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Introduction

Transport processes are ubiquitous in biological systems, spanning several
orders of magnitude in their characteristic temporal and spatial scales. The trans-
port of organelles, proteins and cargoes within the micron-sized heterogeneous
and crowded cellular environment mainly occurs by Brownian diffusion, which
plays a crucial role in the cellular signaling, transduction and proper function-
ing. By imposing order and directionality onto the naturally stochastic behavior
of thermal diffusion, directional flow or drift phenomena contribute to enhance
the diffusion-mediated intracellular trafficking. They are also responsible for the
delivery of blood or nutrients and the clearance of toxins on the larger scale of
whole tissues and organs, over which diffusion is less efficient. As technologi-
cal advancements shrink the spatial and temporal scales of observation of living
systems, the theoretical modeling and experimental investigation of biological -
diffusive and directional - transport processes has therefore the potential of fueling
research breakthroughs in diverse fields ranging from cell or molecular biology to
physiology and immunology.

In this work I adopt and extend the quantitative approach of fluorescence Image
Correlation Spectroscopy (ICS) for the investigation of diffusive and directional
transport processes from the single-cell level up to whole microcirculatory systems.
As I extensively review in Part I with the basic principles of both Fluorescence
Correlation Spectroscopy (FCS) and ICS, the measurement of transport parame-
ters is performed on raster-scanned images acquired in-vivo by fluorescence or
reflectance confocal microscopy. By the computation of the temporal, spatial and
spatio-temporal correlation function of the detected signal fluctuations, the specific
mode of motion of the imaged particles as well as their characteristic dynamic
parameters (for example, diffusion coefficients and drift velocities) can be identified.
The timescale of the investigated process usually dictates whether the correlation
function should be computed as a temporal correlation function on individual
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raster-scanned xy-images, or as a spatio-temporal correlation function on a xyt-
sequence of images acquired in time lapse mode.

I focus at first on the measurement of flow velocities in geometrically complex
microcirculatory networks: Part II is entirely devoted to the development of a novel
image-processing method, and flow-measurement technique, which I have called
FLICS or FLow Image Correlation Spectroscopy.
FLICS has the peculiarity of exploiting a single raster-scanned xy-image, acquired
by detecting the signal of bright, sparse flowing objects (e.g., red blood cells) in
confocal or multi-photon fluorescence microscopy. By the computation of the Cross
Correlation Function (CCF) of the fluorescence intensity fluctuations detected in
pairs of columns of the image, both the modulus and the direction of the flow
velocity vector can be mapped, with single-capillary sensitivity and sub-second
temporal resolution, in the whole vessel pattern within the imaged field of view.
The explicit analytical expression of the CCF is derived (in Chapter 2) by applying
the principles of scanning fluorescence correlation spectroscopy to drifting opti-
cally resolved objects. While beginning with the general case of three-dimensional
diffusion and uniform flow, I focus then on the simpler case of two-dimensional
flow in the focal plane and, by the approximation of negligible Brownian diffusion,
I refine the data-analysis protocol to optimize the measurement of the flow speed
in extended planar circulatory networks.
The newly developed theoretical framework is subsequently validated (in Chapter
3) in systems of increasing complexity, both in-vitro with fluorescent microspheres
undergoing laminar flow in a simple microfluidic device, and in-vivo in the circula-
tory system of zebrafish embryos. At first, the correctness of the CCF analytical
expression is assessed, by verifying that experimental cross-correlation functions
exhibit the theoretically expected functional dependence on the flow velocity (mod-
ulus and direction) and on the image acquisition parameters. Then, the comparison
with the results of line-scan based flow measurements on the same specimens is
employed to validate the speed values measured by FLICS.
Once accomplished the validation of the theoretical framework, I conclude Part
II (in Chapter 4) with the employment of the FLICS method for the characteriza-
tion of the sinusoidal blood flow in the intricate murine hepatic microcirculatory
system. I evidence the potential applications and relevance of the FLICS method
in immunology, and I outline the main advantages FLICS offers with respect to
state-of-the-art techniques and correlation analyses.
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On the smaller single-cell spatial scale, I successively employ, in Part III, time-
lapse confocal reflectance microscopy and image correlation in both the direct and
the reciprocal space to characterize the intracellular transport of branched, star-
shaped nanoparticles (GNSs, or Gold NanoStars). This investigation is motivated
by the peculiar properties of noble-metal anisotropic nanostructures. As described
in Chapter 5, their plasmon-enhanced absorption and scattering cross-sections, the
ease in synthesis or functionalization, and the controlled cytotoxicity have already
highlighted a number of interesting applications for (gold) nanoparticles, ranging
from photo-luminescence or reflectance imaging, to drug delivery and targeted
photo-thermal therapies. For all these applications, it is crucial to identify the GNSs
complex intracellular trafficking pathways, and to quantitatively address how they
behave once inside the cell cytoplasm.
At first (in Chapter 6) different transport mechanisms, spanning from pure Brow-
nian diffusion to (sub-)ballistic super-diffusion, are revealed by Temporal and
Spatio-Temporal Image Correlation Spectroscopy on the tens-of-seconds timescale.
By combining these findings with numerical simulations and with a Bayesian
(Hidden Markov Model based) analysis of single particle tracking data (Chapter 7),
I ascribe the super-diffusive, sub-ballistic behavior underlying the GNSs dynamics
to a two-state switch between Brownian diffusion in the cytoplasm and molecu-
lar motor-mediated active transport along the semi-flexible oriented filaments of
the cytoskeleton. I propose therefore (in Chapter 8) a novel analytical theoreti-
cal framework for the investigation of intermittent-type transport phenomena by
Fourier-space Image Correlation Spectroscopy (kICS).
The effect of all the dynamic and kinetic parameters (the diffusion coefficient, the
drift velocity and the transition rates between the diffusive and the active transport
regimes) is evaluated on simulated kICS correlation functions. Then I outline the
optimal procedure for the analysis of experimental data and I derive whole-cell
maps for each parameter underlying the GNSs intracellular dynamics.
Capable of identifying even simpler transport phenomena, whether purely diffu-
sive or ballistic, the proposed intermittent kICS approach recovers the simplest
stochastic transport model that accurately describes the experimental data: by not
requiring any prior assumption on its Brownian or super-diffusive nature, this kICS
analysis allows the exhaustive investigation of the dynamics of GNSs as well as of
other biological macromolecules.



Part I

Theoretical background
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Chapter 1

Fluorescence Correlation
Spectroscopy

First developed in 1972 by Magde et al. for the investigation of the binding
reaction of ethidium bromide to double-stranded DNA [1], Fluorescence Cor-

relation Spectroscopy (FCS) is nowadays a well-established technique employed to
measure a multitude of kinetic and thermodynamic parameters, including particle
concentrations [2], translational [3] and rotational [4, 5] diffusion coefficients, flow
velocities [6,7], kinetic rate constants [1,8], triplet state lifetimes [9] and photochem-
ical or photobleaching properties of dyes [10]. In contrast to much more invasive
conventional relaxation methods - which recover kinetic and thermodynamic pa-
rameters from the way a system relaxes back to equilibrium after an initial external
perturbation (for example, an induced concentration gradient or a temperature
jump) - FCS takes advantage of the spontaneous fluctuations of the fluorescence
signal emitted by a highly dilute fluorescent sample in a ∼ µm3 excitation vol-
ume [11, 12]. These fluctuations, whether due to photophysical and photochemical
reactions or to the molecular diffusion in and out of the excitation volume, exhibit
average characteristic dissipation rates that are assigned by the underlying macro-
scopic transport coefficients and chemical rate constants [13]: these parameters can
therefore be quantified by statistically analyzing fluorescence intensity fluctuations
by the computation of the so-called auto- and cross- correlation functions.
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6 Fluorescence Correlation Spectroscopy

1.1 Auto-correlation analysis

The raw data in FCS experiments consist in a temporal intensity trace F(t)
of the fluorescence signal emitted in a ∼ µm3 volume - typically defined by a
diffraction-limited focused excitation laser beam and confocal detection optics -
by a solution of fluorescent molecules with average concentration in the ∼ 1− 100
nM range [12, 14]. Spontaneous fluorescence fluctuations resulting from whatever
process is occurring in this volume are defined as δF(t) = F(t)− < F(t) >t and
analyzed through the computation of the normalized temporal autocorrelation
function G(τ) [12, 14, 15]:

G(τ) =
< δF∗(t)δF(t+ τ) >t

< F(t) >2t
=
< F∗(t)F(t+ τ) >t

< F(t) >2t
− 1 (1.1)

τ is the correlation lag time, while the star symbol ∗ denotes the operation of
complex conjugation. Angular brackets < ... >t define a temporal average over a
given, in principle infinite, time period:

< F∗(t)F(t+ τ) >t= lim
T→+∞ 1

T

∫ T
0

F∗(t)F(t+ τ)dt (1.2)

The auto-correlation function experimentally recovered over a finite data integration
time T approximates therefore the ideal correlation function defined in the limit
T → +∞ [16].

Since by definition the auto-correlation function is the time-averaged product
of the fluorescence intensity fluctuations δF∗(t) at a given time t and δF(t+ τ) at
a delayed time t + τ, G(τ) measures the self-similarity of the signal in time: it is
expected to be a decreasing function of the lag time τ, exhibiting the maximum
value (i.e., the maximum signal correlation) for τ = 0. I begin by deriving the
explicit analytical expression for this decaying function for the general case of
a multiple-population system, with each chemical component undergoing both
diffusive / directed transport and chemical reactions; in the following subsections,
I focus on a few simplified cases (namely, Brownian diffusion of a single fluorescent
species in the absence of chemical reactions and the coupling of free diffusion and
uniform drift) of general interest.

1.1.1 General formalism

I derive the explicit expression for the auto-correlation function of eq. (1.1) by
mostly adopting the notation and formalism originally developed by Magde, Elson
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and Webb [3] and recently reviewed by Krichevsky and Bonnet [17]. I consider
a solution of m species participating in chemical reactions while undergoing
Brownian diffusion and uniform drift. The fluorescence intensity emitted by the
molecules of the ith species at time t can be written [12, 17] as

Fi(t) = φi

∫+∞
−∞ Iexc(r)S(r)Ci(r, t)d

3r (1.3)

where φi is the product of the fluorescence detection efficiency and of the molecules
quantum yield and absorption cross-section; Iexc(r) is the spatial distribution of
the excitation intensity, S(r) is the dimensionless optical transfer function of the
objective-pinhole combination (specifying the effectively collected fraction of the
emitted signal) and Ci(r, t) defines the local concentration of the molecules of
species i. For the sake of compactness, Iexc(r) and S(r) can be combined into a
single function W(r), leading to

Fi(t) = φi

∫+∞
−∞ W(r)Ci(r, t)d

3r (1.4)

This fluorescence signal may fluctuate in time due to both fluctuations δφi of the
molecular quantum yield or absorption cross-section, and number fluctuations
δCi(r, t) related to the molecular transit through the excitation volume: explicitly,

δFi(t) =

∫+∞
−∞ W(r)δ(φiCi(r, t))d

3r (1.5)

For negligible fluctuations affecting the particles absorption and emission rates,
δ(φiCi(r, t)) = δφiCi(r, t) + φiδCi(r, t) ≈ φiδCi(r, t). By further performing a
summation over all m molecular species,

δF(t) =

∫+∞
−∞ W(r)

m∑
i=1

φiδCi(r, t)d
3r (1.6)

The substitution of eq. (1.6) into the auto-correlation function definition (eq. 1.1)
leads to

G(τ) =

∫∫+∞
−∞W∗(r)W(r ′)

∑m
i,j=1φiφj < δC

∗
i (r, t)δCj(r

′, t+ τ) >t d
3rd3r ′(

<
∫
W(r)

∑m
i=1φiCi(r, t)d

3r >t
)2

=

∫∫+∞
−∞W∗(r)W(r ′)

∑m
i,j=1φiφj < δC

∗
i (r, t)δCj(r

′, t+ τ) >t d
3rd3r ′(∑m

i=1φi < Ci >
∫+∞
−∞W(r)d3r

)2
(1.7)
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For a stationary system, the concentration correlation term in the numerator of eq.
(1.7) can be evaluated as

< δC∗i (r, t)δCj(r
′, t+ τ) >t=< δC

∗
i (r, 0)δCj(r

′, τ) > (1.8)

Eq. (1.8) requires the concentration fluctuations δCi(r, t) for i = 1...m. Near
equilibrium, these satisfy [11, 17]:

∂

∂t
δCi(r, t) = Di∇2δCi(r, t) − vi · ∇δCi(r, t) +

m∑
j=1

KijδCj(r, t) (1.9)

The first two terms on the right-hand side of eq. (1.9) describe Brownian diffusion
with diffusion coefficient Di and directed transport with constant velocity vi for
the molecules of the ith species; the last term contains kinetic constants Kij, which
are combinations of the equilibrium concentrations of the various species and of
the chemical reaction rate constants. These differential equations are conveniently
solved in Fourier space: their Fourier transform leads to

∂

∂t
δĈi(q, t) =

m∑
j=1

(−Diδij|q
2|+ iq · viδij + Kij)δĈj(q, t) ≡

m∑
j=1

MijδĈj(q, t) (1.10)

where I have adopted the convention

δĈi(q, t) =
1

(2π)3/2

∫+∞
−∞ δCi(r, t)e

iq·r d3r (1.11)

for the Fourier transform definition in 3D and with Mij ≡ −Diδij|q
2|+ iq ·viδij+Kij.

The solutions of eq. (1.10) are found by the computation of the eigenvalues λ(s) and
of the eigenvectors χ(s) of the matrix M [17]:

δĈi(q, t) =

m∑
s=1

χ
(s)
i h(s)exp(λ

(s)t) (1.12)

The coefficients h(s) are assigned by the initial conditions:

δĈi(q, 0) =

m∑
s=1

χ
(s)
i h(s) −→ h(s) =

m∑
k=1

χ
−1(s)
k δĈk(q, 0) (1.13)
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where χ−1 is the inverse eigenvectors matrix. Globally,

δĈi(q, t) =

m∑
s=1

χ
(s)
i exp(λ

(s)t)

m∑
k=1

χ
−1(s)
k δĈk(q, 0) (1.14)

Eq. (1.14) allows computing explicitly the concentration correlation term of eq.
(1.8):

< δC∗i (r, t)δCj(r
′, t+ τ) >t=< δC

∗
i (r, 0)δCj(r

′, τ) >= (1.15)

=
1

(2π)3/2

∫+∞
−∞ < δC∗i (r, 0)δĈj(q, τ) > e

−iq·r ′ d3q

=
1

(2π)3/2

∫+∞
−∞

m∑
s=1

χ
(s)
j exp(λ

(s)τ)

m∑
k=1

χ
−1(s)
k < δC∗i (r, 0)δĈk(q, 0) > e

−iq·r ′ d3q

=
1

(2π)3

∫∫+∞
−∞

m∑
s=1

χ
(s)
j exp(λ

(s)τ)

m∑
k=1

χ
−1(s)
k < δC∗i (r, 0)δCk(r

′′, 0) > e−iq·(r
′−r ′′) d3qd3r ′′

For an ideal solution, the zero - lag time concentration correlation can be evaluated
[11, 17] as

< δC∗i (r, 0)δCk(r
′′, 0) >=< Ci > δikδ(r− r

′′) (1.16)

Therefore eq. (1.15) turns into

< δC∗i (r, 0)δCj(r
′, τ) >=

< Ci >

(2π)3

∫+∞
−∞

m∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i eiq·(r−r

′) d3q (1.17)

The substitution of eq. (1.17) into the auto-correlation function of eq. (1.7) allows
writing

G(τ) =

∫+∞
−∞ |Ŵ(q)|2

∑m
i,j=1φiφj < Ci >

∑m
s=1 χ

(s)
j exp(λ

(s)τ)χ
−1(s)
i d3q(∑m

i=1φi < Ci > (2π)3/2Ŵ(0)
)2 (1.18)

For the point spread function, a 3D Gaussian is assumed for [-photon excitation
([ = 1, 2) with 1/e2 distances ω0 and ω0z along the radial and axial directions,
respectively [18, 19]:

W(r) =W(x, y, z) =W0exp
{
− 2[(x2+y2)

ω20
− 2[z2

ω20z

}
Ŵ(q) = Ŵ(qx, qy, qz) = [W0ω

2
0ω0z/(8[

3/2)]exp
{
−
ω2o(q

2
x+q

2
y)

8[ −
ω20zq

2
z

8[

} (1.19)
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With respect to the Gaussian-Lorentzian profile alternatively assumed for two-
photon excitation, the 3D Gaussian approximation has the advantage of allowing
the analytical solution of the integrals involved in the correlation function derivation
[20]. The [ = 2 term for two-photon excitation accounts for the non-linearity of
the two-photon absorption process and for the proportionality of the excited
fluorescence signal on the squared excitation intensity [21].
The substitution of eq. (1.19) into eq. (1.18) concludes the derivation of the
auto-correlation function:

G(τ) =

∫+∞
−∞ e−ω

2
o(q

2
x+q

2
y)

4[
−
ω20zq

2
z

4[
∑m
i,j=1φiφj < Ci >

∑m
s=1 χ

(s)
j exp(λ

(s)τ)χ
−1(s)
i d3q

(2π)3
(∑m

i=1φi < Ci >
)2

(1.20)

All the diffusion coefficients, drift velocities and chemical rate constants defining
the dynamics of the investigated m-species system contribute to the decay of the
auto-correlation function, so that in principle all of them can be recovered from
the fit of the experimental G(τ) once the exact q-dependence of the eigenvalues
and eigenvectors of the matrix M has been derived. Experimentally, this is often
hampered by difficulties in both the analytical derivation of λ and χ terms and in
the separation, within the G(τ) decay, of the individual contributions arising from
transport phenomena and chemical reactions. As anticipated previously, the next
Subsections are therefore devoted to the description of two simpler cases that, being
frequently encountered in the analysis of experimental data, will be of particular
interest for the results presented in Parts II and III.

1.1.2 Brownian diffusion

I begin by considering an ideal solution of identical, point-like fluorescent
particles experiencing three dimensional Brownian diffusion with isotropic diffu-
sion coefficient D. The matrix notation and the concentration subscripts for this
single population system (m = 1) are redundant, since the systems of differential
equations (1.9) and (1.10) reduce to

∂
∂tδC(r, t) = D∇2δC(r, t)

∂
∂tδĈ(q, t) = −D|q|2δĈ(q, t)

(1.21)
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The substitution of the solution δĈ(q, t) = δĈ(q, 0)exp(−D|q|2t) into eq. (1.7)
yields

G(τ) =
1

< C >

1

π3/2[−3/2ω20ω0z

1(
1+ τ

τD

) 1√
1+ ζ2 ττD

(1.22)

where the excitation volume form factor ζ and the characteristic diffusion time τD
have been introduced according to ζ = ω0/ω0z and τD = ω20/(4[D) ([ = 1, 2 for
one and two photon excitation, respectively). As shown in Fig. 1.1, the higher τD,
the longer is the auto-correlation decay time (G(τD) ∼ 1/2G(0)). The denominator
of eq. (1.22) contains the effective excitation volume

V =

(∫+∞
−∞W(r)d3r

)2∫+∞
−∞W2(r)d3r

= π3/2[−3/2ω20ω0z (1.23)

Hence recalling the average number of fluorescing particles in the excitation volume,
defined as < N >= V < C >, G(τ) can be written as:

G(τ) =
1

< N >

1(
1+ τ

τD

) 1√
1+ ζ2 ττD

(1.24)

On the one hand, this highlights that the fluctuations in the particle number and
in the fluorescence signal are more and more discernible (and the G(0) amplitude
increases) as the number of detected particles decreases;1 this justifies the previ-
ously mentioned employment of highly diluted solutions and requires the optical
sectioning properties of two-photon excitation or confocal optics. On the other
hand, eq. (1.24) also suggests exploiting the correlation zero-lag amplitude G(0)
to measure, for a calibrated setup with known V, the average concentration of the
investigated fluorescent sample. Analogously, the fluorophores brightness can be
recovered as the product of the temporally-averaged fluorescence intensity times
the zero lag time correlation amplitude.

1The inverse proportionality of G(τ) to < N > can also be obtained by computing G(0) =
<(δF(0))2>

<F(t)>2 = φ2<δN(0)2>

(φ<N(t)>)2
, where φ is the fluorescence quantum yield and F(t) = φN(t) is the

fluorescence emitted at time t by N(t) particles in the excitation volume: for an ideal dilute solution
with particles interacting negligibly with each other, the number of molecules in the volume V obeys
a Poisson distribution so that < δN(0)2 >=< N(t) > and G(0) = 1/ < N(t) > [11].
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Figure 1
In vivo applications of fluorescence correlation spectroscopy (FCS). (a) FCS measurements within a living cell. (b) Typical FCS setup,
recording of fluorescence intensity fluctuations, and calculation of the G(τ ) autocorrelation of the signal. APD, avalanche photodiode.
(c) Schematic representation of FCS-based alternative approaches probing lateral diffusion within membranes. FCCS, fluorescence
cross-correlation spectroscopy.

For microscopy measurements in living cells (Figure 1a), the excitation volume is positioned
within a region of interest and maintained very small by a confocal geometry in one-photon ex-
citation or by multiphoton excitation. Each approach has its advantages and disadvantages (35).
A typical FCS setup consists of a laser beam focused through a microscope objective creating a
small volume of excitation (∼0.3 femtoliter). The fluorescence signal induced by the low number
of diffusing fluorescent molecules is collected in the epi-direction by an avalanche photodiode
detector. The electronic signal is stored or immediately computed to directly generate the auto-
correlation function (ACF) (Figure 1b). The ACF classically measures the self-similarity of the
signal as a function of time. The shape of the ACF curve bears information on the timescale of
the fluctuations within a defined volume. It therefore allows relationships to be drawn between
the average time a molecule stays within the focal volume τD and the lateral diffusion coefficient
D. The interpretation of the ACF shape will depend on the fit by an appropriate mathematical
model function. For membrane measurements, the intersection of the laser with the membrane
defines a two-dimensional Gaussian detection area.

Features of FCS include sensitivity to low concentrations of a fluorescent molecule, noninva-
siveness due to the requirement of low intensity of excitation light, and accuracy due to robust
statistical analytical tools. For more details on the FCS theory, experimental setup, and general
methods of analysis, we refer readers to References 33 and 36–38.
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Figure 1.1: FCS setup and auto-correlation analysis for the investigation of Brownian diffusion.
(a, b) Main components of a confocal FCS setup [22] and fluctuating temporal fluores-
cence intensity trace F(t) produced by molecules diffusing through the excitation volume.
Fluorescence fluctuations are accurately sampled if the emitted signal is detected (by a
photo-multiplier tube or an avalanche photo-diode) with a total measurement time T >> τD
and a temporal resolution ∆t << τD. (c) Auto-correlation function G(τ) for isotropic 3D
Brownian diffusion (eq. 1.24), simulated with D=50 µm2/s, ω0=0.2 µm, ω0z=0.5 µm and
< N >= 1 (continuous line). The correlation half-decay time provides a good estimate
of the mean diffusion time τD (from which D and the hydrodynamic radius of the ob-
served fluorescent molecules can be recovered) and it increases as the diffusion coefficient
decreases; the G(0) amplitude decreases for higher concentrations as discussed in the text.

Multi-component Brownian diffusion

When point-like and non-interacting molecules of two different species (m = 2)
are simultaneously sampled in the excitation volume while undergoing free thermal
diffusion, the dynamics of the system is governed by two independent differential
diffusion equations of the form

∂
∂tδC1(r, t) = D1∇2δC1(r, t)

∂
∂tδC2(r, t) = D2∇2δC2(r, t)

(1.25)

D1 and D2 are the diffusion coefficients of species 1 and 2, respectively; they are
related to the molecular hydrodynamic radii R1 and R2 by the Stokes-Einstein’s
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equation (Di = KT/(6πηRi), where K is Boltzmann’s constant, T is the temperature
and η is the medium viscosity). The matrix M I have introduced in eq. (1.10), as
well as its eigenvalues and eigenvectors, can be readily obtained by taking a Fourier
transform of eqs. (1.25):

M =

[
−D1|q|

2 0

0 −D2|q|
2

]
−→

λ(1) = −D1|q|

2

λ(2) = −D2|q|
2

,


χ(1) = (1, 0)

χ(2) = (0, 1)

(1.26)

Their substitution into eq. (1.20) yields an auto-correlation function which is a
linear combination of two independent terms of the type I have previously derived
for the simpler one-population system:

G(τ) =

2∑
i=1

φ2i < Ni >

(
∑2
k=1φk < Nk >)

2

1(
1+ τ

τDi

) 1√
1+ ζ2 τ

τDi

(1.27)

Each species contributes to the correlation decay, and its contribution is weighted by
its concentration and quantum yield. However, the recovery of exact characteristic
diffusion times τD1 and τD2 by a nonlinear least-squares fit of an experimental G(τ)
requires a minimum separation between the two timescales of diffusion: care has
to be taken in the interpretation of the multi-component fit unless the investigated
diffusion coefficients differ by a factor D1/D2 > 1.6 (for two identical quantum
yields and a high signal to noise ratio). An extensive investigation of the reliability
of FCS measurements of translational diffusion in both one- and two-component
systems is reported in [23].

1.1.3 Brownian diffusion and drift

The theoretical framework of eqs. (1.3)-(1.20) can be readily adapted to the
description of a single population of ideal fluorescent molecules exhibiting a
combination of Brownian diffusion and uniform drift. Several applications of FCS
auto-correlation analyses to the measurement of flows have been reported, with
examples including the investigation of DNA-mediated nuclear trafficking, the
in-vivo measurement of blood flow speeds [24] and the recovery of flow velocities
in microfluidic structures [7, 25].

Let D and v be the diffusion coefficient and three-dimensional (flow or drift)
velocity vector of the investigated objects. Eq. (1.9) reduces to the well-known
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diffusion+drift Fick’s equation

∂

∂t
δC(r, t) = D∇2δC(r, t) − v · ∇δC(r, t) (1.28)

The solution in Fourier space, δĈ(q, t) = δĈ(q, 0)exp(−D|q|2t+ iq · vt), leads to

G(τ) =
1

(2π)3 < C >

∫+∞
−∞ exp

(
−
ω2o(q

2
x + q

2
y)

4[
−
ω20zq

2
z

4[

)
exp(−D|q|2τ+ iq · vτ)d3q

(1.29)
Recalling that ∫+∞

−∞ exp(−ax2 + bx+ c)dx =

√
π

a
exp

(
b2

4a
+ c

)
(1.30)

I perform the three-dimensional integration and obtain [25, 26]

G(τ) =
1

V < C >

1(
1+ τ

τD

) 1√
1+ ζ2 ττD

·

· exp
{
−
( τ
τvx

)2 1(
1+ τ

τD

) − ( τ
τvy

)2 1(
1+ τ

τD

) − ( τ
τvz

)2 1(
1+ ζ2 ττD

)} (1.31)

As before, V = π3/2[−3/2ω20ω0z. Characteristic drift times along the three Cartesian
axes are defined as τvx = ω0/([

1/2vx), τvy = ω0/([
1/2vy) and τvz = ω0z/([

1/2vz):
they determine the relaxation time of the exponential term that, in the presence
of a non-zero drift speed, modulates the nearly-hyperbolic decay produced in the
FCS auto-correlation function by isotropic Brownian diffusion.
For a velocity vector lying in the focal xy-plane (vz = 0), I combine τvx and τvy into
a single drift time τv = ω0/([1/2|v|) and write eq. (1.31) in the simpler form

G(τ) =
1

< N >

1(
1+ τ

τD

) 1√
1+ ζ2 ττD

exp

{
−
( τ
τv

)2 1(
1+ τ

τD

)} (1.32)

No information can be gained on the direction of the drift velocity vector. The τD
and τv characteristic times obtained by the non linear least-squares fit of the exper-
imental correlation function can be exploited to recover the diffusion coefficient
D and the modulus |v| if the necessary conditions on the timescales of drift and
diffusion exemplified in Fig. 1.2 are satisfied.
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! "

" 1, i.e., when the
94drift velocity is much smaller than the ratio D/w, the drift decay largely determines
95the whole ACF and the shape of the decay can easily be discriminated by a
96nonlinear least square fitting procedure (Fig. 10.1b). As an example for a micro-
97sphere 400 nm in size, and a beam radius w ffi 0.4 mm, the diffusion time is
98tD ffi 40 ms. For a drift velocity ffi100 mm/s, the effect of the drift component is
99already evident in the ACF decay (tdrift ffi 2 ms, tdrift=tD ¼ 0:05), and it becomes
100overwhelming for vdrift ffi 1,000 mm/s (tdrift ffi 0.2 ms, tdrift=tD ¼ 0:005). On the
101other hand, for vdrift ffi 10 mm/s, the drift contribution to the ACF is negligible
102(tdrift ffi 20 ms, tdrift=tD ¼ 0:5).

10310.2.3 Generalized Excitation Modes

104Equation (10.8) indicates that the correlation function is basically determined by
105two major contributions, related to the shape of the excitation beam and to the
106dynamics that the molecules are undergoing. For example, when scanning FCS
107excitation mode (Petrasek and Schwille 2008; ries and Schwille 2006; Skinner et al.
1082005; Xiao et al. 2005) or double foci FCS (Xia et al. 1995; Brinkmeier et al. 1999;
109Dittrich and Schwille 2002) mode are adopted, we need to modify the Fourier
110Transform of the beam profile, ŴðqÞ.
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Fig. 10.1 (a) Simulations of the ACF of the fluorescence signal collected from fluorophores with
a diffusion time tD ¼ 400 ms, and drift speeds vdrift ¼ 1,000, 500, 250, 125 mm/s from top to
bottom. The solid, dashed, and dotted lines are the simulation of the pure diffusive, pure drift, and
total correlation functions according to (10.11). For a beam waist radius w0 ¼ 0.4 mm, with a
diffusion coefficient D ¼ 100 mm2/s, the drift times are tdrift ¼ 0.28, 0.56, 1.13, and 2.3 ms from
top to bottom. (b) Simulation of the ACF decay for a pure diffusive motion (dashed line) with
tD ¼ 400 ms and for an almost pure drift motion (tdrift ¼ 200 ms; tD ¼ 40 ms, solid line)
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Figure 1.2: FCS auto-correlation analysis of uniform drift and Brownian diffusion [26]. (a) Dotted
lines: auto-correlation functions G(τ) simulated according to eq. (1.32) with ω0=0.4 µm,
D=100 µm2/s (τD=0.4 ms) and |v|=1000, 500, 250, 125 µm/s (τv=0.4, 0.8, 1.6, 3.2 ms).
In each panel, auto-correlation functions for pure diffusion (simulated according to eq.
1.24 with the same τD=0.4 ms) and pure drift (simulated according to eq. 1.32 with
D=0 and τv values of 0.4, 0.8, 1.6, 3.2 ms increasing from top to bottom) are reported
for comparison (continuous and dashed line, respectively). For τv >> τD (lowest panel)
diffusion dominates the decay of the whole correlation function; the contribution of the
drift exponential factor becomes increasingly discernible as the drift speed increases (upper
panels). (b) Auto-correlation functions simulated according to eq. (1.24) with τD=0.4 ms
(pure diffusion, continuous line), according to eq. (1.32) with τD=0.4 ms and τv=0.2 ms
(diffusion+drift, dotted line) and according to eq. (1.32) with D=0 and τv=0.2 ms (pure
drift, dashed line): the combination of D=100 µm2/s and |v|=2000 µm/s (corresponding to
τv < τD) leads to a correlation function that can not be satisfactorily fit by neither a pure
diffusion nor a pure drift model. Hence if τv < τD the presence of both diffusion and drift
can be inferred from the G(τ) decay. (c) Same as (b) with τv=0.13 ms (|v|=3000 µm/s): if
τv << τD Brownian diffusion almost does not contribute to the correlation decay.

1.2 Cross-correlation analysis

In the previous section, I already pointed out that a multi-component non-
linear fit of experimental FCS auto-correlation functions - whether devoted to the
discrimination of two fluorescent populations with different diffusional properties,
or to the separation of the contributions of diffusion and active transport within
the dynamics of a single population - not always leads to a reliable estimate of the
underlying transport parameters. This hampers, for example, the exploitation of
the changes in the diffusion coefficients accompanying molecular aggregation and
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binding processes for the determination of the concentration and size of reaction
products; since the diffusion time scales only with the third root of the molecular
mass, and a minimum ratio τD2/τD1 of ∼ 1.6 is required in the G(τ) fit, successful
applications have been limited to those cases characterized by a considerable
change in molecular mass upon binding [27, 28]. A second limitation affecting FCS
auto-correlation analyses concerns their lack of sensitivity toward the direction of
drift velocities, due to the symmetric circular shape of the excitation volume.
Both these problems have been overcome by the development and adoption of two
cross-correlation schemes: (i) dual-color fluorescence cross-correlation spectroscopy,
mainly developed for multi-component diffusional analyses in solution, and (ii)
dual-beam fluorescence cross-correlation spectroscopy, devoted to the investigation
of directed transport phenomena.

1.2.1 Dual-color fluorescence cross-correlation spectroscopy

In dual-color Fluorescence Cross-Correlation Spectroscopy (dcFCCS) [29–31],
two differently labeled reaction partners are simultaneously excited by two super-
imposed laser beams (in one-photon excitation configuration) and the spectrally
distinct fluorescence emissions of the two dyes are collected by separate detection
devices. For each detection channel (say, for instance, the green and red channels
G and R), an auto-correlation function is computed according to eq. (1.1):

GG(τ) =
< δF∗G(t)δFG(t+ τ) >t

< FG(t) >
2
t

, GR(τ) =
< δF∗R(t)δFR(t+ τ) >t

< FR(t) >
2
t

(1.33)

Both the G and R channels obviously detect the fluorescence signal emitted by both
single-label and double-label molecules: recalling eq. (1.6),

δFG(t) = φg
∫
Wg(r)δCg(r, t)d

3r+ φgr
∫
Wg(r)δCgr(r, t)d

3r

δFR(t) = φr
∫
Wr(r)δCr(r, t)d

3r+ φrg
∫
Wr(r)δCgr(r, t)d

3r

(1.34)

φg and φr contain, in addition to the detection efficiency, the fluorescence quantum
yield and the absorption cross-section of the green and red dyes, respectively; φgr
and φrg follow the same definition for the green and red dyes in the bound form.
By assuming, for simplicity, equal φ terms for the dyes and identical distributions
Wg(r) and Wr(r) at the two excitation wavelengths, the derivation I have previously
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reported for two non-interacting diffusing populations leads to

GG(τ) =
<Cg>dg+<Cgr>dgr
V(<Cg>+<Cgr>)2

GR(τ) =
<Cr>dr+<Cgr>dgr
V(<Cr>+<Cgr>)2

dm = 1(
1+ τ

τDm

) 1√
1+ζ2 τ

τDm

(m = g, r, gr)

(1.35)

In addition to auto-correlations, a cross-correlation function GGR(τ) is computed
to selectively observe coordinated fluorescence fluctuations in the green and red
channels:

GGR(τ) =
< δF∗G(t)δFR(t+ τ) >t
< FG(t) >t< FR(t) >t

(1.36)

Under the same assumptions adopted for fluorescence quantum yields and optical
transfer functions,

GGR(τ) =
< Cgr >

V(< Cg > + < Cgr >)(< Cr > + < Cgr >)

1(
1+ τ

τDgr

) 1√
1+ ζ2 τ

τDgr

(1.37)
Eq. (1.37) evidences that, in contrast to single-channel auto-correlation functions,
the GGR(τ) decay is only governed by the transport properties of the double-label
species: its diffusion coefficient can therefore be determined without the problems
intrinsically affecting multi-component fitting procedures. Furthermore, the am-
plitude of the cross-correlation curve is a very sensitive parameter to follow the
temporal evolution of the reaction product concentration: GGR(0) = 0 if the solution
only contains single-label molecules, whereas the amplitude increases with the
bound fraction during the temporal evolution of the binding process.
Clearly, the direct proportionality of the cross-correlation amplitude to the con-
centration of bound molecules imposes a lower limit to the detectable green+red
fraction, since too low amplitudes are usually too noisy to be practically analyzed.
Some artifact risks should also be considered when planning a dcFCCS experiment
on a non-ideal system: examples include the modification of the cross-correlation
function due to spectral cross-talk (i.e., the detection of the green dye in the red
detection channel), a decrease in the cross-correlation amplitude due to a partial
overlap of the two excitation volumes and a decrease in the amplitude of the
red auto-correlation function due to the bigger red excitation volume predicted
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by Abbe’s diffraction limit. Since dcFCCS will not be of particular practical rele-
vance for Parts II and III, I refer to [29, 30] for a detailed treatment of dual-color
cross-correlation artifacts and troubleshoots.

1.2.2 Dual-beam fluorescence cross-correlation spectroscopy

A cross-correlation based technique able to overcome the major limitation of
FCS in flow measurements -the lack of sensitivity toward the flow direction- is
dual-beam Fluorescence Cross-Correlation Spectroscopy (dbFCCS) [32–34], that, to
date, has been applied to both flow mapping in microfluidic devices and in-vivo
blood velocimetry [35].
dbFCCS relies on the cross-correlation of the fluorescence signals gathered from two
spatially separated excitation volumes. In the typical experimental realization, these
are obtained, starting from a single laser beam, by two polarizing beam-splitters
and the emitted signals are collected by two optical fibers, each leading to a separate
detector, at a typical ∼ 20−150µm fixed distance [33,34]. The temporal fluorescence
intensity traces F1(t) and F2(t) arising from volumes V1 and V2 fluctuate in time
due to molecular diffusion and flow (Fig. 1.3): it is assumed here that fluorescent
particles diffuse in a three-dimensional space with diffusion coefficient D, while
flowing with uniform planar velocity v = (vx, vy, vz = 0) between V1 and V2.
A normalized cross-correlation function is computed as

G12(τ) =
< δF∗1(t)δF2(t+ τ) >t
< F1(t) >t< F2(t) >t

(1.38)

The analytical derivation of the explicit expression of G12(τ) is similar to the one
reported above for auto-correlation functions. For negligible fluctuations affecting
the fluorophores quantum yield, the substitution of eq. (1.6) into eq. (1.38) leads to

G12(τ) =

∫∫+∞
−∞W∗1 (r)W2(r

′) < δC∗(r, t)δC(r ′, t+ τ) >t d
3rd3r ′

< C >2
∫+∞
−∞W1(r)d3r

∫
W2(r ′)d3r ′

(1.39)

Spatial coordinates r = (x, y, z) and r ′ = (x ′, y ′, z ′) are employed for V1 and V2,
respectively. As in the general derivation of eqs. (1.3)-(1.20), for both one- and
two-photon excitation ([ = 1, 2) W1(r) and W2(r

′) can be approximated by a 3D
Gaussian distribution with 1/e2 distances ω0 and ω0z along the radial and axial
directions. If two excitation volumes of equal size are assumed (ω01 = ω02 ≡ ω0
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Figure 1.3: Dual-beam Fluorescence Cross-Correlation Spectroscopy. In dbFCCS, temporal
fluorescence intensity traces F1(t) and F2(t) are gathered from two separate excitation
volumes V1 and V2 by two detectors. The principles underlying the measurement of flow
speeds by means of dbFCCS can be intuitively explained by considering - for simplicity,
and without loss of generality - a single flowing fluorescent particle. If the particle is
detected at time t1 in the first excitation volume (left column) , the same particle will be
detected - due to the flow - at a delayed time t2 in the second excitation volume positioned
downstream (right column). Hence the maximum cross-correlation (eq. 1.38) between the
temporal traces F1(t) and F2(t) is expected at a delayed time (t2 − t1), equal to the time it
takes for the particle to travel the distance between the volumes. Since the distance between
V1 and V2 is known, the particle speed can be determined from the cross-correlation peak
lag time (i.e., from the particle ’time of flight’) under the hypothesis of uniform flow.
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and ω0z1 = ω0z2 ≡ ω0z),
W1(r) =W01exp

{
− 2[(x2+y2)

ω20
− 2[z2

ω20z

}
W2(r

′) =W02exp
{
− 2[(x ′2−R2x)

ω20
−
2[(y ′2−R2y)

ω20
− 2[z ′2

ω20z

} (1.40)

The vector R = (Rx, Ry, Rz) has been introduced to account for the inter-spot
distance; since the focal spots are assumed to lie in the same xy-plane, Rz = 0.
By recalling the formalism of eqs. (1.14)-(1.17) and the solution of the Fick’s
equation (eq. 1.28) governing the dynamics of diffusing and flowing fluorescent
molecules, I get for the concentration correlation term

< δC∗(r, t)δC(r ′, t+ τ) >t =< δC
∗(r, 0)δC(r ′, τ) >

=
< C >

(2π)3

∫+∞
−∞ exp(−D|q|2τ+ iq · vτ)eiq·(r−r ′) d3q

(1.41)

Once inserted into eq. (1.39), this yields

G12(τ) =

∫+∞
−∞ Ŵ1(q)Ŵ

∗
2 (q)exp(−D|q|2τ+ iq · vτ)d3q

< C > (2π)3Ŵ1(0)Ŵ2(0)
(1.42)

By the substitution of the Fourier transforms Ŵ1(q) and Ŵ∗2 (q) and by the compu-
tation of the resulting Gaussian integral (see eq. 1.30), eq. (1.42) leads in turn to the
expression of the cross-correlation function [33–35]:

G12(τ) =
1

< N >

1

1+ τ/τD

1√
1+ ζ2τ/τD

exp

{
−

|R− vτ|2

ω2o/[(1+ τ/τD)

}
=

1

< N >

1

1+ τ/τD

1√
1+ ζ2τ/τD

exp

{
−

|v|2

ω2o/[

(τ2 + τ2v − 2ττv cosγ)
1+ τ/τD

}
(1.43)

< N >=< C > π3/2[−3/2ω20ω0z and τD = ω2o/(4[D) as previously defined for
auto-correlations. The drift time τV = |R|/|v| is the time needed by fluorescent
particles to cover the distance between the excitation volumes and γ is the angle
subtended by the velocity vector v and the inter-spot distance R (see Figure 1.4). If
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Figure 1.4: Dual-beam fluorescence cross-correlation spec-
troscopy. Two excitation volumes V1 and V2 with radial
waist ω0 are positioned at fixed distance |R|. R sub-
tends an angle γ with the flow velocity vector v. For the
derivation of eq. (1.43), v has been assumed to lie in the
same xy-plane as the two volumes V1 and V2.
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the velocity vector v also has a non-vanishing z−component, the same derivation
leads to the cross-correlation function of eq. (1.43) with a modified Gaussian factor
exp{−[(Rx − vxτ)

2 + (Ry − vyτ)
2]/[ω20/[(1+ τ/τD)] − v

2
zτ
2/[ω20z/[(1+ ζ

2τ/τD)]}.

The cross-correlation function G12(τ) of eq. (1.43) is a peaked function, due
to the Gaussian factor that modulates the hyperbolic decay describing the contri-
bution of Brownian diffusion. The peak position along the lag-time axis (τmax)
and the peak amplitude (G(τmax)) are regulated by the inter-spot distance, by the
flow speed, by the angle subtended by the vectors v and R and by the diffusion
coefficient of the investigated objects.

• The effect of the angle γ on G12(τ) is shown in Fig. 1.5. The maximum
cross-correlation amplitude is found for γ = 0 (i.e., for volume elements aligned
to the flow velocity v); for increasing γ, the probability that a flowing molecule
traverses the second excitation volume having already traversed the first rapidly
decreases, leading to a remarkable decrease of the correlation amplitude. When
γ → 180°, the vectors v and R point in opposite directions (molecules flow from
volume V2 to volume V1) and no cross-correlation is detected when computing

Figure 1.5: dbFCCS: effect of the angle γ on the cross-
correlation function. Cross-correlation functions sim-
ulated according to eq. (1.43) with τD=5 ms, |R|=2
µm, |v|=250 µm/s and increasing angle γ between
v and R; ω0=0.2 µm, ω0z=0.5µm, [ = 1. The de-
crease in the amplitude G(τmax) with increasing γ
is more and more pronounced as the distance |R| is
increased.
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< δF∗1(t)δF2(t+ τ) >t: instead of evaluating the fluorescence fluctuations in volume
V1 at time t and in volume V2 at time t+ τ, I evaluate signal fluctuations in volume
V1 at time t+ τ and in volume V2 at time t. This corresponds to the computation
of the reverse cross-correlation G21(τ) defined as

G21(τ) =
< δF∗2(t)δF1(t+ τ) >t
< F1(t) >t< F2(t) >t

(1.44)

The explicit expression for G21(τ) is given again by eq. (1.43) provided that the
same definition for the angle between v and R is adopted (γ = 0 for v//R).
Experimentally, when no prior information is given concerning the flow direction,
both G12(τ) and G21(τ) are computed: one contains the contribution of flow, dif-
fusion and pseudo-autocorrelation (i.e., the auto-correlation contribution arising
from the detection in channel 1 of photons emitted in volume V2 and viceversa),
while the other only contains pseudo-autocorrelation. The peaked cross-correlation
function immediately assigns the flow direction (V1 → V2 or V2 → V1), and its fit to
eq. (1.43) allows determining, more precisely, the angle γ.
I remark that, for small inter-spot distances (overlapping excitation volumes),
pseudo-autocorrelation can not be neglected, so that the back cross-correlation
should be subtracted from the forth cross-correlation function prior to the fitting
procedure; by contrast, when excitation volumes do not overlap significantly (as in
usual experimental geometries) pseudo-autocorrelation is negligible.

• The effect of the diffusion coefficient D on the cross-correlation peak time
τmax is investigated in Fig. 1.6a, where cross-correlation functions are simulated
with γ = 0 (the most favorable and usually adopted experimental configuration)
for increasing D in the range 10−3−102µm2/s. τmax increases for decreasing D and
asymptotically approaches τ0max - the peak time for an identically zero diffusion
coefficient - as D→ 0. Both τmax and τ0max can be easily derived by computing the
derivative ∂G12(τ)/∂τ; for one-photon excitation and γ = 0 ,

∂G12(τ)

∂τ

∣∣∣∣
τmax

= 0→

τmax = −

ω20
4D − 2D

|v|2
+

√
4D2

|v|4
+ |R|

|v|

ω20
2D +

( |R|
|v|

)2
+
(ω2o
4D

)2
τ0max =

|R|
|v|

= τv

(1.45)

When τD → +∞, the characteristic flow time τv is a good approximation to the
exact peak time τmax. This suggests exploiting the experimentally measured peak
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time τexpmax to easily recover the flow speed according to τexpmax ∼= τv = |R|/|v|. This
fast and easy data processing, that allows avoiding the non-linear least-squares fit
of experimental cross-correlation functions, proofs to be particularly valuable when
investigating flows over extended samples.
The error produced by the approximation τexpmax ∼= τv for D 6= 0 can be quantified
by evaluating the ratio τmax/τ0max, that I report as a function of the diffusion
coefficientD in Fig. 1.6b-c: for a fixed inter-spot distance the discrepancy τmax/τ0max
monotonically decreases for higher values of the flow speed, whereas it decreases
for higher values of the inter-spot distance for a fixed value of the flow speed.

a	   b	   c	  
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Figure 1.6: dbFCCS: effect of the diffusion coefficient on the cross-correlation peak time. (a):
simulated G12(τ) (eq. 1.43) for increasing diffusion coefficient, with |v|=1000 µm/s and
|R|=2 µm. (b), (c): simulated trend of the discrepancy between the exact peak time τmax
and the peak time τ0max computed in the approximation D=0 according to eq. (1.45); |R|=2
µm in (b) and |v|=2000 µm/s in (c). The following parameters have been kept fixed for all
the simulations: γ=0, ω0=0.2 µm, ω0z=0.5 µm. With the typical |R| and |v| values of the
experimental data presented in Part II (2 µm and 1000 µm/s, respectively), the discrepancy
between the peak times is below 10% for diffusion coefficients up to 100 µm2/s.

Figure 1.7: dbFCCS: effect of the flow speed and of
the inter-spot distance on the cross-correlation peak
time. Continuous lines: simulated peak time
τmax (left axis) as a function of the flow speed,
for |R|=2 µm and γ=0; for D=0 the hyperbolic in-
crease of τmax for decreasing speed is retrieved
(eq. 1.45). Dotted lines: simulated τmax (right
axis) as a function of the distance |R|, for |v|=1000
µm/s and γ=0. The same color code is adopted
to identify diffusion coefficients in continuous
and dotted lines.
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1.3 Beyond FCS: image correlation spectroscopy

With a total measurement time typically ranging from a few seconds to a few
minutes and with a very high - even less than a microsecond - temporal resolution,
FCS allows the investigation of dynamic processes on the broad microsecond to
second timescale, covering about six decades in time. These very high temporal
resolution and broad dynamic range are combined to a diffraction-limited, sub-
micron, spatial resolution and make FCS ideally suited for fast diffusion and
chemical reaction measurements in solution. By contrast, the exploitation of a
single stationary laser beam hampers the application of FCS to the investigation
of slow transport phenomena at the sub-cellular level: in the presence of slowly
moving molecules, the measurement at one location would require long time for the
diffusive process to be sampled with sufficiently accurate statistics, so that typical
FCS measurements suffer from noisy correlation functions and photo-bleaching
phenomena [36]. Furthermore, the sampling of fluorescence fluctuations in a single
point in the sample does not provide any information on how the physical, chemical
or biological dynamic process under investigation varies across the whole cell.

A way to overcome the limitations of single-point FCS and extend its range of
applicability in biological systems consists in repeatedly scanning the excitation
laser beam (i.e., scanning the measurement volume) along a pre-defined pattern on
the specimen. sFCS (scanning FCS) [37–40] profits from a confocal laser scanning
microscope to collect fluorescence intensity fluctuations along a linear or circular
path within the focal plane; when the scan path length l is much larger than the
radial size ω0 of the excitation volume, the measurement is effectively performed
at multiple spatial locations, their number being approximately defined by the ratio
l/ω0. Thanks to the beam scanning, the molecules dwell time in the illuminated
volume and, consequently, their photo-bleaching can be reduced [41] and the signal-
to-noise ratio of the recovered auto-correlation function can be improved, when
necessary and for homogeneous samples, by averaging over all the sampled points
(spatial and temporal averaging are equivalent for ergodic systems). Alternatively,
temporal auto-correlation curves can be computed separately for all the points
in the scan path, multiplexing FCS results and deriving dynamic parameters (for
example, transport properties) over a broad spatial scale with diffraction-limited
spatial resolution. The technical requirements for sFCS are those of single-point
FCS, apart from the possibility of scanning the excitation laser beam with a speed
such that molecules do not move appreciably during a single scan period (the
scan period identifies the temporal resolution in sFCS: for commercial confocal
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microscopes equipped with a conventional or a resonant scanning head it is of the
order of 1000 or 100µs, respectively).
The concept of sFCS can be extended to scan paths of arbitrary shape and complex-
ity. Various FCS-derived image-processing methods have been developed to exploit
the spatial and temporal information encoded in confocal images scanned along a
raster pattern: among them, Temporal, Raster, Spatio-Temporal and Fourier-space
Image Correlation Spectroscopy (referred to as TICS, RICS, STICS and kICS, respec-
tively) [42–44] differ in how fluorescence fluctuations are analyzed (in space, time,
or both) and in the timescale they effectively access. The following sections describe
the conceptual basis of TICS, RICS, STICS and Scanning Laser Image Correlation
(SLIC), and discuss their temporal resolution and potential applications. kICS will
be extensively treated in Part III.

1.3.1 Temporal Image Correlation Spectroscopy

Temporal Image Correlation Spectroscopy is the simplest, and closest to FCS,
image correlation technique. The raw data for the TICS analysis consist in an xyt-
stack of images acquired, either in confocal or two-photon microscopy, by detecting
the fluorescence intensity primed by a diffraction-limited excitation laser beam
that is repeatedly raster-scanned on the sample. Each image can be regarded as
a 2D matrix of fluorescence intensity values F(x, y, t), stored as a function of the
pixel location (x, y) and of the sampling time t, with x ∈ [0,Nx − 1], y ∈ [0,Ny − 1]
and t ∈ [0, (T − 1)∆t]; Nx, Ny, T and ∆t are the total number of pixels along
the x- and y- axis of the image (or of the region of interest on which the TICS
analysis is performed), the total number of sampled time-points and the single-
frame acquisition time, respectively.
From the temporal intensity trace F(x, y, t) recorded at image pixel position (x, y),
a correlation function is computed for each lag time τ as

G(τ|x, y) =
< δF∗(x, y, t)δF(x, y, t+ τ) >t

< F(x, y, t) >2t
(1.46a)

G(τ ≡ n∆t|x, y) ≈
1

(T−n)

∑(T−n−1)∆t
t=0 δF∗(x, y, t)δF(x, y, t+ τ)(

1
T

∑(T−1)∆t
t=0 F(x, y, t)

)2 (1.46b)

Intensity fluctuations are defined as δF(x, y, t) = F(x, y, t)− < F(x, y, t) >t as
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is point-FCS experiments (eq. 1.1). The angular brackets denote a temporal
average over the entire time series; x and y are fixed parameters identifying the
pixel position where G(τ|x, y) is computed, not appearing explicitly in the auto-
correlation function. In eq. (1.46b) the approximation to the exact TICS correlation
function computed over a finite discrete data-set is reported.
Since the collection of temporal intensity traces F(x, y, t) is equivalent to performing
several separate single-point FCS experiments (one for each pixel), the explicit
expression of G(τ|x, y) can be derived following the same formalism of Section 1.1.
In the case, for example, of a single population of fluorescent molecules undergoing
Brownian diffusion and/or active transport,

G(τ|x, y) =


1

<N>
1(

1+ τ
τD

) 1√
1+ζ2 τ

τD

(3D diffusion)

1
<N>

1(
1+ τ

τD

) 1√
1+ζ2 τ

τD

exp

{
−
(
τ
τv

)2 1(
1+ τ

τD

)} (3D diffusion and 2D flow)

(1.47)

The characteristic diffusion and drift times follow the definitions previously re-
ported: τD = ω20/(4[D) and τv = ω0/([

1/2|v|). Once instrumental parameters ω0
and ζ have been independently calibrated (for example, by resolution measure-
ments on sub-resolved immobile fluorescent spheres), D and |v| can be recovered
from the fit to eq. (1.47) of experimental correlation functions: diffusion coeffi-
cients and speed values, determined in each pixel, can therefore be mapped with
diffraction-limited resolution across the imaged area. This obviously applies not
only to transport phenomena, but also to kinetic processes and chemical reactions
leading to fluorescence intensity fluctuations on the timescale that can be investi-
gated provided the total measurement time T and the temporal resolution ∆t. ∆t is
equal to the temporal separation between consecutive frames in the xyt-stack: with
the typical ∼ 0.3− 3 s frame rate of commercial confocal microscopes on 512x512
images, TICS is ideally suited to map dynamic processes on the second-to-minute
timescale. It has already been applied to the investigation of the heterogeneities
in the dynamics of α5-integrin and α-actinin in the context of the formation and
disassembly of adhesions during cell migration [45], with typical diffusion coeffi-
cients ranging from 10−3µm2/s to the detection limit of ∼ 10−5µm2/s determined
with control experiments on immobilized fluorescent spheres [46].

In an alternative definition of the TICS correlation function [46–48], fluorescence
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intensity fluctuations are computed as the difference between the fluorescence
intensity at pixel location (x, y) at time t and the spatially-averaged image intensity:

δF(x, y, t) = F(x, y, t)− < F(x, y, t) >xy (1.48)

The auto-correlation function, computed on a discrete data-set as

G(τ ≡ n∆t) = 1

NxNy

Nx−1∑
x=0

Ny−1∑
y=0

{
1

T − n
·

·
(T−n−1)∆t∑

t=0

δF∗(x, y, t)δF(x, y, t+ τ)∑Nx−1
x ′=0

∑Ny−1
y ′=0 F(x

′, y ′, t)

NxNy

∑Nx−1
x ′=0

∑Ny−1
y ′=0 F(x

′, y ′, t+ τ)

NxNy

} (1.49)

is the result of a spatial average over the imaged area or the selected region of in-
terest. The averaging operation improves the statistics and the signal-to-noise ratio
of the temporal auto-correlation, at the expence of spatial resolution: recovered
transport and kinetic parameters represent average values over the entire analyzed
region. Eq. (1.49) should therefore be applied to highly homogeneous cellular
compartments or regions of interest.

Irrespectively of the adopted definition for the auto-correlation function, the
exploitation of raster-scanned xy-images, and of the morphological information
they are intrinsically endowed with, allows the a posteriori selection of regions of
interest and a more precise and controlled positioning of the excitation volume
with respect to single-point FCS cellular experiments. This advantage is common
to all image correlation techniques.

1.3.2 Raster Image Correlation Spectroscopy

The theory and principles underlying Raster Image Correlation Spectroscopy
(RICS) extend the approach of Image Correlation Spectroscopy (ICS) developed by
Petersen et al. [49]. ICS, mainly devoted to the study of aggregation phenomena
and to the quantification of the density of receptor clusters on cellular membranes,
relies on the spatial correlation of the fluorescence intensity values recorded in
a single raster-scanned xy-image. The two-dimensional spatial auto-correlation
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function, defined for spatial lag variables ξ and η as

G(ξ, η) =
< δF∗(x, y, t)δF(x+ ξ, y+ η, t) >xy

< F(x, y, t) >2xy
(1.50)

is approximated on a discrete data-set by

G(ξ, η) ≈

1

(Nx − ξ)(Ny − η)

∑
x

∑
y δF

∗(x, y, t)δF(x+ ξ, y+ η, t)( 1

NxNy

∑Nx−1
x=0

∑Ny−1
y=0 F(x, y, t)

)2 (1.51)

The computation is generally performed for ξ ∈ [−Nx/2,Nx/2], η ∈ [−Ny/2,Ny/2].
Summations over x and y extend from x = 0, y = 0 to x = (Nx − 1 − ξ), y =
(Ny − 1− η) for positive ξ and η; for negative ξ and η, summations extend from
x = |ξ|, y = |η| to x = (Nx − 1), y = (Ny − 1). As for single-point FCS, the
variance of the fluorescence intensity fluctuations is equal to the value of the auto-
correlation in the limit of vanishing ξ and η; since the variance, in turn, is inversely
proportional to the average number of molecules in the excitation volume, the
density of fluorescent particles can be inferred from the experimental, extrapolated
G(0, 0) amplitude [49]:

G(0, 0) = lim
ξ,η→0G(ξ, η) = 1

< N >
(1.52)

Under the assumption that molecules do not move substantially on the timescale
of a single image acquisition, G(0, 0) is recovered by fitting the ICS spatial correla-
tion function to a 2D Gaussian with 1/e2 radius σ:

G(ξ, η) = G(0, 0)exp

{
−
2(ξ2 + η2)

σ2

}
(1.53)

For sub-resolved sized fluorescent objects, σ equals the excitation laser beam waist
ω0. The measured value for < N > can be employed to obtain the number of im-
aged fluorescent entities (each cluster contributing to the detected signal as a single
entity): the size of the clusters, if present, and the number of receptors per cluster
should be inferred by combining ICS results to calibration concentration-dependent
studies [49].
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In RICS [50–53], the theoretical framework of ICS is extended to account for the
displacement of the investigated fluorescent objects during image acquisition: in
this case, the 2D spatial correlation function of eq. (1.50) decays on a spatial scale
defined not only by the size of the excitation volume, but also by the transport prop-
erties of the imaged particles. To illustrate the point, I consider signal fluctuations
due to the diffusion of particles in a highly dilute homogenous medium, neglecting
other possible sources of fluorescence fluctuations such as rotational diffusion or
conformational transitions. For nearly immobile particles, as in ICS, as different
spatial locations are sampled in the raster-scanned image the intensity detected
in different pixels is correlated only if the pixels are within the size of the PSF:
sub-resolved fluorescent objects appear in the xy-image as Gaussian spots with
width assigned by the excitation beam waist, and the spatial correlation function
approaches the shape of the laser beam PSF. By contrast, for diffusing particles,
fluorescence correlation can be detected in pixels separated by a distance greater
than the spatial extent of the PSF due to the particle motion between them; diffusion
makes fluorescent objects appear in the xy-image as irregular, asymmetric streaks,
depending on the magnitude of the diffusion coefficient and on the adopted scan
speed. Ideally, the excitation beam should be raster-scanned on the sample at a rate
such that the very same molecule is excited, and detected, in a few adjacent pixels
along the horizontal x-direction (the fast-scan axis) and in a few consecutive lines
along the vertical y-direction (the slow-scan axis). The correlation function appears
in this case elongated along the horizontal axis, with increasing width along the
vertical axis for decreasing D (Fig. 1.8).
The tight interplay of transport parameters and image acquisition settings has to

be accounted for in the derivation of the explicit expression of the spatial correlation
function of eqs. (1.50-1.51). Since RICS is effectively the limiting case of STICS
(Spatio-Temporal Correlation Spectroscopy) for vanishing lag time, I refer to Section
1.3.3 for the complete derivation, and just report here the analytical solution for
the case of 2D isotropic Brownian diffusion with diffusion coefficient D [50, 51]
investigated in one-photon excitation configuration:

G(ξ, η) =
1

< N >

1(
1+

4D(ξτp+ητl)
ω2o

)exp{− |ξδxω0
|2 + |ηδxω0

|2(
1+

4D(ξτp+ητl)
ω2o

)} (1.54)

< N >=< C > πω20, δx is the pixel size; τp and τl are the pixel dwell time and
the line scan time, respectively. With a typical τp of the order of a few microsec-
onds and with τl of the order of a millisecond, RICS bridges the gap between
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Figure 1.8: Raster Image Correlation Spectroscopy. Exemplifying RICS correlation functions
G(ξ, η) (upper panels) and G(ξ, η = 0), G(ξ = 0, η) profiles (lower panels) simulated
according to eq. (1.54) for D=0.1 µm2/s (column a), D=4 µm2/s (column b) and D=20
µm2/s (column c). < N >=1, ω0=0.2 µm, δx=0.05 µm, τl=1 ms and τp=1.9 µs; ξ and η
are in pixel units. In the literature, experimental spatial correlation functions are usually
reported in the whole range ξ ∈ [−Nx/2,Nx/2], η ∈ [−Ny/2,Ny/2].

the timescales of single-point FCS (∼ µs) and ICS (∼ s). Diffusion coefficients that
can be measured range from ∼ 0.1µm2/s (typical of transmembrane proteins and
receptors) up to ∼ 80µm2/s (for free protein diffusion in solution). The spatial
resolution, as previously discussed for TICS, is regulated by the size of the region
of interest over which G(ξ, η) is averaged and computed.

Operatively, G(ξ, η) is computed separately on each frame of the acquired
xyt-stack; the RICS correlation functions are subsequently averaged to ensure an
adequate sampling of the dynamic process under investigation. General guidelines
regarding the minimum number of frames, as well as the optimal image acquisition
parameters and scan settings, are provided in [52] together with a characterization
of the effect of analogue detectors on the RICS correlation function.
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Table 1. Summary of characteristic times for various cellular processes and the techniques that can be used to measure these processes

Characteristic Characteristic
Process time fluctuation amplitude Technique

Rotational diffusion 1–10 µs 1–3 counts Polarized FCS
Blinking 1–10 µs 1–10 counts FCS
Diffusion of a small molecule in solution 0.2 ms 1–10 counts FCS, S-FCS, RICS
Diffusion of GFP in the cytoplasm 1 ms 1–10 counts FCS, S-FCS, RICS
Lipid or lipid anchored protein diffusion 10 ms 1–10 counts FCS, S-FCS, RICS, FRAP
Diffusion of a protein in a membrane 100 ms 1–10 counts t-ICS, FRAP
Vesicle transport 0.1–1 s 100 to 1000 counts t-ICS
Weak binding–unbinding 0.1–10 s 1–100 counts FCS, S-FCS, t-ICS, TIRF t-ICS

At present, an ideal method fulfilling these criteria has
not yet been described in detail. Due to the nature of the
scanning mechanism CLSM fluorescence images inherently
capture a wide range of dynamic information potentially
providing details about underlying biological processes within
the cell. As the laser performs the raster scanning movement,
it creates a space–time matrix of pixels within the image.
Since the temporal and spatial sampling of the laser beam
during the raster scanning is known, that is, the time the
laser samples each pixel (pixel dwell time); time between scan
lines and time between images. Therefore, the images contain
information on the microsecond time scale for pixels along
the horizontal scanning axis, millisecond time scale along
the vertical scanning axis or between scan lines, and on the
sub-second to second or longer time scale between successive
images. Using the RICS correlation technique it is possible
to generate spatial-temporal maps of dynamics occurring on
the microseconds to milliseconds time scale across the cell. If
the RICS analysis is performed in combination with temporal
image correlation spectroscopy (t-ICS) (Wiseman et al., 2000)
performed between images within an image time series on
the seconds time scale (or longer) then the two methods
provide dynamic information from microseconds to minutes or
hours.

RICS can be performed on standard confocal images taken
from commercial CLSMs opening up this type of analysis
to a large number of researchers. In general, commercial
CLSMs are sensitive, their operation is automatic and their
performance has been optimized due to the large number of
manufacturers, their large scale use and long term availability
in the marketplace. However, in general the light detection of
CLSMs is analogue in which the current of a photomultiplier
detector is integrated and sampled at a specific frequency.
In contrast, FCS instruments traditionally rely on photon
counting detectors, where the pulse from individual detected
photons is discriminated, and the number of photons detected
in a certain time window is counted. More recently, detectors
have been employed which allow the time interval between
detected photons to be measured. In general, analogue
detectors have largely been avoided in FCS analyses because the

integration circuit in analogue detectors used before the digital
sampling of the current can introduce unwanted correlations.
In this paper we address the detection of spatial and temporal
intensity fluctuation correlations using analogue detection on
a commercial Olympus Fluoview 300 microscope. Guidelines
for instrument settings, collecting images and performing the
RICSanalysisareprovided.Thedatashowthatstandardcurves
can be generated to determine protein concentrations both in
solution and in the cell. In addition, methods are presented
to show how large spatial structures within the cell or slow
movement of these structures or the cell as a whole during
image acquisition can be removed from spatial autocorrelation
function (ACFs) so that protein concentrations and dynamics
can be determined.

Materials and methods

Tissue culture

Cell culture, plasmids and sample preparation have been
described in detail elsewhere (Laukaitis et al., 2001; Webb
et al., 2004). Briefly, for EGFP expression cells were transfected
with 1 µg of DNA and lipofectamine reagent (Invitrogen,
Carlsbad, California, U.S.A.) 24–48 h prior to imaging, as
previously described. EGFP expressing or stably transfected
paxillin-EGFP cells were lifted with trypsin and plated
in CCM1 medium (Hyclone, Utah, U.S.A.) buffered with
15 mM HEPES on homemade 35 mm glass bottomed dishes
coated with 2 µg mL−1 fibronectin and maintained at 37◦C
during imaging with a Warner Instruments heated stage insert
(Warner Instruments, Hamden, Connecticut) and a Bioptechs
(Bioptechs, Butler, Pennsylvania, U.S.A.) objective heater.

RICS theory

Details of the theory for RICS have been published previously
(Digman et al., 2005a). Briefly for raster scanning the spatial
componentofthecorrelationfunctiondecaysduetomovement
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Figure 1.9: Characteristic times for various cellular processes and suitable techniques for their
investigation [52]. FRAP stands for Fluorescence Recovery After Photo-bleaching.

Immobile fraction subtraction

Large, immobile fluorescent structures are often detected in live-cell (confocal
or two-photon excitation) imaging. To isolate the contribution of fast diffusing
molecules in the RICS correlation function, a high-pass filter must be applied to the
confocal xyt-stack prior to the computation of the correlation function. Basically,
for each pixel location (x, y) at a given time point t, the raw detected fluorescence
intensity F(x, y, t) is replaced by a corrected pixel intensity f(x, y, t):

f(x, y, t) = F(x, y, t)− < F(x, y, t) >t + < F(x, y, t) >xyt (1.55)

The average intensity of the pixel time trace < F(x, y, t) >t is subtracted to eliminate
the contribution of bright, immobile structures; the scalar average intensity of the
entire stack < F(x, y, t) >xyt is then added to avoid oscillatory, noisy correlation
functions, that would be obtained otherwise due to spatially-averaged image
intensities close to zero [50, 52]. The same definition for corrected pixel intensities
can also be adopted for TICS and STICS analyses. The only drawback is that after
the immobile population removal the correlation amplitude G(0, 0) is no longer
directly related to the average number of molecules in the excitation volume.
A similar correction, differing in the computation of < F(x, y, t) >t on a reduced
number of frames (moving window averaging), can be applied to correct for slow
cellular movements [54].
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1.3.3 Spatio-Temporal Image Correlation Spectroscopy

The STICS [48, 55, 56] analysis of an xyt-stack of images combines the temporal
information of single pixel intensity traces with the spatial information embedded
in the whole imaged field of view. A generalized spatio-temporal correlation
function is computed, for each lag time τ and for spatial lag variables ξ and η, as

G(ξ, η, τ) =

〈
< δF∗(x, y, t)δF(x+ ξ, y+ η, t+ τ) >xy
< F(x, y, t) >xy< F(x, y, t+ τ) >xy

〉
t

(1.56a)

≈ < δF
∗(x, y, t)δF(x+ ξ, y+ η, t+ τ) >xyt

(< F(x, y, t) >xy)2
(1.56b)

By definition, G(ξ, η, τ) is computed as a temporal average over all pairs of im-
ages a time τ apart and as a spatial average over all pairs of pixels (a lag time
τ apart) separated by distances ξ and η along the horizontal and vertical direc-
tions, respectively. Spatially-averaged intensities of the entire xy-images (or of
the selected region of interest on which the STICS analysis is performed) at time
t and time t + τ in the temporal series, appearing in the denominator of eq.
(1.56a), are exploited for the computation of fluorescence intensity fluctuations as
δF(x, y, t) = F(x, y, t)− < F(x, y, t) >xy. When < F(x, y, t) >xy≈< F(x, y, t + τ) >xy
∀t, τ (i.e., when the spatially averaged intensity is nearly the same for all the images
of the stack), the approximation of eq. (1.56b) applies. Globally, G(ξ, η, τ) can be
regarded as a time series in the temporal variable τ, each frame being the average
spatial correlation (function of ξ and η delays) of pairs of images a fixed lag time τ
apart.
As for ICS, the computation is generally performed for ξ ∈ [−Nx/2,Nx/2] and
η ∈ [−Ny/2,Ny/2], with summations over x and y extending from x = 0, y = 0 to
x = (Nx − 1− ξ), y = (Ny − 1− η) for positive ξ and η, and from x = |ξ|, y = |η| to
x = (Nx − 1), y = (Ny − 1) for negative ξ and η.

Exactly as for single-point FCS, the explicit expression of the correlation function
G(ξ, η, τ) is determined by both the geometry of the excitation volume and the
dynamic processes underlying fluorescence intensity fluctuations. I focus here
on a single species of fluorescent objects exhibiting a combination of isotropic 2D
Brownian diffusion and uniform drift in the focal xy-plane; the more complex case
of transport phenomena coupled to binding reactions will be the object of Part III.
The formalism I adopt is similar to the one of eqs. (1.3)-(1.20). Provided the
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convolution integral

δF(x, t) = φ

∫+∞
−∞ d2rW(r− x)δC(r, t) (1.57)

for the fluorescence intensity fluctuations detected at spatial coordinates x = (x, y)
at time t, its substitution into the numerator of eq. (1.56b) yields

g(∆, τ) ≡ g(ξ, η, τ) ≡< δF∗(x, y, t)δF(x+ ξ, y+ η, t+ τ) >xyt=

= φ2 lim
R→+∞ 1

R2

∫R/2
−R/2

d2x

∫∫+∞
−∞ d2rd2r ′W∗(r−x)W(r ′−x−∆) < δC∗(r, t)δC(r ′, t+τ) >t

= φ2 lim
R→+∞ 1

R2

∫R/2
−R/2

d2x

∫∫+∞
−∞ d2rd2r ′W∗(r−x)W(r ′−x−∆) < δC∗(r, 0)δC(r ′, τ) >t

(1.58)
The vector ∆ has been introduced according to ∆ = (ξ, η)δx (δx being the pixel size)
and the spatial average has been replaced by the integral over an area R2, following
the notation of eq. (1.2).
By recalling eqs. (1.15)-(1.17) and the Fick’s equation for drift and diffusion (eq.
1.28), I express the concentration correlation term as

< δC∗(r, 0)δC(r ′, τ) >=
< C >

(2π)2

∫+∞
−∞ e(−D|q|2τ+iq·vτ)eiq·(r−r

′) d2q (1.59)

When substituted into eq. (1.58) together with the Fourier transforms of the
excitation distributions W, it yields

g(∆, τ) =
φ2 < C >

(2π)4
lim
R→+∞ 1

R2

∫R/2
−R/2

d2x

∫+∞
−∞ d2r

∫+∞
−∞ d2r ′

∫+∞
−∞ d2q ′Ŵ∗(q ′)eiq

′·(r−x)·

·
∫+∞
−∞ d2q ′′Ŵ(q ′′)e−iq

′′·(r ′−x−∆)
∫+∞
−∞ d2q e(−D|q|2τ+iq·vτ)eiq·(r−r

′) (1.60)

Recalling that in two dimensions
δ(s) = 1

2π

∫+∞
−∞ eik·s d2k = limR→∞ 1

2π

∫R/2
−R/2 e

ik·s d2k

δ(0) = limR→∞ 1
2π

∫R/2
−R/2 d

2k = limR→∞ 1
2πR

2

(1.61)
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g(∆, τ) can be rewritten as

g(∆, τ) =
φ2 < C >

(2π)

1

R2

∫+∞
−∞ d2q

∫+∞
−∞ d2q ′

∫+∞
−∞ d2q ′′Ŵ∗(q ′)Ŵ(q ′′)·

·exp
{
iq ′′ · ∆

}
exp

{
−D|q|2τ+ iq · vτ

}
δ(q+ q ′)δ(q ′′ + q)δ(q ′′ − q ′) (1.62)

Successive integrations over q and q ′′ lead to

g(∆, τ) =
φ2 < C >

(2π)

1

R2

∫+∞
−∞ d2q ′

∫+∞
−∞ d2q ′′Ŵ∗(q ′)Ŵ(q ′′)·

·exp
{
iq ′′ · ∆

}
exp

{
−D|q ′′|2τ− iq ′′ · vτ

}
δ(q ′′ − q ′)δ(q ′ − q ′′) → (1.63)

g(∆, τ) =
φ2 < C >

(2π)

1

R2

∫+∞
−∞ d2q ′|Ŵ(q ′)|2exp

{
iq ′ · ∆−D|q ′|2τ− iq ′ · vτ

}
δ(0)

= lim
R→∞ φ2 < C >

(2π)

1

R2

∫+∞
−∞ d2q ′|Ŵ(q ′)|2exp

{
iq ′ · ∆−D|q ′|2τ− iq ′ · vτ

}
R2

2π

=
φ2 < C >

(2π)2

∫+∞
−∞ d2q ′|Ŵ(q ′)|2exp

{
iq ′ · ∆−D|q ′|2τ− iq ′ · vτ

}
(1.64)

If the excitation distribution W(r) is approximated with a 2D Gaussian with radial
1/e2 distance ω0 and amplitude W0,

Ŵ(q ′) =
W0ω

2
o

4
exp

{
−
ω20|q

′|2

8

}
(1.65)

Once substituted into eq. (1.64) it leads to a Gaussian integral (analogous to eq.
1.30) that can easily be solved into

g(∆, τ) =
W2
0φ

2 < C > ω20
16π

1(
1+ 4Dτ/ω20

)exp{− 1

ω20

|∆− vτ|2

1+ 4Dτ/ω20

}
(1.66)

The lag time τ is given explicitly by τ = ξτp + ητl + ψτf, where τp is the pixel
dwell time, τl is the line scan time, τf is the inverse of the frame rate and ψ is the
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delay, in frame units, between the pairs of images a time ψτf apart exploited for
the computation of g(ξ, η, τ).

g(ξ, η, τ) =
W2
0φ

2 < C > ω20
16π

[
1+

4D(ξτp + ητl +ψτf)

ω20

]−1
·

·exp
{
−
1

ω20

[ξδx− vx(ξτp + ητl +ψτf)]
2(

1+
4D(ξτp+ητl+ψτf)

ω20

) }
·exp
{
−
1

ω20

[ηδx− vy(ξτp + ητl +ψτf)]
2(

1+
4D(ξτp+ητl+ψτf)

ω20

) }
(1.67)

For a typical 1024x1024 image, scanned with a 400Hz line frequency, τl = 2.5ms
and τp = 2.4µs; if the STICS analysis is performed on a 64x64 ROI, ξτp + ητl ∼
2.5 − 80ms << τf ∼ 1 − 5s. Under this condition (τ = ξτp + ητl + ψτf ≈ ψτf), τ
can be simply regarded as an integer multiple of the image scan time τf and, for
a fixed lag time, eq. (1.67) can be approximated by a 2D Gaussian in the spatial
delays ξ and η. By further dividing by the squared spatially averaged intensity
< F(x, y, t) >2xy= φ2Ŵ(0)2 < C >2, the normalized STICS correlation function
G(ξ, η, τ) is obtained:

G(ξ, η, τ) ≈ 1

< C > πω20

1(
1+ 4Dτ

ω20

)exp{− 1

ω20

[ξδx− vxτ]
2(

1+ 4Dτ
ω20

) }exp{− 1

ω20

[ηδx− vyτ]
2(

1+ 4Dτ
ω20

) }
(1.68)

For vanishing lag time ψτf, G(ξ, η, τ = ξτp + ητl) reduces to the RICS spatial
correlation function. If fluorescent objects move appreciably during the time
required for a single image acquisition, it can be exploited to recover transport
parameters as previously pointed out with eq. (1.54). In this case the computation
of G(ξ, η, τ) for higher τ values (for non-zero ψτf values) is not useful, since the
temporal resolution is too low for intensity fluctuations to be correlated between
successive images. By contrast, when particles move on the second-to-minute
timescale, G(ξ, η, τ = ξτp+ητl) coincides with the PSF-sized 2D Gaussian of Image
Correlation Spectroscopy and G(ξ, η, τ) with ψτf 6= 0 can be exploited to recover
information on the particles motion. Precisely, the variance of G(ξ, η, τ) increases
with the lag time and with the diffusion coefficient of the investigated objects,
equally along the ξ- and η- directions as a consequence of the tendency of the
diffusing particles to exit the correlation area in a symmetric way. D can therefore
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be recovered by surface fitting the experimental 2D correlation functions to eq.
(1.68) for each lag time τ and by the linear regression of the variance-versus-τ
plot. Information on drift velocities (both modulus and direction) can instead be
recovered from the coordinates (ξ, η)max of the peak of the correlation function.
The peak value is located at (ξ, η)maxδx = (0, 0) if vx, vy = 0, whereas it shifts
at (ξ, η)maxδx = (vxτ, vyτ) when |v| 6= 0. This allows measuring the x- and y-
components of the drift velocity by simply tracking the Gaussian peak coordinates
as a function of τ. I finally remark that all the transport parameters, apart from the
drift velocity direction, can also be recovered by the STICS amplitude at vanishing
spatial delays, G(ξ = 0, η = 0, τ), coinciding with the TICS correlation function of
eq. (1.49).

1.3.4 Scanning Laser Image Correlation

This Subsection concludes the general treatment of Image Correlation Spec-
troscopy with Scanning Laser Image Correlation (SLIC) [57]: conceived as the
imaging analogue of dual-beam fluorescence cross-correlation spectroscopy, it will
be exploited for hemodynamics measurements in Part II.
SLIC exploits images acquired by means of a line-scanning procedure in fluores-
cence confocal or two-photon excitation microscopy. A linear path within the
sample is repeatedly scanned in time and the consecutive scans are juxtaposed
along the vertical direction in the form of a so-called xt-image: adjacent pixels
along the horizontal axis represent adjacent positions along the scan path, while
consecutive pixels along the vertical axis provide successive fluorescence inten-
sity measurements gathered from the same spatial location of the sample. In the
presence of directed motion, the scan path is conveniently aligned to the flow
direction and a scan speed much higher than the speed of the investigated objects
is selected: in this case flowing particles appear as diagonal lines with a slope
inversely proportional to their speed (Fig. 1.10). In the limiting case of immobile
particles vertical lines are obtained, whereas objects much faster than the scan
speed create horizontal lines in the xt-image.
Quantitative information concerning the drift speed can be obtained by cross-
correlating the fluorescence intensity fluctuations detected in pairs of columns of
the image: exactly as for dbFCCS (eq. 1.38), molecular flow and diffusion from
column 1 to column 2 are detected by computing

G12(τ) =
< δF1(t)δF2(t+ τ) >t
< F1(t) >t< F2(t) >t

(1.69)
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Figure 1.10: Scanning Laser Image Correlation. (a): xy-image acquired along a conventional
raster-pattern by detecting the fluorescence signal of 0.1 µm fluorescent microbeads un-
dergoing laminar flow in a square borosilicate capillary (800 µm nominal square section);
the scan speed is adjusted to be much higher than the speed of the flowing objects, which
appear in the image as diffraction-limited fluorescent quasi-Gaussian spots. Suppose now
a linear scan path is selected (an exemplifying possible choice is depicted as a dashed
line in panel a): the excitation laser beam does not follow a raster pattern any more, but
repeats in time the scan of the same line. The consecutive scans can be aligned along the
vertical direction as shown in panel (b); the horizontal x-axis of the resulting image defines
adjacent positions along the scan path (denoted as pixels A, B, C, etc.), while the vertical
axis now encodes the temporal information: the first column contains the fluorescence
intensity registered in A during successive scans (A1, A2, A3, etc.), the second column
contains the fluorescence intensity registered in B during successive scans (B1, B2, B3, etc.),
and so on. An exemplary resulting xt-image acquired along the linear path depicted in (a)
is reported in panel (c). As described in the text, particles flowing with different speeds v1
and v2 produced in the image diagonal lines with different slopes.

Explicitly, the only difference to be accounted for in the derivation of G12(τ) with
respect to the dual-beam case is that fluorescence is not sampled simultaneously in
both excitation volumes: they are separated in time by an interval Rτp, where τp is
the pixel dwell time and R is the distance, in pixel units, between the two columns.
Rτp sums to an integer multiple of the line scan time τl (∼ ms) in defining the lag
time τ=(Rτp + ψτl). As long as Rτp << τl (a condition that is typically satisfied,
especially for small column distances), no formal difference exists between the SLIC
configuration and the dual-beam setup. The cross-correlation G12(τ) is explicitly
given by:

G12(τ) =
1

< N >

1

1+ τ/τD

1√
1+ ζ2τ/τD

exp

{
−

|R− vτ|2

ω2o/[(1+ τ/τD)

}
(1.70)
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→ G12(τ) =
1

< N >

1

1+ τ/τD

1√
1+ ζ2τ/τD

exp

{
−

|v|2

ω2o/[

(τ2 + τ2v − 2ττv cosγ)
1+ τ/τD

}
(1.71)

It resembles eq. (1.43), with the inter-spot distance |R| replaced by the separation
Rδx between the two columns; the pixel size δx is typically a fraction of the excita-
tion beam waist, so that spatial locations along the scan orbit are oversampled with
respect to ω0. What has been previously pointed out for dbFCCS regarding the
effect of the diffusion coefficient D, of the scan speed |v| and of the angle γ between
the drift velocity and the inter-column vector on the cross-correlation peak time
and amplitude equally applies in the SLIC case.
In summary, while sharing its theoretical framework, SLIC offers two main advan-
tages with respect to dbFCCS: (i) the exploitation of commercially available confocal
microscopes instead of an ad-hoc experimental setup and (ii) the possibility of in-
vestigating, on a single xt-image, multiple column distances. This has already been
exploited within the Pair Correlation approach [37, 58] to evidence the presence of
barriers and obstacles to diffusion and flow in intracellular compartments.
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Chapter 2

FLICS: A Novel Method for Flow
Measurements

The measurement of flow fields and velocities in micron-scaled structures is
required in a wide range of disciplines ranging from physics, engineering and

chemistry to biology and medicine. Microfluidics, referring to both the theoreti-
cal modeling and the development of devices for controlling and manipulating
fluids in vessels less than a millimeter in width [59], is developing into a hot
research topic. It provides new methodologies to tackle biological issues down
to the single cell level and allows investigating the physics of fluid dynamics at
the micron-scale (characterized by low Reynolds number, laminar flow and fast
diffusion, opposing to the higher Reynolds number, turbulence and slow diffusion
exhibited by bulk fluids at the macroscale [60]); fueled by high performance, low
cost, design flexibility, miniaturization, portability and reduced reagent consump-
tion [61], the development of micro-fabrication techniques for lab-on-chip devices
has enabled applications including drug testing [62], cell sorting [63] and clinical
diagnostics [64].
Equally relevant are flow measurements in the microcirculation of living organisms.
Microcirculation, a complex network of small vessels with a typical diameter rang-
ing from 5 to 100 µm, plays a crucial role in the maintenance and hemodynamics of
tissues and organs, delivering blood, nutrients and signaling molecules, interacting
extensively with the immune system and leading to severe pathologies in case of
impairments and dysfunctions [65, 66]. Non-invasive tools for studying in-vivo the
blood flow in extended microcirculatory vessel networks are therefore continuously
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developed. Ideally, these methods should be endowed with single-capillary sen-
sitivity to characterize the heterogeneity in the structure, function and treatment
response of different vessels within the network [67] and should combine the blood
flow measurement with the simultaneous diffraction-limited resolution imaging
of vascular cells [68]. In this Chapter, a novel method fulfilling these require-
ments, that I have called FLICS or FLow Image Correlation Spectroscopy [69, 70],
is described: it employs a single raster-scanned xy-image acquired by confocal
or multi-photon excitation fluorescence microscopy to quantitatively measure the
(blood) flow velocity in the whole vessel pattern within the imaged field of view,
while simultaneously maintaining the morphological information concerning the
immobile structures of the explored circulatory system. Although equally applica-
ble to the flow characterization in microfluidic devices, in the following Chapters
FLICS will be mostly employed for hemodynamics studies in small animal model
organisms. Prior to the description of the FLICS principles and to the derivation of
its theoretical framework, I provide therefore a brief overview of various existing
methods for blood flow speed measurements.

2.1 Blood flow measurement techniques

Common state-of-the-art (clinical) optical techniques employed for the mea-
surement of the blood flow include laser Doppler flowmetry, optical Doppler
tomography, ultrasound imaging and laser-speckle contrast imaging.

Laser Doppler Flowmetry (LDF) exploits a monochromatic laser beam (with a
typical wavelength λ in the range 600-780 nm, above the absorption maximum of
hemoglobin and below the maximal absorption of water [71]) impinging on the
investigated specimen and scattered by both static and moving objects within a ∼

mm depth; while light reflected from stationary components remains unchanged in
frequency, light reflected by flowing particles (erythrocytes, for example) undergoes
a frequency shift according to the Doppler principle. Denoting with ∆ν the Doppler
frequency shift ν ′−ν (ν and ν ′ being the original and the shifted beam frequencies,
respectively), the component |v| along the line of sight of the velocity of the
scattering moving objects can be recovered as |v| = c∆ν/(2ν), where c is the speed
of light [73]. Therefore, only the Doppler frequency shift ∆ν is required, in addition
to the original frequency and the speed of light, to measure the axial |v| component.
The typical practical implementation exploits the beat phenomenon resulting from
the superposition of the Doppler-shifted beam with a reference beam at the original
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wavelength λ: the frequency of the signal to be detected is conveniently reduced to
the difference in frequency between the two waves, which being much lower than
ν and ν ′ is much easier to measure. In more sophisticated realizations, variable
frequencies of the reference beam are exploited or multiple-angle measurements
are implemented to also gain information on the flow direction and on the lateral
radial component of the flow velocity [73].

Laser Doppler velocimetry has been used to measure the blood flow speed,
both in basic research on model organisms and in clinical diagnostics, for nearly 40
years [73–75]. The effects of the laser beam radius, of the radius of the blood vessel
and of the depth of the vessel in the tissue have been extensively investigated [76]
and scanning modalities have been implemented to overcome the limitation of LDF
in measuring the blood flow velocity at a single point [77]. Particularly relevant has
been the development of Optical Doppler Tomography (ODT) [78], a non-invasive
Doppler-based optical technique to simultaneously image the tissue structure and
the blood flow dynamics at specific (∼ 1-2 mm) depths inside the tissue: by using
a Michelson interferometer with a broadband low-coherence light source -i.e., by
exploiting the principles of Optical Coherence Tomography (OCT) [79]-, Optical
Doppler Tomography provides high resolution tomographic images of static and
moving components and measures the blood flow speed from the amplitude and
frequency of the interference fringes produced by the reference and target arms
of the interferometer. Although a time-domain processing of interference fringes
is possible, the Frequency-Domain Optical Doppler Tomography (FD-ODT) has
largely enhanced the imaging and acquisition speed. Motivated by the quest for
methods to measure flow velocities in micron-scaled channels, attempts have been
made to increase the sensitivity and resolution of Doppler-based techniques, which
have already been applied both in-vivo and in microfluidics with a spatial resolution
of a few µm and a velocity sensitivity ∼10 µm/s [80, 81].

The Doppler effect is also exploited by ultrasound-based flow measurement
techniques, which recover both the blood volume and the axial flow speed by
exposing the investigated circulatory system to pulsed ultrasound waves and by
measuring in time the Doppler-shifted frequency of the ultrasonic waves backscat-
tered by tissues and fluids [82]. To date, the application of conventional ultrasound
methods has been limited to the main arteries: the necessity of high-pass filtering
the frequencies associated to the motion of tissues (due, for example, to cardiac
pulsatility and respiration) imposes a lower limit to the blood flow speed that can
be measured (∼ 4 mm/s for a 15-MHz ultrasound probe).
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2006). In particular, how do the circuits that regulate
blood flow break down during stroke and other
vascular pathologies. Further, are there mechanisms
that can replenish their function after injury?

Techniques to measure blood flow and vascular
tone are essential if we are to delimit neurovascular
coupling in health and disease. What are the
spatial scales that govern these measurements?
Although the mouse brain is some 10mm in extent
(Figure 1A), blood flow data is typically analyzed
within a cortical column, a region of nominally
uniform neuronal activation that extends the full
depth of the gray matter (Figure 1B). This corre-
sponds to a cylinder of tissue roughly a few hundred
micrometers in diameter and 1mm in depth in
mouse. Single penetrating arterioles, which have
the key role of transporting blood from the cortical
surface to the subsurface microvasculature, control
flow to a similar volume of tissue (Figure 1B)
(Bar, 1980). Thus, perfusion changes in a single pene-
trating vessel can directly impact flow to localized
beds of underlying microvessels (Nishimura et al,
2007).

If we consider the flow through a single penetrat-
ing arteriole as a single unit of cortical perfusion
(Woolsey et al, 1996), how are the spatially and
temporally rich patterns of cortical blood flow
generated? On the spatial scale of millimeters, flow
through tens to hundreds of penetrating arterioles is
orchestrated by global control mechanisms, which
include the activity of subcortical and brainstem
nuclei that project broadly onto the cells and/or
vasculature of cortex (Drew et al, 2008; Golanov
et al, 2000; Hamel, 2006), cortical gamma rhythms
(Niessing et al, 2005; Nir et al, 2008), and intrinsic
oscillations in the calcium ion concentration ([Ca2+ ]int)
in vascular smooth muscle (Filosa et al, 2004).

Blood flow regulation on the spatial scale of 1 to
100mm acts on subsurface vascular segments, which
are smaller than a single penetrating arteriole unit. For
example, locally active neurons and ensheathing
astrocytes may release vasoactive molecules onto a
subsurface arteriolar branch (Attwell et al, 2010), or
the constriction of pericytes may affect flow at the
junction of a single capillary branch (Fernández-Klett
et al, 2010; Peppiatt et al, 2006). How do these small

0.01 0.10.001 1

Typical lateral resolution (mm)

R
an

ge
 o

f i
m

ag
in

g 
de

pt
hs

 (
m

m
)

BOLD
fMRI

Laser
Doppler

IOS

TPLSM

10

Laser
Speckle

Confocal
Microscopy

1 mm

Pia

-300 µm 

Microvessel

Astrocytes

10 µm

Doppler
OCT

Penetrating
venule

Deep
microvessels

100 µm

Photo-acoustic
microscopy

Intravital
microscopy

0.5

1.0

Pia

Unlimited

L1

L6

wm

L1

L4

L2/3

L5

L6

L4

L2/3

L5

Mouse Rat

Arterioles
Venules

Pial arteriole

Pial
venule

Penetrating
arteriole

Deep microvessels

wm

Figure 1 Imaging the microarchitecture of the rodent cerebral vasculature. (A) Wide-field epi-fluorescence image of a C57Bl/6
mouse brain perfused with a fluorescein-conjugated gel and extracted from the skull (Tsai et al, 2009). Pial vessels are visible on the
dorsal surface, although some surface vessels, particularly those that were immediately contiguous to the sagittal sinus, were lost
during the brain extraction process. (B) Three-dimensional reconstruction of a block of tissue collected by in vivo two-photon laser
scanning microscopy (TPLSM) from the upper layers of mouse cortex. Penetrating vessels plunge into the depth of the cortex,
bridging flow from surface vascular networks to capillary beds. (C) In vivo image of a cortical capillary, 200 mm below the pial
surface, collected using TPLSM through a cranial window in a rat. The blood serum (green) was labeled by intravenous injection with
fluorescein-dextran conjugate (Table 2) and astrocytes (red) were labeled by topical application of SR101 (Nimmerjahn et al, 2004).
(D) A plot of lateral imaging resolution vs. range of depths accessible for common in vivo blood flow imaging techniques. The panels
to the right show a cartoon of cortical angioarchitecture for mouse, and cortical layers for mouse and rat in relation to imaging depth.
BOLD fMRI, blood-oxygenation level-dependent functional magnetic resonance imaging.
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Figure 2.1: Lateral resolution and tissue penetration for state-of-the-art blood flow measurement
techniques [72]. Two-photon laser scanning microscopy is identified in [72] as the optimal
technique for the in-vivo imaging and measurement of the blood flow in model organisms.
(BOLD fMRI: Blood-Oxygenation Level-Dependent functional Magnetic Resonance Imaging; TPLSM:
Two-Photon Laser Scanning Microscope.)

An alternative approach in the context of ultrasound-based techniques is ex-
ploited by the so-called transit-time method [83, 84]. An ultrasound wave emitted
by a transducer traverses the investigated vessel, rebounds off an acoustic reflector
and traverses the vessel again, in the opposite direction, back to the transducer
where it is captured and converted into an electrical signal; the variation in the
expected transit time, along and opposite to the flow direction, due to the flow is
employed to recover the flow volume. Commercially available setups allow the
blood flow measurement in vessels ∼ 200 µm in diameter [83], thereby hampering
the application of the transit-time method to the investigation of smaller microcir-
culatory vessels.

In summary, despite a few reported applications in microfluidic devices and in
the microcirculation of small animal model organisms, Doppler and ultrasound-
based techniques are mainly suited for flow measurements on large-scale vessels,
and the greatest efforts have been devoted to improve their performance in clinical
diagnostics and applications.

An alternative, optical, full-field blood flow measurement technique is Laser
Speckle Contrast Imaging (LSCI) [73, 85, 86], which exploits the spatio-temporal
variations of the speckle pattern produced by flowing objects. When coherent and
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nearly monochromatic (typically infrared) laser light impinges on erythrocytes, the
scattered radiation traverses slightly different path lengths, adds constructively or
destructively and produces an interference speckle pattern on a detector (typically,
a Charged Coupled Device CCD camera). Since the movement of red blood cells
produces spatial and temporal fluctuations in the interference pattern, information
on the flow speed is naturally encoded in the statistics of the speckle pattern itself.
Specifically, LSCI takes advantage of the spatial statistics (basically, the contrast) of
time-averaged speckle patterns.

While a very short camera-exposure time would ’freeze’ the speckles and result
in a high-contrast speckle pattern, a long exposure time would allow the speckles
to average out, leading to a low contrast; similarly, the higher the flow speed,
the more averaging occurs within a given exposure time, so that the speed dis-
tribution in the field of view can be mapped by mapping the variations in the
speckle contrast [73]. The contrast, K, is defined as the ratio of the spatial standard
deviation σS of the time-averaged speckle intensity I to the mean intensity < I >:
K = σS/ < I > [87, 88], and it varies between 0 and 1. By relating the contrast to
the temporal average of the autocorrelation of the intensity fluctuations, and by
assuming a specific (Lorentzian, or Gaussian-Lorentzian) velocity distribution, K
can be explicitly related to the correlation time τc of the intensity fluctuations; then
the relative blood velocity variations are estimated by computing the changes in
τc from a baseline state and by the assumption of inverse proportionality between
the speed and τc. A dedicated software finally produces a false-color contrast map
indicating velocity variations.
The processing time can be less than a second, making LSCI a real-time tech-
nique [73]. The illuminated area of interest can vary from a few mm to several cm,
and a spatial resolution of 10-20 µm can be achieved. Moreover, the user-selected
exposure time (typically of the order of 1-20 ms) can be tuned to select the velocity
range being mapped. The main drawbacks of single-exposure LSCI rely in the
limited penetration depth of the laser wavelength (less than 1 mm) and in the
impossibility of quantifying the absolute value of the flow speed. Additionally,
the theoretical relation between the contrast and the speed can only be outlined
if the velocity distribution is known, which is usually not the case; even though a
Lorentzian approximation can be adopted, more accurate statistical theories are
often required [89].

Laser Speckle Contrast Imaging has been employed for a number of blood flow
measurements in tissues where the microcirculatory system of interest is superficial,
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retina and skin being significant examples. LSCI has also been applied for the
in-vivo imaging of deep tissues (brain, liver or kidney) in small animal models
upon proper surgical preparation.

Flow measurements in the microcirculation of animal organisms can also be
successfully performed by those techniques combining the high spatial resolution
of confocal and two-photon excitation fluorescence microscopes with the principles
of fluorescence correlation. Among these techniques, µ-Particle Image Velocimetry
(µ-PIV) [90–92], Scanning Laser Image Correlation (SLIC) [57] and dual-beam Fluo-
rescence Cross-Correlation Spectroscopy (dbFCCS) [32, 33, 35] have already been
employed for both in-vivo and in-vitro flow measurements, and offer the remarkable
advantage of providing absolute values for the measured flow speed.

SLIC and dbFCCS have been extensively described in Chapter 1; they are
endowed with high temporal (∼ ms) and spatial (< 1µm) resolution, but lack the
ability to simultaneously correlate the flow speed values with the morphological
details in an intricate network of capillaries. This obviously also applies to the
Radon transform-based analyses of the same line-scan experimental data [93, 94].

µ-PIV - the small-scale counterpart of Particle Image Velocimetry [95, 96] - is
an optical, non-invasive, whole-field velocity measurement technique which has
turned in the last ten years into the standard tool for fluid velocity measurements in
micro-vessels. Fluorescent tracer particles, typically made of polystyrene and with
suitable diameters in the range ∼ 10-200 nm, are injected into the investigated fluid
to provide contrast, and the signal they emit upon one- or two-photon excitation (or
their scattered radiation) is collected by a high-sensitivity CCD camera in the form
of a temporal xyt-stack of two-dimensional images. Provided that the positions
of the tracer particles are registered at a sufficiently high temporal resolution, the
spatial cross-correlation of consecutive frames allows deriving the displacement of
the tracer particles and, consequently, their flow velocity under the assumption of
uniform drift. The cross-correlation analysis is usually performed on regions of
interest (small enough so that the particle displacement in the region is uniform,
but large enough to get sufficient statistics) and the results are output as a uniform
grid of the two in-plane components of the velocity vector in the 2D measurement
plane. For the extraction of the third component of the velocity vector, 3D exten-
sions of the µ-PIV technique, relying on dual-plane acquisitions or on holographic
recordings, have also been developed. Though PIV provides global velocity data
within a 2D/3D domain, other important differentiable quantities, such as vorticity
and strain rates, or integral quantities, such as circulation, streamlines or potential
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lines, can also be post-calculated starting from the velocity fields.
Flexibility is the main advantage of µ-PIV, which allows the measurement of flow
velocities in the wide range ∼ nm/s - m/s on regions from a few µm up to several
mm in width [91], depending on the microscope objective magnification and on
the temporal and spatial resolution of the CCD detection device. By contrast, care
has to be taken in the exploitation of injected tracer particles, which should be
non-corrosive, non-toxic and chemically inert. Moreover, as microfluidic devices (or
the investigated micron-sized vessels) shrink, particles must also become smaller to
avoid a significant flow distortion or even the channel obstruction; this affects the
detected signal intensity, and could prevent the applicability of PIV (and particle
tracking methods analyzing the same kind of experimental data) requiring suffi-
ciently large and bright fluorescent particles.

Summarizing, a number of techniques exist for the measurement of blood flow
velocities: they differ in the temporal and spatial resolution, in the spatial scale
of the circulatory systems they can effectively address, and in the possibility of
combining the speed measurement with the morphological imaging of the explored
circulatory network. They also differ in the requirement of tracer particles or
exogenous fluorescent markers, in the capability of recovering absolute speed
values and in the sensitivity toward the planar and axial components of the velocity
vector. Instead of anticipating here the advantages and disadvantages of the
FLICS method proposed in the next Sections, I outline its basic principles and
derive its theoretical framework. I will summarize the pros and cons of FLow
Image Correlation Spectroscopy at the end of Chapter 4, once demonstrated its
applicability to blood flow speed measurements in micron-sized vessels both in-
vitro and in-vivo.

2.2 Principles of FLow Image Correlation Spectroscopy

FLow Image Correlation Spectroscopy (FLICS) [69] allows the measurement
of flow velocities by exploiting a single xy-image acquired by detecting along a
raster pattern, by a confocal or a two-photon excitation laser scanning microscope,
the fluorescence signal emitted by bright, sparse flowing objects (for example,
genetically modified red blood cells or injected fluorescent beads). Depending
on the parameters selected for the image acquisition (the pixel size, the field of
view and, most importantly, the scan frequency) and on the properties of the
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flowing particles (their size, their diffusion coefficient and their flow velocity), these
produce in the xy-image diagonal lines. The size and the diffusion coefficient of
the imaged particles mainly assign the width of the diagonal lines; the field of view
(the zoom factor), the relative speed of flow and scan and the angle subtended
by the flow velocity vector with respect to the scan path regulate their slope.

a 

b 

c 

I begin by investigating the effect of the scan speed. I first
consider particles flowing with uniform speed |v| along the
scan direction; in the following, I assume the usual x-oriented
raster scan path (as depicted in Fig. 2.6), and I refer to the
line scan speed as |v|scan = Nδx/τline, where N, δx and τline
are the number of pixels along the x-side of the image, the
pixel size and the line scan time, respectively. If the adopted
line scan speed is higher than the speed |v| of the flowing
objects, by the time they take to travel the whole field of
view the excitation laser beam scans them several times:
the displacement of each particle along the flow x-direction
during the scanning procedure results in the excitation and
detection of the particle at slightly shifted positions, along
the x-axis, between consecutive lines. As exemplified in
Fig. 2.2, the particle is imaged therefore as a diagonal line,
with the slope increasing and the length decreasing for an
increasing scan speed. In the limiting case of a scan speed
much higher than the flow speed |v| of the flowing objects
(|v|scan � |v|), each particle does not move appreciably during
the time required by the excitation laser beam to scan it in
its entirety: flowing objects approach (diffraction-limited or
more extended, depending on their size) two-dimensional
spots in the xy-image. While images acquired under the

Figure 2.2: FLICS: raster-scanned confocal xy-images acquired by detecting the signal of
1 µm fluorescent beads undergoing laminar flow in a square borosilicate capillary (inner
section, 720 µm) along the x- scan direction. |v|=160 µm/s and |v|scan=6460 µm/s in
(a), 12920 µm/s in (b) and 25830 µm/s in (c) (τline=10, 5 and 2.5 ms in (a), (b) and (c),
respectively); λexc=514 nm, detection bandwidth: 530-600 nm, δx=0.13 µm, scale bar=15
µm. Provided that the concentration of the flowing objects is sufficiently low to make
individual particles discernible, if |v|scan > |v| each of them is imaged as a diagonal line.
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condition |v|scan � |v|, at high frame rate and in the form of a temporal stack,
are conveniently analyzed by Spatio-Temporal Image Correlation Spectroscopy
(STICS) [48] or Single Particle Tracking methods [98], a single xy-image raster-
scanned with |v|scan > |v| provides the raw data for the FLICS analysis. I remark
that the condition |v|scan > |v| required for the image acquisition is easily satisfied
by live scanning the sample at decreasing τline until diagonal lines appear: hence
the choice of a suitable scan speed is easily accomplished without any prior
knowledge of the flow speed to be measured.

By now assuming that the condition |v|scan > |v| is satisfied, a significant role
in regulating the slope of the diagonal lines produced in the xy-image by flowing
particles is also played by the direction of the flow velocity vector relative to the
scan path. I do not consider this effect in detail here, since it will be the object of an
extensive investigation and of calibration measurements in the next Chapter. I just
remark (Fig. 2.3) that the angle γ subtended by the velocity vector |v| with respect
to the x-oriented scan path regulates the orientation of the diagonal lines produced
by flowing objects in the reference Cartesian xy-frame.
Finally, Fig. 2.4 shows the effects of the size of the imaged field of view: for a given
flow speed and a fixed scan frequency per line, a reduction of the field of view
acts as a decrease of the scan speed, thereby reducing the slope of the diagonal lines.

d	   e	  a	   b	   c	  

Figure 2.3: FLICS: raster-scanned confocal xy-images acquired by detecting the signal of
1 µm fluorescent beads undergoing laminar flow in a square borosilicate capillary (inner
section, 720 µm). The angle γ between the flow velocity vector |v| and the scan path
(pointing as the positive x-axis) was varied in the four quadrants of the Cartesian xy-plane.
In (a), (b) and (c) |v| (in light blue) points in the positive x-direction: the diagonal lines due
to the beads motion keep the same orientation irrespectively of the angle γ, which affects
their length and slope. In (d) and (e) |v| points in the negative x-direction (i.e., opposite to
the scan path) and the orientation of the diagonal lines is reversed. λexc=514 nm, detection
bandwidth: 530-600 nm, |v|=690 µm/s, τline=1 ms, δx=0.04 µm, scale bar=3 µm.
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a b c d 

Figure 2.4: FLICS: raster-scanned confocal xy-images acquired by detecting the signal of
1 µm fluorescent beads undergoing laminar flow in a square borosilicate capillary (inner
section, 720 µm). The imaged field of view has been varied from 25x25 µm2 in (a) to
100x100 µm2 in (d) (scale bar=15 µm in all the panels). λexc=514 nm, detection bandwidth:
530-600 nm, image format: 1024x1024, |v|=410 µm/s and τline=1 ms.

In summary, the slope of the streaks produced by optically resolved flowing
objects in an xy-image raster-scanned with |v|scan > |v| is the result of a tight
interplay between known instrumental acquisition parameters and the properties
(namely, modulus |v| and direction γ) of the flow velocity vector. This suggests the
possibility of exploiting the spatial and temporal information encoded in the image
to recover the two unknowns, |v| and γ. To this aim, sharing the approach of other
image correlation based methods like RICS and STICS, FLow Image Correlation
Spectroscopy exploits the computation of the Cross-Correlation Function (CCF)
between pairs of columns of the image (or of a selected region of interest where
diagonal lines appear) (see Fig. 2.5). The CCF is defined as the normalized time-
averaged product of the fluorescence intensity fluctuations detected in the pixels
sampled at time t in a first column and at a delayed time t+ τ in a second column:
it allows to quantify the tame it takes, on average, for flowing objects to travel the
distance between the selected columns and the consequent measurement of the
(blood) flow speed under the assumption of uniform drift.

2.2.1 Derivation of the FLICS cross-correlation function

The definition and derivation of the FLICS cross-correlation function rely on
the description of a raster-scanned xy-image as a matrix of NxxNy pixels, each
identified by a couple of integer indexes (x, y), with x ∈ [0,Nx−1] and y ∈ [0,Ny−1].
Given a pixel residence time τpixel and a scan frequency per line fline = 1/τline, if
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Figure 2.5: FLICS principles. The fluorescence intensity profile along each column of an xy-
image raster scanned, in the presence of bright and sparse flowing objects, with |v|scan > |v|
shows bright peaks superimposed on a low background, each peak corresponding to the
detection of a particle in a specific spatial location (and a specific sampling time) of the
image. If a particle is detected at time t in a given pixel of the ith column, it will be
detected, due to the flow, at a delayed time in a vertically-shifted pixel of the jth column:
the separation of the peaks produced by the same particle in the fluorescence intensity
profiles extracted (as a function of the y-coordinate, or as a function of the sampling time)
from two columns a distance (j− i) apart is related therefore to the time required by the
particle to travel the same distance. Quantitative information about this time-of-flight
is recovered by FLow Image Correlation Spectroscopy by the computation of the cross-
correlation function between columns i and j. The CCF computation can be visualized
as the sliding of the plot of the fluorescence intensity of the first column (upper graph)
over the plot of the fluorescence intensity of the second column (lower graph) and the
multiplication of the two signals for increasing values of the time shift (or lag) τ: a peak is
found in the CCF when τ approximately matches the time-of-flight (i.e., when overlapping
peaks are multiplied), whereas the width of the CCF reflects the width of the diagonal lines
(the width of the peaks in the fluorescence plots) produced by flowing particles. We expect
therefore the peak and the width of the CCF to be related, respectively, to the flow speed
and direction and to the size and diffusion coefficient of the imaged objects.

position (0, 0) is sampled at time t = 0, then the pixel of coordinates (x, y) will be
sampled at a delayed time t = xτpixel + yτline. Therefore, since each pixel can be
univocally assigned to the time at which it is sampled and vice versa, for all the
pixels of the same column (i.e., fixed x) I can express the fluorescence intensity as
Fx(y(t), t), using the variable time to discriminate the different pixels. Similarly,
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Figure 2.6: FLICS: cross-correlation on a raster-scanned
xy-image. A raster-scanned 2D image is a matrix of
NxxNy pixels, representing a series of parallel in-
tensity measurements from many adjacent confocal
excitation volumes. The sketch highlights (in green)
two arbitrary pixels a distance n ≈ τ/τline apart
along the vertical direction, involved in the computa-
tion of the cross-correlation function Gij(τ) between
two columns (filled) l ≡ (j − i) pixels apart. The
raster scan path is partly sketched in violet: the ex-
citation laser beam scans the specimen (and primes
fluorescence emission) along the positively oriented
fast-scan x-axis (continuous line); τline is the time
required for a single line scan plus the retracing
(dashed line). l	  
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I denote as δFx(y(t), t) the fluctuation of the detected intensity Fx(y(t), t) relative
to the signal averaged over the entire column. In this notation, the CCF of the
fluorescence intensity fluctuations collected in two columns a fixed distance l apart
is given by

Gx,x+l(τ) =
< δF∗x(y(t), t)δFx+l(y(t+ τ), t+ τ) >t
< Fx(y(t), t) >t< Fx+l(y(t), t) >t

(2.1)

The subscripts x and x + l identify the chosen columns and τ is the correlation
lag time. If I call n the spatial lag along the vertical y-direction between the pixel
sampled at time t in the first column and the pixel sampled at time t + τ in the
second column, the lag time τ can be expressed as τ = lτpixel + nτline. Since pixels
are typically a few microseconds apart along the horizontal direction and a few
millisecond apart along the vertical direction, especially for small column distances
the relation lτpixel � nτline generally holds, so that, by construction and definition
of the CCF, the lag time is approximately an integer multiple of the inverse of the
scan frequency per line (n ≈ τ/τline). The brackets indicate the temporal (and,
implicitly, spatial) averaging performed, for each lag time τ, by taking all the pairs
of pixels belonging to the selected columns and at a distance ∼ τ/τline apart along
the vertical y-direction.

In the following I employ a simplified, more compact notation for eq. (2.1), which
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defines the cross-correlation function as

Gij(τ) =
< δF∗i (t)δFj(t+ τ) >t
< Fi(t) >t< Fj(t) >t

(2.2)

Integer subscripts i and j identify the chosen columns, a fixed distance l ≡ (j− i)
apart (I assume j > i and i 6= j, since for i = j an auto-correlation function is ob-
tained; i ∈ [0,Nx − 2] and j ∈ [i+ 1,Nx − 1]). < Fi(t) >t is the average fluorescence
intensity computed over all the pixels in column i and δFi(t) = Fi(t)− < Fi(t) >t.
Similar definitions apply to column j. This notation has the advantage of implying
the spatial coordinates: i and j identify the position of the involved pixels along
the horizontal direction, while, as previously noticed, time specifies the position of
the pixels along the vertical y-direction of the image.

In order to derive the explicit expression of the FLICS cross-correlation function
Gij(τ), I consider a suspension of non-pointlike, identical fluorescent particles
flowing (for example in a blood vessel, or inside a microfluidic device) with
uniform velocity |v| while undergoing Brownian diffusion with diffusion coefficient
D. I define the density of fluorophores on each particle as ρ(u), with the vector
u measured with respect to the center of the particle;

∫
ρ(u)du is therefore the

total number of fluorophores the particle contains. If the center of the kth particle
is located at position rk at time t, the emitted fluorescence intensity in rk can be
computed [99] as

Fk(rk, t) = φ

∫∫
drduρ(u)W(r− u)δ(r− rk) (2.3)

The integrals extend over the whole space; for the sake of compactness, integration
limits −∞ and +∞ will be omitted throughout the derivation. As in Chapter 1, φ
is the product of the detection efficiency, of the fluorescence quantum yield and of
the absorption cross-section of the molecules, W(r− u) is the spatial distribution
of the excitation intensity and the Dirac delta expresses the fact that there can only
be absorption at the location of the particle.
By rewriting ρ(u) and W(r − u) in terms of their Fourier transforms1 ρ̂(q ′) and

1As in chapter 1, I adopt the convention f̂(q) = (2π)−d/2
∫+∞
−∞ f(x)eiq·x dx for the Fourier transform

definition in d-dimensions; d = 3 in the present derivation.
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Ŵ(q),

Fk(rk, t) =
φ

(2π)3

∫∫
drdu

∫
dq ′ρ̂(q ′)e−iq

′·u
∫
dqŴ(q)e−iq·(r−u)δ(r− rk)

=
φ

(2π)3

∫∫
dq ′dq ρ̂(q ′)Ŵ(q)e−iq·rk

∫
duei(q−q

′)·u

=
φ

(2π)3

∫
dq ρ̂(q)Ŵ(q)e−iq·rk

(2.4)

The total fluorescence for N particles in the excitation volume is F(t) =
∑N
k=1 Fk(rk, t).

By now introducing the local number concentration at time t as C(r − u, t) =∑N
k=1 δ((r− u) − rk) [99] and its Fourier transform Ĉ(q, t) = (2π)−3/2

∑N
k=1 e

iq·rk , I
can rewrite the fluorescence intensity as

F(t) =
φ

(2π)3/2

∫
dq ρ̂(q)Ŵ(q)Ĉ∗(q, t) (2.5)

Correspondingly, in terms of the concentration fluctuations δĈ(q, t) = Ĉ(q, t)− <
Ĉ(q, t) >t and in the absence of fluctuations affecting the φ term, δF(t) is given by

δF(t) =
φ

(2π)3/2

∫
dq ρ̂(q)Ŵ(q)δĈ∗(q, t) (2.6)

I can now compute the cross-correlation function Gij(τ) by substituting into eq.
(2.2) the complex conjugate of the fluctuations δFi(t) in column i at time t and the
fluctuations δFj(t+ τ) evaluated in the pixels of column j at a delayed time t+ τ,
and then performing a temporal average. This leads to

Gij(τ) ∝
∫∫
dq

i
dq

j
ρ̂∗(q

i
)Ŵ∗(q

i
)

∣∣∣∣
t

ρ̂(q
j
)Ŵ(q

j
)

∣∣∣∣
t+τ

< δĈ(q
i
, t)δĈ∗(q

j
, t+τ) >t (2.7)

The proportionality symbol includes the constant φ/(2π)3 and the normalization
factor < Fi(t) >t< Fj(t) >t, which can be neglected unless particle concentrations
must be recovered from the cross-correlation amplitude.
The concentration correlation term can be computed through the Fick’s equation:
as reported in Chapter 1, if fluorescent particles undergo both flow and diffusive
motion, with a translational isotropic diffusion coefficient D and a flow velocity |v|,
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the temporal derivative of the concentration fluctuations satisfies
∂
∂tδC(r− u, t) = D∇2δC(r− u, t) − v · ∇δC(r− u, t)

∂
∂tδĈ(q, t) = −D|q|2δĈ(q, t) + iq · vδĈ(q, t)

(2.8)

This leads to
δĈ(q, t) = δĈ(q, 0)e−D|q|2t+iq·vt (2.9)

yielding in turn

< δĈ(q
i
, t)δĈ∗(q

j
, t+ τ) >t =< δĈ(qi, 0)δĈ

∗(q
j
, τ) >

=< δĈ(q
i
, 0)δĈ∗(q

j
, 0) > e

−D|q
j
|2τ−iq

j
·vτ

=< C > δ(q
i
− q

j
)e

−D|q
j
|2τ−iq

j
·vτ

(2.10)

< C > stands here for the mean square fluctuations of Ĉ(q
i
, 0), being equal to its

average for Poisson statistics. By substituting eq. (2.10) into eq. (2.7) I get

Gij(τ) ∝
∫∫
dq

i
dq

j
ρ̂∗(q

i
)Ŵ∗(q

i
)

∣∣∣∣
t

ρ̂(q
j
)Ŵ(q

j
)

∣∣∣∣
t+τ

δ(q
i
− q

j
)e

−D|q
j
|2τ−iq

j
·vτ (2.11)

Eq. (2.11) requires the explicit functional form of the Fourier transforms of both
the fluorophore density and the beam profile. I model the fluorophore density on a
each particle with a Gaussian function

ρ(u) = exp

(
−
4|u|2

a2

)
(2.12)

so that the coefficient a, related to the width of the Gaussian factor (for |u| = a, ρ
drops to 1/e4 ∼ 2% of the peak value), provides an estimate of the radius of the
particles. It is mandatory to account for the size of the investigated particles when
they are comparable to or larger than the excitation Point-Spread-Function (PSF),
since the point-like approximation generally adopted by the FCS theory (see Chap-
ter 1) is in this case no longer valid; with respect to the more complex expressions
proposed in the literature [99] for the form factor, the Gaussian approximation of
eq. (2.12) has the advantage of allowing an analytical derivation of the CCF while
accounting for the finite extent of the investigated particles.
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For the PSF, a 3D Gaussian is assumed for [ ([=1,2)-photon excitation, with 1/e2

radii ω0 and ω0z assigned by the waists of the laser beam along the radial and axial
directions, respectively. Recalling that, by definition, Gij(τ) is computed at each lag
time τ by multiplying the fluorescence intensity fluctuations detected in separate
spatial locations of the image, I introduce a time-dependent vector R - which will
be considered explicitly in the following for the specific case of a raster pattern -
accounting for the separation between the excitation volumes sampled at each pair
of time points t and t+ τ; hence I adopt a formalism similar to the one exploited
for the derivation of the cross-correlation function in dual-beam FCCS.

W(u, t) = exp

{
−
2[

ω2o

[
(ux−Rx(t))

2+ (uy−Ry(t))
2
]
−
2[

ω2oz

[
(uz−Rz(t))

2
]}

(2.13)

Provided the expressions for the fluorophore density and for the beam profile (eqs.
2.12 and 2.13), the substitution of their Fourier transforms into eq. (2.11) leads to

Gij(τ) ∝
∫
dqjxexp

{
− q2jx

(
Dτ+

a2

8
+
ω20
4[

)}
exp

{
− iqjx(Rx(t) − Rx(t+ τ) + vxτ)

}
·

·
∫
dqjyexp

{
− q2jy

(
Dτ+

a2

8
+
ω20
4[

)}
exp

{
− iqjy(Ry(t) − Ry(t+ τ) + vyτ)

}
·

·
∫
dqjzexp

{
− q2jz

(
Dτ+

a2

8
+
ω20z
4[

)}
exp

{
− iqjz(Rz(t) − Rz(t+ τ) + vzτ)

}
(2.14)

The Gaussian integrals in the x-, y- and z-dimensions can be solved into

Gij(τ) ∝
1(

4[Dτ+ a2[
2 +ω20

) 1√
4[Dτ+ a2[

2 +ω20z

exp

{
−
|R(t+ τ) − R(t) − vτ|2

4[Dτ+ a2[
2 + ω̃2

}

(2.15)

where ω̃2 has been introduced in the last term for the sake of compactness, denoting
ω20 in the x- and y-directions and ω20z when considering the axial z-direction.
In the specific case of a raster scan, the vector R lies in the image plane (the xy-
plane, in my notation) ∀t: hence Rz(t) = 0 and Rz(t + τ) = 0. This simplifies the
z-component of the last term in eq. (2.15) to exp{−v2zτ2/(4[Dτ + a2[/2 + ω20z)}.
Moreover, since the vector R lies in column i at time t and in column j at time
t + τ, I express as (i,m) and (j, (m + n)) the x- and y- coordinates of the pixels
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the vector identifies at times t and t + τ (n ∈ [Ny − 1] and m ∈ [0,Ny − 1 − n]);
therefore, R(t) = (iδx,mδx, 0) and R(t + τ) = (jδx, (m + n)δx, 0), where δx is the
pixel size, assumed equal along the horizontal and vertical direction of the image.
Since the CCF only depends on the difference R(t+ τ)-R(t) (i.e., it only depends on
the distance between the excitation volumes, not on their individual coordinates in
the xy-plane), no explicit dependence remains on the m coordinate; by contrast n,
acting as the spatial lag between the y-components of R(t) and R(t+ τ), appears
explicitly in Gij(τ) in the form of the ratio n ≈ τ/τline previously discussed.
By substituting R(t+ τ)-R(t) into the CCF (eq. 2.15), I finally obtain

Gij(τ) ∝
1(

4[Dτ+ a2[
2 +ω20

) 1√
4[Dτ+ a2[

2 +ω20z

·

· exp
{
−
[(j− i)δx− vxτ]2

4[Dτ+ a2[
2 +ω20

}
exp

{
−

[
δx
τline

− vy
]2
τ2

4[Dτ+ a2[
2 +ω20

}
exp

{
−

v2zτ2

4[Dτ+ a2[
2 +ω20z

}
(2.16)

The expression of the cross-correlation function can be simplified when focusing
on applications of the FLICS method to circulatory systems with an approximately
planar structure, where the velocity vector v practically lies in the same xy-plane
sampled by the excitation laser beam. Both in the calibration measurements I have
performed in Zebrafish embryos (Chapter 3) and in the investigation of the murine
hepatic microcirculation (Chapter 4), the geometry of the imaged system allowed
to discard the z-component vz ≈ 0 of the velocity vector. Therefore, if I further call
α the angle that the planar flow velocity vector subtends with the horizontal x-axis
(as depicted in Fig. 2.7a,b), the CCF simplifies to

Gij(τ) ∝
1(

4[Dτ+ a2[
2 +ω20

) 1√
4[Dτ+ a2[

2 +ω20z

·

· exp
{
−
[(j− i)δx− |v| cos (α)τ]2

4[Dτ+ a2[
2 +ω20

}
exp

{
−

[
δx
τline

− |v| sin (α)
]2
τ2

4[Dτ+ a2[
2 +ω20

} (2.17)

The angle α is positive and comprised in the range [0°; 90°] when the velocity vector
v points in the direction of positive x- and y-axes (the downward direction as
depicted in Fig. 2.7, panel a), while it is negative in the range [−90°; 0°] when v
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points upward with positive x-component and negative y-component (Fig. 2.7,
panel b).

2.2.2 Back cross-correlation

In the derivation of eqs. (2.1) - (2.17) a vector v pointing along the positive
x-direction has been assumed. For a flow velocity directed along the negative
x-axis, the cross-correlation function should be computed as

Gji(τ) =
< δF∗j (t)δFi(t+ τ) >t

< Fi(t) >t< Fj(t) >t
(2.18)

The fluorescence fluctuations are evaluated in column i at time t + τ and in
column j at time t: hence the derivation of the CCF remains unchanged except
for the components of the vector R, that I define as R(t) = (jδx,mδx, 0) and
R(t+ τ) = (iδx, (m+ n)δx, 0). This leads to

|R(t+ τ) − R(t) − vτ|2 = (−(j− i)δx− |v| cos (α)τ)2 + (nδx− |v| sin (α)τ)2 (2.19)

α ∈ [90°; 180°] in the Cartesian quadrant with (x < 0, y > 0), while α ∈ [−180°; −90°]
in the Cartesian quadrant with (x < 0, y < 0) (Fig. 2.7, panels c,d). By the substitu-
tion β ≡ (180° − α) I can rewrite the squared modulus as

|R(t+ τ) − R(t) − vτ|2 = ((j− i)δx− |v| cos (β)τ)2 + (nδx− |v| sin (β)τ)2 (2.20)

exactly as it appears in eq. (2.16). Therefore, this notation has the advantage of mak-
ing the analytical expressions of the back (Gji(τ)) and forth (Gij(τ)) cross-correlation
functions equal. Globally, provided the experimental forth cross-correlation for a
positive vx and the back cross-correlation for a negative vx, I employ for data fitting

G(τ) ∝ 1(
4[Dτ+ a2[

2 +ω20

) 1√
4[Dτ+ a2[

2 +ω20z

·

· exp
{
−
[(j− i)δx− |v| cos (γ)τ]2

4[Dτ+ a2[
2 +ω20

}
exp

{
−

[
δx
τline

− |v| sin (γ)
]2
τ2

4[Dτ+ a2[
2 +ω20

} (2.21)
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Figure 2.7: FLICS: definition of the angles employed for the derivation of the cross-correlation
function. (a),(b): representation of the angle α that the positively x-oriented planar vector v
subtends with the horizontal x-axis. (c),(d): representation of the angles α and β that the
negatively x-oriented vector v subtends with the x-axis; β is introduced for the derivation
of the back cross-correlation as described in the text. (e): definition of the possible range of
values for the angles α and β in the four quadrants of the Cartesian xy-plane; each interval
is spanned in the direction of the arrow. (f): definition of the angle γ employed to describe
all the possible orientations of the vector v relative to the x-axis. The range of its possible
values and four arbitrarily-directed vectors for the flow velocity are shown.

where

γ ∈
{
[0°; 90°], if x ≷ 0, y > 0
[−90°; 0°], if x ≷ 0, y < 0

(2.22)

Eq. (2.21) concludes the derivation of the FLICS correlation function. It ev-
idences that the CCF is a peaked function that explicitly accounts for all the
parameters, described previously, affecting the width, length and slope of the
diagonal lines produced by flowing and diffusing objects in the raster-scanned
xy-image. The size a of the imaged particles and their diffusion coefficient D,
regulating the width of the diagonal lines, contribute to the width of the CCF: they
appear in the nearly hyperbolic term (∼ (4[Dτ+a2[/2+ω20)

3/2) and in the variance
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of the quasi-Gaussian factors. By contrast, both the modulus and the direction of
the flow velocity vector, the scan speed (the line scan time τline) and the column
distance (j− i), appearing in the numerator of the quasi-Gaussian terms, mainly
affect the position, along the lag time axis, of the cross-correlation peak: this is
coherent with the fact that the same parameters are those strongly impacting the
slope of the diagonal streaks in the image.
Before analytically deriving the functional dependence of both the peak time and
the peak amplitude on the flow velocity and on the diffusion coefficient, as well as
on the image acquisition parameters, I exploit simulated cross-correlation functions
to inspect the effect of |v|, γ, τline, (j− i) and D on the CCF overall shape.

2.3 Simulated FLICS cross-correlation functions

Cross-correlation functions simulated according to eq. (2.21) are reported in Fig.
2.8. When all the parameters apart from the flow speed |v| are fixed, the effect of
an increasing flow speed is to shift the CCF peak toward shorter lag times. In fact
as I previously mentioned, the peak time - hereafter referred to as τmax- is directly
related to the time it takes on average for flowing objects to travel the distance
between the columns selected for the CCF derivation. For the same reason, an
opposite shift of the peak time τmax toward longer lag times is found when the
column distance is increased.
As |v| increases and τmax decreases, a higher scan frequency is required for an
accurate sampling of the CCF peak: beside affecting the peak position along the
τ-axis, the scan frequency determines the temporal resolution with which the
experimental CCF can be recovered (the lag time τ being approximately an integer
multiple of the inverse of the scan frequency per line). Furthermore, the adopted
fline assigns the range of accessible flow speeds, as will be investigated once derived
the τmax functional form (Section 2.7).
τmax is also significantly affected by the angle γ between the flow velocity vector
and the scan path. The diagonal lines produced in the xy-image by particles
flowing along the scan direction (γ=0°) turn into horizontal lines when the flow
direction is orthogonal to the scan path (γ=90°): correspondingly, the CCF peak
time decreases as γ increases, and tends to zero as γ→ 90°.
Finally, the diffusion coefficient D regulates the width of the CCF but barely affects
the peak time. This suggests the specific, fast data analysis procedure described in
the next Section.
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Figure 2.8: Simulated FLICS cross-correlation functions. (a): CCFs simulated according to
eq. (2.21) for flow speed values |v|=1500, 1000, 500, 250 and 150 µm/s (filled triangles,
crosses, filled circles, open circles, filled squares, respectively), with γ=30°, fline=1400 Hz
and (j − i)δx=5 µm. (b): CCFs simulated according to eq. (2.21) for a scan frequency
fline=2000, 1400, 1000, 700, 400 Hz (filled squares, open squares, filled circles, open circles,
filled triangles, respectively); |v|=500 µm/s, γ=30°, (j − i)δx=5 µm. (c): CCFs simulated
according to eq. (2.21) for γ in the range [0°, 90°] (increasing in the direction of the arrow)
with |v|=1000 µm/s, fline=1400 Hz and (j− i)δx=5 µm; CCFs have been normalized to the
range [0, 1] to highlight the effect of the angle γ on the correlation peak time. (d): CCFs
simulated according to eq. (2.21) for (j− i)δx=3 µm (turquoise), 5 µm (light blue) and 10
µm (blue); |v|=500 µm/s, fline=1400 Hz, γ=30° and D=0.01, 0.1, 1, 10, 50, 80 µm2/s (D
increases in the direction of the arrows). The following parameters have been kept at fixed
values through all the simulations: ω0=0.2 µm, ω0z=0.5 µm, δx=0.1 µm, a=5 µm, s=1 and,
except for panel (d), D=80 µm2/s; speed values, scan frequencies and column distances
have been selected close to the ones adopted for, or recovered in, the experimental data of
Chapters 3 and 4.
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2.4 FLICS procedures for data analysis

Operatively, provided that the image acquisition parameters are set so that
flowing objects produce diagonal lines in the raster-scanned image, the non-linear
least squares fit to eq. (2.21) of experimental CCFs allows the measurement of the
flow velocity. Once a column distance (j − i) has been selected, all the pairs of
columns in the image a distance (j−i) apart can be exploited: a total of (Nx−(j−i))
CCFs can therefore be computed and averaged, improving the statistics with which
the single average function is recovered. As a rule of thumb, the column distance is
chosen so that the correlation peak is sampled with a minimum of ∼ 10 data points.
The statistics is further improved when CCFs are derived for multiple column
distances: in this case, a global fit to eq. (2.21) of the set of experimental CCFs is
performed. The flow speed |v| and the properties of the flowing objects (a and D)
are always kept as free parameters in the fitting procedure, whereas the optical
and scan parameters (ω0, ω0z, (j − i), δx, τline) are treated as known quantities.
The angle γ can either be recovered as a best-fit parameter (as will be shown by
calibration measurements in Chapter 3), or it can be fixed and treated as known:
the orientation of the investigated vessel with respect to the x-axis in the image
allows measuring the absolute value of the angle (assuming that fluorophores flow
in a direction parallel to the vessel wall, as in our case), whereas its sign is provided
by the orientation of the diagonal streaks left by flowing objects in the image (see
Fig. 2.3).

A second possible procedure to recover the flow speed is suggested by the
simulations reported in Fig. 2.8: panels a and d highlight that, while being practi-
cally unaffected by the diffusive properties of the imaged particles, the correlation
peak time τmax is strongly regulated by the modulus of the flow velocity. The
peak time alone can therefore be exploited to recover |v|, making the (global) fit of
experimental CCFs unnecessary and allowing a straightforward and much faster
determination of the flow speed. All that is required is the functional form of τmax
in terms of |v| and of the image acquisition parameters: then by substituting to
τmax the experimentally measured peak lag time and by solving for |v|, the estimate
of the flow speed is obtained. This procedure is repeated for each of the column
distances (j − i) used in the CCFs derivation to yield a weighted average of the
resulting |v| values.

Both the data-analysis procedures, outlined for an xy-image encompassing a
single vessel, can in principle be applied to a raster-scanned image acquired on a
branched region of the investigated circulatory network. In this case, since FLICS
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does not require a scan path parallel to the flow direction (see Fig. 2.8c), the analysis
can be performed on separate ROIs centered on in-focus vessels. Anticipated here,
the ROI-based FLICS analysis will be exploited in Chapters 3 and 4.

2.5 Cross-correlation peak time

In order to derive the analytical expression for the lag time τmax associated to
the maximum of the cross-correlation function, it is convenient to rewrite eq. (2.21)
as

G(τ) ∝ 1

A1(τ)

1

A2(τ)
exp

{
−
[B(τ)]2

A1(τ)

}
exp

{
−
C1τ

2

A1(τ)

}
(2.23)

where A1(τ), A2(τ), B(τ) and the constant C1 are defined as follows:


A1(τ) ≡ 4[Dτ+ C2

A2(τ) ≡
√
4[Dτ+ C3

B(τ) ≡ [(j− i)δx− vxτ]



C1 ≡
(
δx
τline

− vy
)2

C2 ≡ ω20 + a2[
2

C3 ≡ ω20z + a2[
2

(2.24)

The computation of the partial derivative of the CCF with respect to the lag time
leads to

∂G(τ)

∂τ
=

{
−
4[D

A1(τ)
−

2[D

[A2(τ)]2
−
2C1τ

A1(τ)
+
2B(τ)vx
A1(τ)

+
4[DC1τ

2

[A1(τ)]2
+
4[D[B(τ)]2

[A1(τ)]2

}
·

· 1

A1(τ)A2(τ)
exp

{
−
[B(τ)]2

A1(τ)
−
C1τ

2

A1(τ)

}
(2.25)

By now requiring that ∂G
∂τ

∣∣
τ=τmax

= 0, I obtain a third order equation that can be
solved for τmax:

A3τ3max + A2τ2max + A1τmax + A0 = 0 (2.26)
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where the Ai=0...3 terms are given by

A3 = −8[2D2(v2x + C1)

A2 = −48[3D3 − 2[D[v2x(2C2 + C3) + C1(C3 + 2C2)]

A1 = −8[2D2(C3 + 2C2) − C2C3(v
2
x + C1) + 4[Dδx(j− i)[vxC2 + 2[Dδx(j− i)]

A0 = −[DC2(C2 + 2C3) + C3δx(j− i)[vxC2 + 2[Dδx(j− i)]
(2.27)

Eq. (2.26) can be solved by the substitution τmax = t − A2
3A3 , which leads to the

following third order equation for the auxiliary variable t:

t3 + Bt+ C = 0 ,with


B =

A1
A3

−
A22
3A23

C =
A0
A3

−
A1A2
3A23

+
2A32
27A33

(2.28)

The three solutions t1,2,3 for t in the complex field are found by computing

ti=1...9 =
3

√
−
C
2
+

√
C2
4

+
B3
27

+
3

√
−
C
2
−

√
C2
4

+
B3
27

(2.29)

and by selecting, among these nine values (a real number has one real cube root
and two complex conjugate cube roots, so that nine combinations are possible in
eq. 2.29), the three t1,2,3 that satisfy

3

√
−
C
2
+

√
C2
4

+
B3
27
· 3
√

−
C
2
−

√
C2
4

+
B3
27

= −
B
3

(2.30)

In other words, t1,2,3 are identified by selecting, and summing, the only three pairs
of cube roots leading to a real number (−B/3) when multiplied.

Only one of the solutions t1,2,3 is real if
C2

4
+

B3

27
is positive, and it is found by

adding in eq. (2.29) the only two real cube roots. I focus on the case
C2

4
+

B3

27
< 0,

since this is the condition that B and C satisfy when computed from the typical
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parameters I employed for the data acquisition and the CCFs derivation. In this
case,

−
C
2
±
√

C2
4

+
B3
27

= −
C
2
± i
√
−

(
C2
4

+
B3
27

)
= ρe±iθ (2.31)

with ρ =

√
−
B3

27
and

θ =



arctan

(√
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2
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27 )
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2
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if − C

2 > 0

arctan

(√
−(C

2

4 + B3
27 )

−C
2

)
+ π if − C

2 < 0

(2.32)

By substituting eqs. (2.31)-(2.32) into eq. (2.29) and by selecting the three solutions
that satisfy eq. (2.30), I obtain

t1 = 2

√
−
B
3

cos
θ

3
, t2 = 2

√
−
B
3

cos
θ+ 2π

3
, t3 = 2

√
−
B
3

cos
θ+ 4π

3
(2.33)

Eq. (2.33) provides three real solutions for the variable t and leads to the solutions
τmax 1,2,3 for the CCF peak time by subtracting A2/(3A3). For my typical values,
τmax 2 and τmax 3 are negative, allowing to univocally determine the peak time
τmax ≡ τmax 1:

τmax =



−
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3A3

+ 2

√√√√√
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3
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(2.34)

I remark that no constraints are imposed by the square root term
√
−B/3, since B
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is negative for
C2

4
+

B3

27
< 0.

Eq. (2.34) allows to express the CCF peak time as a combination of the four
quantities A0, A1, A2, A3 containing the dependence on known instrumental pa-
rameters and acquisition settings (the pixel size, the column distance, the scan
frequency and the laser beam waist), as well as the dependence on the radius,
the diffusion coefficient and the velocity of the flowing objects. The mean radius
and, consequently, an estimate of the expected diffusion coefficient are frequently
known for the fluorescent particles investigated (red blood cells and micro-spheres,
in my case). Similarly, as discussed in the previous Section, I can treat as a known
variable the angle γ subtended by the flow velocity vector and the scan path. The
flow speed |v| acts therefore as the only unknown in the expression for the peak
time τmax.
What hampers the exploitation of the experimentally measured τmax to recover
the flow speed is the impossibility of solving analytically eq. (2.34) for |v|, unless
simplifying assumptions are introduced. Specifically, I assume that the Brownian
diffusion of the investigated objects can be neglected: the assumption D = 0 re-
markably simplifies the relation between the peak time of the CCF and the flow
speed, while being justified by the small effect of D on the peak position which I
have shown with simulated curves in Fig. 2.8d.

In the following, I refer to the peak time computed for a vanishing diffusion
coefficient as τ0max. It can be derived directly from eq. (2.25), which, for D = 0,
reduces to

∂G(τ)

∂τ (D=0)
=
1

C2

1√
C3

{
−
2C1τ

C2
+
2B(τ)vx
C2

}
exp

{
−
[B(τ)]2

C2
−
C1τ

2

C2

}
(2.35)

By solving
∂G

∂τ (D=0)

∣∣∣∣
τ=τ0max

= 0, I obtain

τ0max =
(j− i)δxvx(
δx

τline
− vy

)2
+ v2x

(2.36)

Eq. (2.36) can be employed to approximate the functional form of the peak time
experimentally determined and can be solved for the flow speed. The superscript
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′0 ′ that I add to the two components v0x, v0y and to the modulus |v|0 underlines that
the flow speed computed directly from the peak time τ0max is approximate (|v|0

exactly equals |v| only for an identically null diffusion coefficient), and the validity
of the approximation worsens for increasing values of D. Explicitly, |v|0 is given by

|v|0± =
(j− i)δx cos(γ) + 2 sin(γ)

δx

τline
τ0max ±

√
∆

2τ0max
(2.37)

with

∆ =

[
(j− i)δx cos(γ) + 2 sin(γ)

δx

τline
τ0max

]2
− 4[τ0max]

2

(
δx

τline

)2
(2.38)

The subscript ± in the |v|0± expression identifies the two solutions provided by the
second-order equation obtained from eq. (2.36) when solving for the flow speed.
The requirement |v|0± > 0 and the constraint ∆ ≥ 0 imposed by the square root
of eq. (2.37) determine the set of possible values for the parameters appearing in
the CCF (scan frequency, angle γ, etc.) which lead to a real, positive number as
estimate for the flow speed |v|0. These conditions can be cast as

tan(γ) > −
1

2
(j− i)

τline
τ0max

tan(γ) ≥ 1

(j− i)

τ0max
τline

− (j− i)
τline
4τ0max

(2.39)

The applicability of eq. (2.37) for the determination of the flow speed can therefore
be rapidly checked, by substituing into eq. (2.39) all the involved quantities: τline,
the column distance, the experimental peak time and the angle γ. If the conditions
of eq. (2.39) are satisfied a straightforward determination of the flow speed is
possible (with variable accuracy, as discussed in the next Section); otherwise, eq.
(2.39) can be used, prior to the data analysis, to determine the optimal parameters
for the computation of the CCF.
I also remark that, when both the values |v|0± are real and positive, they are often
sufficiently different (of ∼ 2 orders of magnitude for the experimental data presented
in Chapters 3 and 4) to allow to confidently select the one that is physically relevant
for the experimental case under investigation.
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2.6 Accuracy in the recovery of the flow speed from the
cross-correlation peak time

The possibility of determining the flow speed directly from eq. (2.36), by the
substitution of the peak time of the experimental CCF to τ0max, obviously depends
on the validity of the assumption D = 0. The error affecting the estimate of the
flow speed can be quantified by first evaluating the ratio τmax/τ0max, derived from
eqs. (2.34) and (2.36) as a function of the diffusion coefficient. I expect τmax/τ0max to
tend to 1 for D→ 0. Moreover, when all the parameters apart from D are fixed, the
peak time of the CCF shortens for increasing D (see Fig. 2.8d; exceptions are only
found for a very low - . 100µm/s - flow speed): hence I expect an overestimate of
the peak time when the approximation D = 0 is adopted (i.e., τmax/τ0max → 0 for
D→ +∞).
Fig. 2.9 (panels a-d) shows the simulated trend of τmax/τ0max for diffusion coef-
ficients in the broad range 0-300 µm2/s (covering the typical D values for red
blood cells and synthetic micro-spheres up to the diffusion coefficient of free dye
molecules in solution). Due to the dependency of the ratio τmax/τ0max on several
parameters, the effect of the flow speed, of the scan frequency per line, of the
angle γ and of the column distance has been investigated separately; for all the
simulation datasets, I evaluated the discrepancy of the exact and approximate
peak times in conditions close to the ones of the experimental data. Similarly,
Fig. 2.9 (panels e-h) shows the simulated trend of the ratio |v|/|v|0 as a function
of the diffusion coefficient D in the range 0-300 µm2/s. This ratio quantifies the
discrepancy between a given flow speed |v| and the approximate estimate of the
same speed recovered by substituting the exact peak time (eq. 2.34) of the simulated
CCFs into eq. (2.37). Since the exact peak time is employed, but its approximate
expression is exploited to derive the flow speed, an overestimate of the modulus
of the flow velocity is obtained (once again, exceptions are found for a very low
- . 100µm/s - flow speed). As before, the effects of |v|, fline, γ and (j − i) on the
ratio |v|/|v|0 have been investigated separately.

I focus on the range 0-100 µm2/s for the diffusion coefficient, which is relevant
for the experimental conditions of both the calibration measurements in zebrafish
embryos and the investigation of hemodynamics in the hepatic microcirculatory
system. For D ∼ 100 µm2/s and a typical |v|=500 µm/s, the overestimate of the
flow speed computed directly from the peak of the CCF for a column distance
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Figure 2.9: FLICS: estimate of the flow speed in the approximation D = 0. (a)-(d): simulated
trend of the ratio of the peak time τmax computed exactly from the analytical expression
of the CCF to the approximate peak time τ0max computed in the approximation D = 0.
(a): the higher the flow speed, the less relevant is the contribution of Brownian diffusion
and the lower is the discrepancy between the peak times, simulated here for γ = 0°,
fline=1000 Hz and (j − i)δx=5 µm; |v|=100, 250, 500, 1000, 1500, 2000 µm/s, increasing
in the direction of the arrow. (b): effect of the scan frequency on the ratio of the peak
times, simulated here for γ = 0°, (j − i)δx=3 µm, |v|=500 µm/s and fline=200, 400, 700,
1000, 1400 Hz; fline increases in the direction of the arrow. The effect of fline is not
distinguishable on the simulated curves; nevertheless, the precision with which the peak
time is recovered experimentally increases with the scan frequency, since fline defines
the temporal resolution in the sampling of the CCF. (c): ratio τmax/τ0max simulated for
fline=1000 Hz, (j− i)δx=3 µm, |v|=500 µm/s and increasing angle γ in the range [0°; 80°];
γ increases in the direction of the arrow with steps of 10°. The ratio τmax/τ0max becomes
negative when, for a high angle γ, the CCF turns into a decay instead of showing a clear
peak for positive lag times. (d): effect of the column distance on the ratio of the peak
times, simulated here for γ = 0°, |v|=500 µm/s, fline=1000 Hz and (j − i)δx=2, 3, 4, 8,
10, 15 µm; the distance increases in the direction of the arrow. (e)-(h): simulated ratio
|v|/|v|0 as a function of the diffusion coefficient D. The same parameters adopted in panels
(a), (b), (c), and (d) have been exploited for panels (e), (f), (g), and (h), respectively. The
following parameters have been kept at fixed values through all the simulations: ω0=0.2
µm, ω0z=0.5 µm, δx=0.1 µm, [=1, a=5 µm. All the simulations have been implemented by
a custom-written Python code.
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(j − i)δx=3 µm and an angle γ = 60° amounts to ∼28% ((|v|0 − |v|)/|v| ≈ 0.28);
however, it is to be noted that this overestimate reduces to ∼3% when, for γ = 0°,
the column distance is increased to (j − i)δx=15 µm. Experimentally, for all the
data presented in Chapters 3 and 4 the approximate |v|0 has been compared to the
value |v| obtained from the CCFs fit (taken as unbiased estimate of the flow speed):
the retrieved average ratio |v|/|v|0 ranging from 0.87 to 0.96 confirms that the blood
flow speed can be obtained directly from the peak time of the experimental CCFs
in most of the examined cases, thereby simplifying the analysis.

2.6.1 Experimental uncertainty on the recovered estimate of the flow
speed

When the systematic overestimate of the flow speed due to the approximation
D = 0 is negligible, the exploitation of the peak time of the CCF for the velocity
measurement is particularly advantageous since it allows fastening the data analysis.
An estimate for the error σ|v|0 affecting the approximate estimate |v|0 can be derived
by error propagation:

σ|v|0 =

√( ∂|v|0
∂τ0max

)2
(στ0max)

2 (2.40)

στ0max is the uncertainty on the peak time of the experimental CCF: recalling that
the scan frequency per line defines the temporal resolution with which the CCF is
sampled, for cross-correlation functions with high signal-to-noise ratio (as those
reported in Chapters 3 and 4) a reasonable estimate for στ0max is one half of the
line scan time (στ0max=τline/2). In eq. (2.40), στ0max is assumed to be the main
source of uncertainty on the approximate estimate of the flow speed: in fact, the
angle between the scan path and the flow direction can be determined from the
orientation of the vessel in the raster-scanned image as previously explained, and
the other variables appearing in the explicit expression for |v|0 are the pixel size, the
column distance and the scan frequency, for which the error is null or negligible.
Starting from eqs. (2.37)-(2.38), we obtain

σ|v|0 =

√√√√√(
−

2(j− i)δx cos(γ)±
√
∆∓ τ0max∆

∂∆

∂τ0max
4(τ0max)

2

)2
(στ0max)

2 (2.41)
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where ∆ is defined according to eq. (2.38) and

∂∆

∂τ0max
= 4

δx

τline
sin(γ)

[
2
δx

τline
sin(γ)τ0max + (j− i)δx cos(γ)

]
− 8τ0max

( δx
τline

)2 (2.42)

Eq. (2.41) underlines the dependence of the uncertainty σ|v|0 on several parameters;
higher errors are generally found for a lower scan frequency, whereas a non-
monotonic trend is detected when σ|v|0 is evaluated as a function of the column
distance (j − i). Given a single xy-image, it is therefore convenient to derive
the cross-correlation functions for multiple values of the column distance and to
compute a weighted average of all the values of the flow speed provided by their
peak times.

2.7 Measurable flow speeds

Beside offering a straightforward method for the determination of the flow
speed of the imaged particles, the analytical expression of the cross-correlation
peak time (eq. 2.34) allows estimating the maximum flow speed that can be mea-
sured provided a given scan frequency. In this Section, I combine the theoretical
predictions derived from eq. (2.34) with in-vitro measurements on 1 µm fluorescent
micro-spheres to quantify the minimum and the maximum flow speed values
accessible with a given scan frequency per line.

Maximum flow speed. For a fixed fline, the higher the flow speed, the shorter
is the CCF peak time τmax. I can therefore define the maximum accessible speed
by requiring a minimum number of data points in the peak sampling: in other
words, if I require the peak lag time being at least the nth data point in the CCF
curve, the maximum measurable speed |v|max is the one satisfying the condition
τmax(|v|max)=nτline.
Instead of analytically solving for |v|max the equation τmax(|v|max)=nτline, I proceed
graphically. I simulate the τmax plot as a function of the flow speed, and identify
the maximum measurable speed |v|max by its intersection with the constant nτline-
vs-|v| plot. I perform the simulation with n=10, D=0.4 µm2/s (as expected for
micro-beads 1 µm in diameter), γ=0° (non-zero angles between the flow direction
and the scan path decrease the modulus of the maximum accessible flow speed)
and fline=1400 Hz (τline=714µs); 1400 Hz is the highest scan frequency allowed by
the conventional scanner of our experimental setup (see Materials and Methods
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Figure 2.10: FLICS: estimate of the minimum and maximum measurable flow speeds. (a): cross-
correlation peak lag time τmax as a function of the flow speed, simulated according to
eq. (2.34) with fline=1400 Hz, γ=0°, D=0.4 µm2/s, a=0.5 µm, δx=0.13 µm, ω0=0.2 µm,
ω0z=0.5 µm and variable column distance (j − i) ((j − i)δx=1.9, 12.6 and 39 µm). The
dashed blue line is the constant plot τmax = 10τline. (b): raster-scanned xy-image acquired
by detecting the signal of 1 µm fluorescent spheres undergoing laminar flow in a square
borosilicate capillary (inner section=720 µm). fline=1400 Hz, δx=0.13 µm, scale bar=15
µm. The CCF reported has been computed on the same xy-image with (j− i)=310 pixels;
the fit has been performed according to eq. (2.21), with best-fit parameter |v|=(6631±103)
µm/s. (c): raster-scanned xy-image acquired by detecting the signal of 1 µm fluorescent
spheres undergoing laminar flow in the 720 µm square borosilicate capillary. fline=1400
Hz, δx=0.13 µm, scale bar=15 µm. The CCF reported has been computed on the same
xy-image with (j − i)=25 pixels; the fit has been performed according to eq. (2.21), with
best-fit parameter |v|=(174±10) µm/s.

in Section 3.2), allowing to provide a general estimate of the maximum speed
accessible by the FLICS method on commercial confocal microscopes. I simulate
the τmax-vs-|v| plot for various column distances: in the most favorable case,
diagonal lines produced by flowing objects in the xy-image last for the entire image
width (see Fig. 2.10b) and no constraints are found on the choice of (j− i).
The results are shown in Fig. 2.10a: if the flow is parallel to the scan path, imaged at
the highest available scan frequency and inspected at high column distances, FLICS
can access flow speed values as high as 6 mm/s. This conclusion is reinforced in
Fig. 2.10b, where the FLICS measurements performed on 1 µm fluorescent beads
flowing with |v|=(6631±103) µm/s are reported.

Minimum flow speed. As I pointed out in Section 2.2, particles flowing with
speed |v| and imaged along a raster pattern with scan speed |v|scan � |v| do not
produce diagonal lines in the xy-image: they are instead reconstructed in their
shape, appearing as two-dimensional spots. Therefore the adopted scan frequency
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also imposes a lower limit to the measurable flow speed. With a 1400 Hz scan
frequency per line, the minimum flow speed that can be measured by FLICS on 1
µm fluorescent micro-spheres is ∼ 170 µm/s (Fig. 2.10c).

Summarizing, at the highest scan frequency per line allowed by our commercial
confocal microscope, FLICS allows flow measurements in the broad speed range
170-6000 µm/s. Lower |v| values can obviously be measured by lowering at will
the scan frequency, whereas higher speed values can in principle be measured
at the 8 kHz line scan frequency of resonant scanning heads. By simulating the
τmax-vs-|v| plot, and adopting a procedure analogous to the one employed here for
1 µm spheres, the maximum accessible flow speed can be quantified for any other
adopted value of fline and for particles of different size.

2.8 Cross-correlation peak amplitude

The approximate expression for the cross-correlation peak time derived under
the assumption of vanishing diffusion coefficient will be extensively exploited in
Chapter 3 for the experimental validation of the FLICS method. Since the same
applies to the peak amplitude, we conclude this Chapter by deriving here its
functional dependence upon the flow speed and the other instrumental and image
acquisition parameters.
Recalling eq. (2.21) and assuming D = 0,

G(τ0max) ∝
1(

a2[
2 +ω20

) 1√
a2[
2 +ω20z

·

· exp
{
−
[(j− i)δx− |v| cos (γ)τ0max]2

a2[
2 +ω20

}
exp

{
−

[
δx
τline

− |v| sin (γ)
]2
(τ0max)

2

a2[
2 +ω20

}
(2.43)

By substituting eq. (2.36) to τ0max and by rearranging the Gaussian terms, I obtain

G(τ0max) ∝
1(

a2[
2 +ω20

) 1√
a2[
2 +ω20z

exp

{
−
(j− i)2δx2(
a2[
2 +ω20

)[1+ Γ1[Γ1 + Γ2 − 2]]} (2.44)
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with Γ1 and Γ2 defined as

Γ1 ≡
|v|2 cos2(γ)

|v|2 cos2(γ) +
( δx
τline

− |v| sin(γ)
)2

Γ2 ≡

( δx
τline

− |v| sin(γ)
)2

|v|2 cos2(γ) +
( δx
τline

− |v| sin(γ)
)2

(2.45)



Chapter 3

FLICS Validation

FLow Image Correlation Spectroscopy exploits a single raster-scanned xy-image
acquired by detecting, in confocal or multi-photon excitation microscopy, the

signal emitted by fluorescent particles undergoing (Brownian diffusion and) uni-
form flow: both the modulus and the direction of the flow velocity vector are
recovered by computing the cross-correlation of the fluorescence intensity fluctu-
ations detected in pairs of columns of the image. The whole frame is employed
when, in the simplest implementation, a single vessel is imaged at high magni-
fication; by contrast, separate regions of interest are selected when a branched,
extended portion of the investigated circulatory system is included in the field
of view. Suggested by the general theoretical framework and by the simulated
CCFs reported in the previous Chapter, the possibility of performing the FLICS
analysis separately on each in-focus vessel, for any relative orientation of the scan
and flow directions, provides us with a method capable, in principle, of recovering
and mapping the (blood) flow velocity at the level of individual capillaries even in
the presence of a geometrically complex vessel network.
Prior to the application of the FLICS method to circulatory systems of such a
complexity, the experimental validation of the principles and theoretical framework
of FLow Image Correlation Spectroscopy is mandatory. First, the correctness of the
analytical expression I derived for the cross-correlation function must be assessed,
by verifying that experimentally recovered cross-correlation functions exhibit the
theoretically expected functional dependence on the scan frequency, on the flow
speed, on the flow direction and on the distance between the columns selected
for the CCFs derivation. Secondly, the speed values measured by FLICS should

74
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be validated by their comparison with those provided by other well-established
(blood) flow measurement techniques. Third, the minimum image or ROI size (or
equivalently, the minimum number of detected fluorescence fluctuations) required
for an accurate statistical sampling of the correlation function must be determined.
In this Chapter, all these FLICS validation measurements are reported. They have
been mostly performed in-vivo in the main venous vessel of zebrafish embryos,
which offer the practical advantage of a geometrically simple circulatory system,
while retaining significant biological relevance due to their widespread use as a
model system in cardiovascular research. In-vitro measurements on fluorescent mi-
crospheres undergoing laminar flow in a microfluidic device have been performed
if controlled variations of the speed of the imaged flowing particles were required.

3.1 Model organism

Animal models have a pre-eminent role in biomedical research: they are widely
employed to investigate the pathogenesis of various human diseases at a cellu-
lar and molecular level and allow the development and test of novel therapies.
This especially applies to murine - and, more in general, mammalian - models,
which beside offering genetic and physiological similarities to humans, also natu-
rally develop diseases affecting the immune, endocrine, nervous, cardiovascular
and skeletal systems; certain human diseases normally not affecting mice can be
induced by genome manipulation, fueling the development of sophisticated trans-
genic approaches aimed at the creation of mouse models accurately reproducing
the pathology of human diseases [100]. The main disadvantage of forward-genetic
screens and random mutagenesis-based reverse genetics, when applied to mice,
is that they inevitably require considerable staff and infrastructure support; mice
maintenance and breeding are prohibitively expensive as well.
In this context, the zebrafish (Danio rerio, a teleost fish of the cyprinid fam-
ily) has emerged as a useful complement to mammals in modeling human dis-
eases [100–102]. The main focus of zebrafish research has traditionally been on
developmental biology, due to the specimen optical clarity, allowing for visual
analyses of early embryogenetic processes, and to the fast development: in about
two days all common vertebrate specific features, including a compartmentalized
brain and all internal organs, can be observed. Nowadays, zebrafish embryos
also find increasing applications in the area of new drug discovery and in cancer
research, since they spontaneously develop almost any tumor type known from
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humans, with similar morphology and comparable signaling pathways [103]. Fur-
thermore, the ongoing sequencing of the zebrafish genome allows the identification
of disease-causing mutations, leading to the availability of thousands of clinically
relevant zebrafish mutants for the investigation, just to name a few, of immune,
neuronal, hematopoietic and cardiovascular disorders [101, 104].

Due to their wide employment in the investigation of the development, function
and pathologies of the cardiovascular system and in the observation of vasculariza-
tion and tumor angiogenesis, zebrafish embryos represent the organism of choice
to test and validate FLow Image Correlation Spectroscopy. What is particularly
advantageous is the relative geometrical simplicity of the main vessels in the cardio-
circulatory system, which I briefly describe prior to reporting the results of the
FLICS experiments.

3.1.1 Anatomy of the cardiovascular system

The embryonic zebrafish two-chamber heart is the first organ to develop and
shows remarkable similarities to the embryonic human heart: developmental parity
has been documented between the twenty-four hours post fertilization (h.p.f.)
zebrafish heart and the human heart at three weeks gestation [101]. The cardiac
activity is not coupled with metabolic demand, so that fish, unlike rodent models,
are not dependent on a cardiovascular system for survival during embryogenesis.
Two major trunk axial vessels, the Dorsal Aorta (DA) and the Posterior Cardinal
Vein (PCV), are fully formed two days post fertilization (d.p.f.). The formation of
these two longitudinally aligned vessels and of the primitive cranial vasculature
occurs by vasculogenesis, i.e. by the coalescence of early mesoderm-derived
precursor endothelial cells or angioblasts [105]. As these first vessels assemble, they
concomitantly acquire the arterial and venous properties crucial for the proper
functioning of the circulatory system: the cardiac contractions promote the blood
flow through the arterial vessel, which turns 180° at its caudal end to empty into
the cardinal vein; through the PCV, erythrocytes head back to the heart.
Following the initial DA an PCV development by vasculogenesis, most subsequent
vessel formation occurs via angiogenesis (the formation of new vessels by growth
from, or remodeling of, preexisting vessels). The intersegmental angiogenic arterial
and venous vessels (ISAs and ISVs) of the trunk, developing between two and three
d.p.f., form throughout the specimen length and interconnect to form the Dorsal
Longitudinal Anastomotic Vessel (DLAV) [105]. In addition to the trunk vasculature,
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Figure 3.1: Three d.p.f. zebrafish embryo. Non-confocal transmitted light image (left) and
confocal fluorescence images acquired by detecting the signal of the Green Fluorescent
Protein (GFP) expressed by the endothelial cells (center, λexc=488 nm) and the signal of
the DsRed fluorescent protein expressed by the red blood cells (right, λexc=561 nm)
of a genetically modified zebrafish embryo belonging to the mutant transgenic line
mitfaw2/w2; roya9/a9;Tg(kdrl:EGFP)s843;Tg(gata1:dsRed)sd2. The images have been ac-
quired on a confocal Leica TCS SP5 microscope (see section 3.2) in mosaic mode; image
length 3 mm.

a rather complex cranial circulatory system begins developing at approximately
26 h.p.f.; I refer to [106] for the complete description of its morphology and
developmental stages.

The typical diameter of the zebrafish main vessels (DA and PCV) is around
20-30 µm. When small intersegmental vessels are considered, the diameter reduces
to ∼ 10 µm, almost equaling the size of red blood cells (the major component of
blood, with a radius of ∼ 4 µm and a thickness of ∼ 1-2 µm [107]).
The DA and PCV blood flow speed depends on both the venous or arterial nature
of the vessel and on the developmental stage of the embryo. A characterization
of the flow speed in zebrafish embryos ranging from two to four d.p.f. has been
carried out in the laboratory (data not shown) by means of Scanning Laser Image
Correlation (SLIC) [57]. In the dorsal aorta, the blood flow is promoted by the
ventricular contractions and relaxations of the heart: periodic changes are detected
in the erythrocytes speed, which oscillates from the maximum value reached during
systole (heart contraction) to a minimum value during diastolic phases (ventricular
relaxation); in the healthy zebrafish, three pulsations per second are detected. The
systolic speed typically ranges from ∼ 1500 µm/s to ∼ 3000 µm/s in both two
and four d.p.f. embryos, whereas it increases up to ∼ 4000 µm/s at three d.p.f.;
the diastolic speed ranges from ∼ 400 µm/s to ∼ 900 µm/s, irrespectively of the
developmental stage. While a decreasing trend has been observed for the systolic
speed from the heart to the tail of the embryos, the diastolic speed exhibits a
constant value through the whole vessel length. A more irregular behavior has
been detected when measuring the decrease of the blood flow speed along the
posterior cardinal vein; in contrast to the flow speed in the DA, the venous speed is
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not affected by the heart contractions and ranges from ∼ 300 µm/s to ∼ 1600 µm/s
in two and four d.p.f. zebrafish, slightly increasing up to ∼ 2000 µm/s in three d.p.f.
embryos. The cardinal vein is the vessel in which all the FLICS measurements
reported in this Chapter have been performed.

3.2 Materials and methods

3.2.1 Sample preparation

Animal models: validation measurements have been performed on zebrafish
embryos (Danio rerio, 3 days post fertilization, ∼ 3-4 mm long), belonging to the
mutant transgenic line mitfaw2/w2; roya9/a9;Tg(gata1:dsRed)sd2, in which the red
fluorescent protein DsRed (λpeakexc =560 nm, λpeakem =580 nm) is expressed by erythro-
cytes. In the Casper variety, the embryos do not present skin pigmentation and
are optically weakly scattering. Zebrafish embryos have been anesthetized in 40
mg/l tricaine (Ethyl 3-aminobenzene methansulfonate, Sigma-Aldrich, USA) and
then embedded in lateral position in small custom-built chambers filled with 1.5%
low-melting agarose (Sigma Aldrich, USA). The low tricaine concentration anes-
thetizes the sample without impairing cardiac functions and heart rate [108, 109],
while the agarose concentration helps in holding it immobilized throughout the
measurement. All the experimental protocols have been reviewed and approved
by the Institutional Review Board at the Department of Life Sciences of Università
degli Studi di Milano and experiments have been conducted in accordance with
national and European laws controlling experiments on live animals.

Chemicals: 1 µm amine-modified polystyrene fluorescent microspheres (λpeakexc =
520 nm, λpeakem =540 nm) (Sigma-Aldrich, USA) have been diluted in MilliQ water
and used without further purification. For cross-correlation measurements, a
borosilicate capillary (CM Scientific Ltd., UK) with 800x800 µm2 nominal square
section and 40 µm wall thickness has been employed; the square section has
been chosen to minimize aberrations in the focal volume. The laminar flow in the
capillary has been obtained by connecting both its sides to 4-cm3 glass syringes used
as sample reservoirs: the syringes have been placed horizontally and positioned
at different heights by a micrometric regulation, so that the flow speed could
be changed by varying the relative height of the two reservoirs as described
elsewhere [35].
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3.2.2 Experimental setup

All the FLICS validation and calibration measurements have been performed
on an inverted Leica confocal microscope (TCS SP5 STED-CW, Leica Microsystems,
D). It is equipped with three objectives (HCX PL FLUOTAR 20x / N.A. 0.5 air,
HCX PL APO CS 40x / N.A. 1.3 oil and HCX PL APO STED 100x / N.A. 1.4
oil). Eight laser lines are available: 458, 476, 488, 496 and 514 nm, provided by
an Argon ion laser; 561 nm, provided by a solid-state diode-pumped laser; 592
nm, provided by a continuous-wave fiber laser beam for STED nanoscopy; 633
nm, provided by a Helium-Neon laser. The fluorescence detection is accomplished
by two PhotoMultiplier Tubes (PMTs) and two high sensitivity hybrid detectors;
a fifth, non spectral dedicated detector is employed for the acquisition of images
in transmitted light. In addition to a conventional scanning head, providing scan
frequencies per line in the range 10-1400 Hz, the system is endowed with a resonant
scanner operating at a fixed 8 kHz scan frequency per line (or 16 kHz, when in
bidirectional mode).

For the measurements in zebrafish embryos, the excitation of the DsRed protein
has been primed by the 561 nm solid state laser with a typical ∼ 10 µW power
and the confocal detection has been accomplished by means of a photomultiplier
tube in the detection bandwidth 575-650 nm. Fluorescent microspheres have been
excited at 514 nm with a ∼ 5 µW power and the emitted signal has been detected
in the range 525-600 nm. No offset has been applied in the signal detection, a 8-bit
dynamic range has been selected and the PMT gain has always been adjusted to
avoid saturation in the pixels intensity; details concerning image sizes and formats
and the adopted line scan frequencies are reported in each figure caption. For the
fit of experimental cross-correlation functions, the PSF 1/e2 radius has been fixed
to 0.2 µm in the radial direction and to 0.5 µm in the axial direction, as obtained
by resolution measurements on immobile sub-resolved fluorescent beads.

3.2.3 Data analysis softwares

All the acquired images have been visualized, linearly contrast-adjusted for
display and exported in tif format using ImageJ (U.S. National Institutes of Health,
USA). Cross correlation functions have been computed by means of a custom-
written Python code exploiting Fast Fourier Transform (FFT) routines. All the
non-linear least-squares fits have been performed by the OriginPro 8.6 software
(OriginLab, USA).
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3.3 Validation of the FLICS theoretical framework

In Chapter 2 I derived the analytical expressions of the FLICS cross-correlation
function G(τ) and of its peak lag time τmax, thereby evidencing their functional
dependence on both the flow speed and direction, on the diffusion coefficient of
the imaged particles, on the scan frequency and on the column distance considered
for the CCF derivation. In this Section, I validate the theoretical framework on
cross-correlation functions experimentally recovered, either in-vivo in zebrafish
embryos or in-vitro in a simple microfluidic device.

3.3.1 In-vivo experiments and comparison with Scanning Laser Image
Correlation

An exemplifying confocal raster-scanned xy-image encompassing the two main
vessels of a three d.p.f. zebrafish embryo is reported in Fig. 3.2. Cross-correlation
functions have been recovered in the cardinal vein for increasing column distances
(Fig. 3.3a): they have been satisfactorily fit to the analytical expression derived in
Chapter 3 (eq. 2.21) and exhibit the linear scaling of the peak time (Fig. 3.3b) as
a function of the column distance (j − i)δx expected from eqs. (2.34) and (2.36).
The estimates of the blood flow speed (|v|=323±2 µm/s) and of the radius of
the red blood cells (a=5.3±0.1 µm) obtained by the CCFs fit are compatible with
the values in the literature [107] and with the SLIC measurements reported in
the following. The only parameter which is not reliably recovered by the curve
fitting procedure is the diffusion coefficient, that is typically overestimated with
respect to the prediction of the Stokes-Einstein’s relation (∼0.05 µm2/s). As already
pointed out in [107], at the low Reynolds number of the microcirculatory blood

Figure 3.2: FLICS image acquisition in zebrafish embryos. Raw
raster-scanned confocal xy-image acquired by detecting the
fluorescence emission of DsRed-expressing red blood cells in
the dorsal aorta (upper vessel) and in the posterior cardinal
vein (lower vessel) of a three d.p.f. zebrafish embryo. Scan
frequency fline = 1000 Hz, scale bar = 15 µm; the flow di-
rection in the venous vessel subtends an angle γ=0° with the
horizontal x-axis. The dashed box defines the vessel in which
the CCFs reported in Fig. 3.3 have been computed.
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Figure 3.3: FLICS measurements in the zebrafish posterior cardinal vein: effect of the column
distance and of the scan frequency. (a): exemplifying CCFs derived for increasing column
distances in the range 30-100 pixels (2.7 - 15.2 µm) with a 10-pixel step (the distance
increases in the direction of the arrow). Each CCF is averaged over all the pairs of columns
a fixed distance (j− i) apart, improving the statistics and leading to error bars - reported
as s.e.m, standard error of the mean- lying within the size of the data points. The CCFs
have been fit to eq. (2.21), yielding |v|=(323±2) µm/s and an estimate a=(5.3±0.1) µm for
the RBCs radius; τline=1 ms, δx=0.09 µm, γ=0°, ω0=0.2 µm and ω0z=0.5 µm have been
treated as fixed parameters. (b): linear dependence of the CCF peak time τmax on the
column distance selected for the CCF derivation; (j− i) varies in the range 10-180 pixels
with 10-pixel step. Given the high signal-to-noise ratio in the recovered cross-correlation
functions, the experimental uncertainty on each τmax value has been assumed equal to one
half of the line scan time. (c): comparison between the CCFs derived for a fixed column
distance (j− i)=70 pixels on two xy-images acquired sequentially on the same specimen
with different line scan frequencies: fline=1000 Hz (open squares; the image is the same
reported in Fig. 3.2) and fline=700 Hz (open circles). A global fit with shared parameter
|v| has been performed according to eq. (2.21) yielding a flow speed |v|=(338±1) µm/s:
provided that the scan speed is adjusted so that flowing objects produce diagonal lines in
the raster-scanned image, the same estimate of the blood flow speed is recovered for any
value of fline.

flow the diffusion coefficient must be regarded as an effective parameter, scaling
as D ∼ γ̇l2 where γ̇ is the local shear rate and l is the mean free path travelled
by each particle between two consecutive interactions. The size of the RBCs, their
mutual separation and their distance from the vessel boundaries all contribute in
regulating l, leading to a considerable deviation from the usually adopted value of
the diffusion coefficient and justifying the experimental findings.

By a series of consecutive scans of the same field of view with different fline
frequencies, the independence on the scan frequency of the blood flow speed
recovered by the CCFs best fit has also been assessed. All the employed frequencies
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in the range 400-1400 Hz allowed the imaging of flowing RBCs as diagonal lines
and allowed the computation of peaked CCFs with a sufficiently high temporal
resolution (we recall that the lag time τ is approximately an integer multiple of
f−1line ≡ τline): a global fit to eq. (2.21) with shared parameter |v| well describes the
experimental curves, as reported for two exemplifying CCFs (those obtained with
fline equal to 700 and 1000 Hz) in Fig. 3.3c.

Once investigated the effect of the column distance and of the scan frequency,
I addressed the dependence of the cross-correlation functions and peak time on
the flow direction. The possibility of accurately measuring the blood flow speed
irrespectively of the angle subtended by the flow velocity and the scan path is of
particular relevance when aiming at applying the FLICS method to the previously
mentioned intricate, geometrically complex vessel networks: without the need for
a rotation, neither of the specimen nor of the scan path, a single xy-image can
effectively be exploited to recover the flow speed in differently oriented vessels.
Raster-scanned xy-images (Fig. 3.4a-d) have been acquired in the zebrafish PCV
by progressively varying the angle γ in the range [−90°; +90°] (10° step); the scan
direction has been modified by means of the confocal microscope scan field rotation,
instead of rotating the specimen. For each value of γ, a CCF has been computed
at a fixed column distance ((j − i)δx=6.6 µm): as predicted by the FLICS model
(Fig. 2.8 and eqs. 2.34, 2.36), the CCF peak shifts toward shorter lag times when γ
increases from 0° to 90° (Fig. 3.4e) due to a reduction in the slope of the diagonal
lines produced by RBCs in the raster-scanned images. Equivalently, the expected
decrease of the CCF peak time has been detected for γ in the range −10°→ −90°
(Fig. 3.4f). In the whole range [−90°; +90°], the dependence of the experimental
CCF peak time and amplitude on γ is well described by the analytical expressions
derived in Chapter 2 (eqs. 2.36 and 2.40, respectively), confirming the validity of
the newly developed theoretical framework (Fig. 3.4g).
To further assess the sensitivity of the FLICS cross-correlation functions towards
the flow direction, each CCF has also been fit to eq. (2.21), yielding an estimate of
|v| and γ. The angle recovered from the fit always agrees with the angle selected
prior to the image acquisition, as shown by the linear regression of the γfit-vs-γ
plot reported in Fig. 3.5a. The recovered values of the blood flow speed |v| are
reported in Fig. 3.5b: apart from small (temporal) fluctuations affecting the blood
flow speed of a living biological sample, no regular trend is observed in the |v|-vs-γ
plot. This confirms that the recovered speed values do not depend on the angle γ,
and that the decrease of the peak time shown in Fig. 3.4e,f for increasing values of
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Figure 3.4: FLICS measurements in the zebrafish posterior cardinal vein: effect of the flow direction
(I). (a)-(d): confocal raster-scanned xy-images acquired in the posterior cardinal vein of a 3
d.p.f. zebrafish embryo by detecting the fluorescence signal (shown in red) of the protein
DsRed expressed by erythrocytes. Fluorescence images are overlaid to the (non-confocal)
transmitted-light images acquired simultaneously. fline=1000 Hz, δx=0.04 µm, scale bar=10
µm. The angle γ (defined in Fig. 2.7) between the direction of the blood flow and the
scan path has been varied in the range [−90°; +90°] (10° step). Four arbitrary, exemplifying
orientations of the venous vessel with respect to the horizontal (x-oriented) scan direction
are shown: γ=90° in (a), 50° in (b), 0° in (c) and −50° in (d). Both the angle γ and the
velocity vector |v| are sketched in the insets with respect to the reference Cartesian xy-plane.
(e): normalized CCFs (mean±s.e.m.) computed with (j − i)δx=6.6 µm for γ ∈ [0°;+90°];
the column distance has been selected so that the CCF peak is well distinguishable in
the whole γ range. All the curves are overlaid to the best-fit performed according to
eq. (2.21). (f): normalized CCFs (mean±s.e.m.) computed with (j − i)δx=6.6 µm for
γ ∈ [-10°;-90°]. (g): experimental CCF peak time for γ ∈ [-90°;+90°]. Each data point is
reported as mean ± standard deviation over n=7 xy-images. The fit has been performed
according to eq. (2.36) with best-fit parameter |v|=(424±11) µm/s. Inset: experimental CCF
peak amplitude for γ ∈ [-90°;+90°] fitted to eq. (2.40) with fixed |v|=424 µm/s and best-fit
parameter a=(6.3±0.2) µm: each data point is reported as mean ± standard deviation over
n=7 xy-images.
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Figure 3.5: FLICS measurements in the zebrafish posterior cardinal vein: effect of the flow direction
(II). (a): the estimates γfit of the angle subtended by the flow velocity and the scan path,
obtained by the CCFs fit, are plotted versus the corresponding expected values (provided
by the manual setting, prior to the image acquisition, of the scan direction); each value
is reported as mean± standard deviation over 7 independent measurements. The linear
trend (slope=1.03±0.01, intercept=-0.6°± 0.5°) proves the sensitivity of the cross-correlation
function to the blood flow direction. (b): flow speed |v| (open circles) recovered from the fit
of experimental CCFs, and approximate flow speed |v|0 (filled squares) recovered directly
from the peak time of the experimental CCFs, for each value of the angle γ. Each data
point is reported as mean±standard deviation over n=7 xy-images. In the lower panel, the
discrepancy |v|/|v|0 is shown for each value of the angle γ. I remark that the comparison
between the two recovered estimates of the flow speed is limited to the range [-80°;+80°]:
for γ=-90° the expression for the peak time derived in the approximation D→ 0 does not
lead to real solutions for the modulus |v|0 (see eq. 2.39), whereas for γ=90° the uncertainty
associated to the determination of an almost vanishing peak time reflects in a too large
uncertainty in the recovered speed.

the angle can be ascribed to the variation in the relative scan and flow direction
rather than to an increase of the flow speed.
Fig. 3.5b also shows the comparison of the exact and approximate estimates, |v|

and |v|0, of the blood flow speed (recovered, respectively, by the CCFs fit or by
approximating their peak time τmax to eq. 2.36 and by solving for the speed as
in eq. 2.37). Within the large range [−80°; +80°], an average ratio |v|/|v|0=0.87 has
been obtained; in agreement with the theoretical predictions of Fig. 2.9, |v|/|v|0 is
as high as 0.99 for a flow direction parallel to the scan path, proving that the CCF
peak time alone can be exploited to gain a straightforward and reliable estimate of
the flow speed.
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Comparison with the SLIC results

To further strengthen the results of Figs. 3.4 and 3.5 and provide a reference
value of the blood flow speed to be compared with the one recovered by FLICS,
Scanning Laser Image Correlation (SLIC) [57, 58] has been performed on the
same three d.p.f. zebrafish embryo. xt-images have been acquired in the posterior
cardinal vein with an 8 kHz line-scan frequency, along a linear scan path subtending
an angle γ=0° with the flow direction. 8192 consecutive scans of the same line
have been performed and re-assembled, by their juxtaposition along the vertical
direction, in each xt-frame. As previously described (Section 1.3.4), fluorescent
red blood cells, flowing with constant velocity |v|, appear in the xt-image as
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Figure 3.6: SLIC measurements. (a): confocal xt-image acquired by detecting the fluorescence
signal of the protein DsRed expressed by erythrocytes in the posterior (caudal) cardinal
vein of a 3 d.p.f. zebrafish embryo (the same on which the measurements shown in
Figs. 3.4 and 3.5 were performed). A line-scanning procedure has been employed for
the image acquisition: the same line (512 pixels, 126 µm) has been repeatedly scanned
and the consecutive scans have been aligned along the vertical direction (for the sake
of display, 4096 lines out of a total of 8192 scans are shown). (b): CCFs (mean±s.e.m.)
computed from the xt-image in (a) at increasing column distances of 7.4, 8.6, 9.9, 11.1, 12.3,
13.6 µm (one tenth of the total data points is plotted for the sake of display). The higher
the column distance, the longer is the lag time at which the peak of the CCF is located.
The fit has been performed according to eq. (1.70), with best-fit parameter |v|=(322.9±0.3)
µm/s. The average flow speed provided by five separate measurements is |v|=(328±21)
µm/s. The diffusion coefficient is largely overestimated by the fitting procedure (D=222±25
µm2/s), mainly for the interactions of red blood cells with the vessel walls and for the
finite (non-pointlike) size of erythrocytes, which is not accounted for in eq. (1.70).
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parallel diagonal lines (Fig. 3.6a); the blood flow speed, regulating their slope,
can be quantified by computing the cross-correlation between pairs of columns
of the image. Exemplifying CCFs are reported in Fig. 3.6b with their global fit
to eq. (1.70): the recovered flow speed |v|=(328±21) µm/s is compatible with the
average |v|=(365±65) µm/s of the values shown in Fig. 3.5b and with the estimate
|v|=(323±2) µm/s recovered from Figs. 3.2 and 3.3.

3.3.2 In-vitro experiments

The dependence of experimental FLICS cross-correlation functions on the flow
speed has been investigated with in-vitro experiments, which allow controlling,
and regulating at will, the magnitude of the flow velocity. Raster-scanned confocal
xy-images have been acquired by detecting the signal of fluorescent micro-beads
(nominal diameter, 1 µm) dispersed in water and undergoing laminar flow in a
square borosilicate capillary (inner section, 720 µm). As described in Section 3.2,
the flow speed is regulated by the height h between two insulin syringes, used
as sample reservoirs and connected to the capillary by means of Teflon tubes.
According to Poiseuille’s law [110], the flow speed |v| scales linearly with the height
difference h between the two reservoirs:

|v| = 0.084hd2
ρg

Lη
(3.1)

where d is the capillary square section, ρ and η are the density and the viscosity
of the fluid (water, in the present case), L is the tubing length and g is the gravity
acceleration. I have therefore varied the flow speed |v| by micro-regulating the
relative height h, and for each h value I have measured |v| by means of FLow Image
Correlation Spectroscopy. The results are reported in Fig. 3.7, with the comparison
of the CCFs computed as a function of h (or equivalently, as a function of |v|) at fixed
column distance. The flow speed measured by fitting experimental cross-correlation
functions to eq. (2.21) allows verifying that: (i) the linear dependence predicted
by eq. (3.1) for the |v|-versus-h plot is retrieved, with a slope |v|/h=(0.127±0.003)
s−1 that well compares to the theoretically expected value |v|/h= 0.129 s−1; (ii) the
CCF peak time τmax obeys the non-linear dependence on the flow speed derived in
Chapter 2 with eqs. (2.34) and (2.36).
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Figure 3.7: FLICS sensitivity to flow speed changes. (a): Raw confocal raster-scanned xy-
images acquired by detecting the fluorescence signal of 1 µm spheres flowing through an
800 µm square capillary; fline=1400 Hz, δx=0.07 µm, scale bar=10 µm; calibration bar on
the bottom in arbitrary units. Images refer to a relative reservoirs height h of 8.1 mm (left
panel), 5.8 mm (central panel) and 3.6 mm (right panel). Insets show magnified views of
individual flowing beads to highlight the difference, associated to the different flow speed
values, in the slope and width of the diagonal lines produced by flowing objects in the
xy-images. (b): CCFs computed for a fixed column distance (j− i)=20 pixels for various
heights h in the range 3.6-8.1 mm; the higher the distance between the two reservoirs,
the higher is the flow speed and the smaller is the lag time at which the CCF peak is
located. The fit has been performed according to eq. (2.21); error bars on the CCF curves
are within the size of data points, reported as mean±s.e.m.. (c): linear dependence of the
flow speed on the height h. Open squares are the weighted averages of the flow speed
estimates obtained from the peak time of the CCFs derived for (j− i) in the range 10-55
pixels (5-pixel step); filled triangles are the estimates of the flow speed recovered from the
global fit of the CCFs computed for (j− i) in the range 5-35 pixels (5-pixel step). The solid
line is the best fit to eq. (3.1), with slope |v|/h=(0.127±0.003) s−1. (d): peak time of the
CCFs of panel (b) plotted as a function of the flow speed |v| recovered by their fit to eq.
(2.21): the experimental τmax-versus-|v| plot obeys eq. (2.36), as expected (solid line: fit to
eq. 2.36 with (j− i)=20 pixels, δx=0.07 µm and γ=0° treated as fixed parameters).
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3.4 FLICS on regions of interest of variable size

The exploitation of a single raster-scanned xy-image for the measurement of
the flow speed in all the vessels within the (often large) chosen field of view of an
extended sample requires an evaluation of the effect produced on experimental
cross-correlation functions by a reduction of the size of the Region Of Interest (ROI)
on which the CCFs are computed. The minimum ROI size for a reliable recovery of
the blood flow speed must be determined, and the absence of a systematic under /
overestimate of the speed |v| depending on the ROI size should be assessed as well.
I investigate the effect of the selected ROI starting from a single xy-image, acquired
in the posterior cardinal vein of a 3 d.p.f. zebrafish embryo (Fig. 3.8a); the signal-to-
noise ratio in the image and the brightness of the fluorescent objects are sufficiently
high to exclude the necessity of introducing a threshold on the intensity counts,
so that eventual alterations affecting the CCFs can be univocally assigned to the
modification of the ROI size. I start from the largest useful ROI (512x274 pixels2,
which only excludes the regions outside the vessel) and I proceed by further
reductions of the portion of the image on which the CCFs are computed; I reduce
the x-size while keeping the y-size fixed and vice versa, so that the effects of the
reduction of the two ROI sides can be investigated separately. For all the values
of the x- and y- sides, the CCFs are compared with the results obtained from the
largest possible ROI, used as reference (Fig. 3.8b).

3.4.1 Effect of a reduction of the x-side of the ROI for a fixed y-size

For a selected column distance (j−i), Nx−(j−i) individual CCFs are computed
(one for each pair of columns a fixed number of pixels (j − i) apart along the x-
direction), where Nx is the total number of pixels along the horizontal axis of
the image. These cross-correlation functions are then averaged to obtain a single
CCF. Therefore, for a fixed number of pixels Ny along the vertical y-direction,
a reduction of the x-side of the ROI acts as a reduction of the number of cross-
correlation functions averaged for each column distance (j − i). Fig. 3.9a shows
the CCFs for (j− i)=60 pixels, recovered for a fixed Ny=274 pixels and a variable
x-size in the range 61-512 pixels. For Nx>70 pixels, a reduction of the ROI size only
produces a slight decrease in the CCF amplitude, without affecting the peak time
of the cross-correlation function and the estimate of the blood flow speed. The
recovered values of the speed |v| are reported in Fig. 3.9c, for all the investigated
values of the ROI x-axis in the range 70-512 pixels: the estimated speed fluctuates
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Figure 3.8: Computation of FLICS CCFs on regions of interest of variable size (I). (a): raw confocal
xy-image acquired by detecting the signal of the fluorescent protein DsRed expressed by
RBCs in the posterior cardinal vein of a 3 d.p.f. zebrafish embryo. fline=1400 Hz, δx=0.08
µm, γ=0°, scale bar=10 µm; intensity calibration bar on the bottom in arbitrary units.
Starting from this 512x512 image, ROIs of variable size have been selected for the CCFs
derivation, keeping the center of the regions of interest coincident with the center of the
image. (b): experimental CCFs (mean±s.e.m.) computed on the largest useful ROI (512x274
pixels2) selected in the image shown in (a), for increasing column distances (j − i)=10,
30, 60, 90, 120, 150 pixels. The global fit to eq. (2.21) provides a reference flow speed
|v|ref=(1260±3) µm/s.

around the reference value |v|ref=(1260±3) µm/s provided by the analysis of the
largest (512x274 pixels) ROI, with a maximum discrepancy (|v|− |v|ref)/|v|ref=0.02.
This highlights that an averaging operation over roughly ten pairs of columns is
sufficient for the recovery of the CCF and for the measurement of the flow speed.
By contrast, when the x-side of the ROI is reduced to 61-62 pixels (and therefore
only one or two pairs of columns are exploited for the derivation of the CCF
with (j − i)=60 pixels), the behavior of the CCF is largely affected by the limited
(temporal) average performed on the sampling of the observed red blood cells, and
by spurious events registered in the few considered columns. The relative error
σG/G associated to the peak value of the experimental CCF increases (Fig. 3.9d)
and the discrepancy of the recovered speed |v| with respect to the reference value
can be as high as ∼0.2. The minimum required ROI size is therefore regulated by
statistical considerations and, ultimately, by the column distance chosen for the
computation of the CCFs (or, vice versa, when the maximum ROI size is assigned by
the vessels dimensions, it fixes an upper limit to the exploitable column distance).
For further confirmation, I reduced the column distance to (j− i)=30 pixels and I
derived the CCFs (shown in Fig. 3.9b) on ROIs having a fixed Ny=274 pixels and a
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Figure 3.9: Computation of FLICS CCFs on regions of interest of variable size (II). (a),(b): CCFs
(mean±s.e.m.) derived for (j− i)=60 pixels (a) and (j− i)=30 pixels (b) on ROIs (selected
in the xy-image reported in Fig. 3.8a) having a fixed Ny=274 pixels and a variable x-size
in the range 31-512 pixels. Inset of panel (a): the CCF computed for (j − i)=60 pixels,
Ny=274 pixels and Nx=70 pixels is isolated for the sake of display and overlaid to the fit
to eq. (2.21). (c): estimates (filled squares, blue) of the flow speed |v| obtained by the fit
of the CCFs reported in (a): for an x-side between 70 and 512 pixels, the speed can be
measured with a small discrepancy ((|v|− |v|ref)/|v|ref=0.02) with respect to the reference
value (dashed blue line) provided by the largest analyzed ROI. The estimates of the flow
speed (filled circles, pink) provided by the global fit of the CCFs computed, for each of the
ROIs, for increasing column distances in the range [10,(Nx-10)] pixels (10-pixel step) are
also shown for comparison (we remark the similarity with the strategy adopted throughout
Chapters 2-4 for the speed measurement, based on the exploitation of multiple column
distances and on the global fit of all the corresponding CCFs). (d): relative error σG/G
on the peak value of the CCF as a function of the number of cross-correlation functions
averaged for each value of the ROI x-size. Data refer to Ny=274 pixels and (j− i)=30 pixels
(filled circles) and to Ny=274 pixels and (j− i)=60 pixels (open squares).

x-side as small as 31 pixels: in this case too, an average over ten pairs of columns is
sufficient for the recovery of the CCF.

3.4.2 Effect of a reduction of the y-side of the ROI for a fixed x-size

Two main effects are associated to a reduction of the vertical y-side of the
ROI on which the CCFs are computed. On the one hand, the lag time τ being
approximately an integer multiple of the inverse of the scan frequency per line, the
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Figure 3.10: Computation of FLICS CCFs on regions of interest of variable size (III). (a): CCFs
(mean±s.e.m.) computed for a fixed column distance (j− i)=30 pixels, on ROIs (selected
in the xy-image reported in Fig. 3.8a) having a 512-pixels x-size and a variable y-size
in the range 40-274 pixels. (b): relative error σG/G on the peak value of the CCF as a
function of the number of pixels Ny for a fixed Nx=512 pixels. (c): a size reduction along
the y-direction is combined to a reduction along the horizontal axis of the image: CCFs
(mean±s.e.m.) are shown for (j− i)=30 pixels, a fixed ROI y-size of 64 pixels and a variable
x-size in the range 31-512 pixels. The effect produced by a reduction of the horizontal
x-side of the ROI does not depend on the number of pixels along the vertical direction
(see panel (b) in Fig. 3.9 for comparison): even for a small Ny=64 pixels, an average over
ten pairs of columns provides sufficient statistics for the recovery of the CCF. The CCF
recovered for (j − i)=30 pixels and Nx=40 pixels is isolated in the inset for the sake of
display.

number of rows in the region of interest determines the maximum temporal length
of the cross-correlation function: (Ny − 1)τline is the maximum lag time for which
the cross-correlation value can be computed, and it reduces to (Ny − 1)τline/2
when the CCF is derived through Fourier transforms-based algorithms. Therefore
a reduction of the y-side of the ROI might limit the maximum distance between the
columns exploited for the derivation of the CCFs (the higher (j− i), the longer is
the peak time of the cross-correlation function). On the other hand, a reduction of
the vertical side of the ROI reduces the number of fluorescent objects whose signal
is exploited for the cross-correlation derivation (practically, it reduces the number
of diagonal stripes produced by flowing objects in the xy-image and included
in the ROI). The result is shown in Fig. 3.10a, with the CCFs computed for a
fixed column distance (j− i)=30 pixels, a fixed Nx=512 pixels and a variable y-size
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in the range 40-274 pixels: the average over a smaller number of events due to
the reduction of the ROI size does not lead to CCFs with a noisy appearance, but
seldom affects the CCF width and peak time. The slight differences in the recovered
speed values reflect the distribution of speeds of the different observed red blood
cells. Provided that the guidelines outlined in the previous Subsection are followed
for the selection of the ROI x-size, even small ROIs can be employed to recover
the CCFs and determine the drift speed (in the limiting case, of a single erythrocyte).

In summary, even if statistical considerations are at the basis of the observed
results in both cases, the x- and y- sides of the ROI affect the cross-correlation
analysis in different ways. When the x-size is reduced, the number of red blood
cells detected (i.e., the number of events registered in the ROI) may be unchanged,
but all of them are sampled with lower statistics. When the y-size is reduced, the
number of observed events diminishes, but each of them can be sampled accurately
thanks to the averaging operation performed on a large number of columns.1

3.5 Effect of the signal-to-noise ratio on experimental cross-
correlation functions

I conclude this Chapter with an investigation of the effect of the image signal-
to-noise (S/N) ratio on the experimental FLICS cross-correlation functions.
As previously pointed out in the literature [47,111] for Temporal Image Correlation
Spectroscopy (TICS) and for spatial ICS, two main noise sources simultaneously
affect the pixel intensities of a raster-scanned xy-image acquired by a one- or
two-photon excitation fluorescence microscope. The first source comprises the
specimen autofluorescence, the incomplete rejection of scattered light and the effect
of the detector dark current: the resulting background noise, which is particularly
relevant when the fluorescence signal of interest is low, can be considered constant
across the image and independent on the true fluorescence intensity at each pixel

1All these considerations apply to xy-images where the diagonal lines produced by flowing objects
last for the entire image width (as in Fig. 3.8a). When, either for the slower flow speed or for a
non-zero angle γ, shorter diagonal lines are obtained (as in the case of fluorescent micro-spheres
in Fig. 3.7a), also the reduction of the ROI x-size would produce a reduction in the number of the
detected particles. Provided the considerations of Subsections 3.4.1 and 3.4.2, the minimum ROI size
is the one allowing -for each of the few sampled objects- a CCF averaging operation over roughly a
ten of columns.
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Figure 3.11: Effect of the image S/N ratio on experimental cross-correlation functions. (a)-(d):
confocal raster-scanned xy-images acquired in the PCV of a 3 d.p.f. zebrafish embryo with
fixed excitation laser power (Pexc 561nm=5 µW) and variable detector gain; the PMT voltage
has been set at 800 V (a, S/N=25±1), 600 V (b, S/N=3.0±0.1), 500 V (c, S/N=1.6±0.1)
and 400 V (d, S/N=1.3±0.1). fline=1400 Hz, δx=0.17 µm, scale bar=10 µm; the intensity
calibration bar of the look-up table adopted for display is reported on the bottom of each
frame in arbitrary units. For each xy-image, the intensity profile extracted along the
corresponding dashed white line is reported to highlight the contrast worsening with the
reduction of the detection gain. (e): comparison of the CCFs (mean±s.e.m.) computed
for a fixed column distance (j− i)=20 pixels with variable PMT gain in the range 300-800
V (corresponding to a S/N ratio varying in the range 25±1 - 1.1±0.1). The S/N ratio
evidently affects the CCF amplitude, but as long as it is higher than 3.0±0.1 it has no effect
on the peak lag time and on the resulting estimate of the flow speed. (f): CCFs derived
from the image of panel (b) (PMT voltage=600 V) for (j− i)=20...50 pixels. The CCFs have
been fit to eq. (2.21) with best-fit parameter |v|=(821±9) µm/s; the column distance, the
pixel size, the scan frequency, the excitation laser beam waist and the angle γ have been
treated in the fit as fixed parameters.
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position. The second noise source encompasses the stochastic nature of photon
emission and the signal amplification electronics. In fact the shot noise, obeying
Poisson’s statistics and resulting from the statistical variation in the number of
emitted and detected photons, is combined with noise contributions arising from
the processes of photo-electron generation, signal amplification and digitization
inherent in light detection.
In this Section I do not attempt to separately characterizing the contributions of
background and counting noise: I determine instead, empirically, the minimum
S/N ratio required for the recovery of the cross-correlation functions and, conse-
quently, for the measurement of the flow speed. To this aim, confocal xy-images
have been acquired sequentially in the posterior cardinal vein of a three d.p.f.
zebrafish embryo with fixed imaging conditions apart from a variable detector
(PMT) gain (Fig 3.11a-d). By lowering the PMT voltage from 800 V to 300 V, I
have intentionally worsened the image S/N ratio: when estimated as the ratio
of the maximum detected intensity in the image to the average signal in dark
regions within the vessel (i.e., outside fluorescent erythrocytes), the S/N ratio
varies between 25±1 and 1.1±0.1 (see intensity profiles in Fig. 3.11). The compari-
son of the CCFs derived for fixed column distance at decreasing S/N ratios (Fig.
3.11e) reveals that the cross-correlation amplitude is severely affected by the image
noise. Nevertheless, as long as the signal-to-noise ratio is higher than 3.0±0.1, no
influence on the CCF peak lag time and on the estimate of the recovered flow speed
is detected. Exemplifying cross-correlation functions recovered with what I identify
as the minimum S/N ratio=3 are reported in Fig. 3.11f.



Chapter 4

FLICS in the hepatic
microcirculation

FLow Image Correlation Spectroscopy finds its best application in the measure-
ment of flow velocities in circulatory systems with complex geometry. Having

validated the FLICS theoretical framework with the measurements reported in the
previous Chapter, I turn now to the in-vivo application of the FLICS method in the
murine hepatic microvascular system.
The liver is a unique anatomical and immunological site, which has been con-
sidered second only to the brain in its complexity [112]. It is endowed with a
structurally intricate microvascular system which, beside guaranteeing the correct
oxygen and nutrients supply, is also responsible for the clearance of toxins from
the bloodstream and serves as the gate for leukocyte entrance during hepatic
inflammation [112–114]. A crucial role in regulating tolerance and immunity in
the liver is especially played by sinusoids, that along with portal venules, central
venules and hepatic arteries constitute the major components of this microcircu-
latory network: thanks to their peculiar fenestrated endothelium, and to the lack
of a basement membrane, hepatic sinusoids facilitate immune-cell interactions
and the transvascular exchange between the blood and the liver cells [113–116].
Intravascular antigen recognition processes have been recently demonstrated [117],
suggesting a possible reciprocal impact, at the level of individual sinusoids, of
hemodynamics on immune cells trafficking.
Sinusoids are precisely the vessels which I focus on with the FLICS measurements.
Prior to reporting in this Chapter the experimental results, I briefly describe the
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anatomy of the hepatic microcirculatory vessel network and outline the biological
and medical relevance of the characterization of the intra-hepatic sinusoidal blood
flow.

4.1 Anatomy of the hepatic microcirculation

The anatomy of the hepatic microvascular bed [112–115, 118, 119] (Fig. 4.1) has
been studied in detail, mainly by transmission and scanning electron microscopy
and by optical microscopy [120–124]. While histological techniques lack the ability
of providing information on dynamic processes, the recent developments in the
field of in-vivo (fluorescence) microscopy have allowed the analysis of both the
morphology and the flow and resistance of hepatic vessels under physiological and
pathological conditions. These studies have revealed that the mammalian liver has
a dual blood supply, receiving poorly oxygenated but nutrient-rich blood from the
portal vein and well oxygenated blood from the hepatic artery [112–114]. The portal
flow constitutes about 80% of the total hepatic inflow, so that, due to its high flow
rate, the portal vein provides to the liver half of the oxygenation it requires. Both the
portal vein and the hepatic artery repeatedly branch within the liver: their terminal
branches, namely the portal venules and the hepatic arterioles, supply blood to the
sinusoids. They drain in turn into the central venules, connecting to the hepatic
veins through which the blood is returned to the inferior vena cava [113, 114].

6 - Overall efforts in person-months
136

B - RESEARCH PROPOSAL

B.1 - DETAILED DESCRIPTION OF THE PROJECT

1 - Objectives and expected results
This intedisciplinary project aims at the developmenmte and test of novel fabrication methods for 3D microsfluidic devices that redproduce real micro-circulatory
systems and optical correlative microscopy methods to study hemodynamics in realistic yet controllable conditions.

Aim1: Fluorescence correlation method for in vivo hemodynamic characterization. The blood flow velocity in the liver microcirculation system, both in healthy and
pathological conditions (Hepatits B Virus -HBV- infection), will be characterized in vivo by means of a novel fluorescence correlation method (developed by LS and
collaborators, manuscript in preparation; see Methods section).
The PI will take advantage of unique HBV transgenic mice which are immunologically tolerant to viral antigens and spontaneously develop neither acute nor chronic
hepatitis. Acute hepatitis is initiated by the injection of HBV-specific effector CD8 T cells, whereupon the mice develop a necroinflammatory liver disease that is
histologically identical to acute viral hepatitis in man(1-3). Hence the effector functions of CD8 T cells play a prominent role in the resolution of HBV infection and
the investigation of the impact of hemodynamics on T cells trafficking and antigen recognition in the liver is of paramount importance.
We plan to address the following questions:

1) Which is the value of the blood flow velocity in the hepatic venous microvasculature(branches of the portal vein, sinusoids or post-sinusoidal venules, see Figure
1)? Does the blood flow change in fibrotic/cirrhotic or cancerous liver? A systematic study of hemodynamics at the level of individual sinusoids in-vivo has, to our
knowledge, never been performed and it is expected to reveal possible changes in blood flow velocity depending on the level of inflammation of the tissue, with
particularly complex hemodynamics when cancerous.

Figure 1: Microcirculation system of a mouse liver: Preliminary result

2) If virus-specific and virus-aspecific CD8 T cells are injected, does their adhesion/activation upon antigen recognition affect the blood flow? A reduction of the flow
speed is expected since in liver antigen recognition is intravascular (manuscript in preparation). Conversely, adhesion/activation of T cells may be favoured by the
morphology-dependent hemodynamic properties of specific vessels.

3) Can the morphologic reshaping affecting T cells during adhesion/activation modify the blood flow speed? In order to describe this shape remodeling, a protocol,
based on the parameters described in the Methods section,will be developed, by exploiting the morphologic information intrinsically contained in the raster-scanned
images of surgically exposed mouse liver acquired by two photon microscopy. This protocol will be combined with the quantitative determination of the blood flow
velocity achieved by the application of the innovative correlative method to the same images (see Fig.2).

MIM FCS
- 5 -

Figure 4.1: Anatomy of the murine hepatic circu-
latory system, imaged by confocal fluorescence
microscopy in mosaic mode.

Although various models of the orga-
nization of the liver circulation into
structural and functional units have
been proposed by anatomists, pathol-
ogists and clinicians, the basic struc-
tural unit is usually identified in the
"classic hepatic lobule" [113, 118, 125,
126] (Fig. 4.2). It has a polygonal
structure, developing around a central
axis coinciding with a terminal hep-
atic venule; portal venous tracts are dis-
tributed along the peripheral boundary,
while sinusoids run between the termi-
nal portal and hepatic venules, creat-
ing a nearly hexagonal vascular struc-
ture.
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Figure 4.2: Schematic of the functional unit of the murine hepatic circulatory system. The classic
hepatic lobule (on the left) develops hexagonally around a branch of the hepatic vein as
described in the text; sinusoids distribute blood from the peripheral branches of the hepatic
portal vein and artery to the central vein, while bile ducts transport the bile from the
canaliculus through the extrahepatic biliary system to the gut. The lobule is in turn divided
into separate subunits, each known as "hepatic acinus", as magnified on the right.

Within the complex liver vessel network, the term "hepatic microcirculation"
specifically refers to the circulatory system that begins with the portal venules (50
to 100 µm in diameter), extends to the terminal portal venules (15 to 50 µm) and
to the sinusoids (5 to 15 µm), and ends with the post-capillary terminal hepatic
venules (∼ 25 µm) and with the collecting and muscular venules (∼ 40 and 60
µm, respectively) [118, 127]. All these vascular segments represent potential sites
of regulation of the blood flow [128]. Nevertheless, the major blood pressure
drop in the liver takes place in the sinusoids [113, 129]; even though the existence
of sphincterlike specialized structures at the entrance to and at the exit from
the sinusoids has not been completely demonstrated yet, there is a large body
of evidence that the contractile cells contained within the sinusoids can actively
control various functions of the microvasculature [114]. Among them, stellate cells,
LSEC (Liver Sinusoidal Endothelial Cells) and Kupffer cells make the sinusoidal
network the principal site for the regulation of blood flow and solute exchange.
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4.1.1 Sinusoidal vasculature

As previously mentioned, the sinusoids network [112–115, 119, 128] represents
the segment of the microcirculation in which the regulation of the hemodynamics,
the supply of nutrients and the removal of metabolic products take place. It is het-
erogeneous in the spatial organization, with sinusoids arranged in interconnecting
polygonal networks or as parallel vessels depending on the distance from portal
venules and hepatic arterioles. Similarly, the diameter of the sinusoids increases
from ∼ 5 to ∼ 15 µm when moving from the periportal to the pericentral area of the
lobule. Four cell types have been recognized in the sinusoidal network [113, 130]
(Fig. 4.3): (i) phagocytic Kupffer cells, (ii) extraluminal fat-storing stellate cells,
(iii) pit, immunoreactive Natural Killer (NK) cells and (iv) fenestrated endothelial
cells. Kupffer cells [131] are macrophages, anchored to the sinusoidal endothelium
and exposed therefore to the blood stream, and are mainly responsible for the
clearance of toxic or infective particulate. They are unevenly distributed within
each hepatic lobule, and exhibit the largest size and greater phagocytic activity in
the lobule periportal region. Stellate cells [132], by contrast, are located outside
the vessel, in what is called "space of Disse": in addition to their well-documented
crucial role in the regulation of the blood flow, they are responsible for retinol
metabolism. Part of a population of liver lymphocytes, pit cells [133] are Natural
Killers adhering to Kupffer and endothelial cells inside the sinusoids lumen; they
exert antitumor functions and probably play a role in the antiviral defense of the
liver. Endothelial cells (LSEC) [115, 119] finally constitute nearly half the total
number of non-parenchymal sinusoidal cells and form the lining endothelium of
the vessels. The structural peculiarities of this endothelium are the absence of a
basement membrane and the presence of small fenestrae, approximately 170 nm in
diameter, clustered in groups of 10-50 pores known as "sieve plates" (Fig. 4.3).

Sinusoidal fenestrae are of paramount importance in the liver maintenance:
they dynamically respond to alterations of the sinusoidal blood flow by contraction
or dilatation, they exert scavenger functions and they regulate the exchange of
material between the blood and the liver cells [114]. Most importantly, they allow
and even facilitate the interactions between lymphocytes and hepatocytes [134].
The lymphocytes population in the liver contains NK and NKT cells (part of the
innate immune system), and T and B cells (adaptive immune system); T cells com-
prise in turn CD8+ and CD4+ T cells, with the former type typically outnumbering
the latter [135]. Circulating effector CD8+ T cells determine the pathogenesis and
outcome of infection by clinically relevant noncytopathic viruses, such as Hepati-
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Figure 6. Reducing Sinusoidal Porosity Limits Hepatocellular Ag Recognition by CD8 TE

(A and B) Representative scanning electron micrographs from liver sections of control (A) or arsenite-treated (B) HBV replication-competent transgenic mice

(H2bxd) mice. Yellow dotted lines denote sinusoidal edges. Scale bars represent 1 mm.

(C) Porosity (the percentage of liver endothelial surface area occupied by fenestrae) was measured in control and arsenite-treated mice. n = 3; results are

representative of two independent experiments.

(D) Percentage of Cor93 CD8 TE that accumulated within the liver 2 hr upon transfer into HBV replication-competent transgenic mice (H2bxd) that were previously

treated with arsenite relative to control (control = 100%). n = 20; results are representative of two independent experiments. Similar results were obtained with

Env28 CD8 TE (data not shown).

(E) Total hepatic RNA from the same mice described in (D) was analyzed for the expression of IFN-g by qPCR. Results are expressed as fold induction (f.i.) over

HBV replication-competent transgenic mice injected with PBS, after normalization to the housekeeping gene GAPDH.

(legend continued on next page)
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a b 

Figure 4.3: Hepatic sinusoids. (a): scanning electron micrograph [117] of a murine sinusoid
showing the fenestrated endothelial wall and the clustering of fenestrae in Sieve plates.
Scale bar=1 µm. (b): schematic of the structure of a hepatic sinusoid [116]. Several cell
types are found, including Kupffer cells, lymphocytes (Pit cells), Dendritic Cells (DC) and
Liver Sinusoidal Endothelial Cells (LSEC). The sub-endothelial space, known as the space
of Disse, is the region from which hepatic lymph originates.

tis B (HBV) or Hepatitis C Virus (HCV) [136]. While in the brain, gut and skin
CD8+ T cells perform effector functions following extravasation from post-capillary
venules [137, 138], it has been recently experimentally demonstrated [117] by multi-
photon intravital microscopy on HBV-expressing murine models that a different
mechanism regulates the migration and function of CD8+ T cells in the microcircu-
lation of the liver. Specifically, CD8+ T cells first arrest within liver sinusoids by
preferentially docking onto platelet aggregates; after this initial platelet-dependent
arrest, they actively crawl along sinusoids and probe sub-sinusoidal hepatocytes for
the presence of antigens by extending cytoplasmic protrusions through endothelial
fenestrae. Hence the hepato-cellular antigen recognition process takes place before
the CD8+ T extravasation into the parenchyma, and T cells perform effector func-
tions (they produce interferon-gamma IFN-γ and kill virus-expressing hepatocytes)
while in the intravascular space.

The intra-vascular nature of the antigen recognition processes in the liver
suggests the attractive hypothesis that the adhesion and activation of CD8+ T
cells may affect the sinusoidal hemodynamics. A reduction of the flow speed is
expected, since the slow migration and crawling of T cells along the sinusoids and
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their adhesion to platelet aggregates should lead to frequent perturbations and even
temporary stasis of the blood flow. Conversely, the adhesion and activation of T cells
may be favored by the morphology-dependent hemodynamic properties of specific
vessels. Overall, a tight interplay between hemodynamics and T-cells priming is
expected to have a pivotal role in regulating the immunological properties of the
liver. Together with a systematic comparison, at the level of individual capillaries,
of the intrahepatic blood flow velocity in physiological and pathological conditions,
the characterization of this interplay represents one of the unanswered fundamental
issues pertaining to the pathogenesis of HBV.
Notably, FLICS appears to be the optimal tool to tackle both the issues. On the one
hand, it has the potential of allowing to map the blood flow velocity in extended and
highly branched portions of the hepatic microcirculation, with the fundamental
single-vessel sensitivity. On the other hand, by extension of the approach to
multicolor imaging (specifically, by fluorescently labeling flowing particles and
circulating effector T cells with spectrally separated dyes), the slow deformation
dynamics of cells adhering to the vessel walls can be monitored simultaneously to
the blood flow. In these regards, the combination of dynamic and morphological
information offered by the exploitation of raster-scanned xy-images is a definite
FLICS advantage.
With this in mind, I provide in this Chapter the characterization of the blood
flow velocity at the level of individual sinusoids in the hepatic microcirculation of
healthy murine models. Besides confirming the effectiveness of the FLICS method
in such a complex circulatory network, I provide the baseline values for the future
comparison with the blood flow velocity under HBV- or pathological conditions.

4.2 Materials and methods

4.2.1 Intravital microscopy

C57BL/6 mice have been purchased from Charles River, USA, and have been
housed under specific pathogen-free conditions until 6-8 weeks of age. A tail
vein catheter (VisualSonic, USA) has been inserted into previously shaved mice
prior to anesthetization with 5% isoflurane (Abbot, USA) through a nose cone also
delivering oxygen at 1 L/min. Then surgery and liver intravital imaging have been
carried out with lower concentrations of isoflurane (between 0.8% and 1%). The
surgery and the preparation of the liver have been performed as described in [117],
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and the mice have been placed in a left lateral position with the left liver lobe
exteriorized onto a glass coverslip attached to a custom-made imaging platform.
The imaging platform has been sealed to prevent dehydration and continuous body
temperature monitoring has been performed to ensure the maintenance of a narrow
range of 37-38 C. The blood flow in the sinusoids has been visualized by injecting
intravenously non-targeted 5 nm Quantum Dots (Invitrogen, USA) immediately
before imaging (λexc=900 nm, λpeakem =655 nm).
All the experimental procedures have been approved by the Institutional Animal
Committees of the San Raffaele Scientific Institute, Milan, Italy.

4.2.2 Experimental setup

All the measurements have been performed on an inverted two-photon mi-
croscopy setup based on a commercially available TriM Scope II scan head (LaVision
BioTec). Fluorescence excitation is provided by a tunable fs-pulsed Ti:Sa laser (Ultra
II, Coherent; λ=680-1080 nm, 120 fs FWHM pulse duration, 80 MHz repetition rate).
The beam, for its optimization, passes through a beam-shaping device consisting
of a pair of crossed polarizers that control the excitation power, a telescope for
adapting the collimation of the laser beam and matching the beam dimension to the
size of the objective lens back focal plane, and a prism-based chirp compensation
unit that compensates for pulse broadening due to the optical components and
the objective lens. The beam alignment is checked thanks to four-quadrant photo
diodes placed inside the beam-shaping unit and the scan-head. A high-working
distance objective (Zeiss plan-apochromat, 20x / N.A. 1.0, 1.9 mm working distance,
water dipping) simultaneously excites the sample and collects the emitted signal
in epifluorescence geometry. The fluorescence is steered to a non-descanned unit
and split into four channels (blue, green, red and far red). Spectral separation
is achieved by dichromatic mirrors and bandpass filters (455/50 nm, 525/50 nm,
590/50 nm and 665/50 nm) in front of each photomultiplier tube (3 Hamamatsu
H7422-40 GaAsP High Sensitivity PMTs and 1 Hamamatsu H7422-50 GaAsP High
Sensitivity PMT red extended). The entire microscope is surrounded by a custom
made thermostatic cabinet in which the temperature is kept at 37 C (air thermostat-
ing by ”The Cube”, Life Imaging Services, CH).
The QDs absorption has been primed at 900 nm; the fluorescence signal has been
detected through the filter 665/50 nm and the PMT gain has always been adjusted
to avoid saturation in the pixels intensity. Details concerning image sizes and
formats and the adopted line scan frequencies are reported in the figure captions.
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4.2.3 Data analysis softwares

All the acquired images have been visualized, linearly contrast-adjusted for
display and exported in tif format using ImageJ (U.S. National Institutes of Health,
USA). Cross-correlation functions have been computed by means of the same
custom-written Python code exploiting Fast Fourier Transform (FFT) routines
employed for the FLICS analysis of Chapter 3. The same code has been used to
apply the threshold filter to the images, as described later in the text. All the
non-linear least-squares fits have been performed by the OriginPro 8.6 software
(OriginLab, USA).

4.3 Experimental data

An exemplifying raster-scanned xy-image acquired by two-photon excitation
intravital microscopy, at high magnification, on a single sinusoid of the murine
hepatic microcirculation is reported in Fig. 4.4a. It has been built by detecting
the photo-luminescence signal of 5-nm Quantum Dots (QDs), which appear as
the brightest diagonal lines in the image and provide contrast with respect to
non-fluorescent flowing RBCs.
Due to autofluorescence contributions and to the scattering processes inevitably
occurring in a thick, living biological sample [139], the diagonal lines, alternately
produced by photo-luminescent QDs and dark RBCs in the xy-image do not exhibit
the high contrast and signal-to-noise ratio of the images analyzed by FLICS in
Chapter 3. By estimating the ratio of the maximum detected intensity in the
image to the average signal in dark regions within the vessel (i.e., outside the
diagonal streaks produced by QDs), a S/N ratio well below the minimum value
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a b Figure 4.4: In-vivo FLICS: signal-to-noise ratio. (a):
raw raster-scanned xy-image acquired by detecting
the QDs photo-luminescence in a sinusoid of the
murine hepatic microcirculatory system; fline=1370
Hz, δx=0.026 µm, scale bar=3 µm. (b): photo-
luminescence intensity profile extracted from the
dashed white line in panel (a), evidencing the
low contrast affecting xy-images acquired by multi-
photon excitation intravital microscopy in the liver
of living mice.
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required for the FLICS analysis and identified in Section 3.5 is found (see the
photo-luminescence intensity profile in Fig. 4.4b). The FLICS cross-correlation
functions are therefore better computed after a threshold has been applied to the
intensity counts in the pixels of the xy-image.

4.3.1 Optimal intensity threshold for the in-vivo FLICS analysis

The intensity threshold on the pixels intensity acts as a high-pass filter, defining
a minimum photo-luminescence intensity Fmin: for each pixel, the detected intensity
is unaltered if it exceeds the adopted threshold value, and is set to zero otherwise.
If the threshold is properly chosen, the background is effectively removed without
affecting the estimate of the blood flow speed recovered from the diagonal lines
produced by QDs.
Increasing threshold values have been tested for the image in Fig. 4.4a, and the
inspection of their effect on the recovered CCFs has been adopted as a guideline
for the selection of the optimal Fmin value. As reported in Fig. 4.5f with the CCFs
computed at a fixed column distance (j−i)=100 pixels, the higher the threshold, the
higher is the amplitude of the CCF and the more discernible is its peak. Notably,
no variation in the peak lag time τmax is found, so that the measured flow speed
value is not affected by the threshold. On the contrary, the filter on intensity values
significantly affects the width of the diagonal lines produced by flowing objects
in the image: the higher the adopted Fmin value, the thinner is each diagonal
streak (since pixels on the border are more likely affected by the threshold); this
leads in turn to a reduced width of the recovered cross-correlation functions,
possibly impacting the estimates of the diffusion coefficient and size of the imaged
flowing particles. Looking for a univocal criterion to identify the threshold for the
subsequent FLICS analyses, I extracted the histogram of the intensity counts of the
image (Fig. 4.5e) and identified the most frequent value for the intensity counts by
means of its Gaussian fit. When adopted for the threshold Fmin, this most frequent
value allows suppressing the background and recovering peaked CCFs (inset of
Fig. 4.5e) without altering the obtained speed |v|.

The results reported here for the specific image of Fig. 4.4a have general validity,
since they exemplify what has been obtained by testing the threshold effect on a
number of images acquired by intravital microscopy in the liver microcirculation
(a second example will be reported in Section 4.3.3). I have therefore performed
all the FLICS measurements reported in this Chapter after having excluded the
intensity levels below the most frequent signal count in the examined images.
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Figure 4.5: Intensity threshold for the FLICS analysis. (a)-(d): three exemplifying thresholds
are evaluated for the image in Fig. 4.4 and reported here in panel (a) for direct comparison:
Fmin=1000 a.u. in (b), 1528 a.u. in (c) and 2000 a.u. in (d). The pixels in which the intensity
exceeds the threshold (and that therefore remain unchanged for the computation of the
CCFs) are uniformly green-colored; otherwise they are shown with the same LUT of panel
(a). For a too low threshold value (as in b) the background is not suppressed, whereas for a
much higher value (panel d) too many pixels acquire a null intensity prior to the derivation
of the CCFs. An intermediate reasonable threshold is shown in (c). (e): histogram of
the intensity counts for the image in (a); the threshold Fmin=1528 a.u. adopted in (c)
corresponds to the center xc=(1528±9) a.u. of the histogram, as obtained from its Gaussian
best fit (the first peak of the histogram is ascribed to the low intensity values detected
outside the vessel and is therefore neglected). Inset: CCFs (mean±s.e.m.) computed on the
image in (a) with the threshold Fmin=1528 a.u. with (j− i)=10...90 pixels (10-pixel step).
(f): effect of various thresholds (color-coded on the left in arbitrary units) on experimental
CCFs (mean±s.e.m.) recovered from the image in (a) with (j− i)=100 pixels. The global
fit to eq. (2.21) of six CCFs (with 1528 a.u. < Fmin < 2600 a.u.) provides a shared flow
speed |v|=(494±3) µm/s. Inset: the CCFs are normalized to highlight the independence of
the peak lag time on the Fmin value. The effect of the threshold on the CCFs width can
be quantified by the (narrow) range a=1.9-2.7 µm provided for the radius of the flowing
objects by the CCFs fit to eq. (2.21).
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4.3.2 Cross-correlation analysis on LUT-inverted xy-images

Upon the background removal, the computation of the FLICS CCFs can be
performed either on the QDs signal, or on RBCs upon a LUT inversion. To assess
whether the two procedures lead to equivalent results, a LookUp Table inversion
has been applied to the same xy-image reported and analyzed in Figs. 4.4 and 4.5.
This operation associates the lowest intensity counts to the flowing Quantum Dots,
whereas the highest counts are attributed to non-fluorescent flowing erythrocytes
and to the regions outside the sinusoid (Fig. 4.6a). For the cross-correlation analysis
to be performed on RBCs, a minimum intensity threshold has been adopted
to exclude the contribution of QDs; additionally, an upper threshold has been
introduced to prevent the areas outside the investigated vessel to interfere in the
flow speed measurement. Cross-correlation functions have been computed (Fig.
4.6b) for increasing column distance in the range (j− i)=10...90 pixels (with 10-pixel
step): their fit to eq. (2.21) provides a flow speed |v|=(497±10) µm/s, that well
compares with the result |v|=(494±3) µm/s previously obtained by cross-correlating
the photoluminescence of QDs. The CCFs derived for (j − i)=10, 50, 90 pixels in
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Figure 4.6: LUT inversion for the FLICS analysis. (a): histogram of the intensity counts for the
image shown in Fig. 4.5a upon a LUT inversion. For the CCFs computation, a minimum
intensity threshold Fmin=5087 a.u., corresponding to the center of the Gaussian peak of the
histogram, is adopted to exclude the contribution of QDs, shown in blue in the inset (hence
the same criterion described in the previous Subsection is applied); an upper threshold
Fmax=6060 a.u. excludes the regions outside the vessel (shown in green in the inset) from
the cross-correlation analysis. (b): the thresholds Fmin=5087 a.u. and Fmax=6060 a.u. are
adopted to derive the CCFs for (j− i)=10...90 pixels (10-pixel step); the CCFs are overlaid to
their fit to eq. (2.21). Data are reported as mean±s.e.m. (c): comparison of the normalized
CCFs (mean±s.e.m.) derived for (j− i)=10, 50, 90 pixels by cross-correlating the signal of
QDs (open symbols) and red blood cells (filled symbols).
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the two cases (i.e., by the cross-correlation of the signal of QDs and RBCs) have
also been directly compared (Fig. 4.6c): no differences have been found in the peak
lag time of the CCFs, thereby proving again the equivalency of the two procedures
for the measurement of the flow speed. What is actually affected is the width of
the CCFs (and hence the diffusion coefficient and the size of the flowing objects
potentially recovered by fitting the experimental CCFs). This had to be expected,
since the diagonal lines produced by QDs and RBCs have a different width: for the
RBCs, the width is assigned by their size and diffusion coefficient; for QDs, it is
mainly regulated by the spatial separation between adjacent erythrocytes (we do
not observe the diagonal streaks of individual QDs, imaging instead as a diagonal
line all the QDs comprised between pairs of red blood cells). I therefore conclude
that if D and a have to be estimated by the FLICS cross-correlation function, it
is mandatory to cross-correlate the signal of red blood cells; if the measurement
mainly aims at recovering the modulus and the direction of the flow velocity, as in
this case, the FLICS analysis can be performed without any prior LUT inversion.

4.3.3 FLICS analysis of xyt-stacks

Once identified the criterion to select the optimal intensity threshold for the xy-
images acquired in-vivo in the hepatic microcirculation, I further extended FLICS to
a ROI-based approach and to dynamic studies in time. A raster-scanned xy-image
has been acquired on a 50x30 µm2 field of view, encompassing a bifurcation in
the circulatory network, and the image acquisition has been repeated in time-
lapse mode to generate an xyt-stack over a time interval of ∼ 10 seconds. At
each time point, the FLICS measurement of the flow velocity has been performed
separately on three Regions of Interest centered on in-focus vessels: for each ROI,
the histogram of the intensity counts has been derived to identify the threshold,
then the cross-correlation functions have been computed for increasing column
distances and have been fit to eq. (2.21) to recover the flow speed.
The results are shown in Fig. 4.7. In panel a, the whole field of view is reported
with the schematic of the vessels centerlines: these are color-coded for the retrieved
flow speed |v|, while arrows define the flow direction. In panels b and c, two of the
examined ROIs are isolated and magnified in the first five frames of the xyt-stack:
the same color-code adopted for panel a allows inspecting the magnitude, as well
as the physiological fluctuations, of the flow speed in time. The temporal evolution
of the speed |v| is also detailed for both the ROIs in panels d and e over the whole
sampled 10-s interval; for completeness, both the exact and approximate estimates
|v| and |v|0 have been derived.
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Figure 4.7: FLICS analysis over time. (a): raw xy-image acquired in the murine hepatic
microcirculation by detecting the photoluminescence of 5-nm QDs; fline=850 Hz, δx=0.05
µm, scale bar=10 µm. The cross-correlation analysis has been performed separately on the
evidenced ROIs (ROI 1: 240x210 pixels; ROI 2: 450x120 pixels; ROI 3: 145x250 pixels). The
estimates of the blood flow speed obtained from the global fits to eq. (2.21) of experimental
CCFs are |v|=(235±4) µm/s, |v|=(235±3) µm/s and |v|=(229±8) µm/s for ROIs 1,2 and 3,
respectively; the |v| values have been exploited to color-code the vessel centerlines. The
angle γ between the scan path and the flow direction is sketched in the Cartesian plane
and has been fixed for the fit to 50° in ROI 1, -4° in ROI 2 and 80° in ROI 3, according to
the definition of eq. (2.22). The scan frequency, the pixel size, the column distance and
the beam waists (ω0=0.5 µm, ω0z=2 µm) have also been fixed in the fit. (b),(c): ROI 1
and ROI 2 are shown, in (b) and (c) respectively, in the first five consecutive frames of
the temporal stack; each frame is identified by its sampling time ti=i∆t, ∆t=0.88 s being
the time interval between the sampling of the same pixel in two consecutive frames i and
i+ 1. The same color-code of panel (a) has been adopted for the vessel centerlines. Scale
bar=5 µm, same calibration bar in a.u. for panels in (b) and (c). (d),(e): estimates for |v|
(triangles) and |v|0 (squares) versus time obtained in ROIs 1 (d) and 2 (e). An average 15%
overestimate of the flow speed is found in ROI 1 when the peak time alone is exploited for
the speed measurement, whereas an average 7% overestimate is found in ROI 2.
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Exemplifying cross-correlation functions are reported for ROI 2 in Fig. 4.8,
where, as previously anticipated, I also compare the effect of several possible
threshold values on the results of the FLICS analysis. As in Subsection 4.3.1, the
amplitude of the CCFs increases for increasing values of Fmin, while the peak lag
time remains unchanged (Fig. 4.8c,d). Moreover, here even the CCFs computed
with Fmin=0 a.u. allow the recovery of the blood flow speed, thereby providing
a reference value to validate the independence of the estimated speed |v| on the
selected threshold value: the global fit to eq. (2.21) of the CCFs derived for (j−i)=20
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Figure 4.8: Intensity threshold for the FLICS analysis. (a): the ROI identified as 2 in Fig. 4.7 is
reported (top panel, t5) to allow the direct comparison with the lower panel, where the
pixels having an intensity higher than the adopted threshold Fmin=5855 a.u. (i.e., pixels
kept unchanged for the CCFs derivation) are uniformly green-colored. The threshold
is assigned by the center of the histogram of the intensity counts (shown in b with its
Gaussian fit) as previously discussed in the text. Scale bar in (a)=5 µm. (c), (d): effect of
various threshold values on experimental cross-correlation functions for the image in (a).
CCFs (mean±s.e.m.) are computed for (j− i)=20 pixels in (c) and (j− i)=40 pixels in (d),
for increasing Fmin in the range 0-8300 a.u. (same color code in both panels). In the inset of
panel (c), CCFs for (j− i)=20 pixels have been normalized to highlight the slight reduction
of the correlation width with increasing Fmin and the independence of the peak lag time
on the threshold value.
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and 40 pixels with Fmin=0 a.u. leads to a speed |v|=(242±8) µm/s, in agreement
with the result |v|=(235±3) µm/s obtained for Fmin=5855 a.u. (reported in Fig. 4.7).
This confirms that, even when not mandatory, the introduction of the threshold
does not alter the obtained results.

4.3.4 FLICS analysis on wide fields of view

When studying a larger field of view encompassing a highly intricate, geometri-
cally complex region of the hepatic microvasculature, many sinusoidal branches
can be analyzed in parallel by the ROI-based FLICS approach implemented in the
previous Subsection. An exemplary result is shown in Fig. 4.9a, where a raw 110x90
µm2 raster-scanned xy-image is reported at a selected time point along with the
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Figure 4.9: In-vivo flow mapping in a complex vessel network by FLow Image Correlation Spec-
troscopy. (a): raw raster-scanned xy-image acquired in the murine hepatic microcirculation
by detecting the signal of 5-nm QDs; the lower right corner corresponds to the same region
analyzed in Fig. 4.7. fline=627 Hz, δx=0.102 µm, scale bar=15 µm. CCFs have been derived
on the selected ROIs (∼ 100x50 - 200x100 pixels) for (j − i)=0.51-2.55 µm; the estimates
|v| and |v|0, obtained from the CCFs according to the procedures explained in Chapter 2,
are reported in Table 4.1. (b): schematic of the vessels centerlines for the image in (a). In
each ROI, the arrow defines the flow direction and the color codes for the speed value |v|.
Vessels not analyzed are shown in grey. (c): CCFs (mean±s.e.m.) computed for (j− i)=2.04
µm in ROIs 5, 6 and 11; their fit to eq. (2.21) yields |v|=(499±18) µm/s in ROI 5, |v|=(187±2)
µm/s in ROI 6 and |v|=(396±3) µm/s in ROI 11.
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twelve ROIs on which the CCFs have been derived. Despite the large field of view,
the computed CCFs still show the expected peak (three examples are reported in
Fig. 4.9c), allowing to recover the blood flow speed either by their fit to eq. (2.21) or
by simply taking advantage of their peak lag time (eq. 2.37). Both these exact and
approximate estimates |v| and |v|0, reported in Table 4.1, are comparable with the
values obtained for the blood flow speed in Fig. 4.7: this is a clear indication of the
possibility of applying the cross-correlation analysis to raster-scanned xy-images
irrespectively of the adopted zooming factor. This conclusion is reinforced by the
analysis of ROIs 10 and 11, which include the very same vessels examined in Fig.
4.7.

ROI 1 2 3 4 5 6

|v| [µm/s] 56±5 226±7 187±10 186±3 499±18 187±2
|v|0 [µm/s] – 260 ±39 235±34 168±16 375±73 192±17

ROI 7 8 9 10 11 12

|v| [µm/s] 213±1 163±4 239±13 168±8 396±3 137±1
|v|0 [µm/s] 203±6 151±12 332±42 - 406±60 138±7

Table 4.1: Blood flow speed in the twelve ROIs analyzed in Fig. 4.9. Data refer to the estimates
of the flow speed |v| provided by the fit of the experimental CCFs, and to the estimates
|v|0 recovered directly from the peak time of the same CCFs (eq. 2.37; each estimate is the
weighted average of the values obtained from the peak time of the CCFs computed for four
column distances in the corresponding ROI). Apart from ROIs 1 and 10, where |v|0 could
not be obtained due to its singularity (see eq. 2.39), the direct measurement of the flow
speed from the cross-correlation peak time was possible in all the ROIs and led to a 0.96
average ratio |v|/|v|0.

The results of Figs. 4.7 and 4.9 and of Table 4.1 exemplify the typical range 50-
500 µm/s that I measured for the blood flow speed in the hepatic microcirculation
of healthy murine models. These results provide the reference values for a future
comparison with the sinusoidal flow speed in pathological conditions. The speed
values I measured by FLICS have also been cited already in [117] in the context of
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the characterization of the effector CD8+ T cells crawling along the liver sinusoids:
following the initial interactions with platelet aggregates, T cells were shown to
crawl independently of the blood direction and at a ∼ 10-µm/min speed that was
500- to 3.000-fold slower than the sinusoidal flow.

4.4 Conclusions and future perspectives

Throughout Chapters 2-4, I have theorized, developed and experimentally
validated FLow Image Correlation Spectroscopy, a novel method to extract absolute
flow speed values in complex vessel networks from a single raster-scanned optical
xy-image acquired in vivo by confocal or multi-photon excitation microscopy. Before
pointing out the potential future developments and extensions of the method, I
now summarize the key advantages FLICS offers with respect to state-of-the-art
techniques and correlation analyses:

1. FLICS does not require the scan path being parallel to the flow direction. A
single xy-image therefore suffices for the recovery of both the modulus and the
direction of the (blood) flow velocity in all the vessels within the imaged field
of view, irrespectively of their orientation and of the geometrical complexity
of the investigated circulatory network. In these regards, FLICS outperforms
dual-beam Fluorescence Cross-Correlation Spectroscopy [33,34] and Scanning
Laser Image Correlation [57], which impose stricter requirements on the
alignment of the flow direction with the pairs of sampled excitation volumes
(see Fig. 1.5);

2. A single scan frequency is required for the FLICS analysis, in contrast to
the recently-developed RVFS (Relative Velocity Field Scanning) [67], and the
choice of this scan speed is easily accomplished by live scanning the sample at
decreasing fline until diagonal lines appear. The scan frequencies of standard
commercially available scanning microscopes (10-2000 Hz) are suitable to
map blood flows, avoiding the implementation of ad-hoc setups or of resonant
scanning heads. By contrast, given a flow speed ∼ 500 µm/s, a resonant
scanning head is mandatory for its measurement by SLIC or by a Single
Particle Tracking approach.

3. Since a single xy-frame suffices for FLICS, kinetic studies can be performed
in space and time through sequential imaging (xyt- and xyz-stacks) with a
typical time step of the order of 0.5-1 s.
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4. By relying on image scanning along a raster pattern, FLICS allows monitoring
relevant morphological parameters (e.g., the vessel diameter) simultaneously
to the flow speed, with the diffraction-limited resolution (200-500 nm in the
radial direction, 0.5-2 µm in the axial direction) of fluorescence confocal or
intravital microscopy. In a multi-color implementation, the slow deformation
dynamics of cells adhering to the vessel walls can be monitored as well. As
previously anticipated, I plan to exploit this advantage to investigate the
interaction between hemodynamics and the T-cell priming in the murine liver
under HBV pathological conditions.

The majority of these advantages have been proven in, or exploited for, the measure-
ments reported in Chapters 3 and 4. Considering instead the FLICS disadvantages,
the main drawback of the FLICS method concerns the possibility of characterizing
the velocity profile along the vessel diameter and of quantifying the vessel shear
rate and shear stress. A minimum width of a few microns is required for the region
of interest on which the FLICS measurement is performed: while defining the
spatial resolution with which the flow speed can be mapped across the imaged
field of view, this minimum required ROI size hampers the recovery of flow speed
profiles in vessels less than about 20-30 µm in diameter.

I plan to further extend in the future the FLICS method to the measurement
of three-dimensional velocity fields, with the discrimination of all the three com-
ponents of velocity vectors arbitrarily oriented in a non-planar vascular system.
Starting from the general theoretical framework of eq. (2.16), analytical simulations
and in-vitro validation measurements will be performed to assess the impact on
the cross-correlation function of both the radial and azimuthal angles subtended
by the vector v with the x-, y- and z- axes. If the discrimination of the three main
unknowns -namely, the flow speed and the two angles- will appear unfeasible
starting from a single image acquired in the xy-plane, I will explore the alternative
of sequentially collecting data in both the xy- and xz- planes. A new data analysis
protocol will be devised, capable of collectively accounting for the spatio-temporal
information encoded in both the images for improved parameter estimation.
I also plan to derive, starting from the same xy-image analyzed by FLICS, rel-
evant hemodynamic parameters other than the flow speed v (for example, the
hematocrit).

FLow Image Correlation Spectroscopy can be finally extended to the measure-
ment of pulsatile, arterial flows. Efforts are ongoing to determine the effect of the
periodicity of the flow on the CCF, which I have already derived analytically under
the assumption of a flow speed harmonically varying in time.
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Chapter 5

Anisotropic Gold Nanoparticles

The prefix ”nano”, which is ubiquitous nowadays in science and technology, refers
to the ensemble of the peculiar structural, optical, magnetic and electronic

properties arising from the confinement of matter to the nanoscale [140, 141].
Electronic confinement and higher surface-to-volume ratios [141, 142] with respect
to bulk materials induce unique and technologically promising properties in nano-
structures and devices, turning them into the target of intense scientific exploration
and into versatile tools for a number of applications in physics, biology and
medicine [143–150].
In this context, noble-metal - especially gold and silver - NanoParticles (NPs) appear
particularly promising for biochemical sensing [151], medical diagnostics [152] and
drug or gene delivery [153] thanks to their good biocompatibility [154], the ease
in synthesis [155] and the possible conjugation [156] to a variety of biomolecular
ligands. Even more importantly, the characteristic ’Surface Plasmon Resonance’
(SPR) [157–161] has identified in noble-metal NPs a valid alternative to fluorophore-
based labelling for in-vitro and in-vivo imaging [151, 162].
Driven by the nanoparticle interaction with electromagnetic waves with suitable
frequency, the SPR consists in the coherent excitation and in-phase oscillation of all
the free electrons within the nanoparticle conduction band. It is finely tunable in the
visible and infra-red spectral region by acting on the NP size, shape and dielectric
environment [163, 164], and it endows noble-metal NPs with strongly enhanced
extinction: the absorption and scattering cross-sections of commonly employed (40-
80 nm) gold nanospheres are ∼ 5 orders of magnitude higher than those of standard
absorbing and fluorescing dyes [163]. It is therefore clear that these SPR-enhanced
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optical properties offer multiple imaging modalities based upon the elastic Rayleigh
scattering, the inelastic Raman scattering, the two-photon luminescence and the
harmonic generation of noble-metal NPs [162,165–167]. Photo-thermal imaging and
therapy are further allowed by the nanoparticles capability of efficiently converting
light into heat via non-radiative electron relaxation dynamics [168–171].

The radiative and non-radiative properties of both anisotropic and spherically
symmetric gold NPs are the object of this Chapter. By the Mie’s and Gans’ theories
[142, 172, 173], I discuss the physical origin of the Surface Plasmon Resonance;
I review the effects of the NP size and shape on the resonance condition and
I emphasize the relative contributions of absorption and scattering to the total
extinction cross-section, to highlight the suitability of anisotropic gold NPs for the
confocal reflectance imaging exploited in the next Chapters.

5.1 The surface plasmon resonance: optical extinction

The very intense color of copper, silver and gold colloidal solutions has fas-
cinated scientists since the turn of the twentieth century [158, 174]. For example,
spherical gold nanoparticles exhibit a strong absorption in the visible (∼ 520 nm)
region of the electromagnetic spectrum, whereas this absorption is completely
absent in bulk gold as well for particles smaller than about 2 nm. Dating back
to 1908, Mie was the first to explain the red color of gold nanoparticle solutions
by solving Maxwell’s equations, with the appropriate boundary conditions, for
a spherical metal particle interacting with an incident radiation field [172]. The
only material-related quantities that Mie introduced are the frequency-dependent
complex dielectric function of the metal and the dielectric constant of the surround-
ing medium; although not always correctly accounting for the dependence of the
extinction peak and bandwidth on the nanoparticle size (Subsection 5.1.1), Mie’s
theory has the advantage of being conceptually simpler than more recent refined
theories and has been employed to explain a number of experimental results with
overall success [174, 175].
Challenges to the Mie’s theory have been provided by the synthesis of monodis-
perse nanoparticles with a variety of anisotropic shapes: I cite, for example, cubes,
prisms, wires, shells, stars and rods [157, 176–181]. The lack of spherical symme-
try precludes their analytical description by Mie’s theory, therefore motivating
the need for a theory capable of predicting the optical properties of particles of
arbitrary size and shape subject to a complex external dielectric environment. On
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the one hand, prolate and oblate ellipsoidal particles are properly described by
Gans’ theory [173], an extension of the framework developed by Mie allowing to
quantitatively describe the optical absorption spectra of gold nanorods of varying
aspect ratio. On the other hand, numerical techniques -e.g. the Discrete Dipole
Approximation [182], the multiple moltipole method [183] and the finite-difference
time-domain method [184]- have been recently developed to model (even inter-
acting) anisotropic particles for which the exact analytical solution of Maxwell’s
equations is prevented.

5.1.1 Spherical nanoparticles: Mie’s theory

I begin by considering a spherical nanometer-sized metallic particle interacting
with the electric field of an incoming light wave of suitable frequency. The electric
field induces a polarization of the free conduction electrons with respect to the
much heavier ionic core of the nanoparticle: as a result of this net charge difference,
a restoring force arises from the Coulomb attraction between electrons and nuclei,
leading to the coherent periodical oscillation of the electron cloud (Fig. 5.1) [142].
The oscillation period is determined by four factors: the density of electrons, the
effective electron mass, the size and shape of the charge distribution [158].

should also note that several books and reviews have been
published recently on subjects closely related to those considered
in this paper.5

II. Plasmon Resonances for Small Spherical Particles
A. Dipole Plasmon Resonances. When a small spherical

metallic nanoparticle is irradiated by light, the oscillating electric
field causes the conduction electrons to oscillate coherently. This
is schematically pictured in Figure 1. When the electron cloud
is displaced relative to the nuclei, a restoring force arises from
Coulomb attraction between electrons and nuclei that results in
oscillation of the electron cloud relative to the nuclear frame-
work. The oscillation frequency is determined by four factors:
the density of electrons, the effective electron mass, and the
shape and size of the charge distribution. The collective
oscillation of the electrons is called the dipole plasmon
resonance of the particle (sometimes denoted “dipole particle
plasmon resonance” to distinguish from plasmon excitation that
can occur in bulk metal or metal surfaces). Higher modes of
plasmon excitation can occur, such as the quadrupole mode
where half of the electron cloud moves parallel to the applied
field and half moves antiparallel. For a metal like silver, the
plasmon frequency is also influenced by other electrons such
as those in d-orbitals, and this prevents the plasmon frequency
from being easily calculated using electronic structure calcula-
tions. However, it is not hard to relate the plasmon frequency
to the metal dielectric constant, which is a property that can be
measured as a function of wavelength for bulk metal.
To relate the dipole plasmon frequency of a metal nanoparticle

to the dielectric constant, we consider the interaction of light
with a spherical particle that is much smaller than the wave-
length of light. Under these circumstances, the electric field of
the light can be taken to be constant, and the interaction is
governed by electrostatics rather than electrodynamics. This is
often called the quasistatic approximation, as we use the
wavelength-dependent dielectric constant of the metal particle,
εi, and of the surrounding medium, εo, in what is otherwise an
electrostatic theory.
Let’s denote the electric field of the incident electromagnetic

wave by the vector Eo. We take this constant vector to be in
the x direction so that Eo ) Eox̂, where x̂ is a unit vector. To
determine the electromagnetic field surrounding the particle, we
solve LaPlace’s equation (the fundamental equation of electro-
statics), ∇2! ) 0, where ! is the electric potential and the field
E is related to ! by E ) -∇!. In developing this solution, we
apply two boundary conditions: (i) that ! is continuous at the
sphere surface and (ii) that the normal component of the electric
displacement D is also continuous, where D ) εE.
It is not difficult to show that the general solution to the

LaPlace equation has angular solutions which are just the
spherical harmonics. In addition, the radial solutions are of the

form rl and r-(l +1), where l is the familiar angular momentum
label (l ) 0, 1, 2, ...) of atomic orbitals. If we restrict our
considerations for now to just the l ) 1 solution and if Eo is in
the x direction, the potential is simply ! ) A r sinθ cosφ inside
the sphere (r < a) and ! ) (-Eor + B/r2) sinθ cosφ outside
the sphere (r > a), where A and B are constants to be
determined. If these solutions are inserted into the boundary
conditions and the resulting ! is used to determine the field
outside the sphere, Eout, we get

where R is the sphere polarizability and x̂, ŷ, and ẑ are the usual
unit vectors. We note that the first term in eq 1 is the applied
field and the second is the induced dipole field (induced dipole
moment ) REo) that results from polarization of the conduction
electron density.
For a sphere with the dielectric constants indicated above,

the LaPlace equation solution shows that the polarizability is

with

Although the dipole field in eq 1 is that for a static dipole, the
more complete Maxwell equation solution shows that this is
actually a radiating dipole, and thus, it contributes to extinction
and Rayleigh scattering by the sphere. This leads to extinction
and scattering efficiencies given by

where x ) 2πa(εo)1/2/λ. The efficiency is the ratio of the cross-
section to the geometrical cross-section πa2. Note that the factor
gd from eq 3 plays the key role in determining the wavelength
dependence of these cross-sections, as the metal dielectric
constant εi is strongly dependent on wavelength.
B. Quadrupole Plasmon Resonances. For larger particles,

higher multipoles, especially the quadrupole term (l ) 2)
become important to the extinction and scattering spectra. Using
the same notation as above and including the l ) 2 term in the
LaPlace equation solution, the resulting field outside the sphere,
Eout, now can be expressed as

and the quadrupole polarizability is

with

Note that the denominator of eq 8 contains the factor 3/2 while

Figure 1. Schematic of plasmon oscillation for a sphere, showing the
displacement of the conduction electron charge cloud relative to the
nuclei.
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r5
(xx̂ + yŷ +
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5 (7)
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(8)
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Figure 5.1: Dipole Surface Plasmon resonance
for a spherical nanoparticle. Schematic of
the displacement of the conduction elec-
tron charge in a metallic sphere interacting
with an incident electric field of suitable
frequency [158].

The in-phase oscillation of the conduction electrons is referred to as the ’dipole
particle Surface Plasmon Resonance’ (SPR) and leads to both absorption and
scattering contributions within the total optical extinction of the nanoparticle.
Absorption occurs due to electron-hole recombinations of either intra-band type
(within the metal conduction band), or of inter-band type (between the conduction
band and, for example, the d- band); by contrast, elastic Rayleigh scattering takes
place when the plasmonic oscillating electric field radiates energy at the same
frequency as that of the exciting incoming radiation [185].
Higher-order modes of plasmon excitation can also be induced: in the quadrupole
mode, for example, half of the electron cloud moves parallel to the incident electric
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field and half oscillates along the anti-parallel direction [158]. The dipole- and
all the multipole- terms are accounted for in Mie’s theory, which expresses the
extinction, absorption and scattering cross-sections of a spherical metal particle
(σext, σabs and σscatt, respectively) as a function of the incident wave-vector, of the
particle radius and of the refractive indices of both the metal and the surrounding
medium (or equivalently, of their dielectric functions). Explicitly, by the series
expansion of the involved fields into partial waves, the cross-sections σext, σabs and
σscatt are provided as an infinite series of multipole oscillations [142, 163]:

σext =
2π

|k|2

+∞∑
L=1

(2L+ 1)Re(aL + bL) (5.1)

σscatt =
2π

|k|2

+∞∑
L=1

(2L+ 1)Re(|aL|2 + |bL|
2) (5.2)

σabs = σext − σscatt (5.3)

aL and bL terms in eqs. (5.1)-(5.3) are given by

aL =
mψL(mx)ψ

′
L(x) −ψ

′
L(mx)ψL(x)

mψL(mx)η
′
L(x) −ψ

′
L(mx)ηL(x)

(5.4)

and

bL =
ψL(mx)ψ

′
L(x) −mψ

′
L(mx)ψL(x)

ψL(mx)η
′
L(x) −mψ

′
L(mx)ηL(x)

(5.5)

m = n/nm is the ratio of the complex refractive index n of the particle to the real
refractive index nm of the surrounding medium; k is the incident wave-vector, ψL
and ηL are the Riccati-Bessel cylindrical functions, and the prime symbol denotes
their differentiation with respect to the whole argument in parentheses. L denotes
the summation over partial waves: L = 1 corresponds to the dipole term, L = 2

corresponds to the quadrupole term, etcetera. Finally, r is the particle radius and
x = |k|r, leading to the explicit dependence of σext, σabs and σscatt on the size of
the particle.
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80-nm gold nanospheres) is comparable to the scattering from
the much larger 300-nm polystyrene nanospheres (Csca ) 1.77
× 10-14 at 560 nm), which are commonly used in confocal
imaging of cells.83 The light emission from fluorescent mol-
ecules such as fluorescein (ε ) 9.23 × 104 M-1 cm-1 with a
quantum yield ∼0.98 at 483 nm),82 also commonly used in
imaging is 5 orders of magnitude lower than the light scattering
from the 80-nm gold nanospheres (Csca ) 1.23 × 10-14 m2
corresponding to a molar scattering coefficient of 3.22 × 1010
M-1 cm-1). The superior scattering properties of gold nano-
spheres have already been exploited for the selective imaging
of cancer cells by using simple dark field microscopy17 and
confocal microscopy.16 The strongly enhanced absorption and
scattering of metal nanoparticles as compared to polystyrene
nanospheres or dyes is attributable to the well-known surface
plasmon oscillation of electrons of the metal nanoparticle.2,36
Silica-Gold Nanoshells. Calculated spectra of Qabs, Qsca, and

Qext for various dimensions of the silica-gold nanoshells (i.e.,
R1 ) 40 nm R2 ) 70 nm, R1 ) 50 nm R2 ) 70 nm, R1 ) 60
nm R2 ) 70 nm, R1 ) 90 nm R2 ) 105 nm, R1 ) 120 nm R2
) 140 nm, and R1 ) 120 nm R2 ) 155 nm) are shown in Figure
2. The nanoshells show absorption and scattering cross-sections
(Cabs ) 5.09 × 10-14 m2, Csca ) 3.25 × 10-14 for R1 ) 60 nm
R2 ) 70 nm nanoshell) that are comparable to and even higher
in magnitude than those of solid gold nanospheres. Additionally,
the nanoshell optical resonance lies in the NIR region (λmax )
892 nm for R1 ) 60 nm R2 ) 70 nm), where biological tissue
transmissivity is the highest30 and away from the hemoglobin
visible absorption around 500-600 nm.84 Thus the nanoshells
are much more suited to in vivo imaging and therapy applica-
tions as compared to the gold nanospheres. Silica-gold
nanoshells have been successfully employed in experimental
demonstrations by Hirsch et al.24 and Loo et al.25 However, there

have been concerns about the potential carcinogenicity of the
silica material of the nanoshell core.85 It would thus be highly
desirable to have nanoparticles of solid gold with NIR absorp-
tion. However, as seen in Figure 4a, change in the nanosphere
size does not provide the desired tunability in the optical
resonance. In fact, it is known that pure gold nanospheres have
resonance around 528 nm for different sizes from tens to 100
nm.33
Gold Nanorods. It is well-known that, by changing the shape

of nanoparticles to that of elongated rods, the optical charac-
teristics can be significantly changed.2,33,34,36,43,73 Gold nanorods
possess, in addition to the surface plasmon band around 528
nm seen in gold nanospheres, a band at longer wavelengths due
to the plasmon oscillation of electrons along the long axis of
the nanorods.2,33,34,36,43,73 The calculated absorption, scattering,
and extinction spectra of the surface plasmon band of gold
nanorods have been shown in Figure 3. Figure 3a shows
calculations for nanorods with a fixed aspect ratio R of 3.9 and
effective radius reff ) 8.74, 11.43, 17.90, and 21.86 nm.
Calculations for a fixed reff (and hence volume) of 11.43 nm
but with different aspect ratios R ) 3.1, 3.9 and 4.6 are shown
in Figure 3b. Thus the figure shows that the plasmon maximum
of the nanorods (corresponding to the mode with the electric
field parallel to the long axis of the nanorod) lie in the desirable
NIR region, thus making gold nanorods potentially useful for
in vivo applications. The magnitude of their NIR absorption
and scattering (Cabs ) 1.97 × 10-14 m2 and Csca ) 1.07 × 10-14
at λmax ) 842 nm for nanorods with reff ) 21.86 nm, R ) 3.9)
is comparable to that of the nanospheres and nanoshells, at a
much smaller size or volume.
Optical Tunability in Nanoparticles. The calculated spectra

for different nanoparticle types clearly reflect the well-known
fact2,33,34,36 that the surface plasmon resonance wavelength as

Figure 1. Calculated spectra of the efficiency of absorption Qabs (red dashed), scattering Qsca (black dotted), and extinction Qext (green solid) for
gold nanospheres (a) D ) 20 nm, (b) D ) 40 nm, (c) D ) 80 nm, and polystyrene nanospheres (d) D ) 300 nm.
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a b c 

Figure 5.2: Mie’s theory for gold nanospheres. Calculated spectra of the efficiency of absorption
(red dashed), scattering (black dotted) and extinction (green solid) for gold nanospheres
with diameter d= 20 nm (a), 40 nm (b) and 80 nm (c) [163]. The values for the complex
dielectric function of gold, adopted for the computation, have been derived at the different
wavelengths from [186] and corrected for the nanoparticles size. The dimensionless
efficiencies can be exploited to recover the corresponding cross-sections σext, σabs and
σscatt by multiplication with the cross-sectional area of the nanospheres.

Extrinsic size effect

The larger the particle, the less homogeneous is the electron polarization in-
duced by the incident electric field; as a result, higher-order (multipole) terms
become increasingly important with greater particle sizes. Since higher-order oscil-
lation modes peak at lower energies, the plasmon band blue shifts with decreasing
particle radius [142, 174]. This direct dependence of the optical extinction spectrum
on the size of the nanoparticle is usually referred to as the ’extrinsic size effect’ and
follows from eqs. (5.1)-(5.5).
The extrinsic size effect has been theoretically investigated, for example, in refer-
ence [163], where the absorption, scattering and extinction efficiencies and cross-
sections, computed from Mie’s theory by the Discrete Dipole Approximation (DDA)
method [182], have been reported for gold nanospheres of variable 20-80 nm di-
ameter (Fig. 5.2). Both the extinction efficiency and the relative contribution of
scattering increase as the nanosphere size increases. Moreover, at the wavelength
λmax=528 nm of the plasmon resonance maximum, 40-nm gold nanospheres have
an absorption cross-section σabs ∼10−15 m2, leading to a molar absorption coeffi-
cient ε ∼ 109 M−1cm−1: common strongly absorbing dyes such as Rhodamine 6G
(ε=1.16x105 M−1cm−1 [187]) have 4-orders-of-magnitude lower absorption when
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Figure 2. Surface plasmon absorption of spherical nanoparticles and its size dependence. (a)

A scheme illustrating the excitation of the dipole surface plasmon oscillation. The electric

®eld of an incoming light wave induces a polarization of the (free) conduction electrons

with respect to the much heavier ionic core of a spherical gold nanoparticle. A net charge

diŒerence is only felt at the nanoparticle boundaries (surface) which in turn acts as a

restoring force. In this way a dipolar oscillation of the electrons is created with period T.

This is known as the surface plasmon absorption. (b) Optical absorption spectra of 22, 48

and 99 nm spherical gold nanoparticles. The broad absorption band corresponds to the

surface plasmon resonance.

object leads to a series of multipole oscillations for the extinction cross-section of the

nanoparticles [23, 58±60]. By series expansion of the involved ®elds into partial waves,

one obtains the following expressions for the extinction cross-section r
ext

and

scattering cross-section r
sca
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0.7 < Ri/R < 1.3 (R is the mean radius).25 The 11% size
distribution for the 48 nm particles corresponds to all the
particles falling in that size range. In fact, 65% of the 48 nm
particles have radii between 0.9 < Ri/R < 1.1. A homogeneous
line broadening is therefore also assumed for these larger gold
nanoparticles. It was often argued that larger colloids grown
rapidly in water have an inhomogeneous size distribution as an
obvious size and temperature dependence were not observed.8,26

The major drawback of the Mie theory and its modifications
for the intrinsic size effects is, however, that the underlying
relaxation mechanisms are all included by the macroscopic
material dielectric function, which does not distinguish between
several possible decay processes. These decay mechanisms of
the coherent motion of the free electrons include both energy
and momentum (dephasing of the collective electron motion27)
dissipation and are directly related to the width of the plasmon
resonance. A microscopic picture for the plasmon absorption
is therefore lacking within the Mie theory.
For a free electron gas the intraband contribution to the

dielectric function can be written within the Drude-Sommerfeld
model as16,28

The plasmon frequency ωp2 ) (n e2/ε0meff) depends on the
electron density n and on the electron effective mass meff. e is

Figure 1. TEM images of the 22 (a), 48 (b), and 99 nm (c) gold nanoparticles corresponding to the absorption spectra in Figure 2. The corresponding
size histograms are given in parts d-f, respectively. The mean sizes and size distributions of all 5 samples are also summarized in Table 1.

TABLE 1: Summary of the Size and Size Distribution of the
Gold Nanoparticlesa

diameter
[nm]

mean standard
deviation [%]

λmax
[nm] Γ [eV] T2 [fs]

8.9 13 517 0.42 3.1
14.8 12 520 0.34 3.9
21.7 9 521 0.32 4.1
48.3 11 533 0.34 3.9
99.3 11 575 0.50 2.6

a The position of the plasmon band maximum and its width are also
included; the total dephasing time T2 has been calculated with eq 5.

ε(ω) ) 1 -
ωp

2

ω2 + iγ‚ω
(2)
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Figure 5.3: Experimental SPR absorption spectra for gold nanospheres of increasing radius. (a),(b):
TEM (Transmission Electron Microscope) images [174] of 22 nm (a) and 48 nm (b) Au
nanospheres (see details in [174] for the synthesis). (c): optical absorption spectra of 22, 48
and 99 nm gold spherical NPs in acqueous solution. All the spectra have been normalized
to their maximum value, found at λmax=512, 533 and 575 nm.

compared to spherical gold nanoparticles. Similarly, 80-nm gold NPs display a
scattering cross-section σscatt ∼ 10−14 m2 at 560 nm, which is comparable to the
one of much larger (300 nm) commonly employed polystyrene beads; the same
scattering signal is about 5 orders of magnitude higher than the fluorescence emis-
sion of fluorescein [187] at 483 nm, where its quantum yield is ∼0.98.
The predictions of Mie’s theory in the extrinsic size region have been experimen-
tally confirmed; exemplifying results are reported in Fig. 5.3 for 20-100 nm Au
nanospheres [142], exhibiting the expected longer plasmon-peak wavelengths for
increasing particle radius. The same experimental data also reveal that the plasmon
bandwidth decreases for decreasing particle size.

Intrinsic size effect

The investigation of the size dependence of the optical properties is more
complex for particles much smaller than the wavelength λ of the incident light.
For a particle diameter less than about λ/20, the electric field can be assumed
to be constant over the whole particle size, and only the dipole term contributes
significantly to the extinction cross-section [142, 174, 189]. By only retaining the a1
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term in eq. (5.1) [188], the explicit expression for σext can be simplified to

σext = 9
ω

c
ε
3/2
m V

ε2(ω)

[ε1(ω) + 2εm]2 + ε2(ω)2
(5.6)

V is the particle volume, ω is the angular frequency of the incoming radiation, c
is the speed of light and εm is the dielectric constant of the surrounding medium,
assumed to be frequency independent. ε(ω) = ε1(ω) + iε2(ω) is the complex
dielectric function of the nanoparticle metal, obtained phenomenologically or with
the help of electrostatics. If ε2(ω) is small or weakly dependent on ω, the reso-
nance condition can be cast as ε1(ω) = −2εm; hence the real part ε1 determines
the wavelength position of the resonance, while the imaginary part ε2 regulates the
bandwidth. I remark that the dependence of the resonance condition ε1(ω) = −2εm
and of eq. (5.6) on εm also evidences that the dielectric properties of the local
environment of the NPs affect the SPR peak wavelength: this is at the basis of the
exploitation of NPs as chemical or bio- sensors for (for example, adsorbate-induced)
changes in the surrounding medium [185]. This applies to nanospheres and to the
anisotropic nanoparticles described in the following Subsections.

Eq. (5.6) evidences that, under this so-called dipole or quasi-static approxi-
mation, σext no longer significantly depends on the particle radius r: apart from
amplitude variations due to the dependence on the volume V , the radius r does not
affect the shape of the extinction spectrum. However, by implying that the surface
plasmon extinction becomes size-independent for particles smaller than about 20
nm, eq. (5.6) contradicts experimental evidences: a strong absorption damping
has been reported for particles smaller than 5 nm, the SPR even disappears for
nanospheres smaller than 2 nm in diameter [142, 175, 190] and the SPR bandwidth
depends on the particle radius.
The discrepancy probably arises from the assumption of a bulk-like structure for
the electronic bands of the nanoparticle and from the introduction of the medium
dielectric constant as the only material-related physical quantity entering Mie’s
derivation. Somehow empirically, a size dependence of the dielectric function
ε=ε(ω, r) has been proposed for the treatment of particles less than 20 nm in
diameter [142, 174]. In an alternative approach, a reduction of the electrons mean
free path due to the physically limited dimensions of the nanoparticle has been
pointed out as a justification of experimental results [191]. Briefly, when electrons
scatter with the particle surface elastically and in a random way, the coherence
of the plasmon oscillation is lost: the smaller the nanoparticle, the faster is this
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coherence loss and the larger is the particle absorption bandwidth. In the formal
mathematical derivation, an intra-band contribution is added to the dielectric
function ε(ω); according to the Drude-Sommerfeld free-electron model,

ε(ω) = 1−
ω2p

ω2 + iγω
(5.7)

ω2p = ne
2/ε0meff is the squared bulk plasmon frequency [192]; e, n and meff are

the electron charge, density and effective mass, ε0 is the vacuum permittivity and γ
is a phenomenological damping constant. For a bulk metal with infinite boundaries,
γ is related to the sum γ0 of the reciprocal lifetimes of the electron-electron, electron-
phonon and electron-defect scattering processes; by contrast, when the particle
size turns comparable to the electron mean free path (∼ 50 nm in gold [193]), an
additional, even dominating, term is added due to the electron-surface scattering
events. The damping constant becomes therefore size-dependent:

γ(r) = γ0 +
AvF
r

(5.8)

where A depends on the diffusive or isotropic nature of the scattering processes and
vF is the electron velocity at the Fermi energy. By eq. (5.8), the nanoparticle radius r
is explicitly inserted into the dielectric function ε(ω) (in what is called an ’intrinsic
size effect’) and, in turn, into the extinction cross-section of the modified Mie’s
theory. Notably, this model predicts the experimentally retrieved 1/r dependence
of the bandwidth [174] (Fig. 5.4).

While current theories satisfactorily model the size dependence of the plasmon
bandwidth, the prediction of the resonance peak wavelength as a function of the

Figure 5.4: SPR bandwidth for gold nanospheres of in-
creasing radius [174]. The plasmon bandwidth ∆λ
increases for increasing sphere diameter in the ’ex-
trinsic size region’ (d>20 nm), whereas it is inversely
proportional to the particle radius in the ’intrinsic
size region’ (d<20 nm).

the electron charge and ε0 the vacuum permittivity. γ is the
phenomenological damping constant of the bulk material. In
the case of a perfectly free electron gas and in the limit of γ ,
ω, the width Γ of the plasmon band is given by the damping
constant γ while for realistic metals the width takes a more
complex function being dependent on the full expression for
the real and imaginary parts of the dielectric function consisting
of an intraband and an interband term.5
For a bulk metal with infinite boundaries the damping

constant γ is determined by electron-electron, electron-

phonon, and electron-defect scattering processes, where the last
term usually includes grain boundaries, impurities, and disloca-
tions. γ is therefore closely related to the electrical resistivity
of the metal and one can express γ as the sum over all reciprocal
relaxation times τ:5

For the bulk the electron-phonon term is the dominating one,
and furthermore γ should be a constant. However, for small
particles this is assumed not to be valid. The surface acts as an
additional scatterer because the mean free path of the electrons
becomes comparable to the size of the particles (Drude-
Sommerfeld model of a free electron gas: MFP in gold is about
50 nm with an electron-phonon collision time of 35 fs.29,30)
For very small particles these interactions (collisions) of the
conduction electrons with the particle surface dominate and this
results in a reduced effective MFP. According to this model,
the damping constant γ then depends on the particle radius R:16

γ0 is the bulk damping constant as given by eq 3. VF is the
velocity of the conduction electrons at the Fermi energy, and A
includes details of the scattering processes.15
Although this model gives a better physical understanding

about the plasmon absorption, especially for the intrinsic size
effects, it is still based on ideas from solid-state physics.
However, if one assumes a simple two-level model for the
plasmon absorption as in molecular spectroscopy the width is
then given by27

T1 describes the population relaxation time (radiative and
nonradiative processes) and T2 is the total dephasing time or
resonance damping constant. T2* is the pure dephasing time
which may originate from collisions that change the plasmon
wave vector but not its energy. Often T2* is much shorter than
the energy relaxation T1 and thus determines the value of T2.
Assuming a homogeneous size distribution and therefore

homogeneous line broadening, the total dephasing time can be
computed from the measured width of the plasmon bands in
Figure 2 using eq 5. The calculated values are given in Table
1 for the five different nanoparticle samples. The dephasing
times all lie in the range of a few femtoseconds. These extremely
fast dephasing times are in agreement with nonlinear frequency
mixing studies of Hochstrasser et al. on gold nanoparticles who
found that both T1 and T2 are shorter than 48 fs.27 Furthermore,
other more recent nonlinear studies come to the conclusion that
the dephasing time of the coherent plasmon oscillation is shorter
than 20 fs.31 These results also agree with studies on litho-
graphically produced 200 nm silver nanoparticles32 and evapo-
rated silver island films33 (20 nm island size), for which
dephasing times of 10 and 40 fs were measured. Furthermore,
Kreibig et al.20 determined dephasing times of 2 and 7 fs for 2
nm silver clusters embedded in a matrix and in a vacuum (naked
clusters) from the width of the plasmon band.
Recent single nanoparticle investigations with a scanning

near-field optical microscope (SNOM) found a homogeneous
line width of only 160 meV for some individual particles
corresponding to a dephasing time of 8 fs for 40 nm gold

Figure 2. (a) UV-vis absorption spectra of 9, 22, 48, and 99 nm
gold nanoparticles in water. All spectra are normalized at their
absorption maxima, which are 517, 521, 533, and 575 nm, respectively.
(b) The plasmon bandwidth ∆λ as a function of particle diameter.

Figure 3. Temperature dependence of the plasmon band absorption
for the 22 nm gold nanoparticles. The absorption spectra are measured
at 18 °C (solid line) and 72 °C (dashed line).
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nanoparticle radius in the intrinsic size region is rather complex: different theories
predict both a red shift and a blue shift with decreasing NP size, and both the trends
have been observed experimentally [142]. Size-dependence studies are complicated
by the inhomogeneous band broadening due to the non-perfect monodispersity
of real NP samples. Furthermore, most synthesis protocols allow the production
of nanoparticles in a limited size range: for example, the chemical reduction with
sodium citrate limits to sizes above 5 nm, while reduction with sodium borhydride
produces stable nanoparticles with a diameter below 5 nm. Since the matrix (the
capping ligands) around the nanoparticle strongly affects the plasmon peak and
bandwidth [142, 194], it is rather difficult to discriminate between a size- and a
matrix- dependence within the observed experimental results [142].

5.1.2 Ellipsoidal nanoparticles: Gans’ theory

The theory developed by Gans [173] in 1915 extends Mie’s theory to the descrip-
tion of the peculiar optical properties of asymmetrical, rod-shaped nanoparticles
(Fig. 5.5a). These ellipsoidal nanostructures [162], typically a ten of nanometer in
width and tens to hundreds of nanometers in length [189], exhibit two separate
bands within the plasmon resonance absorption spectrum [142, 151, 163, 164] (Fig.
5.5b). A first higher-energy band corresponds to the oscillation of electrons perpen-
dicularly to the major rod axis, and is usually referred to as the ’transverse plasmon
absorption band’; it is spectrally superimposed to the visible surface resonance
of nanospheres and it is relatively insensitive to the rod aspect ratio R (simply
defined as the ratio of the longer axis to the shorter axis of the rod-like particle).
A second lower energy band corresponds instead to the oscillation of electrons
perpendicularly to the shorter rod axis, and is known as the ’longitudinal plasmon
absorption band’; its peak wavelength linearly red shifts with increasing aspect
ratio: hence the higher R, the higher is the energy separation between the resonance
frequencies of the two bands (Fig. 5.5b). Notably, the extinction longitudinal band
of noble-metal rods favorably lies in the Near-InfraRed (NIR) region, a spectral
window where biological tissues exhibit high transmittivity [199]: this has turned
rod-like nanoparticles into one of the most widely studied classes of tunable reso-
nant NPs for in-vivo imaging and applications.

From the theoretical viewpoint, the optical absorption spectrum of a collection
of randomly-oriented gold nanorods, having a mean aspect ratio R, has been treated
by Gans under the dipole approximation. By introducing a depolarization factor
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Figure 3. Size-dependent surface plasmon absorption of gold nanorods. Optical absorption

spectra of gold nanorods with mean aspect ratios of 2±7 ([[[[[) and 3±3 (±±±) are shown.

The short-wavelength absorption band is due to the oscillation of the electrons

perpendicular to the major axis of the nanorod while the long-wavelength band is caused

by the oscillation along the major axis. The absorption bands are referred to as the

transverse and longitudinal surface plasmon resonances respectively. The former is rather

insensitive towards the nanorod aspect ratio in contrast with the longitudinal surface

plasmon band which red shifts with increasing aspect ratio. This is illustrated in the inset

where the two band maxima ((*), transverse mode ; (D), longitudinal mode) are plotted

against the nanorod aspect ratio R.

particles become more elongated along one axis [58±60]. The aspect ratio is the value

of the long axis (length) divided by the short axis (width) of a cylindrical or rod-shaped

particle. As the aspect ratio increases, the energy separation between the resonance

frequencies of the two plasmon bands increases [58±60]. The high-energy band

absorbing at around 520 nm corresponds to the oscillation of the electrons

perpendicular to the major (long) rod axis and is referred to as the transverse plasmon

absorption. This absorption band is relatively insensitive to the nanorod aspect ratio

[44, 47, 53] and coincides spectrally with the surface plasmon oscillation of the

nanodots. The other absorption band at lower energies is caused by the oscillation of

the free electrons along the major (long) rod axis and is known as the longitudinal

surface plasmon absorption. Figure 3 shows the absorption spectra of two nanorod

samples having aspect ratios of 2±7 and 3±3. The samples were prepared electro-

chemically using micelles as the rod-shaping and stabilizing agents [44, 53]. Figure 3

shows that the longitudinal plasmon band maximum (open circles) red shifts with

increasing aspect ratio while the transverse absorption band maximum (open squares)

does not change [44, 47, 53, 93].

The optical absorption spectrum of a collection of randomly oriented gold

nanorods with aspect ratio R can be modelled using an extension of the Mie theory.

Within the dipole approximation according to the Gans [94] treatment, the extinction

cross-section r
ext

for elongated ellipsoids is given by the following equation [58]:

r
ext

¯
x
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V
j
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100 nm a b 

Figure 5.5: Gold nanorods. (a): TEM image of gold nanorods, synthesized by seed-mediated
surfactant-directed synthesis (adapted from [189, 195]). (b): experimental size-dependent
optical absorption spectra of gold nanorods with mean aspect ratios R=2.7 and R=3.3; the
transverse and the longitudinal plasmon bands are clearly distinguishable. Inset: the peak
wavelengths of the two bands (longitudinal band, circles; transverse band, squares) are
plotted against the nanorods aspect ratio [142].

along each of the three axes, he provided the explicit expression for the extinction,
absorption and scattering cross-sections of elongated ellipsoids [142, 151, 164, 196,
197]:

σabs =
2π

3λ
ε
3/2
m V

∑
i

ε2(ω)/n2i
{ε1(ω) + [(1− ni)/ni]εm}2 + ε2(ω)2

(5.9)

σscatt ≈
8π3

9λ4
ε2mV

2
∑
i

[ε2(ω)2 + (ε1(ω) − εm)
2]/n2i

{ε1(ω) + [(1− ni)/ni]εm}2 + ε2(ω)2
(5.10)

σext = σabs + σscatt (5.11)

As in the previous subsection, εm is the dielectric constant of the surrounding
medium, ε1 and ε2 are the frequency-dependent real and imaginary parts of
the particle dielectric function, V is the nanostructure volume, λ and ω are the
wavelength and the angular frequency of the incident radiation. ni=A,B,C are
the aforementioned depolarization factors along axes A, B and C. By assuming
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A > B = C and by denoting with R the rods aspect ratio,
nA =

2

R2 − 1

(
R

2
√
R2 − 1

ln
R+
√
R2 − 1

R−
√
R2 − 1

− 1

)

nB = nC =
1− nA
2

(5.12)

For aspect ratios in the range 1-4 (practically representing the tuning of the longitu-
dinal plasmon mode from 520 nm to approximately 800 nm), the depolarization
factor nA satisfies nA ≈ (3R)−1: by adopting this approximation, σabs can be
rewritten as

σabs ≈
6π

λ
ε
3/2
m ε2VR

2

[
1

ε22 + (ε1 + (3R− 1)εm)2
+

+
8

(3R− 1)2
1

ε22 + (ε1 + (1+ 2/(3R− 1))εm)2

] (5.13)

The first and second term in eq. (5.13) represent the longitudinal and the transverse
plasmon modes, respectively. Notably, eq. (5.13) predicts the aforementioned linear
dependence of the longitudinal band peak wavelength on the aspect ratio, and
the practical insensitivity of the transverse band upon the same parameter R [197].
Irrespectively of the adoption of the approximation nA ≈ (3R)−1, Gans’ theory has
been employed to fit the experimental optical extinction spectra of several colloidal
gold nanorod samples with varying aspect ratio. Moreover, systematic studies
in the optical resonance wavelength, in the extinction cross-section and in the
relative scattering contribution with changes in the nanoparticle dimensions have
been performed to enable the selection of the optimal NPs for absorption-based or
scattering-based biological and biomedical applications.

While the rod aspect ratio affects the plasmon peak wavelength, the absolute
size of the rods only modifies the magnitude of absorption, scattering and extinc-
tion without affecting the shape of the spectra (eqs. 5.9-5.11): the higher the volume
V , the higher are σext and the contribution of scattering. The magnitude of the
NIR absorption and scattering (σabs=1.97x10−14 m2 and σscatt=1.07x10−14 m2) of
gold nanorods with a hydrodynamic radius of 22 nm and an aspect ratio of 3.9 has
also been shown to be comparable to that of nanospheres and nanoshells, but at a
much smaller size or volume [163]: since smaller NPs usually offer better cellular
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uptake, rods have been identified in [163] as the most promising nanostructures for
localized photo-thermal therapies and live-cell imaging.

I finally remark that the underlying dipole approximation limits the appli-
cability of eqs. (5.9)-(5.11) to rods smaller than about one tenth of the incident
wavelength. Although the higher-order resonances of ellipsoidal nanoparticles have
been successfully calculated by the Discrete Dipole Approximation method [198],
Gans’ theory covers the size range in which stable particles can be produced by
current high yield synthesis protocols.

5.1.3 Star-shaped nanoparticles

I have already pointed out that moving from spherical to rod-like nanoparti-
cles favorably shifts the SPR longitudinal band to the near-infrared, enabling the
employment of noble-metal nanorods for imaging and theranostic applications in
living cells and tissues. Beside affecting the SPR peak wavelength, the shape of the
employed nanoparticles also plays a crucial role in regulating the extent and the
pathways of the NPs cellular internalization [200, 201] or, when aiming at drug-
delivery biomedical applications, their intravascular transport within the target
organism. Many factors, including the cellular membrane stretching or the mem-
brane bending energy, regulate the so-called ’wrapping time’ required by the cell for
the nanoparticle enclosure: this wrapping time is usually reduced by the spherical
geometry, so that spherically symmetric NPs demonstrate a ∼500% more efficient
cellular uptake with respect to rod-like ones [201, 202]. A drawback of spherical
NPs, of particular concern in the rapidly developing field of nanomedicine, is their
limited targeting capability. When transported by the bloodstream (for example,
within a vascularizing tumor), spherical NPs expose a small surface - theoretically a
single point - to the blood vessel walls: the reduced contact do not support a stable,
firm adhesion, thereby hampering the uptake of the drug-containing nanostructure
by the target cells. Therefore, disc-like, cylindrical and hemispherical particles
outperform spheres in evading uptake by phagocytic cells and in flowing through
capillaries [203].

Among cubes, stars, prisms, rods and shells, I focus on star-like NPs (Fig. 5.6).
Their sub-cellular dynamics and transport processes will be the object of the next
Chapters: hence I refer to Section 6.1 for the description of the specific properties
of the employed gold nanostars, and just anticipate here the main features of the
Surface-Plasmon-Resonance bands of star-shaped nanostructures.
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individual gold ‘‘nanostars’’ by single particle spectroscopy.72

With the aid of alignment marks, high resolution electron micro-

graphs of the individual nanostars were correlated with their

scattering spectra. Typical single particle spectra consisted of

multiple sharp peaks in the visible and near-infrared, as seen in

Fig. 4. To find if the spectral peaks corresponded to a specific

tip, an analyzer was placed on the scattered light. By tracking

the peak amplitudes as a function of analyzer angle, it was found

that each spectral peak from a single nanostar was polarized in

a different direction, and each such direction matched that of

a tip on the star.

Further evidence of the correlation between the structure and

spectra of gold nanostars was provided through numerical simu-

lation of nanostar optical properties by FDTD (finite difference

time-domain) analysis.74,79 FDTD is a brute force method which

solves Maxwell’s equations repeatedly along a time-evolving

spatial grid, yielding information about the far-field extinction

as well as the near-field enhancements at the nanoparticle

surface. In one case,79 FDTD simulations were carried out on

a structure modeled after an individual nanostar with a measured

spectrum.72 The spectral extinction determined by FDTD was in

excellent agreement with the experimental observations. In addi-

tion, analysis of the near-field enhancements confirmed that the

observed resonances are localized about a single tip on the nano-

star.74,79 In both reports, field enhancements of ca. 100 to 250

were found at the nanostar tips. These values are similar to those

calculated for nanoparticle dimer junctions,80 yet exist in an open

geometry, suggesting that the nanostars could be the basis for

efficient SERS substrates.

LSPR in complex structures such as these branched gold

nanoparticles can be understood in terms of the plasmon hybrid-

ization (PH) model.81 PH is an analytical method which can

calculate the LSPR of complicated structures by considering

them to be the result of the interactions of the LSPR of simpler

structures. Although PH has been successful for several geome-

tries,82 a branched shape such as that in Fig. 4 is too complex

for its straightforward application.

Fig. 3 Several different shapes of branched gold nanoparticles from

references 67 (A), 69 (B), 75 (C), 77 (D), 65 (E), 72 (F).

Fig. 4 The structure and scattering spectrum of a single gold nanostar.

The smooth spectrum is that of a 100 nm nanosphere shown for refer-

ence. Adapted from reference 72.

Fig. 5 The plasmon hybridization picture of gold nanostar LSPR.

Adapted from reference 79.

Fig. 2 The dependence of nanorod LSPR spectra on endcap shape, for

several shapes which can result from high-yield gold nanorod synthesis.

Adapted from reference 64.
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Figure 5.6: Gold nanostars. TEM images of dif-
ferent star-shaped nanoparticles (from [189] and
references therein).

Stars can be modeled as a central nearly-spherical core with prolate protruding
tips [204]. Since no exact analytical solution exists to predict their extinction
cross-section, the Surface Plasmon Resonance bandwidth and peak wavelength are
usually identified by direct experimental characterization of the nanostar sample.
These characterizations, performed by single particle spectroscopy, have already
revealed that star-shaped NPs are endowed with multiply peaked absorption and
scattering spectra [205]. Each peak is related to a specific tip of the star: exactly as
for nanorods, the longitudinal peaks found in the near-infrared for single Au nano-
stars can be ascribed to the plasmonic oscillation of electrons perpendicularly to the
tips. This rather intuitive conclusion has been verified by inspecting the dependence
of the amplitude of the individual peaks, within the scattering spectrum of single
nanostars, on the polarization of the exciting radiation: the scattered light is
linearly polarized at a distinct angle for each peak [205], strongly suggesting that
the different plasmon resonances of the star are associated to its different tips [204]
(the probability of excitation of each plasmon mode depending on the square of its
dipole moment along the incident electric field).1 All the peaks, corresponding to
the individual tips of the nanostars, contribute in defining the overall absorption
and scattering spectra of the nanostar solution, which exhibit broad yet well-defined
peaks in the visible and NIR [205].

1The same polarization dependence applies to the plasmon resonances of nanorods: if rod-like
particles are embedded in a matrix and they are parallel to each other, only the longitudinal band
appears for an incoming radiation polarized parallel to the long axis of the rods. Conversely, only
the transverse mode is excited if the incident beam is polarized perpendicularly to the rods long
axis [188].
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5.2 Photoluminescence properties of gold nanoparticles

As previously noticed, the SPR-enhanced extinction cross-section of plasmonic
nanoparticles make them efficient contrast agents in optical imaging. As the scatter-
ing signal is orders-of-magnitude higher than the fluorescence emission from syn-
thetic dye molecules, spherical and anisotropic noble-metal NPs are well suited for
biomedical imaging using confocal reflectance or dark-field microscopy [151, 162].
Dark field light scattering has been successfully employed, for example, to monitor
the receptor-mediated uptake of gold nanorods by HeLa cells [206], or for cancer
diagnosis by using anti-EGFR (anti-Epidermal Growth Factor Receptor) antibody-
conjugated gold nanorods [170].

A bright alternative to light scattering for biomedical imaging is the detection
of the strong photo-luminescence signal emitted by plasmonic NPs.
Even though gold is known to quench the emission of nearby fluorophores due
to back-electron transfer, Mooradian reported in 1969 the emission of a weak
photoluminescence signal from bulk gold [207]. The photoluminescence from bulk
noble metals has been attributed to the radiative recombination of the excited
electrons in the sp band with the holes in the d band [142] (Fig. 5.7a). Specifically,
a three-step process has been proposed [142, 162, 208]: at first, electrons are excited
from the filled d band to electronic states above the Fermi level in the sp conduction
band and generate electron-hole pairs; then, a partial energy transfer to the phonon
lattice occurs on the picosecond timescale, followed by the radiative recombination
of some electron-hole pairs and photon emission. The quantum efficiency of the
single-photon luminescence is typically very low (of the order of 10−10), but is
increased by several orders of magnitude on rough surfaces of noble metals [209];
rough surfaces can be regarded as a collection of nanometer-size randomly oriented
hemispheroids, which exhibit surface plasmon resonances and lead therefore to the
amplification of the incoming and outgoing electric fields. This so-called ’lightning
rod effect’ [209,210] also occurs for nanoparticle aggregates, or single nanoparticles,
strongly enhancing both their Raman scattering signal (thereby referred to as SERS,
or Surface-Enhanced Raman Scattering) and their photo-luminescence signal [142].

Even more appealing for imaging applications is the Two-Photon excited Lumi-
nescence (TPL) signal of noble-metal NPs [162, 167, 211, 212]. The TPL properties
and mechanism have been largely investigated by near-field and far-field optical
scanning techniques. Far-field microscopy, employed in [167] to probe the TPL of
gold nanorods, has revealed that, when excited at the peak IR wavelength of the
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of the Brillouin zone, since the density-of-states near these
symmetry points are high. Band structures near the X and L
symmetry points are shown in Figure 3b. According to the
calculated band structures of gold,15 emission peaks should be
observed around wavelengths of 630 and 520 nm, respectively,
for the regions of the X and L symmetry points. Two peaks
observed in Figure 2 (around 650 and 550 nm) appear very
close to this expectation and thus are assigned to the PL arising
from the electron-hole recombination near the X and L
symmetry points, respectively. Details of the spectral features
are discussed later.
Dynamic measurements give information on the properties

of the excited states. We have examined the PL decay of various

gold particles at various emission wavelengths by the TCSPC
measurements. Figure 4 shows a typical result. The observed
decay was fitted to a single exponential function, and the lifetime
was determined to be ∼1.0 ns. We have found that the lifetime
depends on the size and shape of the particles and also on the
detection wavelength, and it ranges from 0.8 to 2 ns. One may
notice that the lifetime is quite long compared to those found
in ultrafast pump-probe measurements of gold nanoparticles,
where the lifetimes of the excited electrons were found to be
less than several picoseconds.16-20 Recently, time-resolved
fluorescence upconversion experiments were performed to
measure the lifetime of the PL.21,22 In the upconversion trace,
a very slow component was found which did not decay within
the measured time range (3 ps), in addition to an ultrafast
component on a time scale of 50 fs.22 The slow component may
be attributed to the same relaxation process as that found in the
present study. Fermi liquid theory predicts that the lifetime of
the excited electron quadratically decreases with the difference
between the energy of the excited electron and the Fermi level.23
In fact, a time-resolved two-photon photoemission study
confirmed this prediction experimentally.24 The long lifetime
of the PL observed here might indicate that the PL is effectively
radiated by the recombination of excited electrons located very
close to the Fermi surface with holes in the d band. This idea
is inconsistent with the proposed PL mechanism described
above.
B. Polarization Characteristics. We have investigated

dependencies of the PL intensity on the polarizations of both
the excitation (incoming) and emitted (outgoing) photons, as
shown in Figure 5. Uncertainty of the absolute polarization
angle, θ, is (10°. The dependence of the PL intensity on the
incident electric-field polarization (Figure 5a) indicates that the
polarized field along the long axis of the nanorod can predomi-
nantly excite the PL. It follows a cos2 θ dependence. For two-
photon excitation processes, two different schemes can be
considered: a sequence of one-photon excitations and a coherent
two-photon excitation. These two cases are distinguished by
different behavior on the incident polarizations. SHG is known
as a coherent process. In this case, the SHG intensity is expected
to follow a cos4 θ dependence against the incident polarization.
We measured the SHG from a single gold nanorod, and the
incident polarization dependence is shown in Figure 5b. It shows
a clear cos4 θ dependence as expected. The different polarization
characteristics between TPI-PL and SHG are thus trustworthy,

Figure 2. Two-photon-induced photoluminescence (TPI-PL) spectrum
from a single gold nanorod. The dashed line shows a baseline at the
bare substrate.

Figure 3. (a) Symmetry points and symmetry axes in the first Brillouin
zone of gold. (b) Schematic diagrams of band structures near the X
and L symmetry points. pωPL denotes the photon energy of the PL,
radiated by filling a hole with an electron from the sp band. The
notations sp and d denote the sp conduction band and the d band,
respectively. The dashed lines indicate the Fermi surfaces.

Figure 4. Typical time-correlated single-photon-counting (TCSPC)
profile of the TPI-PL. The excitation and detection wavelengths are
780 and 550 ( 10 nm, respectively. The dashed line shows a least-
squares fit.

13216 J. Phys. Chem. B, Vol. 109, No. 27, 2005 Imura et al.

and the cos2 θ dependence of the TPI-PL is attributed to the
sequential one-photon process.
As discussed in the previous subsection, PL is radiated when

the electrons near the Fermi surface (on the sp band) and the
holes in the d band recombine. It has been revealed from the
discussion above that electron-hole pairs are created in these
bands by the sequential one-photon process. The excitation
mechanism can be hence described as follows (Figure 6). Upon
the optical excitation, the first photon excites an electron in the
sp conduction band located below the Fermi surface to the sp
conduction band above the Fermi surface via an intraband

transition. At the same time, a hole is created in the sp
conduction band below the Fermi level. This transition is
resonant with photons with a polarization along the long axis
of the nanorod. After the excitation, the memory of the
polarization is rapidly lost. Then, the second photon excites an
electron in the d band to the sp conduction band, where the
hole was created by the first photon. The transition by the second
photon is not sensitive to the polarization. The second photon
generates a hole in the d band. As a consequence, an electron-
hole pair is generated, which can recombine to radiate later.
Parts c and d of Figure 5 show the polarization characteristics

of the emitted photons from the X (645-655 nm) and L (450-
550 nm) regions, respectively. The emission from the X region
shows an almost perfect polarization along the long axis of the
rod with a cos2 θ intensity dependence on the angle θ, while
that from the L region exhibits only a partially polarized PL.
The incident field is polarized along the long axis of the rod in
the measurements of Figure 5c and d. However, the polarization
characteristics of the emitted photons were independent of the
incident polarization. These characteristics are understood as
follows on the basis of the crystalline structures of the gold
nanorods.
Structural information on gold nanorods was reported by

electron-beam diffraction studies and high-resolution transmis-
sion electron microscopy (HR-TEM).25-27 It has been estab-
lished that the chemically synthesized gold nanorod is a single
crystal. Dominant side facets are (110), and the growth direction
is [001]. The ends of the nanorods are (001) and (111) facets
of small areas, as shown in Figure 7. According to atomic-dipole
selection rules,28-30 allowed transitions of the recombination

Figure 5. (a) Incident light polarization dependence of the PL intensity, where emitted photons ranging from 450 to 650 nm in wavelength were
detected without specifying the polarization. The solid curve shows a cos2 θ function. (b) Incident polarization dependence of the SHG intensity.
The SHG was measured near 390 nm in wavelength without specifying the polarization. The solid curve shows a cos4 θ function. (c) Polarization
characteristics of the detected photons of the PL measured at the center of the X region (645-655 nm), where the incident field was polarized
parallel to the long axis of the nanorod. The solid curve shows a cos2 θ function. (d) Polarization characteristics of the detected photons of the PL
measured near the L region (450-550 nm), where the incident field was polarized parallel to the long axis of the nanorod. The solid curve shows
a cos2 θ function.

Figure 6. Excitation schemes of sequential one-photon absorptions
near the X and L symmetry points. Open and closed circles denote
holes and electrons, respectively.

Near-Field TPI-PL from Single Gold Nanorods J. Phys. Chem. B, Vol. 109, No. 27, 2005 13217

a b 

Figure 5.7: Two-photon luminescence of gold nanoparticles [212]. (a): schematic diagram of the
band structure near the X and L symmetry points in the first Brillouin zone of gold. In gold
crystals, optical transitions preferentially occur near the X and L points due to the high
density of states. }ωPL denotes the photon energy of the photo-luminescence radiated by
filling a hole with an electron from the sp band; dashed lines denote the Fermi surface. (b):
excitation scheme of sequential one-photon absorptions near the X and L symmetry points
in gold. In both (a) and (b), open and filled circles identify holes and electrons, respectively.

longitudinal plasmon band, gold rod-like nanoparticles emit in the broad 400-650
nm spectral region. Two peaks have been found close to the 520-nm and to the
630-nm wavelengths expected from the electron-hole recombination near the X
and L symmetry points of the Brillouin zone, corresponding respectively to the
(001) and (111) lattice planes in the gold ffc crystal. The non-linear nature of the
excitation process has been confirmed by the quadratic dependence of the emitted
intensity on the excitation power, and the dependence of the emitted TPL on the
excitation polarization has been demonstrated to follow a cosine function to the
fourth power. This dependence resembles the one established for two-photon
excited fluorescent molecules, and suggests that a coherent two-photon absorption
process is at the basis of the TPL generation. By contrast, the emitted TPL has been
shown to be essentially depolarized.

Complementarily, Near-field Scanning Optical Microscopy (NSOM) has been



5.2 Photoluminescence properties of gold nanoparticles 129

adopted by Imura et al. [212] to perform the same polarization-dependence charac-
terization of the TPL signal of gold nanorods. A dependence on a cosine function
to the second power has been revealed on the excitation polarization, and two
sequential one-photon processes have been pointed out to explain the TLP emis-
sion and the observed results. Initially, a first photon excites via an intra-band
transition an electron in the sp conduction band from a level below the Fermi
energy to a level above the Fermi energy; at the same time, a hole is created in
the sp conduction band below the Fermi level. Then, a second photon excites an
electron from the d band to sp band, where the hole was created by the first photon;
finally, an electron-hole recombination results in the photo-luminescence emission
(Fig. 5.7b). The probability of the first transition is maximized when the exciting
radiation is polarized parallel to the rod axis, whereas the second transition is
polarization-insensitive. Although questioned by the experimental results of other
groups [166, 167], the TPL mechanism proposed in [212] agrees with the peculiar
dependence of the two-photon excited luminescence of Au nanostructures on the
temporal width of the excitation laser pulses [213].



Chapter 6

Gold Nanostars Intracellular
Dynamics: Results in r-Space

The capability of converting the absorbed energy into heat via non-radiative elec-
tron relaxation dynamics and of inducing localized heating effects [142,162,168]

makes gold NanoParticles (NPs) widely employed for cancer cell photother-
mal treatments [169–171] or as nanocarriers that can thermally release loaded
molecules [214, 215]. This especially applies to NPs of asymmetric shapes, such
as rods and stars, that - as described in the previous Chapter - exhibit the major
plasmon resonance absorption band in the convenient near infrared region of the
electromagnetic spectrum. This same absorption band also confers to asymmetric
NPs a large luminescence signal upon two-photon excitation in the IR peak, thereby
creating an intrinsic optical tool to detect them in living systems [167, 216].
For the rational design and optimization of the imaging-based and photo-thermal
therapy applications of gold nanoparticles, the characterization of their cellular
internalization and of their intracellular trafficking pathways is mandatory: in
order to develop nanodevices that can target cell organelles or act on specific cell
metabolic paths, it is critical to know how the internalization process occurs and,
even most importantly, how the NPs behave once inside the cytoplasm.
To date, no unique model has been devised for the intracellular transport of
nanoparticles and, more in general, of organelles, vesicles and cargoes. Experi-
mental results reported in the literature vary form Brownian motion [217, 218] to
anomalous super- [218–220] and sub- [221, 222] diffusion, the latter being usually
described with the aid of approximate, effective models [221, 223]. Elastic trapping,

130
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obstructions, meshwork-like domains, stalling events and the action of molecu-
lar motor proteins [220, 224] contribute to limit or enhance simple sub-cellular
Brownian diffusion, producing complex transport dynamics. Overall, due to the
heterogeneity of the cytoplasmic environment and to the resulting variability of
intracellular transport mechanisms, it would be very useful to derive some sort of
’model-free’ analysis protocol capable of quantitatively characterizing the mode
of motion (of gold nanostars or biological macromolecules) without any prior
assumption on its Brownian or super-diffusive nature. The search and development
of such a model is the object of Chapters 6-8, where live-cell time-lapse confocal
imaging and the detection of the scattering signal of branched Gold NanoStars
(GNSs) are exploited to follow their dynamics upon internalization in HeLa cells.

In this Chapter, I determine at first the characteristic timescale of the GNSs
intracellular motion by the TICS (Temporal Image Correlation Spectroscopy [47])
analysis of the acquired xyt- temporal sequences of raster-scanned confocal images;
then I identify the different transport mechanisms underlying the GNSs dynamics
by STICS (Spatio-Temporal Image Correlation Spectroscopy [48]), and I discuss the
possible theoretical models of enhanced diffusion.

6.1 Materials and Methods

6.1.1 Cell culture

The intracellular dynamics of gold nanostars has been investigated in HeLa
human cervical cancer cells. The cells have been cultured in complete DMEM
(Dulbecco Modified Eagle Medium) with 10% FBS (Fetal Bovine Serum) at 37C
with 5% CO2, and have been routinely split 1:10 in culture dishes when at ∼80%
confluence. The cells have been incubated for 4 hours at 37 C with a GNSs
concentration of 25 µg/ml, which has been proven by previous viability tests to
be non-cytotoxic to cells up to 24 hours [216]. For the incubation process, no FBS
has been added; this allows avoiding protein-corona effects and the consequent
alteration of the GNSs hydrodynamic size.

6.1.2 Gold nanostars

GNSs have been synthesized by a laurylsulphobetaine (LSB)-driven seed-
mediated growth as described in [226, 227], with an LSB concentration [LSB]=0.35
M. They have a moderately negative surface charge, with ζ-potential ζ=(-27±6)
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200	  nm	  

Figure 6.1: Gold nanostars (I). Exemplary TEM image of star-shaped nanoparticles synthe-
sized with an LSB concentration [LSB]=0.35 M.
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Figure 6.2: Gold nanostars (II). (a): extinction spectrum of the GNSs shown in Fig. 6.1. (b):
two-photon luminescence spectrum of the GNSs shown in Fig. 6.1; the cut-off at 670 nm is
due to the presence of a dichroic filter in the optical path. Excitation wavelength λexc=800
nm, average excitation power P=2 mW.

mV [216]. As derived from Transmission Electron Microscopy (TEM) images (Fig.
6.1), the GNSs have average branch sizes of (53±12) nm and (9±2) nm, yielding a
transverse plasmon extinction band around 530 nm and a longitudinal plasmon
band centered at 850 nm (Fig. 6.2a). When subject to two-photon excitation in the
infrared peak, the GNSs exhibit a strong photo-luminescence signal as a conse-
quence of electron-hole recombinations near the X and L points of the Au Brillouin
zone: the resulting TPL emission spectrum is a broad band at visible wavelengths
(Fig. 6.2b).
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In order to quantify the extent of the nanoparticles aggregation in solution,
that could impact or even inhibit the GNSs cellular internalization, Raster Image
Correlation Spectroscopy (RICS) [52] measurements have been performed in the cell
culture medium according to the formalism described in Section 1.3.2. A diffusion
coefficient D=(2.1±0.2) µm2/s has been recovered (Fig. 6.3), corresponding to a
hydrodynamic radius r=(106±10) nm and to an average aggregation number of ∼ 3
units.
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Figure 6.3: Gold nanostars: RICS measurements in solution. (a): maximum intensity projection
of a 100-frame raster-scanned xyt-stack acquired by detecting the scattering signal of
GNSs freely diffusing in the cell culture medium (scale bar=1 µm, δx=0.025 µm, scan
frequency per line fline=700 Hz, pixel dwell time τp=1.4 µs). As described in Section 1.3.2,
GNSs are imaged as irregular streaks, so that the diffusion coefficient can be recovered
by the spatial correlation of the detected signal according to eq. (1.50). The correlation
function is computed separately for each frame of the stack; then the results are averaged
to ensure adequate statistics. (b): exemplifying RICS spatial correlation function G(ξ, η)
recovered from the xyt-stack reported as maximum projection in panel (a). Only a portion
(ξ, η ∈ [0, 10] pixels) of the correlation function is shown for the sake of display. (c):
G(ξ, η = 0) and G(ξ = 0, η) profiles extracted from the RICS correlation function averaged
over five 100-frame xyt-stacks. The global fit of the profiles to eq. (1.54) leads to a diffusion
coefficient D=(2.1±0.2) µm2/s; δx, τline, τp and the excitation laser beam waist ω0=0.2
µm have been treated as fixed parameters in the fit. I refer to Section 3.2 for the description
of the experimental setup, and to Subsection 6.2.1 for the justification of the extension of
the fluorescence formalism of eq. (1.54) to the detection of a light-scattering signal.

6.1.3 Confocal reflectance microscopy

For the TICS and STICS analysis described in this Chapter, as well as for the
analyses by Single Particle Tracking and by k-Space Image Correlation Spectroscopy
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reported in Chapters 7 and 8, data have been acquired in the form of temporal
sequences of raster-scanned xy-images by means of a Leica TCS SP5 confocal
microscope (Leica Microsystems, Wetzlar, Germany). I refer to Section 3.2 for the
description of the available laser lines, objectives and detection units of the set-up.
The GNSs scattering signal has been primed by the 488 nm line of the Argon ion
laser or by the 633 nm line of the He:Ne laser, with a typical power P=20 µW; the
signal has been collected in back-scattering geometry by the 40x plan-apochromat
oil immersion objective. The numerical aperture N.A.=1.3, corresponding to a
subtended semi-angle θ=60° (refractive index n=1.518), defines the range 120°−240°
for the signal-collection angles under the adopted back-scattering geometry. A
photomultiplier tube has been employed for the signal detection at 488 nm or 633
nm; no offset has been applied, a 8-bit dynamic range has been selected and the
PMT gain has been adjusted to avoid saturation in the pixels intensity.

As justified later in the text, the images have been acquired with a 400 Hz line
scan frequency continuously up to 500 frames, on fields of view 30-40 µm in side.
With a 1024x1024 resolution, this corresponds to an image acquisition time τf=2.5 s
and to a typical pixel size δx=0.03-0.04 µm. For the TICS analysis only, pixels have
been re-binned to a final size comparable to the microscope point-spread-function
(0.2 µm).

Raster-scanned scattered- and transmitted- light images have been acquired
simultaneously and the superposition of the first and last frames of both the xyt-
stacks has been exploited to exclude the loss of the z- focal plane positioning and
the occurrence of whole-cell displacements throughout the acquisition.

6.1.4 Two-photon excitation microscopy

Two-photon excitation microscopy has been employed for comparison with
the results of confocal reflectance microscopy. Photo-luminescence imaging has
been performed on a BX51-FV300 scanning microscope (Olympus, Japan) modified
for direct (non-descanned) detection of the signal and coupled to a femtosecond
Titanium:Sapphire laser (Mai Tai, Spectra Physics, USA; repetion rate 80 MHz,
pulse Full-Width-Half-Maximum 100 fs). The microscope is equipped with a water
immersion objective (N.A. = 1.1, 60x, working distance=1.5 mm; Olympus, Japan).
The two-photon luminescence of gold nanostars has been primed by excitation at
λ=800 nm, with power P=3 mW, and has been selected by a band-pass filter at 535
nm (HQ535/50, Chroma Inc., USA).
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6.1.5 Data analysis softwares and simulation codes

All the acquired images have been visualized, linearly contrast-adjusted for
display and exported in tif format using ImageJ (U.S. National Institutes of Health,
USA). TICS and STICS correlation functions (and the kICS correlation functions
in Chapter 8) have been computed by a custom-written Python code exploiting
Fast Fourier Transform (FFT) routines, whereas non-linear curve fitting has been
performed by the Origin Pro 8.6 software (OriginLab, Northampton, USA). The
zero-lag TICS and STICS correlation values have always been excluded from the
fitting procedure.

6.2 Reflectance imaging of gold nanostars

The detection of the Two-Photon Luminescence (TPL) of anisotropic noble-metal
nanoparticles, and the detection of their scattering signal, represent the two most
valuable options for the observation of plasmon-resonant nanostructures in living
cells. The benefits of two-photon excitation and TPL-based imaging are mani-
fold [162, 228–230]: (i) the TPL can be excited at near-infrared frequencies between
700 and 1000 nm, the window of greatest transmittivity through biological tissues;
(ii) two-photon excitation provides intrinsic optical sectioning and, by drastically
reducing the excitation in out-of-focus planes, it reduces the photo-toxicity for
the specimen; (iii) the power densities required for TPL imaging are orders of
magnitude below the damage threshold of biological tissues [162]. However, a
two-photon setup is not always available in most the laboratories, where a scanning
confocal microscope exploiting visible laser lines is usually present. This is the
major drawback of TPL-based imaging, and suggests the alternative of exploiting
the huge scattering cross-section of noble-metal NPs in the visible region of the
e.m. spectrum.
When considering excitation and detection at visible wavelengths, scattered light
also outperforms the detection of the (one-photon excited) fluorescence signal emit-
ted by nanoparticle-dye constructs: the labeling and functionalization of nanoparti-
cles with fluorescent dyes often lead to the uncontrolled release of dye molecules in
the cytoplasm or in the acidic environment of lysosomes and endosomes; moreover,
it may alter the NPs surface charge and aggregation state.
Provided these considerations, the detection of the nanoparticles back-scattered
radiation shares the dye-free approach of two-photon luminescence, without neces-
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sitating the instrumentation and pulsed laser sources required by the TPL excitation.
This motivates the adoption of confocal reflectance imaging [231] for the investiga-
tion of the GNSs intracellular dynamics.

At first, the possibility of discriminating the scattering signal of gold nanostars
from the background reflected signal of cellular structures has been verified. To
this aim, raster-scanned xy-images have been acquired by confocal reflectance
microscopy on GNSs-treated HeLa cells, upon 4 hours incubation at 37 C, and have
been compared with those acquired, under the same condition and acquisition
settings, on untreated cells. The comparison (Fig. 6.4a,b) reveals that GNSs are well
distinguishable over the background signal scattered by cellular organelles, and
are internalized (with what is often described in the literature as an endocytosis
process [201,232,233]) within vesicles comparable or larger than the microscope PSF.
The typical size of the vesicles, 260±35 nm, has been determined by the Gaussian
fits of the radial intensity profiles extracted from 20 separate objects.

a 

20 µm 

c 

b d 20 µm 20 µm 

Figure 6.4: Gold nanostars cellular uptake. (a): GNSs uptake in HeLa cells monitored by
detecting the GNSs scattering signal. λ=488 nm, P=20 µW; the image is a single frame of
an xyz-stack, that with the optical sectioning properties of confocal microscopy has been
exploited to verify that GNSs are within the cell instead of being located on the upper
membrane. (b): image acquired under the same imaging conditions and settings of panel
(a) on untreated HeLa cells. (c): GNSs uptake in HeLa cells monitored by detecting the
GNSs two-photon excited photo-luminescence; λexc=800 nm, P=3 mW. Panels (a) and (c)
evidence a similar intracellular distribution of gold nanostars and identify scattered light
as a powerful alternative to TPL for the GNSs imaging. (d): image acquired under the
same imaging conditions and settings of panel (c) on untreated HeLa cells.
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The results obtained by confocal reflectance imaging have also been compared
with those of two-photon excitation microscopy (Fig. 6.4a,c). The TPL signal,
primed by excitation within the near-infrared longitudinal plasmon band of the
GNSs, reveals a similar intracellular distribution for the nanoparticles, which
accumulate in ∼ 250 nm vesicles within the cell cytoplasm without penetrating the
nucleus.

6.2.1 Light scattering form factors

The detection of the GNSs scattering signal clearly allows the identification
of the nanoparticles over the low background produced by cellular structures.
Prior to employing reflected light to probe dynamic transport processes at the
sub-cellular level, it is necessary to verify which formalism - the one of Dynamic
Light Scattering (DLS) [234–236], or the one of Fluorescence and Image Correlation
Spectroscopy [1, 11, 12, 17, 42] - is better suited to describe the experimental data.
Specifically, the spatial and temporal variations exhibited by the GNSs scattering
signal within the acquired xyt-stacks may be ascribed to number and/or phase
fluctuations. Number fluctuations may be produced by the diffusive or directional
motion of GNSs-containing endocytotic vesicles in and out of the excitation volume,
and are at the basis of the fluorescence-correlation formalism I have extensively
treated in Chapter 1; by contrast, the presence of phase fluctuations, and the
consequent coherence effects, would largely affect the spatio-temporal correlation
functions and would hamper the convenient adoption of the FCS approach for the
analysis of confocal-reflectance-imaging data.

Recalling that GNSs are internalized within 200-300 nm vesicles and recalling
the hydrodynamic radius r=(106±10) nm of the employed nanostars, a density
of 2-3 nanoparticles/vesicle can be expected: hence, in the present case, phase
fluctuations may arise from the roughness and internal structure of the vesicles
from which the scattering signal being detected originates.
Light scattering form factors can be employed to quantify the extent of these phase
fluctuations [235]. I have therefore simulated the form factor P(θ) of a single sphere
300 nm in radius, and I have compared the result to the form factor P3(θ) of an ag-
gregate composed of three smaller spheres, each of them having a 100 nm radius to
resemble the hydrodynamic radius of a single GNS. In this notation, θ is the angle
defined by the scattered wave-vector ks with respect to the incident wave-vector ki;
the form factors P(θ) and P3(θ) have been simulated throughout the whole 0°−360°
θ range, covering therefore the collection angles (θ = 120° − 240°) of the employed
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microscope objective in back-scattering geometry. The reasonable, yet geometrically
simple and analytically treatable, configuration that I have assumed for the three
spheres is shown in Fig. 6.5a: the spheres are aligned along an arbitrary direction
subtending an angle α with the optical z-axis, and are separated by a distance |∆|.
As described in the following, the form factors for single and aggregate spheres
have been simulated at different values of both α and |∆|.

The scattering form factor of the three-sphere aggregate can be derived analyt-
ically by extending the derivation of the factor P(θ) of a single sphere of radius
R and volume V [235], which is given, under the assumption of elastic scattering
(|ki|=|ks|), by

P(θ) =

∫
drρ(r)eiq·r (6.1)

|q| = |q|(θ) = |ks − ki| = 4πn/λ sin (θ/2), where n is the refractive index of the
medium and λ is the incident-beam wavelength [234, 235]. ρ(r) is given by

ρ(r) =

{
0, if r > R
1, if r ≤ R

(6.2)

The computation of the integral in eq. (6.1) over the whole space is straightforward
in polar coordinates and leads to

P(θ) = V
3

(|q|R)3
[sin (|q|R) − (|q|R) cos (|q|R)]

= V
3(

4πn/λsin
θ

2
R
)3 [sin

(
4πn/λsin

θ

2
R
)
−
(
4πn/λsin

θ

2
R
)

cos
(
4πn/λsin

θ

2
R
)
]

(6.3)

Similarly, for the three-sphere aggregate described by the geometry of Fig. 6.5a
P3(θ) can be computed as

P3(θ) =

∫
drρ(r)eiq·r +

∫
drρ(r+ ∆)eiq·r +

∫
drρ(r− ∆)eiq·r (6.4)

Since ∫
drρ(r± ∆)eiq·r = P(θ)e∓iq·∆ (6.5)
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P3(θ) is given by

P3(θ) = P(θ)
[
1+ 2 cos (q · ∆)

]
= P(θ)

{
1+ 2 cos

[2πn|∆|
λ

(
cosα(cosθ− 1) + sinα sin θ

)]} (6.6)

with P(θ) provided by eq. (6.3).

As anticipated previously, eqs. (6.3) and (6.6) have been employed to simulate
P(θ) and P3(θ) under a geometry capable of mimicking GNSs enclosed in cellular
vesicles. Hence a radius R=300 nm has been adopted to simulate P(θ), whereas
a radius R=100 nm has been adopted for each of the three spheres described by
P3(θ); the distance |∆| has been varied between 200 and 600 nm, and four possible
orientations (α=0°, 30°, 90° and 150°) of the three-sphere aggregate in the xz-plane
have been evaluated. The results are reported in Fig. 6.5b,c and evidence that, for
θ ∈ [120° − 240°], the form factors P(θ) and P3(θ) almost coincide. This strongly
suggests that a three-GNSs aggregate practically behaves as a single larger particle,
and that the phase fluctuations associated to the enclosure of (possibly multiple)
GNSs within the cellular vesicles are negligible in the experimental conditions of
the present work.
The presence of phase fluctuations arising from fast sub-vesicle dynamics (i.e.,
arising from the motion of single GNSs within the vesicles) has been excluded as
well: as discussed later in the text, TICS and RICS measurements performed at high
temporal resolution (∼ 0.2 s/frame, 1 ms/line, 5 µs/pixel) on selected intra-cellular
regions do not reveal any decay in the temporal correlation function (in the case of
TICS) and lead to spatial correlation functions coinciding with the microscope PSF
(in the case of RICS).

In summary, the results of this Subsection demonstrate that, in the present
case, the scattering signal of gold nanostars can be treated, from the theoretical
and practical viewpoint, as if was fluorescence: apart from the substitution of the
product of the absorption cross-section and of the fluorescence quantum yield by
the scattering cross-section, the formalism of Fluorescence Correlation Spectroscopy
can be adopted for the description and analytical derivation of the temporal and/or
spatial correlation functions employed throughout Chapters 6-8.
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Figure 6.5: Light scattering form factors. (a): sketch of the geometrical configuration employed
to evaluate the scattering form factor P3(θ) for an object made up of three spheres of equal
radius R and separated by a distance |∆|. I call α the angle subtended by the vector ∆ with
the optical z-axis, while θ is the angle defining the direction of the scattered wave-vector ks
with respect to the incident wave-vector ki. For elastic light scattering, |ki|=|ks|=2πn/λ: in
the present case, n=1.518 and a wavelength λ=488 nm is assumed. In the lower panel, the
polar plot of the form factor P(θ) for a single sphere of increasing radius (R=10 nm-2 µm) is
reported for the sake of completeness. (b): the form factor P3(θ), simulated with R=100 nm
and |∆|=200 nm is reported for various possible orientations α of the three-sphere aggregate
in the xz-plane. The red dashed circle is magnified on the bottom to evidence that the form
factors for a single 100-nm sphere (added in light blue) and for a single 300-nm sphere
(yellow) practically coincide with the form factor of the aggregate. (c): form factor for a
three-sphere aggregate simulated with fixed R=100 nm, α=30° and variable distance |∆|
between the spheres. As in (b), the red circle is magnified to allow the comparison with the
form factors of single 100 nm (light blue) and 300 nm (yellow) spheres. In both (b) anc (c),
the grey shaded region in the polar plot corresponds to the light-collection angles defined
by the numerical aperture N.A.=1.3 of our microscope objective.

6.3 Temporal Image Correlation Spectroscopy

Within the broad ensemble of the Image Correlation Spectroscopy (ICS) tech-
niques, TICS (Temporal Image Correlation Spectroscopy) [46–48] is the first I adopt
to investigate the intra-cellular dynamics of GNSs-containing cellular vesicles.
While referring to Chapter 1 (Section 1.3.1) for the detailed treatment of the TICS
approach and theoretical framework, I just recall that the raw data for the TICS
analysis consist in an xyt- temporal stack of raster-scanned (confocal) images:
for each pixel position (x, y), the computation of the temporal Auto-Correlation
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Function (ACF) G(τ|x, y) and its fit to the proper decay model allow recovering
the dynamic and kinetic parameters underlying the temporal fluctuations of the
detected (fluorescence or scattering) signal.
Explicitly, I denote with I(x, y, t) the scattering intensity detected at pixel coor-
dinates (x, y) at time t, and with δI(x, y, t) the fluctuations of the same signal
with respect to its average computed over the whole pixel time trace: δI(x, y, t) =
I(x, y, t)− < I(x, y, t) >t. Notably, the subtraction of < I(x, y, t) >t acts as an im-
mobile population removal. The TICS auto-correlation function is then computed,
for each lag time τ, as

G(τ|x, y) =
< δI∗(x, y, t)δI(x, y, t+ τ) >t

< I(x, y, t) >2t
(6.7)

Clearly as in FCS the characteristic correlation time (i.e., the lag time at which the
correlation amplitude is one half of the maximum G(τ = 0) value) can only be
adequately sampled if it is much smaller than the total acquisition time T , and
much longer than the measurement temporal resolution ∆t.

At first, TICS measurements have been performed on GNSs-treated HeLa cells
at the highest temporal resolution allowed by the experimental setup. Recalling
that ∆t ≡ τf is defined by the inverse of the frame rate, the highest available scan
frequency per line (fline=1400 Hz) has been adopted and the frame format has
been reduced down to 32x32-128x128 pixels2, leading to a frame acquisition time
∆t=25-90 ms. The TICS correlation functions recovered with these acquisition
settings in sub-cellular Regions of Interest (ROIs) do not reveal any decay: fast
vesicle motions, as well as the aforementioned sub-cellular dynamics, on the second
time scale are therefore to be excluded. Further confirmation has been obtained
by the RICS analysis of the same xyt-stacks: the experimental spatial correlation
functions coincide with the diffraction-limited point-spread-function, not revealing
any dynamic process on the timescale sampled with the 714 µs line scan time and
the 6-22 µs pixel dwell time.
Subsequent TICS measurements have been performed therefore at lower temporal
resolution and higher acquisition time T : a line scan frequency fline=400 Hz and a
1024x1024 image format have been selected, leading to a frame time ∆t=2.5 s. T
has been increased to 20-30 minutes (500 frames), to accurately sample dynamic
processes on the tens-of-seconds timescale. Conveniently, each xyt-stack has been
acquired over one-two whole cells, on a typical field of view 30-40 µm in side:
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Figure 6.6: Representative confocal reflectance xy-image acquired
by detecting the scattering signal of GNSs upon cellular internal-
ization; the frame is one of 500 images acquired sequentially
for the TICS analysis with ∆t=2.5 s; scale bar=10 µm.

a representative frame acquired on a GNSs-treated HeLa cell is reported in Fig.
6.6. For the subsequent computation of the TICS ACFs, the xyt-stacks have been
re-binned to achieve a final pixel size comparable to the 200-nm spatial resolution
of the setup.
Exemplifying results of these TICS experiments are summarized for both treated

and untreated cells in Figs. 6.7 and 6.8 [237]. At first, for each pixel of the acquired
image stacks the temporal auto-correlation function G(τ|x, y) has been computed
according to eq. (6.7). In order to avoid the ACF computation in regions outside
the cell, in the cell nucleus and in the pixels containing the only contribution of
the glass coverslip background scattering, a threshold (a high-pass filter) Imin has
been applied to the time-averaged pixel intensities < I(x, y, t) >t: the ACF has
been computed exclusively in the pixels with an averaged intensity < I(x, y, t) >t
exceeding Imin. A fast visualization of the typical timescale of the transport
processes producing the scattering fluctuations has been obtained by storing and
color-coding, for each pixel, the lag-time where the corresponding ACF halves.
Large differences have been found between treated and untreated cells (Fig. 6.7a,b
and Fig. 6.8): long (∼ 20-50 s) decay-times occur in the cytoplasm around the cell
nucleus for GNSs-treated cells, whereas shorter times are systematically found for
untreated cells (where the correlation decay-time map is built from the fluctuations
affecting the background scattering of cellular structures and organelles). This
difference has been made quantitative in Fig. 6.7c by means of the comparison of
the decay-time histograms recovered on two treated and control cells.
Once identified the tens-of-seconds timescale of the GNSs dynamics, insight on
the specific mode of motion has been gained by inspecting the shape and decay of
individual auto-correlation functions over the whole lag-time range. In order to
allow the direct comparison with the ROI-based STICS analysis performed in the
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next Section, ACFs have been averaged over 2.2x2.2 µm2 ROIs (64x64 pixels2, in the
raw images) and have been fit to the analytical theoretical expressions predicted by
two possible transport models: two-dimensional Brownian diffusion in the focal
plane with diffusion coefficient D (eq. 6.8), and 2D Brownian diffusion coupled to
a drift velocity v = (vx,vy) (eq. 6.9) [11, 15, 26].

G(τ|x, y) =
1

< N >

1(
1+ τ

τD

) +G∞ (6.8)

G(τ|x, y) =
1

< N >

1(
1+ τ

τD

)exp{−( τ
τv

)2 1(
1+ τ

τD

)}+G∞ (6.9)

Following the definitions of Chapter 1, in eqs. (6.8) and (6.9) < N > is the
average number of scattering objects in the excitation volume, τD = ω20/(4D) and
τv = ω0/|v|; ω0 is the excitation beam waist. G∞ is an offset accounting for the
computation of the experimental correlation functions on a finite dataset: the finite
data integration time T (1200 s, to be compared with the ∼ 50 s typical correlation
decay time) make experimental ACFs turn negative at large lag-times and deviate
from the theoretical ACF defined in the limit T → +∞ [16, 225]. The fit to eqs. (6.8)
and (6.9) is shown in Fig. 6.7d for three experimental ACFs:

• the first (left panel) is a purely diffusive ACF that can be fit to eq. (6.8),
with best-fit parameter D=(2.64±0.06)x10−4 µm2/s. The typical 20-50 s decay
times of diffusive-like ACFs yield diffusion coefficients in the range (2-5)x10−4

µm2/s: these are 104 smaller than that of the same GNSs in solution, consis-
tently with the uptake of GNSs by large vesicles [218];

• the second ACF (central panel) is well fit by a diffusion+drift model (eq. 6.9),
with D=(2.21±0.04)x10−4 µm2/s and |v|=(3.6±0.1)x10−3 µm/s. Typical drift
speed values 10−2 − 10−3 µm/s are found, comparable to those reported in a
variety of studies of internalization of anticancer drugs [238], lipoplexes [239],
polyplexes [240] and lipid/DNA nanoparticles [241];

• a third kind of ACF time behavior (right panel) cannot be fitted by either of the
previous models. Even a fractional α-exponent in the temporal dependence of
the diffusive ACF decay, which is usually introduced to account for anomalous
sub-diffusion [223] and which will be treated in more detail in Section 6.5,
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Figure 6.7: GNSs intracellular dynamics investigated by Temporal Image Correlation Spectroscopy.
(a),(b): whole-cell maps of the TICS correlation half-height decay time obtained in GNSs-
treated (a) and untreated (b) HeLa cells; the decay times are color-coded in seconds. The
same intensity threshold of 100 a.u. (inserted to avoid the ACF computation in pixels
outside the cell, in the cell nucleus and in the pixels containing the only contribution of
background scattering in focal planes close to the glass coverslip) has been applied for
the analysis of both the xyt-stacks in (a) and (b). Scale bars=10 µm. (c): histogram of the
correlation half-height decay times recovered from the TICS maps of panels (a) and (b) (blue
and pink, respectively). Each histogram has been normalized to the corresponding total
number of counts (thereby excluding the pixels with a time-averaged intensity lower than
the applied threshold, shown in white in a and b). (d): exemplifying ACFs recovered on
separate 2.2µmx2.2µm ROIs on the xyt-stack analysed in panel (a). Curve 1, fit to eq. (6.8)
with D=(2.64±0.06)x10−4 µm2/s; curve 2, fit to eq. (6.9) with D=(2.21±0.04)x10−4 µm2/s
and |v|=(3.6±0.1)x10−3 µm/s. For curve 3 the best-fit to eq. (6.9) is shown, evidencing that
the ACF can not be satisfactorily fit by either a diffusion+drift or a purely diffusive model.
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does not lead to a satisfactory fit of the data. The more refined analysis
performed by spatio-temporal correlation and shown in the next Section is
therefore required.
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Figure 6.8: GNSs intracellular dynamics investigated by Temporal Image Correlation Spectroscopy.
(a)-(d): whole-cell maps of the TICS correlation half-height decay time obtained in GNSs-
treated HeLa cells (a and b) and in untreated HeLa cells (c and d); the same color-code (in
seconds) is adopted for all the panels. In order to avoid the ACF computation in pixels
containing the only contribution of background scattering, a 100 a.u. threshold has been
applied to the time-averaged pixel intensities < I(x, y, t) >t, as in Fig. 6.7. Image side=60
µm in (a), 62 µm in (b), 57 µm in (c) and 50 µm in (d).
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6.4 Spatio-Temporal Image Correlation Spectroscopy

The xyt-stacks examined by TICS in Section 6.3 can also be analyzed by means
of the spatio-temporal correlation (STICS) formalism [48] described in Chapter
1, Section 1.3.3. The 1024x1024 images of the selected cells have been divided in
64x64 ROIs, and the STICS Spatio-Temporal Correlation Function (STCF) has been
computed in each one according to

G(ξ, η, τ) =

〈
< δi∗(x, y, t)δi(x+ ξ, y+ η, t+ τ) >xy
< i(x, y, t) >xy< i(x, y, t+ τ) >xy

〉
t

(6.10)

where 
i(x, y, t) = I(x, y, t)− < I(x, y, t) >t + < I(x, y, t) >xyt

δi(x, y, t) = i(x, y, t)− < i(x, y, t) >xy

(6.11)

For each pixel location (x, y) at a given time point t, i(x, y, t) defines a corrected
(immobile population filtered) pixel intensity, obtained by subtracting to the de-
tected scattering signal I(x, y, t) the average intensity of the pixel time trace, and by
subsequently adding the average intensity of the entire xyt-stack (see Section 1.3.2).
For each ROI, the compatibility of the computed STCF with the two simple trans-
port models (pure diffusion and diffusion+drift) previously considered for TICS
has been tested: by recalling the explicit expression

G(ξ, η, τ) ∝
[
1+

4D(ξτp + ητl +ψτf)

ω20

]−1
·

·exp
{
−
1

ω20

[ξδx− vx(ξτp + ητl +ψτf)]2

1+
4D(ξτp + ητl +ψτf)

ω20

}
·exp
{
−
1

ω20

[ηδx− vy(ξτp + ητl +ψτf)]2

1+
4D(ξτp + ητl +ψτf)

ω20

}
(6.12)

derived in Chapter 1 for the STCF, the presence of a non-zero drift velocity can
be identified by inspecting the dependence, on the lag time τ, of the coordinates
(ξ, η)max of the peak of the correlation function. Under the experimentally-satisfied
condition τ = ξτp+ητl+ψτf ≈ ψτf, for each τ value the STCF can be regarded as a
2D Gaussian in the lag variables ξ and η: the peak value is located at (ξ, η)maxδx =
(0, 0) ∀τ if vx,vy = 0, whereas it shifts at (ξ, η)maxδx = (vxτ,vyτ) when |v| 6= 0 [48].
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Again, as in TICS, different behaviors have been found in the peak coordinates of
the experimental STCFs. This is exemplified in Fig. 6.9 for the same cell shown in
Fig. 6.6 and analyzed by TICS in Fig. 6.7. For the very same three ROIs discussed by
TICS, STCFs are reported at three different time delays and the ξ and η coordinates
of the STCF peak (ξ, η)max are plotted versus the lag time τ:

• for ROI 1 (panels b-e) the peak of the STCF remains located at the origin of
the axes becoming broader at later times, as expected for the diffusive case;

• for ROI 2 (panels f-i) the STCF peak coordinates vary linearly with the time
delay, in agreement with a 2D diffusion+ drift model, and allow to recover
the x- and y- components of the drift velocity: vx=(1.20±0.02)x10−3 µm/s
and vy=(1.96±0.03)x10−3 µm/s;

• for ROI 3, the peak of the STCF broadens in an asymmetric fashion for
increasing lag time values and its position varies non linearly with the lag
time τ.

From the temporal displacement of the STCFs peak in all the ROIs, the GNSs
dynamics has been mapped across the whole cell: in Fig. 6.9a, circles denote the
regions of diffusive motion, arrows define the ROIs where a non-zero drift speed
has been recovered (arrows are color-coded for the modulus |v| and oriented ac-
cording to the drift direction) and squares are employed to identify the ROIs where
an anomalous behavior of the STCF has been found. Note that in the upper left
quadrant of the cell, a finer grid has been adopted - by a 32-pixels shift along x and
y of the 64x64 ROIs - to map the dynamic processes with more details [242]. The
map highlights that: (i) the direction of the arrows representing the recovered drift
velocities indicates that there is not a preferential flux, suggesting that although
described by a drift model, the motion of the GNSs collected in large vesicles can be
related to transport events in the cytoplasm or along the randomly-oriented F-actin
filaments; (ii) a large fraction (40%) of the ROIs show the anomalous behavior; (iii):
values of the same order of magnitude have been recovered by TICS and STICS for
|v|: the ∼ 10−2-10−3 µm/s |v| values, with the diffusion coefficients ∼ 10−4 µm2/s,
are very low, suggesting that the observed vesicles mainly move in the focal plane
during the whole data acquisition time; the validity of this 2D approximation will
be considered and proven at the end of the kICS analysis.

To exclude the presence of artifacts in the STCF peak sampling and in the
measurement of low speeds and diffusion coefficients, the microscope stage drift
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Figure 6.9: STICS analysis of the GNSs intracellular dynamics (I) [237]. (a): whole-cell STICS
map classifying the scattering vesicles dynamics in each ROI as purely diffusive (circles),
diffusive with a drift component (arrows, defining the velocity direction and color-coded
according to the speed |v|) and anomalous (squares); the classification is based on the
(ξ, η)max-vs-τ plot as described in the text. 200 frames of the raw xyt-stack have been
employed for the computation of the STCFs. Scale bar=10 µm. (b)-(d): contour plots of the
STICS correlation function G(ξ, η, τ) at fixed lag times (τ=0 in b, 25 s in c and 35 s in d)
for the ROI identified as 1 in panel (a); the calibration bars color-code for the correlation
amplitude. (e): (ξ, η)max-vs-τ plot for ROI 1 in panel a. (f)-(h), (j)-(l): contour plots of the
STICS correlation function G(ξ, η, τ) at fixed lag times (τ=0 s in f and j, 50 s in g and k, 75
s in h and l) for ROIs 2 (panels f-h) and 3 (panels j-l). (i),(m): (ξ, η)max-vs-τ plot for ROIs 2
(i) and 3 (m). For ROI 2, the (ξ, η)max coordinates allow to recover vx=(1.20±0.02)x10−3

µm/s and vy=(1.96±0.03)x10−3 µm/s as best-fit parameters. For panels (e), (i) and (m),
the experimental uncertainty on the STCF peak coordinates is equal to half the pixel size.
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over an integration time T=20 minutes has been evaluated by STICS analyses on
immobile 0.1 µm fluorescent spheres: no displacement (less than a pixel) has been
detected in the STCF peak under the same imaging conditions adopted for the
investigation of the GNSs dynamics. Finally, the results presented in Fig. 6.9 do
not depend critically on the specific examined cell (Fig. 6.10), on the total data
acquisition time T (Fig. 6.11a) and on the size of the ROI on which STICS is
performed: anomalous peak displacements have been recovered by both reducing
the ROI side to 32 pixels and increasing it to 128 pixels (Fig. 6.11b,c) .

Figure 6.10: STICS analysis of the GNSs intra-
cellular dynamics (II). The STICS analysis is
reported for two more GNSs-treated HeLa
cells to show the generality of the results of
Fig. 6.9. The same code for circles, squares
and arrows of Fig. 6.9 is adopted. fline=400
Hz, τf=2.5 s, ROI size=64x64 pixels2, scale
bar=10 µm.
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Figure 6.11: STICS analysis of the GNSs intracellular dynamics (III). (a): (ξ, η)max-vs-τ plot
recovered on the same cell analyzed in Fig. 6.9, on a 64x64 pixels2 ROI, by exploiting all
the 500-frames of the temporal stack (note that only 200 frames have been employed for
the computation of the STCFs shown in Fig. 6.9). (b), (c): (ξ, η)max-vs-τ plot recovered on
the same cell analyzed in Fig. 6.9 (200 frames exploited) on a exemplifying 32x32 ROI (in
b) and on a 128x128 ROI (in c). The anomalous non-linear peak displacement is retrieved
irrespectively of the ROI size and of the data integration time.

The TICS and STICS analyses reveal that neither simple Brownian diffusion,
nor the coupling of free diffusion with a drift velocity vector, are sufficient to com-
pletely describe the complex sub-cellular dynamics of endocytotic GNSs-containing
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scattering vesicles. In particular STICS suggests an enhancement of Brownian
diffusion. In fact, the peak coordinates of the STCF do not remain located at the
origin of the Cartesian axes for all τ values - thereby excluding free diffusion - but
typically exhibit a non-linear dependence on the lag time - equally excluding a
diffusion+drift model. Therefore, a so-called super-diffusive, sub-ballistic behavior
is evidenced.

Diffusion within complex media, like a living cell, may be hindered or enhanced
by molecular crowding, transient binding events, interaction with obstacles and
meshwork-like domains: in these cases, the mobility of molecules and tracer
particles is classified as ’anomalous’, and it cannot be described by the usual
diffusion coefficient and drift speed derived from the Fick’s equation any more.
Since hindered and enhanced diffusion are observed in a variety of experimental
systems, theoretical models capturing anomalous dynamics represent a topic
of general interest and of ongoing research developments [243, 244]. Aiming
at explaining the physical origin of the anomalous diffusion observed in the
GNSs experimental data, I review in the nest Section different possible models
of enhanced diffusion, especially evaluating their applicability to the formalism
of Correlation Spectroscopy and to the derivation of the analytical expression of
spatial and/or temporal correlation functions.

6.5 Theoretical models of enhanced diffusion

The physical properties of diffusive motion are conveniently characterized by
a probability density function P(x, t), defining the probability P(x, t)dx of finding
the particle between x and x+ dx at time t provided it was at the origin x = 0 at
time t = 0 [223, 245]. The probability density function, also called the propagator,
solves the Fick’s equation I have already introduced in Chapter 1:

∂P(x, t)

∂t
= D∇2P(x, t) (6.13)

where D is the diffusion coefficient satisfying the Stokes-Einstein’s equation (D =
KT/(6πηR); T is the temperature, K is the Boltzmann’s constant, η is the medium
viscosity and R is the particle hydrodynamic radius). For simple Brownian motion
in d-dimensions, the solution of eq. (6.13) is a Gaussian distribution [245–247]:

P(x, t) =
1

(4πDt)d/2
exp

(
−

|x|2

4Dt

)
(6.14)
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Hence a Brownian trajectory consists in a sequence of N successive particle dis-
placements, with every displacement along each dimension distributed normally
(according to eq. 6.14) with zero mean and a variance σ2 that depends on the
diffusion coefficient as σ2 = 2Dt [247,248]. The particle Mean-Square-Displacement
(MSD), computed as

MSD(t) =

∫+∞
−∞ |x|2P(x, t)dx (6.15)

takes - for isotropic diffusion - the form

MSD(t) = 2dDt (6.16)

The footmark of Brownian diffusion is therefore a mean-square-displacement
growing linearly with time [245, 249–255]. Experimental deviations from this
linear behavior have been reported in many systems (including, just to name
a few, amorphous semiconductors, turbulent fluids, cells and actin networks
[220, 246, 256, 257]), where the MSD exhibits a power-law scaling with time:

MSD(t) = Dαt
α (6.17)

The exponent α determines whether the mobility is called anomalous sub-diffusion
(0<α<1) or anomalous super-diffusion (α>1). Dα has now dimensions of length-
squared per fractional time: hence the standard diffusion coefficient defined by
the Fick’s law (eq. 6.13) cannot reproduce the non-linear τ-dependence of the
MSD [223]. This has motivated the development of various models that, start-
ing from specific assumptions about the physical basis of anomalous mobility or
starting from considerations of mathematical convenience, try to achieve a compre-
hensive description of complex diffusive dynamics. In Fluorescence Correlation
Spectroscopy, a time-dependent diffusion coefficient is usually assumed.

6.5.1 Time-dependent diffusion coefficients

The most widely used model for anomalous diffusion in FCS takes advantage
of an approximate, mathematically simple approach: a time-dependent diffusion
coefficient D(t) is introduced in a generalized Fick’s equation of the type

∂P(x, t)

∂t
= D(t)∇2P(x, t) (6.18)
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Two possible definitions for D(t) have been adopted [223]:
D(t) =

1

2d

MSD(t)

t
=
1

2d
Dαt

α−1 (i)

D(t) =
1

2d

∂MSD(t)

∂t
=
α

2d
Dαt

α−1 (ii)

(6.19)

Differently from definition (i), when substituted into eq. (6.18) eq. (6.19ii) has
the advantage of allowing a simple derivation of an anomalous propagator that
rigorously solves the diffusion equation and simultaneously captures the correct
power-law scaling of the MSD [223]:

P(x, t) =
1

(2πDαtα/d)d/2
exp

(
−

|x|2

2Dαtα/d

)
(6.20)

The propagator of eq. (6.20) has been employed already for the derivation of the FCS
temporal auto-correlation function G(τ). For [-photon excitation, by introducing
the beam waists ratio ζ = ω0/ω0z and the diffusion time τD, G(τ) is given [221,223]
by 

G(τ) ∝ 1

1+
( τ
τD

)α 1[
1+ ζ2

( τ
τD

)α](d−2)/2
τD =

( ω20
4[Dα/2d

)1/α (6.21)

Even though the propagator (6.20) is simpler than others proposed to model sub-
diffusion in the context of time-fractional diffusion equations [246] (see Subsection
6.5.2), the corresponding correlation functions have at least two disadvantages
for the purpose of this work. First, the fit to eq. (6.21) of the experimental
TICS ACFs (like the one shown in Fig. 6.7d) does not always lead to satisfactory
results. Second, the non-linear displacement of the peak coordinates of the STICS
correlation function reported in Section 6.4 cannot be retrieved starting from a
time-dependent diffusion coefficient. In fact, I derived the explicit expression of
the STICS STCF starting from the anomalous propagator of eq. (6.20), revealing
that the α-exponent does not appear in the numerator of the quasi-Gaussian terms:

G(ξ, η, τ) ∝
[
1+

Dα(ξτp + ητl +ψτf)
α

ω20

]−1
·
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·exp
{
−
1

ω20

[ξδx− vx(ξτp + ητl +ψτf)]
2(

1+
Dα(ξτp + ητl +ψτf)

α

ω20

)
}
·exp
{
−
1

ω20

[ηδx− vy(ξτp + ητl +ψτf)]
2(

1+
Dα(ξτp + ητl +ψτf)

α

ω20

)
}

(6.22)
Modelled with eq. (6.20), anomalous diffusion impacts the width of the spatio-
temporal correlation function rather than the peak position, showing the incom-
patibility of the GNSs experimental data with a simple model based on the time
dependence of the diffusion coefficient. This also suggests that eq. (6.20) is suited
to describe sub-diffusion more than super-diffusive processes.

Equally difficult is the application of the alternative model that has been pro-
posed [258] recently in the framework of Fluorescence Correlation Spectroscopy
starting from the non-linear Fokker-Planck equation. The Einstein’s mean field
equation for the random walk has been generalized by allowing the particles con-
centration to impact the probability for the jump from one site to another: even
though sub-diffusion and super-diffusion have been tackled (with a rather cumber-
some formalism), only an integral, non-analytical expression has been provided for
the temporal FCS auto-correlation function in both the cases.

Aiming at deriving analytically the TICS and STICS correlation functions to
quantify the dynamic parameters underlying the nanostars dynamics, I explored
the possibility of extending to FCS and ICS the enhanced-diffusion models provided
by statistical mechanics.

6.5.2 Lévy flights

The first model I consider is the one of Lévy flights. I introduce their general
formalism by recalling the previously defined probability density function P(x, t),
denoting the probability P(x, t)dx of finding the particle between x and x+ dx at
time t provided it was at the origin x = 0 at time t = 0. P(x, t) can be fully specified
by introducing a jump length distribution λ(|x|) and a waiting time distribution
ψ(t): each jump of the random walk has jump length x drawn from the distribution
λ, and the time interval between two consecutive jumps is distributed according to
ψ. In the absence of external bias, the theory of Continuous Time Random Walk
(CTRW) relates λ and ψ to the Fourier-Laplace transform P(k, u) of P(x, t) [246,255]:

P(k, u) =
1−ψ(u)

u

1

1− λ(|k|)ψ(u)
(6.23)



154 Gold Nanostars Intracellular Dynamics: Results in r-Space

Three cases can be distinguished:

• ψ(t) = δ(t− τ) and λ(|x|) is Gaussian with variance σ2: the Gaussian proba-
bility density function of eq. (6.14) is found, with the corresponding linear
time-dependence of the mean square displacement. This is therefore the case
of regular Brownian motion;

• λ(|x|) is Gaussian, while ψ(t) is a so-called Lévy stable density 1 with index
0<α<1: ψ(t) ∼ t−1−α. In this case the characteristic waiting time

∫+∞
0 tψ(t)dt

diverges, while P(k, t) is of the type

P(k, t) =

+∞∑
0

(−Dα|k|
2tα)n

Γ(1+ αn)
(6.24)

with Γ being the Mittag-Leffler function. P(k, t) turns from an initial stretched-
exponential behavior to a power-law behavior, and satisfies in x,t space the
time-fractional diffusion equation

∂P(x, t)

∂t
= Dα∆

1−α
t ∇2P(x, t) (6.25)

where ∆1−αt is the fractional Riemann-Liouville operator defined as

∆1−αt P(x, t) =
1

Γ(α)

∂

∂t

∫ t
0

P(x, t ′)

(t− t ′)1−αdt ′
(6.26)

The diffusing particle can get stuck at a certain position for very long times,
resulting in an MSD exhibiting power-law sub-diffusive time dependence
[246];

• ψ(t) = δ(t− τ) and λ(|x|) is a Lévy stable density with index 0<µ<2: λ(|x|) ∼
|x|−1−µ. This is the case of super-diffusive Lévy flights [246, 255, 259, 260],
described in more detail in the following.

1Lévy stable laws are introduced by the generalized central limit theorem: it states that the sum
of independent identically distributed random variables with infinite variance converges to a Lévy
limit distribution. Lévy stable laws exhibit a power-law asymptotic p(x) ∼ |x|−1−µ. The sum of
independent identically distributed random variables with finite variance converges instead to a
Gaussian distribution, recovered from the Lévy case with µ=2.
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Provided the jump length and waiting time distributions λ(|x|) ∼ |x|−1−µ and
ψ(t) = δ(t − τ), the probability density function P(x, t) can be obtained from eq.
(6.23) as a Lévy stable law with Fourier transform

P(k, t) = exp
{
−D(µ)|k|µt

}
(6.27)

I remark that in this case D(µ) has dimensions of spaceµ/time. Back-transformed
into position space, P(k, t) yields an analytical solution in terms of the Fox H-
function, expanded in series as

P(x, t) =
1

µ(D(µ)t)1/µ

∞∑
ν=0

Γ([1+ ν]/µ)

Γ([1+ ν]/2)Γ(1− [1+ ν]/2)
· (−1)

ν

ν!

( |x|

(D(µ)t)1/µ

)ν
(6.28)

P(x, t) is plotted for µ=1 at selected time points in Fig. 6.12, where it is compared
with the Gaussian probability density function recovered in the limiting case µ=2.
Contrasting with the time-fractional diffusion equation valid for sub-diffusion (eq.
6.25), P(x, t) satisfies a space-fractional diffusion equation:

∂P(x, t)

∂t
= D(µ) ∂

µ

∂|x|µ
P(x, t) (6.29)

where the fractional Riesz-Weyl operator is defined by the Fourier transform
F{∂µ/∂|x|µP(x, t)} = −|k|µP(k, t) [246, 255].
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The FFPE (23) can also be derived from the Langevin
equation [22,36,37,50]

dx(t)
dt

D ! 1
m!

dV(x)
dx

C "!(t) ; (26)

driven by white Lévy stable noise "!(t), defined through
L(#t) D

R tC"t
t "!

!
t0

"
dt0 being a symmetric Lévy sta-

ble density of index $ with characteristic function
p(k; #t) D exp

!
!K(!)jkj!#t

"
for 0 < $ " 2. As with

standard Langevin equations, K(!) denotes the noise
strength,m is themass of the diffusing (test) particle, and !

is the friction constant characterizing the dissipative inter-
action with the bath of surrounding particles.

A subtle point about the FFPE (23) is that it does not
uniquely define the underlying trajectory [105]; however,
starting from our definition of the process in terms of
the stable jump length distribution %(x) # jxj!1!!, or its
generalized pendant &(x; x0), the FFPE (23) truly repre-
sents a Lévy flight in the presence of the force F(x). The
strongly non-local character of Lévy flights poses certain
difficulties when non-trivial boundary conditions are in-
volved, as shown below.

Propagator and Symmetries

In absence of an external force, F(x) D 0, the exact so-
lution of the FFPE is readily obtained as the Lévy sta-
ble density P(k; t) D exp

!
!K(!)jkj!t

"
in Fourier space.

Back-transformed to position space, an analytical solution
is given in terms of the Fox H-function [50,78,120]

P(x; t) D 1
$jxjH

1;1
2;2

"
jxj

!
K(!) t

"1/!

ˇ̌
ˇ̌ (1; 1/$); (1; 1/2)
(1; 1); (1; 1/2)

#
;

(27)

from which the series expansion

P(x; t)

D 1
$(K(!) t)1/!

1X

#D0

'([1 C (]/$)
'([1 C (]/2)'(1 ! [1 C (]/2)

$ (!1)#

(!

# jxj
(K(!)t)1/!

$#

(28)

derives. For $ D 1, the propagator reduces to the Cauchy
Lévy stable density

P(x; t) D 1
)

!
K(1)t C x2/[K(1)t]

" : (29)

We plot the time evolution of P(x; t) for the Cauchy case
$ D 1 in Fig. 4 in comparison to the limiting Gaussian
case $ D 2.

Levy Statistics and Anomalous Transport: Levy Flights and Sub-
diffusion, Figure 4
Cauchy distribution (! D 1) for two times in comparison to the
Gaussian (! D 2). We chose K (1) D K D 1. Note that the Cauchy
distribution is narrower at the origin, and after crossing the
Gaussian falls off in the much slower power-law fashion

Due to the point symmetry of the FFPE (23) for
F(x) D 0, the propagator P(x; t) is invariant under change
of sign, and it is monomodal, that is, it has its global max-
imum at x D 0, the point where the initial distribution
P(x; 0) D ı(x) was launched at t D 0. Interestingly, the
latter property is lost in the case of strongly confined Lévy
flights discussed below. Due to their Markovian character,
Lévy flights also possess a Galilei invariance [73,78]. Thus,
under the influence of a constant force field F(x) D F0,
the solution of the FFPE can be expressed in terms of
the force-free solution by introducing the wave variable
x ! F0t, to obtain

PF0 (x; t) D P0
#
x ! F0t

m!
; t

$
: (30)

This result follows from the FFPE (23), that in Fourier do-
main becomes [50]

@

@t
P(k; t) D

#
!ik

F0
m!

! K(!)jkj!
$
P(k; t) ; (31)

with solution

P(k; t) D exp
#

!
%
ik

F0
m!

C K(!)jkj!
&
t
$

: (32)

By the translation theorem of the Fourier transform,
Eq. (30) results. We show an example of the drift super-
imposed on the dispersional spreading of the propagator
in Fig. 5.

Presence of External Potentials

Harmonic Potential In an harmonic potential V(x) D
1
2%x2, an exact form for the characteristic function can

Figure 6.12: Lévy flights propagator [246]. The probability density function of eq. (6.28) with
µ=1 (i.e., the Chauchy-Lévy stable density) is plotted in the one-dimensional case versus
x at two time points; the Lévy propagator is compared with the Gaussian distribution
recovered from eq. (6.28) with µ=2. The propagator peaks at x=0 due to the initial condition
P(x, 0)=δ(x) at t=0; D=D(1)=1 has been assumed for the simulation.
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In the course of a random walk governed by the long-tailed jump length dis-
tribution λ(|x|) ∼ |x|−1−µ, steps of all sizes may occur and a trajectory of fractal
dimension µ is obtained. As I show in Fig. 6.13a-c, Lévy-flights trajectories exhibit
local explorations as well as long excursions, so that clusters of small steps are
separated by a single much longer jump [246, 255, 259, 261]. When compared to a
typical Brownian trajectory (Fig. 6.13d) with the same number of steps, Lévy flights
clearly reveal their super-diffusive nature. These properties of the Lévy flights have
been shown to represent a better search strategy with respect to Brownian diffusion,
so that animals like albatross, monkeys, jackals and plankton have been claimed to
behave in a Lévy fashion when looking for food [246, 262]. Lévy flights have also
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Figure 6.13: Lévy flights. Comparison of the trajectories of Lévy processes with index µ=1.3
(a), 1.5 (b) and 1.8 (c). In (d) a simulated Brownian trajectory (i.e., a Lévy flight with index
µ=2) is reported for comparison. 5000 steps have been drawn for all the trajectories; the
scale bar represents 200 pixels in all the panels.



6.5 Theoretical models of enhanced diffusion 157

been found in a multitude of systems ranging from turbulent plasmas [263] and
earthquakes [264] to human travels [265], the evolution of the stock market [266]
and the diffusion of banknotes [267].

With proper values of the Lévy index µ, trajectories closely resembling the
one reported in the next Chapter for GNSs diffusing in the cell cytoplasm can be
reproduced. Moreover, when a STICS analysis is performed, the super-diffusive
behaviour exhibited by trajectories simulated according to the formalism of Lévy
flights leads to an anomalous non-linear peak displacement in the spatio-correlation
correlation function. As described in the next subsection, this strongly supports
the compatibility of the Lévy-flights model with the experimental data of Figs. 6.9
and 6.11.

Lévy flights: numerical simulations and STICS analysis

Confocal laser scanning microscopy images of ideal, non-interacting particles
diffusing in a Lévy-flight fashion have been simulated by a custom-written Python
code to test whether the resulting super-diffusive behavior is compatible with
the non-linear displacement of the STICS correlation peak. For the simulation of
individual trajectories, randomly generated initial x- and y-coordinates are assigned
to each particle; then, at each time step, two pseudo-random numbers are extracted
to assign the particle direction and the jump length: the angle is drawn from a
uniform distribution in the interval [0, 2π], while the jump length is extracted from
the Lévy stable distribution λ(|x|) ∼ |x|−1−µ with the chosen value for µ. Particle
positions are subsequently converted to pixel-unit coordinates and convolved with
a 2D Gaussian function with given e−2 radius, to simulate the excitation of equally
bright point emitters by a focused TEM00 laser beam. The image matrix obtained
at each time point is normalized, and each pixel value is rounded to the closest
integer; than the same STICS Python code and procedure adopted for the analysis
of the experimental data of Fig. 6.9 are employed to inspect the peak-coordinates
plot.
An exemplary result is shown in Fig. 6.14, for a Lévy trajectory simulated with index
µ=1.3: the recovered (ξ, η)max-vs-τ plot is non-linear, resembling the typical STICS
results obtained when analyzing the intracellular dynamics of GNSs-containing
vesicles. Similar non-linear trends have been recovered for various values of
the power-law exponent µ, suggesting that a Lévy dynamics may underly the
experimentally observed super-diffusion.
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Figure 6.14: Lévy flights: STICS analysis.
Peak coordinates ξmax and ηmax (filled
and open symbols, in pixel units) versus the
lag time (in frame units) provided by the
STICS analysis of a simulated Lévy flight
with µ=1.3; the same trajectory is reported
as inset.

The results of Fig. 6.14 confirm the previously hypothesized sub-ballistic but
super-diffusive nature of the vesicles dynamics within the cytoplasm of HeLa cells.
However, the mathematics of Lévy flights hampers the exploitation of the model
for the description of experimental data and for the quantification of physically-
relevant transport parameters starting from the same data. First, the variance of
the Lévy jump-length distribution is infinite: hence, the mean square displacement
cannot be formally defined, and it cannot be exploited for the analysis of Single
Particle Tracking data like those presented in Chapter 7. Second, the Fourier
transform P(k, t) of eq. (6.27) contains a µ exponent for the k vector. Recalling the
derivation of the STICS correlation function I reported in Chapter 1 (eqs. 1.56-1.68),
integration over the Fourier-space vector k must be performed for the STCF to be
explicitly derived: µ can be fractional, and the integral containing -in addition to
other terms- exp(−D(µ)|k|µt) cannot be computed analytically. Third, the index
µ does not give particular insight into the physical basis of the observed super-
diffusive dynamics: it does not coincide with the exponent α derived from an
experimentally-computed MSD (eq. 6.17) and it can only provide an estimate of
the extent of the deviation of the observed dynamics from a purely Brownian one.
Summarizing, despite the solid mathematical foundations of Lévy flights in the
generalized central limit theorem and despite their broad affinity with a number
of biological and non-biological systems, Lévy flights tend to discourage practical
applications [268, 269].

I finally mention that the long-standing complication of the diverging variance
has been tackled by two variants of Lévy flights, known as Lévy walks [246, 255,
259, 269] and Truncated Lévy Flights (TLF) [270]. In truncated Lévy flights, the
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arbitrarily long steps are eliminated by introducing a cut-off length for the extraction
of jumps from the long-tailed power law distribution λ. In Lévy walks, instead of
the decoupled jump length and waiting time distributions used in the continuous-
time-random-walk description of Lévy flights, a coupling is introduced between
λ(|x|) and ψ(t). By coupling space and time into, for example, a distribution
ψ(x, t) ∼ λ(x)δ(|x| − vt), steps of arbitrary lengths are allowed, but long steps
are penalized by requiring longer time to be performed; v represents therefore a
velocity [246, 255, 259]. Even though both TLFs and Lévy walks solve the second
moment divergence, they do not help in simplifying the derivation of spatial and/or
temporal correlation functions.

6.5.3 Intermittent active transport

Difficulties in the derivation of ICS correlation functions are also found when
attempting to exploit the formalism of the Generalized Langevin Equation (GLE).
The GLE for a particle of mass m, subject to a random force F(t), reads

mx ′′(t) +

∫ t
0

γ(t− t ′)x ′(t ′)dt ′ = F(t) (6.30)

where γ(t) is a dissipative term. Under specific assumptions for γ(t) and F(t),
eq. (6.30) has been employed to model the mean-square-displacement of intra-
cellular super-diffusion: specifically, an experimentally-observed crossover from
a sub-diffusive regime to a super-diffusive regime (with t3/2-dependence for the
MSD) has been modeled by the GLE [220]. To this aim, the random force F(t)
has been regarded as the sum of two uncorrelated contributions: (i) an internal
noise due to thermal activity that, once related to the dissipative term γ(t), allows
accounting for the viscoelastic properties of the cell cytoplasm and for the resulting
hindered diffusion; (ii) an external random force, responsible for the enhancement
of diffusion. Two power laws have been assumed for the autocorrelation functions
of both the force contributions, so that, by proper adjustment of the power-law
exponents, the aforementioned transition between sub- and super- diffusion can be
retrieved [220]. Interestingly, a quantitative interpretation of the physics underlying
the observed transport processes has been achieved by linking the parameters
identifying the forces correlation functions to a macroscopic effective diffusion
coefficient; moreover, a physical and biological basis for the external random force
has been identified in the role of cellular molecular motor proteins [220, 224].
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Molecular motors are responsible for the intracellular active transport of or-
ganelles, vesicles and cargoes along the semi-flexible oriented filaments of the
cytoskeleton [224]. Capable of converting the chemical fuel provided by Adenosine-
TriPhosphate (ATP) into mechanical work, myosin motors regulate the active
transport along actin filaments, while dynein and kinesin motors carry cargoes
toward the plus and minus ends of the microtubules [273]. When cellular vesi-
cles, lysosomes, endosomes or mytochondria randomly bind and unbind to motor
proteins, Brownian diffusion in the cytoplasm alternates with directed, ballistic
displacements along actin filaments and microtubules [271, 272]: hence the overall
dynamics of tracer particles within the complex cellular environment can be re-
garded as an intermittency between phases of free diffusion and phases of active
directed transport mediated by molecular motor proteins.
The role of molecular-motor mediated active transport in defining an overall in-
tracellular super-diffusive dynamics is nowadays largely accepted. Furthermore,
the idea of intermittent active transport suggests a formalism which is mathe-
matically easier to handle than the one of Lévy flights and of the generalized
Langevin equation in statistical mechanics. This formalism, described in the follow-
ing, combines the approach usually adopted to model search and target-finding
processes [274,275] with the traditional formalism proposed by Magde et al. for the
description of chemical reactions in point-FCS [3].

Hypothesizing that cytoskeleton-based transport is responsible for the enhanced
diffusion revealed by TICS and STICS, the GNSs intracellular motion can be
modeled by a sequence of jumps between a purely diffusive Brownian regime and
an active transport regime. Hence, I consider a GNSs-containing vesicle freely
diffusing in a d-dimensional space (d=2 in the present case 2), that randomly binds
to molecular motor proteins with association and dissociation rates k∗12 and k21. A
binding/unbinding reaction of the form

A+ B

k∗12−−−−→
←−−−−
k21

C (6.31)

is therefore considered, where B identifies the binding sites (molecular motor
proteins, in our case) and the A and C species identify endocytotic vesicles in their

2As anticipated previously, the validity of the 2D approximation will be confirmed with the kICS
analysis in Chapter 8.
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free and bound forms, respectively. The binding kinetics is completely determined
by the bimolecular forward rate constant k∗12 and by the first-order dissociation rate
constant k21.
By denoting with Aeq, Beq and Ceq the equilibrium concentrations of the three
species and with δA, δB and δC the fluctuations of the concentrations about their
temporal average, the dynamics and kinetics of the system are governed by the
following system of differential equations:

∂(Aeq + δA)

∂t
= D∇2(Aeq + δA) − k∗12(Aeq + δA)(Beq + δB) + k21(Ceq + δC)

∂(Beq + δB)

∂t
= −k∗12(Aeq + δA)(Beq + δB) + k21(Ceq + δC)

∂(Ceq + δC)

∂t
= D∇2(Ceq + δC) − v · ∇(Ceq + δC) + k∗12(Aeq + δA)(Beq + δB)
− k21(Ceq + δC)

(6.32)
D is the diffusion coefficient of nanoparticles-containing cellular vesicles and v is
the constant velocity of the molecular motor-mediated active transport; no change
in the diffusion coefficient D is assumed upon the occurrence of a binding or
unbinding event: this allows minimizing the number of free parameters in the
model, while allowing - as described in Chapter 7- a satisfactory description of the
experimental data. Without loss of generality, no diffusive term is inserted in the
rate equation for the free binding sites, assuming that molecular motor proteins
are immobile prior to the binding process.
Recalling that equilibrium concentrations are space- and time- independent and
that they satisfy the equilibrium condition k∗12BeqAeq = k21Ceq, eqs. (6.32) reduce
to 

∂δA

∂t
= D∇2δA− k∗12(AeqδB+ BeqδA+ δAδB) + k21δC

∂δB

∂t
= −k∗12(AeqδB+ BeqδA+ δAδB) + k21δC

∂δC

∂t
= D∇2δC− v · ∇δC+ k∗12(AeqδB+ BeqδA+ δAδB) − k21δC

(6.33)

If the number of binding sites is assumed to be much larger than the number of
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freely diffusing vesicles, the concentration fluctuations δA affecting species A are
likely to be much larger than the fluctuations δB affecting the concentration of
molecular motor proteins in their unbound form. The condition δA/Aeq >> δB/Beq
leads to

k∗12(AeqδB+ BeqδA+ δAδB) = k∗12AeqBeq(δB/Beq + δA/Aeq + δAδB/AeqBeq)

≈ k∗12BeqδA
(6.34)

yielding in turn 

∂δA

∂t
= D∇2δA− k∗12BeqδA+ k21δC

∂δB

∂t
= −k∗12BeqδA+ k21δC

∂δC

∂t
= D∇2δC− v · ∇δC+ k∗12BeqδA− k21δC

(6.35)

The temporal derivatives ∂δA/∂t and ∂δC/∂t do not depend on the concentration
fluctuation δB; hence the differential equations can be solved for δA and δC

independently from the concentration fluctuation of free binding sites, reducing eq.
(6.35) to

∂δA

∂t
= D∇2δA− k∗12BeqδA+ k21δC ≡ D∇2δA− k12δA+ k21δC

∂δC

∂t
= D∇2δC− v · ∇δC+ k∗12BeqδA− k21δC ≡ D∇2δC− v · ∇δC+ k12δA−

− k21δC
(6.36)

Under the approximation of eq. (6.34), the binding reaction is therefore a first-order
reaction, with forward rate constant k12 ≡ k∗12Beq. In the following, I will denote
the free and bound states as (1) and (2), respectively, and schematically depict the
effective unimolecular reaction as

(1) D

k12−−−−→
←−−−−
k21

D+ v (2) (6.37)
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Figure 6.15: Schematic of intermittent active trans-
port [271]. A particle undergoing intermittent
active transport alternates phases of Brownian
diffusion (in red) with diffusion coefficient D,
and phases of molecular motor-mediated ac-
tive transport (in blue) along the cytoskeletal
filaments (sketched in black) with diffusion co-
efficient D and drift velocity v.
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τ

Figure 1 Model of reaction kinetics in active media, and examples of low-dimensional structures in biological cells. a, The reactant alternates thermal diffusion
phases (regime 1 in red) of mean duration τ1 and diffusion coefficient D, and ballistic phases of velocity v powered by molecular motors (regime 2 in blue) of mean
duration τ2. Here, the cytoskeletal filaments (in black) are in a disordered state. The polarized nematic state would correspond to parallel filaments, and is equivalent in a first

approximation to a one-dimensional situation (see b) with the same concentration c1d = c3d = a3
3d/b

3

3d and an effective reaction radius a1d = a3d c
2/3

3d . Molecular motors are

not represented. b, Tubular structures in cells such as axons and dendrites (d= 1). c, Planar structures such as membranes and lamellipodia (d= 2).

section, and is plotted in Fig. 2a,b. Strikingly, K3d can be maximized

(Fig. 2a,b) as soon as the reaction radius exceeds a threshold

ac � D/v for the following value of the mean interaction time

with motors:

τ
opt

2,3d =
√

3a

vx0

� 1.078
a

v
,

where x0 is the solution of 2tanh(x)−2x + x tanh(x)2 = 0. The τ1

dependence is very weak, but we can roughly estimate the optimal

value by τ
opt

1,3d � 6D/v2
. This in turn gives the maximal reaction rate

K m
3d � cv

a

√
3(x0 − tanh(x0))

x2

0

,

so that the gain with respect to the reaction rate K p
3d in a passive

medium is G3d = K m
3d/K p

3d � Cav/D with C � 0.26.

Several comments are in order. (1) τ
opt

2,3d neither depends on

D, nor on the reactant concentration. A similar analysis for

k finite (in the D → 0 limit) shows that this optimal value

does not depend on k either, which proves that the optimal

mean interaction time with motors is widely independent of the

parameters characterizing the diffusion phase 1. (2) The value

ac should be discussed. In standard cellular conditions, D ranges

from �10
−2 µm

2
s
−1

for vesicles to �10 µm
2

s
−1

for small proteins,

whereas the typical velocity of a motor protein is v � 1 µm s
−1

,

a value that is widely independent of the size of the cargo
1
.

This gives a critical reaction radius ac ranging from �10 nm for

vesicles, which is smaller than any cellular organelle, to �10 µm for

single molecules, which is comparable to the whole cell dimension.

Hence, this shows that in such a three-dimensional disordered

case, active transport can optimize reactivity for sufficiently large

tracers such as vesicles, as motor-mediated motion permits a

fast relocation to unexplored regions, whereas it is inefficient

for standard molecular reaction kinetics, mainly because at the

cell scale molecular free diffusion is faster than motor-mediated

motion. This could help justify that many molecular species in

cells are transported in vesicles. Interestingly, in standard cellular

conditions τ
opt

2,3d is of the order of 0.1 s for a typical reaction

radius of the order of 0.1 µm. This value is compatible with

experimental observations
1
, and suggests that cellular transport is

close to optimum. (3) The typical gain for a vesicle of reaction

radius a ∼> 0.1 µm in standard cellular conditions is G3d ∼> 2.5
(Fig. 2a,b) and can reach G3d ∼> 10 for faster types of molecular

motor such as myosins (v � 4 µm s
−1

, see refs 1,11), independently

of the reactant concentration c. As we shall show below, the gain

will be significantly higher in lower-dimensional structures such

as axons.

We now come to the d = 2 disordered case (Fig. 1c). Striking

examples in cells are given by the cytoplasmic membrane, which

is closely coupled to the network of cortical actin filaments, or the

lamellipodium of adhering cells
1
. In many cases, the orientation of

filaments can be assumed to be random. This problem then exactly

maps the search problem studied in ref. 23, where the reaction

time was calculated. This enables us to show that as for d = 3, the

reaction rate K2d can be optimized in the regime D/v � a � b.

Remarkably, the optimal interaction time τ
opt

2,2d takes the same value

in the two limits k → ∞ and D → 0:

τ
opt

2,2d � a

v
(ln(1/c1/2)−1/2)1/2,

which indicates that again τ
opt

2,2d does not depend on the parameters

of the thermal diffusion phase, neither through D nor k. In the limit

k → ∞, we have τ
opt

1,2d = (D/2v2)(ln
2(1/c1/2)/(2ln(1/c1/2) − 1)),

and the maximal reaction rate can then be obtained:

K m
2d � c1/2v

2a
�

ln(1/c1/2)
.

Comparing this expression to the case of passive transport yields

a gain G2d = K m
2d/K p

2d � av
√

ln(1/c1/2)/(4D). As in the d = 3

case, this proves that active transport enhances reactivity for large

enough tracers (with a critical reaction radius ac � D/v of the

same order as in the d = 3 case) such as vesicles. However, here

the gain G2d depends on the reactant concentration c, and can

be more significant: with the same values of D, v and a as given

above for a vesicle in standard cellular conditions, and for low

concentrations of reactants (such as specific membrane receptors)

with a typical distance between reactants b ∼> 10 µm, the typical

gain is G2d ∼> 8, and reaches 10 for single reactants (such as some

signalling molecules).

The case of nematic order of the cytoskeletal filaments, which

depicts for instance the situation of a polarized cell
1
, can be shown
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identifying each state by the mode of motion exhibited by the investigated particles.

The two-state dynamics described by eq. (6.37) is expected to produce a super-
diffusive but sub-ballistic behavior: the presence of a non-zero drift speed in state
(2) should be responsible for the enhancement of diffusion, whereas the presence
of state (1), and the consequent reduction of the time spent by the particles in
the drift state, should make the overall observed dynamics deviate from a purely
ballistic one. I also expect the formalism of eqs. (6.31)-(6.37) to be analytically
treatable for the derivation of FCS and ICS correlation functions. In fact, similar
approaches have been adopted in the literature to describe the binding/unbinding
of fluorescently labeled macromolecules to immobile cellular substrates or to un-
labeled diffusing receptors in the plasma membrane [8, 276]. When implemented
in the framework of fluorescence or scattering correlation methods, the two-state
intermittent dynamics of eq. (6.37) has the advantage of allowing the recovery of
physically meaningful parameters: the diffusion coefficient, the drift speed and
the transition rates between the active and the passive regime; in these regards,
intermittency outperforms Lévy flights.

Prior to adopting the formalism of eqs. (6.31)-(6.37) for the ICS-based analysis of
the GNSs intracellular dynamics (Chapter 8), I report in Chapter 7 the Single Particle
Tracking experiments I performed to unambiguously attribute to intermittent
active transport the super-diffusive behavior of endocytosed nanostars; numerical
simulations are reported as well, to verify the compatibility of the intermittent-
transport model with the experimental anomalous displacement of the STICS
spatio-temporal correlation functions.



Chapter 7

Single Particle Tracking
Experiments

By imposing order and directionality onto the naturally stochastic behavior of
Brownian diffusion, molecular motors mediate intracellular drift phenomena

and support the transport of vesicles and organelles along microtubules and actin
filaments [219, 224, 271, 277–279]. This interplay between diffusion and active
transport often makes the overall dynamics exhibited by tracer particles in the
cellular environment neither ballistic nor purely diffusive [273, 279]: different
mobility states, differing in the magnitude of the diffusion coefficient and in
the eventual presence of a non-zero drift velocity, might alternate and produce
extremely complex transport pathways [271]. Methods capable of an automated
and reliable time-resolved identification of mobility states, and capable of dissecting
the presence of directionality within an otherwise diffusive motion, are therefore
required and continuously developed [219, 248, 252, 280, 281].
Among these techniques, Single Particle Tracking (SPT) [249, 252] provides access
to single-particle trajectories with sub-diffraction ∼ 10 nm resolution [249, 254] and,
by the statistical analysis of these trajectories, potentially yields the distribution of
active and passive state durations as well as the distributions of the state parameters
(namely, the velocity during the active phases and the diffusion coefficient of the
passive motion). Even though the computation of the estimator to the second-
order moment of the displacement (the Mean-Square-Displacement, or MSD)
represents the most widely adopted approach for the analysis of SPT data [249,252],
alternative methods for the advanced analysis of particle trajectories have been
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recently introduced. Some of them characterize the mode of motion by inspecting
the directional persistence [280] or the self-similarity [282] of the trajectories, the
trajectory radius of gyration, asymmetry and spread in space [247, 272], or the
deviation of individual displacements from Gaussian statistics [283]; others recover
transport parameters by exploiting the principles of Bayesian inference [248,281,284].
In this Chapter, the analysis of the intracellular SPT trajectories of nanostars-
containing cellular vesicles is reported. The computation of the experimental
MSDs and the Bayesian analysis of the whole trajectories, modeled as Hidden
Markov Models, allow not only to verify the compatibility of the experimental
data with the super-diffusion model based on intermittent active transport, but
also to unambiguously attribute to the very same intermittent dynamics the super-
diffusive behavior pointed out by STICS in Chapter 6. The results obtained here
by Single Particle Tracking will finally complement and strengthen the transport
parameters recovered by image correlation in Fourier space in Chapter 8.

7.1 Principles of Single Particle Tracking: MSD analysis

I begin by reviewing the basic principles of Single Particle Tracking and of
the MSD-based analysis. SPT is based on the measurement of the trajectory, i.e.
the sequence of positions x(tj) = (x(tj), y(tj)) (or (x(tj), y(tj), z(tj)) in the three-
dimensional case) at times tj=1...N, of individual (fluorescent or scattering) mobile
particles imaged in time-lapse mode [249, 254]. Starting for example from an xyt-
stack of raster-scanned confocal images, the particle coordinates are determined
at each time point with ∼ 10 nm accuracy by centroid calculations; then they are
reassembled to reconstruct the whole trajectory that, when analyzed by the proper
statistical approach, allows the extraction of transport parameters (e.g., diffusion
coefficients, drift velocities) and the motion classification (as directed, constrained,
diffusive, intermittent, etc.).
The possibility of performing such a classification relies on relating each displace-
ment ∆x travelled by the particle in a time interval τ to a well-defined probability
density function; for example, for a particle undergoing 2D Brownian diffusion
(with diffusion coefficient D) and uniform planar drift (with velocity v = (vx,vy)),
each displacement can be regarded as extracted from a Gaussian probability density
function

P(∆x, τ) =
1

(4πDτ)
exp

(
−
|∆x− vτ|2

4Dτ

)
(7.1)
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The Gaussian distribution has a variance that depends on the diffusion coefficient
as σ2 = 2Dτ and it is centered at (vxτ,vyτ); hence it recalls the zero-centered
Gaussian distribution of eq. (6.14) in the simple case of free thermal diffusion
(|v| = 0). Depending on D and v, the diffusion propagator randomly assigns at
each time step the length and direction of the particle jump: hence by observing,
by an SPT experiment, a sequence of displacements, insight can be gained on the
ensemble of transport parameters that fully characterize the underlying probability
density function. This obviously applies not only to the trajectories arising from a
simple combination of diffusion and drift, but also to purely diffusive or intermit-
tent trajectories for which a reasonable assumption on the underlying probability
distribution can be made.

The simplest strategy by which the measurement of the transport parameters
and the classification of the mode of motion can be performed consists in computing
the trajectory mean-square-displacement and in comparing the experimental MSD
with the theoretical analytical expressions predicted for the different possible modes
of motion:

• Experimentally (on a discrete data-set) and in the hypothesis of two-dimensional
transport, the MSD is computed [249] as

MSD(τ) ≡MSD(n∆t) =
1

N− n

N−n−1∑
j=0

{[
x(tj+n)−x(tj)

]2
+
[
y(tj+n)−y(tj)

]2}
(7.2)

MSD(τ) defines therefore the average squared distance travelled by the parti-
cle in a time τ = n∆t, the lag time τ being an integer multiple of the temporal
separation ∆t between consecutively sampled points in the trajectory.1

• Theoretically, the analytical expression for the MSD (to be employed for the
fit of the experimental MSD-vs-τ plot) is derived by averaging, over the
expected transport propagator, the square of the position random variable.
Recalling again simple Brownian diffusion (case (i)) and the combination of
2D diffusion and drift (case (ii)), integration of the squared position over the

1For practical purposes, n is usually limited to ∼ 20% of the total number N of the recorded
positions: in fact, the uncertainty associated to the MSD values increases with the lag time τ, since
the higher τ, the smaller is the number of data points available for the averaging operation of eq.
(7.2) [249, 254].
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propagator of eq. (7.1) translates into the computation of a Gaussian integral,
yielding 

MSD(τ) = 4Dτ (i)

MSD(τ) = 4Dτ+ |v|2τ2 (ii)
(7.3)

A linear MSD-vs-τ plot is found in the presence of Brownian diffusion, with
a slope proportional to the diffusion coefficient D [245, 249–254]; by contrast,
the coupling of thermal diffusion and planar uniform drift endows the MSD
plot with positive curvature due to a quadratic dependence of the square
travelled distance on the lag time τ [249, 252, 254].2 With a similar procedure,
starting form the appropriate propagator P(x, τ), the MSD for more complex
and transient dynamics can be explicitly derived: in the next Subsection, the
derivation of the MSD for intermittent active transport is reported.

When no prior information is given on the kind of motion the particle experi-
ences, the curvature of the experimental MSD-vs-τ plot and its fit to the possible
MSD theoretical models can identify its diffusive, directional or (as shown in the
next Subsection) intermittent nature.

7.1.1 MSD for intermittent active transport

I consider the two-state dynamics of eq. (6.37), describing a particle switching
between a diffusive state with diffusion coefficient D and a diffusion+drift state
with diffusion coefficient D and drift velocity v = (vx,vy). I denote with k12
and k21 the transition rates regulating the probability for the particle to switch
from one state to the other. I also denote with pαβ(x, t) the probability density
of finding the particle in state α (α=1,2) at point x at time t, provided it was in
state β (β=1,2) at time t=0. pαβ(x, t) satisfies the system of differential equations
previously introduced as eq. (6.36):

∂p1β(x, t)

∂t
= D∇2p1β(x, t) − k12p1β(x, t) + k21p2β(x, t)

∂p2β(x, t)

∂t
= D∇2p2β(x, t) − v · ∇p2β(x, t) + k12p1β(x, t) − k21p2β(x, t)

(7.4)

2The MSD expressions of eq. (7.3) are valid as long as the characteristic dimension L of the space
available for diffusion and drift is sufficiently large to make the measurement time interval much
smaller than L2/4D. For cell measurements, L ∼ 10µm and D ∼ 10−4µm2/s, so that L2/4D > 106s

[249].
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Initial conditions can be cast as pαβ(x, 0) = δαβδ(x) (with α,β=1,2). It is also
convenient to introduce the equilibrium probabilities, hereafter referred to as Peq1
and Peq2 , of finding the particle in states (1) and (2) respectively: in terms of the
transition rates k12 and k21,

P
eq
1 =

k21
k12 + k21

, P
eq
2 =

k12
k12 + k21

(7.5)

This allows evaluating the probability density pα(x, t) of finding the particle in
state α (α=1,2) at point x at time t, provided it was in state β (β=1,2) at time t=0
with equilibrium probability Peqβ : by summing over the two propagators pα1(x, t)
and pα2(x, t) [285],

pα(x, t) = pα1(x, t)P
eq
1 + pα2(x, t)P

eq
2 (7.6)

Densities pα(x, t) satisfy in turn
∂p1(x, t)

∂t
= D∇2p1(x, t) − k12p1(x, t) + k21p2(x, t)

∂p2(x, t)

∂t
= D∇2p2(x, t) − v · ∇p2(x, t) + k12p1(x, t) − k21p2(x, t)

(7.7)

with initial conditions p1(x, 0) = P
eq
1 δ(x) and p2(x, 0) = P

eq
2 δ(x).

The derivation of the MSD proceeds, in 2D, with the computation of the second-
order moments

< |xα(t)|
2 >=

∫∫+∞
−∞ (x2 + y2)pα(x, y, t)dxdy (7.8)

where the subscript α in the right-hand term denotes the distribution pα(x, y, t)
over which the two moments are computed: < |x1(t)|

2 > is the mean-square-
displacement after a time t travelled during the particle residence in state (1),
whereas < |x2(t)|

2 > is the mean-square-displacement after a time t travelled
during the particle residence in state (2). With these definitions, the total MSD at
time t is simply the sum < |x(t)|2 >=< |x1(t)|

2 > + < |x2(t)|
2 > [285].

In order to derive < |x(t)|2 >, I multiply eq. (7.7) by (x2 + y2) and I integrate with
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respect to x from minus to plus infinity [285]. This leads to

d < |x1(t)|
2 >

dt
= 4DPeq1 − k12 < |x1(t)|

2 > +k21 < |x2(t)|
2 >

d < |x2(t)|
2 >

dt
= 4DPeq2 + 2(vx < x2(t) > +vy < y2(t) >)+

+ k12 < |x1(t)|
2 > −k21 < |x2(t)|

2 >

d < |x(t)|2 >

dt
= 4D(Peq1 + Peq2 ) + 2(vx < x2(t) > +vy < y2(t) >)

(7.9)

with the initial conditions < |xα(0)|
2 >= 0 (α=1,2). In obtaining eq. (7.9), I

have employed the relation Pα(t) = P
eq
α (α=1,2): this condition can be derived by

integrating eq. (7.7) with respect to x from minus to plus infinity, and by solving
the resulting differential equations

dP1(t)

dt
= −

dP2(t)

dt
= −k12P1(t) + k21P2(t) (7.10)

with the initial conditions Pα(t = 0) = P
eq
α . P1(t) =

∫∫+∞
−∞ p1(x, t)dxdy and

P2(t) =
∫∫+∞

−∞ p2(x, t)dxdy are the probabilities of finding the particle in state
(1) and in state (2) at time t.

Prior to integrate, with respect to time, the equation for < |x(t)|2 >, it is
necessary to compute < x2(t) > and < y2(t) >, i.e. the mean displacement at
time t, along the x- and y- directions, travelled by the particle when in state
(2). Again, < x2(t) >=

∫∫+∞
−∞ xp2(x, y, t)dxdy is obtained by multiplying by x eq.

(7.7), by then integrating with respect to x from minus to plus infinity, and by
finally solving the system of coupled differential equations for < x1(t) > and
< x2(t) > with the initial conditions < xα(0) >= 0; the same procedure is applied
to < y2(t) >=

∫∫+∞
−∞ yp2(x, y, t)dxdy, leading to

< x2(t) >= τrelveffx (1− k12τrel)(1− e
−t/τrel) + veffx P

eq
2 t

< y2(t) >= τrelveffy (1− k12τrel)(1− e
−t/τrel) + veffy P

eq
2 t

(7.11)

The system relaxation time and the effective velocity components have been intro-
duced according to the definitions τrel = (k12+k21)

−1, veffx = vxP
eq
2 and veffy = vyP

eq
2 .
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By substituting eq. (7.11) into eq. (7.9) (third eq.), one obtains

d < |x(t)|2 >

dt
= 4D+ 2

[
τrel(1− k12τrel)(1− e

−t/τrel)
{

vxveffx + vyveffy
}
+

+ Peq2 (vxveffx + vyveffy )t
] (7.12)

The derivation of the MSD ends with the integration of eq. (7.12) with respect to
time from t = 0 to a generic time τ, yielding

< |x(τ)|2 > =MSD(τ) =

= 4Dτ+ |veff|2τ2 + 2τrel
k21
k12

|veff|2
(
τ− τrel(1− e

τ/τrel)
) (7.13)

|veff| = Peq2 |v| is the modulus of the effective drift velocity, obtained by weighting
the drift speed |v| with the equilibrium probability of finding the particle in the
active state.
Globally, eq. (7.13) evidences that the MSD for intermittent active transport is the
superposition of three terms: the first term linearly depends on the lag time and
on the diffusion coefficient D, and recalls the MSD of a purely diffusive process
(eq. 7.3 i); the second term depends quadratically on the lag time and recalls the
MSD of directional transport (eq. 7.3 ii), with a reduced speed equal to |veff|; the
third term contains the dependence on the kinetic parameters of the model (the
relaxation time and the transition rates k12 and k21).

Together with eq. (7.3), the MSD expression of eq. (7.13) can be employed for
the fit of experimental mean-square-displacement plots. Both the mode of motion
and the underlying transport parameters could be recovered from the MSD fit: in
the presence of intermittent active transport, the diffusion coefficient, the effective
drift speed, the system relaxation time and the ratio of the two transition rates
can in principle be recovered; then by combining τrel and the ratio k21/k12, the
transition rates k12 and k21 can be derived as well.
In this context, I remark that the derivation of eqs. (7.3) and eq. (7.13) does
not take into account any source of experimental uncertainty. Although a few
attempts in deriving analytically the standard deviation of MSD plots have been
performed for free diffusion [249], static errors arising from the uncertainty on
particle localizations are usually accounted for by adding a constant term (a
baseline) into the adopted MSD fit equation; when static errors are not taken into
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account, free diffusion may be incorrectly categorized as anomalous sub-diffusion
due to an erroneous non-linear dependence of the MSD-vs-τ plot [254, 272, 286].

7.2 Bayesian analysis of particle trajectories

The main drawback of an MSD-based analysis relies in the MSD being a
temporally-averaged quantity. When the mean-square-displacement is computed
by an average over the whole trajectory length, the statistics with which the mean
value is determined increases at the expense of temporal resolution: short-lived
phases of an intermittent dynamics might get lost in the averaging operation,
so that, for example, intermittent directional transport may be mistaken for a
permanent diffusion or drift process with erroneous values for the drift speed or
diffusion coefficient. Such a problem has been reported already for the analysis
of hop-diffusion, which can be identified by inspecting the whole trajectory but
leads to a linear τ-dependence in the experimental MSD [254, 287]. Similarly,
intermittency between two diffusion states, with diffusion coefficients D1 and D2,
might produce a linear MSD-vs-τ plot with a slope proportional to the weighted
average (weighted on the equilibrium probabilities of the two states) of the D1 and
D2 values [248]. In this case the MSD describes the overall average dynamics of the
particle but lacks to give insight into the microscopic and transient features of the
true transport phenomenon.

Two possible strategies can be adopted to overcome this limitation affecting the
MSD computation and analysis. The first consists in deriving the MSD by averaging
the square-displacement over limited portions of the experimental trajectory: by
restricting the number of data points over which the MSD is computed, and by
subsequently sliding the window of interest throughout the trajectory length,
temporal variations experienced by the mode of motion and/or by the transport
parameters (and hence by the MSD curvature) can be identified [219,272]. Especially
when combined to the measurement of the angular correlation of consecutive steps,
local MSDs help in identifying and quantifying directional persistence at a sub-
trajectory level. The drawback is that a certain extent of subjectiveness is introduced
by the choice of the window size; moreover, the window size must remain narrower
than the minimum duration of the specific transient motion under investigation,
which is usually not known a priori.

The second strategy, described in detail in the following, exploits the principles
of Bayesian statistics and the formalism of Hidden Markov Models to simulta-
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neously account for the whole observed trajectory, while achieving single-step
temporal resolution in the detection of state changes.

7.2.1 Modeling a particle trajectory as a Hidden Markov Model

I have already pointed out the role of the Gaussian diffusion propagator P(x, t)
in assigning the length of the displacement travelled during a time interval ∆t by a
particle exhibiting Brownian diffusion and uniform drift: each displacement along
the x- and the y- direction is distributed normally, with a variance proportional to
the diffusion coefficient and with mean value assigned by the drift speed. More in
general, when an SPT trajectory is collected (whether diffusive, ballistic or inter-
mittent), each observed displacement obeys a well-defined probability distribution:
hence, the observation of the sequence of individual particle displacements should
allow inferring the parameters characterizing the corresponding probability density
function (i.e., the transport parameters) and the temporal variations this probability
density function undergoes (i.e., the changes in the motion state) with increased
sensitivity. Accurate statistics is still achieved by taking advantage of the whole
trajectory but, since the averaging operation intrinsic in the MSD computation is
not performed any more, short-lived motion phases (i.e., phases lasting for a few
time-steps in the SPT experiment) can now be detected.

From the theoretical and mathematical viewpoint, the idea of extracting motion
parameters and state changes from entire SPT trajectories can be formalized by the
statistical framework of Hidden Markov Models [248, 284, 288, 289].
Let x(tj) = (x(tj), y(tj)) (for j = 1...N) be a single-particle trajectory measured by
an SPT experiment. For the sake of generality, the observed particle is assumed
to experience stochastic transitions between m motion states, with the ith state
(i = 1...m) parameterized by specific transport properties: a diffusion coefficient Di
and a drift velocity vi are considered here. At each time point tj=1...N, the particle
is in one of the m states, so that, for a trajectory of length N, a sequence of N state
occupancies is assigned: I denote this state sequence with

s = s(t1)s(t2)...s(tN) (7.14)

with each s(tj) belonging to [1, 2, ...,m]. The state occupied by the particle at time
tj is assumed to depend only on the state the particle occupies at time tj−1: hence

p
(
s(tj) = i

∣∣s(tj−1), s(tj−2)...) = p(s(tj) = i∣∣s(tj−1)) (7.15)
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∀j, where p
(
s(tj) = i

∣∣s(tj−1), s(tj−2)...) is the conditional probability that the particle
is in state i at time tj provided it has before experienced the sequence state
s(tj−1), s(tj−2)... . The random transitions between the states are regulated by
probabilities pik, with each pik defined (∀j and with i, k = 1...m) by

pik = p
(
s(tj+1) = k

∣∣s(tj) = i) (7.16)

Experimentally, the exact state sequence s is clearly not observed: what is observed
is the sequence of the particle displacements. However, the length and direction
of each displacement ∆x(tj+1) = x(tj+1) − x(tj) is assigned by the state the particle
occupies at the corresponding time point tj through the relative (diffusion) prop-
agator: therefore, although the N-step state sequence s underlying the trajectory
(and hence the exact state the particle occupies at time tj) is unknown (hidden), the
experimental measurement of all the particle displacements assigned by s allows
inferring information on the sequence s itself, as well as on the transport parameters
of the constituent states and on the rates of transition between them. To this aim,
the likelihood maximization strategy described in the following is adopted.

7.2.2 Maximum-likelihood approach

Let θ = {Di=1...m,vi=1...m, pi,k=1...m} be the set of unknown parameters for a
d-dimensional trajectory described by an m-state Markov chain. For d=2 (2D
tracking experiment) and m=2 (as in two-state dynamics of eq. 6.37), the transition
probabilities for the particle to undergo a state switch in a time interval ∆t (equal
to the time resolution of the SPT data acquisition) are related to the rate constants
k12 and k21 [248] by

p12 =
k12

k12 + k21

{
1− exp[−(k12 + k21)∆t]

}
p21 =

k21
k12 + k21

{
1− exp[−(k12 + k21)∆t]

}
p11 = 1− p12

p22 = 1− p21

(7.17)

The set of independent parameters reduces in this case to θ = {Di=1,2,vi=1,2, p12, p21}.
Equivalently, θ = {Di=1,2, |v|i=1,2, αi=1,2, p12, p21}, where αi is the angle defining
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the x- and y- components of the drift velocity vector vi (vxi = |vi| cosαi, vyi =
|vi| sinαi).
According to Bayes’ theorem, the likelihood of a parameter set θ given an experi-
mental trajectory x(tj=1...N) can be expressed as

`
(
θ
∣∣x(t1), x(t2), ..., x(tN)) =

p
(
x(t1), x(t2), ..., x(tN)

∣∣θ)p(θ)
p
(
x(t1), x(t2), ..., x(tN)

) (7.18)

By assuming a uniform prior probability p(θ) (the less informative prior) and by
marginalizing the likelihood over all possible hidden state sequences s, eq. (7.18)
can be re-written as

`
(
θ
∣∣x(t1), x(t2), ..., x(tN)) ∝ p(x(t1), x(t2), ..., x(tN)∣∣θ) =

=
∑

p
(
x(t1), x(t2), ..., x(tN)

∣∣s, θ)p(s∣∣θ)
≡
∑

p
(
x
∣∣s, θ)p(s∣∣θ)

(7.19)

In the last equation, x ≡ x(t1), x(t2), ..., x(tN) has been introduced for the sake of
compactness, denoting the observed sequence of coordinates.
The summation over state sequences can be performed efficiently by the forward-
backward algorithm [248, 284, 289, 290]. It relies on evaluating the probability φi(j)
of observing the partial sequence of coordinates x(t1), x(t2), ..., x(tj+1) up to the
(j+ 1)th step and of being in state i at time tj, given the model parameters θ:

φi(j) = p
(
x(t1), x(t2), ..., x(tj+1), s(tj) = i

∣∣θ) (7.20)

At first, φi(1) corresponds to the probability that s(t1) = i and that the first
displacement ∆x(t2) = x(t2) − x(t1) is observed:

φi(1) = p
(
x(t1), x(t2), s(t1) = i

∣∣θ) =
= p

(
x(t1), x(t2)

∣∣s(t1) = i, θ)p(s(t1) = i∣∣θ)
= p

(
x(t1), x(t2)

∣∣s(t1) = i, θ)πi (7.21)

Here πi = P
eq
i defines the probability of starting in state i at time t1. Since each

state i is parameterized by a diffusion coefficient Di and a planar drift velocity vi,
the diffusion+drift propagator of eq. (7.1) can be exploited to obtain

p
(
x(t1), x(t2)

∣∣s(t1) = i, θ) = 1

(4πDi∆t)
exp

(
−
|∆x(t2) − vi∆t|2

4Di∆t

)
(7.22)
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Then at subsequent time points φi(j) can be evaluated recursively [289] according
to

φi(j) =p
(
x(tj), x(tj+1)

∣∣s(tj) = i, θ) 2∑
k=1

φk(j− 1)pki

=
1

(4πDi∆t)
exp

(
−
|∆x(tj+1) − vi∆t|2

4Di∆t

) 2∑
k=1

φk(j− 1)pki

(7.23)

Hence by recursion all the φ terms up to φi(N − 1) can be computed. Note
that φi(N − 1) corresponds to the probability that s(tN−1) = i and that all the
displacements up to x(tN) have been observed. Therefore a final summation over
the two possible states i=1,2 yields the probability of having observed all the
trajectory for a given parameter set θ:

`
(
θ
∣∣x(t1),x(t2), ..., x(tN)) ∝ p(x(t1), x(t2), ..., x(tN)∣∣θ) =

=
∑

p
(
x
∣∣s, θ)p(s∣∣θ) = 2∑

i=1

φi(N− 1) =

=

2∑
i=1

{
1

(4πDi∆t)
exp

(
−
|∆x(tN) − vi∆t|2

4Di∆t

) 2∑
k=1

φk(N− 2)pki

} (7.24)

I remark that due to the recursive structure of eq. (7.24), all the displacements enter
explicitly in the likelihood evaluation.

Given the experimental observation of the sequence x of the particle coor-
dinates, by means of eq. (7.24) the likelihood of any parameter set θ can be
quantified; since the most probable parameter set - hereafter referred to as Θ -
is the one that maximizes the likelihood, the Bayesian inference of dynamic and
kinetic parameters from the observed SPT trajectory ends with the maximization of
`
(
θ
∣∣x(t1), x(t2), ..., x(tN)) with respect to θ.

7.2.3 Markov Chain Monte Carlo algorithm

The maximization of the likelihood (eq. 7.24) with respect to θ is intractable
analytically, so that numerical methods must be employed to obtain the most
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probable parameter set Θ:

Θ = argmaxθ

{
`
(
θ
∣∣x(t1), x(t2), ..., x(tN))

}
= argmaxθ

{
φ1(N− 1) + φ2(N− 1)

}
(7.25)

A possible method to be adopted for the likelihood maximization relies on the
Markov Chain Monte Carlo algorithm [248, 289, 291]. Briefly, at each iteration
the likelihood of a proposed parameter set θp is computed and compared to
the likelihood of the actual parameter set θ: according to a Metropolis rejection
criterion, θp is accepted with probability p = 1 if it produces an increase in the
likelihood value, and with probability assigned by the ratio of the likelihoods
`
(
θp
∣∣x) and `

(
θ
∣∣x) otherwise. More in detail, the steps of the MCMC maximization

procedure can be described as follows:

1. An initial parameter set θ is proposed. In the present case, initial parameter
guesses for the diffusion coefficient and the drift speed are randomly selected
within the orders of magnitude suggested by image correlation and MSD
analyses; the drift direction and the transition probabilities are extracted as
pseudo-random numbers from uniform distributions in the interval [0, 2π]
and [0, 1], respectively. The extracted probabilities are checked against the
summation conditions (e.g.,

∑
k pik = 1 and

∑
i P
eq
i = 1) and extracted again

if necessary;

2. A new guess θp for the parameter set is randomly extracted from a suitable
probability distribution. The detailed-balance condition of Markov chains
(stating that the average number of transitions from θ to θp should be equal
to the average number of transitions from θp to θ) requires the probability
distributions to be either uniform or Gaussian: practically, a random-walk
is performed in the parameters space. Each distribution is parameterized by
a step-width or variance δ to control the extent by which a parameter can
vary. In the present case, a multivariate Gaussian distribution centered at the
previous parameter estimate is employed for all the parameters, and each
variance is adjusted to achieve a ∼ 30-60% acceptance rate at the end of the
whole MCMC run. No constraints other than the probability normalization
conditions and the non-negativeness of diffusion coefficients and drift speeds
are imposed during MCMC successive iterations. Finally, at each MCMC step
sequential separate likelihood updates are performed for dynamic parameters
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(diffusion coefficient, drift speed and drift angle), whereas a block approach
is adopted for probabilities (displacements are simultaneously proposed for
all unknown probabilities leading to a joint likelihood update);

3. The proposed set θp is accepted or rejected according to a Metropolis rejec-
tion criterion. The move is accepted with probability min(1, `

(
θp
∣∣x)/`(θ∣∣x)):

hence all the moves that increase the likelihood are immediately accepted,
while moves that decrease the likelihood get accepted with a probability
assigned by the ratio of the new and the old likelihood values. Again, this
criterion is adopted to satisfy the detailed-balance condition of Markov chains.
The aforementioned acceptance rate ∼ 30-60% usually allows to sufficiently
explore the parameter space; too high acceptance rates are associated to a
too small width for the proposal distribution (hence the parameter space is
not adequately explored), whereas too low acceptance rates denote that the
majority of the parameter proposals move far from the region of maximum
likelihood;

4. Steps 1-3 are repeated until the algorithm convergence. At the end of the
MCMC run, the results are output as a plot of the values of the likelihood
and of the values of all the model parameters3 as a function of the iteration
step. The typical likelihood-vs-iteration plot shows an initial monotonic
increase, reaching then a plateau where the likelihood fluctuates around its
maximum value; similarly, after initial abrupt variations, all the parameter
estimates maintain relatively constant values as a function of the iteration
step. The most probable parameter set Θ is assigned by fitting to a Gaussian
trial function the histograms of the values explored by each parameter within
the final plateau.
To avoid being stuck in local maxima and to ensure that the likelihood
global maximum is found, ∼ 10-20 independent MCMC runs (with different
initial parameter guesses and different seed for the pseudo-random number
generator) are performed for each trajectory; individual runs typically consist
in 10-20x103 iterations.

3For each iteration step, the new parameter value is reported if the move is accepted, while the
old parameter estimate is reported if is is kept unchanged with the move.
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7.3 Experimental results

Having outlined the theoretical framework for both the MSD-based and the
Bayesian analyses of Single Particle Tracking data, I report the experimental results
[237] obtained when investigating by means of SPT the intracellular transport of
endocytosed gold nanostars.

SPT raw data have been collected on the same xyt-stacks of raster-scanned
confocal images analyzed by TICS and STICS in Chapter 6 (hence I refer to the
Materials and Methods Section of Chapter 6 for the details concerning image acqui-
sition settings). The trajectories of individual GNSs-containing scattering vesicles
have been computed by the tracking software Imaris (Bitplane, Zurich, CH) and
have been subsequently analyzed by a custom-written Python code to yield the
mean-square-displacement MSD(τ) according to the definition of eq. (7.2).
As shown in Fig. 7.1 with exemplary trajectories and MSD-vs-τ plots, like Tempo-
ral and Spatio-Temporal Image Correlation Spectroscopy, Single Particle Tracking
reveals the presence of different motion types. The first MSD plot exhibits a linear
dependence on the lag time τ, classifying the corresponding trajectory as purely
diffusive (eq. 7.3i). The second MSD-vs-τ plot requires the coupling of Brownian
diffusion and a non-zero drift speed, and can be fit to the MSD expression of eq.
(7.3ii). The third MSD is not compatible with eq. (7.3) and, due to the positive cur-
vature, suggests the presence of super-diffusive dynamics. Hypothesizing therefore
that cytoskeleton-based transport is responsible for the enhancement of diffusion,
I have tested the compatibility of the MSD with a sequence of jumps between a
purely diffusive motion regime and an active transport regime: in agreement with
the intermittent transport model of eq. (6.37), the curve can be fit to the MSD
expression I derived in eq. (7.13). Out of a total of thirty trajectories and MSD
plots examined, ∼75% of them were not compatible with the simple diffusive and
ballistic models.

It is worth underlying that the intermittent transport model of eq. (6.37) hy-
pothesizes a single value for the diffusion coefficient of cellular vesicles when
freely diffusing in the cytoplasm and when bound to molecular motor proteins:
no change in the diffusion coefficient is introduced upon the binding/unbinding
events regulating the transitions from the active to the passive motion state. Fur-
thermore, a non-zero drift velocity is assumed to characterize only state (2), state
(1) exhibiting purely diffusive dynamics. Therefore, the set of model param-
eters θ = {Di=1,2, |v|i=1,2, αi=1,2, p12, p21} reduces to θ = {D, |v|, α, p12, p21}, with
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Figure 7.1: Single Particle Tracking: trajectories and MSD analysis. (a): exemplary SPT
trajectories obtained by tracking GNSs-containing scattering vesicles in HeLa cells; the
scale bar corresponds to 0.2 µm for all the trajectories, except for track #3, for which the
scale bar corresponds to 0.4 µm. The trajectories exhibit purely diffusive, directional and
intermittent dynamics as shown with the MSD plots in panel (b). (b): MSD-vs-τ plots for
the trajectories identified as #1,2 and 3 in (a); at each lag time τ, the MSD is reported as
mean ± standard deviation over the whole trajectory length; error bars are within the size of
data points. Curve 1 has been fit to eq. (7.3i), with best-fit parameter D=(3.87± 0.05)x10−5

µm2/s; curve 2 has been fit to eq. (7.3ii), with best-fit parameter D=(8.9± 0.3)x10−5 µm2/s
and |v|=(2.26± 0.04)x10−3 µm/s; curve 3 has been fit to eq. (7.13), with D=(1.4±0.1)x10−3

µm2/s, |veff|=(1.12±0.04)x10−2 µm/s, τrel=(8±3) s and k21/k12=2.1±0.5.

D1 = D2 ≡ D, |v|1 = 0 and |v|2 ≡ |v|. This configuration corresponds to the simplest
possible intermittent transport model deviating from purely diffusive and ballistic
behaviors: it avoids over-parameterization and, according to the MSD analysis, it is
sufficient to describe the GNSs experimental data.

To further strengthen the results of the MSDs fit, and to allow a more reliable
estimate of all the dynamic and kinetic parameters the model involves, the Bayesian
maximum-likelihood analysis described in Section 7.2 has been implemented. A
custom-written Python code has been employed for the Markov Chain Monte Carlo
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(MCMC) maximization according to eqs. (7.17)-(7.24): the procedure outlined in
Subsection 7.2.3 has been followed, but for the sake of computational convenience
the logarithm of the likelihood has been maximized, instead of directly maximizing
`
(
θ
∣∣x).

The outcome of the MCMC algorithm on an exemplary trajectory exhibiting in-
termittency between diffusion and active transport is reported in Fig. 7.3. In
panel (a), the log-likelihood is plotted as a function of the iteration step for five
separate MCMC runs on the same intermittent-type trajectory, evidencing the
code convergence to the likelihood global maximum. Similarly, the trend of the
model parameters is reported, as a function of the iteration step, in the insets
of panels (b)-(f). In the same panels, for D, |v|, α, p12 and p21, I report the his-
togram of the values each parameter assumes during the MCMC run after the
initial monotonic increase of the log-likelihood: these histograms, representing the
parameter values explored in the region of the parameters space close to likelihood
maximum, can be fit to a Gaussian trial function to derive the most probable param-
eter set Θ = {D=(6.1±0.6)x10−5 µm2/s, |v|=(1.2±0.4)x10−2 µm/s, α=(241° ± 12°),
p12=(0.04±0.03), p21=(0.18±0.09)}. The corresponding equilibrium probabilities are
P
eq
1 =(0.8±0.1) and Peq2 =(0.2±0.1) and strongly support that an intermittent model

can be adopted to describe the GNSs experimental intracellular SPT data.
The just-described analysis (Fig. 7.3) refers to a single portion of a longer

trajectory, shown entirely in Fig. 7.2. In fact, by relying on the two-state dynamics
of eq. (6.37), the implemented Monte Carlo code requires a single drift direction for
the active transport state: taking into account abrupt changes in the drift direction
(like those apparent in Fig. 7.2) would require the introduction of at least a third
state (differing in the angle α) within the model, remarkably complicating the
parameters recovery. It is therefore convenient to manually segment the trajectory
and to apply the Bayesian analysis separately on each of the portions identified.
The results reported in Fig. 7.3 refer to the segment denoted as (i) in Fig. 7.2,
whereas the results for segments (ii) and (iii) are shown in Fig. 7.4.
Importantly, while intermittent active transport well describes portion (iii) with
P
eq
1 =(0.92±0.02) and Peq2 =(0.08±0.02), segment (i) is classified as purely diffusive by

the MCMC Bayesian analysis (a vanishing probability p12=0.00±0.02 is retrieved).
Therefore, the proposed intermittent model also includes the single-state purely
diffusive behavior (and, similarly, the diffusion+drift case): no prior assumption on
the Brownian or super-diffusive nature of the investigated dynamics is required,
and the simplest stochastic transport model accurately describing the experimental
data can be identified.
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Figure 7.2: Single Particle Tracking: Bayesian analysis
(I). SPT trajectory exhibiting intermittent active trans-
port, collected in the same HeLa cell analyzed by
TICS and STICS in Figs. 6.7 and 6.9. The Bayesian
analysis of the trajectory is reported in Figs. 7.3,7.4
and has been performed separately on segments (i),
(ii) and (iii) as described in the text. x (µm) 
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Figure 7.3: Single Particle Tracking: Bayesian analysis (II). The results of the MCMC likelihood
maximization are reported for portion (i) of the trajectory shown in Fig. 7.2. (a): log-
likelihood as a function of the MCMC iteration step for five independent runs; the log-scale
is adopted in the inset to magnify the code convergence to the same likelihood global
maximum. (b)-(f): histograms of the parameter values explored during the log-likelihood
maximization after the initial convergence steps. Data refer to D, |v|, α, p12 and p21
(panels b, c, d, e and f, respectively). The mean values recovered by the Gaussian fits
identify the most probable parameter set Θ = {D=(6.1±0.6)x10−5 µm2/s, |v|=(1.2±0.4)x10−2

µm/s, α=(241°± 12°), p12=(0.04±0.03), p21=(0.18±0.09)} given the experimental trajectory
(Peq1 =(0.8±0.1), Peq2 =(0.2±0.1)). In the inset of each panel, the value proposed for the
corresponding parameter as a function of the maximum-likelihood iteration is reported.
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Figure 7.4: SPT: Bayesian analysis (III). (a)-(f): Bayesian analysis of portion (iii) of the
trajectory shown in Fig. 7.2. The same segment of the trajectory is reported here in the
inset of panel (a). (a): exemplifying log-likelihood plot as a function of the MCMC iteration
step. (b)-(f): histograms of the parameter values explored during the log-likelihood
maximization after the initial convergence steps of a single run. Data refer to D, |v|,
α, p12 and p21 (b, c, d, e and f, respectively). The mean values and standard deviations
recovered by the Gaussian fits identify Θ = {D=(1.06±0.09)x10−4 µm2/s, |v|=(2.3±0.9)x10−2

µm/s, α=(91°± 10°), p12=(0.05±0.04), p21=(0.55±0.05)} given the experimental trajectory
(Peq1 =(0.92±0.02), Peq2 =(0.08±0.02)). In the insets, the values proposed for the parameters
as a function of the iteration are also reported. (g)-(i): MCMC analysis of portion (ii) of the
trajectory shown Fig. 7.2. The same segment of the trajectory is reported here in the inset
of panel (g). (g): exemplifying log-likelihood plot as a function of the MCMC iteration
step. (h),(i): histograms of the values of D and p12 explored during the log-likelihood
maximization after the initial convergence steps of a single run. The most probable values
recovered as means and standard deviations of the Gaussian fits are D=(1.1±0.1)x10−4

µm2/s and p12=(0.00±0.02). Due to the diffusive nature of the investigated trajectory, the
histograms related to |v|, α and p21 have not been reported. In the insets of panels (g)
and (i), the values proposed for the corresponding parameter (D and p12, respectively) are
shown as a function of the iteration step.
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The results of the MCMC Bayesian analysis of nineteen SPT trajectories are
summarized in Tables 7.1 and 7.2, with the recovered diffusion coefficients, drift
speeds, transition rates, transition probabilities, equilibrium probabilities for states
(1) and (2) and effective drift speeds.
The typical diffusion coefficients ∼ 10−4 µm2/s agree with the results of Temporal
Image Correlation Spectroscopy. The probabilities p12 an p21 retrieved by SPT (Table
7.1) correspond to an equilibrium probability Peq2 typically varying between 0 and
0.2 (Table 7.2): SPT identifies therefore short-lived phases of directed transport,
with a typical duration of a few seconds. Notably, this typical residence time in

trajectory D (µm2/s) |v| (µm/s) p12 p21

1 (1.3±0.1)x10−4 0.06±0.01 0.01±0.01 0.8±0.2
2 (7±1)x10−4 0.21±0.02 0.03±0.02 0.6±0.2
3 (9±1)x10−4 0.09±0.01 0.02±0.02 0.4±0.1
4 (9.7±0.1)x10−4 0.052±0.004 0.04±0.02 0.8±0.1
5 (1.12±0.01)x10−4 0.026±0.004 0.07±0.03 0.3±0.1
6 (8±1)x10−5 0.04±0.01 0.02±0.01 0.7±0.1
7 (1.0±0.1)x10−3 0.08±0.03 0.1±0.1 0.7±0.1
8 (7±1)x10−4 0.13±0.02 0.03±0.02 0.7±0.1
9 (6.3±0.4)x10−4 0.28±0.01 0.005±0.003 0.93±0.04
10 (3.0±0.2)x10−4 0.16±0.02 0.000±0.003 0.9±0.1
11 (1.5±0.1)x10−4 0.08±0.01 0.01±0.01 0.6±0.1
12 (1.0±0.2)x10−4 0.02±0.01 0.07±0.07 0.8±0.1
13 (6±1)x10−5 0.012±0.004 0.04±0.03 0.2±0.1
14 (1.1±0.3)x10−4 0.11±0.01 0.00±0.03 0.2±0.1
15 (5±1)x10−5 0.003±0.001 0.6±0.2 0.1±0.1
16 (5±1)x10−5 0.06±0.01 0.000±0.002 0.91±0.04
17 (8±1)x10−5 0.028±0.003 0.02±0.01 0.8±0.1
18 (2.0±0.1)x10−4 0.05±0.01 0.02±0.01 0.7±0.1
19 (5±1)x10−5 0.09±0.01 0.03±0.02 0.5±0.1

Table 7.1: Bayesian analysis of Single Particle Tracking data. Diffusion coefficient, drift speed
and transition probabilities recovered by the Bayesian analysis of nineteen SPT trajectories
collected in GNSs-treated HeLa cells. The corresponding transition rates, equilibrium
probabilities and effective drift speed are reported in Table 7.2.
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trajectory k12 (s−1) k21 (s−1) P
eq
1 P

eq
2 |veff| (µm/s)

1 0.01±0.01 0.6±0.3 0.98±0.01 0.02±0.01 (9±8)x10−4

2 0.02±0.01 0.4±0.3 0.95±0.05 0.05±0.05 (1.0±0.9)x10−2

3 0.01±0.01 0.20±0.05 0.95±0.05 0.05±0.05 (4±3)x10−3

4 0.03±0.02 0.7±0.3 0.96±0.03 0.04±0.03 (2±1)x10−3

5 0.03±0.02 0.2±0.1 0.8±0.1 0.2±0.1 (4±2)x10−3

6 0.02±0.01 0.5±0.2 0.97±0.02 0.03±0.02 (1.3±0.8)x10−3

7 0.08±0.05 0.5±0.2 0.87±0.08 0.13±0.08 (1.1±0.8)x10−2

8 0.02±0.01 0.5±0.2 0.96±0.03 0.04±0.03 (6±5)x10−3

9 0.006±0.004 1.1±0.2 0.99±0.01 0.01±0.01 (2±1)x10−3

10 0.005±0.004 1.0±0.2 0.99±0.01 0.01±0.01 (9±6)x10−4

11 0.006±0.004 0.4±0.1 0.99±0.01 0.01±0.01 (1.2±0.9)x10−3

12 0.07±0.07 0.8±0.3 0.9±0.1 0.1±0.1 (2±1)x10−3

13 0.02±0.01 0.08±0.05 0.8±0.1 0.2±0.1 (2±1)x10−3

14 0.00±0.01 0.11±0.05 1.0±0.1 0.0±0.1 –
15 0.5±0.4 0.07±0.06 0.1±0.1 0.9±0.1 (2.6±0.9)x10−3

16 0.003±0.002 1.0±0.2 1.00±0.01 0.00 ±0.01 –
17 0.02±0.01 0.7±0.2 0.97±0.02 0.03±0.02 (8±5)x10−4

18 0.014±0.007 0.4±0.1 0.97±0.02 0.03±0.02 (1.4±0.8)x10−3

19 0.01±0.01 0.2±0.1 0.95±0.04 0.05±0.04 (5±4)x10−3

Table 7.2: Bayesian analysis of Single Particle Tracking data. Transition rates, equilibrium
probabilities and effective drift speed recovered by the Bayesian analysis of nineteen SPT
trajectories collected in GNSs-treated HeLa cells. The trajectories compatible with a purely
diffusive dynamics (Peq1 =0) are those corresponding to a dwell time in state (2) τ2=1/k21
less than, or close to, the detection limit of 2.5 s defined by the temporal resolution of the
SPT experiment.

state (2), defined as τ2=1/k21 ∼ 10 s, agrees with the duration of the force generated
by molecular motor proteins along microtubules, as reported in the literature [273].
During their dwell in state (2), vesicles typically exhibit a relatively high drift speed
|v| ∼ 10−2 µm/s: even though the active transport regime lasts for a few trajectory
steps, the drift speed allows imparting sufficient directionality to the particle
trajectories to produce the overall super-diffusive behavior observed experimentally.
When weighted by the equilibrium probability Peq2 of the active transport state
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(according to the definition of effective drift velocity previously introduced), the
drift speed recovered by SPT reduces to the ∼ 10−3 µm/s drift speed I have obtained
by TICS and STICS.
The discrepancy between the drift speeds obtained by SPT and fluctuation-based
Image Correlation analyses is, however, the result of a limited comparison between
the Bayesian analysis of intermittent trajectories and the TICS and STICS analyses
of the only regions of interest exhibiting a simpler diffusion+drift dynamics (up
to this Chapter, no estimate for the drift speed has been recovered by Image
Correlation in the presence of intermittent active transport) . Anticipated here,
the comparison between the drift speed values measured by TICS, STICS and
Single Particle Tracking will be deepened and considered in more detail in Chapter
8, once accomplished the measurement of the intermittent-model parameters by
Fourier-space Image Correlation Spectroscopy.

7.4 Numerical simulations

The results presented so far in this Chapter suggest the compatibility of the
two-state intermittent dynamics (eq. 6.37) with the GNSs intracellular transport.
An additional confirmation of the compatibility of the experimental data with
the assumed transport model can be achieved by verifying that the very same
intermittency might produce the anomalous, non-linear displacement of the peak
of the spatio-temporal correlation function when a STICS analysis is performed.
As in the case of Lévy flights, numerical simulations can be of help in performing
such a validation.
In order to simulate single-particle trajectories arising from a two-state intermittent
dynamics with given D, |v|, α, p12 and p21 values, a discrete Markov chain is
initially generated from the p12 and p21 probabilities to assign the sequence of
state occupancies [248]. Specifically, the particle state at the first time point is
assigned by comparing a pseudo-random number r, extracted in the interval (0, 1),
with the equilibrium probabilities: if r ≤ Peq1 , s(t1)=1; otherwise, s(t1)=2. Then at
each time point tj a new random number r is extracted within the same interval
(0, 1): if s(tj−1)=1 and r ≤ p12, s(tj)=2; if s(tj−1)=2 and r ≤ p21, s(tj)=1; otherwise
s(tj−1)=s(tj) and the state is kept unchanged.
Once the state sequence s has been generated, it is employed to define the particle
displacements at each time point. When the particle is in state (1) at time tj, a
Brownian jump lj is extracted from a Gaussian distribution with variance 2D∆t
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and zero mean, and an arbitrary jump direction γj is assigned by extracting a
pseudo-random number from a flat distribution in the interval [0, 2π]; when the
particle is in state (2), the displacement is computed by vectorially adding a term
v∆t to a Brownian jump. Formally, the coordinates update starts from randomly
assigned initial coordinates (x0, y0) and proceeds according to

x(tj+1) = x(tj) + lj cosγj if s(tj) = 1

y(tj+1) = y(tj) + lj sinγj if s(tj) = 1
(7.26)


x(tj+1) = x(tj) + lj cosγj + |v| cosα∆t if s(tj) = 2

y(tj+1) = y(tj) + lj sinγj + |v| sinα∆t if s(tj) = 2
(7.27)

Finally, particle positions are converted to pixel-units coordinates and convolved
with a 2D Gaussian function with given e−2 radius to simulate the excitation of
equally bright point emitters by a focused TEM00 laser beam. The image matrix
obtained at each time point is normalized and pixel values are rounded to the
closest integer, ranging from 0 to either 255 or 4095, to simulate an 8- or 12-bit A/D
converter. Typically, 500-1000 steps are simulated for each trajectory with a time
step ∆t=2.5 s, and 64x64 or 128x128 image sizes are employed to resemble the 2-16
µm2 square ROIs on which the experimental image correlation analyses have been
performed.

The results of the numerical simulations for intermittent active transport are ex-
emplified in Fig. 7.5. Trajectories simulated with fixed D=2x10−4 µm2/s, |v|=2x10−3

µm/s, α=330°, p21=0.05 and increasing values of the probability p12 are reported.
p12 varies from 0 to 0.5, leading to an equilibrium probability Peq2 for the active
transport state varying between 0 and 0.9. When the xyt-stacks of images gener-
ated from these trajectories are analyzed by Spatio-Temporal Image Correlation
Spectroscopy, the displacement of the peak coordinates (ξ, η)max from the origin
increases with the probability Peq2 of the molecule being in state (2) but, differently
from what is expected for a simple diffusion+drift single-state system, a non-linear
trend is detected in the (ξ, η)max-vs-τ plot (Fig. 7.5g-k). Equivalently, a TICS
analysis (Fig. 7.5l) of the same image stacks leads to temporal correlation functions
G(τ) that, when forced fit to the simple diffusion+drift model (eq. 6.9), show the
same discrepancy exhibited by the experimental TICS correlation function in Fig.
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Figure 7.5: Intermittent active transport: numerical simulations. (a)-(e): single-particle trajec-
tories simulated with the formalism of Hidden Markov Models applied to the two-state
dynamics of eq. (6.37), with fixed p21=0.05 and increasing values for p12: p12=0 in (a),
0.025 in (b), 0.05 in (c), 0.1 in (d) and 0.5 in (e). The corresponding equilibrium probabilities
for the diffusion+drift state are Peq2 =0, 0.33, 0.5, 0.67 and 0.9, respectively. D, |v| and α
have been fixed to D=2x10−4 µm2/s, |v|=2x10−3 µm/s and α=330° for all the simulations.
For the sake of display, each trajectory has been translated to make the first generated
data point coincide with the origin of the Cartesian axes and only 500 steps out of a total
of 5000 simulated data points are shown. (f): MSDs for the 5000-steps long trajectories
of panels (a)-(e), with p12 increasing from the bottom to the top. Each MSD(τ) plot is
superimposed to the fit to eq. (7.13) with D, |v|, k21/k12 and τrel fixed to the simulation
input parameters. (g): coordinates (ξmax, ηmax)δx (ξmaxδx filled squares, ηmaxδx open
squares) of the peak of the STICS correlation function computed on a 1000-frames long
xyt-stack of images simulated starting from the single particle trajectory of panel (a). (h)-(k):
peak coordinates of the STICS STCF computed on the trajectories of panels (b)-(e) (with
panels h,i,j,k corresponding to panels b,c,d,e, respectively). (l): TICS correlation functions
(solid lines) computed on the same simulated xyt-stacks analyzed by STICS in panels
(g)-(k). Almost perfectly overlapping, correlation curves hamper the recovery of transport
parameters and kinetic rate constants by means of TICS. The dotted line is the forced fit to
the simpler diffusion+drift model (eq. 6.9) with the diffusion coefficient D=2x10−4 µm2/s
and the drift speed |v|=2x10−3 µm/s fixed to the simulation input parameters.
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6.7d. Globally, although not exhaustive of the full parameter space for the transi-
tion probabilities p12 and p21, these simulations confirm again the compatibility
between the experimental data reported in Fig. 6.9 and a model for the intracellular
dynamics of gold nanostars based upon intermittent active transport.

7.4.1 Effect of multiple velocity directions

I conclude this Chapter by evaluating, for the sake of completeness, a last
possible explanation for the non-linear peak displacement found in the STICS
spatio-temporal correlation functions. This explanation was not considered and
included among the theoretical models of enhanced diffusion in Chapter 6 for two
reasons: (i) this model does not rely on a super-diffusive sub-ballistic dynamics,
concerning instead the vectorial composition of multiple velocity directions in
a simple diffusive+drift process; (ii) it is only by the analysis of Single Particle
Tracking data of Figs. 7.1-7.4 that the attribution, of the anomalous STICS results, to
the simple experimental configuration described in the following can be excluded.
More in details, an anomalous displacement of the STCF peak resembling the one
found experimentally can be easily reproduced hypothesizing that the N particles
within the Region Of Interest analyzed by STICS exhibit free diffusion and uniform
drift along different directions: recalling the formalism of eq. (7.26), a different
angle αk with respect to the x-axis is considered for the drift velocity of each
kth particle. Numerical simulations can therefore be performed according to the
procedure outlined previously: each particle, now always residing in state (2),
travels at each time step a random Brownian jump, plus a jump v∆t proportional
to its drift speed. As shown in Fig. 7.6, the higher the number of the velocity
directions averaged in the computation of the spatio-temporal correlation function,
the more asymmetric the STCF becomes. This is consistent with the explicit
analytical expression of the STCF predicted for multiple populations of diffusing
and drifting objects:

g(ξ, η, τ) ∝
N∑
k=1

{[
1+

4D(ξτp + ητl +ψτf)

ω20

]−1
·

·exp
{
−
1

ω20

[ξδx− vkx(ξτp + ητl +ψτf)]
2(

1+
4D(ξτp + ητl +ψτf)

ω20

) −
1

ω20

[ηδx− vky(ξτp + ητl +ψτf)]
2(

1+
4D(ξτp + ητl +ψτf)

ω20

)
}}

(7.28)
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Figure 7.6: STICS: effect of multiple velocity directions. (a): 500-step trajectories simulated for
a D+v model with D=2x10−4 µm2/s, |v|=2x10−3 µm/s. Drift directions are sketched as
arrows. (b): MSD (mean ± s.t.d.) for all the trajectories in panel (a), fitted to eq. (7.3 ii) with
D=(1.92±0.01)x10−4 µm2/s and |v|=(2.08±0.01)x10−3 µm/s. (c): TICS ACFs computed
(eq. 6.10 with ξ, η=0) on simulated 500-frames long, 64x64 xyt-stacks encompassing the
only particle labelled as 1 in panel (a) (grey curve), particles 1 and 2 (light blue curve)
and all the particles within the bounded box in (a) (blue curve). The fit to eq. (6.9) yields
D=(1.87±0.03)x10−4 µm2/s and |v|=(1.6±0.2)x10−3 µm/s; as expected, TICS is insensitive
to the direction of drift motions while allowing the recovery of the modulus of the drift
velocity. (d)-(f): STICS correlation functions (eq. 1.56) for τ=0, 75 and 100 s (d, e, f)
computed on a simulated xyt-stack encompassing the particles labelled as 1 and 2 in panel
(a). Analytically, the STCF is a linear combination of two quasi-Gaussian terms describing
free diffusion and drift along the two directions α1=127° and α2=299°. The peak position
plotted in panel (g) is a non-linear function of τ, hampering the recovery of the modulus
and direction of drift velocity vectors (on experimental data, the analytical derivation of
the peak position of the superposition of an unknown number of quasi-Gaussian terms
would be required). (h)-(k): results of the STICS analysis on an xyt-stack encompassing
the 4.2x4.2 µm2 ROI in panel (a) (τ=0,75,125 s in h,i,j). The multiple STCF peaks resulting
from the linear combination of ten quasi-Gaussian terms are evident at τ=125 s.
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Clearly, the STCF resulting from the superposition of N single-population
correlation functions may exhibit different extent of asymmetry and, depending on
the peak position of the constituent Gaussian terms, might show more than one
resolved peak. Nevertheless, even if the STCF peak coordinates 4 vary non-linearly
with increasing lag time τ (Fig. 7.6), the MSDs of all the particles still show the
quadratic time-dependence expected from eq. (7.3 ii). The comparison with the
sub-ballistic MSDs reported in Fig. 7.1 confirms that the superposition of multiple
velocity directions cannot completely justify the experimental results presented so
far.

4The STCF is not literally a single-peak function any more, but it is still possible to track the
coordinates of the maximum value of the STCF versus the lag time τ.



Chapter 8

Gold Nanostars Intracellular
Dynamics: Results in k-Space

Single Particle Tracking provides direct insight into an appropriate effective
dynamic model to describe the intracellular transport of endocytosed gold

nanoparticles. However, while offering single-particle sensitivity and the possibility
of identifying even short-lived phases of active transport, SPT is time consuming
and computationally expensive in both the trajectory reconstruction and in the
Bayesian Markov Chain Monte Carlo likelihood maximization. Moreover, it requires
the identification of individual objects inside the cell, preventing therefore a ROI-
by-ROI analysis.
Since a straightforward approach to be applied on a whole-cell basis is desirable,
in this Chapter I extend the formalism of Image Correlation Spectroscopy to the
investigation of intermittent transport phenomena. I start from the two-state
intermittent dynamics previously considered for SPT and, once demonstrated that
the spatio-temporal correlation function cannot be analytically derived in the direct
r-space, I move to Fourier space and provide explicitly the correlation function
of k-space Image Correlation Spectroscopy (kICS) [42, 292]. At first, I evaluate
the influence of the dynamic and kinetic parameters (the diffusion coefficient, the
drift velocity and the transition rates between the active and the passive transport
regimes) on simulated kICS correlation functions. Then I outline the protocol
for data analysis and employ it to derive whole-cell maps for the parameters
underlying the GNSs intracellular dynamics.

191
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8.1 Derivation of the spatio-temporal correlation function
for 2D intermittent active transport

A few attempts have been made in the literature [8,276] in deriving the analytical
expression of the TICS and STICS correlation functions in the presence of complex
transport phenomena, resulting from the binding/unbinding of fluorescently-
labeled macromolecules to immobile cellular substrates or to unlabeled diffusing
receptors in the plasma membrane. In the first case the particle motion occurs inter-
mittently, with phases of Brownian motion alternating with periods of immobility.
The theoretical framework, which has been derived for point-FCS [8], can be readily
extended to the TICS analysis. The second case, where the overall transport can be
modeled by two diffusive states characterized by different diffusion coefficients,
has been treated [276] for k-space Image Correlation Spectroscopy [42, 292].
As suggested by the experimental results of Chapters 6 and 7, I derive here the
theoretical framework - for both STICS and its k-space version kICS - for the in-
termittent transport (eq. 6.37) that best describes the switching between phases of
planar thermal diffusion and phases of 2D active transport mediated by molecular
motors inside living cells. While previous derivations for Particle Image Correlation
Spectroscopy (PICS) [241,293] require numerical data fitting, I find for kICS an ana-
lytical solution to the problem to be employed for the analysis of the experimental
data.

I focus therefore on the unimolecular reaction of eq. (6.37),

(1) D

k12−−−−→
←−−−−
k21

D+ v (2) (8.1)

and derive the STICS spatio-temporal correlation function

G(ξ, η, τ) ≈ < δI
∗(x, y, t)δI(x+ ξ, y+ η, t+ τ) >xyt

(< I(x, y, t) >xy)2
(8.2)

assuming that fluctuations δI(x, y, t) are due to the transport phenomena under-
gone by molecules switching between a diffusive state (1) and a diffusion+drift
bound state (2). Throughout the derivation, I adopt the formalism of fluorescence
microscopy: under the hypothesis of negligible phase fluctuations (as pointed out
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in Chapter 6) the derivation is unchanged when fluctuations in a detected scattering
signal are considered.

I express the signal intensity detected at spatial coordinates x = (x, y) at time
t as a sum of the individual contributions Ii=1,2(x, t) of the molecules in the ith

state [17]: 
I(x, t) =

∑2
i=1 Ii(x, t)

Ii(x, t) = φi
∫+∞
−∞ drW(r− x)Ci(r, t)

(8.3)

As in Chapter 1, φi is the product of the detection efficiency and of the quantum
yield and absorption cross-section of the particles in state i; if Ii(x, t) represents a
scattering intensity, φi is the product of the detection efficiency and of the scattering
cross-section. Ci(r, t) is the local concentration of the particles in state i, while W(r)
is the product of the spatial distribution of the excitation intensity times the dimen-
sionless optical transfer function of the objective-pinhole combination. For negligi-
ble spatial and temporal fluctuations affecting, on the second-to-minute timescale
sampled in STICS, the molecular quantum yield and the absorption/scattering
cross-section,

δI(x, t) =

2∑
i=1

φi

∫+∞
−∞ drW(r− x)δCi(r, t) (8.4)

The substitution of eq. (8.4) into the numerator of the spatio-temporal correlation
function (8.2) yields

g(∆, τ) ≡< δI∗(x, t)δI(x+ ∆, t+ τ) >xyt=

lim
R→+∞ 1

R2

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′W∗(r−x)W(r ′−x−∆)

2∑
i,j=1

φiφj < δC
∗
i (r, t)δCj(r

′, t+τ) >t

= lim
R→+∞ 1

R2

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′W∗(r−x)W(r ′−x−∆)

2∑
i,j=1

φiφj < δC
∗
i (r, 0)δCj(r

′, τ) >

(8.5)
The vector ∆ has been introduced according to ∆ = (ξ, η)δx (δx being the pixel size)
and the spatial average has been replaced by the integral over an area R2, following
the notation of eq. (1.2) and of Subsection 1.3.3.
I proceed by deriving the concentration correlation term < δC∗i (r, 0)δCj(r

′, τ) >,
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recalling that, near equilibrium, concentrations δCi=1,2(r, t) satisfy the previously
introduced system of differential equations

∂δC1(r, t)

∂t
= D∇2δC1(r, t) − k12δC1(r, t) + k21δC2(r, t)

∂δC2(r, t)

∂t
= D∇2δC2(r, t) − v · ∇δC2(r, t) + k12δC1(r, t) − k21δC2(r, t)

(8.6)

These differential equations are conveniently solved in Fourier space; their Fourier
transforms1 yield

∂δĈ1(q, t)

∂t
= −D|q|2δĈ1(q, t) − k12δĈ1(q, t) + k21δĈ2(q, t)

∂δĈ2(q, t)

∂t
= −D|q|2δĈ2(q, t) + iq · vδĈ2(q, t) + k12δĈ1(q, t) − k21δĈ2(q, t)

(8.7)
or equivalently, for i = 1, 2,

∂δĈi(q, t)

∂t
=

2∑
j=1

MijδĈj(q, t) (8.8)

with the matrix M defined as

M =

[
−D|q|2 − k12 k21

k12 −D|q|2 + iq · v− k21

]
(8.9)

Following the formalism of Chapter 1, the solutions for δĈi=1,2(q, t) are found by
the computation of the two eigenvalues λ(s=1,2) and of the two eigenvectors χ(s=1,2)

of the matrix M [17]:

δĈi(q, t) =

2∑
s=1

χ
(s)
i exp(λ

(s)t)

2∑
k=1

χ
−1(s)
k δĈk(q, 0) (8.10)

Prior to derive λ(s=1,2) and χ(s=1,2) and to explicitly substitute them into eq. (8.10),
it is convenient to compute implicitly the concentration correlation term. As for

1The same convention f̂(q) = (2π)−d/2
∫
f(x)eiq·xddx for the Fourier transform definition of

Chapter 1 is adopted.
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eqs. (1.15)-(1.17), in the two-dimensional case one gets

< δC∗i (r, t)δCj(r
′, t+ τ) >t=< δC

∗
i (r, 0)δCj(r

′, τ) >=

=
1

(2π)

∫+∞
−∞ < δC∗i (r, 0)δĈj(q, τ) > e

−iq·r ′ dq

=
1

(2π)

∫+∞
−∞

2∑
s=1

χ
(s)
j exp(λ

(s)τ)

2∑
k=1

χ
−1(s)
k < δC∗i (r, 0)δĈk(q, 0) > e

−iq·r ′ dq

=
1

(2π)2

∫∫+∞
−∞

2∑
s=1

χ
(s)
j exp(λ

(s)τ)

2∑
k=1

χ
−1(s)
k < δC∗i (r, 0)δCk(r

′′, 0) > e−iq·(r
′−r ′′) dqdr ′′

(8.11)

For an ideal solution, denoted with < Ci > the ensemble average concentration of
the particles in state i, the zero-lag time concentration correlation can be evaluated
[11, 17] as

< δC∗i (r, 0)δCk(r
′′, 0) >=< Ci > δikδ(r− r

′′) (8.12)

so that, by carrying out the integration over r ′′ in eq. (8.11) I obtain

< δC∗i (r, 0)δCj(r
′, τ) >=

< Ci >

(2π)2

∫+∞
−∞

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i eiq·(r−r

′) dq (8.13)

By substituting eq. (8.13) and the Fourier transforms of the intensity distributions
W∗(r− x) and W(r ′ − x− ∆) into eq. (8.5) I obtain

g(∆, τ) = lim
R→+∞ 1

R2

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′

∫+∞
−∞ dqW∗(r− x)W(r ′ − x− ∆)·

·
2∑

i,j=1

{< Ci > φiφj
(2π)2

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i

}
eiq·(r−r

′) → (8.14)

g(∆, τ) =
1

(2π)4
lim
R→+∞ 1

R2

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′

∫+∞
−∞ dq

∫∫+∞
−∞ dq ′dq ′′Ŵ∗(q ′)Ŵ(q ′′)·

·
2∑

i,j=1

{
< Ci > φiφj

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i

}
eiq·(r−r

′)+iq ′·(r−x)−iq ′′·(r ′−x−∆)

(8.15)
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By now recalling eq. (1.61), and that the Dirac delta is even, g(∆, τ) can be written
as

g(∆, τ) =
1

2πR2

∫∫∫+∞
−∞ dqdq ′dq ′′Ŵ∗(q ′)Ŵ(q ′′)·

·
2∑

i,j=1

{
< Ci > φiφj

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i

}
eiq
′′·∆δ(q+ q ′)δ(q+ q ′′)δ(q ′′ − q ′)

(8.16)
Equivalently,

g(∆, τ) =
1

2πR2

∫∫∫+∞
−∞ dqdq ′dq ′′Ŵ∗(q ′)Ŵ(q ′′)R(q, τ)eiq

′′·∆δ(q+q ′)δ(q+q ′′)δ(q ′′−q ′)

(8.17)
where, for the sake of compactness, sums have been replaced by the q- and τ-
function R(q, τ).
The successive integrations over q and q ′′ and a final 2D change of variable k = −q ′

lead to

g(∆, τ) =
1

2πR2

∫∫+∞
−∞ dq ′dq ′′Ŵ∗(q ′)Ŵ(q ′′)R(−q ′, τ)eiq

′′·∆δ(q ′′ − q ′)δ(q ′′ − q ′) =

=
1

2πR2

∫+∞
−∞ dq ′

∣∣Ŵ(q ′)
∣∣2R(−q ′, τ)eiq ′·∆δ(0) =

= lim
R→+∞ 1

2πR2

∫+∞
−∞ dq ′

∣∣Ŵ(q ′)
∣∣2R(−q ′, τ)eiq ′·∆ R2

2π
=

=
1

(2π)2

∫+∞
−∞ dq ′

∣∣Ŵ(q ′)
∣∣2R(−q ′, τ)eiq ′·∆ =

=
1

(2π)2

∫+∞
−∞ dk

∣∣Ŵ(−k)
∣∣2R(k, τ)e−ik·∆ (8.18)

Eq. (8.18) requires now the explicit expression of R(k, τ) and of the Fourier trans-
form of the excitation intensity distribution. R(k, τ), as previously anticipated,
can be obtained by computing the eigenvalues and eigenvectors of the matrix M.
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Following the notation of eqs. (1.12)-(1.14) and (8.10),

λ(1) =
−2D|k|2 − (k12 + k21) + ik · v+

√
Λ

2

λ(2) =
−2D|k|2 − (k12 + k21) + ik · v−

√
Λ

2

Λ = (k12 + k21)
2 − |k · v|2 + 2ik · v(k12 − k21)

(8.19)

and 

χ
(1)
1 = 1

χ
(1)
2 =

D|k|2 + k12 + λ
(1)

k21

χ
(2)
1 = 1

χ
(2)
2 =

D|k|2 + k12 + λ
(2)

k21



χ
−1(1)
1 =

D|k|2 + k12 + λ
(2)

λ(2) − λ(1)

χ
−1(1)
2 = −

k21

λ(2) − λ(1)

χ
−1(2)
1 = −

D|k|2 + k12 + λ
(1)

λ(2) − λ(1)

χ
−1(2)
2 =

k21

λ(2) − λ(1)

(8.20)

By assuming that for particles in states (1) and (2) φ1 = φ2 ≡ φ, and by further
expressing the equilibrium concentrations as


< C1 >=< C >

k21
k12 + k21

< C2 >=< C >
k12

k12 + k21

(8.21)

R(k, τ) can be expressed as

R(k, τ) ≡
2∑

i,j=1

{
< Ci > φiφj

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i

}
=< C > φ2

Aeλ(1)τ + Beλ(2)τ

C
(8.22)
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with 

A = k12k21 + k12(D|k|2 + k12 + λ
(1)) − k21(D|k|2 + k12 + λ

(2))−

− (D|k|2 + k12 + λ
(1))(D|k|2 + k12 + λ

(2))

B = −k12k21 − k12(D|k|2 + k12 + λ
(2)) + k21(D|k|2 + k12 + λ

(1))+

+ (D|k|2 + k12 + λ
(1))(D|k|2 + k12 + λ

(2))

C = (k12 + k21)(λ
(1) − λ(2))

(8.23)

If a 2D Gaussian (with amplitude W0 and 1/e2 distance ω0, as in eq. 1.65) is
assumed for the excitation intensity distribution, and if is substituted into eq. (8.18)
along with the expression for R(k, τ),

g(∆, τ) =
< C > φ2(W0ω

2
0)
2

16(2π)2

∫+∞
−∞ dk

{
Aeλ(1)τ + Beλ(2)τ

C

}
exp

{
−
ω20|k|

2

4
− ik · ∆

}
(8.24)

The normalized STICS correlation function of eq. (8.2) is finally obtained by
dividing eq. (8.24) by the squared spatially-averaged intensity < I(x, y, t) >2xy=
φ2Ŵ(0)2(< C1 > + < C2 >)

2:

G(∆, τ) ≈ 1

< C > (2π)2

∫+∞
−∞ dk

{
Aeλ(1)τ + Beλ(2)τ

C

}
exp

{
−
ω20|k|

2

4
− ik · ∆

}
(8.25)

Due to the complex k-dependence of the A, B and C terms and of the eigenvalues
λ(1) and λ(2), the integral over the k variable cannot be performed analytically.
Hence eq. (8.25) provides the STICS theoretical framework for the investigation of
intermittent active transport: the dynamic parameters D and v and the association
/ dissociation rates k12 and k21 can only be recovered by employing eq. (8.25)
for a non-linear least-squares numerical fit in the complex field of experimental
correlation functions.

As described in the following, a much more convenient alternative, having the
main advantage of not requiring the numerical integration of eq. (8.25), is offered
by the Fourier-space version [42, 292] of STICS.
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8.1.1 2D intermittent active transport in Fourier space

k-space Image Correlation Spectroscopy (kICS) [42,292] relies on computing the
two dimensional spatial Fourier transform of each image of the same raster-scanned
xyt-stack analyzed by STICS, and in spatio-temporally correlating these Fourier
transforms to extract information regarding the dynamic and kinetic processes
underlying the detected signal fluctuations. Practically, the definition of eq. (8.2)
is employed for the computation of the kICS correlation function, with I(x, y, t)
now denoting the pixel value at spatial coordinates (x, y) at time t after the 2D
frame Fourier transform. As a consequence, the kICS correlation function, hereafter
referred to as G(k, τ), coincides with the Fourier transform of the STICS correlation
function G(∆, τ), and vice versa:

G(∆, τ) =
1

2π

∫+∞
−∞ G(k, τ)e−ik·∆dk (8.26)

If eq. (8.25) is recalled, its comparison with eq. (8.26) directly yields the normalized
kICS correlation function in the form

G(k, τ) ∝ Aeλ(1)τ + Beλ(2)τ

C
exp

{
−
ω20|k|

2

4

}
(8.27)

As before, the eigenvalues λ(1) and λ(2) and the A, B and C terms are given by eqs.
(8.19) and (8.23).

8.2 Limits of the kICS correlation function

I now verify that the kICS correlation function I derived for intermittent active
transport correctly reduces to the expected functional forms when a single purely
diffusive state or a single diffusion+drift state are considered.

• A single purely diffusive state is recovered from the two-state dynamics of
eq. (8.1) in the limit |v|→ 0: in this case, having assumed that the diffusion
coefficient D does not vary upon binding of molecular motor proteins and
cellular vesicles, states (1) and (2) coincide (exhibit equal transport properties).
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The eigenvalues of the matrix M satisfy
λ(1) −−−→

|v|→0 −D|k|2

λ(2) −−−→
|v|→0 −D|k|2 − (k12 + k21)

(8.28)

This leads to 

A −−−→
|v|→0 (k12 + k21)

2

B −−−→
|v|→0 0

C −−−→
|v|→0 A

(8.29)

When substituted into eq. (8.27), eqs. (8.28) and (8.29) yield the kICS cor-
relation function reported in the literature [292] for the simple diffusive
case:

G(k, τ) −−−→
|v|→0 exp

{
−|k|2

[
ω20
4

+Dτ

]}
(8.30)

• In the limit k12 → +∞ and k21 → 0, molecules tend to exclusively populate
state (2), exhibiting Brownian diffusion and uniform drift. Since

Λ = (k12 + k21)
2 − |k · v|2 + 2ik · v(k12 − k21) −−−−−−−−−−−→

k12→+∞ , k21→0
−−−−−−−−−−−→
k12→+∞ , k21→0 (k12 + k21)

2 − |k · v|2 + 2ik · v(k12 + k21) =

= (k12 + k21 + ik · v)2 ≈ (k12 + ik · v)2 (8.31)

the eigenvalues of the matrix M turn into
λ(1) −−−−−−−−−−−→

k12→+∞ , k21→0 −D|k|2 + ik · v

λ(2) −−−−−−−−−−−→
k12→+∞ , k21→0 −D|k|2 − k12

(8.32)
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The A and B terms can therefore be rewritten as

A −−−−−−−−−−−→
k12→+∞ , k21→0 k12(k12 + ik · v)

B −−−−−−−−−−−→
k12→+∞ , k21→0 0

C −−−−−−−−−−−→
k12→+∞ , k21→0 A

(8.33)

This yields, in agreement with the literature [292],

G(k, τ) −−−−−−−−−−−→
k12→+∞ , k21→0 exp

{
−
ω20|k|

2

4
−

[
D|k|2 − ik · v

]
τ

}
(8.34)

8.3 Extension to 3D intermittent active transport

Throughout Section 8.1, I have assumed that the fluctuations in the detected
scattering signal originate from the two-dimensional Brownian diffusion and drift
undergone by particles switching between a free state (1) and a bound state (2)
while in the focal plane. I now attempt to extend the same formalism to the more
general case of three-dimensional diffusion and directional transport: I maintain
therefore an isotropic diffusion coefficient D, and I introduce a 3D drift velocity
v = (vx,vy,vz). I call α and φ the angles subtended by the vector v in the xy-plane
and with the z-axis, respectively (with φ = 90° corresponding to a vanishing z-
component vz = 0), so that v = (|v| cosα sinφ, |v| sinα sinφ, |v| cosφ).
I derive the STICS correlation function G(∆, τ) by assuming at first a three-
dimensional shift vector ∆ = (ξ, η, ζ)δx. Eq. (8.5) (i.e., the numerator of the
STICS correlation function) turns into

g(∆, τ) = lim
R→+∞ 1

R3

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′W∗(r− x)W(r ′ − x− ∆)·

·
2∑

i,j=1

φiφj < δC
∗
i (r, 0)δCj(r

′, τ) >

(8.35)

with three-dimensional vectors ∆, x, v, r and r ′ replacing the same vectors pre-
viously defined in 2D. By the same substitution of all the 2D vectors with the
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corresponding 3D counterparts, the Fick’s equation, the eigenvalues and eigenvec-
tors of the matrix M and the concentration fluctuations δĈi=1,2(q, t) can be directly
obtained from eqs. (8.6)-(8.10) and (8.19)-(8.20). Hence, similarly to eq. (8.13),

< δC∗i (r, 0)δCj(r
′, τ) >=

< Ci >

(2π)3

∫+∞
−∞

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i eiq·(r−r

′) dq (8.36)

By substituting eq. (8.36) and the Fourier transforms of the 3D intensity distribu-
tions W∗(r− x) and W(r ′ − x− ∆) into eq. (8.35), I obtain

g(∆, τ) =
1

(2π)6
lim
R→+∞ 1

R3

∫R/2
−R/2

dx

∫∫+∞
−∞ drdr ′

∫+∞
−∞ dq

∫∫+∞
−∞ dq ′dq ′′Ŵ∗(q ′)Ŵ(q ′′)·

·
2∑

i,j=1

{
< Ci > φiφj

2∑
s=1

χ
(s)
j exp(λ

(s)τ)χ
−1(s)
i

}
eiq·(r−r

′)+iq·(r−x)−iq ′′·(r ′−x−∆)

(8.37)

By extending the procedure outlined in eqs. (8.16)-(8.18) to the 3D case,

g(∆, τ) = −
1

(2π)3

∫+∞
−∞ dk|Ŵ(−k)|2R(k, τ)e−ik·∆ (8.38)

As previously anticipated, R(k, τ) has the functional form of eq. (8.22) with three-
dimensional vectors k and v. For the excitation intensity distribution, the 3D
Gaussian with amplitude W0 and 1/e2 distances ω0 and ω0z of eq. (1.19) is
assumed. When it is substituted with R(k, τ) into eq. (8.38), it leads to

G(∆, τ) ∝
∫+∞
−∞ dk

{
Aeλ(1)τ + Beλ(2)τ

C

}
exp

{
−
ω20(k

2
x + k

2
y) +ω

2
0zk

2
z

4
− ik · ∆

}

∝
∫+∞
−∞ dkF(k, τ)e−ik·∆

(8.39)

with

F(k, τ) ≡
{
Aeλ(1)τ + Beλ(2)τ

C

}
exp

{
−
ω20(k

2
x + k

2
y) +ω

2
0zk

2
z

4

}
(8.40)
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All the k-independent constant terms and the normalization factors have been
included in the proportionality symbol.

As in Section 8.1, the integral over the k-variable in eq. (8.39) can not be
performed analytically, preventing the recovery of the explicit expression for the
STICS correlation function. Moreover, since the images are acquired in the xy-plane
only, no spatial lag can be introduced along the z-axis, and the shift vector ∆ in eq.
(8.39) necessarily has a null component along the z-axis: ∆ = (ξ, η, 0)δx. Eq. (8.39)
yields therefore

G(∆, τ) = G(ξ, η, 0, τ) ∝
∫∫∫+∞

−∞ dkxdkydkzF(kx, ky, kz, τ)e
−i(kxξδx+kyηδx)

=

∫∫+∞
−∞ dkxdkye

−i(kxξδx+kyηδx)

∫+∞
−∞ dkzF(kx, ky, kz, τ) (8.41)

Recalling that the kICS correlation function is computed by the two-dimensional
spatial Fourier transform of the xyt-stack of the raw data (the images are acquired
in the xy-plane only, so that no Fourier transform can be performed along the
z-direction) [292], the integral∫+∞

−∞ dkzF(kx, ky, kz, τ) ≡ G(kx, ky, τ) (8.42)

appearing in eq. (8.41) provides the kICS correlation function for the intermittent
three-dimensional dynamics. Unfortunately, the complexity of F(k, τ) (eq. 8.40)
prevents the analytical solution of the integral.2

Summarizing, no analytical solution can be obtained within the formalism of
Spatio-Temporal Image Correlation Spectroscopy when investigating intermittent
active transport, neither in 2D nor in 3D; by contrast, starting from an xyt-stack of
images, an analytical solution can be found in the reciprocal Fourier-space when
the diffusion and drift motion exhibited by the imaged particles mainly occur in

2If the experimental data are acquired in the form of xyzt-stacks - so that 3D volumes are
repeatedly acquired in time - a three-dimensional Fourier transform can in principle be computed.
The STICS correlation function can be computed in the direct space as a function of three spatial
delays ξ, η and ζ, while the kICS correlation function would depend on a 3D k-vector, with non-zero
z component. Under this condition, an analytical solution for the kICS correlation function can be
obtained, and it is provided directly by eq. (8.40).
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the focal plane. I adopt therefore the 2D approximation for the investigation of the
intermittent dynamics of nanostars-containing vesicles in HeLa cells (exactly as for
the Single Particle Tracking analysis), and I finally verify, at the end of this Chapter,
that the hypothesis of 2D motion is sufficient for the accurate description of the
experimental data.

8.4 Simulated kICS correlation functions

The kICS correlation function G(k, τ) is effectively a time-series in the complex
field, with each frame being the average 2D spatial correlation of the Fourier trans-
forms of pairs of images a lag time τ apart in the experimental dataset. Therefore,
two choices are possible for data fitting: either analyzing the G(k, τ)-vs-τ profiles
at fixed k delays, or fitting the G(k, τ)-vs-k surfaces at fixed lag time τ.
In order to assess which option offers the greater sensitivity and gives the bet-
ter estimate of the parameters (diffusion coefficient D, drift velocity v, associa-
tion/dissociation rates k12 and k21), I have investigated separately the effect of D,
|v|, k12 and k21 on simulated kICS correlation functions in both the representations.
Since G(k, τ) is defined in the complex field, for both G(k, τ)-vs-τ profiles and
G(k, τ)-vs-k surfaces I have evaluated the real and imaginary parts: these will be
hereafter referred to as Re(G(τ)), Im(G(τ)) (in the case of G(k, τ)-vs-τ profiles), or
as Re(G(k)), Im(G(k)) (in the case of G(k, τ)-vs-k surfaces).3

8.4.1 kICS profiles

I begin by considering G(k, τ)-vs-τ profiles. These have been simulated, accord-
ing to eq. (8.27), for a fixed Fourier-space vector k = (kx, ky)=(-2,0) µm−1 and for
τ comprised in the broad range 0-250 s. In order to probe the sensitivity of the
kICS correlation profiles toward the transition rates (or equivalently, the transition
probabilities defined in eq. 7.17), Re(G(τ)) and Im(G(τ)) profiles have been initially
simulated with D=2x10−4 µm2/s, |v|=0.08 µm/s and with an arbitrary direction
α=290° for the drift velocity; several probability combinations have been evaluated:

• p12=0.05 and p21=0.05, 0.1, 0.3, 0.5, 0.7, 0.9;
3I remark that, although the real and imaginary parts of the kICS correlation function (eq. 8.27)

cannot be analytically separated, they can be simulated separately: a custom-written Python code
is employed to compute, for any given parameter set, G(k, τ) and to evaluate, given the complex
number, its real and imaginary parts.
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• p12=0.2 and p21=0.05, 0.1, 0.3, 0.5, 0.7;

• p12=0.5 and p21=0.05, 0.1, 0.2, 0.3, 0.4.

These probability combinations correspond to an equilibrium probability for the
active transport state Peq2 varying in the range 0.05-0.9, so that the kICS correlation
profiles could be evaluated for all the possible intermittent transport modes ranging
from nearly diffusive to almost totally active.
The results of these simulations are reported in Fig. 8.1. Simulated Re(G(τ)) profiles
and Im(G(τ)) profiles are separated (with Re(G(τ)) profiles in the left column, and
Im(G(τ)) profiles in the right column) and color-coded according to the probability
p12: p12=0.05 for dashed blue curves, p12=0.2 for dotted pink curves and p12=0.5
for solid light blue curves. In each panel, at fixed p12, the probability p21 increases
in the direction of the arrow. The comparison of all the Re(G(τ)) profiles (panels a,
c and e) highlights they are significantly affected by the probability combinations:
the higher the probability p12, the more oscillatory is the behavior of the simulated
curves. The same applies to Im(G(τ)) profiles, as apparent when comparing panels
b, d and f.

The same k vector, diffusion coefficient, drift angle and probability combinations
have been subsequently employed for the simulation of Re(G(τ)) and Im(G(τ))
profiles at lower |v| values. Drift speeds |v|=0.01 µm/s and 0.001 µm/s have been
adopted, to include in the explored range of speed values those previously mea-
sured by TICS, STICS and SPT.
The Re(G(τ)) and Im(G(τ)) profiles simulated with |v|=0.01 µm/s are reported in
Fig. 8.2, while Fig. 8.3 shows the profiles simulated with |v|=0.001 µm/s. The same
color code of Fig. 8.1 is adopted, with blue, pink and light blue curves correspond-
ing to p12=0.05, 0.2 and 0.5 respectively; as before, for each value of p12 the direction
of the arrow codes for increasing values of the transition probability p21. Looking
globally at Figs. 8.1, 8.2 and 8.3, it is apparent that: (i) especially at low drift speed,
the imaginary part (Im(G(τ)) profiles) exhibit the highest sensitivity toward p12
and p21 values; (ii) the oscillatory behavior of the Re(G(τ)) and Im(G(τ)) plots is
mainly regulated by the modulus |v| of the drift speed, and it disappears for low
|v| values; (iii) the higher the speed |v|, the higher is the sensitivity of the Re(G(τ))
and Im(G(τ)) profiles toward variations in the probability values.
In general, the possibility of recovering the speed |v| and the probabilities p12 and
p21 from Re(G(τ)) or Im(G(τ)) profiles seem to increase for higher values of the
drift speed and of the probability p12. This can be explained by recalling that the
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Figure 8.1: kICS simulations: effect of the transition probabilities (I). (a), (b): simulated Re(G(τ))
and Im(G(τ)) profiles (in a and b respectively) for fixed k=(-2,0) µm−1, D=2x10−4 µm2/s,
|v|=0.08 µm/s and α=290°. p12=0.05 and p21=0.05, 0.1, 0.3, 0.5, 0.7, 0.9; p21 increases in the
direction of the arrow. (c), (d): Re(G(τ)) and Im(G(τ)) profiles (in c and d respectively)
simulated with the same parameters of panels (a) and (b), apart from the transition
probabilities: here p12=0.2 and p21=0.05, 0.1, 0.3, 0.5, 0.7, increasing in the direction of
the arrow. (e), (f): Re(G(τ)) and Im(G(τ)) profiles (in e and f respectively) simulated with
the same parameters of panels (a) and (b), apart from p12=0.5 and p21=0.05, 0.1, 0.2, 0.3,
0.4; p21 increases in the direction of the arrow. Probability values have been provided
as simulation input parameters; then a time step ∆t=2.5 s has been employed to derive
the corresponding transition rates k12 and k21, inserted into eq. (8.27) for the profiles
simulation.
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Figure 8.2: kICS simulations: effect of the transition probabilities (II). (a)-(f): simulated Re(G(τ))
and Im(G(τ)) profiles (real parts in a, c and e; imaginary parts in b, d and f) for fixed
k=(-2,0) µm−1, D=2x10−4 µm2/s, α=290° and |v|=0.01 µm/s. The same color code of Fig.
8.1 is adopted: p12=0.05 and p21=0.05, 0.1, 0.3, 0.5, 0.7, 0.9 for blue dashed curves; p12=0.2
and p21=0.05, 0.1, 0.3, 0.5, 0.7 for pink dotted curves; p12=0.5 and p21=0.05, 0.1, 0.2, 0.3, 0.4
for light blue solid curves; p21 always increases in the direction of the arrow. As in Fig.
8.1, probability values have been provided as simulation input parameters; then a time
step ∆t=2.5 s has been employed to derive the corresponding transition rates k12 and k21,
inserted into eq. (8.27) for the profiles simulation.
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Figure 8.3: kICS simulations: effect of the transition probabilities (III). (a)-(f): simulated Re(G(τ))
and Im(G(τ)) profiles (real parts in a, c and e; imaginary parts in b, d and f) for fixed
k=(-2,0) µm−1, D=2x10−4 µm2/s, α=290° and |v|=0.001 µm/s. The same color code of Fig.
8.1 is adopted: p12=0.05 and p21=0.05, 0.1, 0.3, 0.5, 0.7, 0.9 for blue dashed curves; p12=0.2
and p21=0.05, 0.1, 0.3, 0.5, 0.7 for pink dotted curves; p12=0.5 and p21=0.05, 0.1, 0.2, 0.3, 0.4
for light blue solid curves; p21 always increases in the direction of the arrow. As in Fig.
8.1, probability values have been provided as simulation input parameters; then a time
step ∆t=2.5 s has been employed to derive the corresponding transition rates k12 and k21,
inserted into eq. (8.27) for the profiles simulation.
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lower |v|, the more similar are the transport properties of states (1) and (2); similarly,
the lower the transition probability p12, the smaller are the effect of the drift speed
and the deviation of the particle motion from a purely diffusive one.

Having evaluated the effect of |v| and of the transition probabilities, I now turn
to the diffusion coefficient. Like |v|, also the diffusion coefficient D significantly
affects the simulated Re(G(τ)) and Im(G(τ)) plots. This is shown in Fig. 8.4 for D
in the range 2x10−5-2x10−3 µm2/s, with exemplifying profiles simulated with fixed
k=(-2,0) µm−1, |v|=0.001 µm/s, α=290°, p12=0.05 and p21=0.5.
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Figure 8.4: kICS simulations: effect of the diffusion coefficient. (a), (b): simulated Re(G(τ)) and
Im(G(τ)) profiles (in a and b respectively), for fixed k=(-2,0) µm−1, |v|=0.001 µm/s, α=290°,
p12=0.05 and p21=0.5. D=2x10−5, 8x10−5, 2x10−4, 8x10−4 and 2x10−3 µm2/s, increasing
in the direction of the arrow.

8.4.2 Fitting real and imaginary parts

The sensitivity of G(k, τ)-vs-τ profiles toward the model parameters, explored
in Figs. 8.1-8.4 for the real and imaginary parts, suggests that the non-linear fit of
experimental temporal kICS profiles should allow the recovery of D, |v|, k12 and
k21.
The obvious way to simultaneously account for both the real and imaginary parts
of these G(k, τ)-vs-τ kICS plots would consist in performing a non-linear global
fit in the complex field. Alternatively, in order to fasten and simplify the fitting
procedure, a combination (for example the ratio, or the product) of the Re(G(τ))
and Im(G(τ)) profiles can be exploited.
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In Fig. 8.5 (panels a-c), the product Re(G(τ)) · Im(G(τ)) has been simulated
for fixed k=(-2,0) µm−1, D=2x10−4 µm2/s, |v|=0.08 µm/s and α=290°. The same
probability combinations, and the same color code, of Figs. 8.1-8.3 have been
adopted, to evidence that the product of the real and imaginary parts depends
sensibly upon the transition rates of the intermittent model. The same applies
when the drift speed is reduced to 0.01 µm/s (Fig. 8.5, panels d-f) and to 0.001
µm/s (Fig. 8.5, panels g-i).
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Figure 8.5: kICS simulations: product of the real and imaginary parts of G(k, τ)-vs-τ profiles.
(a)-(c): Re(G(τ)) · Im(G(τ)) profiles simulated according to eq. (8.27) for fixed k=(-2,0)
µm−1, D=2x10−4 µm2/s, α=290° and |v|=0.08 µm/s. The same probability combinations
and color code of Figs. 8.1-8.3 are employed: p12=0.05 for blue curves (in a), p12=0.2 for
pink curves (in b) and p12=0.05 for light blue curves (in c); for each p12, the probability p21
increases along the arrow according to the probability combinations previously defined.
(d)-(f): same simulation parameters and color code of (a)-(c), apart from |v|=0.01 µm/s.
(g)-(i): same simulation parameters and color code of (a)-(c), apart from |v|=0.001 µm/s.
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In the sensitivity toward the transition rates of the intermittent model, the
product Re(G(τ)) · Im(G(τ)) outperforms the ratio Im(G(τ))/Re(G(τ)): the ratio
corresponds to the tangent of the phase of the complex number G(τ), and exhibits
the periodic divergences of a tangent function. Equivalently, the modulus |G(τ)|2,
given by Re(G(τ))2 + Im(G(τ))2, is always positive and flattens the behavior of the
curves becoming less sensitive to the parameters. Both the ratio Im(G(τ))/Re(G(τ))
and the modulus |G(τ)|2 are simulated in Fig. 8.6, with the same simulation input
parameters adopted for the product Re(G(τ)) · Im(G(τ)) in Fig. 8.5a-c.

8.4.3 Fourier-space vectors selection

All the G(k, τ)-vs-τ profiles in Figs. 8.1-8.6 have been simulated for a fixed
arbitrary k vector k=(-2,0) µm−1. As a rule of thumb, no particular k vector is
preferable for the extraction of kICS temporal profiles. This is shown in Fig. 8.7,
with an exemplary simulated Re(G(k)) · Im(G(k)) surface (at fixed lag time τ=75 s)
and with the Re(G(τ)) · Im(G(τ)) profiles extracted in several k coordinates: the
kx and ky components affect the amplitude and shape of the Re(G(τ)) · Im(G(τ))
profiles but, these variations being explicitly accounted for in the analytical expres-
sion of the kICS correlation function, no specific k value is identified as better than
others for the curves fitting procedure and for the consequent recovery of transport
and kinetic parameters.

8.4.4 kICS surfaces

Once inspected the dependence of G(k, τ)-vs-τ profiles on the parameters of the
intermittent model, I evaluate G(k, τ)-vs-k surfaces. In Fig. 8.8a-b, I report the prod-
uct of the real and imaginary parts of the G(k, τ)-vs-k surfaces simulated, according
to eq. (8.27), for a fixed lag time τ=25 s with D=2x10−4 µm2/s, α=290° and |v|=0.08
µm/s; the probability combination {p12 = 0.5, p21 = 0.05} is adopted for panel (a),
whereas {p12 = 0.05, p21 = 0.9} is employed in panel (b). These two combinations
for the transition probabilities are those producing the largest difference in the
temporal Re(G(τ)) and Im(G(τ)) profiles shown in Fig. 8.1. Correspondingly, a
large difference in the surfaces is found here (Fig. 8.8a-b), suggesting that a reli-
able recovery of transition rates is also allowed when fitting G(k, τ)-vs-k surfaces.
However, when all the simulation parameters are kept unchanged apart from a
reduction of the drift speed |v| to 0.001 µm/s, the differences in the simulated sur-
faces practically disappear (Fig. 8.8c-d): this makes G(k, τ)-vs-k surfaces much less
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Figure 8.6: kICS simulations: options for data fitting. (a)-(c): simulated Im(G(τ))/Re(G(τ)) for
fixed k=(-2,0) µm−1, D=2x10−4 µm2/s, |v|=0.08 µm/s and α=290°. The same probability
combinations of Figs. 8.1-8.3 are employed, with color-coded p12, and with p21 increasing
in the direction of the arrow. The periodic diverges make the ratio Im(G(τ))/Re(G(τ)) an
inconvenient choice when aiming at the fit of experimental data. (d)-(f): modulus |G(τ)|2

simulated with the same parameters and color code of panels (a)-(c). In (f) an irregular trend
is found for varying p21, and no arrow is reported. (g)-(i): Re(G(τ))2 − Im(G(τ))2 profiles
simulated with the same parameters and color code of panels (a)-(c). Re(G(τ))2−Im(G(τ))2

(equal to the real part of G2(τ)) resembles Re(G(τ)) · Im(G(τ)) (half the imaginary part of
G2(τ)) in its sensitivity to variations in the probability values. Globally, it is convenient to
employ either Re(G(τ))2 − Im(G(τ))2 or Re(G(τ)) · Im(G(τ)) profiles for the recovery of
probability combinations from the kICS experimental data.
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Figure 8.7: kICS simulations: k vector selection. (a): product of the real and imaginary
parts, reported for τ=75 s, of the kICS correlation function G(k, τ) simulated for D=2x10−4

µm2/s, |v|=0.001 µm/s, α=290° (indicated by the arrow), p12=0.4 and p21=0.05. For the
sake of display, the 64x64 pixels2 correlation function has been cropped to only show its
non-vanishing central portion. (b): Re(G(τ)) · Im(G(τ)) profiles extracted for different kx
and ky values along the dashed blue line in panel (a): k varies (from purple to orange) from
(0,-10), (1,-9), (2,-8)... to (9,-1), (10,0) µm−1. (c)-(f): Re(G(τ)) · Im(G(τ)) profiles extracted
for different kx and ky values along the light blue dashed lines denoted as 1 (c), 2 (d), 3 (e)
and 4 (f) in panel (a); kx and ky are reported in each panel. (g)-(i): product of the real and
imaginary parts, reported for τ=75 s, of the kICS correlation function G(k, τ) simulated for
D=2x10−4 µm2/s, |v|=0.001 µm/s, p12=0.4 and p21=0.05; α=67° in (g), 113° in (h) and 247°
in (i) (see inset of panel a for the angle α definition). As remarked later in the text, since
the separation of the correlation lobes appears orthogonal to the flow direction, G(k, τ)
correlation surfaces at fixed lag time directly provide an estimate of the angle subtended
by the drift direction and the horizontal x-axis.
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Figure 8.8: kICS simulations: G(k, τ)-vs-k surfaces. (a), (b): product of the real and imaginary
parts of the G(k) surface simulated for τ=25 s with D=2x10−4 µm2/s, |v|=0.08 µm/s and
α=290°; {p12 = 0.5, p21 = 0.05} in (a), {p12 = 0.05, p21 = 0.9} in (b). (c), (d): product of
the real and imaginary parts of the G(k) surface simulated for τ=25 s with D=2x10−4

µm2/s, |v|=0.001 µm/s and α=290°; {p12 = 0.5, p21 = 0.05} in (c), {p12 = 0.05, p21 = 0.9} in
(d). (e): Re(G(τ)) · Im(G(τ)) plots simulated in k=(-2,0) µm−1 with the same D=2x10−4

µm2/s, |v|=0.08 µm/s and α=290°; {p12 = 0.5, p21 = 0.05} for the light blue curve, {p12 =
0.05, p21 = 0.9} for the blue curve. (f): Re(G(τ)) ·Im(G(τ)) plots simulated in k=(-2,0) µm−1

with the same D=2x10−4 µm2/s, |v|=0.001 µm/s and α=290°; {p12 = 0.5, p21 = 0.05} for
the light blue curve, {p12 = 0.05, p21 = 0.9} for the blue curve. The comparison of panels
(c), (d) and (f) clearly suggests exploiting temporal profiles rather than kICS surfaces.

sensitive to the probability values with respect to the temporal Re(G(τ)) · Im(G(τ))
plots (shown with the same simulation parameters in Fig. 8.8e-f).
The only advantage of G(k, τ)-vs-k surfaces is that they allow the immediate de-
tection of the drift direction, which is orthogonal to the displacement between the
positive and the negative lobes: previously shown in Fig. 8.7, this is also evidenced
in Fig. 8.8a-d.

Fig. 8.8 also reveals that Re(G(k)) · Im(G(k)) surfaces de-correlate, for the
typical D and |v| values recovered by TICS, STICS and SPT, in the 0-10 µm−1
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k-range. When a confocal xyt-stack is Fourier transformed, the pixel size and
the ROI size determine the obtained k vectors [42]: an adequate sampling of 0-10
µm−1 reciprocal-space vectors starting from a 64x64 ROI would require a pixel
size of ∼ 0.2 µm. This coarse spatial sampling required by G(k, τ)-vs-k surfaces
could be obtained on the same experimental dataset analyzed by STICS by pixel
re-binning, at the expense of the number of pixels on which the correlation function
is averaged. Alternatively the ROI size can be increased, thereby lowering the
number of ROIs into which the image (the cell, in the present case) is divided. By
contrast, as demonstrated with Fig. 8.7, even a single k vector can be exploited
to extract the corresponding G(k, τ)-vs-τ plot, with the same temporal sampling
suitable for STICS.

Summarizing, provided the considerations of Subsections 8.4.1-8.4.4 and taking
into account the computationally heavier effort in performing surface fitting of a
complex function, I suggest to fit the experimental G(k, τ)-vs-τ plots due to the
higher sensitivity towards the model probabilities and the less strict requirements
concerning spatial sampling. To increase the precision in the parameters recovery
and to decrease the degree of cross-correlation among the parameters in the fit,
a global fit over several Re(G(τ)) · Im(G(τ)) profiles at different k values can
eventually be performed.

8.5 kICS analysis of the nanostars intermittent dynamics

Once investigated the effect of D, |v|, p12 and p21 on the kICS correlation
function, I have employed reciprocal-space correlation spectroscopy for the analysis
of the same xyt-stacks previously examined by TICS, STICS and SPT. Each 64x64
ROI has been Fourier-transformed to yieldG(k, τ); then, Re(G(τ))·Im(G(τ)) profiles
have been extracted for selected components kx and ky and fitted according to the
2D model of eq. (8.27) to recover the dynamic and kinetic parameters.

Exemplary results are reported in Figs. 8.9-8.10 for the same three ROIs ex-
amined in Sections 6.3 and 6.4, exhibiting Brownian diffusion (ROI 1), Brownian
diffusion coupled to directed motion (ROI 2) and intermittent active transport (ROI
3).

• For ROI 1, a Re(G(τ)) profile only is reported (Fig. 8.9b, curve 1) since,
according to eq. (8.30), an identically zero imaginary part is predicted for
the kICS correlation function of a purely diffusive system. The profile can
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be equally fit to eq. (8.30) with |v|=0 (corresponding to the simple single-
state diffusive dynamics) and to eq. (8.27), with best-fit diffusion coefficient
D=(1.55±0.06)x10−4 µm2/s. I remark that when the fit is performed accord-
ing to the 2D intermittent model of eq. (8.27), the dynamics is correctly
categorized as diffusive, since the rates k12 → 0 and k21 → +∞ obtained
through the fit yield Peq1 =1.

• For ROI 2, the Re(G(τ)) · Im(G(τ)) profile extracted in k=(0,-8.9) µm−1 is
shown, fitted to eq. (8.30) with best-fit parameters D=(3.1±0.3)x10−4 µm2/s,
|v|=(2.47±0.03)x10−3 µm/s and α=(59° ± 1°). Again, the fit can also be per-
formed according to eq. (8.27), leading to transition rates k12 → +∞ and
k21 → 0 and identifying the existence of a single diffusion+drift state; this
confirms that easier transport modes can be easily discriminated and no prior
information about the mode of motion is required for the fitting function
selection.

• Finally for ROI 3 the Re(G(τ)) · Im(G(τ)) profile extracted in k=(0,-11.8)
µm−1 is shown, with the fit to the intermittent model of eq. (8.27); best-fit
parameters are D=(7±4)x10−5 µm2/s, |v|=(6.1±0.1)x10−3 µm/s, α=(295°±2°),
k12=(0.007±0.004) s−1 and k21=(0.013±0.004) s−1, with resulting equilibrium
probabilities Peq1 =(0.6±0.2) and Peq2 =(0.4±0.2).

For all the three ROIs, exemplary G(k, τ)-vs-k surfaces at fixed τ=30 s are also
reported (Fig. 8.9a for ROI 1, Fig. 8.9c-d for ROI 2 , Fig. 8.10a-b for ROI 3). The cor-
responding Re(G(k)) and Im(G(k)) profiles extracted along the kx = 0 and ky = 0
axes are shown as well for completeness, with their forced-fit to the parameters
recovered from the temporal Re(G(τ)) · Im(G(τ)) plots.

When the same analysis is performed in all the ROIs within the imaged field
of view, whole cell maps can be derived for all the parameters underlying the
nanostars dynamics. In Fig. 8.11, panel (a), the map for the equilibrium probability
of the active transport state, Peq2 , is shown for the same cell analyzed in Figs. 6.7
and 6.9. D e |v| maps are shown in Fig. 8.11b-c and highlight the variability of
both diffusion coefficients (in the range ∼10−5-10−3 µm2/s) and speed values (in
the range ∼ 10−4-10−2 µm/s).
The maps for Peq2 , D and |v| exemplify the double advantage of the kICS analysis:
(i) contrarily to SPT, kICS can be extended (and, to a certain extent, automated)
to all the ROIs within the cell, without requiring the identification and tracking
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Figure 8.9: kICS analysis of the GNSs intracellular transport (I). (a): real part of the kICS
surface G(k, τ) at τ=30 s computed on Fig. 6.9, ROI 1; profiles along the dashed lines
(kx = 0 and ky = 0 axes) are shown with the forced fit to eq. (8.30) with the parameters
extracted from panel (b). (b): exemplifying Re(G(τ)) · Im(G(τ)) profiles for ROI 2 (kx=0,
ky=-8.9 µm−1; right axis, curve 2) and ROI 3 (kx=0, ky=-11.8 µm−1; left axis, curve 3); best
fit parameters are reported in the text. The Re(G(τ)) plot is shown for ROI 1 (kx=-11.8
µm−1, ky=-17.7 µm−1; left axis, curve 1) with the best fit to eq. (8.30). Error bars are within
the size of data points. (c)-(d): real and imaginary parts Re(G(k)) and Im(G(k)) (in c and
d, respectively) for τ=30 s computed on Fig. 6.9, ROI 2. Profiles along the dashed lines
(kx = 0 and ky = 0 axes) are shown with the forced fit to the parameters extracted from
panel (b). All the Re(G(k)) and Im(G(k)) panels have been computed on a 200-frame stack
(total acquisition time 500 s) and cropped (32x32 pixels instead of 64x64) for the sake of
display.
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Figure 8.10: kICS analysis of the GNSs intracellular transport (II). (a), (b): real and imaginary
parts Re(G(k)) and Im(G(k)) (in a and b, respectively) for τ=30 s computed on Fig. 6.9,
ROI 3. Profiles along the dashed lines (kx = 0 and ky = 0 axes) are shown with the forced
fit to the parameters extracted from Fig. 8.9, panel (b). The Re(G(k)) and Im(G(k)) panels
have been computed on a 200-frame stack (total acquisition time 500 s) and cropped (32x32
pixels instead of 64x64) for the sake of display.
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Figure 8.11: kICS analysis of the GNSs intracellular transport (III). P2eq (a) , D (b) and v (c)
color-coded maps obtained by kICS on the same cell analyzed in Figs. 6.7 and 6.9. Scale
bar=10 µm. D and v are color-coded in µm2/s and µm/s, respectively. In the upper left
quarter of each map, a 32 pixels shift for all the 64x64 ROIs has been adopted along the x-
and y- directions to increase the detail in the parameters recovery.
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Figure 8.12: kICS analysis of the GNSs intracellular transport (IV). Exemplifying Re(G(τ)) ·
Im(G(τ)) profiles are shown for three more ROIs analyzed by kICS within the cell examined
in Figs. 8.9-8.11. In (a), kx=0, ky=-17.7 µm−1; the fit of the profile to eq. (8.27) yields
D=(5±1)x10−6 µm2/s, |v|=(3.8±0.1)x10−3 µm/s, α=(90°± 5°), k12=(0.032±0.001) s−1 and
k21=(0.046±0.002) s−1. In (b), kx=0, ky=-5.9 µm−1; the fit of the profile to eq. (8.27) yields
D=(3.3±0.5)x10−4 µm2/s, |v|=(1.73±0.02)x10−2 µm/s, α=(84° ± 4°), k12=(0.003±0.0003)
s−1 and k21=(0.013±0.001) s−1. In (c), kx=0, ky=-8.9 µm−1 for the navy curve, whereas
kx=0, ky=-11.8 µm−1 for the blue curve. The global fit to eq. (8.27) is shown, with shared
parameters D=(2±1)x10−6 µm2/s, |v|=(6.8±0.5)x10−2 µm/s, α=(6°± 2°), k12=(0.055±0.002)
s−1 and k21=(0.061±0.002) s−1. Error bars are within the size of data points.

of individual objects; (ii) contrarily to TICS and STICS, it allows quantifying the
transport parameters not only in the presence of purely diffusive or active transport
phenomena, but also when a more complex intermittent dynamics is present. This
also allows concluding the comparison of the TICS, STICS and SPT results which
was anticipated at the end of Chapter 7. On the one hand, Single Particle Tracking
usually identifies short-lived phases of active transport, with a relatively high (∼
10−2 µm/s) drift speed |v| and with a typical duration of a few seconds (I recall
that the majority of the recovered equilibrium probabilities Peq2 vary between 0 and
0.2). On the other hand, as evidenced by the maps of Fig. 8.11, kICS also identifies
higher equilibrium probabilities for the active transport regime, and lower values
(down to ∼ 10−4-10−3 µm/s) for the drift speed.
I argue the reason of this discrepancy may lie in the temporal and spatial averages

performed by fluctuation-based methods like TICS, STICS and kICS. The correlation
function is averaged over the trajectory length for each particle (and over all the
particles included in the region of interest): if active transport events last for a few
time points, they may impart sufficient directionality to the trajectory to produce an
overall super-diffusive behavior, but the resulting dynamics may be mistaken for an
intermittent process with higher equilibrium probability for the active regime and
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with lower modulus for the drift velocity (a similar problem has been pointed out
before for the Mean-Square-Displacement analysis). This conclusion is reinforced
by the fact that the effective drift speeds |v|eff measured by SPT, and obtained by
weighting |v| with Peq2 , precisely resemble the ∼ 10−3 µm/s speed obtained by kICS.

8.6 Effect of the 2D approximation

The typical diffusion coefficients and drift speed values recovered by TICS,
STICS, SPT and kICS for the GNSs-containing cellular vesicles suggest that their
motion is mostly limited to the focal plane, and that the employment of a 2D model
(eqs. 8.3-8.27) suffices for the analysis of the experimental data.
A possible procedure to further demonstrate the applicability of the 2D approxima-
tion would require the simulation of the kICS correlation function describing a 3D
intermittent dynamics, and the subsequent evaluation of the discrepancy between
the parameter values adopted as simulation input and the parameters recovered
by a fit of the simulated curves to the approximate 2D model of eqs. (8.3)-(8.27).
Since no analytical expression is available for the 3D intermittent active transport, I
have considered the simpler coupling of three-dimensional Brownian diffusion and
uniform drift. Even though the evaluation of the impact of the 2D approximation
on the transition rates k12 and k21 is prevented, this choice brings two advantages:
(i) I expect that the simple D+ v model provides an estimate of the largest possible
error on the recovered D and |v| values; indeed, the displacement along the z-axis
associated to the drift velocity becomes smaller and smaller as the equilibrium
probability of the diffusive state (1) increases; (ii) in the absence of intermittency,
the kICS correlation function can be analytically derived both in 2D (eq. 8.34) and
in 3D (eq. 8.43) [292]:

G(k, τ) ∝
exp
{
−
ω20(k

2
x + k

2
y)

4
− [D(k2x + k

2
y) − i(kxvx + kyvy)]τ

}
exp
{
−

−v2zτ
2

4Dτ+ω20z

}
√
4Dτ+ω20z

(8.43)

Specifically, I have simulated the product of the real and the imaginary parts of the
3D kICS correlation function versus the lag time, for specific values of the k vector
components kx and ky (I have followed therefore the same procedure adopted for
the analysis of the kICS experimental data). I have adopted a diffusion coefficient



8.6 Effect of the 2D approximation 221

D=2x10−4 µm2/s and a drift speed |v|=2x10−3 µm/s, in order for the simulations
to resemble the typical experimental conditions reported previously; once defined
the direction of the drift speed in the xy-plane (α=45°), I have varied the angle
subtended by the drift velocity v and the z-axis in the broad range φ=20° − 160°
(90° corresponding to a velocity v lying in the focal xy-plane). For each value of the
angle φ, I have evaluated the discrepancy between the known D, |v| and α values
set for the simulation and the estimates D2D, |v|2D and α2D recovered from the fit
of the simulated curves to the product of the real and imaginary parts of the 2D
kICS correlation function (eq. 8.34).
As shown in Fig. 8.13b-c, the diffusion coefficient and the drift speed can be
determined within a 10% and a 20% discrepancy, respectively. The angle is the
parameter that is more significantly affected by the adoption of the 2D approxi-
mation (Fig. 8.13d). By inspecting the exemplifying simulated profiles shown in
Fig. 8.13a, it is apparent that the curves simulated by the exact 3D model deviate
from the corresponding 2D profile in their width more than in the position, along
the lag time axis, of the peak. The drift speed, which mainly regulates the peak
position of the simulated profiles, is therefore accurately recovered even under the
2D approximation; by contrast a biased estimate of the angle, which affects the
width of the correlation profiles, is obtained when employing the 2D model.
I have finally investigated the effect of the same 2D approximation for higher values
of the drift speed |v|. I have simulated the product of the real and the imaginary
parts of the kICS correlation function for 3D motion with D=2x10−4 µm2/s, α=45°,
φ=40° and increasing |v| up to 10−2 µm/s: by fitting the simulated curves to the 2D
model of eq. (8.34), an overestimate of the diffusion coefficient has been obtained,
while the speed has been recovered within a 10-20% discrepancy with respect to
the reference value (Fig. 8.13e,f).
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Figure 8.13: kICS: effect of the 2D approximation on the recovery of the model parameters. (a):
Re(G(τ)) · Im(G(τ)) profiles simulated for 3D diffusion and drift (eq. 8.43) with D=2x10−4

µm2/s, |v|=2x10−3 µm/s, α=45° and variable φ: φ=20° (grey), 60° (green) and 90° (blue).
kx=ky=-14.8 µm−1 for dotted lines, kx=ky=-5.9 µm−1 for solid lines. In both the cases,
the Re(G(τ)) · Im(G(τ)) plot for 2D diffusion and drift (eq. 8.34) is reported in black for
comparison. Note that the effect of a non-vanishing z-component for the drift velocity and
of 3D diffusion diminishes as the lag time decreases. *the figure caption ends on the next
page*
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Figure 8.13: (b): estimates (mean ± standard deviation) of the diffusion coefficient
obtained by fitting with the 2D model the profiles simulated for 3D diffusion and drift
with variable φ in the range 20° − 160°. The 10% and 20% discrepancies with respect to
the simulation input value are marked by the grey and light-blue boxes, respectively. (c),
(d): estimates (mean ± standard deviation) of the drift speed and of the drift angle (in c
and d, respectively) obtained by fitting with the 2D model the profiles simulated for 3D
diffusion and drift. φ varies in the range 20° − 160°. Again the 10% and 20% discrepancies
with respect to the simulation input values are marked by the grey and light-blue boxes,
respectively. (e), (f): estimates (mean ± standard deviation) of the diffusion coefficient (e)
and of the drift speed (f) obtained by fitting with the 2D model the profiles simulated (in
kx=ky=-5.9 µm−1 and in kx=ky=-14.8 µm−1, as in panel a) for 3D diffusion and drift with
D=2x10−4 µm2/s, α=45°, φ=40° and |v| variable in the range 10−3-10−2 µm/s.



Conclusions

Unique specialized mechanisms have evolved in biological systems for the regu-
lation of molecular transport both at the sub-cellular level and on the larger spatial
scale of whole organs and tissues. The efficient delivery of proteins, nutrients,
signaling molecules and growth regulators to their correct location within a cell,
the removal of toxins from the bloodstream, blood circulation and drug-delivery
events provide just a few examples of the critical role played by transport phe-
nomena in defining the proper functioning of cells, tissues, and whole organisms.
Motivated therefore by the relevance of transport phenomena in fields ranging
from cell biology to immunology, and by the quest for novel methods aimed at
their investigation, in this work I have adopted and extended the approach of
Fluorescence Image Correlation Spectroscopy for the study of diffusive, directional
and intermittent transport processes in living biological systems.

At first, I have focused on the measurement of blood flow velocities in microcir-
culatory vessel networks. I have developed, theorized and experimentally validated
a novel image-processing method, which I have called FLICS or FLow Image Cor-
relation Spectroscopy, capable of measuring the flow speed and direction, with
sub-second temporal resolution and at the level of individual capillaries, even in
the presence of a geometrically complex vessel network. To this aim, FLICS exploits
a single raster-scanned xy-image, acquired by confocal or two-photon excitation
fluorescence microscopy, and the computation of the Cross-Correlation Function
(CCF) of the signal fluctuations detected in pairs of columns of the image.

The analytical derivation of the CCF explicit expression has been reported for
two-dimensional uniform flow in the focal xy-plane, but also for the general case
of diffusion and flow in a three-dimensional space. Then the correctness of the
newly-developed theoretical framework has been verified with in-vitro experiments
in a simple microfluidic device, and with in-vivo blood flow measurements in the
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circulatory system of living zebrafish embryos. By demonstrating that experimental
correlation functions exhibit the expected functional dependence on the image ac-
quisition parameters and on the transport properties of the imaged flowing objects,
these measurements have validated the CCF analytical expression. Additionally, the
speed values recovered by FLICS have been confirmed by their comparison with the
results of line-scan based (SLIC, Scanning Laser Image Correlation) measurements
on the same samples.

Validation experiments have paved the way for the subsequent application of
the FLICS method to blood flow measurements in the intricate murine hepatic
microcirculatory system, where the blood flow speed has been characterized and
mapped at the level of individual sinusoids. On the one hand, the results obtained
here in healthy murine models provide the reference speed values - of the order of
hundreds of microns per second - for the future comparison with the sinusoidal
flow speed under pathological conditions. On the other hand, the FLICS mea-
surements in zebrafish embryos and in the hepatic microcirculation have allowed
to outline and demonstrate the advantages offered by the FLICS approach with
respect to alternative state-of-the-art techniques and correlation-based analyses.
The first advantage relies in the fact that the scan path is not required to be par-
allel to the flow direction: starting from a single xy-image, the flow velocity can
be measured in all the vessels within the imaged field of view, irrespectively of
their orientation and of the geometrical complexity of the investigated circulatory
network. Since a single xy-image suffices for FLICS, kinetic studies can also be
performed in both space and time by the acquisition of xyz- and xyt- stacks, with a
typical sub-second time step. Secondly, in its exploitation of image scanning along
a raster pattern, FLICS enables the diffraction-limited imaging of immobile vascu-
lar cells simultaneously to the blood flow measurement; relevant morphological
parameters (for example, the vessel diameter) can be monitored simultaneously
to the flow speed, with the diffraction-limited spatial resolution (0.2-0.5 µm in the
radial direction, 0.5-2 µm in the axial direction) of fluorescence confocal and intrav-
ital microscopy. Finally, the scan frequencies of standard commercially available
scanning microscopes (10-2000 Hz) are suitable to map blood flows up to ∼ 1 mm/s,
avoiding the implementation of ad-hoc setups or of resonant scanning heads.

Applied here to the measurement of flow velocities in planar circulatory systems,
FLICS will be extended in the next future to the measurement of three-dimensional
velocity fields, with the discrimination all the three components of arbitrarily ori-
ented velocity vectors; I also plan to extend Flow Image Correlation Spectroscopy
to the measurement of pulsatile (arterial) flows, and to the extraction -starting from
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the same raster-scanned xy-images- of relevant hemodynamic parameters other
than the flow speed (for example, the hematocrit and the flow volume).

On a much smaller spatial scale, the exploitation of image correlation spec-
troscopy has been directed to the investigation of the complex intermittent dynamics
exhibited by branched, star-shaped nanoparticles (GNSs, or Gold NanoStars) in
HeLa human cancer cells. By taking advantage of the huge scattering cross-section
of the employed anisotropic noble-metal nanostars, the principles of image correla-
tion in both the direct and the reciprocal space have been applied to xyt-stacks of
images acquired by live-cell time-lapse confocal microscopy in reflectance mode.
Provided the light scattering form factors for GNSs internalized in cellular (endo-
cytotic) vesicles, the presence of phase fluctuations and of coherence effects has
been excluded, thereby confirming the possibility of extending the fluorescence
formalism to the detection of the GNSs back-scattered radiation.

Image stacks have been initially analyzed by Temporal and Spatio-Temporal
Image Correlation Spectroscopy. The presence of different transport mechanisms,
spanning from pure Brownian diffusion to (sub-)ballistic super-diffusion, has been
revealed on the tens-of-seconds timescale. Even more importantly, a metrics for
super-diffusion has been identified in the non-linear displacement of the peak
coordinates of the two-dimensional STICS correlation function at increasing lag
times.
In agreement with the STICS results and with numerical simulations, the super-
diffusive sub-ballistic behavior underlying the GNSs dynamics has been ascribed
to a two-state intermittency between passive and active transport regimes: cellu-
lar vesicles alternate Brownian diffusion in the cytoplasm and directed ballistic
displacements, presumably due to the action of molecular motors along the semi-
flexible oriented filaments of the cytoskeleton. This model advantageously stems
from physically meaningful parameters: namely, the diffusion coefficient and the
drift velocity of GNSs-containing vesicles and the transition rates between the dif-
fusive and the active transport regimes. Furthermore, in its compatibility with the
theoretical and mathematical formalism of correlation spectroscopy, it outperforms
several models of enhanced diffusion previously reported in the literature (Lévy
flights, models based on time-dependent diffusion coefficients, or models derived
from modifications of the generalized Langevin equation, just to mention a few).

A novel analytical theoretical framework for the investigation of intermittent-
type transport phenomena has been therefore proposed for Fourier-space Image
Correlation Spectroscopy (kICS). The optimal procedure for the analysis of experi-
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mental data has been devised starting from simulated kICS correlation functions,
and the possibility of identifying simpler (purely diffusive or ballistic) transport
phenomena has been demonstrated. The same data analysis protocol has been
finally adopted to derive whole-cell maps of the dynamic and kinetic parameters
underlying the GNSs intracellular dynamics.
Strengthened by a Bayesian (Hidden Markov Model based) analysis of single par-
ticle tracking data, the results obtained here for the intracellular trafficking of
gold nanostars will be of help in the rational design of their drug delivery and
photo-thermal therapy applications.
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