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The reasonable man adapts himself to the world;

the unreasonable one persists in trying to adapt the world to himself.

Therefore all progress depends on the unreasonable man.
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Abstract
For many important classes of biomolecules such as RNA and proteins, a direct re-

lationship exists between structure and function. On the contrary the relationships

between genomic sequences and molecular structures are still poorly understood.

The determination of the three dimensional structure of biomolecules on a genome-

scale is hence one of the major challenges in modern biology. Indeed, today genomic

data are easily achievable, thanks to next generation sequencing technology, while

structural data are still obtained through complex experimental protocols. As a result,

the disproportion between the available amount of genomic and structural data limits

the progress in several fields such as drug discovery and synthetic biology.

The use of computational methods and mathematical optimization in structural biology

is fundamental to reduce the amount of data required from experiments speeding

up experimental protocols and to define in silico protocols for the prediction of three

dimensional structures. This thesis introduces novel heuristic approaches to tackle

two important problems in structural biology: the protein structure prediction (PSP)

and the molecular distance geometry (MDG) problem. Both these problems are known

to have a complex combinatorial structure and are classified as NP-hard. Therefore

the proposed approaches are based on stochastic optimization heuristics (SOH), which

provide a powerful framework to tackle complex combinatorial problems that do not

allow for exact approaches.

The PSP problem have been treated in the simplified representation provided by the

hydrophobic polar (HP) model; a new perturbation strategy has been introduced

to mimic off-lattice approaches and to provide a complementary benchmark to the

existing move sets.

Two heuristics, based on the principle of local landscape mapping, have been tested on

several benchmark instances both in combination with the new perturbation strategy

and with standard move sets. The results show that one of the proposed heuristics

outperforms state of the art methods on the majority of the considered instances. In

the case of the MDG problem, results show that the proposed methodology is able

to achieve a performance comparable to the state of the art and to overcome most

limitations of the existing approaches.

Keywords: Protein Folding, Combinatorial Optimization, Heuristics.
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Riassunto
La determinazione della struttura tridimensionale delle biomolecole su scala genomica

è uno dei più importanti obbiettivi della biologia moderna con potenziali ricadute in

differenti contesti applicativi che spaziano dalla farmacologia, alla biologia sintetica.

Il ruolo dei metodi computazionali ed in particolare dei metodi di ottimizzazione

in quest’ambito è fondamentale per l’interpretazione dei dati sperimentali. Inoltre

nell’ultimo decennio la predizione computazionale della struttura di importanti classi

di biomolecole come RNA e proteine è diventata una prospettiva concreta.

Questa tesi presenta due nuovi metodi di ottimizzazione stocastica progettati rispet-

tivamente per il problema della predizione della struttura delle proteine nel modello

idrofobico polare e per il problema della ricostruzione della struttura da dati NMR. Il

primo problema consiste nel trovare un assegnamento in un reticolo di una stringa

binaria tale da minimizzare una data funzione di costo e senza violare un insieme di

vincoli. Il secondo, consiste nel identificare una disposizione di atomi nello spazio

tridimensionale che rispetti un insieme di vincoli di distanza. Entrambi questi problemi

sono rilevanti dal punto di vista computazionale inquanto è stata dimostrata la NP-

completezza del problema di decisione associato. Pertanto essi rappresentano un

ottimo banco di prova per le euristiche di ottimizzazione stocastica.

Nel caso della predizione della struttura nel modello idrofobico polare, i risultati ottenuti

su una serie di instanze di benchmark mostrano che la strategia proposta può essere

adattata a differenti modelli di rappresentazione migliorando in alcuni casi la perfor-

mance rispetto allo stato dell’arte. Per quanto riguarda la ricostruzione di strutture da

dati NMR, i risultati, per quanto ancora in fase preliminare, suggeriscono che il metodo

proposto sia in grado di raggiungere l’accuratezza richiesta dall’applicazione offrendo

altresi numerosi vantaggi in termini di applicabilità rispetto agli approcci esistenti.

Parole chiave: Ripiegamento Proteico, Ottimizzazione Combinatoria, Euristiche.
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1 Introduction

In this chapter the context of research of this thesis is introduced, motivations and the

contribution of this work to the research field are provided along with the structure of

the thesis.

1.1 Context and motivations

In the last forty years, the computational techniques have gained a crucial role in biology,

spanning from sequence alignment algorithms to inference methods and simulation

tools. This has greatly enhanced our understanding of many biological processes,

allowing the completion of ambitious task such the Human Genome Project [1]. Today

high-throughput methods for genome sequencing and analysis allow the completion

of a genome analysis in few hours, on-line tools allow the comparison between genes

from thousand of different species, and databases have been created to organize

all this information and to make it accessible in a meaningful way. Although these

results are impressive, most of the information that it is possible to extract and easily

process is about biological sequences. This is often referred to as one-dimensional (1D)

information. Nevertheless, a significant part of the information needed to understand

biological systems and to predict or alter their behavior is the three-dimensional (3D)

information. This regards, in particular, two classes of biological macromolecules:

proteins and ribonucleic acids (RNAs). The elucidation of the relationship between

1D and 3D information for these macromolecules is so critical that it is sometimes

referred to as: the second half of genetic code. Unfortunately this relationship is far from

trivial and despite the considerable efforts and progress achieved so far, it still remains

unclear. In this thesis the discussion focuses on proteins (see [2, 3, 4] for an extended

treatment of the RNAs case),a key component of life involved in almost every cellular

process. The availability of many different shapes and sizes allows them to cover roles

as different as catalysis, signaling, energy production and fiber formation [5]. Due to

their active role in life processes takeover, proteins are also the primary therapeutic

target. Beyond their biological relevance, proteins are also employed in industrial
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Chapter 1. Introduction

processes, in particular in the food industry and pharmaceutical industry. Moreover

proteins production and engineering is becoming a field of great interest, promising

a broad sets of new applications that spans from fine chemicals to digital memories

[6, 7, 8]. Despite this, our ability to determine the structure adopted by a specific protein

sequence with atomic accuracy still relies on experimental techniques, in particular

crystallographic techniques [9] and nuclear magnetic resonance (NMR) [10]. Both

techniques produce rough data and algorithms are needed in order to determine the

molecular structure. Today, efficient algorithms for fitting the electron density maps

produced by crystallographic techniques are available [11, 12, 13, 14, 15], and most of

the improvements in this field rely on the development of new protocols for purification

and crystallization, or on the use of new experimental methodologies to reconstruct

the phase space [16, 17, 18, 19, 20, 21]. On the other hand, in order to obtain a 3D-

structure from NMR, the solution of an instance of the molecular distance geometry

(MDG) problem has to be found. This is a difficult optimization problem and existing

algorithmic strategy are not considered completely satisfactory. For this reason, the

definition of improved methods for MDG problem has been object of intense research

in recent years [22, 23, 24, 25, 26].

An alternative to experimental techniques, could be the prediction of protein structures

based only on the amino-acidic sequence. Indeed, for reason explained in Chapter 4,

the prediction of protein structure can be formulated as a search problem and both

simulation and optimization algorithms can be used to perform the search. This is a

very ambitious challenge and, although many important steps have been made toward

its solution, it is still an open problem. The efforts of the scientific community in

this direction have increased significantly in the last 20 years; in particular, after the

introduction of high-throughput methods for genome sequencing and analysis, that

have pushed the sequence discovery rate further beyond the experimental structure

determination rate, resulting in an enormous gap between known sequences and known

structures. The high number of research groups and the interest of pharmaceutical

companies in this research led to the creation of the Critical Assessment on Protein

Structure Prediction (CASP) [27], a biennial event held since 1995 that includes both

theoretical and experimental scientists. This event gave to the researchers the opportu-

nity to compare the accuracy of different prediction algorithms on a set of benchmark

protein sequences with a known but unpublished structure, leading to a significant

improvement in the accuracy of the prediction and to the development of better metrics

to assess the quality of the models. According to CASP results [28, 29], today the most

successful computational approaches for protein structure prediction (PSP) exploit

the evolutionary relations between proteins. These methods allow the prediction of

a protein structure only when a closely related sequence (homologous) with known

structure is available and their accuracy strongly depends on the quality of the sequence

alignment between the target sequence and the template sequences. Nevertheless,

almost a third of the known sequences has no known homologous [30] and it is expected

2



1.2. Contribution

that a significant number of folds (general structural organization shared between

different protein families) have not yet been discovered or characterized [31]. The

development of a fast and reliable method to predict a protein structure using only the

information contained in the sequence is therefore extremely valuable in computational

structural biology.

1.2 Contribution

The focus of this thesis is on the development of improved stochastic optimization

heuristics (SOH) for protein structure prediction (PSP) problem and for the MDG prob-

lem. Although both problems are linked to the same applicative contest and the

proposed approaches are rooted in the common ground of SOH, they differ significantly

in the mathematical formalization and consequently in the proposed heuristics. For

this reason, in this thesis, they will be discussed separately.

In the case of, PSP the hydrophobic polar (HP) model [32] have been taken into account

since it offers a simplified representation. Consequently, it allows the evaluation of

the the performance of new methods using a reasonable amount of computational

resources. The PSP problem in the HP model consists in finding a self avoiding lattice

chain that maximizes the number of lattice contacts between positions with a specific

label in a given string. Although simple in terms of representation, the decision problem

associated to PSP in the HP model has been proved to be NP-complete [33]. Due to the

relevance of this problem in the field of structural biology, a great number of SOHs have

been proposed for HP-PSP [34, 35, 36, 37, 38, 39, 40, 41]. The first contribution of this

thesis, is the definition of a new perturbation system that mimics off-lattice approaches

and to provide a complementary benchmark to the existing move sets.

Moreover, a new optimization strategy for PSP is introduced, based on the idea of com-

bining a variable neighborhood structure with the rejection sampling scheme of a typical

Monte Carlo method. This strategy includes some of the main concepts introduced in

recent literature such as the use of memory support structures [34, 38, 37, 41, 39, 40]

and specialized local search procedures [42, 34]. Two different implementations of

this strategy have been developed: the first is based on an auxiliary memory structure

[43, 44], the second (manuscript in preparation) is based on a specialized local search

procedure. The main novelty of the memory based approach is that it focuses on the

structural level instead of the energy level. Results suggest that this method is more

suitable to threat the problem in the new representation systems with respect to other

well established SOHs. In the case of the local search based approach, the main novelty

is represented by the definition of problem-related variable structure that act as a target

for the specialized local search, providing an effective diversification strategy. Results

show that this method outperforms state of the art approaches on the majority of the

benchmark instances considered in this thesis.

3
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The MDG problem consists in reconstructing the three dimensional structure of a

biomolecule using a sparse set of distance restraints obtained through a nuclear mag-

netic resonance (NMR) experiment. The decision problem associated to the MDG

problem has been proved to be NP-complete [45]. Although NP-hard problems are

the natural field of application for SOHs, to the best of our knowledge, the approach

proposed in this thesis [46] is the first attempt to solve the MDG problem by exploiting

evolutionary techniques alone. The underlying idea of the proposed method is that of

using the constraints arising from experimental data as a springs system, this system

is integrated in a hybrid genetic algorithm-particle swarm optimization heuristics in

order to perform the search for satisfactory structures. Results obtained on synthetic

data show that the method is able to reconstruct the protein structures with atomic

resolution.

1.3 Structure of the thesis

This thesis is organized as follows:

• Chapter 2 provides a generic definition of continuous and discrete optimiza-

tion problems and introduces the main characteristic of stochatic optimization

techniques. Applicability condition are also taken into account along with some

limitations inherent to these methods. In addition, an overview of the most

successful heuristics is provided.

• Chapter 3 gives a quick overview of the biological background. In particular, the

chemico-physical properties of the protein molecules are described and some

thermodynamical aspects of folding process are mentioned. Moreover, principles

of the NMR technique are discussed to give a better understanding of the data

used as input to solve the MDG problem.

• Chapter 4 introduces a formal definition of both PSP and MDG problems along

with an overview of the state art approaches and representations.

• Chapter 5 describes the proposed Local Landscape Mapping method for PSP

problem in the HP model. The performance of the method is evaluated through a

comparison with state of the art heuristics on several benchmark instances and

representation systems.

• Chapter 6 describes the proposed Springs Swarm Method for the MDG problem,

discusses the results achieved on synthetic data from real protein structures and

provides a qualitative comparison with state of the art methods.

• Finally, Chapter 7 includes conclusions about the whole work and some possible

directions for the extension of the presented approaches.
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2 Stochastic optimization heuristics

As anticipated in the previous chapter, the work presented in this thesis is rooted

in the context of stochastic optimization heuristics (SOH). This chapter provides an

overview of some of the major families of SOH and introduces some general concepts

on their applicability along with basic informations about optimization problems and

the notations that will be used throughout this thesis. An extended treatment of this

SOH would exceed by far the scope of this thesis. For this reason, an effort has been

made to include only concepts and techniques essential to understand how the SOH

can be used to tackle complex problems such as protein structure prediction in the HP

model and molecular distance geometry problem.

2.1 Optimization problems

An optimization problem can be informally defined as the problem of finding the

most desirable assignment of a variable defined in some space, called the search space,

according to some evaluation (or objective) function. A commonly used classification

of optimization problems is based on the structure of search space. In particular an

optimization problem is said to be continuous if the search space can be expressed as a

combination of continuous variables; it is said to be discrete, or combinatorial, if the

search space can be expressed as a combination of discrete variables; while it is said to

be a mixed integer problem if the search space is a mixture of discrete and continuous

variables. In this thesis only continuous and combinatorial problem will be considered.

5



Chapter 2. Stochastic optimization heuristics

2.1.1 Continuous optimization problems

A widely used [47] formal definition of a continuous optimization problem P is the

following:

find x∗ ∈
{

argmin
x∈Ap

f0(x)

}
,

s.t .

fi (x) ≤ 0, i ∈ {1, . . . ,m} ,

h j (x) = 0, i ∈ {m +1, . . . ,n} ,

f0 :A0 →R, fi :Ai →R, h j :A j →R, Ap =
{

n⋂
k=0

Ak

}
.

(2.1)

In the equation above, x denotes the optimization variable defined over the search space

Ap , the function f0 is the objective function that is used to measure the desirability

of a specific assignment of x, x∗ denotes a solution of P , while fi and h j are called

respectively inequality and equality constraints functions used to restrict Ap to the so

called feasible region of the search space. It is important to notice that the definition

in Eq.(2.1), also referred to as standard form of optimization problems, includes also

maximization problems since they can be expressed by switching the sign of f0. A con-

tinuous optimization problem for which it holds f0(x) = k, ∀x ∈Ap is called feasibility

problem: these are problems in which the objective is to find a value of x that satisfies

all the constraints. Clearly, for some optimization problem no solution x∗ can be found.

This can happen for one of the following two reasons:

1. there is no assignment of x ∈Ap that satisfies all the constraints, and the problem

is said to be infeasible;

2. the optimal value of f0 is −∞ as a consequence x∗ is undefined, and the problem

is said to be unbounded below.

2.1.2 Combinatorial optimization problems

For what concerns combinatorial optimization problems, this thesis follows the defi-

nition given by Ausiello in [48]. According to this formalism, a discrete optimization

problem P is represented with a quadruple (Ip ,SOLp ,mp , g oalp ), where:

1. Ip is the set of instances of P ;

2. SOLp : Ip →Nn is a function that associates to any input instance ι ∈ Ip the set of

feasible assignments of ι;

3. mp :
{

Ip ,Nn
}→N is the measure function, corresponding to f0 in the continuous

6



2.1. Optimization problems

case, defined for pairs (ι, x) such that ι ∈ Ip and x ∈ SOLp (ι);

4. g oalp ∈ {M I N , M AX } specifies if P is a minimization or a maximization problem.

Using this formalism, the value x∗ ∈ SOLp is a solution for the instance ι of P if:

mp (ι, x∗) = g oalp
{

v |v = mp (ι, z)∧ z ∈ SOLp (ι)
}

. (2.2)

Since in many cases the adaptation of the evaluation function mp to different instances

of the problem P is trivial, in the remaining of this thesis the notation mp (x) will be

used in place of mp (ι, x). It is important to notice that the choice of a formalism to

represent an optimization problem is arbitrary; therefore according to the context,

different definitions can be used. For instance, it is not uncommon to define a discrete

optimization problem using the standard form.

In this thesis, the notation Op will be used, both for continuous and discrete optimiza-

tion problems, to denote the solutions set whenever it exists.

2.1.3 Efficiency in optimization

Similarly to other fields in computer science and applied mathematics, the efficiency of

the algorithms is a major concern in the optimization field. This means that, given a

model of computation (i.e., the Turing machine), an algorithm A and a generic instance

ι of an optimization problemP , it is important to consider the amount of computational

resources; namely, time and space (memory), required in order to achieve a solution

for ι using algorithm A, which is called the computational cost of A. In the case of

discrete problems, it is always possible to define a function || : Ip → N, such that |ι|
measures the size of the instance ι of P (i.e., the bit length of an assignment x). The

algorithm A is considered efficient if it has polynomial complexity both in time and

space with respect to |ι|; that is the upper bound of the computational cost of A over

all the possible instances of P is at most a polynomial function of |ι|. In the case

of continuous problems, giving a definition of efficiency is not trivial [49, 50]. For

the purpose of this thesis, it is enough to say that A is an efficient algorithm for a

continuous optimization problem P , if, on average, it is able to find z ∈Ap such that:

f0(z)− f0(x∗) ≤ ε, ε ∈R+ with a computational cost that has a polynomial dependence

on both ε−1 and the dimensionality d of Ap . Both continuous and discrete problems for

which no efficient algorithm is known, are said to be intractable. Some of the sufficient

conditions that determine tractability are known; consequently it is possible (but often

not trivial) to know if an efficient algorithm is available to solve a given problem. For

example, given an optimization problemP in standard form, if all theAk are convex sets

and the following inequality is satisfied by both the objective and constraints functions:

f (θx + (1−θ)y) ≤ θ f (x)+ (1−θ) f (y), θ ∈ [0,1], x, y ∈Ap (2.3)

7
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then P is said to be a convex problem and it can be solved by means of efficient

techniques [51, 52]. Note that often problems that are not convex in their naive def-

inition, might be reduced (mathematically manipulated) to an equivalent convex

problem. Problems in standard form that are not reducible to a convex problem

usually cannot be solved efficiently [53]. Similarly, in the discrete domain there is

a class of optimization problems called NP-hard problems [54, 55, 56, 57], for which no

efficient algorithm is known. Several problems of practical interest, such as the traveling

salesman problem (TSP) [55], bin packing problem [56], boolean satisfiability [54] (SAT),

molecular distance geometry (MDG) problem [45] and the PSP in the hydrophobic polar

model (HP-PSP)[33], just to name but a few, fall in this class.

2.1.4 Global optimization problems

The main point that emerges from the previous section is that many optimization

problems of practical interest can not be solved exactly in a reasonable amount of

time. These problems are usually grouped under the name of global optimization

(GO) problems, since, roughly speaking, they are characterized by the presence of two

types of minimal points in the search space: global minima and local minima . A local

minimum in a continuous optimization problem is an assignment y of x such that:

∃k ∈ R+ : f0(y) ≤ f0(z) ∀z ∈N ,

y ∉OP , N k
y = {

z, y ∈Ap |‖z − y‖ < k
}

.
(2.4)

The set N k
y is called k-neighborhood of y . An equivalent definition of local minimum

can also be given for discrete optimization problems; in this case the neighborhood N k
y

of the assignment y is defined as:

N k
y = {

z, y ∈ SOLP (ι)|λ(y, z) ≤ k
}

,k ∈N, (2.5)

where λ(y, z) is the minimum number of discrete operations (i.e., bit switch) required

to transform y in z (discrete neighborhood relationships are symmetric only if the

adopted discrete operations are symmetric). The maximal neighborhood N k̂
y in which

the point y is the only minimal point is called basin of attraction of y . A huge number

of approaches is available today to tackle global optimization problems; among them

only SOHs will be discussed in some detail in this thesis. The reader interested in

deterministic approaches to GO is referred to [58, 59, 60, 61, 62, 63, 64] and references

therein.

2.1.5 Implicit constraints

In the previous section it has been assumed that the constraints of a generic GO problem

can be handled explicitly and that the optimization methods evaluate only feasible
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assignments. That is to say, some efficient algorithm exists to define the set Ap in the

continuous case or to compute the function SOL(ι) in the discrete case. Nevertheless,

for some optimization problems and depending on the chosen optimization method,

the explicit handling of the constraints could be inefficient. In this situation, it is always

possible to define a modified evaluation function fp such that the set Op is preserved

and that unfeasible assignments are associated to an arbitrary poor value of fp . For

example, in the continuous case, this can be obtained with a function of the form:

fp (x) =
 f0(x) if x is feasible,

∞ otherwise.
. (2.6)

This strategy is often referred to as implicit constrain treatment and is commonly used

by SOH to include constraints and to tackle feasibility problems.

2.2 Applicability and general properties

The SOH are a wide and heterogeneous group of methods for GO problems. Although

different SOH methods define different strategies to explore the search space, their

common feature is the use of a biased random sampling. This bias is designed to drive

the search toward regions of the search space that exhibit good values of the objective

function. Another general feature of SOH is that the average quality of the returned

assignment x t , measured between independent executions, increases as a function of t ,

where t denotes the computational resources allocated. This observation is supported

by the formal proofs of asymptotic convergence obtained for most of these methods

[65, 66, 67, 68], often these proofs adopt a probabilistic approach and come in the form:

lim
t→+∞P A

(
x t ∈Op

)= 1, (2.7)

where P A
(
x t ∈Op

)
is the probability that the SOH A returns a value in the solutions

set of the target problem P using t resources; where t usually denotes a number of

iterations of A, since all SOHs are iterative methods. In a comparative setting, the most

appealing features of SOH with respect to deterministic approaches can be summarized

in the following four points:

1. they allow a fine tuning of the amount of computational resources allocated to

achieve a satisfactory assignment of x;

2. they can always perform the optimization using the natural definition of the

problem;

3. they do not require lower bound estimate, derivatives, or the availability of other

mathematical properties;
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4. they allow a realistic modeling of the physical behavior of some systems.

Due to their flexibility, SOH have been intensively applied and occasionally introduced

in different fields as automation [69], logistic [70], matter physics [71], finance [72],

just to name but a few. The most important limitation of SOH is that they give no

guarantee on the quality of the returned assignment of the search variable x. In other

words, the value that is returned at the end of the execution of a SOH could be outside

of Op . Moreover, no information is achieved on the optimal value in terms of lower

bounds or approximation constants. Another aspect, linked to the stochastic nature

of these methods, that can be considered unpleasant in some contexts, is the lack

of reproducibility of single executions, meaning that two identically parameterized

execution of the same SOH on the same instance of an optimization problem often

return a different assignment of x. For these reasons there are contexts in which the

use of a deterministic GO approach should be preferred. This holds, in particular,

if many information are available on the mathematical structure of the problem, if

the dimensionality of the search space is low or when the evaluation of the objective

function is extremely demanding. Anyhow, for many interesting real life problems,

the only way to choose between the available approaches is to test them over a set

of benchmark instances. For this reason, the use of SOH is often justified by a good

enough reasoning. This means that for a given problem, a SOH is chosen if it is able

to find values of x that satisfies some practical needs and no deterministic method is

able to produce better or comparable results with the given amount of computational

resources.

2.2.1 The No Free Lunch Theorems

The selection of a specific optimization heuristic for a given problem is itself challenging

since it has been proved in a seminal work by Wolpert and Macready [73] that, at least for

combinatorial problems, the performance of any couple of heuristics methods averaged

over all the possible optimization problems is the same. This result was a milestone

in the theoretical study of the performance of the optimization heuristics, leading

to a series of implications that are collectively called no free lunch (NFL) theorems

for optimization. NFL theorems give a probabilistic view of the relation between

the problems space and the heuristic space. They are based on three important

assumptions:

1. the search space and problems space are both finite;

2. the algorithms sample each assignment of the search variable at most once;

3. the probability distribution of the problems is uniform.
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The first assumption holds for all discrete problems of practical interest, while the sec-

ond can be imposed to SOH but it is misleading when considering the real performance

of these class of algorithms. The formal definition of the main NFL theorem Eq. (2.8),

considers the execution of an algorithm A as a trajectory vx
t of unique assignments of x :

∑
P

P (vy
t |t , A1,mp ) =∑

P
P (vy

t |t , A2,mp ), ∀A1, A2, t . (2.8)

In the equation above, the sum is defined over the space of all optimization problems, t

is a given number of functions evaluation, A1 and A2 are a generic couple of algorithms,

vy
t is the vector of the values of the objective function mp associated to the trajectory

vx
t . The most important implication of Eq.(2.8) is that it is not possible to define a

universal optimization heuristic that outperform all the others independently of the

considered problem. An interesting interpretation of the NFL is that the performance

of a given algorithm depends on the alignment of that algorithm with the problem in

the problems space. To understand this aspect, one can consider the probability that a

specific algorithm A′ produces a specific trajectory d y ′
t (i.e., a trajectory with low values

of mp ):

P (d y ′
t |t , A′) =∑

P
P (d y ′

t |t , A′,mp )P (mp ), (2.9)

where P (mp ) is the probability of a problem with evaluation function mp . This sum

can be seen as dot product between vectors in the problems space. Consequently, the

optimization heuristics lies on a cone in the problem space surrounding the diagonal

vector that represents the uniform probability over the problems. If a non-uniform

probability distribution over the problem space is taken into account, i.e., we are

interested in solving a specific family of problems, it is possible to design specialized

algorithms that are aligned with the target family of problems. This is the reason why

most of the applied research in SOH field is dedicated to the development of specialized

variants of well known optimization schemes called meta-heuristic. This is also the

main argument of this thesis, since both the proposed methods are specializations

that combine several features of existing SOH in order to be maximally aligned with

the family of problems corresponding to PSP and MDG. However, it is important to

notice that this specialization does not imply that the resulting method will be useless

in other context, indeed it is possible that apparently unrelated problems exhibit

similar orientation in the problems space. Moreover the NFL theorems leave the

door open to head to head min-max behavior between couple of algorithms; this

means that algorithm A1 can be superior of algorithm A2 of a value k according to

some performance measure on a certain set of problems, but for no other problem A2

outperform A1 of value equal or greater then k. Therefore, in a weak sense a A1 is a

better general purpose black box optimizer.
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2.3 An overview of SOH meta-heuristic

A brief description of some important classes of SOHs is given in this section; most of

these algorithms have been applied to the PSP or to the MDG problem, or are somehow

ancestors of some of the specialized techniques that will be discussed in the next

chapters. The notation used to describe each technique will reflect the context in

which they have been introduced or applied in this thesis. Basing on the method

used to generate new assignments during the optimization process, it is possible to

divide SOH in two main classes: neighborhood based and population based. The

neighborhood based SOH exploit a generic neighborhood definition such those in

Eq. (2.4) and Eq.(2.5), to generate new assignments of x after that a first assignment has

been obtained somehow, then some acceptance criterion is applied to choose between

neighbor assignments and direct the search. Population based methods on the contrary

exploit the possibility to create new assignments using some sort of communication

(i.e., exchange of partial assignments, or shared memories) between a large number of

initial assignments, representing the population itself. A second important distinction

is between constructive and perturbation-based approaches. As the name suggests, a

constructive approach builds assignments of x through the incremental extension of

partial assignments (i.e., an assignment of x in a smaller instance of P). Each extension

step involves some kind of choice and can be used to bias the search toward new

assignments by means of specific criteria and operators. On the contrary, a perturbation-

based method proceeds modifying the value of complete assignments of x and then

chooses whether to accept or not the resulting assignments as new starting points for

the perturbation.

2.3.1 Local search based

A Local search (LS) method is one designed to find the closest optimal point with respect

to a given starting point. Since, for many interesting optimization problems, a single

optimal point exists, the number of local optimization algorithm is huge including,

among the others, the simplex method, the steepest descent algorithm, the greedy

algorithms, the Newton method and the hill climbing algorithm. Many SOH are based

on the idea to combine a local search method with some strategy to prevent it from

being trapped when a local minimum is found.

Random restart local search (RRLS) [74] is the simplest algorithm based on local

search. Basically, it consist in restarting the local search algorithm from a random point

every time that a minimum has been found. This algorithm achieve good results if local

optima are uniformly distributed over the search space; however, for many problems of

practical interest such as TSP and PSP problem, empirical observations [75, 76] indicate

that interesting regions of the search space are grouped in clusters.
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Iterated local search (ILS) [74, 77] is a powerful meta-heuristic, that have been suc-

cessfully applied to several combinatorial problems [78, 79]. The original version of this

heuristic [80] has been developed as a branch of Markov Chain Monte Carlo (MCMC)

methods described below, but its modern interpretation focuses more on the definition

of recursive neighborhood and sequential local search. The basic idea of ILS is to

iteratively apply a stochastic perturbation to the locally optimal assignments found

by means of a local search method. The algorithm starts from a random assignment

x0 of the search variable; then, each iteration is divided in two steps. In the first step

, a local search method is applied to the current assignment x t and a locally optimal

assignment x̂ t is found. In the second step, a perturbation is applied to x̂ t to generate

a new assignment x t+1. The perturbation strategy is the critical aspect of ILS, since

small perturbations could lead to re-sampling of the local optimum; while, on the other

hand, large perturbations could result in a RRLS-like behavior. A more sophisticate ILS

strategy exploits the search history [77] to bias the generation of x t+1; for example, an

archive of the best assignments found so far can be stored and used instead of x̂ t during

the perturbation step.

Greedy randomized adaptive search procedures (GRASP) [81, 82] are yet another

strategy aimed to generate good starting point for local search methods. In this case a

randomized greedy heuristic is used to allow the generation of a large number of differ-

ent starting assignments; then a local search method is applied to each of this starting

assignments. GRASP is an iterative procedure consisting of two phases, a construction

phase and a local search phase. In the construction phase an assignment is builded from

scratch, adding one component at a time. At each step of the construction phase, the

components that define the set of possible extension of the partial assignmet are ranked

according to some greedy function and a number of the best-ranked components

are included in a restricted candidate list; typical strategies of deriving the restricted

candidate list are either to take the best g % of the components or to include all the

components that have a greedy value within some d% of the best-rated component.

Then the choice between components of the restricted candidate list is performed

randomly, according to a uniform distribution. Once a full assignment is achieved, it is

used as starting point for the local search phase. The use of restricted components lists

prevent the generation of some assignments and consequently preclude the possibility

to find assignments in Op for some problems [75]. For this reason, variants of the GRASP

method have been proposed in which a the parameter g % is handled in order to leave a

chance for all the components during each constructive step.

Tabu search (TS) [83, 84] is a neighborhood-based heuristic that exploits a simple

criterion to prevent the local search from halting; moreover, it adds a memory structure

to prevent the creation of cycles during the search process. During each iteration a

neighborhood of the current assignemt x t is generetad and the best neighbor is selected
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to be the new assignment x t+1 also in the case of a worsening in the value of mp . A

memory structure called tabu list stores each of the visited states for a certain number

of iterations and remove this states from the neighborhood of the current assignment.

More complex version of TS include also a focusing strategy, that allow promising

assignments to be excluded from the tabu list in order to allow a broader exploration of

their neighborhood [85].

2.3.2 Monte Carlo methods

This huge family of SOH was named after the notorious Monte Carlo Method (MCM)

for the numerical estimation of integrals value [86]. This method, in its most simple

version, can be outlined as follows:

• a uniform random sampling over the integration hyper-volume is performed and

the values of the integrand function for each of the samples are stored;

• the mean of the stored values is computed and the estimate of the integral is

obtained by multiplying this mean by the integration hyper-volume.

The method was very useful to extend the applicability of numerical integration to high-

dimensional functions, indeed the error on the estimates decreases with the square

root of the number of samples and it is independent from the number of dimensions.

The most important contribution of MCM to SOH was the introduction of the idea of

random sampling that is at the basis of all the SOH.

The Boltzmann distribution, Equation (2.10), is at the basis of statistical mechanics

and the key component of many of the heuristics in the Monte Carlo family. According

to the relation derived by Ludvig Boltzmann for discrete systems, the probability of a

system to be in a state with a specific energy E , at a given temperature T , is related to

the energy itself, in particular:

P (E) = 1

Z
·e−

E
κT , Z =∑

E
e−

E
κT . (2.10)

In the equation above κ is the Boltzmann constant. Subsequent studies conducted

by Maxwell showed that this energy-dependent exponential decay law applies to a

significant number of physical properties. Consequently, in order to simulate molecular

systems, a trajectory of states distributed according to Equation (2.10) must be gener-

ated. This can be achieved by means of a trial and rejection strategy using the so called

Metropolis-Hastings criterion:

Pa(x t+1 = x ′) =
1 if ∆E < 0,

e−
∆E
β otherwise;

(2.11)
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where Pa(x t+1 = x ′) is the probability to include a new state x ′, generated somehow, in

the trajectory, and∆E = E ′−E t is the difference between the energy of x ′ and the energy

of the last state included in the trajectory x t ; β is the product between the temperature

and the Boltzmann constant. The resulting strategy guarantees that asymptotically the

sampling will focus on low energy states. Moreover, it is also able to escape local minima

since it allows the worsening of the values of E ′. For this reasons it can be exploited

to solve GO problems; in this case the value of E represent the value of the objective

function f0 of the given problem.

The Metropolis method (MeM) [87] has been probably the first SOH to be defined. It

was introduced in the context of computer based simulations of molecular systems that

was an emerging research field during the same period in which MCM was developed.

It is based on the principle of trial and rejection sampling and works iteratively. The

algorithm starts with a random assignment x0 of the search variable, in this context

called the state of the system in analogy with physical systems. Each iteration of the

MeM can be conceptually divided in two phases: neighbor generation and acceptance.

During the neighbor generation, a perturbation is applied to the current assignment x t

to generate a neighbor assignment x ′. Then, in the acceptance phase the Metropolis-

Hastings criterion is applied to choose between x ′ and x t . If x ′ satisfies the criterion it

becomes the new state of the system x t+1. Otherwise, it is discarded and the algorithm

proceeds without updating the state. Samples from two probability distributions

are required to carry out this procedure: the first distribution is defined over the

neighborhood of x t , Pn :N k
x t → [0,1]; it gives the probability to generate an assignment

x ′ from x t . The second distribution is given by the Metropolis-Hastings criterion:

Pa : R → (0,1]; it gives the probability that x ′ is accepted as new assignment of the

system. The use of a neighborhood structure is aimed to reduce the difference between

the current state and the candidate assignments in terms of values of the objective

function. This has a great impact on the performance of MeM, indeed, for many

GO problems, after a certain number of iterations the average quality of assignments

generated through random sampling would be very poor with respect to that of the

current state and, consequently, the search process would become slow due to the high

rejection rate. From a theoretical point of view, when applied to a discrete problem, the

MeM method simulates the evolution of an homogeneous Markov chain over the states

of the system, and this allowed to prove the asymptotic convergence of this method

assuming the ergodicity of the chain [66].

Simulated Annealing (SA) [88] is one of the most studied and applied neighborhood

based heuristics belonging to the class of Monte Carlo methods. The basic idea of SA

was borrowed from the tempering process used in metallurgy to increase the toughness

of iron-based alloys. The process itself consists in two phases, first the alloy is heated in

order to allow atomic components to move inside the solid structure, then a slow cooling
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phase is performed in order to let them re-organize in a new stable configuration. The

heating temperature and the cooling rate are key determinants of the properties of

the resulting configuration of the alloy. The SA applies the tempering process to the

MeM method, allowing the parameter β in the Metropolis-Hastings criterion to vary

during the optimization. The procedure starts from a high value β0 (corresponding to

high temperature) of the control parameter β, that is then decreased following some

predefined cooling scheme. The most commonly used scheme is a logarithmic scheme

of the type:

βt = c

1+ log (t )
, c ∈R. (2.12)

Consequently the acceptance probability distribution varies as a function of t and the

optimization process can be modeled with an in-homogeneous Markov Chain over the

states of the system. In the matter of the optimization, the rationale of this behavior is

to create a balance between global and local search. When the value of β is high, the

sampling resemble a random walk allowing the method to move fast in high cost regions

of the search space and eventually to escape local minima. On the contrary, when β

decreases, the sampling becomes progressively more selective in order to converge to

an optimal or near-optimal assignment of x. The asymptotic convergence of SA have

been proved [89, 90] and several studies [65, 91] are dedicated to understand how the

available information about the target problem can be exploited to choose an intial

optimal value of the parameter β.

Replica exchange Monte Carlo (REMC) [92] is one of the most successful paralleliza-

tion of the SA method (see [93] for a review). In the REMC method several MeM

optimization, the thermal baths, are run in parallel at different temperatures. The

state in REMC is therefor a set of MeM states -the replicas- and each replica represents

an assignment of the optimization variable. Each bath is simulated independently

for a given number of MeM steps. After that, the characterizing step of the REMC is

performed, consisting in the exchange between two replicas according to the following

probabilistic criterion:

P (swap(i , j )) = min(1,e
Ei −E j
β j −βi ) (2.13)

Where i and j represent two different replicas and the remaining notations are the same

as in Equation (2.11). The execution proceeds alternating the exchange step and the

parallel executions of thermal baths. The main idea of REMC is to perform exploration

and exploitation in parallel, high temperature replicas perform exploration, while low

temperature ones perform exploitation. If some high temperature replica enters a

promising region of the search space, it will easily move to lower temperature baths

according to equation (2.13), resulting in a quasi-local optimization. Specularly, a low

temperature replica that is trapped in a local optima, have more chance to escape once
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it is moved to higher temperature baths. This strategy provides an excellent compromise

between exploration and exploitation showing to be very effective for several optimiza-

tion problem [93] and in particular in the field of biomolecular simulations [94, 35, 95].

Moreover, it is easily portable on parallel architecture.

Wang-Landau sampling (WLS) [71, 96] is one of the most recent members of the

Monte Carlo family of methods. Properly speaking, it has not been designed for

optimization, but to provide estimates of the density of states in particle physics and

related fields [97]. Nevertheless, in the case of HP-PSP problem, this method showed a

good performance also for what concern the search of low energy states. An important

difference of WLS with respect to the others Monte Carlo methods previously discussed,

optimization in WLS is not a markovian process, since a memory structure is added to

bias the probability to select new states. The basic idea of WLS it to perform a uniform

sampling over the energies range. At the beginning of the execution, a histogram

structure h and an array of densities are initialized to store the number of samples

in each energy level and the associated density. If the number and the values of the

energy levels associated with the system are not known a priori, a dynamic scheme

can be applied; each time a new level is found, a bin is added to the histogram and the

minimum number of samples between the already known levels is assigned to it; in

the case of the densities, the value of the new bin is set to 1. The search is performed

as in MeM, but the Metropolis-Hastings criterion is used to compare the number of

samples in each of the two energy levels instead of the energy itself. Consequently, the

acceptance probability given in Equation (2.11), is replaced by:

P (x t+1 = x ′) = e
g (E ′)−g (E t )

β , (2.14)

where g (E t ) denotes the density associated to the energy value of the last assignment in

the trajectory and g (E ′) the density associated to the energy of the candidate assignment.

If x ′ is accepted, then h(E ′) is increased by one and g (E ′) is increased by a value f .

Otherwise the same increments are applied to h(E t ) and g (E t ). The search proceeds

by checking periodically the degree of flatness of the histogram h. Once a user defined

value is reached, h is reinitialized and f if reduced, usually according to the scheme

f n+1 = 1
2 f n . The execution terminates once f has dropped below a user defined

threshold. The strategy implemented in WLS is very effective in escaping local minima

and preventing re-sampling. Moreover, if the number of low energy states is low

compared to the number expected assuming a uniform distribution of states over

the energy values, the WLS works like an optimization algorithm oversampling the low

energy region.
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2.3.3 Population based methods

Population based methods are always defined bio-inspired heuristics since they usually

mimic the behavior of some biological system, nevertheless this heuristics are based

on mathematical basis and for many of them the asymptotic convergence have been

proved [67, 68].

Genetic algorithms (GAs) were introduced by Holland in 1975 [98, 99] as methodology

to tackle GO problems. They mimic the process of natural evolution theorized by C. Dar-

win. GAs exploit a population Pop0 composed of n randomly created chromosomes,

also called individuals, that, in the original form, are defined as fixed-length strings (over

a binary alphabet) that represent assignments of the search variable. The individuals of

the population undergo an iterative process whereby two genetic operators (crossover,

mutation) are combined with a selection strategy based on an objective function to

generate a new population Pop1. During the selection process, individuals from Popt are

chosen and inserted into a termporany population Pop′ using some fitness-dependent

sampling procedure [100]. The fitter the chromosome, the more times it is likely to

be selected to reproduce. The crossover operator is applied to a user defined portion

of Pop′. Each time the crossover is applied a couple of chromosome in Pop′, called

the parent chromosomes, is replaced by two new chormosomes, called the offspring

chromosomes. Offpring chromosomes are generated randomly choosing one or more

locuses and exchanging the subsequences before and after that locus or, in the case

of more locuses, the segments delimited by the selected locuses, between the parent

chromosomes. Once the desired number of chrossover events has been accomplished,

the mutation operator randomly changes some of the locus in the chormosomes of Pop′,
allowing a further exploration of the search space. Mutation can occur at each position

in a chromosome with a user defined probability. After the application of genetic

operators, Pop′ becomes Popt+1 and the process iterates until a halting criterion is met,

e.g., after a fixed number of generations. The resulting method simulate the evolution

process that takes place in a biological systems subjeted to a selective pressure and the

quality of the population, measured according to the objective function, increases along

the iterations.

Ant Colony Optimization (ACO) [75] is a bio-inspired meta-heuristics to approach

hard combinatorial problems in which a colony of simple agents (artificial ants) interact

to efficiently explore the search space. The general idea of ant inspired systems is that

of combining a constructive strategy with a global evaluation. Moreover, a memory

structure, called pheromone, is used to store the relations between components in high-

quality assignments and to trace the explored regions of the search space. This memory

is then used to bias the choice during subsequent constructive steps. Each iteration of

the meta-heuristics is composed of three main phases: construction, evaluation and
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update. These phases vary slightly according to the specific ACO heuristic, for a review

of the available strategies the interested reader is referred to [75], in what follows the

M ax-Mi n Ant System heuristics [101] is described; this strategy is characterized by

the fact that the quantity of pheromone in each position of the pheromone matrix is

bounded in a range. The construction phase resembles a probabilistic greedy algorithm

and its performed using a population of ν ants. Each ant builds an assignment of x by

means of a sequence of choices; each choice extends the previous partial assignment

and is taken according to:

Pc (x j = i ) = θ ti j + (1−θ) ηi∑
b(θ tb j + (1−θ) −ηb)

(2.15)

where Pc (x j = i ) is the probability of making the choice i during the jth constructive

step, b is an index running over set of choices available for the jth constructive step,

ti j is the pheromone value associated with the ith choice in the jth step, ηi is the

heuristic cost of the ith choice computed according to some function that evaluates

partial assignments, θ is a parameter of the algorithm used to balance between the

two contributions. The construction phase ends when each ant have built a complete

assignment. In the evaluation phase, assignments built from the population of ants

generally undergo local optimization before being evaluated. The best assignment

of the current interation xtemp is stored until the end of the iteration. Moreover, the

algorithm keeps track of the best assignment found so far xbest . The update phase is

itself composed of two sub-phases evaporation and release. During the evaporation

sub-phase all the pheromone values are reduced according to eq .2.16.

t̃i j = (1−ρ)ti j +ρtmi n , (2.16)

where t̃i j is the pheromone value associated to choice ith in the jth constructive step

after the update, ρ is a parameter of the algorithm, and tmi n is the lower bound of the

range of variability of the pheromone values.

During the release sub-phase, an assignment is chosen between xtemp and xbest with a

probability proportional to the ratio of their cost:

P (xu = x temp ) =
1 if mp (x temp ) < mp (xbest ),

0.5
mp (xbest )
mp (x temp ) otherwise.

(2.17)

The pheromone values of the choices defining the selected assignment xu are updated

according to:

t̂i j =
t̃i j + opt

xu if t̃i j < tmax ,

tmax otherwise.
(2.18)
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In Equation (2.18), t̂i j is the value of pheromone matrix at positions i , j after the release,

while opt is an estimate of the optimal value for the given instance. The algorithm

starts with a uniform level of pheromone over all choices (generally the value tmax is

used for this purpose) and the constructive phase behaves exactly as a probabilistic

greedy algorithm. The parameter ρ controls the learning rate affecting the number of

iterations required to reach a significant pheromone bias. When the pheromone bias

becomes significant, the collective memory of ant agents is the main determinant during

the constructive steps. So doing, the population of ants is induced to explore promising

regions of the search space. An appropriate choice of learning rate is crucial in order to

prevent undesired behaviors, in particular:

1. if the bias becomes strong when the quality of the releasing assignments is still

poor, the method is trapped in a local minimum;

2. if the bias is too weak, a very long time is required to converge.

Although recently extended to continuous problems [102] the ACO meta heuristic has

been applied mainly to combinatorial problems.

Particle Swarm Optimization (PSO) is a heuristic inspired by the collective move-

ment of birds and fishes [103]. One of the great advantages of the PSO is that, along

with Monte Carlo methods, it is one of the few approaches that can be easily applied to

continuous GO problem in its native form. PSO exploits a set (the swarm) of n candidate

assignments (the particles), which move inside a bounded search space in a collective

effort to find a solution to a specified GO problem. At each iteration step t of the PSO,

each particle is characterized by two vectors: the position xi (t) ∈RM and the velocity

vi (t) ∈ RM . In its most common formulation, the movement of the i -th particle is a

consequence of two attractors: the best position found by the swarm (g) and the best

position found by the particle itself (bi ). Both attractions are perturbed by means of

vectors of random numbers (r1 and r2) sampled with uniform distribution in [0,1], in

order to avoid the entrapment in local minima; in addition, they are multiplied by two

constants called social (csoc ) and cognitive (ccog ) factors. Hence, the velocity update

formula for PSO is:

vi (t +1) = w ·vi (t )+ csoc · r1 ◦
(
g−xi (t )

)+ ccog · r2 ◦ (bi −xi (t )) , (2.19)

where w ∈ R+ is an inertia weight factor, used to damp the velocity. Moreover, the

intensity of the velocity is generally clamped to a maximum value vMAX ∈R+, before the

particles positions are updated according to:

xi (t +1) = xi (t )+vi (t +1). (2.20)
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Thanks to the collective movement of particles, PSO eventually converges to an solution

of the considered problem. The algorithm is stopped when a halting criterion is met,

e.g., after a fixed number of iterations.
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3 Biological background

This chapter describes the biological background of the thesis, focusing only on relevant

aspects in order to provide a clear understanding of the treated problems. A detailed

analysis of the biological and physical aspects of protein folding and NMR has been left

out since it exceeds by far the scope of this thesis.

3.1 Proteins

Proteins are linear chains composed of small organic molecules, the amino-acids,

connected each other in a head to tail fashion. This linear organization allows us to

represent proteins as strings in which each character codes for one of the amino-acids

in the sequence. Only 20 amino-acids, shown in fig. 3.1, are found in naturally occurring

proteins. All the amino-acids share a common structural portion, the backbone, that

is used to assembly the linear chain and to define the global geometry of the protein

structure. The remaining part of the molecule, the side-chain, varies significantly

between different amino-acids. The portion of the structure composed of the connected

backbones is called the main-chain. The side-chains protrude on the sides of the main-

chain and are able to interact between each others and with the main-chain depending

on the conformation adopted by the protein. Since in a protein sequence each amino-

acid can be repeated several times, biochemists use the name residue to identify a

generic amino-acid in a specific position in the protein sequence; in this thesis the same

convention has been adopted. Most of the proteins found in living beings adopt a well

defined three dimensional structure referred as native state. Actually, the native state is

not a single structure but a set of closely related structures that rapidly interchanges each

others. Nevertheless for the purposes of this thesis and PSP problem in general we can

consider it as a single structure. The proteins structure organization can be described

using a three levels hierarchy as follows: primary structure, secondary structure, tertiary

structure. This hierarchical view is useful to describe the main forces involved in the

stabilization of protein structures and, at the same time, provides an useful way to

identify the information that can be used to define a PSP protocol, i.e. input data,
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building blocks of the combinatorial representation and output data.

The primary structure is the information that can be obtained combining the protein

sequence with the chemical composition and topological structure of the amino-acids.

It can be processed to achieve bounds on relative displacement of atoms, to define

simplified models that aggregate groups of atoms and to assign chemical and physical

properties to both atoms and residues. Two of these properties are of particular interest

to understand the work in this thesis: polarity and hydrophobicity. Polarity is chemical

property that indicates an unequal distribution of the bonding electrons between atoms

of the same molecule resulting in the creation of electrical multipole or permanent

charge separation. In fig. 3.1 a commonly used classification of the amino-acid based

on polarity is shown. Hydrophobicity is often considered the inverse of polarity, but,

as the name suggests, it is mainly related with the possibility for a compound to create

favorable interactions with water. PSP methods that exploit only primary structure as

input are generally defined de novo approaches.

Figure 3.1: topological structure and composition of the 20 amino-acids occurring in
natural proteins. The classification of amino-acid based on polarity is represented, non-
polar (hydrophobic) amino-acids are shown in the upper panel, polar amino-acid in
the bottom panel. The latter are further divided depending on the presence of electrical
charge in physiological conditions.
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3.1. Proteins

The secondary structure describes the local organization of subsets of consecutive

residues in the linear chain. Secondary structure is partially determined by the in-

teractions between the backbone atoms in the considered subset of residues. Two

main patterns, shown in figure 3.2, the helix and the strand, define the local structural

organization of a significant portion of proteins structures, while the remaining part

is organized in a random coil fashion referred as loop. This limited variability arise

from the constraints due to the steric interactions (clashes) between the backbone and

side-chains and to a stabilization effect described in section 3.2.2. The relation between

sequence and secondary structure is complex, since the latter depends both on local and

non-local interactions, nevertheless approaches based on sequence comparison and

machine learning from the known proteins structures, provide in most cases reliable

predictions of both helix and strand regions of a protein sequence [104, 105].

(a) (b)

Figure 3.2: schematic representation of the two common secondary structure patterns
and associated hydrogen bond networks, only main-chain atoms are shown using the
CPK coloring system. α-helix (left), is characterized by a period of 3.6 residues per turn
with an hydrogen bond between the carbonyl group of residue i and the amide group of
residue i +4. β-sheet (right), is a tertiary structure pattern generated by the interaction
of two or more β-strand through an hydrogen bonds network.

The tertiary structure describes the overall geometry of the main-chain and depends

mainly on the packing of the side-chains in the interior of the structure as shown in

figure 3.3. This is the information that is expected as output of a PSP method. As a
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consequence of the evolutionary process, that is based on gene duplication, mutation

and fusion, in many cases larger proteins are composed of many independent folding

units called domains or folds. Each domain defines a particular tertiary structure

motif. Similar domain can be grouped into families in order to provide a classification

[106, 107]. A great variability of tertiary organization have been observed in the known

proteins structures but a significant number of the known protein domains are dis-

tributed over few families while, on the other side, many domains seems to be unique

[30]. For these reasons a great number of technique have been developed to perform

domain recognition [108, 109] and template based modeling [110, 111, 112].

(a) (b)

Figure 3.3: two different representation of the tertiary structure of the human carbonic
anhydrase II, PDB id 3KS3, this is representative of the homonymous super-family
according to CATH classification [107]. This family is characterized by a roll structural
domain. (a) Cartoon representation, this representation focuses on the main-chain
atoms and emphasizes the disposition of secondary structure patterns: helix (green),
strands (yellow) and loops (red) . (b) Balls representation, emphasizing, the close
packing of atoms associated to protein folding that leads to the creation of van der
Waals interactions, see details in the text, coloring as in (a). Images generated using
PyMOL.

3.2 Inter-atomic forces and their modeling

In his work, basing on the evidence of spontaneous refolding of small globular proteins,

Anfinsen [113] postulated that, at least for this class of proteins, folding is a spontaneous

process that leads to the lowest energy conformation. This is called the thermodynamic

hypothesis and is one of the major assumptions in the field of structural biology.

Consequently, the primary requirement in order to understand the relationship between

sequence and structure and to solve PSP problem is the definition of an accurate model

that captures the main physical interactions involved in the stabilization of protein
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structures. In this section an overview of the major interactions involved in the folding

process is provided along with some simple examples of the way they can be modeled to

perform computation, the interested reader is referred to the Israelachvili’s book [114]

and Leach’s book [115] for a detailed account of inter-atomic interactions and modeling

techniques. The most commonly used representation of physical interactions in protein

folding simulations is based on molecular mechanics force fields [116, 117, 118]. This

gives a classical approximation of internal energy of molecular systems that are too

large to be treated with quantum mechanics. It is based on several assumptions, the

most importants of which are the following:

1. electrons are uniformly distributed on the surface of a sphere centered in the

nucleus of each atom;

2. covalent bonds can be represented with harmonic potentials and can not be

broken.

The first assumption is based on the fact that most of the atoms that compose biological

molecules falls in the first three periods of the Mendeleev table, where a tight association

between electrons and nuclei is observed. The second relies on the fact that in the

temperature range in which life is observed the thermal energy available is not enough

to break covalent bonds. In order to represent polarization, without considering the

movement of electrons, both integer and partial electrical charges are permanently

assigned to the atoms.

3.2.1 Bonded interactions

The bonded interactions involve covalently bonded atoms that are close in terms of

topological connections in the primary structure. From a physical point of view they

are the result of a combination of several forces related to the quantum mechanical

properties of chemical bonds. In molecular mechanics these interactions are modeled

associating a simple cost function to the displacement of some structural descriptor,

i.e. distance or angle, from an equilibrium value that depends on the chemical species

involved . The importance of bonded interactions is due to the fact that they are directly

associated to the internal degree of freedom of the protein. Three main terms describe

the energy variation related to the bonded interactions, stretching energy, bending

energy and torsion energy. The stretching energy Ustr is associated to the variation in

the distance between two bonded atoms. The bending energy Ubnd is associated to the

variation in the angle between two consecutive bonds in a chain. While, the torsion

energy Utrs is associated to the rotation around the central bond in a chain of three

consecutive bonds. Ustr and Ubnd are generally modeled with a harmonic potential as
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follows:

U (x) = ki

2
(x −xi )2. (3.1)

Where x is the value of the considered degree of freedom, distance or angle, ki and

xi are both empirical parameter representing the force constant and the equilibrium

distance or angle for the considered set of atoms. Stretching and bending interactions

are both associated to high force constants, this means that small deviations from

the equilibrium value result in high energy variations. Consequently, stretching and

bending interactions are more useful to provide constraints to limit the conformational

space, than to evaluate the reliability of a structural model: indeed any physically

reasonable conformation has a minimal stress over these degrees of freedom. In

molecular mechanics Utrs is represented with a cosine expansions of the form:

Utrs(ω) =
N∑

n=0

Vn

2

[
1+cos(nω−γ)

]
. (3.2)

Where ω is the torsion angle, N is the number of expected energy minima for the

modeled system, Vn is the depth of the n-th minimum and γ is a parameter used to

manage the offset of the minima. Special cases such double bonds to cyclical structures

are handled through an additional term, called improper torsion. The torsional degrees

of freedom are the most important in conformational sampling because the associated

energy is the lowest among the bonded interactions and unfavorable torsional energy

can be balanced from the creation of favorable electrostatic interactions discussed

below. For these reason the majority of PSP methods limit the conformational search

[119, 120] only to the torsional degrees of freedom freezing bond angles and length to

ideal values.

3.2.2 Electrostatic interactions

Electrostatic interactions interest atoms that are spatially close, independently from

their topological connection in terms of covalent bonds. The computational modeling of

this kind of interactions is challenging due both to the lack of unifying theoretical model

and to issues related to computational complexity, for this reason it is still object of

intense research [121, 122, 123, 124, 125]. Depending on the accuracy required, they can

be modeled with a single potential or with several specialized potentials. Conceptually

it is possible to divide these kind of interactions in three class, those involving charged

atoms commonly referred as ionic bonds, those involving polar groups, and those

involving non polar groups.

The ionic bonds is the interaction between electrically charged atoms and the energy

w(r ) of two charged species at distance r is obtained integrating the Coulomb law, and
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represented as follows:

UCoulomb(r ) =
∫ r

∞
Q1Q2

4πε0εr 2 dr. (3.3)

Where Q1 and Q2 are the net charge of the two species involved, while ε0 and ε are the

values of the dielectric constant in vacuum and in the considered medium respectively.

Since water has an high dielectric constant and charged side-chains are exposed to

the solvent both in the unfolded and folded conformations, the contribution of intra-

molecular ionic bonds in the change of free energy associated to the folding is limited

although not completely negligible [126]. However, the interaction between charged

side-chains and the water is very important and must be modeled in order to prevent

the creation of artifacts. This can be done: i.e. considering the difference in the Born

energy equation (3.4) between an exposed charged group and an internal charged group.

The Born energy, is the energy required to charge a particle of radius r with a charge Q

and is defined as follows:

UBorn(Q) =
∫ Q

0

qd q

4πε0εr
. (3.4)

Since the dielectric constant in the interior of the protein is lower than in the water, the

value of Born energy will be higher resulting in an unfavorable transition.

Van der Waals interactions involve permanent or instantaneously induced dipoles.

They apply to any kind of atoms both polar and non polar. The energy associated

to these interactions is very low and they strongly depend on the distance between

involved species becoming relevant only when the atoms are placed in close proximity.

Nevertheless, they become relevant when the number of closely packed atoms is high,

this is the case of the apolar side-chains packing in the core of globular proteins. For

this reason van der Waals interactions give a significant contribute to the stabilization

of protein structures. The modeling of van der Waals interactions is accomplished by

means of the empirical Lennard-Jones potential as shown in the equation below:

UvdW (r ) = D0

[(rmi n

r

)12
−2

(rmi n

r

)6
]

. (3.5)

Where D0 is a parameter that sets the minimum value of the interaction energy at

the equilibrium distance rmi n for the involved species. It is important to notice that

this potential includes also a strong repulsive term that accounts for Pauli exclusion

principle and short distance Coulomb interactions that prevents the clashes between

atoms.

The hydrogen bond is a special case of van der Waals interaction between permanent

dipoles that, due to the reduced size of the hydrogen atom, is particularly strong. It is
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the most common interaction between polar groups observed in proteins and also the

main determinant of the peculiar properties of water that are fundamental for the self

assembly and function of biomolecules such proteins [127]. Consequently, it plays an

important role in the determination of protein structure. The formation of a hydrogen

bond requires two particular chemical groups, the hydrogen donor that includes a

polarized hydrogen atom with a partial positive charge, and the acceptor that includes

an electronegative atom with a partial negative charge. If some constraints on distances

and angles between the two groups are satisfied the polarized hydrogen creates an

electrostatic bridge between the two groups. The creation of a single hydrogen bond is

associated with a small reduction in the internal energy, but due to the high number

of hydrogen donors and acceptors available in the amino-acids and in the water, the

folding process is associated with the creation of an extended network of hydrogen

bonds that gives a relevant contribution to the total energy. From a structural point

of view, the most evident effect of hydrogen bond networks is the stabilization of the

secondary structure patterns as shown in 3.2. The energy associated to hydrogen bond

formation UHB is modeled through an empirical potentials similar to the Lennard-

Jones potential with the addiction of a directional dependency as shown in the equation

below:

UHB (r, θ) = D1

[
5
(rmi n

r

)12
−6

(rmi n

r

)10
]

cos4(θ) (3.6)

Where D1 and rmi n are parameters analogous to D0 and rmi n in the Lennard-Jones

potential, while θ is the angle between the bond vector in the donor and the vector that

points from the polarized hydrogen to the acceptor.

3.2.3 The hydrophobic effect

When an apolar compound is placed in a polar solvent, able to create an internal

network of hydrogen bonds, it has the tendency to aggregate (i.e. oil drops in the water)

in order to minimize the surface that is exposed to the solvent, this effect, shown in

fig. 3.4, is particularly evident in the case of the water and for this reason it is called

hydrophobic effect. In the case of globular proteins, the hydrophobic effect interests

the apolar part of the side-chains and it is responsible for the creation of compact

cores in which these side-chains are closely packed. According to the current energetic

description [128, 127], the hydrophobic effect is the leading force involved in the folding

process. The physical basis of the hydrophobic effect are still object of debate but it is

now clear that it arises at least from two different contributions, these are: the increase

in the solvent entropy, and the creation of the van der Waals interactions in the core of

the protein. In order to evaluate the energy variation associated to the hydrophobic

effect Uasa in protein folding, most potentials include an empirical term based on the

multiplication of residue-specific hydrophobicity coefficients and accessible surface

area (ASA). This kind of energy term was introduced by Eisemberg and MacLachlan
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[129], and has the following form:

Uasa =∑
i
σi Ai (3.7)

Where Ai and σi are respectively the ASA and an empirical coefficient measuring the

hydrophobicity relative to the i -esime atom. The ASA is the area of each atom or

residue that is accessible to water molecules and is computed using variants of the

algorithm introduced by Shrake and Rupley [130]. It is important to notice that Uasa

considers both an internal energy contribution and an indirect estimate of the entropic

contribution relative to the variation in the entropy of the water. This is a significant

difference between this term and the other components of the evaluation function

previously described.

3.2.4 Statistical Potentials

An alternative method for protein model evaluation is the use of statistical potentials

[131, 132, 133, 134, 135]. The fundamental idea at the base of statistical potentials is

that chemical objects (such residues, or atoms), have both preferential and unfavorable

states for at least some observables in a defined environment. If a big enough dataset

of observation is available, it is possible to capture these preferences and to turn them

into scores. For what concerns proteins structure evaluation, the information needed

to build statistical potentials can be gained from non-redundant subsets of the PDB

database. The concept of observable is very broad and includes everything we can

directly or indirectly measure, for example pairwise distance between residues, dihedral

preference, geometrical organization of secondary structures, chemical environment

and so on. Since, in the case of folding, one is interested in the relationships between

sequence and structure, commonly used statistical potentials always associate one or

more sequence descriptors to one or more structural descriptors. Although different

statistical models can be used to derive potentials, a very generic form of statistical

potentials has been introduced by Rooman et al. [136] and it is shown in the equation

below:

∆W (c1,c2, ...,cn) =−kT log
P (c1,c2, ...,cn)

P (c1)P (c2), ...,P (cn)
. (3.8)

Where ∆W is the variation of score associated to a given set of value of the observables

relative to the reference state, c1,c2, ...,cn are the values of the considered observables

and P (ci ) denotes the probability of the value ci while P (c1,c2, ...cn) denotes the joined

probability of the given combination of values. One interesting properties of observables

in statistical potentials is that they can be easily combined leading to complex descrip-

tors. The main consequence of this is that, in some cases, the physical interpretation of

the statistical potentials remains obscure. Statistical potentials are broadly used in PSP

methods [119, 120, 95], sometime in combination with molecular mechanics.
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Figure 3.4: schematic representation of the hydrophobic effect for a small organic
molecule. The transition from vapor to the pure liquid (comparable to the interior of
a protein) is energetically favorable since the creation of van der Waals interactions
balance the loss in rotational and translational entropy. The transition from the pure
liquid to the water solution is unfavorable since there is no gain in van der Waals
contacts but there is a reduction in the rotational and translational entropy of water
molecules.

32



3.3. Energetics of protein folding

3.3 Energetics of protein folding

In the last forty years a huge number of experimental [137, 138, 139, 140] and theoretical

[141, 142, 143, 144, 145, 146, 147] studies investigated the role played by the different

kind of inter-atomic interactions in order to elucidate the energetics of the folding pro-

cess. According to the thermodynamic hypothesis, the folding process is a spontaneous

and reversible chemical reaction involving the protein and the solvent. The energy

associated to chemical reactions is expressed in terms of variation of the Gibbs free

energy ∆GT between reagents and products:

∆GT =∆H −T∆S. (3.9)

Where H is the enthalpy of the system, that is a function of the system internal energy

U , S is the entropy, that is a function of the number of accessible states of the system,

and T is the temperature. The Gibbs free energy can be used to determine equilibrium

constants for reactions that take place at constant temperature and pressure (both

reasonable assumptions for biological systems). Spontaneous reactions at a given

temperature T are characterized by a negative variation in Gibbs free energy ∆GT < 0.

In order to illustrate all the different aspects that contribute to the folding process, it is

useful to further decompose the energy in four different terms and then look at their

variation during the process:

1. protein internal energy Up , that considers all the interactions involving atoms of

the protein;

2. solvent internal energy Usol , that considers the interactions involving atoms of

the solvent;

3. protein conformational entropy Sp , that considers the number of different confor-

mations available to the protein, roughly speaking the freedom of motion under

the effect of thermal energy;

4. solvent entropy Ssol , that considers the number of states available to the solvent,

roughly speaking measure the rotational and translational freedom of the solvent

molecules under the effect of thermal energy.

The first deduction arising from this decomposition is that the folding process involves

a reduction in Sp , since compact structures have a reduced freedom of motion with

respect to random coil. Moreover, theoretical studies and computer simulations suggest

that the variation in Usol associated to the folding process is negligible, since solvent

can easily reorganize itself in order to preserve favorable interactions [128]. Therefore,

to explain the negative ∆GT observed, the reduction in Sp must be coupled with a

greater reduction in Up and/or with an increase in Ssol . The internal energy component

Up depends on the interactions that take place between protein and solvent and
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can be modeled with molecular mechanics. The entropic components, on the other

side, can only be approximated without an extensive sampling of the conformational

space. As explained in the previous section, the gain of Ssol associated to folding is

somehow included in the potentials using the ASA approximations. The estimates of

the Sp are more challenging since they would require a computationally unfeasible

amount of conformational sampling and these terms have been often neglected. In

first approximation, one can assume that the loss of Sp is somehow proportional to

the compactness. Recent evidences [148] contrast this assumption, suggesting that

the difference in conformational entropy can be significant also between structures

with similar compactness. Although, conformational entropy plays a significant role in

the determination of both secondary and tertiary structure [149, 150] the inclusion of

reliable estimates of conformational entropy in potential energy functions remains a

major challenge.

3.3.1 The folding process: from the Levinthal’s paradox to the funnel theory

One of the most impressing aspects of the folding process is the apparent simplicity and

speed that characterizes the transition from the unfolded state to the native state. For

some protein sequences this transition requires just a few µs [151]. This is surprising

if one considers the astonishing dimension of the conformational space. One of the

first theories of protein folding postulated by Cyrus Lenvinthal [152], analyzed what, at

that time, seemed to be a paradox, resulting in the pathway model. This description

was based on the idea that the energy landscape associated to the folding problem

is dominated by a flat hyper-surface, representing the huge number of random coil

conformations, with a single steep potential well, corresponding to the native structure.

This kind of energy landscape is often referred as the golf-course landscape. In this

scenario it would be impossible for the protein to perform the search over the flat region

in order to find the potential well in a reasonable amount of time. To justify the observed

folding rates, a pathway model was introduced. According to this model there is a well

defined pathway leading from the denatured conformation to the native conformation

describing a specific trajectory in the conformational space. The main problem of

the pathway theory was the fact that it assumes that the denatured state has itself a

specific conformation, while experiments performed in different denaturing conditions,

determining different unfolded conformations, lead to similar folding rates [153]. For

this reason a new model was introduced, called the funnel model [154, 155]. According

to this model the energy landscape of the folding process is funnel shaped, with a strong

gradient that points toward compact structures. At the beginning of the process, the

hydrophobic effect and the creation of intra-molecular contacts drive the creation of

compact structures called molten globules opposing the loss in conformational entropy.

This behavior is independent from the conformation of the unfolded protein. The

rate limiting step of the process seems to be the conformational search in the space

of compact structures when some local minima appear [76]. This step is driven by the
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creation of van der Waals interactions in the core of the protein and, possibly, by a

further increase of the internal hydrogen bonding network due to the increase in regular

secondary structure. Figure 3.5 summarize the energetics of folding according to the

funnel model.

Figure 3.5: the funnel model of protein folding. Q denotes the reaction coordinate of
folding, that is the fraction of contacts in a given conformation that are the same as in
the native structure. Image from Onuchic et al. [146].

3.4 Nuclear Magnetic Resonance

This spectroscopic technique is, along with X-ray crystallography, one of the only two

experimental methods available to characterize the three dimensional structure of large

biomolecules such proteins. Although it still presents some limitations concerning
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the size of the analyzed molecule, it offers three important advantages over X-ray

crystallography:

• It does not require the crystallization of the target protein. Crystallization is

indeed a complex and time demanding process;

• It does not require high energy electromagnetic waves and connected complex

facilities.

• It allows to investigate the conformational variability of the target protein allowing

a deeper understanding of the mechanism associated to the protein function.

NMR spectroscopy is itself a broad research field and more then a dozen of different

protocols are routinely used for the determination of a single protein structure, for an

in-depth description of principles and techniques the interested reader is referred to

[156], in what follows just a quick overview is given in order to understand the restraints

to the available data in the MDG problem.

The NMR technique is based on physical properties of fermions called spin. The spin

is the quantum mechanics equivalent of the angular momentum in classical physics

and when it is associated to electrical charge, as in the nuclei of atoms, it generates a

magnetic field. Differently, from angular momentum spin is quantized and for a system

with spin value S only 2S+1 configurations are possible. The nucleus of atoms with both

even number of neutron and protons has spin zero, integer values of spin arise when the

total number of nucleons is even, otherwise half integer values are observed. Isotopes

with spin value |S| = 1/2 can have only two different spin configurations and are the

only used in NMR applications. The most important isotope for structural studies of

protein through NMR is the hydrogen H1. This is the most common isotope in nature

and is abundant in all the biomolecules. Other two isotopes, routinely used in the

determination of protein structures, are the nitrogen N15 and carbon C13, these are both

radioactive isotope that require the labeling of the target protein.

During a NMR experiment a strong magnetic field is applied to the sample. In the ab-

sence of the external magnetic field an atoms population will distribute itself uniformly

between the two spin states, but if an external magnetic field is applied, the population

will align itself to the magnetic field. This means that one spin state become preferential

and the distribution of the atoms population between the two states will follow the

Boltzmann equation. If an electromagnetic pulse with the appropriate frequency is then

applied to the aligned system, the energy from the pulse can be used to promote some of

the nuclei to the higher energy state. After a given amount of time, the excited nuclei will

decay back to the low energy state, releasing the energy in the form of an electromagnetic

wave of characteristic frequency that reflect the energy difference between the two spin

states. If the electromagnetic environment is identical for all the nuclei in the system a
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single signal will be emitted after the pulse. Otherwise a mixture of waves with different

frequencies will be emitted, this signal can be decomposed in the different frequency

components using Fourier transform. The difference in the frequencies associated

to a particular type of isotope are measured with respect to the value observed in a

reference compounds and are called chemical shifts. In complex structures such protein

we expect that each hydrogen atom experience a slightly different environment and

consequently the ideal spectra should contain a different peak for each hydrogen.

In practice this situation is unrealistic since the resolution of the method is limited

and many overlaps are observed. To reduce this problem advanced NMR methodology

are based on the use of sequence of pulses at different frequency in order to study the

coupling between different atoms, i.e. in terms of correlation between their relaxation

signals. These methods are called multidimensional NMR and are aimed to increase the

resolution by adding dimensions. Moreover, when the protein is labeled, it is possible to

study more than one isotope simultaneously and to label only one amino-acid at time

further increasing the resolution. Two different objectives have to be reached in order

to allow the structure determination through an NMR: the assignment of atoms and the

generation of structural restraints. The assignment phase involves the association of

each peak to a specific hydrogen atom. This is a complex process, in which starting from

a few characteristic chemical shifts that can be assigned easily several multidimensional

NMR protocols are used to observe the polarization transfer between topological close

atoms. The resulting information is combined with the information from the primary

structure in order to assign the other chemical shift to different atoms. Once assignment

are generated the Nuclear Overhauser effect (NOE) is used to obtain restraints. The

NOE is a particular type of spatial transfer of polarization that can be observed with

specific NMR experiment such NOESY and HOESY, this effect decreases rapidly with the

distance and in general is detectable for couples of atoms within 5 Å of separation. The

result of an NMR experiment is thus a collection of distance and sometimes backbone

angular restraints between the subset of the atoms that are in close proximity in the

three dimensional structure.
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4 Problems definition and state of
the art

This chapter introduces the definitions of the protein structure prediction and molecular

distance geometry problems and provides a review of the state of the art. Both off-lattice

and lattice approaches to PSP are considered with a particular focus on the hydrophobic

polar model and the related literature. Moreover, the MDG problem is presented in the

standard form and the special case of exact distance restraints is discussed along with

an overview of existing approaches.

4.1 The protein structure prediction problem

The protein structure prediction (PSP) problem is defined as the problem of finding

the lowest energy three dimensional conformation of a given protein sequence. As

discussed in the previous chapter, the conformation adopted by a specific protein

depends on both the intra-molecular interactions between the protein atoms and

the interactions between the protein and the surrounding environment (the solvent).

It has been shown that these interactions can be quantified, with different levels of

approximation, using functions that depend only on the internal coordinates. This

estimate of the energy can be used to assess the relative quality of different structural

models for a given sequence. From the point of view of optimization this means that

we can define an evaluation function for the PSP problem. Clearly, this evaluation

function depends on the level of accuracy used to represent the structural models and

the underlying physics. For this reason, a general definition of the PSP problem requires

an agnostic point of view with respect to the representation and the scoring function. A

generic instance ι of the PSP problem is given by a string in the amino-acidic alphabet:

ι ∈ Σ∗
aa . A representation is a function g : Σ∗

aa →Aι, that maps the input string into

a given number of three dimensional objects, each associated with specific features

and a local topology. The objective function fι,g :Aι,g →R is defined over the space of

the three dimensional coordinates of the objects given by the selected representation

and considers also the instance-dependent information (i.e., chemical and physical

properties inferable from the primary structure). Finally, the constraints are aimed to
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prevent the overlaps between the objects and to preserve the chain integrity. The PSP

problem can thus be written in the standard form as follows:

find x∗ ∈ ar g mi n
x∈Aι

fι,g (x),

s.t .

ci j −‖xi −x j‖2 ≤ 0, ∀i , j ∈ {1,2, ..., g (ι)},ci j ∈R+
‖xi −xb‖2 − cbi ≤ 0, ∀i ∈ {1,2, ..., g (ι)},∀b ∈ Bi ,cbi ∈R+
Aι =Rg (ι)×3.

(4.1)

In the above definition, xi denotes the three dimensional coordinate vector of the i-th

object according to the representation of the given input sequence given by g , ‖‖2 is the

euclidean norm and Bi is the set of objects that are topologically linked to xi according

to the chosen representation.

4.2 Off-lattice approaches to PSP

The increase of computational power and in particular the development of distributed

[157, 158] and parallel [159] computing along with the introduction of specialized

hardware [160], allowed, in recent years, the first realistic simulations of the protein

folding process [161, 162, 163, 164]. These approaches are often referred as ab initio,

since they rely only on the physical description of the process, and are based on

molecular dynamics [163] or Monte Carlo sampling schemes such as REMC [162].

Although these pioneering studies are opening the door to the appealing perspective

of simulating the whole folding process gaining insights also on the thermodynamical

aspects, they are still limited to very small systems and require an astonishing amount

of computational resources. For these reasons, their are unlikely to provide a genomic

scale protocol to PSP in the next future [165]. According to CASP results [166, 95, 167]

the most effective algorithms for PSP on large scale are based on the fragments assembly

(FA) strategy.

4.2.1 The FA strategy for PSP

The FA strategy was introduced by Baker and coworkers [168] and it is based on a

discretization of the search space. It uses structural fragments derived from know

proteins as combinatorial building blocks. Consequently, a structural model in FA

strategy is represented as a combination of structural fragments. Each fragment defines

the local structure of a segment in the input sequence. The elementary operation

used during the optimization process in a FA based scheme is the fragment exchange.

Specialized procedures are used to reduce the impact of each fragment insertion on the

global structure acting on torsional degrees of freedom at the boundaries of the insertion

point [119]. In order to limit the conformational space, only a predefined number of
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fragments is allowed to represent a given sequence window, as shown in figure 4.1. The

selection is based on the local sequence similarity between the target sequence and the

fragment source, and on the agreement between the predicted secondary structure in

the target and that observed in the fragment. Although fragments assembly approaches,

are able to deal with larger protein sequences with respect to ab initio approaches

they still require a considerable amount of computing resources. For this reason a

great number of the studies [36, 38, 40, 41, 42] aimed to develop new optimization

protocols for PSP is performed on representations that allows a further decrease in the

computational requirements.

Figure 4.1: The fragment assembly strategy
An example of the discretization adopted in the fragment assembly strategy. For the sake
of clarity overlapping fragments have not been considered in this example, nevertheless
they are commonly used in PSP methods.

4.3 Bravais Lattice

Beyond the fragment assembly strategy, the most used simplified representation of pro-

tein structure [131, 32, 169] relies on a regular discretization of the search space based

on the use of Bravais lattices. A Bravais lattice is a discretization of the euclidean space,

that defines a regular distribution of points [170]. This means that the global structure

of the lattice can be inferred from the local structure at each lattice point. A Bravais

lattice is completely determined by a set of direction vectors Dmai n . These vectors have

all the same length ||u|| and define the local structure of the space, representing the

permitted directions of movement from a lattice point to one of its nearest neighbors.

The cardinality of Dmai n is called coordination number of the lattice. Given Dmai n , any
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lattice point lp can be obtained from a combination of the direction vectors as follows:

lp = n1u1 +n2u2 +·· ·+n|Dmai n |u|Dmai n |, ni ∈N, ui ∈Dmai n . (4.2)

Two lattice points li , l j are said to be adjacent if li − l j ∈Dmai n . The most used lattice

types, in the context of PSP, are the cubic and the triangular lattices both in two and

three dimensions. When polymers are represented using lattices, the energy model

generally considers the interactions only between adjacent objects; for this reason these

representations are often called contact based. The suitability of a particular lattice

to represent the structure of a class of polymers is thus evaluated by comparing, the

coordination number of the lattice with the number of energetically relevant contacts

in the target class of polymers. In the case of proteins, a contact between two residues

is considered energetically relevant if the distance between the central atom of their

backbone falls below a meaningful threshold [170, 171]. It has been observed [170]

that depending on the threshold used to define a contact, the coordination number

of both the three-dimensional cubic (3DC) lattice and the face centered cubic (FCC)

lattice resembles the number of contacts between residues in known protein structures.

Indeed, it has been shown that by using the FCC lattice or the 3DC lattice, it is possible to

reconstruct the backbone of natural protein with high accuracy [172, 173, 174]. The use

of higher dimensional lattices has also been proposed [170], but it is still unclear how

results obtained within these representations can be related to the structural properties

observed in real proteins. In this thesis the focus is only on the 3DC lattice and the

FCC lattice. The basis vectors of the 3DC lattice are the orthonormal basis of the three

dimensional euclidean space:

u1
c =

1

0

0

 ; u2
c =

0

1

0

 ; u3
c =

0

0

1

 . (4.3)

The set of direction vectors of the 3DC lattice is just the set composed of the union of

the base vectors and their inverses:

D3DC =
{

3⋃
i=1

±ui
c

}
. (4.4)

An undesirable feature of the cubic lattices, concerning to the representation of linear

chain polymers, is that only residues with different parity are allowed to occupy adjacent

lattice points; this is often referred as the parity problem. The parity problem does not

affects the FCC lattice. The basis vectors of the FCC lattice are the following:

u1
f =

1

1

0

 ; u2
f =

0

1

1

 ; u3
f =

1

0

1

 . (4.5)
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The set of the direction vectors is then defined as:

DFCC =
{

3⋃
i=1

±ui
f ,

⋃
i 6= j

ui
f −u j

f

}
. (4.6)

4.4 The hydrophobic polar model

Among the simplified formalizations of the PSP problem, the hydrophobic polar (HP)

model postulated by Dill [32], is probably the most studied and the one with the major

theoretical impact since the decision problem associated to the HP-PSP problem has

been proved to be NP-complete [33, 175]. In the HP model, proteins are represented

as strings in a binary alphabet. Each of the twenty amino-acids that compose natural

proteins, is classified according to its chemical properties in one of the two classes,

hydrophobic or polar, and represented as a single character in the input string. By

convention, in what follows the value 1 is used to represent the hydrophobic residues

while the value 0 to represent the polar residues. Moreover, the conformational space is

restricted to a Bravais lattice. The following constraints have to be satisfied in order to

consider a lattice assignment of the HP string as a valid assignment in the HP model:

1. the function that maps residues to lattice positions must be injective to guarantee

that assignments are self-avoiding walks (SAW);

2. consecutive positions in the HP string represent stable topological connections

and must be in contact in the lattice structure. This is sometimes referred to as

the connectivity constraint.

Two different lattice representations of an HP string are possible: the main-chain-only

and the explicit side-chains representation; in the former each residue is assigned to

a single lattice point, while in the latter each residue occupies two adjacent lattice

points, one for the backbone and the other for the side-chain. This thesis focuses on the

main-chain-only representation since the use of side-chain model does not increase the

modeling accuracy [173] and results from the field of approximation algorithms suggest

that it somehow simplifies the computational task of optimization [171]. The energy

function of the HP model considers the contacts between non-consecutive hydrophobic

positions in the sequence. It is important to notice that, in this representation, internal

residues have two topological connections and so the maximum number of contacts for

each internal residue is |Dmai n |−2 while terminal residues have only one topological

connection and consequently can be involved in |Dmai n |−1 contacts. The goal of the

optimization in HP model is to find a valid lattice assignment of the sequence ι that

minimizes the value of the energy function. The HP model can be formalized in the
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standard form according to the Definition 4.1, as follows:

find x∗ ∈ ar g mi n
x∈Aι

f (x, ι),

s.t .

−‖xi −x j‖2 < 0, ∀i , j ∈ {1, 2, ..., |ι|}, i 6= j

‖xi −xi+1‖2 −‖u‖2 = 0, ∀i ∈ {1, 2, ..., |ι|−1}

Σhp = {0,1}, ι ∈Σ∗
hp , Aι =Z|ι|×3,

(4.7)

where,

f (x, ι) =
|h|−2∑
i=1

|h|∑
j=i+2

−κ(xi , x j ) ·λ(ιi , ι j ); (4.8)

x is the optimization variable that assigns each residue to a lattice point, xi represents

the lattice point assigned to i -th residue; ι is the given HP sequence, ιi represents

the type of the i -th residue; λ(ιi , ι j ) is the logical conjunction; and κ(xi , x j ) is binary

function defined as:

κ(xi , x j ) =
1 if xi −x j ∈Dmai n

0 otherwise.
(4.9)

The description of the folding process provided by the HP model includes coarse-grain

torsional degree of freedoms and focuses on the hydrophobic effect; therefore, it is an

oversimplification of the real energetics described in the previous chapter. The fixed

length of the topological connections (due to the lattice representation) represents the

high energy barrier associated to bonded interactions, while the self-avoiding constraint

is the discrete equivalent of the repulsive term in a Lennard-Jones potential. For this

reason, the HP model is too simple to be used directly for predicting the structure of

real proteins, nevertheless it is considered a valid benchmark to test new heuristics for

the PSP problem. Indeed, the heuristics that have shown good performance in the HP

model, such as REMC and SA [35, 176] have proven to be very effective also in off-lattice

models [168, 95]. Moreover, some methods for off-lattice PSP [177, 120] combine lattice

and off-lattice representations using a more detailed energy representation. The HP

model has been also widely used to investigate thermodynamic [40] and kinetic [76]

aspects of the folding process. One of the key elements at the basis of the success of the

HP model as benchmark for the PSP problem, has been the introduction of move sets

that allow an efficient exploration of the search space.
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4.4.1 Move sets

A move set is a set of rules and atomic operations that allows an explicit treatment

of the constraints in the HP-PSP problem by defining a neighborhood relationship

between feasible assignments of the optimization variable. Three aspects determine

the usefulness of a move set:

• completeness, a move set is complete if it guarantees that any feasible assign-

ment of the optimization variable is reachable with a finite number of moves

independently from the starting assignment;

• efficiency, a move set is efficient if the computational resources required to find

and perform a feasible move are in the order of O(|ι|);

• full reversibility, a move set is fully reversible if given a generic couple of neighbor

assignments y and z of the search variable and a generic feasible move mvi (y) = z,

it is always possible to find a second move in the move set such that mv j (z) = y .

It is important to notice that the efficiency depends also on the number of feasible

moves available on average with respect to the theoretical number of moves available

and depends on the considered conformation. For this reason, an important empirical

metric of performance is the acceptance rate measured over trial simulations. The

acceptance rate is the average ratio between the number of feasible moves and the

number of attempts to perform a move during the optimization process.

Considering a chronological classification, commonly used move sets can be divided

in two generations. The first generation of move sets has been proposed in the early

days of lattice simulations of polymers [178, 179, 180] before the introduction of the HP

model and includes the single bead moves, the bend moves and the pivot moves. The

common characteristic of these move sets is that they require to verify the occupancy of

a number of lattice points equal to the number of residues involved in the move.

The single bead moves, proposed in [178], allow the displacement of a single residue

ri to a target lattice point ltarget . This set includes only two moves: the corner flip and

the terminal flip. A corner flip is feasible for any non-terminal residue ri if there is a

free lattice point l target , such that l target is adjacent to both residue ri+1 and residue ri−1.

A terminal flip is feasible for a terminal residue xt , if there is a free lattice point l target

adjacent to rnhi . Where r_ denotes, in this case, the residue topologically connected to

a terminal residue in the chain.

The bend moves [179], also called crankshaft moves, allow the rotation/reflection of a

substructure called bend, in which residues ri and ri+nbm are in contact. The value of

nbm depends on the lattice type, e.g., in cubic lattices nbm = 3, while in the FCC lattice

nbm = 2. The result of a bend move at residue ri is the displacement of nbm −1 residues
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starting at ri +1 to target lattice points. In a cubic lattice, a bend move is feasible if

it is possible to find a couple of free lattice points l 1
target and l 2

target such that: l 1
target

is adjacent to xi and l 2
target is adjacent to xi+3. In a triangular lattice, a bend move is

feasible if it is possible to find a free lattice position lt ar g et adjacent to both xi and xi+2.

The pivot moves [180], defined by the symmetry group of the considered lattice involve

the displacement of a subchain. Each pivot move is performed choosing a pivot residue

ri and applying a symmetry operator to the shortest part of chain departing from ri .

The feasibility is evaluated a posteriori by checking the creation of overlaps.

Both single bead moves and bend moves are fully reversible. On the contrary it is trivial

to show that bend move are not complete; for this reason the they must be coupled with

other move sets to perform conformational search. The main advantage of these move

sets is that they lead to a very small conformational change and, consequently, they

keep a relatively high acceptance rate also in the case of compact conformations. It is

important to notice that this high acceptance rate come at the price of a slow movement

in the conformational space. The pivot moves, on the other hand, are fully reversible,

complete and allow a fast movement in the conformational space; unfortunately, the

evaluation of their feasibility is computationally expensive and their acceptance rate is

very low in the case of compact structures and long sequences [40].

The second generation move sets include pull moves [34, 181] and bond-rebridging

moves [182]. Pull moves can be divided in two subsets, internal and terminal, depending

on whether an internal or a terminal residue is selected to perform the move. An internal

pull, involves the displacement of nbm −1 residues to the target lattice points and the

pulling of a subchain. One residue ri is initially selected, as well as one subchain

departing from it, either the forward or the backward one (this is the subchain to be

“pulled”), the residue topologically connected to ri on the selected subchain is denoted

with rs while the one on the unselected subchain with rp . In cubic lattices, the move

is feasible if it is possible to find a couple of free lattice points l1 and l2 such that: l1

is either the position xs of rs or a free lattice point adjacent to ri and l2 is a free lattice

point adjacent to rp . In the first case, the move is completed moving residue ri to l2

as in a corner flip. Otherwise residues ri and rs are moved to l2 and l1 respectively. If

rs is still topologically connected to the following residue along the selected subchain,

the move is complete. Otherwise, the connectivity of the chain has been broken and

rs is now a terminal residue. Therefore, the move proceeds and the remainder of the

subchain is displaced one residue per time. Each displaced residues extends the chain

occupying a position freed by an upstream residue involved in a previous displacement;

consequently the break point is pushed each time toward one of the chain terminus.

The move is complete when the chain integrity is restored. In triangular lattices, an

internal pull move is feasible if it is possible to find a free lattice point l1 adjacent to both

xi and xp . The move is performed by moving residue ri to l1. If ri is still topologically

connected with rs the move in complete. Otherwise, it proceeds as in the case of cubic
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lattice until the chain integrity is restored. The terminal moves work analogously to

internal ones, except from the fact that, in this case, the entire chain is pulled. A terminal

move is feasible for the terminal residue rt , in cubic lattice, if it is possible to find a

couple of free lattice points l1 and l2 such that l1 is adjacent to rt and l2 is adjacent to l1.

It is then performed moving residue rt to l2 and the residue rs topologically connected

to rt to l1; the creation of breaks is handled as in the case of internal moves. In order to

make the pull move set fully reversible in cubic lattices, terminal moves involving the

creation of a bend structure have been removed from the set [183]. A terminal move is

feasible, in triangular lattices, if it is possible to find a free lattice point l1 adjacent to

a terminal residue rt , the creation of breaks is handled as in the case of internal move.

The key feature of the pull moves is the completeness, moreover, they produce a global

conformational change requiring only a local occupancy verification and this results in

a high acceptance rate compared to other move sets. For this reasons pull moves are by

far the most used move set in modern SOH approaches to the HP-PSP problem.

A bond-rebridging move involves the modification of the topological connections of the

HP chain followed by a relabeling of the residues and requires the alignment between

segments of the chain. Three different moves can be performed depending on the

relative orientation of the aligned segments and on the residues involved: parallel,

anti-parallel, terminal. A parallel move is feasible if it is possible to find two couples of

residues (ri ,ri+1) and (r j ,r j+1) such that: xi is adjacent to x j and xi+1 is adjacent x j+1

and i < j . The move is performed breaking the topological connections between the

residues in each couple and creating two new topological connection between ri and

r j and between ri+1 and r j+1. In the new structure the substring of the HP sequence

between ri and r j is reversed and for this reason a relabeling is applied to restore the

input HP sequence. A anti-parallel move is feasible if it possible to find four couples

of residues (ri ,ri+1), (r j ,r j+1), (rv ,rv+1) and (rk ,rk+1) such that: ri+1 is adjacent to r j ,

ri is adjacent r j+1, rv is adjacent to rk+1, rv+1 is adjacent to rk and i < v < j < k. The

move is performed by breaking the topological connection between residues in each

couple and creating new topological connections between adjacent residues of different

couples. In the case of anti-parallel bond-rebridging, the relabeling is applied to the

segment between i and k+1. A terminal bond-rebridging move is feasible if it is possible

to find two residues rt and ri such that: rt is a terminal residue and ri is an internal

residue adjacent to rt . Denoting with rs the residues topologically connected to ri in

the subchain between rt and ri , the move is performed by breaking the topological

connection between ri and rs and creating a new topological connection between ri and

rt . In the new structure the subchain between rt and ri is reversed and consequently the

relabeling procedure is applied to complete the move. Similarly to the pull moves, the

bond-rebridging moves allow global conformational changes with a constant number

of occupancy verifications. Moreover, they can be implemented efficiently as relabeling

operations [40], and their acceptance rate increases in compact structures when the

acceptance rate of other move sets decreases. The main limitation of this move set is
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the lack of completeness and the high rejection rate it exhibits when applied to loose

conformations.

4.4.2 The structure of the search space

The mathematical representation of the search space for the HP-PSP problem depends

on the strategy used to perform the search. Here we focus on two major approaches: the

neighborhood based approach, and the constructive approach. As explained in Section

2.3, in the neighborhood based approach, it is required the definition of a neighborhood

structure that holds for each point in the search space. A convenient way to satisfy this

requirement is the use of a neighborhood relationship N k . In the case of the HP-PSP

problem, this relationship considers the number of operations required to move from

one state of the system to another, as follows:

N k (y, z) =
1 if λ(y, z) ≤ k,

0 otherwise;

y 6= z, y, z ∈Aι, k ∈N
(4.10)

where y and z are two assignments of the optimization variable, while k is a threshold

and λ is the minimum number of elementary operations required to transform y in

z. In the case of the HP-PSP problem, one or more move sets are used to define

the elementary operations at the base of the neighborhood relationship. Given a

neighborhood relationship N k , it is possible to represent the search space of the HP-

PSP problem with an undirected graph G = (V ,E) such that: each vertex v ∈ V is in

a bijective relationship with an assignments of the optimization variable x, namely

∀ x ∈ Aι ∃! v ∈ V ; and that an edges e ∈ E represent a neighborood relationship

between two generic assignments y and z, namely e ∈ E ∃ iff Nk (y, z) = 1. Using this

representation, the k-neighborhood N k
y of a generic assignment y , is the set Vy ∈ 2Aι of

states whose images in G are connected to vy , and its size is given by the degree of vy .

In the case of the constructive approach, the key point is that the search is performed

moving over a series of sub-states of increasing size to finally reach a complete state.

In this context, the elementary operations must be defined as extensions of a sub-

state (impairing the use of move sets). The search space of a constructive method can

be represented using a k-parted graph G ′ = (V ′,E ′) such that: ∀ x ∈Aι, ∃! Lx ∈ 2V ′
:

L
⋂
V′

i | = 1,∀ i ∈ N, i ≤ k, where V′
i denotes the set of vertex in the ith partition of

G ′. The overall structure of G ′ depends on the representation system and lattice used.

The most commonly used policy in constructive approaches for the HP-PSP problem

is to use direction vectors to extend the partial assignment adding one monomer at

time. In this case partitions in G ′ represent sequence positions in s, and each partition

has a number of vertexes equal to the coordination number of the lattice used. The

extension is a sequential procedure; therefore G ′ is directed and has edges only between
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the partitions corresponding to consecutive positions.

4.4.3 State of the art of the HP model

In recent years, a great number of methods have been applied to the PSP problem in

the HP model using different types of lattice and optimization techniques.

GAs have been applied with success to the HP model until the introduction of second

generations move sets [184]. The general scheme of GAs was based on an internal coor-

dinates representation in which each chromosome represented a sequence of direction

vectors defining the structure [185]. This representation has the major drawback of

requiring an explicit check for the self avoiding constraint and consequently additional

terms in the energy function. In recent years, several evolutionary algorithms have

been proposed [186, 187] to tackle HP-PSP problem without showing any significant

advantage with respect to existing neighborhood based methods.

A hybrid approach based on Evolutionary Monte Carlo method has been proposed

by Liang and Wong [188], this was based on the use of Boltzmann distribution for the

selection step and the Metropolis-Hasting criterion for the acceptance of the offspring

population; moreover, they combined traditional genetic operators with first generation

lattice moves.

The Pruned-enriched Rosenbluth method (PERM) [189, 190] has been extensively

applied to the HP-PSP problem [191, 192] and is one of the best performing methods

in the 3DC lattice in the case of short sequences [35, 40]. The PERM is a constructive

Monte Carlo method, also referred as chain growth method. Each constructive step of

the PERM adds a single residue to one terminal position te of the growing HP chain

selecting the position between the free lattice points adjacent to that terminus. The

probability to select the j -th lattice point is given by its relative Boltzmann weight w j

defined as:

w j = 1

Z
e−∆E j /κB T , Z =

k f r ee∑
j=1

e−∆E j /kB T . (4.11)

In the equation above, k f r ee is the number of free lattice points adjacent to the te in

the partial assignment during the i -th constructive step, ∆E j is the energy variation

associated to the selection of the j -th position. The Boltzmann weights Wn associated

to a chain of length n is the product of the relative Boltzmann weights associated to the

positions selected during each extension step:

Wn =
n∏

i=1
wi (4.12)

Two thresholds W <
t and W >

t are used to decide whether a partial conformation has to be
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enriched or pruned. If Wi <W <
t a random number R ∈ [0,1] is sampled and if R < 1/2,

then the partial assignment is discarded (pruned); otherwise, its weight is doubled. On

the contrary if Wi > W >
t the partial assignment is copied, creating a branching point

from which the extension proceeds independently for each branch. In particular, the

number of branches is proportional to Wi /W >
t and the weight of each copy is divided by

the number of copies. The algorithm proceed by completing a round, this means that

all the branches have reached a complete assignment or have been pruned. A depth

first policy is used to perform the extension of each branch during a round. After each

round, the values W < and W > are updated according to:

W >
t+1 =C

(
W̄ /W0

)
(Cn/C0) (4.13)

and:

W <
t+1 = 0.2W >, (4.14)

where C , W0 and C0 are parameters of the algorithm while W̄ and Cn are respectively

the mean weight and the total number of the complete assignments achieved so far

by the algorithm. In recent versions of the PERM, pruning and enrichment operations

are based on unbiased [191] or biased [192] estimators of the utility of the upcoming

extension step instead that on Wi ; moreover the weights are not adjusted after the

enrichment/pruning operations.

An ACO approach has been proposed in [193]. The canonical ACO scheme described

in Section 2.3.3 was applied; during each construction step the chain is extended by

choosing between the direction vectors to select a lattice point close to a terminal

position. If a dead end (a partial assignment in which all the lattice points available for

extension are occupied) is created during one of these steps, a roll back procedure is

applied and the construction restarts from one of the previous partial assignments.

After the introduction of second generation move sets, several perturbation based

approaches have been applied to the HP-PSP problem. Thachuk and coworkers [35]

proposed a very efficient REMC algorithm for 3DC lattice combining pull moves and

bend moves. A detailed analysis of convergence conditions and optimal parametrization

of the SA method in the 3DC lattice using pull moves is provided in [176].

Dotu and coworkers [38] defined a large neighborhood search (LNS) method [194] based

on constraint programming to refine structures obtained by means of a local search

heuristic and tested this approach on several FCC instances.

Variants of the TS method have also successfully applied to 2DC lattice [34] and FCC

lattice [41, 42]. Moreover, in [41, 42] a modified scoring function and specialized

procedures have been introduced to promote the creation of hydrophobic cores. These

methods achieved the best results reported so far for many FCC sequence of significant
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length.

The WLS method has been applied along with a combination of all the second gen-

eration move sets and pivot moves leading to very promising results on 3DC lattices

[195, 196, 197, 198, 40]. Another non-Markovian Monte Carlo approach called heuristic

energy landscape paving has been applied to the HP-PSP problem in 3DC lattice

[199]. In this case a memory structure is used to reduce the acceptance probability of

assignments with highly sampled energy values. The main difference with respect to

WLS is that this method preserves a bias toward low energy states in its acceptance

criterion.

Zang and coworkers [36] combined SA and PERM, leading to an effective method named

fragment regrowth via energy-guided sequential sampling (FRESS). In this approach the

PERM method is used in place of a move set to generate the candidate assignment x ′ at

each iteration of SA. In particular, the PERM is used to regrowth an internal segment of

the chain. A roll back procedure, with depth first policy is used to handle the creation of

dead ends and to guarantee the chain closure. This method leaded to very good results

on several instance in the 3DC lattice.

Finally, it is important to notice that Backofen and Will [200] defined an exact constraint

programming approach, called HPstruct, built on top of a database of precomputed

H-cores. H-cores are compact lattice assignment that represent all the possible position-

ings that allows a given number of hydrophobic residues to create a target number of

contacts. The constraint programming method performs an exhaustive search to verify

the capability of the input sequence to accommodate a given H-core. This method

is sequentially applied to H-cores with decreasing number of contacts until a fitting

H-core is found, providing a solution. The HPstruct method is able to efficiently find

solutions for HP-PSP instances of moderate size (|ι| < 100) on both 3DC and FCC

lattices and it has been extensively used to assess the converge of SOHs for the HP-PSP

problem. Nevertheless the computation of H-cores is itself a NP-hard problem limiting

the applicability of this approach.

4.5 The MDG problem

As explained in the previous chapter NMR exploits the magnetic properties of the

nucleus of isotopes (as 1H, 13C and 31P) to identify spatial neighborhood relationships

between chemical groups i.e., given in the form of a matrix of inter-atomic distances.

When this technique is applied to molecules of significant size and with complex 3D

shape, such proteins, the resulting distance matrix is both sparse and noisy due to the

distance dependency of the Overhauser effect and to technical limitations, described

in Section 3.4. The MDGP consists in reconstructing the 3D structure of a molecule

starting from its (sparse) distance matrix; the MDGP problem is a special case of the

Distance Geometry Problem (DGP) [22] in which the distance matrix is obtained from
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NMR analysis. The peculiarity of the MDGP is the availability of additional constraints

concerning the distances in the 3D structure, which can be assumed considering the

chemical and physical properties of the class of molecules under investigation. The

MDGP can be formulated in the standard form as a feasibility problem:

find x

s.t .

‖xi −x j‖2 −eu
i j ≤ 0, ∀eu

i j 6= 0

e l
i j −‖xi −x j‖2 ≤ 0, ∀e l

i j 6= 0

x ∈R|ι|×3, E u ∈R|ι|×|ι|
+ , E l ∈R|ι|×|ι|

+ .

(4.15)

In the definition above, x is a matrix of atomic three dimensional coordinates, E l and

E u are two sparse matrices containing respectively upper and lower bounds for the

distance restraints obtained in a NMR experiment. In this context, the zeros in the

restraint matrices denote the lack of information. This problem was proven to be NP-

hard [45], by reducing a 1-dimensional MDG problem to the SUBSETSUM problem.

Most of the methodological studies that deals with the MDG problem focuses on the

special case in which exact distance restraints are available [201]. If this special case

is considered, E l = E u so a single restraint matrix E is used and the Definition (4.15)

can be simplified replacing each couple of inequality constraints with a single equality

constraint. This problem is still NP-Hard if the restraints matrix E is sparse.

4.5.1 State of the art of the approaches for the MDG problem

Several approaches to MDGP have been proposed in recent years. Dong and Wu

introduced a linear time algorithm, called “geometric buildup”, to solve the 3D-DGP

when the exact value of distances between all pairs of atoms are given [202]; recently,

this approach has been extended in order to obtain an approximate solution for the

MDGP with noisy distance values and sparse matrices [203, 23]. The main limitation of

the geometric buildup strategy is that in the case of sparse matrices and, in particular,

when some atoms have less than four distance constraints, this method is unable

to find any solution. However, to overcome this limitation, it is possible to consider

additional distance constraints arising from structural features of proteins, or using

optimization algorithms [25], to reconstruct the complete molecular structure from a

partial substructure obtained with the geometric buildup algorithm.

A branch and prune algorithm was proposed in [204, 24]: by exploiting additional

constraints about the protein structures, this method considers a discrete search space

in which the amino-acids can be placed only in two different positions with respect to

their precursor in the protein structure. In general, this algorithm has an exponential

time complexity; however, it is able to efficiently find solutions for some instances that

satisfy particular structural properties.
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There exist two approaches based on graph embedding [205] in 3D Euclidean space,

able to deal with both noisy data and sparse matrices. The first one, called ABBIE

algorithm [206], exploits a divide and conquer strategy and structural rigidity [207];

this method first identifies subproblems (i.e., subsets of nodes) that can be solved with

an exact algorithm, then it applies a global optimization algorithm to combine partial

solutions. The second one, called EMBED algorithm [208], uses the measured distances

to derive a set of lower and upper bounds for all other distances; this requires the

identification of the shortest path between each couple of nodes in a particular bigraph

in order to derive triangle inequality limits [209]. A local optimization strategy is then

applied to refine the solution obtained from the complete bounds set.

Finally, the DGSOL algorithm [201, 210] combines a methodology to select good starting

points for the optimization process with the Gaussian smoothing and continuation

strategy [211], a technique used to reshape the objective function during the optimiza-

tion. So doing, a gradient minimization can be applied to the obtained smooth function

in order to refine the structure and to minimize the constraints violation. A memory

function is used to select new starting points when it is not possible to further improve

a solution with the procedure described above. The main limitation of DGSOL is that

it provides only approximate solutions in presence of noisy information and sparse

matrices.
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5 The local landscape mapping
strategy

This chapter provides a detailed description of two new SOHs for the HP-PSP problem

developed in our laboratory, both these methods are based on the same fundamental

idea, referred to as local landscape mapping (LLM) strategy. The first section of the

chapter, introduces a new perturbation system in the HP model, in particular, this

consists in a FA-like perturbation and requires the definition of a specialized energy

function in order to select legal HP assignments. The second section of the chapter

discusses the fundamental ideas of the LLM strategy. The third section describes a

first implementation of the LLM strategy, LLMmem. The results of LLMmem on small

benchmark instances of HP-PSP problem in 3DC lattice are presented both using the

FA-like perturbation system and a standard move sets. To evaluate the significance of

this results they are compared with those achieved by means of SA and ACO. The last

part of the chapter describes a different implementation of the LLM strategy,LLMLS .

The results of LLMmem for several benchmark instances of the HP-PSP problem using

pull moves are provided both in the 3DC and FCC lattices and compared with those

achieved by state of the art methods.

5.1 A fragment assembly-like representation in the HP model

In Section 4.4, two different strategies to generate assignments in the HP model have

been discussed: the move sets used in neighborhood based methods and the selection

of lattice main directions vectors used in constructive approaches. In this section, a new

system is introduced, with the purpose of providing an HP benchmark framework closer

to the FA strategy used for off-lattice PSP. The representation we propose is based on the

use of small embeddings that we call fragments in analogy to off-lattice models. These

fragments are combined during the search process in order to produce a complete

embedding of the input sequence. In particular, the 150 fragments that cover all the

non-overlapping conformations of an HP string of length four in the 3DC lattice were

computed. Each fragment determines the local structure of a triplet of residues starting

at the insertion point and also the position of the first residue in the subsequent triplet.
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An HP sequence of length N is thus encoded as a sequence of N−1
3 integer indexes,

in this case each index identifies the fragment used to represent the structure of the

ith triplet in the HP sequence. Special fragments of reduced length are exploited to

represent the last portion of the sequence if N −1 is not a multiple of three. To exclude

global translational and rotational degrees of freedom and mirror image duplicates

from the search space only the six fragments in figure 5.1 have been admitted at the first

position.

This FA-like system allows both the overall structure and the energy value of an assign-

ment to change significantly after that a single perturbation is applied; the same holds

also for the fragment assembly in off-lattice models since many atomic positions are

modified in a single fragment exchange move [119] and the energy function is often

a highly non-linear function of the distances and angles between atoms or pseudo-

atoms [95]. On the contrary, the self-avoiding neighborhood structure defined with

the move sets (excluding pivot moves and bong-rebridging moves) induces a smooth

energy landscape in which only a reduced number of hydrophobic contacts is altered

after each move [34, 176]. Although some important improvements have been achieved

with empirical scoring functions [212], such a smooth landscape is not reproducible

in off-lattice models of protein folding due both to the strongly perturbative behavior

of the fragment assembly procedure and to the intrinsic nature of the folding process

[213].

It is important to notice that, opposite to the case of move sets, there is no guarantee

that the assignments generated through the fragments exchange procedure are feasible,

since the creation of overlaps between residues of different triplets is possible. Moreover

every fragment insertion that modifies the starting position of the upstream fragment

implies a translation of all the upstream fragments.

Figure 5.1: Allowed fragments for the first triplet
The six fragments allowed to represent the first triplet of a sequence in the FA-HP
representation system. The position of the first residue in the second triplet is shown in
yellow.
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In order to promote the selection of feasible assignments when the FA-HP represen-

tation is used we defined a specific scoring function, shown in Equation 5.1; this

discourages the generation of overlapping walks and improves the performance of

methods that require heuristic choices.

EFA(x, ι) =−
[(

SHH

1+SOV

)2

+ 1

1+SHP
+ 2NHH

1+SHD

]
, (5.1)

where x is the optimization variable, ι represent the target HP string, NHH is the upper

bound of the number of hydrophobic contacts defined in [214]; while SHH represents

the canonical objective function of the HP problem, defined in Equation (4.8). The

other terms indicated as Sx are scoring functions with the general form defined below:

Sx (·) =
N−3∑
i=1

N∑
j=i+3

f (·) (5.2)

where f is a function that defines the specific type of score. SOV uses f =ω shown in

Equation 5.3; it counts the number of overlapping positions:

ω(xi , x j ) = δ(xi −x j ), (5.3)

where δ denotes the Dirac delta function. To consider the overlaps at the boundary

between subsequent fragments theω function is also computed between residues i and

i +2 at the boundary positions. SHP uses f =φ shown in Equation (5.4); it counts the

contacts between hydrophobic and polar positions (H-P contacts), it was introduced to

prevent the formation of undesired H-P contacts; a similar term was used in [191].

φ(xi , x j , ιi , ι j ) = κ(xi , x j )δ(ιi ⊕ ι j ), (5.4)

where κ has been defined in Equation (4.9), while ⊕ denotes the logical exclusive

disjucntion. Finally the SHD uses f = ζ in Equation (5.5) and it was introduced to

bias the early steps of constructive methods toward compact solutions.

ζ(xi , x j , ιi , ι j ) =
‖xi −x j‖2 if γi j ·λ(ιi ι j ) 6= 0

0 otherwise
, (5.5)

where,

γi j =
1 if i and j have different parity

0 otherwise
(5.6)

whileλ denotes, once again, the logical conjunction. An interesting aspect of the scoring

function in Equation (5.1) is the presence of a quadratic term. Quadratic and higher

degree energy terms are often exploited in scoring functions of off-lattice methods for
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PSP [119, 215].

5.2 Fundamental ideas

By analyzing the state of the art of the PSP problem presented in Section 4.1, two general

considerations arise. First, neighborhood based methods [35, 40, 38, 41, 95] seem to

perform better than both population based methods [193, 187] and methods based

on constructive approaches [191, 193]; second approaches that favor exploration, like

those based on the WLS and methods that keep memory of good solutions to prevent

re-sampling [38, 41, 42], perform better than methods that rely only on the direct search

for ground states [36, 199]. Moreover, all the best performing methods in the 3DC

lattice [191, 35, 36, 40] are in the Monte Carlo family, while in the FCC lattice the best

performers are based on a combination of TS and large neighborhood search (LNS).

The use of a large neighborhood structure allows a method to escape local minima

through the generation of neighbors assignments outside of the basin of attraction of the

trapping minimum. This is particularly appealing in the case of the PSP problem since,

as discussed in section 3.3.1, the majority of the search effort in this problem is spent in

escaping local minima associated to non-native compact structures [76]. The formation

of these structures is often associated to a significant reduction in the energy [40] and

consequently methods based only on the Metropolis-Hasting criterion often get trapped

in this sub-optimal assignments. Unfortunately, also the LNS strategy has a major

drawback: indeed, as a consequence of the reduction in the conformational entropy

associated to the folding process, the number of assignments within a given energy bin

Ei decreases exponentially with the energy itself [184, 40]. Therefore, the probability to

find a good assignment in the extended neighborhood using a blind approach is very

low. The approach found in literature [38] exploits constraint programming to efficiently

explore the large neighborhood. The idea at the basis of the LLM strategy proposed here,

is to combine a variable neighborhood structure with the rejection sampling scheme of

a typical Monte Carlo method i.e., SA. In particular, the method works extending the

neighborhood of the SA when the acceptance rate become low. Moreover, a biasing

strategy is adopted to perform the search in the extended neighborhood in order to

increase the quality of generated neighbor assignments. In this thesis two biasing

strategies have been tested, memory based and local search based. The first uses a

memory structure that associates a desirability value to the elementary operations that

define the neighborhood relationship. The second is based on a specialized local search

algorithm designed to search over the set of compact structures.

5.3 The memory based biasing strategy

The first version of the LLM method [43, 44] uses a memory structure borrowed from

ACO meta-heuristic to bias the search over the extended neighborhood, for this reason
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it will be referred as LLMmem. This is a population-based iterative method that follows

the general scheme of SA and uses a pheromone structure to build a desirability

map of the neighborhood learning from the rejected samples. The structure of the

pheromone matrix depends on the considered problem, on the type of elementary

moves used to perform the search and on the amount of computational resources

available. The key point, to keep in mind in what follows, is that, in LLMmem, the

pheromone values considers the relationships between the elementary operations and

the current assignment x t . Two examples of how this relationship can be represented

are given in the next section.

The method starts with a random assignment x0 of the search variable and the uniform

initialization of the pheromone values. Then, each iteration is divided into three

phases: expansion, evaluation and update. During the expansion phase, a fixed number

of neighbors of x t , specified in the parameter ν and referred to as the candidate

assignments, are independently generated. In LLMmem two different policies can be

alternatively applied to generate the candidate assignments:

• the uniform sampling in the 1-neighborhood;

• the pheromone based sampling in the extended neighborhood.

In the first case, each of the candidate assignments is selected according to:

Pn(x̂ = z) =


1
|N 1

xt |
if z ∈N k

x t

0 otherwise
(5.7)

where |N 1
x t | is the cardinality of the 1-neighborhood of x t . In the second case, the

candidate assignments are generated according to a biased distribution based on

pheromone values. In particular, a sequence of elementary operations o is used to

generate neighbors in the extended neighborhood. The parameter σMAX controls the

cardinality of o. A value σ in the interval [2,σMAX] is selected with uniform probability;

then σ choices are sequentially performed to obtain o. Each elementary operation is

selected according to the following criterion:

Pd (oi = j ) = θ (t j )+ (1−θ) −η j∑
b∈Opθ (tbr )+ (1−θ) −ηb

(5.8)

where Pd (oi = j ) is the probability that the jth elementary operation is selected in the

ith position of the sequence o and Op represent the set of operation that define the

neighborhood, i.e. pull moves, single bead moves or fragments exchange. The choice

between the two procedures for neighbors generation is probabilistic and depends on

the number of rejections achieved in previous iterations as follows:

Pphe(xi ) = 1

1+e−a (5.9)
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where Pphe(xi ) is the probability of using the pheromone criterion to generate the ith

neighbor state, and a is defined as follows:

a =−6α+ #r e j

α
(5.10)

where #r e j is the number of iteration that have been spent without accepting a new

state and α ∈ N is a parameter of the algorithm. The evaluation phase of LLM is

composed of an optional local optimization step and an acceptance step. In the local

optimization steps candidate assignments are used as starting point for a local optimizer

analogously to what described in Section 2.3 for ACO and GRASP. The acceptance

step considers only the best of the candidate assignments x̂∗ and it is based on the

Metropolis-Hastings criterion in Equation (2.11). Finally, during the update phase, the

pheromone values corresponding to elementary operation that have been selected to

generate each candidate assignment x̂i , are modified according to:

t̃i j = 1

2
t j (1−ρ)+ 1

2
t j (1+ c(xi , x t ) ρ), (5.11)

where t̃i j is the updated pheromone value, ρ is a parameter controlling the learning

rate, and c(xi , x t ) is the relative value of xi with respect to x t , that in the case of HP-PSP

has been defined as follows:

c(xi , x t ) = E(mi )

−1+E(mt )
(5.12)

If a candidate assignment has been accepted during the evaluation phase, then, all the

pheromone values are updated as follows:

t̂i j = w t̃ j + (1−w) (5.13)

where w is a parameter of the algorithm that controls the propagation of the pheromone

bias between subsequent samples in the trajectory. The update phase described above

creates the local energy landscape map associating each elementary operation to a

pheromone level proportional to the relative value of the assignment that arise from the

application of that elementary operation. In addition, each accepted assignment inher-

its a portion of the bias from its precursor in the trajectory basing on the assumption

that the neighbor assignments share at least a portion of their local landscape.

5.3.1 The pheromone structure

As anticipated in the previous section in LLMmem the pheromone is used to associate

a desirability value to elementary operations used to define the neighborhood. The

elementary operation in the FA-like framework is the exchange of a single fragment.

The peculiarity of LLMmem is that it considers desirability with respect to the current
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assignment. Therefore, a pheromone value has been assigned to each couple of frag-

ments, except for fragments used to represent the same triplet (since they are mutually

exclusive); this allows to assess the desirability of an incoming fragment with respect

to each possible combination of fragments in the current assignment. A graphical

representation of this pheromone model is provided in Figure 5.2. In particular, the

desirability t j of fragment j used to represent the ith triplet is computed as follows:

t j =
∑
p 6=i

τ j p , (5.14)

where τ j p is the pheromone value associated to the couple composed of the fragment

j and the fragment representing the pth triplet in the current assignment. A visual

representation of this “aggregate“ desirability is provided in Figure 5.3. With the

aim of reducing the computational cost of pheromone based fragment selection in

LLMmem, the selection criterion in Equation (5.8) was restricted to select only between

the fragments associated to a randomly chosen triplet.

In the case of move sets, a pheromone value was associated to each possible move and

the pheromone based move selection is performed between all the feasible moves.

An important difference between the two pheromone models discussed above is that,

in the case of the FA-like representation, the fragments are combinatorial blocks used to

generate assignments; consequently, the pheromone model is associated to the graph

in Figure 5.2 that represents the search space of the problem. On the contrary, move sets

define only the neighborhood of a specific assignment; consequently the pheromone

model is associated to a transient structure.
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Figure 5.2: Pheromone model for the FA-like perturbation system.
A graph-based representation of the pheromone used for the FA-like perturbation
system. The complete k-parted graph represents the search space HP-PSP based on
FA-like perturbation system. Each partition represents a triplet of positions. Each node
represents a fragment. Assignments of x are paths that include exactly one node from
each partition. A pheromone value τi j is associated to each edge in this graph.

62



5.3. The memory based biasing strategy

Figure 5.3: Pheromone-based neighbors selection for the FA-like perturbation system.
For the sake of clarity, only four fragments have been represented in each partition.
The path defining the current assignment is represented with arrows. The yellow node
represents the fragment that will be replaced during the considered perturbation step.
Green nodes represent fragments in the current assignment that will not be modified.
The red nodes represent candidate fragments for the this perturbation step. The red
edges represent all the pheromone values considered in equation (5.8). Each red edges
is associated to a pheromone value τ, while the aggregate pheromone value t j of node
j is the sum of all the edges connecting node j with the current assignment.

63



Chapter 5. The local landscape mapping strategy

5.3.2 Parameterization and auxiliary procedures

The parameter sets for all the methods were selected tuning each parameter indepen-

dently on a random sequence of length 48. It is important to notice that a detailed

analysis of the optimal value of the parameter T0 of SA method in the pull move

framework is provided in [176]. Nevertheless, it has been observed empirically that due

to the limited amount of time considered in our tests a lower value of T0 with respect

to the one proposed [176] leads to better results (data not shown). The values for all

parameters are reported in Table 5.1.

The heuristic function used in the pheromone based selection of both ACO and LLM(mem)

is computed according to Equation (5.1). No heuristic function was used in LLMmem in

the case of the move sets. The move sets used to perform the tests includes pull moves

and bend moves. Only feasible moves are considered during each neighbor generation

step.

A local optimizer has been included in both LLMmem and ACO in the case of the FA-

like perturbation system. In particular, this method performs an exhaustive search

over the 1-neighborhood of the input assignment, if the best assignment found in the

neighborhood improves the value of cost function with respect to the input assignment,

it is used as new input for a new round of local search; otherwise the method returns

the best assignment found.

FA-like Move sets

Parameter LLMmem SA ACO LLMmem SA

T0 5.0 5.0 3.5 3.5
ν 5 5 1
σ [2,4] 1
α 1 5
θ 0.5 0.5 1
ρ 0.2 0.1 0.5
w 0.9 0.2
local opt yes no yes no no

Table 5.1: Parameters lists and settings
Parameterization used to perform computational tests in with the FA-like perturbation

scheme and in the HP-PSP using move sets.

5.3.3 Computational results

This section reports the results achieved by LLMmem on a broadly used [188, 193, 35,

36, 176, 39, 40] benchmark set for HP model in the 3DC lattice. This set of instances,

often referred to as Harvard instances, was introduced in [216] and it is available at [217].

All the sequences in the benchmark set a have length of 48, and the global optimum
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for each of them was computed by means of the hpstruct method [218]. Two different

computational tests have been performed: the first was aimed to assess the significance

of LLMmem using the FA-like perturbation system; the second was aimed to analyze

how the FA-like perturbation system affects the performance of different methods with

respect to the move sets. In the first test, results of LLMmem have been compared to

those obtained with two well established SOHs, in particular SA and ACO. In the second

test, LLMmem and SA have been applied using move sets. It is important to notice that

ACO is a constructive heuristic and for this reason it cannot be included in test 2 (see

Section 4.4). In both tests a time elapsed termination criterion have been applied setting

a time limit of 2′ of CPU time for the execution of each run. The performance measure

used in this test is the average best energy computed over several independent runs.

This is computed storing the best energy value computed in each independent run and

then computing the average of all the stored values. All the tests were carried out on

a desktop machine equipped with an Amd Phenom II X6 1090T processor and 4GB of

RAM. For each run we stored as result the lowest energy structure found.

Test 1. In Table 5.2 are shown the best and the average results obtained over 50 run

for each instance using the FA-like perturbation system.

ID Emi n SA ACO LLMmem

H1 -32 -26(-23.7 ±1.23) -29(-26.9 ±0.79) -31 (-28.5 ±0.92)
H2 -34 -27(-23.9 ±1.60) -29(-27.0 ±0.97) -32 (-29.5 ±1.18)
H3 -34 -28(-25.1 ±1.86) -28(-26.7 ±0.67) -32 (-29.6 ±1.38)
H4 -33 -28(-24.1 ±1.27) -29(-26.4 ±0.89) -31 (-29.1 ±0.97)
H5 -32 -28(-25.1 ±0.84) -29(-26.5 ±0.73) -31 (-28.6 ±0.95)
H6 -32 -24(-23.0 ±1.37) -28(-25.6 ±0.96) -30 (-27.6 ±0.99)
H7 -32 -26(-23.6 ±1.83) -28(-26.5 ±0.81) -31 (-28.4 ±0.90)
H8 -31 -27(-24.1 ±1.40) -29(-26.0 ±0.95) -29 (-27.9 ±0.71)
H9 -34 -28(-25.2 ±1.88) -30(-27.8 ±0.76) -32 (-29.8 ±0.93)
H10 -33 -27(-24.3 ±1.88) -29(-27.3 ±0.98) -31 (-29.6 ±0.95)

Table 5.2: Results of the LLMmem method: fragment assembly-like
Results of different heuristics in the 3DC lattice using the FA-like perturbation system.
The optimal energy values Emin for each benchmark sequence are shown in the second
column. In bold is reported the best value obtained in the fifty runs. In round brackets

are shown means and standard deviations of the best energy value obtained in each
run.

The LLMmem outperforms competitors on all the instances, while ACO performs better

than SA. The local optimizer plays an important role in determining the good perfor-

mance of both ACO and LLM but nonetheless, LLM shows an improved capability in

generating starting points with respect to ACO. Moreover the energy function introduced

for FA-like proved to be very effective in pruning invalid states since no invalid state has

65



Chapter 5. The local landscape mapping strategy

been found as final result of a run in this test. The low performance of SA method in

the case of the FA-like perturbation system is probably due to the large neighborhood

size induced by the fragments or to the increased energy differences between neighbor

states resulting from the modified energy function.

Test 2. In Table 5.3 are shown the best and the average results obtained over 50 run

for each instance using move sets.

ID Emin SA LLMmem

H1 -32 -32 (-30.62 ±0.69) -32 (-30.60 ±0.69)

H2 -34 -33 (-31.66 ±0.66) -33 (-31.66 ±0.56)

H3 -34 -34 (-32.18 ±0.74) -34 (-32.22 ±0.76)

H4 -33 -32 (-31.38 ±0.56) -33 (-31.40 ±0.76)

H5 -32 -32 (-30.78 ±0.54) -32 (-30.38 ±0.56)

H6 -32 -32 (-30.84 ±0.56) -32 (-30.88 ±0.59)

H7 -32 -31 (-29.95 ±0.56) -31 (-30.13 ±0.54)

H8 -31 -30 (-29.38 ±0.60) -31 (-29.56 ±0.54)

H9 -34 -34 (-32.04 ±0.60) -33 (-32.00 ±0.57)

H10 -33 -33 (-31.20 ±0.60) -32 (-31.12 ±0.65)

Table 5.3: Results of the LLMmem method: move sets

Results of LLMmem and SA in the 3DC lattice using move sets. The optimal energy

values Emin for each benchmark sequence are shown in the second column. In bold we

present the best value obtained in the fifty runs. In round brackets are shown means

and standard deviations of the best energy value obtained in each run.

The optimal values for many instances have been obtained by both LLMmem and SA. On

the contrary, none of the methods was able to reach the global optimum for any instance

using the FA-like perturbation system in the considered amount of time. Moreover

mean values obtained with move sets are always better that those obtained with the

FA-like perturbation system. These results suggest that the FA-like perturbation system

provides somehow a more challenging benchmark than the canonical HP-PSP. This

results are not unexpected since the possibility to generate overlapping structures

extend the search space. Moreover, the neighborhood size and the energy differences

between neighbor solutions are also increased in the case of the FA-like perturbation

system. For what concerns SA both these variations are known to affect negatively the

performance [65, 176]. It is important to notice that the performance of SA and LLMmem

in this test is the same. In our opinion, the lack of improvement of LLMmem method

in this case depends on two main factors: the change in set of feasible moves and the

small energy difference between neighbor solutions. The former reduces the utility of

information obtained from the previous states since when a pull move is applied, the
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set of available moves in the resulting assignment is significantly different from the

initial one; this is particularly relevant in the case of compact structures in which only a

reduced number of moves is feasible. The latter affects the generation of pheromone

bias since, with small energy differences between neighbor solutions, more iterations

are required to create significant difference in pheromone levels.

5.4 The local search based biasing strategy

Although result obtained by the LLMmem using the FA-like perturbation system are

promising, this approach presents several limitations:

• it requires the tuning of a high number of free parameters;

• the pheromone based neighbor selection can be computationally expensive

depending on the selected pheromone model and heuristic function;

• the pheromone model is not able to collect information if the neighborhood has

a flat energy landscape.

Moreover, the lack of performance improvement with respect to SA observed in the

test based on move sets cannot be underestimated. Indeed, this is the standard frame-

work for the PSP problem. Consequently, a new method has been designed aimed to

overcome these limitations while keeping the fundamental idea of LLM .

In a recent paper [42], Rashid and coworkers introduced a new method, called spiral

search, that is based on the concept of hydrophobic-core directed local search. The

basic idea of this local search strategy, is to assign a priority to moves that reduce

the euclidean distance of hydrophobic residues from the geometric center of the

hydrophobic residues, called hydrophobic-core center (HCC). In particular, during

each iteration, all the moves that reduce the distance between an hydrophobic residue

and the HCC are listed. Then, the move associated to the residue farther from the HCC

is performed. The process iterates updating the HCC after each move, until no further

reduction of the distances between hydrophobic residues and the HCC is possible. Only

corner flip moves are used to perform the local search. Several diversification strategies

based on pull moves are applied in the spiral search method to prevent stagnation of the

local search method. This strategy proved to be effective, indeed the method achieved

excellent performance on several benchmark instances of the HP model in the FCC

lattice [42].

A similar idea has been exploited in the definition of the local search-based LLM (LLMLS).

The LLMLS is based on three components: a putative core generator, a local search

method, and a SOH. An high level description of LLMLS is the following:
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1. the putative core generator is used to provide a target putative hydrophobic core

for the LS procedure;

2. the LS is used to modify the current assignment in order to promote, as much

as possible, the creation of the hydrophobic contacts specified in the putative

hydrophobic core;

3. the MCM method is applied in order to improve the quality of the assignment

produced by the local search method.

The three steps reported above are iterated until a termination criterion is reached, i.e.,

a given number of iteration has been performed.

5.4.1 The putative hydrophobic core

The concept of putative hydrophobic core (PHC) is the major innovation of our approach

with respect to existing techniques. A PHC is an object specifying the couples of

hydrophobic residues that creates contacts in a putative compact structure. Denoting

with IHH the set of indexes of hydrophobic residues in the given instance ι, a PHC is

defined as follows:

• it is a vector with a length equal to the number of hydrophobic position in the

given instance ι;

• each element of a PHC is a subset of IHH with an arity bounded in the range

[0, |Dmai n |−2];

• the ith element of the PHC is associated to the ith hydrophobic position in ι.

In other words, the PHC associates a set Ch of indexes to each hydrophobic residue rh

and each index in Ci corresponds to a hydrophobic positions in ι. The relationships

defined in the PHC are symmetric, this means that if the index j is in Ci then, the index

i is in C j . The indexes of residues i −1 and i +1 are implicitly included in Ci since they

are in contact with residue i in any feasible assignment. Due to the parity problem, in

the case of cubic lattices, an index j can be included in Ci only if i and j have a different

parity. A set Ci in the PHC is said to be full when it includes the maximum number of

indexes |Ci | = |Dmain|−2. The putative core generator is used to define random PHCs.

In particular, the following scheme is adopted:

1. initialize the set I∗HH of available hydrophobic residues including all the hydropho-

bic residues;

2. if I∗HH is not empty, then sample a random hydrophobic residue ri from I∗HH with

uniform probability; otherwise the PHC is complete;
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3. if it exists a residue r j ∈ I∗HH , allowed to interact with ri , such that j ∉ Ci , then

proceed to the next step; otherwise remove ri from I∗HH and go to step 2;

4. j is inserted in Ci and i is inserted in C j ;

5. if C j is full, then remove r j from I∗HH ;

6. if Ci is full, then remove ri from I∗HH and go to step 2; otherwise go to step 3;

5.4.2 The local search method

The local search algorithm receives in input an assignment x0 of the optimization

variable and a random PHC. It is iteratively applied in order to minimize the distances

between the hydrophobic residues that are expected to create contacts according to the

PHC. In particular, during each iteration an exhaustive search over the 1-neighborhood

of the current assignment x t is performed and the elementary operation that leads

to the greater reduction of the function in Equation (5.15) is selected to generate the

assignment of the next iteration x t+1.

fLS(x, ι,PHC) = ∑
i∈IHH

∑
j∈Ci

‖xi −x j‖2. (5.15)

The local search iterates until it is not possible to further reduce the value of fLS. It is

important to notice that there is no guarantee that the contacts specified by the PHC can

be realized in the considered instance, since constraints arising from the chain structure

and the presence of polar residues are completely ignored in the PHC definition.

5.4.3 The optimization step and parameterization

In LLMLS, the SA method is used for the optimization step. In particular, a re-annealing

protocol has been applied since this proved to be more effective in finding solutions for

small HP sequence with respect to a single annealing cycle of increased length (data

not shown). The only parameters required by the LLMLS concern the SOH method

used in the optimization step. In the case of SA with re-annealing we have only two

parameters: the starting temperature of each cycle T0 and the number of annealing

cycles Ncycles. For all the results presented in the next section this values have been set

to 5.0 and 2 respectively. The use of the value T0 = 5.0 instead of T0 = 3.5 previously

adopted is due to a change in the implementation of the neighbor generation step in SA.

Indeed, the results of the LLMmem were achieved considering only the feasible moves

during neighbors generation, while the results of LLMLS have been obtained following

the suggestions in [40]. Therefore unfeasible moves are also considered in neighbors

generation and, in the case that an unfeasible move is selected, the iteration terminates.

As a consequence, in the new implementation the temperature decrease is not always

associated to the sampling of a neighbor assignment, resulting in a “faster cooling“.
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5.4.4 Computational results

This section presents the results achieved by LLMLS on several sets of HP instances

both in 3DC and FCC lattices using only the pull moves. The results have been grouped

according to the lattice used and to the length of the considered sequences. All the

benchmark sequences used are available in appendix A. In order to assess the signifi-

cance of our results, they have been compared with those achieved by several state of

the art methods. Two different kind of performance measure have been considered in

order to match published material: the average first hit time and the average best energy

(described before). The average first hit time measures the average time, computed over

several independent runs, required to reach an assignment with an energy value equal

or better than a target value. The computation of the average first hit time for values

close to minimum energy of a given instance is extremely time demanding in the case of

long sequences; therefore, this measure has been used only to evaluate results for short

sequences (Test 1). For statistical significance the interquartile mean of first hit time

have been reported instead of the mean as suggested in [40]. All the tests were carried

out on a desktop machine equipped with an Amd Phenom II X6 1090T processor and

4GB of RAM.

Test 1. Table 5.4 shows the performance in term of average first hit time on the Harvard

instances [216] in the 3DC lattice achieved with REMC [35], WLS [40] and LLMmem.

ID Emi n REMC WLS LLMLS

H1 -32 0.22 0.32 0.08
H2 -34 1.82 0.84 0.34
H3 -34 0.71 0.68 0.24
H4 -33 0.53 0.59 0.20
H5 -32 0.28 0.23 0.10
H6 -32 0.40 0.39 0.13
H7 -32 1.24 1.58 0.68
H8 -31 0.56 0.58 0.18
H9 -34 2.64 3.10 1.66
H10 -33 0.44 0.98 0.20

Table 5.4: Results of the LLMLS method: CBC lattice 1
Average first hit time in minutes needed to reach the optimal energy value of the

Harvard instances in the 3DC lattice. In bold is reported the best value obtained for a
given instance. WLS: results reported from [40], values computed over 20 independent

runs. REMC: code from [35] tested on our machine, values computed over 100
independent runs. LMMLS: values computed over 100 independent runs.

The code for the REMC is freely available [219] under the GNU general public license

version 2. Consequently, in order to provide an unbiased comparison it has been
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compiled from the source and executed on our local machine. No change to the

parameterization reported in [35] has been applied. The results reported for WLS have

been taken from the manuscript, in this case some of the difference in the performance

can be due to the difference in the hardware. Another aspect that should be taken

into account is that WLS is not designed specifically for the search of low energy states.

Nevertheless, LLMLS is the best performing methods in all the instances considered in

this test and in many cases it is more than 2 times faster than the other methods.

Test 2. Table 5.5 shows the results for longer benchmark sequences introduced in

[220] on the 3DC lattice. These instances have been widely used as benchmark in

previous studies [36, 40]. PDB identifiers are used to label this sequences since they

were generated converting real protein sequence in the HP alphabet basing on chemical

properties of residues [220]. The results reported for WLS have been taken from the

-2

-1

-13

-12

-11

-10

-9

-8

-7

-6

0

(a)

-8

0

-2

-4

-6

12

13

(b)

4

-4

-2

0

2

(c)

Figure 5.4: Best results on biological instances.
The best models achieved over the 30 runs for each of the biological instances

considered in test 2 are shown. (a) An assignment with energy -57 for 3CYT. (b) An
assignment with energy -73 for 7RSA. (c) An assignment with energy -80 for 2SNS.

Images obtained with MATLAB™.

manuscript [40]. Due to time limitations, only LLMLS and WLS have been considered

in this comparison. Moreover, first hit times for LLMLS have been extrapolated from

the results of runs performed with the time elapsed termination criterion, fixing the

time limit to 10 minutes. The reported values have been computed dividing the overall

running time allocated for a given sequence by the number of runs that visited an

assignment with energy equal or lower than the target. In the case of 7RSA all the

runs visited an assignment with energy equal or lower of the target, consequently the

reported time value is an overestimate of the average first hit time. The best results

achieved for each sequence in this set are shown in Figure 5.4.
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ID Etarg WLS LLMLS

3CYT -57 0.93 0.55
7RSA -71 0.06 <0.17
2SNS -80 2.98 1.66

Table 5.5: Results of the LLMLS method: CBC lattice 2
Average first hit time in minutes needed to reach the target energy value on HP

instances obtained from biological sequences [220] in the 3DC lattice. WLS: results
reported from [40] values computed over 20 independent runs. LMMLS: results

extrapolated from 30 independent runs, see details in the text.

Test 3. Table 5.6 shows the results achieved on the last set of benchmark instances

[38] in the FCC lattice.

ID Emi n SS-tabu LS-tabu time/run LLMLS time/run

F90_1 -168 -166 (-166) -164 (-160) -168 (-167.7 ±0.52)
F90_2 -168 -164 (-164) -165 (-158) -168 (-167.9 ±0.35)
F90_3 -167 -165 (-165) -165 (-159) -167 (-166.9 ±0.25)
F90_4 -168 -165 (-165) -165 (-159) -168 (-167.8 ±0.76)
F90_5 -167 -165 (-165) -165 (-159) 120 -167 (-166.9 ±0.40)
S1 -357 -355 (-347) -351 (-341) -356 (-355.0 ±1.05)
S2 -360 -354 (-347) -355 (-343) -360 (-358.3 ±1.25)
S3 -367 -359 (-350) -355 (-340) -366 (-361.3 ±3.20) 10
S4 -370 -358 (-350) -354 (-343) -368 (-364.4 ±2.92)
F180_1 -378 -357 (-340) -338 (-327) -368 (-361.9 ±2.94)
F180_2 -381 -359 (-345) -345 (-334) -374 (-366.7 ±3.11)
F180_3 -378 -362 (-353) -352 (-339) 300 -373 (-369.8 ±2.64)
R1 -384 -359 (-345) -332 (-318) -372 (-365.6 ±3.84)
R2 -383 -358 (-346) -337 (-324) -374 (-365.4 ±4.11)
R3 -385 -365 (-345) -339 (-323) -375 (-368.4 ±3.40)

Table 5.6: Results of the LLMLS method: FCC lattice
Average best fitness and best overall energy for several instances in the FCC lattice. For

each instance the best overall energy value and the average best fitness (in round
brackets) are shown. In bold is reported the best value obtained for a given instance.

SS-tabu: results reported from [42], values computed over 50 independent runs.
LS-tabu: results reported from [42], values computed over 50 independent runs. LLMLS:

values computed over 30 independent runs.

In this case, the results achieved with LLMLS have been compared to those achieved with

the spiral search (SS) method [42] and the large neighborhood search (LS-tabu) method

[38]. Results for both these method have been taken by the recent manuscript of Rashid

et al. [42]. In this test the performance of all the methods was assessed basing on the

average best energy measure and the overall lower energy found. The LLMLS method
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achieve the best performance in all the considered instances both in terms of average

best fitness and overall lower energy. Moreover, it is the only method that is able to find

an assignment in the solution set at least for some of the instances. Unfortunately, no

mention to the hardware used to achieve the results can be found in [42]. Nevertheless,

in the paper of [38] similar results to those presented in [42] were achieved with LS-tabu

using a system comparable to the one used in this study. Moreover, the time limit for the

LLMLS method was fixed to 10’, while the time limit for the other methods was of 120’

or 300’ depending on the length of the target sequence. Basing on these observations,

it is possible to say that the LLMLS represents an improvement with respect to state of

the art methods for PSP in the FCC lattice. The best result obtained for some of the

instances considered are shown in Figure 5.5.

(a) (b) (c)

Figure 5.5: Results on large instances in the FCC.
The best models achieved over the 30 runs for some of the large instances( |ι| > 150|)

considered in the FCC lattice are shown. (a) An assignment with energy -360 for S2. (b)
An assignment with energy -373 for F180_3. (c) An assignment with energy -374 for R2.

Images obtained with MATLAB™.
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6 The evolutionary springs swarm
method

This chapter provides a detailed description of the evolutionary spings swarm method

(ESSM) for the MDG problem with exact distance constraints, developed in our labo-

ratory. The first section of the chapter is dedicated to the description of fundamental

ideas considered to design the method. The second section provides a detailed descrip-

tion of the algorithm, while remaining of the chapter is spent discussing the applied

parallelization, the parametrization and the results obtained on 9 synthetic instances of

the MDG problem.

6.1 Fundamental ideas

As discussed in Section 4.5.1, several different approaches to the MDG problem have

been proposed in recent years, but they all suffer from limitations. For instance, the

geometric buildup [202] is unable to find a solution to the problem for some cases of

sparse distance matrices; the branch and prune algorithm [204, 24] has an exponential

computational time; ABBIE [206], EMBED [208] and DGSOL [210] algorithms allow to

obtain only approximate solutions to the MDG problem. Moreover, all these approaches

strongly relies on the mathematical structure of the MDG problem and, for this reason,

they hardly can be adapted to include other sources of information in the optimization

process.

This kind of versatility is generally provided by SOHs since they rely only on the defi-

nition of an objective function that allows the incorporation of additional terms and

the evaluation of their effect on the performance. To the best of our knowledge, the

ESSM is the first attempt to solve the MDG problem by means of SOHs alone. It has

been designed to overcome some of the limitations of the existing approaches and, at

the same time, to provide a versatile optimization scheme that can be easily extended

to allow the use of model evaluation terms.

As discussed in Section 4.5, an assignment x of the optimization variable of the MDG
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problem can be encoded as a matrix of 3D coordinates, representing the positions of

all atoms of protein in the Euclidean space. This representation can be exploited by a

traditional evolution-based methodology such as GAs, whose operators are specifically

designed to work on candidate solutions encoding real values [221]. Even though GAs

might be feasible methodology for MDG problem, swarm intelligence techniques like

PSO are generally more suitable than GAs, since they natively optimize real-valued prob-

lems [103]. Nevertheless, the crossover operator of GAs – which exchanges the genetic

material of two promising individuals to create an improved offspring generation – is

an elegant and powerful means to obtain a recombination of individuals and a better

exploration of the search space. For these reasons, ESSM combines the swarm-based

optimization of PSO with the crossover capabilities of GAs.

6.2 The objective function

As discussed in Section 2.1.5, the definition of an objective function is needed in order

to tackle feasibility problems by means of SOHs. This function is used to quantify the

degree of constraint violations in a candidate assignment associating an optimal value

to feasible assignments. The objective function fεR|ι|×3 ×R|ι|×|ι| →R adopted in ESSM

for the MDG problem, measures the error associated to a structural model in terms of

average constraint violations; it is defined as follows:

fε(x,E) =
|ι|∑

i=1

∑|ι|
j=1 gi j

|ki |
, (6.1)

where

gi j =
{

0 if ei j is not given

|δi j | otherwise,
(6.2)

and ki is the set of indexes of atoms with non-null entry ei j in the distance matrix E ,

|̇| denotes the absolute value, while δi j = ‖xi − x j‖2 − ei j . According to this objective

function, feasible assignments of the MDG problem have a value of zero, while unfea-

sible ones have a positive value that increases proportionally to the degree constraint

violations. The same function has been used in [25] and a closely related is at base of the

DGSOL method [201, 210]. It is important to notice that this objective function applies

only to the special case of the MDG problem with exact distance restraints, discussed

in Section 4.5. This is the only case of the MDG problem considered in this thesis, but

a potential extension of our method to the general case will be discussed in the next

chapter.
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6.3 The algorithm

The ESSM is an hybrid population-based SOH that combines aspects of GAs and PSO;

each individual in the population represents an assignment of the optimization variable,

that, in the case of the MDG problem, is a candidate structure for the target protein. The

ESSM is organized on two layers as shown in figure 6.1. The outer layer (the GA-layer)

manage the exchange of partial assignments between individuals in the population by

means of the crossover operator and propagates promising assignments by means of

selection. The inner layer exploits the self-organizing behavior of swarms (hereby called

the PSO-layer) to modify individuals generating new assignments. The pseudo-code of

the ESSM is shown in Algorithm 1.

Outer layer: genetic algorithm population

Inner layers: atoms self-organization by means of PSO

Figure 6.1: ESSM overview
Schematization of the two-layer hybrid methodology. In the outer layer, a population of
candidate solutions exchange promising substructures exploiting GAs crossover, while
each candidate solution evolves in the inner layer by means of a PSO-like scheme.

6.3.1 GA-layer

The GA-layer of ESSM instantiates Q independent assignments of the optimization

variable, which constitute the population of the GA. The peculiarity of the GA-layer in

ESSM, is that it does not exploit the mutation operator, which is conceptually realized

by the PSO-layer, as described in the next section. Consequently, it performs only

initialization, tournament selection and crossover.

The initialization procedure assigns a position to each atom in each individual. In the

case of the MDG problem, we defined a strategy that allows to tune the dimension of the

search space according to the number Naa of amino-acids in the target protein (which

is known a priori from the sequence). This is possible since the upper bound of the

radius of gyration was identified as N 3/5
aa Å[222]. Starting from this observation, the best

setting for the size of the search space was empirically found to be 4 ·N 3/5
aa Å for each

dimension in the 3D Euclidean space. Consequently, the individuals are initialized by

sampling |ι|−1 random points within a sphere of radius 2 ·N 3/5
aa Å centered at the origin

of the Cartesian axes. The value (0,0,0) is, instead, assigned to vector x1 and kept fixed

during the optimization. For reasons that will be clarified in the next section, this choice

provide an anchor point and reduce the probability to have useless translations of the
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Algorithm 1 ESSM

Require: input: Q, q, IMAX, Iχ, vMAX, α;
1: P0 ← initialize_population(Q);
2: iterations ← 0;
3: while iterations < IMAX do
4: for all p ∈ P0 do
5: p ← execute_PSO− layer(p, Iχ, vMAX,α);
6: end for
7: pBEST ← find_best_individual(P0);
8: P1 ← {0};
9: P1 ← P1

⋃
{pBEST};

10: while |P1| < |P0| do
11: iterations ← iterations+1;
12: pDON ← tournament_selection(P0, q);
13: P1 ← P1

⋃
{pDON};

14: pRAND ← random_uniform_selection(P0);
15: σ← select_substructure(pDON);
16: pOFF ← insert_substructure(σ, pRAND);
17: P1 ← P1

⋃
{pOFF};

18: end while
19: P1 ← adjust_chirality(P1);
20: P0 ← P1;
21: iterations ← iterations+1;
22: end while
23: return find_best_individual(P0)

entire structure, reducing also the computational effort needed to manage boundary

conditions.

Among the existing strategies, in this work we exploit the “tournament selection”, line 13

Algorithm 1, in which a subset of 2 ≤ q ≤Q individuals of population Pop0 is randomly

chosen and the individual having the best fitness is copied into the new population

Pop1.

The crossover operator, defined in ESSM, implements the exchange of substructures

among individuals. A substructure σ = i , . . . ,k, |σ| ≤ |ι|, in our definition, is a set of

indexes of atoms in x, the associated geometry can be specified by the set of coordinates

vectors xσ. It is important to notice that the positions selected to defineσ do not need to

be consecutive rows in x. Moreover, the geometry of the substructure depends only on

relative positioning of vectors in xσ and is invariant under rigid body transformations.

In ESSM, a directional crossover has been applied to preserve good individuals. One of

the parents, the donor, denoted with pDON , is selected through the tournament method

and used to define the geometry xσDON for a given set of indexes σ. The other parent,

the acceptor, denoted with pACC, is selected random and used to define the geometry
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in the remaining part of the structure. The offspring is thus obtained by replacing the

geometry of the acceptor xσACC in the positions specified by σ with the geometry of the

donor xσDON .

The crossover operator has been divided in two steps, corresponding to line 15 and 16

of Algorithm 1.

The first step, coded by the select_substructure procedure, is used to select a promising

substructure from pDON. Denoting with f (xσ,Eσ) the error of xσ with respect to the

subset of distance restraints Eσ relative to atoms in σ, we want that fε(xσ,Eσ) < fε(x,E ).

In order to satisfy this requirement, the following greedy algorithm has been used:

1. create the set σ1 composed of a single coordinates vector xi randomly chosen

from x;

2. extend σt by adding at each iteration the vector xm = argmin
i∈{1,...,|ι|}

max
s∈σt

gi s ;

3. if max
s∈σt

gms exceeds a given threshold ϕmin < fε(x,E), go to step 4, otherwise, go

to step 2.

4. return σt .

The value ϕmin is defined as ϕmin = min{ϕi | i = 1, . . . , N }, where ϕi = 1
N

∑
j 6=i gi j .

The second step, coded by the select_substructure procedure, is aimed to replace xσDON

with xσACC reducing the potentially deleterious impact of crossover between individuals

with different global orientation. This problems arises from the fact that individuals

are independently modified in the PSO-layer. Consequently, two assignments y and

z can be completely different in terms of Cartesian coordinates even in the case of

individuals coding for the same geometry. A simple copy of the substructure coordinates,

from the donor to the acceptor, has a low probability to succeed and often leads to

the creation of artifacts, i.e. the atoms of the exchanged substructure are placed far

away from the receiving structure. For this reason, a rigid body structural alignment

is performed between the exchanged substructures by means of a local optimization

method 1. This guarantees that the quality of the offspring individual depends on how

the geometry of the substructure provided by the donor “fits“ with that of the remaining

part of the structure and not on the relative orientations of the parents. The procedure

select_substructure is based on the minimization of the root mean square distance

1Global optimization methods coupled to local search are called memetic algorithms [223], thus in
the paper describing the algorithm [46] we defined our methodology as a Memetic Hybrid PSO plus
GAs (MemHPG). We believe that that the term, evolutionary springs swarm method, provides a better
understanding of the behavior of the proposed method, and for this reason it has been adopted in this
thesis.
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(RMSD) between the geometry of the compared substructures:

RMSD(xσDON, xσACC) =
√√√√ 1

|σ|
|σ|∑
i=1

‖xσDONi −xσACCi ‖2
2, (6.3)

and it can be summarized as follows:

1. copy xσDON in x̃σ and compute the centroids c̃σ and cσACC, where cσ = 1
|σ|

∑|σ|
i=1 xσi ;

2. apply to each vector in x̃σ a translation TRS(x̃σi ) = x̃σi − c̃σ+cσACC in order to have

c̃ = cσACC

3. select among the six global rotational and translational degrees of freedom the

one associated to the greatest infinitesimal variation in RMSD(x̃σ, xσACC) and the

direction that reduce the RMSD along it; set the step size ηi to a predefined value

ηMAX;

4. move x̃σ with a fixed step size ηi along the selected degree of freedom and

direction;

5. if the RMSD has decreased after step 4, repeat step 4, otherwise go to step 6;

6. if a given time has elapsed, go to step 7, if |ηi | is lower than a threshold λ, go to

step 3, otherwise, go to step 4 and set ηi+1 =−ηi /2;

7. replace xσACC with x̃σ in pACC.

The ESSM stops when a user-defined termination criterion is met, i.e., after a fixed

number of iterations IMAX.

6.3.2 PSO-layer

The PSO-layer is the most peculiar part of the ESSM. It has been designed to manage

the movement of atoms in each individual and it is based on the concepts of inertial

movement and communication between simple agents, resembling in this the PSO

method; the main difference is that in ESSM each particle represents just a portion

of the optimization variable and not a complete assignment as in PSO. In the case of

MDG, in particular, at any given time t , each particle ai is associated to the position

xi (t ) of a single atom in the structure and to a velocity vi (t ). Consequently, each particle

represents a solution for the sub-problem of identifying an optimal spatial positioning

of a single atom relatively to the others. The restraint matrix is used to define a set

of connections between couples of atoms. Connected atoms are pushed toward the

direction that reduce the violation of the associated constraints modifying their velocity,

Figure 6.2 provides two examples of this mechanism, represented in the x-y projection
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plane for the sake of simplicity. We named aggregate attractor, denoted by hi (t) ∈R3,

the direction resulting from the combined effect of all the springs acting on a given

particle ai . The value hi (t ) is calculated as follows:

hi (t ) = ∑
j 6=i

γi j (x j (t )−xi (t )), (6.4)

where

γi j =
0 if ei j is not given

δi j

‖xi (t )−x j (t )‖ otherwise
. (6.5)

In Equation (6.4), γi j is used to weight the attraction/repulsion between couple of

atoms. In our definition, of γi j more weight is given to the short distance constraints.

This assigns a priority to the creation of the local structure leading to better result

with respect to a purely proportional approach. Such a choice can also be justified

by the fact that the precision of NMR measure decreases with the distances between

considered atoms. It is worth noting that the aggregate attractor hi can be seen as a

linear combination of |ki | “global” attractors of the canonical PSO scheme, each one

acting on particle ai with a different social factor equal to δi j . Figure 6.3 provide a visual

representation of the aggregate attractor for an atom with two distance restraints.

a1

a2

NMR distance d12

Attraction strength

a1

a2

NMR distance d12

Repulsion strength

X X

(a) (b)

YY

D12

D12

Figure 6.2: Spring-like behavior of restraints in ESSM
Example of the attraction/repulsion mechanism of our modified PSO. For the sake of
clarity, only the vectors for particle a1 are shown. (a) When the distance between two
atoms (the red arrow between a1 and a2) is larger than the one measured by NMR (pink
arrow), the atoms attract each other (dashed yellow arrow). (b) When the distance
between the two atoms is smaller than the distance measured by NMR, the atoms act as
repulsers.

The new velocity v̂i (t +1) for particle ai , in ESSM, is given by:

v̂i (t +1) = w ·vi (t )+ r◦hi (t ), (6.6)

where r is a vector of random numbers uniformly sampled in [0,1] and w is the inertia of

the particle. The Equation (6.6) resembles the velocity update of a canonical PSO shown

in Equation 2.19, the only difference being that in ESSM there is a single attractor. An
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Figure 6.3: The aggregate attractor
Example of calculation of the aggregate attractor for particle a1, in a 3-atoms system. The
length of the red arrows represents the distance between particles a1 and a2 according
to the candidate solution (dark red) and to NMR data (light red): since the latter is
shorter than the former, a2 acts as an attractor for a1. The length of the green arrows
represents the distance between particles a1 and a3 according to the candidate solution
(dark green) and to NMR data (light green): since the latter is longer than the former, a3

acts as a repulser for a1. The resulting aggregate attractor h1 is represented by the blue
vector. The same process is applied to particles a2 and a3 (not shown here).
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idealized representation of the PSO-layer is that of a stochastic springs system. In this

representation we have that each couple of atoms for which a distance restaints exists

is connected by a spring. The equilibrium length of each spring is given by the value

of the observed distance for the considered couple of atoms. The aggregate attractor

is the resultant of the forces percieved by each atom due to the action of the springs

connected to it. The inertia is used to prevent the creation of a chaotic behavior, while

the randomness r allows particles to escape local optima and break periodic behaviors.

Analogously to PSO, a maximum value vMAX is used in ESSM to clamp particles velocity.

Consequently after each velocity update the putative velocity v̂i (t +1) is adjusted as

follows:

vi (t +1) = v̂i

‖v̂i(t +1)‖2
min(‖v̂i (t +1)‖2, vMAX).

The new position xi (t +1) is finally obtained by adding vi (t +1) to xi (t). During the

last generations of ESSM, the finer positioning of atoms in the candidate structures

requires smaller and more controlled movements with respect to the initial phases. For

this reason, our methodology self-adapts the vMAX(t ) value as follows:

vMAX(t ) =
{
α · vMAX(t −1) if ε∗(t ) > ε∗(t −1)

vMAX(t −1) otherwise,

where

ε∗ = min
i

∑|ι|
j=1 gi j

|ki |
and α ∈ (0,1) is the velocity adaptation factor. The iterative update of velocity vectors,

calculated according to the aggregate attractor, allows the set of atoms to self-organize

in a single optimal position.

During each iteration of the GA-layer the PSO-layer is executed a fixed number of times

Iχ for each individual. It is important to notice that, the velocities are preserved between

subsequent executions of the PSO-layer since they are stored in the individual. The

behavior of the PSO-layer is summarize in Algorithm 2. The ESSM allows communica-

tion of the two layers through the modification of both the positions and the velocities

and this communication is bidirectional. Indeed, after each crossover operation the

velocities for the atoms in the inserted σ are set to zero.

6.4 Chirality

An important aspect that must to be considered in ESSM concerns the chirality of the

target protein. An object in a metric space is said to be chiral if it lacks mirror symmetry

[224]; namely, it cannot be aligned with itself using rotations and translations after
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Algorithm 2 execute_PSO-layer

Require: input: p, Iχ, vMAX, α;
1: iterations ← 0;
2: while iterations < Iχ do
3: for all ai ∈ p do
4: hi ← compute_aggregate_attractor(ai , p);
5: update_velocity(ai ,hi , vMAX);
6: update_position(ai );
7: store_updated_particle(ai , p);
8: end for
9: velocity_adaptation(p, vMAX,α);

10: iterations ← iterations+1;
11: end while
12: return p;

that an odd number of reflections has been performed [225]. Many organic molecules,

including the amino-acids, are chiral. In particular, chirality arises when a carbon atom

is bound to four different chemical groups[226], this carbon atom is called stereo-center.

Each stereo-center can be configured in two different but isometric conformations,

called enantiomers, that can not be exchanged without breaking chemical bonds.

In the case of amino-acids the two different enantiomers are labeled, L and D. If all

the composing amino-acids share the same label, as in the case of natural proteins

where only L-amino-acids are found [5], the resulting protein adopts one of the two

possible isometric conformations. Since the information contained in the distance

matrix is not sufficient to discriminate between a correctly reconstructed molecule

and a molecule with a different chirality, a specific procedure is required to impose the

specific L conformation to each amino-acid. This procedure was applied during each

generation of the GA-layer, line 19 in Algorithm 1. The subset of atoms that can lead

to a wrong reconstruction can be identified a priori by analyzing carbon atoms and

their bound chemical groups. For each candidate solution we identify the substructures

whose chirality is not correct, and we modify them by means of matrix operations

implementing a single reflections with respect to a specific plane.

6.5 Parallelization

One of the most appealing aspect of ESSM is that it can be implemented in a highly

parallel way. Among the available choices, the parallel version was implemented

to leverage Graphic Processing Units (GPUs) horsepower, by using Nvidia’s CUDA

(Compute Unified Device Architecture) [227]. CUDA relies on a single instruction

multiple data (SIMD) paradigm. The CUDA framework is one of the few available for

general purpose GPU (GP/GPU) programming. It offers an API programmable in the
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C/C++ languages that handles the compilation of programs producing binaries for both

CPU and GPU.

In order to exploit the parallel architecture, a program in CUDA must be organized

following a specific hierarchy. At the top level of the hierarchy there is the kernel that

represent the whole program. The kernel is organized in a grid, the grid is divided

in several execution units called blocks. Finally, each block is itself composed of

threads. At the beginning of the execution this logical structure is used to distribute

the program in the available hardware resources. In particular the blocks that compose

the program are distributed in several hardware units, called streaming multiprocessors.

Each streaming multiprocessor is thus responsible for the independent execution of a

given number of blocks and is itself divided in several computing unit called cores. This

organization allows a two-folds parallelization both at the level of the blocks and at the

level of the threads inside each block. The synchronization required to perform SIMD

operations acts at the level of a single block. Nevertheless the number of threads that

can be executed simultaneously in each block is limited by the number of cores in the

streaming multiprocessor. Conditional jumps break this synchronization determining

the serialization of the execution of the blocks, for this reason, in order to achieve good

performance this kind of operation should be avoided whenever possible.

An important aspect that should be taken into account in order to design an efficient

CUDA program is the memory management. In the Nvidia architecture different

memories are available, most notably: the global memory, the local memory, the shared

memory, registers and the constant memory. The global memory has large storage

capacity, high latency and it is accessible from any part of the kernel program. The

local memory is a segment of the global memory that is assigned to a specific thread.

The shared memory is accessible only to threads in the same block, has limited storage

capacity with respect to the local memory but exhibits a lower latency. The registers are

a private memory assigned to each thread with reduced storage capacity and low latency.

The constant memory is a small amount of memory, instantiated at the beginning of

the kernel execution, that behave like a read only memory and has a low latency. A well

designed CUDA kernel should takes advantage of the memory hierarchy of the GPU, by

allocating the most frequently updated data in the shared memory, and the unvarying

data in the constant memory.

In order to have a logical mapping between ESSM’s entities and the CUDA execution

hierarchy, a block is assigned to each GA individual; each thread of the block is respon-

sible for the update of a specific atom of that individual and performs the calculations

of the PSO-layer. Following this execution model, a CUDA kernel was implemented

to perform a single iteration of the PSO-layer, in which all atoms of all individuals

are updated in parallel, reducing the computational complexity for the single protein

update from O(|ι|2) of the sequential algorithm to O(|ι|). A second CUDA kernel is

responsible for the parallel calculation of the objective function, Equation (6.1), which
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is performed by means of a parallel reduction algorithm. This strategy reduces the

computational complexity from O(|ι|) down to O(log2 |ι|). Moreover the shared memory

is used to accumulate the partial results of the reduction algorithm, avoiding the high

latencies due to the global memory. The GA-level has not been parallelized yet, so that

it is currently performed serially on the CPU. The implementation described above

represents an elegant and efficient alternative to a serial counterpart. Nevertheless,

CUDA limits the number of threads in a block to 1024, so that ESSM is currently limited

to proteins characterized by at most 1024 atoms. An improved and block unaligned

version of the algorithm, free from any protein size limitation, is currently under

development.

6.6 Results

In this section we present the results obtained by ESSM for the reconstruction of the

3D structure of different proteins. We first performed several tests to determine the

influence of the values of the parameters on the reconstruction process, to the aim of

finding the best settings of ESSM that were then exploited in all experiments.

6.6.1 Parameterization

These tests consisted in the variation of a single parameter at a time in the optimization

process of an in silico generated 3-peptide molecule with a length of N = 56 atoms.

Each test was repeated 30 times, and the average value of the objective function in the

resulting models was used to evaluate the influence of each parameter. All preliminary

tests, were performed with IMAX = 2000, unless otherwise specified.

As a first test we analyzed the impact of the population size Q, by considering the

following values: 32, 64, 128, 256 individuals. As expected, the average smallest error

achieved decreases as the population size increases (data not shown); however, for

Q > 32, the improvement of the solutions quality is so slight that it does not justify the

larger use of computational resources that it would require. Therefore, the value used in

all consecutive tests was set to Q = 32.

In the second test, we analyzed the impact of different values for the particles initial

maximum velocity vMAX, expressed as a function of the diagonal length of the search

space DMAX. As shown in Figure 6.4, the best results were achieved when vMAX = DMAX/10,

while smaller values and higher values lead to worse results.

The third test consisted in varying the adaptive velocity factor α. In Figure 6.5 we show

the average smallest error obtained with 30 runs of ESSM with several values of factor

α. In this test, where IMAX = 4000, the best results were obtained with α= 0.999, even if

smaller values of this factor allowed a faster convergence.
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Figure 6.4: Effect of the parameter vMAX
Average smallest error computed over 30 runs of ESSM varying the coefficient µ in
vMAX = DMAX/µ. The best results were achieved with µ = 10; note that both high and
small values for the maximum velocity of particles lead to higher values of the average
smallest error.
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Figure 6.5: Effect of the parameter α
Average smallest error computed over 30 runs of ESSM varying the adaptive velocity
factor α. Even though for α equal to 0.9 or 0.99 we obtained a faster convergence, the
value α= 0.999 allowed to achieve the best results.
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A further test concerned the influence of the inertia weight on the particles velocity;

in particular, we varied the w value in the range [0,1] and the best result was achieved

with w = 0.4. Similarly to the case of vMAX, both higher and smaller values of the inertia

weight lead to higher values of the average smallest error (data not shown).

The last three tests aimed at finding the best setting for the tournament size, the

crossover frequency and the maximum length allowed for a substructure involved

in the crossover operation. The best tournament size value was identified around 10%

of the population size Q, this value represent a good compromise between the selection

pressure and the population diversity throughout the generations. The crossover

number of PSO steps for each generation of GA has been set to Iχ = 50. We observed that,

despite the crossover improves the average quality of the candidate solutions, increasing

its application frequency worsen the objective of individuals (data not shown). Finally,

the maximum length allowed for a substructure involved in the crossover operation was

set to si zeMAX = 15% of the total number of atoms in the protein (for higher values better

results can be achieved, but the improvement of the objective is not enough to justify

the larger use of computational resources that it would require).

The results of these preliminary tests led to the following best parameter settings for

ESSM:

• population size Q = 32 individuals;

• initial vMAX = DMAX/10;

• adaptive velocity factor α= 0.999;

• inertia weight w = 0.4;

• tournament size q = 4 individuals;

• crossover interval Iχ = 50 generations;

• si zeMAX = 0.15|ι|;

To test the validity of ESSM settings we first reconstructed the 3-peptide molecule by

using incomplete information. This was realized by removing from matrix d the distance

values di j that are above a given cutoff. As shown in Figure 6.6, the average smallest

error of the structures reconstructed by ESSM is below 10−4Å also in the case of matrix

d where di j < 6Å, for all i , j = 1, . . . , N .

6.6.2 Reconstructing the structure of real proteins

To show the effectiveness of our methodology, in Table 6.1 we present the results

obtained for the reconstruction of the structure of 9 proteins of increasing length –
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Figure 6.6: Results of ESSM for the MDG problem: 3-peptide
Average smallest error of solutions to the 3-peptide molecule obtained in different
optimization processes with incomplete information of inter-atomic distances. Note
that, by exploiting only distances di j < 6Å we still achieved an error lower than 10−4Å
with respect to the original structure.

taken from the PDB database [25, 228, 229] – using only inter-atomic distances di j < 6Å

or di j < 7Å. Each of the structural models obtained has been aligned with the structure

in the pdb file using the software TM-align [230]. In particular, for each protein, the

error fε (defined in Equation (6.1)) and the RMSD associated to the alignment [231]

of the best structures found by ESSM after IMAX = 20000 iterations are reported. These

results highlight the robustness of our method since the fε value is low in all cases

and, in addition, the RMSD is always lower than 3.5Å, a value that is considered to be

indicative of a good reconstruction of proteins’ structure [232].

In Figure 6.7, we show the structural alignment, realized with PyMOL [233], of the pro-

tein structures obtained with ESSM (using inter-atomic distances below the 6Å cutoff)

with the structures available in the PDB database. In the case of proteins 1AX8, 1HOE

and 1CTF we obtained a perfect alignment between the protein structure; however,

concerning protein 1F39, there is a slight discrepancy between the correct structure and

the one obtained with ESSM, probably due to an error in the reconstruction of a small

portion of the protein (as better explained in the caption of Figure 6.7), while the overall

structure is preserved also in the unaligned region.
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Table 6.1: Results of the ESSM: data from real proteins

Results of the reconstruction of proteins’ structure with ESSM using only distances
di j < 6Å or di j < 7Å. † The reported number considers only atoms from the PDB file, in
case of proteins with multiple chains only the atoms in chain A has been considered.

di j < 6Å di j < 7Å
PDB ID N† ε [Å] RMSD [Å] fε [Å] RMSD [Å]
1PTQ 402 0.152 1.23 0.019 0.08
1CTF 487 0.180 1.46 0.037 0.18
1RGD 548 0.149 1.24 0.014 0.04
1HOE 558 0.172 1.63 0.130 1.7
1LFB 641 0.206 2.21 0.254 2.08
1F39 767 0.278 3.25 0.090 0.93
1PHT 814 0.291 2.02 0.123 1.86
1POA 914 0.056 0.99 0.074 1.26
1AX8 1003 0.092 2.27 0.075 1.59

Figure 6.7: Results of ESSM for the MDG problem: real proteins
Examples of the structural alignment between the structures available in the PDB
database (cyan) and protein structures reconstructed by ESSM, using distance matrices
d with di j < 6Å (green). The alignments are correct, even though, in the case of protein
1F39, there is a slight discrepancy between the correct structure and the one obtained
with ESSM, probably due to an error in the reconstruction of a small portion of the
protein connecting two major structural motifs, while the overall structure is preserved
also in the unaligned region. This kind of errors can arise in portions of the proteins
with extended structure, when a very low number of inter-atomic distances are available.
Images obtained with PyMOL [233].
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7 Conclusions and Future Works

In this thesis two hard combinatorial problems connected to computational prediction

and reconstruction of protein structures have been analyzed: the protein structure

prediction problem and the molecular distance geometry problem, in both cases

effective heuristics approaches have been proposed. In the case of the PSP problem

the simplified representation provided by the HP model has been adopted. Two novel

heuristic methods have been proposed for PSP in the HP model both based on the idea

of extending the neighborhood structure of the SA method when a high rejection rate

have been reached. Both the proposed methods rely on the use of a biasing strategy (”the

map”) to search over the extended neighborhood and for this reason the general strategy

has been called local landscape mapping. In the first method, the LLMmem, the biasing

strategy is represented by a memory structure, that stores the desirability associated to

neighbors assignments. In the second, the LLMLS, the biasing strategy is a specialized

local search procedure. Moreover, a new perturbation system for the optimization

in the HP model has been introduced that closely resemble the one applied for the

prediction in off-lattice models. The results obtained in the new framework suggest

that it provides a challenging benchmark, indeed the performance of all the tested

heuristic is reduced using this perturbation system with respect to that achieved using

“canonical“ move sets. Nevertheless, one of the proposed heuristic LLMmem showed to

be particularly suitable for this framework outperforming two well established SOHs

such as SA and ACO in all the benchmark instances taken into account. Although this

results are encouraging the LLMmem method has several relevant limitations:

• it requires the tuning of a high number of free parameters;

• the selection of neighbors assignment can be computationally expensive;

• the biasing strategy based on pheromone is not able to collect information if the

neighborhood has a flat energy landscape.
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Moreover, results obtained in the 3DC lattice with move sets suggest that the perfor-

mance improvement over SA vanishes when the memory structure is associated to a

volatile neighborhood structure such as the one defined by move sets. The development

of a different pheromone structure to better map pull moves-induced neighborhood

will be the subject of future works along with the testing of the LLMmem efficacy in off-

lattice fragment assembly. The LLMLS has been designed to overcome the limitations

described above and to verify the general utility of the LLM strategy. Therefore, the

results obtained with this method on several benchmark instances both in 3DC and FCC

lattices have been compared with those achieved by several state of the art methods.

LLMLS resulted the best performing method in most of the comparisons. Moreover,

to the best of our knowledge, LLMLS is the only method that has been successfully

applied to both 3DC and FCC instances. In their complex, results presented in this

thesis support the idea of combining a biased large neighborhood search and simulated

annealing. The use of a variable objective function in the local search step seems the

most promising implementation of the this strategy.

In the case of the Molecular Distance Geometry problem, only the case of incomplete

information about exact inter-atomic distances has been taken in to account. Our

methodology, called evolutionary spring swarm method, is a memetic algorithm that

combines swarm intelligence and evolutionary computation along with a local search

aimed at improving the effectiveness of the crossover operator. ESSM works at two

different levels: the PSO-layer is used to move particles in the 3D space, where each

particle encodes the coordinates of an atom of the protein structure to be reconstructed;

the GA-layer is exploited to select individuals, and to recombine them by means of a

crossover operator that exchanges substructures between individuals. The crossover

– aided by a local search method used to identify the best roto-translation of the

exchanged substructure – is followed by a chirality correction, in which the correct

orientation of amino-acids is verified and adjusted.

The ESSM, was tested on a set of proteins having a number of atoms ranging from 402

to 1003; in all cases we obtained a correct 3D structure, as confirmed by the values of

RMSD (see Table 6.1). Indeed, the results indicate that the accuracy achieved by ESSM

is comparable to the accuracy achieved by state-of-the-art methods [23, 26]. Although

several improvements, discussed below, can be applied to ESSM, the results obtained

are remarkable, since they confirm that ESSM successfully extended the domain of

application of SOHs to the previously unexplored MDG problem. Moreover, two

additional qualities of our method reside in its intrinsic stochasticity and extensibility:

on the one hand, the various reconstructed structures (with low error values) that can

be obtained in each run of the ESSM are useful to represent the structural variability

observed in biological molecules, which is a source of noise in NMR data; on the other

hand, the ESSM can be easily improved by including a molecular force field in the

scoring function during the final stages of the optimization process, in order to select

structural models that are more realistic from a physical point of view. The extension of
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ESSM to the general MDG problem with noisy distance restraints will be the subject of

future works. An efficient non-sequential implementation of our crossover mechanism

is far from trivial and currently under investigation.
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A Appendix A

A.1 Benchmark HP sequences used in this thesis

Table A.1: Harvard instances

ID Length (H) Emin Sequence

H1 48(24) -32 HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPPHHPPPHPPPPPPPPHH

H2 48(24) -34 HHHHPHHPHHHHHPPHPPHHPPHPPPPPPHPPHPPPHPPHHPPHHHPH

H3 48(24) -34 PHPHHPHHHHHHPPHPHPPHPHHPHPHPPPHPPHHPPHHPPHPHPPHP

H4 48(24) -33 PHPHHPPHPHHHPPHHPHHPPPHHHHHPPHPHHPHPHPPPPHPPHPHP

H5 48(24) -32 PPHPPPHPHHHHPPHHHHPHHPHHHPPHPHPHPPHPPPPPPHHPHHPH

H6 48(24) -32 HHHPPPHHPHPHHPHHPHHPHPPPPPPPHPHPPHPPPHPPHHHHHHPH

H7 48(24) -32 PHPPPPHPHHHPHPHHHHPHHPHHPPPHPHPPPHHHPPHHPPHHPPPH

H8 48(24) -31 PHHPHHHPHHHHPPHHHPPPPPPHPHHPPHHPHPPPHHPHPHPHHPPP

H9 48(24) -34 PHPHPPPPHPHPHPPHPHHHHHHPPHHHPHPPHPHHPPHPHHHPPPPH

H10 48(24) -33 PHHPPPPPPHHPPPHHHPHPPHPHHPPHPPHPPHHPPHHHHHHHPPHH
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Table A.2: Instances from real proteins

ID Length (H) Emin Sequence

3CYT 103(37) -58 PPHHPPPPPHHPPHHPHPPHPPPPPPPHPPPHHPHHPPPPPPHPPHPHP

PHPPPPPHHHPPPPHHPHHPPPPPHHPPPPHHHHPHPPPPPPPPHHHH

HPPHPP

7RSA 124(47) -75 PPPHHHPHPPPPHPPPPPHHPPPPHHPPHHPPPPHPPPPHPPHPPHHPP

PHHPHPHHHPPPPHHHPPPPPPHHPPHPPHPHPPHPPPPPPPHPPHHH

PPPPHPPPHHHHHPPPPHHPHPHPHPH

2SNS 136(50) -83 HPPPPPHPPPPHPHHPHHPPPPHPHHHPPPPHPHPHHHHPPPPPPPPP

PPHPPHPPPHPHHPPPHHPPHPPHPHPHPPPPPPPPHPPPHHHHHHPP

PHHPPHHHPPPHHPHHHHHPPPPPPPPPHPPPPHPHPPPP

Table A.3: F90 instances

ID Length (H) Emin Sequence

F90_1 90(50) -168 PPHHHPPPHHPPPPHHPHHHHHHPHPHPHHPHHHHHPHHHPHPHHHHPH

HPPPPHHHPHPHPPHHHPHHPHPHPPHHHPPPPHHPPHPPP

F90_2 90(50) -168 PHHPPHPHHPHHHPHHHPPHHHHHHPPHPHPPPPHHHPHPPHHHHPHHH

HPHHHPHHPPPPPHHPPPPHPHPHPHPHHPPHHHPPPHHHP

F90_3 90(50) -167 HPHPHHHPHHHHPHHHPPPHPPPHPPPPHHHPPHPPPPHHHPPPPPPPP

HPHHPHHHHPHHHPHPHHPPHHHHHPHHPPHHPHHHHHHPH

F90_4 90(50) -168 PHHHPPHPPHPHPPPPHPPPHPHPPHPHHPHPPPHHHPHHHPPHHHPPH

PPPPHPHHHPPHHPPHHHPPHHHHHHPHHHHHHHPHHHHPH

F90_5 90(50) -167 PPPHPHHHHHHHPPPHPPHHHHHPHHPPHHPPHHHHPHPHPHHPPHHPP

PPHPPPHHHPHPHHHHHHHPHHPHPPHHPPPHHHPHPPHPP
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A.1. Benchmark HP sequences used in this thesis

Table A.4: S instances

ID Length (H) Emin Sequence

S1 135 (100) -357 HHHHPHHHHHHPPHHPHHHHHHHHPHHPHHHHHHHHHHPPHHPPPPPHH

PHHHHHHHHPHPPHHPPPHHHHHHHHPHHHHHHPPHHHHHHHPHPPHHH

HHHHHHPPHHPPPHHHHHHHPHHPHHHHHHHPPHHHH

S2 151 (100) -360 HHPPHPHHHHHHHHHHPHPPPPHHHPPPHHHHHPPHHHHHPPHHHHPPHH

HHPPHHHHHHPHHHHPPPHHPPPHHHHHHHHPHPPHHHPPPHHHHHPPH

HHHHHHPPPHHPPHHHHHPPPHHHHHHHHHPHPPHHHHHHHPPPHHHPP

HHP

S3 162 (100) -367 HHHPPPHHPHHPPPPPHHHHHHHHPHPPHHPHHPHHHHHPPPHHHHHHHH

HPPHPHPPHPHPPHHHPHPPHPHPPPHHHHHHPHHHHPPPHHHPPPPHHP

PPHHHPPHHHHPHHHHHPPHHHHHHPPPHHHHHHPPPHPPHHHHPHHHHH

HHPPHHPPHHH

S4 164 (100) -370 HHPPHPHHHHHHHPPHPHPPHPHPPPPHHHPPPHHPHPHHPPHHHHHPPH

HHHPPHHHHPPHHHHHHPHHHHPPPHHPPPHHHHHHHHPHPPHHHPPPHH

HHHPPHHHHHHPHPPPHHPPHHHPHHPPPHPHHHHHHHPHPPHPPHHHHH

HPHPPPHHHPPHHP

Table A.5: F180 instances

ID Length (H) Emin Sequence

F180_1 180(100) -378 HHPPHHHHHPHHHPPPHHHPPHHHPHPPHHHHHPPPHHHPPPHPHH

PPPPPHHPPHHPHHPHPHHPPPPPHHHPPPPHPHHHPPHPPPHHHP

HHHHPPHHPHPHHHHPHHHHPPHHPHHPHHPHHHPHPPHPHHPHPH

HPHHHPHHPPHPPPHPPPPPPPHHHPHHHHHPHHHHHPPHPP

F180_2 180(100) -381 PHHPHPPPHPPHHPHHHPHPHHPHHHPHHHPPPHHPPHPHPHHPHH

HHPPHHPHPHHHHHPHHPPPPHPHPHPPHHHHPHHHHPHHHHHPPH

PHHHPPPHPHPPHHPPPHHPHPHPPPPPHPHHPHHHPHPPPPHHPH

HHHHPPPHHHHHHHHPHHPPPPPHPPPHPPHPPPHHPHHHHH

F180_3 180(100) -378 HHHPHPPHHPPPHPPPHPHPHPPHHHHPPHHHHHHPHPHHPPPPPH

PPHHPHHHHHHHHHHHPPHPPHPPHHHHHHHHPPPPHPPHHHHHPP

HHHPPHHPPHHHHHPPPHHHHHHPHHHPPPHHPPHPPPHPPHPPPH

PPPPHHHPPHHPHPPHHHPHHPPHHPHHPHPHPHPHPHPHHP
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Table A.6: R instances

ID Length (H) Emin Sequence

R1 200(100) -384 PPPHPHHPHHPPPHPHPPPPHPHHPPHPHHHHHPPHHPPHHHHHHPPHPP

HHPPHPHPHHHHHPHHPHHHPPPHHHPHHPPHPHPPHPPPHPPHPPHPPH

HHPHHHPHPPHPHHPHHHHPHPHHHPHHHPPPPPPHHHHHHPPPPPPPPHH

HPPHPHPPPHPHPHPHHPPHHPPPPHHHHHHPPPHHPPPPPHPPPHHPP

R2 200(100) -383 HPHHPPHPPPPPHHPHPHPHHPPHPPPPHHHHHHPPPHPPHHHPPHPPPP

HHPPHHHPHPHHHPPHPHHPPHPHHPPPPHHPPHPPHHHHPPPPPHHHPP

PPHPPPPPPHPPHHPHHHHPHHHHHHHHPPHHPPPHPHHHPHHHHHPHHP

HHHPHPHHPPPPHPHHPHHHPHPPPPHPPPPPPHPHHHHHPHHPPPHPPH

R3 200(100) -385 HPHHHPHHPHPHPPPHHHHHPHPHPHHHHPPPHHPPPPPPHHPPPPHPHH

HPPPPHPPPHHPHHPPPHPPHPPPHHHHPHHPHPPPPHHPPPHHPPHPPP

HPPHHHPHHHPHPPHPHHHHPPHHPPPPHHHPHHPPHPPHHHHPPHPHPP

HPHPPPPPHPHPHHHHHHHPHPHHHHHHPHHPPPPHPPPPHPPPHHHPHH
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