, as well as of 
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linc-00339, MALAT1 and RNU2.1 (cytoplasmic, nuclear and chromatin-

associated control transcripts, respectively), in the cytoplasm, nucleus 

and chromatin of CD4+ naive T cells differentiated in TH1-polarizing 

conditions at day 8 after activation. (c) RNA-immunoprecipitation assay 

of the interaction of LSD1 and EZH2 with linc-MAF-4, and with the 

controls ACTB, RNU2.1and a region upstream of the transcriptional start 

site of linc-MAF-4 (linc-MAF-4 ctrl), in CD4+ naive T cells differentiated in 

TH1-polarizing conditions at day 8 after activation; results are presented 

relative to control immunoprecipitation. *P < 0.05 and **P < 0.01 

(analysis of variance and Dunnet post-hoc test). (d) Occupancy of 

EZH2, H3K27me3 and LSD1 at the MAF locus in activated CD4+naive T 

cells transfected with siRNA targeting linc-MAF-4 or control siRNA, 

analyzed by chromatin immunoprecipitation followed by quantitative 

PCR. *P < 0.05 (one-tailed t-test). (e) Model for linc-MAF-4-mediated 

repression of MAF in TH1 lymphocytes: when linc-MAF-4 is expressed, 

it recruits chromatin remodelers (i.e., LSD1 and EZH2) at the 5′ end of 

MAF, taking advantage of a DNA loop that brings the 5′ and 3′ ends of 

linc-MAF-4 in close proximity to the 5′ end of MAF. Data are from three 

independent experiments (a,b; average and s.e.m.), six independent 

experiments (c; average and s.e.m.) or at least three independent 

experiments (d; average and s.e.m.). 

 



Subset Purity (%) Sorting phenotype Genes 
CD4+ naïve 99.8 ± 0.1 CD4+ CCR7+ CD45RA+ CD45RO– 20061 
CD4+ TH1 99.9 ± 0.05 CD4+ CXCR3+ 20855 
CD4+ TH2 99.7 ± 0.3 CD4+ CRTH2+ CXCR3– 19623 
CD4+ TH17 99.1 ± 1 CD4+ CCR6+ CD161+ CXCR3– 20959 
CD4+ Treg 99.0 ± 0.8 CD4+ CD127– CD25+ 21435 
CD4+ TCM 98.4 ± 2.8 CD4+ CCR7+ CD45RA– CD45RO+ 20600 
CD4+ TEM 95.4 ± 5.5 CD4+ CCR7– CD45RA– CD45RO+ 19800 
CD8+ TCM 98.3 ± 0.8 CD8+ CCR7+ CD45RA– CD45RO+ 20901 
CD8+ TEM 96.8 ± 0.9 CD8+ CCR7– CD45RA– CD45RO+ 21813 
CD8+ naïve 99.3 ± 0.2 CD8+ CCR7+ CD45RA+ CD45RO– 20611 
B naïve 99.9 ± 0.1 CD19+ CD5– CD27– 21692 
B memory 99.1 ± 0.8 CD19+ CD5– CD27+ 21239 
B CD5+ 99.1 ± 0.8 CD19+ CD5+ 22499 

Table 1



Star+Cufflinks
TopHat+Cufflinks

Star+Trinity-PASA

Ensembl database v.67
GENCODE v.12Human lincRNA catalog
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Supplementary Figure 1 

Distribution and expression of lincRNAs in primary human lymphocytes subsets. 

(a) Bar plots of expressed genes across a panel of 13 lymphocyte subsets. Average expression (± sdev) of at least four samples for 
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each subset is reported 

(b) Stacked bar plots of expressed genes percentages according to their biotype (protein coding, lincRNAs, pseudogenes, non-coding 
genes and other) across the analyzed human lymphocyte subsets 

(c) Distribution of novel (striped) and previously annotated (black) lincRNAs in all human chromosomes 

(d) Distribution of expressed novel (striped) and previously annotated (black) lincRNAs across the analyzed human lymphocyte 
subsets. 

(e) Boxplots of gene expression values of lincRNA (blue) and protein coding genes (red) on either the whole dataset (global expression) 
or on a dataset filtered according to the specificity score (specific expression, Maximal JS score > 0.4) 

(f) The density distribution of JS score for cell-specific receptor genes (black line) was fitted to a log-normal distribution (dotted red line). 
In order to derive a threshold for the cell-specificity score, we calculated the JS score value corresponding to one standard deviation 
away from the mean value of the fitted distribution (0.27). As a reference, the JS density distribution for the metabolic genes is reported 
(green line) 

(g) Density distributions of maximal expression values of lincRNAs (blue area plot) and protein coding genes (red line), divided 
according to cellular specificity (maximal JS score < 0.4 or JS score > 0.4) 
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Supplementary Figure 2 

Specificity of lincRNAs and protein-coding genes in primary human lymphocytes subsets. 

(a) Silhouette scores (y-axis) are reported as a function of K (x-axis), the number of clusters used to partition the gene expression 
dataset of lincRNA genes. The average Silhouette value was calculated by taking the average of each clusters's average Si. In the 
graph Si data are reported for lincRNAs genes, for which the highest Si value (implying better clustering of the data) is 15 

(b) Specificity of lincRNAs and protein coding genes (FPKM >1) by K-Means clustering across 13 human lymphocyte populations. 
Colour intensity represents the Z-score log2-normalized raw FPKM counts estimated by Cufflinks 
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Supplementary Figure 3 

LincRNA signatures in a differentiation time course. 
 

CD4+ naïve, TH1, TH2 and TH17 signature lincRNAs trends in CD4+ naïve T cells differentiated in TH0 conditions. RNA was collected at 
different time points during CD4+ naïve T cells differentiation and RNA-seq experiments were performed. Thin lines represent the 
trends of each signature lincRNA. Bold lines represent the average trend of all signature lincRNAs for each subset. Data are 
represented as a log2 normalized ratio between each time point and the relative time 0. 
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Supplementary Figure 4 

Regulation of MAF transcription by linc-MAF-4. 

(a) Expression levels (FPKM) of linc-MAF-4 and its neighboring protein coding genes DYNLRB2 and CDYL2 in CD4+ T cell subsets 

(b) Expression of TBX21 an GATA3 in activated CD4+ naïve T cells differentiated in TH1 or TH2 polarizing conditions assessed at 
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different time points by RT-qPCR (average of four independent experiments ± SEM) 

(c) Expression of linc-MAF-4 and MAF assessed at different time points by RT-qPCR in activated CD4+ naïve T cells differentiated in 
TH1, TH2 and TH0 polarizing conditions. Bar plot of the percentage of c-Maf positive cells determined by intracellular staining at different 
time points is also shown (average of four independent experiments ± SEM) 

(d) CD4+ naïve T cells differentiated in TH17 polarizing conditions according to Kleinewietfeld et al. (Nature 2013; 496, 518). Upper 
panels: intracellular staining of IL-17 and CCR6 protein expression at day 8 of differentiation (data are representative of four 
independent experiments) Lower panels: linc-MAF-4, MAF, RORC and IL17 transcript levels assessed at different time points by RT-
qPCR (average of four independent experiments ± SEM) 

(e) Test of linc-MAF-4 siRNAs in CD4+ naïve T cells. Four siRNA sequences were transfected independently in activated CD4+ naïve T 
cells and linc-MAF-4, MAF, GATA3 and IL4 transcript levels were assessed by RT-qPCR at day 3 post-transfection and activation 
(average of five independent experiments ± SEM) 

(f) Intracellular staining of c-Maf and GATA-3 in naive CD4+ T cells stimulated with anti-CD3 and anti-CD28 and transfected with a 
control siRNA or linc-MAF-4 siRNA assessed at day 4 post-transfection and activation. Data are representative of five independent 
experiments 



Nature Immunology: doi:10.1038/ni.3093 

 



Nature Immunology: doi:10.1038/ni.3093 

Supplementary Figure 5 

Chromosome-conformation capture on in vitro–differentiated CD4+ TH1 cells. 

(a) 2.5% agarose gel of the experimental triplicate used for 3C followed by BAC controls amplified with different primers that span the 
region between linc-MAF-4 and MAF 

(b) Sequencing results with pertaining electropherograms and BLAST alignments for M1-L7 and M1-L12 amplicons 

(c) Validation of anti-LSD1 and EZH2 antibodies used in RIP assay. LSD1 and EZH2 immunoprecipitates specifically retrieve HOTAIR 
RNA in HeLa cells as shown by Tsai et al. Science 329, 689 (2010). RNU2.1 and a region upstream the TSS of linc-MAF-4 were used 
as negative controls 

(d) ChIP-qPCR analysis of EZH2 and H3K27me3 at MYOD1 locus, of H3K27me3 at a control region within the chromatin loop and of 
LSD1 at beta-actin locus in activated CD4+ naïve T cells transfected with linc-MAF-4 siRNA (black) or ctrl siRNA (white) (average of at 
least three independent experiments ± SEM) 

 



Additional considerations for de novo genome-based transcripts 

reconstruction 

Three different approaches were adopted to define a new catalog of lincRNA 

specifically expressed in human lymphocyte subsets. These approaches are 

based on the application of two different mappers TopHat v.1.4.1 (Trapnell et 

al. 2009) and STAR v. 2.2.0 (Dobin et al. 2012) and two tools for new 

transcripts reconstruction: Cufflinks v. 2.1.1 (Trapnell et al. 2010)  and Trinity 

(Grabherr et al. 2011) . 

TopHat was used in combination with Cuffilinks, while STAR mapper both 

with Cufflinks and Trinity. 

TopHat is a spliced read mapper that detects splice sites ab initio by 

identifying reads that span exon junctions. The pipeline is divided into two 

steps: mapping of all reads to the reference genome using 

Bowtie  (Langmead et al. 2009), an ultra-fast short-read mapping program. 

Then TopHat assembles the mapped reads extracting the sequences and 

inferring them to be a putative exons while the reads that do not map are set 

aside (unmapped reads). These reads are afterwards indexed and aligned to 

potential splice junction that are sequences flanking potential donor/acceptor 

splice sites within neighbouring regions. 

STAR is the RNA-seq aligner used by the ENCODE Project and is designed 

to align the non-contiguous sequences directly to the reference genome 

making this software faster than other RNA-seq aligners. Initially STAR 

searches for each read the maximum mappable length and the matches to 

the genome create a lot of seeds. If the read comprises a splice junction, the 

search is repeated for the unmapped portions of the read. The sequential 

application of the search of maximum read match to the genome only to the 

unmapped portion of the reads makes STAR extremely fast. Later the 

software builds alignments of the read sequence clustering the seeds within a 

genomic window defined. All these seeds are stitched together according to a 

local alignment scoring scheme and the stitched combination with highest 

score is chosen as the best alignment of a read.  

The number of mapped reads are similar between both aligners for all 

samples analyzed. 
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These two tools were used because they map reads over exon/intron 

junctions, which is a critical feature when aligning RNA-seq reads to a 

reference genome. Moreover, by improving alignment precision and 

sensitivity, exon junctions and splicing events are better defined in the 

reconstruction of new transcripts.  

The alignments generated by STAR and TopHat were then considered as 

input for software that perform identification of new transcripts. Samples 

belonging to the same population were concatenated into one “population 

alignment” to improve coverage depth. Cufflinks v. 2.1.1 and Trinity were both 

evaluated for this purpose. Cufflinks, which uses a mapping-first approach, 

first aligns all the reads to a reference genome and then merges sequences 

with overlapping alignment, spanning splice junctions with paired-end reads. 

To identify a set of novel transcripts expressed in human lymphocyte subsets, 

a reference annotation is considered to guide the assembly (-g option, RABT 

assembly) coupled with multi-read (-u option) and fragment bias correction (-b 

option) to improve the accuracy of transcripts abundance estimates. 

The third approach exploits STAR in combination with the genome-guided 

Trinity software. To address the computational complexity of assembling the 

human transcriptome by de novo approach, Trinity uses a specifc pipeline 

named “Genome-guided Trinity” combined with the Program to Assemble 

Spliced Alignments (PASA). The pipeline has two major steps.  

The first uses the “Genome-guided Trinity” where reads are initially aligned to 

the genome and partitioned according to locus, followed by the “classic” 

Trinity de novo transcriptome assembly at each locus. In particular, the Trinity 

default aligner (GSNAP) was substituted with STAR which performs better in 

terms of accuracy and computing time. The “Genome-guided Trinity” was 

used with the paramenters suggested in the main documentation and the 

input alignments were generated using STAR with the default parameters. 

The second phase of the pipeline runs PASA having in input all the putative 

transcripts generated by the first step above. Initially PASA maps transcripts 

and aligns them to the reference  genome; in this case we customized PASA 

to use START for long reads. STAR required to be customized changing the 

variables “MAX_READ_LENGTH = 100.000” inside the file “IncludeDefine.h” 

and recompiled from source code using “make STARlong” which makes 
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available the “COMPILE_FOR_LONG_READS” option. The resulting 

alignments were validated as nearly perfect with an identity of 95% and 

percentage of transcript length of about 90% (default PASA’s parameters). 

The valid transcript alignments are clustered based on genome mapping 

location and assembled into gene structures; those alignment assemblies 

which are located in the same locus with a significant overlap and are 

predicted to be on the same strand  are clustered together. Finally, comparing 

the provided annotation with the clusters, PASA reconstructs the complete 

transcript and gene structures, resolving incongruencies, refining the 

reference annotation when there are enough evidences and proposing new 

transcripts and genes in case any previous annotation can explain the new 

data. 

 

K- means clustering of gene expression patterns: the Silhouette 

function 

 

For the clusters presented in this paper K=16 was used for lincRNA genes 

after optimizing the selection of K to minimize the distances of data within 

clusters while maximizing the distance between clusters using a Silhouette 

function (Rousseeuw 1987). 

Briefly, K-means clustering was used with different values of K 

(k=13,14..20..40). For each run, the Silhouette function was calculated on 

each gene’s expression pattern !!: 

!" !! = !
! !! − ! !!

max(! !! , !(!!)) 

where: 

! !! = !(!"#$(!! , !!)|!! !∈ !!!!"#!!! !∈ !!), where cx  is the cluster to which 

ei was assigned. ! !!  corresponds to the average dissimilarity between ! and 

all other points of the cluster to which ! belongs 

and: 

! !! = !"#!"!"(!"#$(!! , !!)|!!!"#! ∈ !"!!!"#!!! !∈ !"!) 
! !!  can be seen as the dissimilarity between ! and its “neighbor” cluster, 

i.e., the nearest one to which it does not belong 
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The Silhouette graph (shown in Supplementary  Figure 1h) reports the optimal 

number of clusters (bins) that the K-means algorithm needs in order to 

categorize the dataset in a reliable and reproducible way (when the algorithm 

reaches convergence). The !(!) function calculates for each datum ! (in our 

case the expression profile of a single gene) the average dissimilarity with all 

other data within the same cluster, and confronts these results with the lowest 

average dissimilarity of ! (the 'neighbouring cluster') to any other cluster which 

! is not a member. The final Silhouette score is averaged over all data points 

in the dataset, and reported in the aforementioned graph (Supplementary  

Figure 1h). 

 

Specificity score of gene expression patterns: Jensen-Shannon 

divergence 

 

The clustering results were integrated with an entropy-based methodology 

that assigns a cell-specificity score to each gene based on Jensen–Shannon 

divergence (Trapnell et al., 2010). 

The JS divergence of two discrete probability distributions !1, !2, is defined to 

be: 

!" !!,!! = !
!! + !!

2 − ! !! + !(!!)
2  

where ! is the entropy of a discrete probability distribution: 

! = !!,!!. .!! , 0 ≤ !! ≤ 1  and  !! = 1!
!!!  

! ! = − !!log!(!!)
!

!!!

 

Relying on the theorem that the square root of the JS divergence is a metric 

(Fuglede and Topsoe 2004), the distance between two expression patterns, 

!! and !! , !! = (!!! , . . !!! ), was defined as  

!"!"#$ !!, !! = !"(!!, !!) 
  

This metric quantifies the similarity between a transcript's expression pattern 

and another predefined pattern that represent an extreme case in which a 
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transcript is expressed in only one condition. In our case we built a reference 

model composed of 13 cell subsets. Then, the JS method captures the shape 

of the distribution and the general trend of expression assigning a gene X to 

the population for whom it appears to be more specific. The integration of 

these two approaches has the power to group gene expression profiles 

according to their cell-specificity. 

 

In order to define a JS score threshold that roughly identifies specifically 

expressed genes, a log-normal fitting was performed on the JS score density 

distribution of receptor genes (Supplementary Fig. 1f), that are generally 

considered the most precise markers of lymphocytes subsets. The metabolic 

genes density distribution (the non-specific counterpart) is reported as 

reference. 

The threshold value for the JS score was calculated by considering one 

standard deviation away from the mean of the fitted distribution (0.4). 

The value corresponding to one standard deviation away (0.4) from the mean 

of the fitted distribution (0.27) was used as a threshold to define a specific 

expression. 

 

!
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Heatmaps of signature lincRNAs expression for each lymphocytes subset. For each lincRNA gene id, locus, strand prediction and number of isoforms are also 
reported. Right panel represents signature lincRNAs relative expression values in a panel of 16 human tissues (Human BodyMap 2.0 project).

Nature Immunology: doi:10.1038/ni.3093



Table 3 

 

VALIDATION PRIMERS 

PRIMER ID TARGET SEQUENCE (5·-> 3·) 
linc-MAF-4 F XLOC_012017 GGCTACGTCTCCATTGTTT 
linc-MAF-4 R XLOC_012017 TGGTGTTTGGGATCATTTGT 
T6F ENSG00000257860 TTTCATGGTGAGGGAGAATGG 
T6R ENSG00000257860 CTGGGTCTTGCCTCTTAATGT 
T8F2 INGMG_000772 AGCCTGGGCTTTGGAGTC 
T8R3 INGMG_000772 GGCTTTGCCAGGATCTCACA 
T21F2 ENSG00000234535 GAAATGCCAATGAAGCAGAAAG 
T21R2 ENSG00000234535 GTGCAAAGAATAGGAGGTTTGA 
T24F1 XLOC_002906 GTTATCTGTTGCCAGTTGTT 
T24R1 XLOC_002906 ACCTCTGCTTATTGCTGATT 
T27F1 ENSG00000253988 ACATGGATGCAGCTGGAG 
T27R1 ENSG00000253988 TGAGAACATGCCTTTCTTGG 
T28F4 XLOC_013498 TACAGCCTCCACCTATTGATT 
T28R4 XLOC_013498 ATGGCTTACAGGTAGGAGTTT 
T30F3 XLOC_012199 CTGGGTGAACACTGTCTAA 
T30R3 XLOC_012199 GCTCAGAGTAAACGGCTAA 
T31F1 XLOC_011294 TCGTGTGGGTGAGGAGAA 
T31R1 XLOC_011294 AGTGTAGGAGGGCAGTGT 
 

siRNA 

siRNA ID TARGET SEQUENCE (5·-> 3·) 
T2_si1 XLOC_012017 GGACCAACCTCTTGTCTTA 
T2_si2 XLOC_012017 GTACTGCAAAGGTCTAATA 
T2_si3 XLOC_012017 CCGCATACTTTCAGACTTT 
T2_si4 XLOC_012017 GCTTGAACTCACAAAGAAA 
 

 

ChIP PRIMERS 

PRIMER ID TARGET SEQUENCE (5·-> 3·) REFERENCE 
GAS1f MAF-promoter TTAAGTGCAGTGCTATAAAGTTGTT Rani et al., 2011 
GAS1r MAF-promoter GGGGAAGACCATTCTGAAGTG Rani et al., 2011 
IFNgf IFN -promoter AAATACCAGCAGCCAGAGGA 

 

IFNgr IFN -promoter AGCTGATCAGGTCCAAAGGA 
 

ILCRf Internal loop control region TGAGCAGAGAAAGTGCATAG  

ILCRr Internal loop control region TCACAGGCATTCTTTGTACC  

MyoD1f MyoD1 5· regulatory region ACGTGCAGATTTAGATGGAG  

MyoD1r MyoD1 5· regulatory region ATCGGAGATTGCTGCTAAAG  

ACTBcf ACTB-promoter AAAGAGCGAGAGCGAGAT  

ACTBcr ACTB-promoter AACGCCAAAACTCTCCCT  
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3C PRIMERS 

PRIMER ID SEQUENCE (5’-> 3’) 
M1 GCAGAACTCGCCTAATGG 
L1 TGATTAATGCTGGGTAAAGG 
L2 TTCAGCCTTTGTTTTTCTCC 
L3 GGTCTTCAATTACAATAGCC 
L4 CCAATTGGAAGTCTGAAGGC 
L5 ACTGCCCTTCAAGTCCTTGC 
L6 ACAGGGAGAGCTGACCTTTG 
L7 ATTGAAAGCCATGTTTTTAAG 
L8 ACTGCATGGCATTTGTCTGG 
L9 CCTTTTTCGCTAGTAGAGCC 
L10 TCTCTGGCTGACAGTCTACC 
L11 GTACAGCAGCCTCCACAAAG 
L12 ATACATATTGGGAGGCCTGGAA 
L13 GCTGCAAATCTTGGGATTGG 
L14 GCTGAGGTCACAGAGCTAGG 
L15 TGCAGGCTCCAAAATAAACC 
L16 AGTACAGTAGGCCTCCTTTC 
L17 TTTGGGTGTTCTGGGATCTG 
L18 TGCCTATGAGTGCTACTGAG 
L19 AGGCCCTGCAATATGCACAC 
L20 TCCAGCCAGGGCATCCAATC 
L21 ACACCCACCAACTTTATTGG 
L22 ATAGCGCTGTCTGTGTCTAC 
L23 CCCTATCAGCCTGATTTGAG 
L24 AGGCCAAACGTAGTGGGTTC 
 

 

RIP PRIMERS 

PRIMER ID TARGET SEQUENCE (5’-> 3’) REFERENCE 
Actin_sy-F2 β-actin CATCCTCACCCTGAAGTACC  
Actin_sy-R2 β-actin CACGCAGCTCATTGTAGAAG  
LincM_pr-F1 linc-MAF-4 (control) AGGTCATGAGGCAGAGGAGA  
LincM_pr-R1 linc-MAF-4 (control) TCCCTTTGGGAGGTAAAACC  
HOTAIR/H2-F HOTAIR/H2 GGTAGAAAAAGCAACCACGAAGC Tsai et al., 2010 
HOTAIR/H2-R HOTAIR/H2 ACATAAACCTCTGTCTGTGAGTGCC Tsai et al., 2010 
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Abstract 
To help better understand the role of long noncoding RNAs in the 

human immune system, we recently generated a comprehensive RNA-

seq data set using 63 RNA samples from 13 subsets of T (CD4+ naive, 

CD4+ TH1, CD4+ TH2, CD4+ TH17, CD4+ Treg, CD4+ TCM, CD4+ TEM, CD8+ 

naive, CD8+ TCM, CD8+ TEM) and B (Naive B, Memory B, CD5+ B) 

lymphocytes. The number of biological replicates for each subset was 5 

except for CD8+ CM and B_CD5 populations that included 4 replicates. 

RNA-Seq data were generated by an Illumina HiScanSQ sequencer 

using the TruSeq v3 Cluster kit. 2.193 billion of paired-ends reads, 2 x 

100 bp, were sequenced and after filtering a total of 1.7 billion reads 

were mapped. Using different de novo transcriptome reconstruction 

techniques over 500 previously unkonwn lincRNAs were identified. The 

current data set could be exploited to drive the functional 

characterization of lincRNAs, identify novel genes and regulatory 

networks associated with specific cells subsets of the human immune 

system. 
 

 

Background & Summary 
With emerging technologies, it is becoming evident that the vast majority 

of the genome is transcribed (the so-called “dark matter of the genome”) 

and produces a diverse population of non-protein-coding RNAs 
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(ncRNAs), including long non-coding RNAs (lncRNAs). LncRNAs are 

transcripts of more than 200 base pairs in length that are often 

expressed with higher cell-specificity compared to protein-coding genes1 

despite having lower expression levels. LncRNAs fold in functional 

domains that allow them to interact with other RNA molecules, DNA and 

proteins exerting a plethora of different functions in the cells, as 

chromatin remodeling (XIST, HOTAIR), transcriptional activation or 

repression, competition with microRNAs (linc-MD1, PTEN ceRNAs), 

splicing, RNA trafficking, mRNA stability, imprinting, gene-dosage 

compensation and translation (lncRNA-21p), among others2. LncRNAs 

are also frequently expressed only in specific developmental stages, 

hinting to their involvement in cell fate determination1. Moreover, 

lncRNAs have been implicated in the maintenance of stem cell 

pluripotency and differentiation3, in the establishment of the 

cardiovascular lineage (12) and in the control of somatic tissue 

differentiation4. Altogether these findings clearly point out the 

fundamental role of lncRNAs in the control of cell differentiation and in 

the maintenance of cell identity. Indeed in the mouse immune system 

lncRNAs expression changes during naive to memory CD8+ T cell 

differentiation5 and during naive CD4+ T cells differentiation into distinct 

helper T cell lineages6 and our results on human CD4+ T lymphocytes 

specific lncRNAs7 are in agreement with the findings in mice. In this 

work 63 RNA samples from 13 subsets of T (CD4+ naive, CD4+ TH1, 

CD4+ TH2, CD4+ TH17, CD4+ Treg, CD4+ TCM, CD4+ TEM, CD8+ naive, 

CD8+ TCM, CD8+ TEM) and B (Naive B, Memory B, CD5+ B) lymphocytes 
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were collected. The hierarchy of T and B cells during differentiation of 

the analyzed subsets is depicted in Fig. 1a as well as the number of 

biological replicates for each cell population. After RNA-seq sequencing 

the exploitation of different de novo transcriptome reconstruction led to 

the identification of over 500 previously unknown lincRNAs7. The 

general experimental design is shown in Fig. 1b. As recent findings 

suggest that lncRNAs might contribute to the definition of lymphocytes 

identity and to the modulation of their functional plasticity, our data set 

could be used as a resource to guide the validation and functional 

characterization of lincRNAs and to identify genes and regulatory 

networks associated with specific cells subsets of the human immune 

system. 
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Figure 1 Description of the study with (a) Hierarchical representation of the different cell 

subset originating from hematopoietic stem cells. In this study 13 human primary 
lymphocyte subsets were profiled: CD4 Naïve; CD4 Th1; CD4 Th2; CD4 Th17; CD4 Treg; 

CD4 TEM; CD4 TCM; CD8 Naïve; CD8 TEM; CD8 TCM; B Naïve; B Memory; CD5 B. The 

number of biological replicates and the expressed genes (FPKM > 0.21) for each 



 117 

population is indicated. The total number of samples profiled in this study is 63. (b) 
General overview of the bioinformatic steps and approaches used for the identification of 

novel lincRNAs. 

 

Methods 

 

Purification of primary immunological cell subsets 

These methods are expanded from the descriptions in our previous 

article7. Blood buffy coat cells of healthy donors were obtained from 

Fondazione Istituto di Ricovero e Cura a Carattere Scientifico 

Ca’Granda Ospedale Maggiore Policlinico in Milan, and peripheral blood 

mononuclear cells were isolated by ficoll-hypaque density- gradient 

centrifugation. The ethical committee of Fondazione Istituto di Ricovero 

e Cura a Carattere Scientifico Ca’Granda Ospedale Maggiore Policlinico 

approved the use of peripheral blood mononuclear cells from healthy 

donors for research purposes, and informed consent was obtained from 

subjects. Human blood primary lymphocyte subsets were purified to a 

purity of >95% by cell sorting through the use of various combinations of 

surface markers (see Table 1). 

Table 1 Purification and RNA-Seq of human primary lymphocyte subsets 

Subset	
   Purity (%)	
   Sorting phenotype	
   Donors	
  

CD4+ 

naïve	
  

99,8 ± 0,1	
   CD4+ CCR7+ CD45RA+ 

CD45RO-	
  

5	
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CD4+ 

TH1	
  

99,9 ± 0,05	
   CD4+ CXCR3+	
   5	
  

CD4+ 

TH2	
  

99,7 ± 0,3	
   CD4+ CRTH2+ CXCR3-	
   5	
  

CD4+ 

TH17	
  

99,1 ± 1	
   CD4+ CCR6+ CD161+ 

CXCR3-	
  

5	
  

CD4+ 

Treg	
  

99,0 ± 0,8	
   CD4+ CD127- CD25+	
   5	
  

CD4+ 

TCM	
  

98,4 ± 2,8	
   CD4+ CCR7+ CD45RA- 

CD45RO+	
  

5	
  

CD4+ 

TEM	
  

95,4 ± 5,5	
   CD4+ CCR7- CD45RA- 

CD45RO+	
  

5	
  

CD8+ 

TCM	
  

98,3 ± 0,8	
   CD8+ CCR7+ CD45RA- 

CD45RO+	
  

4	
  

CD8+ 

TEM	
  

96,8 ± 0,9	
   CD8+ CCR7- CD45RA- 

CD45RO+	
  

5	
  

CD8+ 

naïve	
  

99,3 ± 0,2	
   CD8+ CCR7+ CD45RA+ 

CD45RO-	
  

5	
  

B naïve	
   99,9 ± 0,1	
   CD19+ CD5- CD27-	
   5	
  

B 

memory	
  

99,1 ± 0,8	
   CD19+ CD5- CD27+	
   5	
  

B CD5+	
   99,1 ± 0,8	
   CD19+ CD5+	
   4	
  
Purity achieved (middle left) by the sorting of 13 human lympocyte subsets (isolated from 

peripheral blood lymphocytes of four to five different donors per subset) by various 
surface marker combinations (Sorting phenotype). Treg ,regulatory T cells; TCM, central 
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memory T cells; TEM, effector memory T cells; B, B cells. Data are representative of at 
least four experiments (mean ± s.d. for purity). 

 

RNA isolation and RNA sequencing. 

Total RNA was isolated with a mirVana Isolation Kit (Ambion). Libraries 

for Illumina sequencing were constructed from 100 ng of total RNA with 

the Illumina TruSeq RNA Sample Preparation Kit v2 (Set A). The 

libraries generated were loaded on to the cBot automated clonal 

amplification system (Illumina) for clustering on a HiSeq Flow Cell v3. 

The libriaries clustered on a HiSeq Flow Cell v3 were then sequenced 

with a HiScanSQ optical imaging system (Illumina). A paired-end run 

(with a read length of 100 bases) was performed with an SBS Kit v3 

DNA sequencing kit (Illumina). Real-time analysis and base calling was 

performed with HiSeq Control Software Version 1.5 (Illumina). CASAVA 

1.8.2 (Illumina) software was used to demultiplex reads into specific 

sample and groups, the software was configured to operate with “--

mismatches='1'” allowing one mismatch during the identification of the 

indexes (Data Citation 1). 
 

RNA-seq trimming and mapping. 

To improve sequence quality, samples data were cleaned by 

Trimmomatic8 using the following parameters (ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
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MINLEN:50) giving in input the forward and reverse “fastq” sequences 

for each sample. Only the reads that passed the quality or length 

threshold on both strands were considered for mapping. The whole data 

set was aligned to human genome assembly GRCh37 (Genome 

Reference Consortium Human Build 37) using both TopHat9 (version 

1.4.1)  and STAR10 (version 2.2.0). The reference genome was indexed 

using Bowtie11 (version 0.12.9) for TopHat alignment. Both TopHat and 

STAR were used with default parameters; only for TopHat we specified 

the mate-inner-dist parameter for each sample of our data set please 

see the associated Metadata Record. RNA-seq data from the Illumina 

Human BodyMap 2.0 project (Data Citation 2) consisting of 16 human 

tissues were downloaded, processed and mapped using to the same 

criteria. 

 

Reference annotation. 

Ensembl database (version 67 from May 2012) annotation was 

integrated with a previously published catalogue of lincRNAs1  (Data 

Citation 3) using Cuffcompare which is provided by the Cufflinks12 

(version 2.1.1) suite. BioMart was used to categorize Ensembl 

annotation in different classes by their biotype: ‘lincRNA’ (5,804 genes), 

protein-coding genes (21,976 genes), receptor-encoding using GO term 

GO:000487 (2,043 genes encoding molecules with receptor activity 

function) and the class of genes encoding molecules involved in 
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metabolic processes corresponding to GO term GO:0008152 (7,756 

genes). The final reference annotation consisted of 195,392 transcripts 

that referred to 62,641 genes, 11,170 of which were non-redundant 

lincRNA-encoding genes. 

 

De novo genome-based transcripts reconstruction. 

To identify putative novel genes, specifically expressed in our datasets 

and not yet annotated, we combined multiple tools and their outputs 

following a de novo genome-based transcripts reconstruction procedure. 

Samples were aggregated in meta datasets corresponding to the 13 

lymphocyte populations. These meta datasets were aligned to the 

reference genome using two mappers: TopHat and STAR. The resulting 

26 alignments were used as independent inputs for Cufflinks configured 

to use the RABT13 assembler for the identification of novel transcripts. 

The following parameters were used in combination with Cufflinks: “-g” 

to guide the assembly by the reference annotation, “-u” multi-read and “-

b” fragment-bias correction to improve the accuracy of transcripts 

abundance estimation. With these approaches we identified about 3 × 

104 to 5 × 104 previously unknown transcripts for each lymphocyte 

population. A third approach was the Genome-guided Trinity14 pipeline 

(Supplementary File 1: example of command lines) (release 2012-10-05, 

http://trinityrnaseq.github.io/#genome_guided) that generates de novo 

transcripts by local assembly on previously mapped reads from specific 
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locations. We used STAR instead of the Trinity’s default aligner 

GSNAP15, as it performed better in terms of both accuracy and 

computing time. For the first alignment phase STAR was used with the 

default parameters. The “Genome-guided Trinity” suite was used with 

the parameters suggested in the main documentation (default). Each 

candidate transcript was then processed via the Program to Assemble 

Spliced Alignments16 (PASA, http://pasapipeline.github.io/). PASA is a 

genome annotation tool that reconstructs the complete transcript and 

gene structures, resolves incongruences derived from transcript 

misalignments and alternatively splices events, refines the reference 

annotation and proposes new transcripts and genes in case no previous 

annotation can explain the new data. PASA was configured to use 

STAR as aligner. We recompiled STAR to enable it for handling long 

reads (putative transcripts); the file “IncludeDefine.h”, from the source 

code, was modified setting the variable “MAX_READ_LENGTH” to a 

value of “100000”. Recompiling the source tree using the GNU “make” 

utility with the command “make STARlong” generated the desired 

modified binary version of STAR. 
 

Identification of previously unknown lincRNA-encoding genes. 

Data generated by the three different approaches, Trinity/Cufflinks; 

STAR/Cufflinks; STAR/Trinity, were separately processed to identify 

unknown lincRNA-encoding genes. 
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The three de novo approaches applied to each lymphocyte population 

generate transcripts and genes without prior knowledge on they ability to 

encode for proteins or not. In order to identify only the putative novel 

lincRNAs, known transcripts and previously unknown isoforms of 

already annotated genes were filtered out. To perform this filtering we 

compared the reference annotation with the datasets produced by each 

approach using a custom script; this can be done also using 

consolidated tools as the UCSC bedtools17 or Cuffcompare. 

Transcriptional noise and low polymerase fidelity can create artifactual 

transcripts therefore only multi-exonic transcripts longer than 200 bases 

were retained in our analysis. Protein family domains available from 

Pfam18 (PfamA and PfamB) database (release 26) were searched in all 

transcripts using the HMMER319 algorithm and those transcripts that 

matched at least one of all six possible frames were discarded. Another 

criteria commonly accepted to define lincRNA is the evaluation of their 

coding potential; absence of coding potential is distinctive of putative 

lincRNA. PhyloCSF20 is a comparative genomics method (phylogenetic 

codon substitution frequency) built upon a multiple sequence alignment 

of 29 mammalian genomes in multi-alignment file format (MAF, 

http://genome.ucsc.edu/FAQ/FAQformat.html#format5. 

(Data Citation 4). The entire set of novel transcripts that passed the 

previous filters was used as input for PhyloCSF. Transcripts scoring 

more than 100 decibans (PhyloCSF scores were obtained using option -

-frames=6) were excluded from the final catalog. This threshold was 

calculated by Cabili et al., as it corresponds to a false-negative rate of 
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6% for coding genes (i.e., 6% of coding genes are classified as 

noncoding) and a false-positive rate of ~10% (i.e., 9.5% of noncoding 

transcripts are classified as coding). They optimized PhyloCSF 

specificity and sensitivity threshold for the classification of coding and 

noncoding transcripts on the RefSeq reference sequence database of 

the National Center for Biotechnology Information (RefSeq coding and 

RefSeq lincRNAs). 
 

De novo transcriptome data integration. 

In order to create a comprehensive and unique annotation of novel 

lincRNAs identified in lymphocytes, duplicates generated by the three 

approaches used must be resolved. To accomplish this task 

Cuffcompare was used. For each de novo reconstruction approach 

Cuffcompare merged the transcripts generated by all the populations. 

The result is a set of three distinct annotations corresponding to 

TopHat/Cufflinks, Star/Cufflinks, Star/Trinity/PASA. These three lincRNA 

sets were further merged to generate a non redundant atlas of lincRNAs 

in human lymphocytes and only those genes identified by at least two 

out of the three software programs were considered. After data 

integration through Cuffocmpare, a custom script was used to remove 

and substitute the XLOCs and TCONs, assigned by the software, with 

their original and public names. 

New lincRNAs were then uniquely identified with a name that contains 
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the prefix ‘linc-’; the Ensembl gene name of the nearest protein-coding 

gene (irrespective of the strand); the location of the lincRNA relative to 

the sense of transcription of the nearest protein-coding gene: ‘up’ or 

‘down’; the description of the concordance of the transcription between 

the lincRNA and its nearest coding gene: ‘sense’ or ‘antisense’; a 

counter to distinguish between lincRNA that share the same nearest 

protein-coding gene. An example of template name is ‘linc-geneX-

(up|down)-(sense|antisense)_#n’. The resulting annotation has been 

integrated concatenating it to the GRCh37 version 67 provided by 

Ensembl. 

The resulting integrated annotation comprises 563 novel lincRNAs 

genes and 1,797 novel transcripts, publish in a previous work7 is 

avaliable in Data Citation 1.  

 

 

Data Records 

 

In this study we deposited 1 dataset, which contains the RNA-Seq raw 

reads in fastq format  (Data Citation 1 and Supplementary Table 1 

(which is a simplified version of the ISA-TAB please see the associated 

Metadata Record). This dataset contains 63 samples in total, grouped 

by 13 lymphocyte subsets with 4 or 5 biological replicates each. 

Supplementary Table 1 is an XLSX with the following header: Source, 
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the original source name used by the lab; Name, assigned by the 

provider; SubSet, the lymthocyte subset; Antibody, the antibodies used 

for sorting; InnerSize, the estimated inner size; R1 URI, the forward 

reads uri for download; R1 MD5SUM, checksum for the forward reads; 

R2 URI, the reverse reads uri for download; R2 MD5SUM, checksum for 

the reverse reads. The annotation of the 563 newly described lincRNA 

(Data Citation 1: the new 563 annotated lincRNAs7) is a General 

Transfer Format (GTF).  

 

 

 

Technical Validation 
 

RNA-seq raw data quality 

 

Assessing the quality of the data performing the Quality Control (QC) is 

crucial to the whole study. RNA-seq data generated were initially 

analyzed with FASTQC and a summary plot with the data from all 

samples is depicted in Fig. 2a. The quality of the reads during the 

sequencing tends to decrease but it can be further improved using 

specific software that removes low quality bases reducing the length of 

the read or directly discard the whole read when its quality is too low. To 

perform the trimming and filtering Trimmomatic was run on each sample 

and the data were later on reanalysed with FASTQC to confirm the 

quality improvements. The summary of the resulting data is shown in 
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Fig. 2a. Another criteria to measure the QC for NGS reads is the % of 

GC content, which is improved by the filtering (Fig. 2c) 
 

During the study two mapping software were used, TopHat and STAR. 

To exclude the possibility of discordance between the two aligners, the 

mapping results were compared to assess their mapping performance. 

The alignments with the two software showed a good concordance 

(99%) with a slight advantage of STAR in terms of mapped reads (Fig. 

2d). 
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Figure 2 Quality control assessments. (a) Phred quality score of the avarage distribution 

over all reads across all samples in each base before and (b) after trimming. (c) %GC 
content before and after trimming. (d) Comparison of the mapped reads for all the human 

lymphocyte subsets profiled using TopHat and STAR.  
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RNA-seq biological replicates 

 

Biological replicates are fundamental to guarantee data consistency, in 

this study the lymphocyte populations profiled have 4 biological 

replicates for CD5 B and CD8 TCM and 5 biological replicates for all the 

other populations. In order to establish the congruency among biological 

replicates Principal Component Analysis (PCA) Fig. 3a and hierarchical 

clustering Fig. 3b were performed. A good separation between B and T 

cells samples is achieved by PCA on normalized read counts using 

DESeq221. Comparable results are obtained using hierarchical clustering 

on the same data. Moreover, similarity between biological replicates of 

the same population is obtained, showing a good consistency and 

correlation among them. 
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Figure 3 Analysis of intra-population consistency: Principal Component Analysis and 
hierarchical clustering. (a) Principal Component Analysis (PCA) performed using DESeq2 

rlog-normalized RNA-seq data. Loadings for principal components 1 (PC1) and PC2 are 

reported in graph (on x and y-axes). (b) Hierarchical clustering analyses performed using 
DESeq2 rlog-normalized RNA-seq data. Color code (from white to dark blue) refers to the 

distance metric used for clustering (dark blue corresponds to the maximum of correlation 

values). 

 

 

Low abundance transcript consistency 

 

As reported in literature, lincRNAs are expressed at very low levels (Hart 

et al., BMC Genomics 2013), so it is necessary to define a FPKM 

threshold to discriminate low abundant functional transcripts from 

technical or biological noise. To define a sensible FPKM threshold, Hart 

et al.22 integrated RNAseq data and CHIPseq data of 17 human cell 

lines from ENCODE project. They established a relationship between 

the gene expression levels and promoters activities and set the FPKM 

value when the fraction of active promoters is equal to the fraction of 

repressed promoters as an expression cutoff. We calculated a threshold 

of 0.21 FPKM as the mean of the data reported in the paper. Then, we 

considered for the downstream analysis only genes whose expression 

values were at least 0.21 FPKM in one population. 
 

De novo transcript identification 
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Multiple combinations of software and filters were used for the 

identification of lincRNAs in the 13 lymphocytes populations. Moreover, 

we considered only newly described lincRNAs detected in at least 2 out 

of 3 de novo approaches to improve the reliability of the data. 

LincRNAs discrimination between coding and non-coding RNA depends 

on the algorithm used to asses the coding potential, in this study was 

used PhyloCSF. The final dataset of putative lincRNAs was further 

processed using iSeeRNA24 in order to verify our results using a 

different approach based on Support Vector Machines (SVM). The 

classification we obtained is highly concordant, as ~99% of the putative 

lincRNAs contained in the final catalogue are classified as 'noncoding' 

by iSeeRNA. 

 

 

Usage Notes (optional) 

This study was performed on the version 67 from May 2012 of Ensembl 

GRCh37 but the current version of the Ensembl human genome is 

GRCh38 version 80. In order to consider the catalogue of newly 

described lincRNAs generated in this study, researchers must update 

the annotation associated with the (Data Citation 1 Array Express E-

MTAB-2319) using the liftover software (https://genome.ucsc.edu/cgi-

bin/hgLiftOver) from UCSC or the assembly converter 

(http://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter) from 

Ensembl. 
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Software used during this study went through minor and major code 

base updates. The more notable software suite that has been updated 

during the time is Trinity and is strongly suggested to use the latest 

release downloadable from https://github.com/trinityrnaseq/trinityrnaseq. 

For the evaluation of the coding potential of de novo transcripts we 

suggest to use other recently developed software that perform the 

classification more efficiently than PhyloCSF, such as iSeeRNA, CNCI23 

and CPAT24. It has been demonstrated that these algorithms have a 

higher level of accuracy, and execution times are considerably faster23–

25. 
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Summary           

    

RNA-Seq is an approach to transcriptome profiling that uses deep-

sequencing technologies to detect and accurately quantify RNA 

molecules originating from a genome at a given moment in time. In 

recent years, the advent of RNA-Seq has facilitated genome-wide 

expression profiling, including the identification of novel and rare 

transcripts like non coding RNAs and novel alternative splicing isoforms.  

Here, we describe the analytical steps required for the identification and 

characterization of non coding RNAs starting from RNA-Seq raw 

samples, with a particular emphasis on long non coding RNAs 

(lncRNAs).  
  
Keywords: RNA-seq, lncRNAs, bioinformatics 

 

Introduction 

 

In recent years, advances in transcriptome reconstruction technologies 

have made possible the identification and the characterization of 

thousands of novel long non coding RNAs (lncRNAs) from short reads 

RNA-seq data [2,3,4]. 

The rapid increase of sequencing depth and read length has 

considerably improved the accuracy of transcripts reconstruction and 
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offers the unprecedented possibility to characterize lncRNAs on a global 

scale. 

LncRNAs are defined as transcripts of length >200 nucleotides that are 

characterized by a low coding potential [1]. The choice of this length 

threshold is somewhat arbitrary, but it is instrumental in order to 

separate lncRNAs from other non-coding RNA classes, such as 

microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting 

RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short 

RNAs [1].   

LncRNAs are broadly classified according to the genomic context in 

which they are located (Fig.1): - antisense lncRNAs are transcripts that 

span at least one exon of a nearby protein coding, and are transcribed in 

the opposite direction - intronic lncRNAs originate from intronic regions, 

and they do not overlap any annotated exon - bidirectional lncRNAs are 

transcripts that initiate in a divergent fashion from the promoter of a 

protein-coding gene - intergenic lncRNAs are lncRNAs with separate 

transcriptional units from protein coding genes [5]. 

In contrast to what has been reported for other non-coding RNA classes 

[6], long ncRNAs lack strong inter-species conservation [7]. Moreover, 

the evolutionary linkage between lncRNAs in different species is difficult 

to infer since the majority of approaches for conservation studies are 

based on primary sequence analysis. More comprehensive studies that 

integrate primary sequence analysis, structure and functional role of 

lncRNAs are therefore needed to assess their conservation on a global 

scale [7].  
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This aspect is also relevant in light of the correlation that exists between 

lncRNAs structure and function, as it has been demonstrated that they 

physically associate with chromatin modifiers to alter the epigenetic 

state of target regions, whether in cis or in trans [5].   

LncRNAs are specifically expressed in different tissues, as 

demonstrated by integrative studies that used RNA-seq to accurately 

detect and quantify them [2]. This contributed to develop the notion that 

lncRNAs have been used by evolution as molecular switches whose 

activity influences the onset and the maintenance of differentiative states 

of several different tissues and cellular populations [1].  

The de novo identification of transcripts from RNA-seq data is performed 

using algorithms that follow two slightly different approaches: mapping-

first algorithms like Cufflinks [8] and Scripture [9] and assembly-first 

methods like Trinity [10], SOAPdenovo [11], and Oases [12] [Note 3].  
     

Then, some peculiar characteristics of non-coding transcripts are 

leveraged in order to isolate lncRNAs from protein coding transcripts in 

datasets that are tipically constituted by thousands of previously 

unidentified transcripts. The analysis of evolutionary patterns across 

different species (PhyloCSF [13]) and (more recently) classifiers trained 

on linguistic features (iSeeRNA [15], CPAT [14], PLEK [16]) are used for 

this purpose.   

Moreover, the use of ChIP (Chromatin ImmunoPrecipitation) coupled 

with NGS (ChIP-seq) provides important and complementary information 

that fosters the identification process of novel lncRNAs [17]. These 
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methodologies rely on the generation of chromatin maps based on the 

presence of epigenetics marks (H3K4me3, H3K36me3) and Pol II 

occupancy to define novel transcriptional units. 

Here, we present an analytical protocol (Fig.2) for the characterization of 

lncRNAs starting from raw RNA-seq samples obtained from sequencing 

Poly-A+ fractions using paired-end Illumina reads.  
 

Materials 

Description of a standard bioinformatics architecture for NGS data 
analysis and software requirements 

- Any UNIX-based operating system (Linux, BSD, Solaris, Mac 

OSX) could be used to perform the analyses described in the 

'Methods' section, although the majority of tools for NGS analyses 

have been developed with Linux as first choice. The 

methodologies described in the following sections have been 

tested on Ubuntu 12.04.5 LTS. 

- Since the pipeline involves the use of the STAR mapper, we 

recommend the use of a workstation with at least 30 GB of RAM. 

- Experimental settings: the pipeline described in the 'Methods' 

section was designed and tested for paired-end, poli-A+ Illumina 

libraries. Reads length is >=100 pb.  

Annotation sources and integration 

- Reference annotation .gtf files and .fasta genomic sequence files 

(hg19/hg38) can be obtained at  

http://www.ensembl.org/info/data/ftp/index.html (Ensembl  FTP 
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data repository) or ftp://hgdownload.cse.ucsc.edu/goldenPath/ 

(UCSC FTP data repository). 

- Integration of available transcript annotations not included in 

UCSC/Ensembl databases can be merged to the official 

annotation release by using Cufflinks' utility Cuffcompare (8). 

Software versions used for this protocol 
- cufflinks/2.2.1, fastqc/0.11.3, samtools/1.2, STAR/2.4.1c, 

trimmomatic/0.33, cutadapt/1.8, R/3.2.0 (DESeq2), HTSeq/0.6.1, 

CPAT v1.2 
 

Methods 

 

1) Preprocessing: 
1. Quality assessment (pre-trimming): [Note 1] Raw .fastq files 

resulting from a paired-end sequencing experiment are analyzed 

in order to assess overall quality. The initial inspection is carried 

out using FastQC v0.11.3. This analysis step is important, as it 

may raise attention regarding library preparation problems that 

may have occurred (the analysis is carried out both on 'forward' 

and 'reverse' strand reads). [<fastqc> --outdir . 

<sample_path>/R1(R2).fastq.gz] 

2. Adapter removal: Adapters sequences are removed using 

cutadapt [24]. This is usually necessary when the read length of 

the sequencing machine is longer than the molecule that is 

sequenced (for example when sequencing microRNAs). 
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'Cutadapt' is run both for R1 and R2 indicating adapters' 

sequences [--anywhere <adapter1> --anywhere <adapter2> --

overlap 10 --times 2 --mask-adapter] 

3. Trimming: Trimmomatic [18] is used with a sliding window 

approach to remove lower quality bases at the end. Standard 

parameters used for phred33 encoding: ILLUMINACLIP 

(LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15), MINLEN 

parameter is set to 50. 

4. Quality assessment (post-trimming): The output of Trimmomatic 

is used as input to FastQC in order to inspect the results of the 

pre-processing steps (adapter removal and trimming) (results for 

high quality Illumina data are reported in Panel 1) 

2) Alignment to the reference genome: 
1. Reference indexing: In order to map the short reads to a 

reference genome, a  .fasta reference index should be built for 

the STAR aligner [19]. 

2. Mapping: [Note 2] Paired-end reads are mapped to the reference 

genome using the STAR aligner [STAR --genomeDir 

<index_star> --runThreadN <cpu_number> --readFilesIn 

<trimmed>_R1.fastq.gz <trimmed>_R2_P.fastq.gz --

readFilesCommand zcat]. The .sam output of STAR is then 

converted to its compressed format .bam [samtools view -bS 

aln.sam > aln.bam], and it is indexed for further analyses (e.g. for 

use with genome browser and further quality inspection of 
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mapping) using command 'samtools index' 

(https://github.com/samtools). 

3. Alignment statistics: Statistics are calculated on output bam 

files [samtools flagstat bam_name>] 

3) Data exploration: 
1. BAM sorting: In order to perform data exploration using DESeq2 

.bam files are sorted by gene identifier, using command [samtools 

sort -n]. 

2. Read counts: The overlap of reads with annotation features 

found in the reference .gtf is calculated using HT-seq [20]. The 

output computed for each sample (raw read counts) is used as 

input for Bioconductor's DESeq2. 

3. Principal Component Analyses of RNA-seq samples: (Panel 

2A) raw counts produced with HT-seq are parsed using DESeq2 

(v 1.8.1)[21] for each sample and the biological labels (e.g. 

cellular population identifiers) are provided in a tabular 

'samplesheet' along with the counts files. Raw counts are 

normalized using DESeq2's function 'rlog', which outputs 

'variance stabilized' values and transforms the original count data 

to the log scale. Normalized counts are used to calculate and plot 

Principal Component Analysis (PCA) (using DESeq2's 'plotPCA' 

function). 

(http://www.bioconductor.org/packages/release/bioc/vignettes/DE

Seq2/inst/doc/DESeq2.pdf) (example PCA performed using 12 
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samples belonging to 2 different biological classes is depicted in 

Panel.2A) 

4. Heatmap of sample-to-sample distances: (Panel 2B) 

normalized counts used to produce the PCA plot of the previous 

step are also used to calculate sample-to-sample distances with 

DESeq2's functions 'hclust' and 'heatmap.2'. (example 

hierarchical cluster analysis performed using 12 samples 

belonging to 2 different biological classes is reported in Panel 

2B). 

4) De novo identification of transcripts: 
1. BAM sorting: In order to perform de novo discovery using 

Cufflinks [8], the .bam files of every sample should be sorted by 

coordinate using samtools. 

2. Cufflinks de novo: [Note 3] [Note 4] Transcripts identification is 

performed on a per-sample basis using a tool from the Cufflinks 

suite ('RABT') [8]. For the software to discover novel transcripts, 

the reference .gtf file used in the initial mapping step must not be 

supplied. The resulting file "transcripts.gtf" found in the output 

folder contains the assembled transcripts identified by Cufflinks 

[cufflinks -o OutputDirectory/  mappedReads.bam] 

3. Cuffmerge: [Note 5] Predicted transcripts (contained in one .gtf 

file for each sample) are merged using Cufflinks utility 'cuffmerge'. 

The .gtf reference file is supplied to ‘cuffmerge’ so that newly 

discovered genes and transcripts are integrated in the original 

annotation. The resulting .gtf file is used as input for the 
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differential expression analysis [cuffmerge <gtfs_list> -g <ref.gtf> 

-s <ref_fasta> -p <cpu_number>] [Note 6] [Note 13] 

4. Length filter: the transcripts identified using the de novo 

approach are filtered by length, as lncRNAs are by definition 

longer than 200 pb. Sequences' lengths can be evaluated after 

the results of 'gtf_to_fasta' (included in the Cufflinks suite). 

5) De novo identification of lncRNAs: coding potential evaluation 

1. The first step of the classification pipeline filters out the transcripts 

for which a PFAM match [22] is reported by HMMER's utility 

'hmmscan'. The input for this analysis is a multi .fasta file 

containing the translated nucleotide sequences of each transcript 

(all six possible transcription frames are considered) [Note 10] 

2. The coding potential of the remaining transcripts is calculated 

using CPAT [14]. The threshold for the combined classifier's 

score is 0.364, where transcripts scoring <0.364 are considered 

putative 'noncoding' (threshold calculated for the human 

transcriptome by the authors of CPAT) [Note 11] 

6) Differential expression: 
1. Cuffdiff: [Note 7] Genes/isoforms differential expression is 

performed using Cuffdiff (included in the Cufflinks suite), having 

as input the .bam files produced by the quantification step. Input 

.bam files should be grouped in the command line (1.bam,2.bam 

3.bam,4.bam) in order to describe different biological 

classes/cellular populations (class separator is the white space). 

Genes/transcripts annotation used for the differential expression 



 149 

analysis must be the .gtf file produced in the previous step by 

cuffmerge. [cuffdiff [options]* <transcripts.gtf> 

<sample1.bam>,<sample2.bam> 

<sample3.bam>,<sample4.bam>]. 

2. The selection of differentially expressed genes/isoforms from 

Cuffdiff results is carried out by extracting P-value statistics and 

log-fold change ratios for the classes identified in input. Among 

the several files produced by Cuffdiff, gene_exp.diff can be 

loaded into Excel/R and used for further analyses and inspection. 

[Note 8] 

3. Consistency filter: Cuffdiff's output is used to assess the 

consistency of novel genes across different samples of the same 

class/cellular population [Note 9] 

7) Downstream analyses and visualization  
1. Downstream analyses [Note 12] are performed on normalized 

gene expression values obtained from Cuffdiff output. These can 

be loaded into external visualization software such as Mev 

(http://www.tm4.org/mev.html), Excel, or R. Cluster analysis is 

then performed using K-means algorithm [Note 14] in order to 

identify the lncRNAs that are specifically expressed in a single 

cellular population/class [2]. 

2. To further investigate the specificity of expression values for 

lincRNAs the JS (Jensen Shannon) score is calculated on the 

vector of values returned by Cuffdiff using an appropriate model 

distribution [2] [23].       
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Notes 

 

1) We recommend using compressed .fastq files in order to limit disk 

occupancy. Compressed files are directly parsed by software 

used in subsequent steps of the pipeline, i.e. mapping step 

(STAR). 

2) If several samples are to be analyzed consequently using STAR, 

the option "--genomeLoad LoadAndKeep" should be added to the 

command line. STAR will then load the genome index into shared 

memory so that it can use it the next time a calculation is run. 

3) Cufflinks uses a mapping-first approach to attempt transcripts 

reconstruction by leveraging genome sequence information to 

reduce the computational complexity of calculations. Other 

algorithms are based on an assembly-first approach, and though 

being more computationally expensive can reach higher 

sensitivity (more transcripts are identified). It is often a good idea 

to combine these two different approaches in order to obtain 

higher yields. For human data, it is advisable to start from more 

than 50 Million read pairs to balance specificity and sensitivity of 

detection (This estimate is based on the Trinity publication [10], 

where 52.6 million 76bp read pairs were used for the 

reconstruction).  

4) If multiple de novo strategies (e.g. Cufflinks, Scripture [9], Trinity 

[10]) are used annotation outputs (.gtf files) must be merged into 
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a single coherent annotation (using 'cuffmerge' utility from the 

Cufflinks suite). 

5) The Cufflinks de novo procedure followed by Cuffmerge 

generates a new custom nomenclature for novel genes and 

isoforms, which are respectively named with a standard code 

followed a progressive integer ‘id’ (XLOC_id and TCONS_id). 

These new codes can be conveniently renamed when releasing a 

new catalogue not to overlap any existing external annotation 

[see Note 13 for further reference]. 

6) De novo transcripts reconstruction is strictly biased by the 

number and the quality of raw reads that are used for the 

discovery. For this reason, it may be necessary to pull all 

available information in a single Cufflinks run in order to increase 

detection sensitivity. Otherwise, when attempting to characterize 

transcripts isoforms, data should be kept separate. 

7) Different normalization options are available for Cuffdiff: 'classic-

fpkm', 'geometric' and 'quartile'. The default for this parameter is 

'geometric', so that FPKMs and fragment counts are scaled via 

the median of the geometric means of fragment counts across all 

libraries, as described by Anders and Huber in [25]. We 

recommend using the default option to obtain expression values 

that are comparable to those obtained with DESeq2. 

8) Performing differential analyses using Cuffdiff can be time-

consuming, and this may impact significantly on the execution 

average time of the pipeline. For this reason, DESeq2 can be 
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used as an alternative. It should be noted that the differential 

analysis performed by DESeq2 is at gene-level, while for isoforms 

expression characterization (based on exons occupancy 

evaluation) DEXSeq is available on Bioconductor. Alternative 

approaches also present in Bioconductor are 'edgeR' 

(http://bioconductor.org/packages/release/bioc/html/edgeR.html) 

and 'bayseq' 

(http://www.bioconductor.org/packages/release/bioc/html/baySeq.

html).   

9) For newly identified genes/isoforms, it is important to consider 

expression consistency across different biological replicates. 

When analyzing data from different individuals, a discrepancy 

may indicate biological differences that are peculiar to the set of 

donors chosen for the experiment. A high consistency ensures 

that the observed results are in fact real and not 

technical/biological artifacts.   

10)  It has been demonstrated [3] that the filtering approach based on 

PFAM and the subsequent CPAT analysis are consistent with 

each other, though the combined use of these different 

methodologies increases specificity of the final results [2]. 

11)  PhyloCSF has been widely used for the prediction of novel 

lncRNAs in many works. It has been recently demonstrated 

though [14,15,16] that classifiers based on linguistic features only 

(or the integration of different variables like conservation and 

ORF length prediction) are more accurate and considerably faster 
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(even by orders of magnitude). For these reasons, we suggest to 

rely on CPAT (or IseeRNA) for the classification step of the 

pipeline. 

12)  Downstream analyses can alternatively be performed on 

normalized counts data (rlogs) produced during the previous 'data 

exploration' step. Love et al. demonstrate in a recent paper [21] 

that variance-stabilized 'rlogs' produced using DESeq2 can be 

used to perform robust hierarchical cluster analyses.   

13)  At the time of writing, lncRNA transcripts nomenclature is still 

source for debate, as only some general guidelines have been 

proposed by the Human Genome Nomenclature Committee 

(HGNC). Thus, we advise the readers to follow the suggestions 

proposed in a recent review by Mattick & Rinn (26). Antisense 

lncRNAs are annotated according to the genomic context and 

take their names after the overlapping genes, while intergenic 

lncRNAs should be named as LINC-X, where X is a numerical 

unique identifier. 

14)  In downstream analyses, K-means clustering is used to identify 

lncRNAs that are specifically expressed in a single cellular subset 

or condition. In order to calculate the ideal number of clusters (K) 

a 'silhouette' measure can be used (available in the R package 

'cluster'). Alternatively, a plot of the within groups sum of squares 

by number of clusters extracted can be used 

(http://www.statmethods.net/advstats/cluster.html). 
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Figures     

 

 

 

Fig.1 Long non coding RNAs are classified according to the genomic context in 

which they are located [5]   
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Fig.2: Overview of the pipeline for the identification of lncRNAs. Schematics of 

the workflow described in the 'Methods' section.    
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Panel 1: Quality control after trimming using FastQC output (high-quality data): 

A) Per-sequence GC content is shown as a density graph and compared to a 

random Gaussian function. B) Boxplot graphs representing quality scores over 

the entire length of reads in the sample. After the trimming step only high-

quality reads are expected to be found in output.  
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Panel 2: Exploratory data analysis of raw RNA-seq samples performed using 

DESeq2. A) Principal Component Analysis (PCA) performed on rlog-

normalized expression data reveals a separation between samples belonging 

to different biological classes ('labels'). B) Similar results are obtained by 

performing hierarchical clustering on rlog-normalized expression data. 
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Chapter 5 
Long non-coding RNAs expression in tumor-
infiltrating lymphocytes  
(unpublished data)1 

The involvement of T regulatory cells in cancer progression has been 

clearly delineated in the past few years, as treatments that are targeted 

to Treg cells' depletion have become routinely used [4,5]. 

Despite increasing attention has been driven in the last few years 

towards Til Tregs by the effectiveness of cancer immunotherapy, the 

mechanisms that contribute to generate Tumor infiltrating Tregs and 

their role in cancer progression still remain elusive [3].   

The whole picture is further complicated by the different roles that Treg 

cells play in different contexts and tissues. Though the presence of Treg 

cells in NSCLC (non-small cells lung cancer) has been linked to a poor 

prognosis, Treg cells infiltration of colorectal cancer mass has been 

found to reduce tumor's aggressiveness and it is associated with a 

favourable prognosis [6].    

In this context, an in-depth understanding of the functional features of 

tumor infiltrating Treg cell populations may lead to the comprehension of 

their role in tumors control and allow the identification of novel 

                                                
1 This chapter represents an update on a follow-up work regarding the 
involvement of lncRNAs in the modulation of tumor-infiltrating regulatory 
T lymphocytes 
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therapeutic targets for the effective modulation of these cells in cancer 

patients. 

In light of what has been reported in the introductory section of this 

thesis regarding their role in differentiative and regulatory processes, 

lncRNAs have indeed the potential of being important actors that 

preserve and alter T helper cell functions. 

In the next paragraph, a brief description of the preliminary results of the 

characterization by RNA-seq of tumor-infiltrating (NSLC and CRC) 

Tregs, Th1, Th17 is reported. 
 

Long non-coding RNAs expression in tumor 
infiltrating lymphocytes  
An in-depth characterization and understanding of the molecular 

mechanisms underlying the functional features of tumor-infiltrating 

lymphocytes may lead to a comprehension of their role in tumor immune 

escape and allow the identification of new therapeutic targets for the 

effective modulation of these cells in cancer. Since very little is known 

on the expression of lncRNAs in TILs, CD4+ Th1, Th17 and Tregs cells 

infiltrating both tumor and the adjacent healthy tissue as well as 

lymphocytes from lymphoid tissues and peripheral blood of Non-Small-

Cell-Lung cancer patients were isolated. These cells were analysed by 

RNA-seq and a set of lncRNAs that are specifically expressed in TIL 

subsets has been defined.  
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The number of RNA-seq samples produced along with selection 

markers used and purity achieved are reported below [these preliminary 

results refer to work performed on NSCLC, while characterization of 

CRC is still ongoing]: 

 

  
Table 1: RNA-seq samples analyzed of tumor-infiltrating (NSCLC), healthy 

lung tissue and patients' peripheral blood lymphocytes. 

 

The analyses of RNA-seq data produced in this experiment have been 

carried out according to the workflow reported in fig.1. 

Briefly, quality controls on raw reads and mapping to the reference 

genome have been followed by exploratory data analysis (samples PCA 

and hierarchical clustering) to ensure that the examined biological 
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classes (Til, Pb and healthy tissue) are homogeneous. A differential 

expression analysis has been conducted to identify 'variable' genes 

using DESeq2 [7]. Then, model-based clustering [8] has been 

conducted on genes found to be differentially expressed, and clusters 

have been correlated to specificity for biological classes of interest. 

In fig.2 normalized expression values of genes that are specifically 

expressed in tumor-infiltrating Tregs are represented as violin plots and 

bar charts. 
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Fig.1: Schematics of the bioinformatics workflow used for the analysis of 

tumor-infiltrating lymphocytes 

 

In order to identify co-regulated gene networks that may be responsible 

for important regulatory processes  in tumor-infiltrating lymphocytes, 

Weighted Gene Correlation Network Analysis (WGCNA) [9] will be 

performed on the same RNA-seq data.  

WGCNA will reinforce and complement the results obtained with model-

based clustering, and will add a new layer of knowledge-based (Gene 

Ontology) information to the pipeline. 

Taken together, these preliminary results show that it is possible to 

identify transcripts that are specifically expressed in tumor-infiltrating 

Tregs (both protein coding genes and lncRNAs), thereby constituting a 

pool of potential biomarkers that could be used in therapeutic settings to 

target Til Tregs. 
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Fig.2: Normalized expression profiles of genes that have high specificity 

(Pearson correlation >0.85) for tumor-infiltrating lymphocytes (selection is 

based on model-based clustering results). Starting from the top downward: - 

violin plot of average expression values and trend line fit - same values 

showed as barchart - heatmap representation 

 

Single cell characterization of tumor infiltrating 
Tregs) 



 168 

Over the past few years, many studies have been conducted that 

addressed the differentiation of Tregs in the thymus, homeostasis of the 

Treg cell compartment, and cellular and molecular mechanisms of Treg 

cell–mediated immunosuppression [10]. In these studies, the Treg 

population has often been regarded as homogeneous, and the 

mechanisms and effects studied were averaged over the cells residing 

in a particular tissutal district (for example the spleen or lymph nodes). 

In time, it became apparent that this approach missed out important 

aspects that underlie Treg cells generation and acquisition of 

functionalities. In fact, the Foxp3+CD4+ compartment is characterized 

by considerable heterogeneity [11], which can only be fully appreciated 

by using transcriptomic analysis methods that narrow their sensitivity 

range down to a single-cell level.  
 

Data analysis challenges in single-cell 
transcriptomics 

Single-cell RNA-seq data analysis poses unique computational 

challenges that necessitate the adaptation of existing workflows, as well 

as the development of entirely new ad hoc analytical approaches. 

Briefly, the initial step of a single-cell RNA-seq protocol consists in the 

isolation of individual cells by exploiting microfluidics-based systems 

before lysing the cell, capturing the polyadenylated fraction of mRNA 

molecules and obtaining cDNA by reverse transcription. Then, the cDNA 
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is amplified using PCR to obtain enough material to perform RNA-seq 

profiling [1]. 

In order to control for amplification bias and technical noise, we need to 

incorporate quantitative standards that facilitate the comparisons of 

gene expression levels across cells. To this end, extrinsic spike-in 

molecules are added to the lysate extracted from each cell (the most 

widely used spike-in mix is the External RNA Control Consortium 

[ERCC], a set of 92 synthetic spikes based on bacterial sequences) [12]. 

As the same volume of spike-in mix is added to each sample, the 

concentrations of single spike-ins should also be the same, and final 

quantitative estimates produced with RNA-seq should reflect this. Within 

the spike-in mix, molecules have different lengths and concentrations, 

so it is possible to assess the dynamic range of the experiment and 

derive normalization factors for each sample/cell. A statistical approach 

based on these assumptions that estimates and controls for statistical 

noise in single-cell RNA-seq experiments has been proposed by 

Brennecke et al. [2]. Briefly, spike-ins concentration estimates produced 

with RNA-seq are fitted to a function (using a GLM of the gamma family) 

that constitutes a reference for the technical noise that is present in the 

data. Genes for which expression estimates variance significantly 

exceed the effects due to technical noise, are selected as ‘differentially 

expressed’ across studied conditions. 

Samples quality control: although software for quality control is 

routinely used for bulk raw RNA-seq data, single-cell RNA-seq presents 

specific aspects that need to be taken into account. For instance, it is 
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important to determine whether the RNA in each captured cell is 

degraded.         

This is an extremely important part of the analysis of scRNA-seq data, 

as many of the cells captured may contain degraded RNA (for example, 

because the cell is stressed [2]) and should therefore be discarded 

before downstream analysis.  

To this end, an evaluation of the total percentage of mapped reads 

along with a comparison with the proportion of reads mapping to spike-in 

molecules can be useful. Moreover, cells with aberrant expression 

patterns can be spotted by using unsupervised analyses (such as PCA 

or hierarchical clustering) (fig.3). 

 

Fig.3: Basic quality control steps for single-cell RNA-seq data [1] 
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Normalization: In addition to the aforementioned normalization 

techniques based on the use of spike-ins, it is important to account for 

differences in the mRNA content between cells (fig.4)  
 

 
Fig.4: Normalization based on ERCC spike-ins for single-cell RNA-seq data [1] 

 

Downstream analysis: as previously stated, the power of single-cell 

RNA-seq relies on the possibility to characterize the heterogeneity of 
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cellular populations. This is achieved by the means of unsupervised 

techniques such as hierarchical clustering, dimensionality-reduction 

approaches (singular values decomposition [SVD], principal component 

analysis [PCA]), and more recently neural network-based approaches 

(self-organizing maps [SOM]). 

Nevertheless, single-cell data are inherently noisy and group estimates 

may be biased if robust data normalization is not performed prior to 

clustering. Hence, it is important to account for confounding factors (e.g. 

cell cycle and differentiation state) and to select only highly variable 

genes for cell type characterization.  
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Chapter 6 
Conclusions  

CD4+ T lymphocytes orchestrate immune responses by differentiating 

into various subsets of effector T cells. We addressed the role of 

regulatory long non-coding RNAs in T-cell differentiation and plasticity 

performing a comprehensive transcriptome analysis by RNA-seq of 

thirteen highly purified human primary lymphocyte subsets and identified 

more than 500 new lincRNAs. We found that lincRNAs are preferentially 

expressed in specific lymphocyte subsets and that their expression 

patterns change during T-cell differentiation. Furthermore, we 

functionally characterized linc-MAF-4, a Th1 CD4+ signature lincRNA, 

and found that linc-MAF-4 down-regulation increases the expression 

levels of transcription factor MAF and skews CD4+ differentiating cells 

towards a Th2 like expression profile. After assessing the role of 

lncRNAs in primary T cells from healthy donors, we seek to characterize 

their involvement in regulatory processes for tumor infiltrating 

lymphocytes (TIL). 

An in-depth characterization and understanding of the molecular 

mechanisms underlying the functional features of TIL may lead to a 

comprehension of their role in tumor immune escape and allow the 

identification of new therapeutic targets for the effective modulation of 

these cells in cancer. Since very little is known on the expression of 
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lncRNAs in TILs, we isolated CD4+ Th1, Th17 and Tregs cells infiltrating 

both tumor and healthy tissue as well as lymphocytes from lymphoid 

Issues and peripheral blood of Non-Small- Cell-Lung and Colorectal 

cancer patients. We analysed these cells by RNA-seq and defined a set 

of lncRNAs that are specifically expressed in TIL subsets (Chapter 5). 
 

Translational perspectives 

Recent studies on the functions of lncRNAs and their implications in the 

modulation of cellular plasticity have driven increasing attention to their 

potential to contribute to the development of novel therapeutical 

strategies.  

Many lncRNAs have already been linked to various disease processes, 

and cancer features prominently among these (Table 1) [1]. For 

example, ANRIL (CDKN2B AS RNA 1) is an antisense lncRNA that is 

overexpressed in prostate cancer tissues, whose loss of expression was 

associated with a reduction in cellular lifespan and in the upregulation of 

both INK4A (which is encoded by CDKN2A) and INK4B (which is 

encoded by CDKN2B) [2]. Polymorphisms in the ANRIL locus also show 

a statistically significant correlation with acute lymphoblastic leukemia, 

while it is reported that several SNPs may alter its expression and/or 

splicing (this too is believed to be linked to alteration of INK4b-ARF-

INK4a gene expression) [10]. Thus, antisense therapies could be 

developed to selectively target the disease-driven ANRIL variants and 

specifically inhibit the proliferation of malignant cells. 
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Moreover, high expression levels of HOTAIR have been noted in 

different metastatic tumors (including prominently breast, liver and the 

gastrointestinal tract), and have been mainly linked to a poor prognosis 

[3-5].  

Other lncRNAs have been implicated in the biology of cancer, among 

which - MALAT1 was found to have a role in  hepatoblastoma and non-

small-cell lung cancer [6], - long stress-induced non-coding transcript 5 

(LSINCT5) was related to the onset of breast and ovarian cancer [7], - 

papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) was 

found to be implicated in papillary thyroid carcinoma [8] and  TUG1 in 

bladder urothelial carcinoma [9]. 

These studies provided solid evidence of the possibility to use lncRNAs 

as (prognostic) biomarkers. Although a clear demonstration of their 

functional role in cancer progression is still lacking, it is opinion of many 

[1] that in the future lncRNAs will be used to target relevant molecular 

pathways, thereby influencing cells' fate with smart drugs.  
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Table.1: Selected characterized lncRNAs with potential roles in human 

diseases [1] 

 

Prospective strategies for targeting lncRNAs 

As discussed above, lncRNAs seem to have critical roles in cancer and 

modulating their functions may promote anticancer effects. For this 

reason, different technologies have been proposed [11] to alter the 
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expression levels of lncRNAs that have the potential to set the basis for 

lncRNA-based cancer therapies. 

- RNA interference (RNAi) based techniques are arguably the most 

popular methods to inhibit lncRNAs in cancer cells, as both siRNAs and 

shRNAs exhibit great RNA selectivity and knockdown efficiency [11]. 

SiRNAs target RNA molecules via complementary interaction to the 

nucleic acid sequence, and after the integration into the active RNA-

induced silencing complex (RISC), siRNAs direct post-transcriptional 

silencing of RNA targets. siRNAs are fully complementary to their RNA 

targets whom is then cleaved and subsequently degraded.  

Recent studies have demonstrated the viability of this approach, as 

depletion of HOTAIR by siRNAs decreased matrix invasiveness of 

breast cancer cells [12] and inhibited tumor growth of pancreatic cancer 

xenograft [13]. 

- Ribozymes are naturally occurring RNA molecules having intrinsic 

catalytic activity that can be exploited to selectively cause the 

degradation of target RNA molecules. Among different known types of 

ribozymes, hammerhead ribozyme (HamRz) has caught major interest 

as it shows good target inhibitory effect while having the smallest RNA 

endoribonucleolytic motif [14]. Anticancer activity of ribozymes has been 

demonstrated by Pavco et al. [15], and it is current opinion that they may 

compensate for the limitations of siRNAs design due to differences in 

target recognition [16]. 

- the AntagoNAT design: NATs belong to a large class of lncRNAs that 

have transcripts complementary to other RNAs (their relevance is 
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demonstrated by the fact that about one fifth of the known human genes 

is overlapped).  

Trascriptional de-repression of a target gene can performed by 

specifically inhibiting the function of NATs using single stranded 

oligonucleotides designed to strand-specifically block the interaction of 

the antisense transcript with the sense gene mRNA and/or degrade the 

antisense transcript. 

This approach was originally introduced in 2005 [18], and 

oligonucleotides that are designed to inhibit NAT function in this manner 

have been named ‘antagoNATs’ [17]. 
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Fig.2: Mechanisms of lncRNA-targeting agents [11] 

 

Selective targeting of lncRNAs through AsiCs 
technology 

According to what has been elucidated in Chapter 5 in the context of 

tumor-infiltrating lymphocytes, the downregulation of lncRNAs essential 

for the maintenance of Treg functions might be an efficient way to target 

Treg cells at tumor sites, and therefore to unleash local tumor specific 

effector T cells.  

LncRNAs modulation can be achieved through the use of small 

interfering RNAs (siRNA), whose therapeutic potential has been tested 

in many disease models. In recent years, technologies that mediate 

targeted delivery of siRNAs have evolved to produce solutions that have 

high therapeutic efficacy and safety (for example aptamer-siRNA-

chimeras [AsiCs] [16]). Aptamers are short single-stranded structured 

oligonucleotides that can bind a wide range of targets with high affinity 

and specificity. One caveat of this approach is the fact that a double 

specificity needs to be defined (a target lncRNA and the receptor that 

mediates the aptamer intake). Thus, an important step of this approach 

would be the identification of surface molecules specific for tumour 

infiltrating Treg cells. 

The AsiCs approach has been shown to be effective in different 

experimental settings directed to: CD4 [13], prostate-specific membrane 

antigen [14] and HIV-gp120 [15]. In the works documenting these cases, 
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AsiCs are efficiently transfected in cells bearing the recognized surface 

receptor and they are then able to knock-down gene expression.  

These evidences demonstrate that Asics technology could be used to 

target lncRNAs that are specifically expressed in tumor-infiltrating Tregs, 

and that this may contribute to the modulation of the immune response 

inside the tumoral microenvironment.  

 
 
 
 

 
 
 
 
 
 



 183 

References 

1) Wahlestedt, Claes. "Targeting long non-coding RNA to 

therapeutically upregulate gene expression." Nature reviews Drug 

discovery 12.6 (2013): 433-446. 

2) Yap, Kyoko L et al. "Molecular interplay of the noncoding RNA 

ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 

in transcriptional silencing of INK4a." Molecular cell 38.5 (2010): 

662-674. 

3) Gupta, Rajnish A et al. "Long non-coding RNA HOTAIR 

reprograms chromatin state to promote cancer metastasis." 

Nature 464.7291 (2010): 1071-1076. 

4) Yang, Zhe et al. "Overexpression of long non-coding RNA 

HOTAIR predicts tumor recurrence in hepatocellular carcinoma 

patients following liver transplantation." Annals of surgical 

oncology 18.5 (2011): 1243-1250. 

5) Kogo, Ryunosuke et al. "Long noncoding RNA HOTAIR regulates 

polycomb-dependent chromatin modification and is associated 

with poor prognosis in colorectal cancers." Cancer research 71.20 

(2011): 6320-6326. 

6) Schmidt, Lars Henning et al. "The long noncoding MALAT-1 RNA 

indicates a poor prognosis in non-small cell lung cancer and 

induces migration and tumor growth." Journal of Thoracic 

Oncology 6.12 (2011): 1984-1992. 



 184 

7) Silva, Jessica M et al. "LSINCT5 is over expressed in breast and 

ovarian cancer and affects cellular proliferation." RNA biology 8.3 

(2011): 496-505. 

8) Jendrzejewski, Jaroslaw et al. "The polymorphism rs944289 

predisposes to papillary thyroid carcinoma through a large 

intergenic noncoding RNA gene of tumor suppressor type." 

Proceedings of the National Academy of Sciences 109.22 (2012): 

8646-8651. 

9) Han, Yonghua et al. "Long intergenic non�coding RNA TUG1 is 

overexpressed in urothelial carcinoma of the bladder." Journal of 

surgical oncology 107.5 (2013): 555-559. 

10) Iacobucci, Ilaria et al. "A polymorphism in the chromosome 9p21 

ANRIL locus is associated to Philadelphia positive acute 

lymphoblastic leukemia." Leukemia research 35.8 (2011): 1052-

1059. 

11) Li, Chi Han, and Yangchao Chen. "Targeting long non-coding 

RNAs in cancers: progress and prospects." The international 

journal of biochemistry & cell biology 45.8 (2013): 1895-1910. 

12) Gupta, Rajnish A et al. "Long non-coding RNA HOTAIR 

reprograms chromatin state to promote cancer metastasis." 

Nature 464.7291 (2010): 1071-1076. 

13) Kim, Kyounghyun et al. "HOTAIR is a negative prognostic factor 

and exhibits pro-oncogenic activity in pancreatic cancer." 

Oncogene 32.13 (2013): 1616-1625. 



 185 

14) Ruffner, Duane E, Gary D Stormo, and Olke C Uhlenbeck. 

"Sequence requirements of the hammerhead RNA self-cleavage 

reaction." Biochemistry 29.47 (1990): 10695-10702. 

15) Pavco, Pamela A et al. "Antitumor and antimetastatic activity of 

ribozymes targeting the messenger RNA of vascular endothelial 

growth factor receptors." Clinical Cancer Research 6.5 (2000): 

2094-2103. 

16) Tedeschi, Lorena et al. "Hammerhead ribozymes in therapeutic 

target discovery and validation." Drug discovery today 14.15 

(2009): 776-783. 

17) Modarresi, Farzaneh et al. "Inhibition of natural antisense 

transcripts in vivo results in gene-specific transcriptional 

upregulation." Nature biotechnology 30.5 (2012): 453-459. 

18) Kota, Janaiah et al. "Therapeutic microRNA delivery suppresses 

tumorigenesis in a murine liver cancer model." Cell 137.6 (2009): 

1005-1017. 

19) Wheeler, L. A., Trifonova, R., Vrbanac, V., Basar, E., McKernan, 

S., Xu, Z., et al. (2011). Inhibition of HIV transmission in human 

cervicovaginal explants and humanized mice using CD4 aptamer-

siRNA chimeras. The Journal of clinical investigation, 121(6), 

2401. 

20) Dassie, J. P., Liu, X., Thomas, G. S., Whitaker, R. M., Thiel, K. 

W., Stockdale, K. R., et al. (2009). Systemic administration of 

optimized aptamer-siRNA chimeras promotes regression of 

PSMA-expressing tumors. Nature biotechnology, 27(9), 839-846. 



 186 

21) Zhou, J., Li, H., Li, S., Zaia, J., & Rossi, J. J. (2008). Novel dual 

inhibitory function aptamer–siRNA delivery system for HIV-1 

therapy. Molecular Therapy, 16(8), 1481-1489. 

22) McNamara, J. O., Andrechek, E. R., Wang, Y., Viles, K. D., 

Rempel, R. E., Gilboa, E., et al. (2006). Cell type–specific delivery 

of siRNAs with aptamer-siRNA chimeras. Nature biotechnology, 

24(8), 1005-1015. 
 

 
 


	1
	2
	3
	4



