
A Context-Aware Style of Software Design

Francesca Arcelli Fontana, Pietro Braione, Riccardo Roveda, Marco Zanoni

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)

University of Milano-Bicocca

P.zza dell’Ateneo Nuovo, 1

20126, Milano, Italy

Email: [arcelli, braione, zanoni]@disco.unimib.it, r.roveda@campus.unimib.it

Abstract—Contemporary large software systems rely on com-
plex software ecosystems for managing infrastructural tasks.
While these ecosystems facilitate software development, the
software architect must put care in not relying on assumptions
on behaviors and policies of the ecosystem that may change
with platform evolution. Based on our experience with devel-
oping analyses within MARPLE, a framework for software
comprehension and architecture reconstruction, we propose an
abstract, context-aware style for specifying software. In the
spirit of decoupling computation from coordination, this style
decouples the specification of the computations to be performed
from the specification of the contexts where they must take
place. Software described in this way exposes its primitives at
a level of abstraction closer to that of the framework, enabling
better reasoning on the features of the design, easing correct
implementation, and fostering a better interaction between the
software and the framework it relies on.

I. INTRODUCTION

Contemporary large software systems are not developed in

isolation. Instead, they rely on complex software ecosystems

for managing many essential but infrastructural tasks. This

is testified by the mainstream success of many off-the-shelf

frameworks that address the most typical concerns in software

development: dependency management, data representation

and persistence, deployment, integration, coordination, paral-

lelism, etc. The complexity of these frameworks is reflected

on the many requirements they impose on the structure and

behavior of the software systems that are developed on them:

The more pervasive (“crosscutting”) are the concerns a frame-

work addresses, the more these requirements are. A typical

framework takes the responsibility of managing the lifecycle of

software objects, their location, their persistence, the activation

of tasks and activities and their communication, subtracting

all or most of these responsibilities from the control of the

software developer. For instance most frameworks are based

on the inversion of control paradigm, that assigns to the

framework the decision on when some user-defined methods

or functions are invoked. In other words, frameworks separate

the aspects of coordination, that is responsibility of the frame-

work, from computation, ideally the only concern of software

development.
Notwithstanding this situation, software is still developed

with the programming languages designed when the devel-

opment of monolithic, library-based software systems was

the norm. Current programming languages assume that the

developer will decide how the software is structured at all

levels of granularity, when the resources are allocated and

freed, how the control flow is structured, when a task must

be activated and when it will terminate, how different task

communicate and coordinate their operations, and so on. Our

opinion is that these languages, although empowering, are not

a good match to the above outlined scenario.

A. Motivation

To motivate this stance we will describe our experience with

designing and developing software for the MARPLE frame-

work. MARPLE (Metrics and Architecture Reconstruction

PLugin for Eclipse) [1] is an Eclipse plugin that provides many

functionalities supporting the comprehension and evolution of

large codebases. MARPLE strongly relies on the functional-

ities provided by the Eclipse ecosystem to perform its many

analysis tasks, as opposed to being a wrapper allowing Eclipse

to interoperate with an external tool. MARPLE is itself an open

platform designed to facilitate the development and integrate a

heterogeneous set of static analysis algorithms. Some analyses

MARPLE supports are design pattern detection through data

mining, detection of bad code structures as antipatterns [2] and

code smells [3], [4], and software architecture reconstruction,

a functionality useful for program comprehension and reverse

engineering. Antipattern detection and software architecture

reconstruction facilities of MARPLE are described in [5].

The work presented in this paper stems from our experience

matured while developing the MARPLE algorithms for code

smell detection. Code smells are structural features of code

which indicate potential design issues that make software

hard to evolve and maintain. Some examples of code smells

are Long Method (a method is too long, thus it should be

broken in smaller submethods), Speculative Generality (some

features of the software are never used, thus it might be

desirable to remove them and reduce the complexity of the

software) and Intensive Coupling (two classes are strongly

dependent one on the other, possibly hinting bad code mod-

ularization). Many static analysis tools are available, both in

the literature and in the wild, whose purpose is to facilitate the

detection of code smells. We cite, as examples, Checkstyle1,

1http://checkstyle.sourceforge.net/
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1: Graph<MethodDeclaration,MethodCall> g ← ∅
2: Set<MethodDeclaration> roots← ∅
3: for all Class cl in currentProject do
4: for all MethodDeclaration m in cl do
5: if m.signature =

public static void main(String[])
then

6: roots.add(m)
7: end if
8: for all MethodCall mc in m do
9: Class target←

mc.invokeVar.classDeclaration
10: MethodDeclaration m′ ←

target.findImpl(mc.signature)
11: g.add(m→ m′)
12: end for
13: end for
14: end for
15: return g.unreachableFrom(roots)

Fig. 1. Speculative Generality Detection Algorithm

PMD2, JDeodorant3, and inCode4. Our experience in adding

code smell detection algorithms to MARPLE highlighted that

the interoperation with the platform (Eclipse and MARPLE)

makes the link between a smell detection algorithm and its

implementation obscure, and, at worst, augment the chance of

introducing bugs in code.

Figure 1 reports, as an example, a simplified version of

the Speculative Generality code smell detection algorithm

implemented in MARPLE. As defined by Fowler and Beck [3],

Speculative Generality affects the regions of the code that were

included to anticipate future developments, possible changes

and for the preparation of additional features of the system.

The algorithm builds a call graph g for all the methods in

an Eclipse project, and puts in root all the main methods,

that will be considered the roots of the graph. The algorithm

returns all methods that cannot be reached from some root as

potentially affected by the Speculative Generality smell. This

simplified version of the algorithm assumes (line 9) that a

variable will be always assigned an object of its static type,

or no object if its static type is not a concrete class. This

overly conservative assumptions serves the purpose of making

the presentation simpler. The actual algorithm implemented in

MARPLE differs from the one reported in Figure 1 only for

its more sophisticated type analysis.

Some comments arise. Code smell detectors are imple-

mented as extensions of the Micro-Structures Detector (MSD)

MARPLE module. Micro-structures [6] can be informally

defined as facts or binary relations about code elements that

can be consistently detected by static analysis. A simple

example of micro-structure is whether a class is declared

2http://pmd.sourceforge.net/
3http://www.jdeodorant.com/
4http://www.intooitus.com/inCode.html

abstract. Micro-structures are extracted by defining custom

operation on a metamodel of the Java codebase under analysis.

MARPLE exploits the Eclipse Java Development Tools (JDT)

to extract ASTs from Java code and build the metamodel [7],

while user-defined extractors are programmed based on the

Visitor design pattern [8], where the actions to be performed

on each metamodel element relevant for the analysis are

defined as methods encapsulated in a same object—the visitor

defining the analysis. The MSD module creates and runs each

visitor only on the AST nodes that may contain the information

they are able to detect. This has two consequences. First, the

developer is not allowed to enforce a visit order: The visit

order is automatically determined by the MSD layer based on

the structure of the visitor itself. Second, the lifecycle of the

visitors is entirely managed by the MSD layer, that is free to

create and destroy them in a non-prescribed order.

Having to abstract from visit order and from lifecycle of

visitor code poses some requirement on software development.

Were it possible to enforce a visit order from the root methods

along method calls, the Speculative Generality analysis could

be done on-the-fly. Instead the programmer must persist the

graph g in an independent store. Moreover, the developer can-

not rely on the visit order to produce intermediate data that the

algorithm depend on: The only form of dependency allowed

by MARPLE is defining a sequential order of invocation for

distinct types of visitors. If intermediate data is necessary

to an algorithm, the developer must define another visitor to

produce (and persist) the necessary data before the consumer

is run. This complex protocol complicates development and

potentially hinders performance.

If the software architect break the policies of the ecosystem,

either because “cheating” or for mistake, the consequences are

potentially dire. Back to our case study, the actual policies of

MARPLE on visit order and data persistence match its data

management strategy, that may, at a given moment, decide

which parts of the metamodel reside in main memory and

which are backed up on secondary storage. These strategies

are tuned for optimizing performance when MARPLE must

handle very large amounts of project data, and are likely to

change across versions of the platform. This is the reason why

the framework’s API does not expose them. If a developer

violates the MARPLE protocol, e.g. if she manually extract

some data for recursively invoking a visitor method from

another one—as it is customary in most incarnations of the

Visitor pattern—the resulting MARPLE plugin might work

correctly with the current version of the framework and

unexpectedly fail with the next ones.

Current general-purpose programming languages are in our

opinion at a too low level of abstraction to easily enforce the

sophisticated architectural constraints embedded in a frame-

work’s design. A language with a lower conceptual gap

would facilitate correct software development by preventing

trivial errors as the one previously exemplified. But such a

language would bring an additional, possibly subtler advan-

tage: A higher degree of abstraction improves the ability of

reasoning on the features of the software like correctness
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1: agent PRJ:

2: context: Project

3: features:

4: Graph<MethodDeclaration,MethodCall> g,

5: Set<MethodDeclaration> roots
6: enter:

7: g ← ∅
8: roots← ∅
9: exit: return g.unreachableFrom(roots)

10: agent MD:

11: context: PRJ p :: MethodDeclaration m
12: enter:

13: if m.signature = . . .main(String[]) then
14: p.roots.add(m)
15: end if
16: agent MC:

17: context: PRJ p :: MD md :: MethodCall mc
18: enter:

19: Class target← mc.invokeVar.classDeclaration
20: MethodDeclaration m′ ←

target.findImpl(mc.signature)
21: p.g.add(m→ m′)

Fig. 2. Speculative Generality, Context-Aware Style

and performance, by exposing and untangling the relevant

concept that in a tradition language would be scattered and

tangled with irrelevant implementation details. This clarifies

the interaction patterns between a software and its ecosystem,

possibly suggesting ways to improve both.

This paper aims at demonstrating the above ideas by in-

troducing a novel method for designing software based on a

context-aware style. According to it, the designer explicitly

declares the possible contexts where a task operates and the

data that task is expecting when active in such contexts. It

is up to the runtime support to provide the remaining glue,

i.e., to explore the data space, to activate each action in the

right context, and to persist the data across context change.

We will finally explain why, in our opinion, this method may

potentially foster a better design, enable better reasoning about

correctness, and lower the burden of correctly implementing

the designed functionality.

B. Structure of the Paper

The paper is organized as follows. In Section II we describe

a context-aware specification style and apply it to our case

study. In Section III we exemplify the kind of reasoning on

software properties this style fosters. In Section IV we corre-

late our contribution with current literature. Finally, Section V

outlines some ideas for future research.

II. CONTEXT-AWARE SPECIFICATION OF ALGORITHMS

Figure 2 reports the same Speculative Generality detection

procedure of Figure 1, expressed in our context-aware style.

The specification is broken in three parts. Each part is the

definition of an agent type, i.e., a set of operations to be

performed in all the contexts with a given shape. A context
is the specification of a chain of objects in the Java code

metamodel, in a containment relationship. The meant seman-

tics is that, in all the contexts associated to an agent type,

the runtime support creates and executes an instance of the

agent. The context specification of an agent type definition

is indicated by a context clause. As an example, the agent

type PRJ has, as associated contexts, all Project metamodel

elements, each signifying a different Java project managed

by Eclipse (and MARPLE). A context clause is a regular

expression over atomic contexts, i.e., metamodel class names

or agent type names. Every atomic context in a context clause

can be associated to a variable name for reference by the

agent specification. As an example, the MD agent type must

be activated in all the contexts where a Project metamodel

object contains a MethodDeclaration object md, and an agent

p with type PRJ is active on the Project object5. An optional

filter clause can further refine the context specification by an

arbitrary predicate. Only one agent of a given type is active in

a same context, but multiple agents with different types can be

active in the same context. In this case, no order of execution

is guaranteed.

Each agent expects a set of context features. A feature is a

variable associated to a context and available to all the agents

in it and in its subcontexts. Features are declared by a features
clause in an agent type specification. As an example, every PRJ

agent expects in every Project context a graph g to be available,

having as nodes MethodDeclaration metamodel objects, and

edges labelled by MethodCall metamodel objects (line 4). Note

that distinct Project metamodel object are distinct instances of

the context expected by PRJ, and as such they have distinct
graphs g. This reflects the fact that every Java project has

its call graph. A MD agent can access the graph g of the

PRJ agent in its context, that surely exists as its defining

context requires the existence of an active PRJ agent in all the

contexts where a MD agent is active (line 11). Features are

only available internally to agents in subcontexts, and cannot

be accessed by agents in sibling contexts, or in supercontexts.

This is the only way different agent types can share data. The

only way an agent can provide data externally is to terminate

and return a global result by a return statement (e.g., line 9).

Agent behaviors are ordinary blocks of Java statements.

These blocks can access the features of the agent, and the

features of all the agent types declared in its context, via

the variable name (if present) associated to the corresponding

elementary context specification. As an example, the MC agent

accesses the feature g of the PRJ agent p in its context, by

indicating it as p.g. An agent type definition may contain up to

two different behavior specifications: what must be done when

the agent enters the context (clause enter), and what must be

done upon exit of the agent from the context (clause exit).

5We use the symbol :: to indicate containment. Note that, in the simplified
Java metamodel assumed in this paper, the containment relation between two
metamodel elements either does not exist, or exists unambiguous. Were some
ambiguity, we should also qualify which containment relation we are referring
to.
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1: agent CLS:

2: context: Class c . . .

3: agent MD′:
4: context: CLS cls :: MethodDeclaration m
5: features: int maxNesting, cint, callsDispersed . . .

6: agent CS:

7: context: (MD′ md |CS cs) :: CompositeStatement s
8: features: int nestingLevel
9: enter:

10: match context MD′ md :: CompositeStatement s
11: nestingLevel← 0
12: match context CS cs :: CompositeStatement s
13: nestingLevel← cs.nestingLevel + 1
14: end match
15: md.maxNesting ←

max(md.maxNesting, nestingLevel)
16: agent MC1:

17: context: MD′ md :: (CS)∗ :: MethodCall mc
18: enter: md.cint← md.cint+ 1
19: agent MC2:

20: context: CLS cls :: MD′ :: (CS)∗ :: MethodCall mc
21: filter:

mc.invokeVar.classDeclaration �= cls.c
22: enter:

23: md.callsDispersed← md.callsDispersed+ 1

Fig. 3. Intensive Coupling, Context-Aware Style (Excerpt)

More precisely, enter blocks are executed before the (enter
and exit) blocks of all the agents active in its subcontexts,

while exit blocks are executed after activation of all the agents

in subcontexts. Since agents communicate only via shared

context features, enter blocks serve the purpose of preparing

data to be read by subcontext agents, while exit blocks are

dually used for using data produced by subcontext agents.

As an example, a PRJ agent initializes on entry the graph

g with an empty set of nodes and edges (line 7). Then, MC

agents active in all MethodCall subcontexts of the PRJ agent

populate g. Finally, the PRJ agent reads the complete g graph

and returns it as a result (line 9).

This specification style achieves both kinds of abstractions

we outlined previously. The context clauses abstract from

visit order as they only declare “where” an agent expects to

be active. The features declarations handle declaratively the

lifecycle of data necessary to a computation, by associating

them to metamodel elements. As an example, the call graph

is a feature of a Project relevant only to the computation

done by the PRJ agent (and by the MD and MC agents that

depend on it). It is up to the framework to decide how to

make available the data to the active agents that need them.

This specification style also has a nontrivial expressive power,

evident by considering the example in Figure 3. This is an

excerpt from the Intensive Coupling [4] code smell detection

algorithm. The algorithm calculates, for each nonabstract

method, the maximum nesting level of CompositeStatements

in its body (maxNesting), the total number of method

calls (cint), and the fraction of method calls to methods

declared in a different class (callsDispersed). The CS agent

type calculates maxNesting, and has a recursive context
declaration (line 7), which specifies that a CS agent can be

either in a MethodDeclaration context with agent MD′, or

in a CompositeStatement context with another CS agent (the

vertical bar character in the context clause of CS means

alternative). In the former case (line 11), the nesting level

of the statement is set to 0. In the latter (line 13), it is set

to the nesting level of the containing statement plus one.

Finally (line 15), the CS agent updates the maximum nesting

level feature for the MethodDeclaration, as exported by its

contextual MD′ agent. This computation pattern would be

awkwardly expressed in the unstructured style of Figure 1.

III. REASONING ON CONTEXT-AWARE SPECIFICATIONS

In this section we briefly show how, by untangling the

dependencies between information providers and consumers,

the proposed context-aware style allows to reason more easily

on the features of the algorithm. It also has benefits for

framework designers, in that it facilitates the detection and

application of optimizations. As examples:

• The language is sufficiently flexible to define complex co-

ordination patterns between tasks encapsulated in agents,

yet sufficiently abstract to relieve from the burden of

explicitly programming them. For example, it is not

necessary (nor possible) to explicitly invoke an agent to

perform its task. The violation of the MARPLE protocol

that is produced when invoking a visitor method from

another visitor method here is simply not possible.

• A feature should not be used until its value is ready. In

general, whenever an agent reads one of its own features

in an enter block, and some subcontext agent writes it,

we may expect a nondeterminate result, as there is no

guarantee that subcontext agent will be executed in some

order. Thus, either its declaration or its use is misplaced.

A simple static analysis of a context-aware specification

can catch this issue. On the contrary, it is quite easy to

misplace a variable declaration in the style of Figure 1

and obtain a compiling, but incorrect, algorithm (e.g., by

declaring the variable roots after line 3).

• If an agent’s feature is not used by any other subcontext

agent, then the framework can transform it in a local

variable, or simply drop it.

• If two agents for a same context write distinct features,

the framework can execute them in parallel or combine

them, e.g., agents with type MC1 and MC2 in Figure 3.

• By knowing which contexts are relevant for a computa-

tion, the framework can more easily optimize the visiting

order and reduce the amount of data in the main memory.

IV. RELATED WORK

The approach proposed in this paper has analogies with

attribute grammars, with constructs in aspect- and context-
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oriented programming languages, and with some paradigms

for modeling context-aware systems and computations.

Attribute grammars [9] are a formalism for describing

the semantics of programming languages. Similarly to the

approach proposed in this paper, attribute grammars associate

data, called attributes, to metamodel elements and express

computations by functional relationships between attributes.

The main differences are that attribute grammars allow inher-

ited (top-down) attribute dependencies, and that are context-

free, i.e., attributes are associated to single nonterminals,

where features are associated to contexts, and dependencies

can be defined only between the attributes of nonterminals in

a same syntax rule. Our proposal has some analogies with ele-
mentary attribute grammars, in that it allows only synthesized

(bottom-up) attributes, but it additionally breaks the context

freedom requirement. Since elementary attribute grammars are

equivalent in expressive power to general attribute grammars,

we conjecture our approach has similar expressive power, but

we have no formal proof of this conjecture.

Aspect-oriented languages define constructs for capturing

all the join points in the dynamic call stack of a method,

e.g., AspectJ [10] cflow. This way, one can add context-

aware behaviors to method calls, where the context is given

by the stack of callers. Our approach is complementary in that

it defines contexts based on the data necessary to computation,

and abstracts control flow based on them. Recently proposed

context-oriented programming languages [11] dispatch behav-

iors based on an arbitrary programmable definition of context,

but require the programmer to manually change context when

necessary.

Context-aware systems [12] dynamically change their be-

havior to match changes in computational resource availability,

or in any feature of its environment or user profile. This paper

develops some ideas of [13], where a framework is outlined

for specifying context-aware systems based on decoupling

definition of behaviors from definition of the contexts that

enable and disable them. The main differences are that here we

do not disable behaviors based on context, we explicit specify

the relationship between data and context, and we require to

synchronize behaviors with context enter and exit events. More

generally, the approach presented in this paper follows the

idea of separating (the specification of) computations from

(that of) coordination, an idea proposed and developed by the

Coordination Languages community [14].

V. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper motivates and describes an innovative software

specification style that describes computations as a set of tasks,

the agents, plus a declarative specification of how they should

be activated based on the context of the computation. We

applied the specification style to a real-world example and dis-

cussed why, in our opinion, it potentially fits the development

of software based on complex software ecosystems.

Work is in progress for refining the language and achieve

a better separation between data and algorithms and add

constructs for modularization and reuse of agent specifications.

We are also implementing an automatic compiler to Java

code (a prototype partial implementation based on annotations

already exists) and static checkers. Finally, we need to validate

our hypotheses about the usability, ease of reasoning and

performance of the specification language by applying it to

a set of case studies.
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