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Abstract In this paper I present and discuss with examples new techniques based
on the use of geometric and topological information to quantify dynamical
information and determine new relationships between structural complexity and
dynamical properties of vortex flows. New means to determine linear and angular
momenta from standard diagram analysis of vortex tangles are provided, and the
Jones polynomial, derived from the skein relations of knot theory is introduced as
a new knot invariant of topological fluid mechanics. For illustration several
explicit computations are carried out for elementary vortex configurations. These
new techniques are discussed in the context of ideal fluid flows, but they can be
equally applied in the case of dissipative systems, where vortex topology is no
longer conserved. In this case, a direct implementation of adaptive methods in a
real-time diagnostics of real vortex dynamics may offer a new, powerful tool to
analyze energy-complexity relations and estimate energy transfers in highly tur-
bulent flows. These methods have general validity, and they can be used in many
systems that display a similar degree of self-organization and adaptivity.
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1 Introduction

Networks of fluid structures, such as tangles of vortex filaments in turbulent flows
or braided magnetic fields in magnetohydrodynamics, are examples of physical
systems that by their own nature are fundamentally structurally complex [1]. This
is the result of many contributing factors, among which the highly nonlinear
character of the governing equations, the simultaneous presence of different space
scales in the emerging phenomena, and the spontaneous self-organization of the
constituent elements. In this respect ideal vortex dynamics offers a suitable the-
oretical framework to develop and apply methods of structural complexity to
investigate and analyze dynamical properties and energy-complexity relations.

In this paper I present and discuss with examples new techniques based on the use
of algebraic, geometric and topological information to quantify dynamical infor-
mation and to determine new relationships between energy and complexity in
coherent vortex flows. These flows, that arise naturally from spontaneous self-
organization of the vorticity field into thin filaments, bundles and tangles of filaments
in space, both in classical and quantum fluids, share common features, being the seeds
and sinews of homogeneous, isotropic turbulence [2, 3]. Characterization and
quantification of such flows is of fundamental importance from both a theoretical and
applied viewpoint. From a theoretical point of view detailed understanding of how
structural, dynamical and energetic properties emerge in the bulk of the fluid and
change both in space and in time is at the basis of our analysis of how self-organi-
zation and non-linearities play their role in complex phenomena. For applications,
understanding these aspects is also of fundamental importance to develop new real-
time diagnostic tools to investigate and quantify dynamical properties of turbulent
flows in classical fluid mechanics and magnetohydrodynamics.

The remarkable progress in the use of geometric and topological techniques
introduced in the last decade [5-7], associated with continuous progress in com-
putational power and visualization techniques [8, 9] in the light of the most recent
developments in the field [10], is a testimony of the success of this novel approach.
Here we shall confine ourselves to some new geometric and topological techniques
introduced recently [11, 12] to estimate dynamical properties of complex vortex
tangles of filaments in space. Most of the concepts presented here, being of geo-
metric and topological origin, are independent of the actual physical model. We
shall therefore momentarily drop the physics, and refer to the geometry and
topology of the filament centerlines. These will be simply seen as smooth curves
that may form knots, links and tangles in space, and it is to this system of curves
that our analysis will be dedicated. Then, we shall apply this analysis to vortex
dynamics, in order to get new physical information.

In Sect. 2 I start by introducing basic notions of standard and indented diagram
projections to determine signed area and crossing numbers of knots and links in
space. In Sect. 3 the definitions of linear and angular momenta of a vortex system
in ideal conditions are introduced, providing a geometric interpretation of these
quantities in terms of area. As illustration a number of examples are presented in
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Sect. 4 to evaluate the impetus of some vortex knots and links; a general statement
on the signed area interpretation of the momenta for vortex tangles is presented in
Sect. 5. Then, in Sect. 6 knot polynomial invariants used to classify topologically
closed space curves in knot theory are considered. I concentrate on the Jones
polynomial, and, for illustration, the polynomial for several elementary knots and
links (Sect. 7) are computed. By showing that it can be expressed in terms of
kinetic helicity (Sect. 8), I show that the Jones polynomial can be re-interpreted as
a new invariant of topological fluid mechanics (Sect. 9). In Sect. 10 I conclude
with some considerations on possible future implementations of these concepts in
advanced, adaptive, real-time diagnostics, to estimate energy and helicity transfers
in real, turbulent flows.

2 Standard and Indented Diagrams: Signed Areas
and Crossing Numbers of Knots and Links

To begin with, let us consider an isolated, oriented curve y in R3: this can be
thought of as the axis of a tubular neighborhood that constitute the support of the
actual vortex filament in space; the orientation of the curve is then naturally
induced by the orientation of vorticity. x is taken sufficiently smooth (i.e. at least
C?) and simple (without self-intersections), given by the position vector X = X(s),
where s € [0, L] is arc-length and L the total length. A Frenet triad {t, i, b}, given
by the unit tangent t = dX/ds, normal and binormal vector, is defined on any point
of y and at each point of y curvature ¢ = ¢(s) and torsion T = 7(s) are defined.
From the fundamental theorem of space curves, any curve in space is prescribed
uniquely, once curvature and torsion are given as known functions of s. For the
purpose of this paper we confine ourselves to closed and possibly knotted curves.
A closed curve is given by X(0) = X(L) and smooth closure implies that this is
also true for higher derivatives of X(s).

Under continuous deformations the geometric properties of y change continu-
ously, but the topological properties remain invariant. Any curve that can be
continuously deformed to the standard circle (without going through self-inter-
sections or cuts) is not knotted and it is called the unknot. The task of knot theory
(and of topology in general) is precisely to classify curves according to the
topological characteristics of their knot (or link) type, where a collection (disjoint
union) of N such curves, knotted or unknotted, constitute a link. A link of two
mathematical tubes, centered on the axes y; and j,, is shown in Fig. la. A vortex
tangle is thus an N-component link of vortex filaments, where vorticity is simply
defined within the tubular neighborhood of each component.

Standard projection. Let us consider now the standard projection of an N-
component link; for simplicity, let us take the case of the 2-component link of
Fig. 1a, and consider the orthogonal projection p of this link onto the plane. The
resulting graph A = p(y; U x») is a nodal curve in R? with 4 intersection points
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Fig. 1 a A 2-component link of tubes centered on the oriented curves y; and y, in space.
b Standard projection of the link shown in (a) onto R?; the resulting graph A = p(y, U z,) is an
oriented nodal curve in the plane, with 4 intersection points. ¢ Indented projection of the same
link onto R?: by small indentations in the plane, over-crossings and under-crossings are shown to
preserve topological information of the original link in space

Fig. 2 A point P of multiplicity 3 can be reduced to 3 nodal points Py, P,, P3 of multiplicity
(degree) 2

(Fig. 1b). Each nodal point results from the intersection of 2 incident (oriented)
arcs: these nodal points have therefore multiplicity (or degree) 2. In general, a
nodal point of multiplicity p is the intersection of u incident arcs. By a small
perturbation of the projection map p, a p-degree point can be reduced to p nodal
points of degree 2 (see the example of Fig. 2). A good, standard projection is
therefore a map that for any link of curves generates a planar graph /A, with at most
nodal points of degree 2. Let us restrict our attention to such good projections and
consider the graph A, given by a collections of oriented arcs.

Indented projection. Let us focus now on the topological characteristics of a
link, for instance the 2-component link of Fig. 1a. One way to analyze topological
aspects of a link is to consider indented projections. One of these is given by
projecting the link onto a plane by keeping track of the over/under-crossings by
small indentations of the over/under-passes of the projected arcs (see the example
of Fig. 1c). As above, we must ensure that at each apparent crossing only two arcs
meet.

Signed areas from standard projections. The graph A, obtained from standard
projections, determines a number of regions, say R; (j = 1,...,Z), in the plane.
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Each region may be bounded by a number of oriented arcs, that may or may not
have congruent orientation (see, for instance, the graph of Fig. 1b). In the latter
case, the standard geometric area of a region R; must be replaced by the signed
area, to take account of the different orientation of the bounding arcs and area
contributions from the graph A. With reference to Fig. 3, let us introduce a
positive reference given by the pair of unit vectors (p,t). The radial vector p is
chosen arbitrarily to have a generic foot in the region R, pointing outwardly to the
exterior of R, and t, the unit tangent to the boundary curve with direction induced
by the projected orientation. Let us apply now this construction to the collection of
regions R; associated with a generic graph A, and consider the successive points of
intersection given by the p-line as it crosses the arcs of A in the p-direction. To
each intersection point let us assign the value ¢ = %1, according to the positive
reference given by (p,t) determined by the orientation of each arc. For the simple
case of Fig. 3, where there is only one region and one bounding curve, and
therefore only one intersection point, we have ¢ = +1, but in general we may have
several intersection points (see examples of Sect. 4 below), each contributing +1
according to their signed crossing.

Definition. The index of a region R; of A € R?, is given by
I;=I1;R) = Z €r (1)
re{pnA4}

where {p N A} denotes the set of intersection points given by the p vector with all
the arcs of A in that direction, and ¢, = %1, according to the sign of the reference
(p,t) at each intersection point with A.

It can be easily proved that the index Z; is a topological property of the region
R;, independent of the choice of the position of the footpoints O; and of the
direction of the p;-lines. We can now define the signed area of a graph region
according to the following definition.

Definition. The signed area of a region R; is given by
AR) = TA(R) , 2)
J

where A;(R;) denotes the standard area of R;.

Fig. 3 Positive reference
(p, 1), given by the radial and
tangent unit vectors

RS

p

P
f R?
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Fig. 4 Standard sign

convention for a positive \ /'
(over-) crossing and a +1 -1

negative (under-) crossing \

The signed area extends naturally the concept of standard area for regions
bounded by arcs of different orientations and it will be useful in the geometric
interpretation of linear and angular momenta of vortex tangles.

Minimum number of crossings and linking number from indented projections.
Two useful topological invariants can be extracted from indented projections. One
is based on the minimum number of apparent crossings in an indented projection.
Among the infinite number of possible indented projections, we consider the
indented projection that gives the minimum number of crossings (minimal dia-
gram) and, quite simply, we define this number as the topological crossing number
of the knot or link type.

Another topological quantity can be computed from a generic indented pro-
jection. By standard convention (see Fig. 4) we assign ¢, = £1 to each apparent
crossing site r. We can then introduce the following:

Definition. The linking number of a link type is given by

1
Lk:EZ:e,, (3)

where the summation is extended to all the apparent crossing sites, in any generic
indented projection of the link.

In the example of Fig. 1c, there are 4 apparent crossings +1, hence the linking
number Lk(y, x,) = +2. Since the linking number is a topological invariant, its
value is independent from the projection.

3 Linear and Angular Momentum of a Vortex Tangle
from Geometric Information

First, let us consider a single vortex filament & in an unbounded, ideal fluid at rest
at infinity, where vorticity is confined in the filament tube. Vortex filaments arise
naturally in superfluid turbulence [3], where indeed vorticity remains localized for
very long time on extremely thin filaments, with typical length of the order of 1 cm
and vortex cross-section of the order of 1078 cm.

Let I = K(y) be centered on the filament axis x. Let us assume that vorticity is
given simply by @ = wot, where y is a constant, and orientation is induced by
vorticity. The vortex circulation (an invariant of the Euler’s equations, and
quantized in the superfluid case), is given by
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K= / o d*X = constant, (4)
A

where A is the area of the vortex cross-section. Two fundamental invariants of
ideal fluid mechanics are the linear and angular momenta. The linear momentum
(per unit density) P = P(K) corresponds to the hydrodynamic impulse, which is
necessary to generate the motion of the vortex from rest; from its standard defi-
nition [13], it takes the form

1 1 .
P:—/Xxwd3X:—K]{ X x tds = constant, (5)
2Jv 2 i

where V is the filament volume. Similarly, for the angular momentum (per unit
density) M = M(K) (the moment of the impulsive forces acting on K), given by

1 1 N
M:—/Xx(Xxw)d3X:—K7{ X x (X x t) ds = constant. (6)
3y 3 i

Now evidently, since tds = dX, the right-hand-side integrals in (5) and (6) admit
an interpretation in terms of (twice) the geometric area. It is quite surprising that
this geometric interpretation, recognized by Lord Kelvin in his early works on
vortex motion, has remained almost unexploited to date, and it is this particular
aspect that we want to exploit here. Since both P and M are vector quantities, each
vector component can be related to the area of the graph resulting from the
projection of x along the direction of projection given by that component. By
referring to the standard projection A = p(y), we have

px : Ayz 9 -Ayz = -A(Ayz) )
p(x) : R — R?, Py Ay, A = A(Ay) (7)
Pz Axy ) Axy = A(Axy) ,

where, in the case of a simple, non-self-interesecting, planar curve A, A(:)
coincides with the standard geometric area bounded by 4. Hence, we can write

P = (Py, Py, P2) = K(Ayz; Acr, Ay) (8)

2
M = (Mx’ M)" MZ) = g K(dxA}'Z7 d)"AZ)ﬁ dz-Axy) I (9)

where d,A,., d, A, d. A, are the areal moments given according to the following
definition.

Definition. The areal moment around any axis is the product of the area A
multiplied by the distance d between that axis and the axis ag, normal to A
through the centroid G of A.
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Hence, d,, dy, d. denote the Euclidean distances of the area centroid G of A
from the axes x, y, z, respectively.

4 Impetus of Vortex Knots and Links: Some Examples
4.1 Single-Component Systems: Vortex Knots

Figure-of-eight knot. Let us consider the diagram of Fig. 5a and let us evaluate the
indices of the graphs. Suppose that this diagram results from the projection of a
figure-of-eight knot (in the diagram shown we kept track of over-crossings and
under-crossings for visualization purposes only; in the standard, planar projection
all the crossings become nodal points). For each region we arbitrarily choose a
radial vector and for each vector we consider the intersections of the p-line with
the graph. At each intersection we assign a +1 or a —1, according to the positive
reference defined in Sect. 2, and we sum up all the contributions according to (1),
hence determining the index of that region. Their values are shown encircled in
Fig. 5a. These values are topological in character, because they do not depend on
the choice of the footpoint of p, thus providing the necessary prefactor for the
standard area. Using Eq. (8) we see that the central region of the figure-of-eight
knot with index O does not contribute to the impetus in the direction normal to this
plane projection, whereas the nearby regions, with relative indices +1, —1 and —2
will tend to contribute to the motion in opposite directions. The index —2 asso-
ciated with the smallest region, then, may compensate for a modest area
contribution.

Poloidal coil. Consider now the diagram of Fig. 5b, and suppose that this
results from the projection of a poloidal coil in space. Since the central area has
index +1 and the external lobes have all indices —1, by (8) we see that the
resulting impetus component may amount to a negative value (depending on the

(b)

Fig. 5 a The figure-of-eight knot shown in an indented projection. In a standard plane projection
all the apparent crossings collapse to nodal points. The encircled values denote the indices
associated with their respective regions. b A poloidal coil in a standard plane projection
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(a) (b)

Fig. 6 a Two vortex ring interact and b reconnect to form a trefoil knot. The central region,
having largest area and highest index, is likely to move more rapidly than the rest of the system in
the normal direction to the projection plane

relative contributions from standard areas), giving rise to a backward motion in the
opposite direction of the normal to the plane of projection. Such strange type of
motion has been actually found by numerical simulation by Barenghi et al. in 2006
[14], and confirmed by more recent work by Maggioni et al. [15].

Trefoil knotting. A “thought experiment” to produce a trefoil vortex knot from
the interaction and reconnection of vortex rings was conjectured by Ricca [16].
Upon collision (see Fig. 6a), two vortex rings propagate one after the other to
reconnect, thus forming a trefoil knot (as in Fig. 6b). By assigning the indices to
the different regions, it is possible to estimate the impulse associated with the
different parts of the vortex in relation to the projected areas.

4.2 Multi-Component Systems: Vortex Links

Rings. Two vortex rings of equal but opposite circulation move towards each other
to collide (see left diagram of Fig. 7). A finite number of reconnections take place
on the colliding vortices, triggering the production of smaller vortex rings. Small
rings are thus produced (right diagram of Fig. 7). This process has been actually
realized by head-on collision of coloured vortex rings in water by Lim & Nickels
[17]. Since at the initial state linear momentum P = 0 (for symmetry reason), we
expect that this remains so, till reconnections take place. The central diagram of
Fig. 7 represents (schematically) the graph in the plane of collision, at the
reconnection time. By applying the index computation, we can estimate the signed
areas contributions. By using (8), we see that the central region does not contribute
to the momentum of the system, whereas the outer regions, contribute with
opposite sign to the momentum of the emerging small vortex rings. The alternating
signs of the outer regions indicate the production of smaller rings of opposite
polarity, thus ensuring P = 0 throughout the process. The generation and shoot-off
of smaller rings from the plane of collision in opposite directions seems in
agreement with the experimental results of Lim and Nickels [17].

Hopf links. Finally, let us consider the projection of a Hopf link made by two
vortex rings of circulation x; and x, (see Fig. 8). All indices have same sign,
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(b)

Fig. 7 a Two vortex ring interact and b reconnect to form a trefoil knot. The central region,
having largest area and highest index, is likely to move more rapidly than the rest of the system in
the normal direction of projection

indicating that all the graph regions in the projection contribute in the same
direction to the impetus of the system. The central part, having the highest index,
is likely to move faster than the rest of the system.

5 Momenta of a Tangle of Vortex Filaments

From the examples considered in the previous section it is clear that the geometric
interpretation of the momenta based on Eqgs. (8) and (9) can be easily extended to
any complex graph resulting from the projection of a tangle 7 = U;K(y;) of
filaments in space. We can now state the geometric criterium for the computation
of the momenta from geometric diagram information.

Theorem (Momenta in terms of signed area interpretation) Let 7 be a vortex
tangle under Euler equations. Then, the linear momentum P =P(7)=
(Py, Py, P;) has components

z
Pi=xY TA(R), Py=..., P.=.., (10)
=1
and the angular momentum M = M(7) = (M., M,, M;) has components
Fig. 8 Projection of a Hopf

link formed by two vortex
rings of circulation x; and x,
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2 Y4
My =Skd Y TAR) . My=..., Mo=..., (1)
=

where Ay, (R;), Ax(R;j), Ay (R)) denote the standard areas of R;(j = 1,...,Z), for
any projection plane normal to the component of the momenta of 7.

Proof of the above Theorem is based on direct applications of (8), (9) and (2).

6 Knot Polynomial Invariants from Skein Relations:
The Jones Polynomial

Indented diagrams of knot and link types are used to determine knot topology by
extracting topological invariants known as knot polynomials. Several types of knot
polynomials have been introduced as subsequent improvements, R-polynomials,
Kauffman brackets [18], Jones polynomials [19] and HOMFLY-PT [20, 21]
polynomials being such types of knot invariants. These polynomials are deter-
mined by skein relations derived from the analysis of crossing states in the
indented diagrams of knots and links, given by un-oriented or oriented curves.
With reference to Fig. 9, denoting by L, L_, and Ly an over-crossing, an under-
crossing and a non-crossing, respectively, we can derive skein relations for each
polynomial.

6.1 Skein Relations of the Jones Polynomial

The Jones polynomial is a quite powerful knot invariant for oriented knots and
links. It is therefore well-suited to tackle topological complexity of vortex tangles.
The skein relations of the Jones polynomial are standardly derived by a technique
called local path-addition, that consists of computing crossing states according to
the analysis of the elementary states given by the over-crossing L, = %<, the
under-crossing I, = <, and the disjoint union with a trivial circle. { L O. The
skein relations of the Jones polynomial are given by [19, 22]:

V(O)=1 (12)

Fig. 9 a Over-crossing
L. (+1), b under-crossing \ /
L_(—1), and ¢ non-crossing
Ly of oriented strands in an
indented knot diagram \ /
(a) (b) (0
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TV (3R) =7V (X) = (=) v () (13)

Here we should stress that local path-additions are purely mathematical operations,
performed virtually on the knot strands, the only purpose being simply the
mathematical derivation of the polynomial terms, that give rise to the desired
polynomial invariant. No actual physical process is therefore involved.

We can apply the skein relations (12)—(13) to determine the Jones polynomial
of any given oriented knot/link. Calculations are based by applying reduction
techniques performed recursively on (apparent) crossing sites, according to the
diagrams shown in Fig. 10. These techniques resort to virtually split the over/
under-crossing (Fig. 10a and b), by adding and subtracting local paths, so as to
reduce each crossing site to a non-crossing plus a positive/negative writhe con-
tribution, denoted respectively by y, and y_.

7 Computation of the Jones Polynomial for Trefoil Knots
and Whitehead Link

For the sake of illustration we compute the Jones polynomial by considering a
number of elementary examples. First, let us consider the diagrams of Fig. 11.
Evidently in (a) the writhe y, and the writhe y_ are both topologically equivalent
to the unknot, i.e. the standard circle; hence by (12), we have V/ (O) =V(y +) =
V(y_) = 1. Now, by using (13), we have

W) -V ) =@ - t)V() (14)

hence,

K0 = X K

(a)

X - 0a - e 00

Fig. 10 By adding and subtracting local paths a an over-crossing L (+1) is reduced to a non-
crossing plus a positive writhe y_,, and b an under-crossing L_(—1) is reduced to a non-crossing
plus a negative writhe y_
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V() = —12— 1. (15)

Note that the orientation of any number of disjoint rings has no effect on the
polynomial. As regards to the Hopf link H, (Fig. 11b), we have

TIWVH) - V() = (2 —T)V(y,) (16)
that gives
VH,) = -1 -1 . (17)
Similarly for the Hopf link H_ of Fig. 11c:
W) —tVH) = (2 -t V() , (18)

that gives

VH.)=—17—173, (19)

7.1 Left-Handed and Right-Handed Trefoil Knots

The left-handed trefoil knot TX and right-handed trefoil knot TX are shown by the
top diagrams of Fig. 12a and b, respectively. By re-arranging (13), we can convert
a crossing in terms of its opposite plus a contribution from parallel strands, that is

COCO0O

Fig. 11 a Writhes y,, y_ and disjoint union of two trivial circles l... b Hopf link H, with
crossing +1, disjoint union of circles I and writhe y, . ¢ Hopf link H_ with crossing —1, disjoint
union of circles 1., and writhe y_. Note that the orientation of any number of disjoint circles does
not influence the polynomial
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Fig. 12 aleft-handed and bRight-handed trefoil knots (top diagrams) decomposed by applying
standard reduction techniques (local path-addition) on crossing sites. Their Jones polynomials are
obtained by analyzing the elementary states given by the diagrams of Fig. 11

V(R) =7V (X) + (72 =)V (00) (20)

By applying this relation to the encircled crossing of each trefoil knot we can
transform the top diagrams of Fig. 12 into their relative decompositions given by a
writhe and a Hopf link (bottom diagrams). With reference to the left-handed trefoil
of Fig. 12a, we have a writhe y_ and a Hopf link H_.

Hence, by using the elementary results above, we have: for the left-handed
trefoil knot T*

V(y_) = 2V(TH) + (¢ — ) V(H.) , (21)
that, by using (19), gives
V(TE) =177V 4¢3 — 7%, (22)
For the right-handed trefoil knot TX, we have
V(TR =V (yy) = (2 — 7 V(H,) . (23)
Thus, by using (17), we have
VTR =+ -1 (24)

By comparing (22) with (24) we see that the two mirror knots have different
polynomials.

7.2 Whitehead Link

A second example is provided by the Whitehead link W (see Fig. 13). With
reference to the bottom diagrams of Fig. 13, by applying the skein relation (13) to
the Whitehead link W (of crossing +1), we have the relation
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-~
\

P QP
CHROHECHIROD

Fig. 13 Reduction schemes for Whitehead links W, and W_. aTop: Whitehead link W, with
crossing +1; bottom: Hopf link H_ and left-handed trefoil knot T. bTop: Whitehead link W _
with crossing —1; bottom: Hopf link H., and figure-of-eight knot F®

V(W) —tV(HD) = (¢ — t ) V(T (25)
and application of (13) to the Whitehead link W_ gives
TIWVHL) — V(W) = (2 — ) V(FY) | (26)

where F® denotes the figure-of-eight knot shown at the bottom of Fig. 13b. This
latter can be further reduced according to the diagrams of Fig. 14. By applying
(13) to the unknot with two writhes y_, denoted by y_, and to the Hopf link with
writhe y,, denoted by H', we have

TWE) — V() = (¢ — ) V(HY) . (27)

Now, since V(y_) = 1 and V(H?) = V(H_) = —12 — 772, we have

VY =12 -t 41—t (28)

As can be easily verified, the mirror image of the figure-of-eight knot of Fig. 14
has the same Jones polynomial of Eq. (28).

Hence, by substituting (19) and (22) into (25), we have the Jones polynomial for
W, . By similar, straightforward computation we obtain also the Jones polynomial
for W_. The two polynomials coincide, that is V(W) = V(W_) = V(W), given
by

(S
Plw

VW)=t -2t 341320740 -1, (29)

indicating that the two knots are actually the same knot type.
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Fig. 14 Reduction scheme
for (fop) the figure-of-eight
knot F®; bottom the unknot
with two writhes y_, denoted
by y_ (left), and a Hopf

link with writhe y, , denoted
by HY

8 The Jones Polynomial of Vortex Knots from Helicity

Fluid helicity is one of the most important conserved quantities of ideal fluid flows,
being an invariant of the Euler equations, and a robust quantity of the dissipative
Navier—Stokes equations [13]. In ideal conditions its topological interpretation in
terms of Gauss linking number was provided by Moffatt [23] and extended by
Moffatt & Ricca [24]. In the context of vortex dynamics (kinetic) helicity is
defined by

H= / u- 0d’x, (30)
Q

where u is the velocity field, ® = V X u is the vorticity, defined on €, and x the

position vector. For simplicity we assume V -u = 0 everywhere, and we request
o -1 =0 on 0Q, where n is orthogonal to 0, with V - @ = 0. For a thin vortex
filament (30) reduces to a loop integral [25], given by

H:Kj}{u-dl, (31)

where now u denotes the vortex velocity induced by the Biot-Savart law. On the
other hand, for a single tangle component Eq. (31) can be written in terms of the
well-known contributions due to the Calugareanu-White formula [24], i.e. (by
dropping the index)

H(K) = K’Lk = K*(Wr + Tw) , (32)

where helicity is decomposed in terms of writhe (Wr) and twist (Tw) contributions.
As a topological invariant of the knot K, the Jones polynomial V = V(K) is
merely a function of a dummy variable (say ), that in general has no physical
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meaning: thus V(K) = V. (K). Since in our case K is a vortex knot, during evo-
lution it carries topological as well as dynamical information. Following [12], we
can encapsulate this dual property by combining the two Egs. (31) and (32) into
the variable 7 (by an appropriate transformation), showing that this new 7 satisfies
the skein relations of the Jones polynomial. Indeed, by using (31) and (32) and the
transformation e — t — 1, we have the following [12]:

Theorem ([12]): Let I denote a vortex knot (or an N-component link) of helicity
H = H(K). Then

HK) tfk' udl (33)

appropriately re-scaled, satisfies (with a plausible statistical hypothesis) the skein
relations of the Jones polynomial V = V(K).

Full proof of the above Theorem is given in the reference above, where the
skein relations are derived in terms of the variable

T = H0) iel0,1], (34)

where A takes into account the uncertainty associated with the writhe value of y,
(see the first diagram of Fig. 11a) and H(y, ) denotes the helicity associated with
y, [121.

9 The Jones Polynomial as a New Fluid Dynamical Knot
Invariant

For practical applications it is useful to go back to the original position, i.e.
7 — t1 — e, by referring to e/ rather than 1. By (34) we can write knot poly-
nomials for a vortex tangle of filaments as function of topology and H(y. ), where
the latter can be interpreted as a reference mean-field helicity of the physical
system. Indeed, by (32), we can think of H(y, ) as a gauge for a mean writhe (or
twist) helicity of the background flow. Since in any case this contributes in terms
of an average circulation x, we can re-interpret the Jones polynomial as a new
invariant of topological fluid dynamics, i.e.

Vo(K) — Vi(K, &) — V(K k) . (35)

In the case of a homogeneous, isotropic tangle of superfluid filaments, all vortices
have same circulation x; thus, by normalizing the circulation in dimensionless
form, we can set

P=(y=r . (HE)) =% (36)
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where angular brackets denote average values. Hence,

T=1" - (37)
In this case, we have

V(O)=V(y) =V )=V(o) =1 (38)
V() = —€5(1+e ), (39)
V(.. .) = [—eé(l + ef’fz)]N*1 , (N vortex rings) , (40)
VH,) = —e5(14+e2) (41)
VH.) = —5(1 + ), (42)
V(TL) _ ex2 +€3K2 _ e4rc2 ’ (43)

R —K? 32 —4i?
V(T ) =e™ 4+ —e . (44)
V(F8> _ e2K2 _ elcz +1-— eﬂcz _‘_672;:2 ’ (45)
V(W) = e (—1 e =262 4 — 2™ 4 85,8) . (46)

These results are obtained by straightforward application of the transformation
(37) to the computations carried out in Sect. 7. For more complex physical systems
knot polynomials can be straightforwardly computed by implementing skein
relations and diagram analysis into a numerical code.

10 Concluding Remarks

Complex tangles of vortex filaments are ubiquitous in turbulent flows, and are key
features of homogeneous isotropic turbulence in both classical and quantum sys-
tems. Detecting their structural complexity and attempting to relate complexity to
dynamical and energetic properties are of fundamental importance for both theo-
retical and practical reasons. Moreover, vortex tangles represent a good paradig-
matic example of complex systems displaying features of self-organization and
adaptive behavior largely independent of the space scale of the phenomena; they
therefore offer a perfect test case to study and tackle aspects of structural com-
plexity in general.
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In this paper I reviewed new results obtained following an approach based on
the exploitation of geometric and topological information. Preliminary information
on standard and indented diagrams have been given in Sect. 2. Then, a new
method to compute linear and angular momenta of a tangle of vortex filaments in
ideal fluids has been presented (Sects. 3 and 4). This method relies on the direct
interpretation of these quantities in terms of geometric information (Sect. 5).
Indeed, the technique proposed here is based on a rather straightforward analysis
of planar graphs, and its direct implementation to analyze highly complex net-
works seems amenable to more sophisticated improvements. Similar consider-
ations hold for the implementation of skein relations to quantify topological
properties by knot polynomials, introduced in Sects. 6 and 7. Here, our attention
has been restricted to the Jones polynomial, and its interpretation in terms of the
helicity of fluid flows (Sect. 8). This, in turn, has led us to re-consider and present
this polynomial as a new invariant of ideal fluid mechanics, and a number of
elementary examples have been presented to demonstrate both the straightforward
application of computational techniques associated with the implementation of the
relative skein relations, and the possibility to extend this approach to more com-
plex systems (Sect. 9).

These results can be extended to real fluid flows as well. For these systems
viscosity play an important role, by producing continuous changes in the tangle
topology, leading to the gradual dissipation of all conserved quantities, momenta,
helicity and, of course, energy. This is certainly reflected in the continuous change
of geometric, topological and dynamical properties. Therefore, a real-time
implementation of an adaptive analysis that takes account of these changes can
provide a useful tool for real-time diagnostics of the exchange and transfer of
dynamical properties and energy between different regions in the fluid. This,
together with an adaptive, real-time implementation of a whole new set of mea-
sures of structural complexity based on algebraic, geometric and topological
information [25-27] will prove useful to investigate and tackle open problems in
classical, quantum and magnetic fluid flows, as well as in many other systems that
display similar features of self-organization.
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