978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.256

2015 TEEE/ACM 37th IEEE International Conference on Software Engineering

Poster: Filtering Code Smells Detection Results

Francesca Arcelli Fontana*, Vincenzo Ferme! and Marco Zanoni*
*Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy
Email: {arcelli,zanoni} @disco.unimib.it
TFaculty of Informatics, University of Lugano (USI), Lugano, Switzerland
Email: vincenzo.ferme @usi.ch

Abstract—Many tools for code smell detection have been devel-
oped, providing often different results. This is due to the informal
definition of code smells and to the subjective interpretation of
them. Usually, aspects related to the domain, size, and design
of the system are not taken into account when detecting and
analyzing smells. These aspects can be used to filter out the
noise and achieve more relevant results. In this paper, we propose
different filters that we have identified for five code smells. We
provide two kind of filters, Strong and Weak Filters, that can be
integrated as part of a detection approach.

I. INTRODUCTION

When we detect design flaws, like code smells, it is im-
portant to focus the attention on smells that represent real
problems to be removed through refactoring. We can focus the
attention on the most relevant results by applying some kind of
filters. In this perspective, we define two kinds of code smell
Filters of different strength (Strong and Weak) to apply to the
detected code smells, with the aim of discarding false positive
smell instances, or to provide hints for their possible removal.
The proposed Filters can be applied on top of any detection
approach, hiding false positives to the users or highlighting
properties of reported instances. The aim of Strong Filters is
to remove smells to be inspected and refactored, while the
idea behind Weak Filters is to highlight a subset of suspected
smells, to enable developers or maintainers to undertake, if
they want and have time, an evaluation of other possible smells
to be excluded. Through Filters, we can identify some cases
where smells can be considered domain-dependent or design-
dependent smells, and not symptoms of real problems.

We have implemented the Filters for five smells. We eval-
uated their effectiveness in refining the code smell detection
results on 74 systems of the Qualitas Corpus [1].

II. RELATED WORK

Many tools for code smell detection have been proposed,
both commercial tools and research prototypes. Few of them
provide some kind of filtering facility comparable to the one
we define. For example, inFusion! provides a kind of filtering
mechanism, to allow the user to define some project-specific
patterns. The filters have to be manually defined by the user,
while in our approach we integrated different kinds of Filters
as part of the detection process. In a work of C. Marinescu [2],
the author shows how the detection accuracy of two code
smells, Data Class and Feature Envy, can be improved by

Uhttps://www.intooitus.com/products/infusion

taking into account particularities of enterprise applications.
Another work by Ratiu et al. [3] uses the historical information
of the suspected flawed structures to increase the accuracy of
the automatic problem detection. He considers only God and
Data Class smells. In our work, we defined and implemented
two kinds of Filter of different categories, for five smells.

III. CoDE SMELL FILTERS IDENTIFICATION

We figured out the need of defining filters to discard false
positive code smells instances while performing experiments
on the detection of God Classes and Data Classes on 12
systems belonging to different application domains, taken from
the Qualitas Corpus. We used iPlasma® to detect the code
smells because it is a tool with clearly defined rules and
thresholds. We manually checked the results of the detection
of the two smells and we realized the importance of taking
into account the application domain of the system or other
features that are usually not considered during the detection,
in order to improve the detection accuracy. In many cases,
we classified the results as false positives by considering the
following aspects: (a) the used libraries can have an impact
on the smell, (b) the smell is a utility class (e.g., Logging) or
implements specific functionalities (e.g., Parser), (c) the smell
is a test class or (d) Data Classes that are Java beans and God
Classes bean managers.

We then extended the analysis to 74 systems belonging to
the Qualitas Corpus and to five code smells, as reported in
Table I. The proposed Filters are based on the satisfaction
of some conditions, capturing characteristics of false positive
instances, as for example the (a-d) discussed above. We
defined and implemented two kinds of filters: Strong Filter
and Weak Filter. A Strong Filter is defined as a property of
source code entities that can be automatically computed in a
precise manner, e.g., we filter out the test classes by identifying
if the class implements well known testing frameworks, as
for example JUnit. A Strong Filter removes false positive
instances from the detection results. A Weak Filter is defined
as a property of source code entities that can be automatically
computed using a heuristic that may led to false positives,
e.g., we tag getter and setter methods identified as Shotgun
Surgery by applying some heuristics on the signature and the
body of the methods. A Weak Filter can identify a code smell
that could not be necessarily a problem for the system quality.

Zhttp://loose.upt.ro/iplasma/index.html

803

TABLE I: DEFINED CODE SMELLS FILTERS

Code Smell Defined Filters Categories Type of Filter
GUI Library Library Implementer or Extender Strong
Test Class Library Implementer or Extender, Method Caller Strong
God Class Entity Modeling Class Library Implementer or Extender Strong
Parser Class Name Matcher Weak
Visitor Class Name Matcher Weak
Persistence Class Method Caller Weak
Exception Handling Class Library Implementer or Extender Strong
Serializable Class Library Implementer or Extender Strong
Data Class Test Class Library Implementer or Extender, Method Caller Strong
Strong God Class Data Related CS Strong
Logger Class Name Matcher Weak
Exception Handling Method Library Implementer or Extender Strong
Shotgun Surgery Test Class Method Library Implementer or Extender, Method Caller Strong
Getter/Setter Method Name Matcher Weak
Dispersed Coupling Test Class Method Library Implementer or Extender, Method Caller Strong
Message Chains Test Class Method Library Implementer or Extender, Method Caller Strong

TABLE II: IMPACT OF FILTERS BY CODE SMELL

Code Smell Strong Filtered Weak Filtered
Flt. /Tot. (%) Flt. /Tot. (%)

God Class 28/ 836 (3.35) 47/ 808 (5.82)

Data Class 118 /1,723 (6.85) 18 /1,605 (1.12)

Shotgun Surgery
Dispersed Coupling
Message Chains

11/ 508 (2.17) 177 / 497 (35.61)
367 /3,555 (10.32) — /- -)
40/ 674 (5.93) - /- -)

Filters are currently classified in the following categories
and capture different kinds of information on:

o Library Implementer or Extender: the class that the
“smelly” entity extends OR the library that the “smelly”
class implements.

e Method Caller: the methods that the “smelly” entity calls.

o Related CS: relations among different smell types.

o Name Matcher: the name of the class and/or its methods.
Only Weak Filters can belong to this category.

We defined these categories to classify different types of
code smell Filters we implemented for each of the five code
smells, as reported in Table I.

Table II reports the impact of the Filters on the detection
of code smells on the 74 considered systems. For each code
smell, we report how many code smell instances have been
filtered by Strong and Weak Filters. For Dispersed Coupling
and Message Chains we did not identified any Weak Filter.
Filters have different impact on different code smells; Strong
Filters appear to be more effective on Dispersed Coupling and
less on God Class and Shotgun Surgery, while Weak Filters are
very effective on Shotgun Surgery. The differences in terms of
impact are due to various factors, e.g., the characteristics of the

systems, and the number of Filters applicable to each smell.
The application of Strong Filters removed 146 classes and 418
methods from the code smell detection results. Weak Filters,
instead, matched 65 classes and 177 methods. The percentage
of weak-filtered methods is high for Shotgun Surgery, because
there are many getter and setter methods.

IV. CONCLUSION AND FUTURE WORK

We define code smell Filters to remove false positives,
proposed as part of a code smells detection approach. We
performed some initial assessment, showing that filters provide
support to developers having to check the source code. Strong
Filters removed only entities not affected by code smells,
effectively improving the precision of the detection. Weak
Filters, instead, signaled either false positives and borderline
situations. We observed that Filters have different impact on
different code smells. For the future developments we are
working on increasing the number of defined Filters to improve
the detection results on more code smells and to extend the
Filter categories, exploiting other properties of the specific
domain or the design, e.g., adding the detection of annotations
to improve the filtering of testing classes and methods.

REFERENCES

[1] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The Qualitas Corpus: A curated collection of Java code
for empirical studies,” in Proc. 17th Asia Pacific Softw. Eng. Conf.
(APSEC’10). Sydney, Australia: IEEE, Dec. 2010, pp. 336-345.

[2] C. Marinescu, “Identification of design roles for the assessment of design
quality in enterprise applications,” in Proc. 14th Intl Conf. Program
Comprehension (ICPC’06). Athens, Greece: IEEE, Jun. 2006, pp. 169—
180.

[3] D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proc. 8th European
Conf. Softw. Maint. and Reeng. (CSMR’04). Tampere, Finland: IEEE,
Mar. 2004, pp. 223-232.

804

