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Abstract

In this work we introduce the problem of forecast combination using perfor-
mance and distance measures for binary outcome. The thesis is focused on
model averaging for parametric and non parametric approaches, with a special
attention on temporal dependent and independent models. In terms of results,
we combine single models using performance measures and we investigate how
distance measure based on the Mahalanobis distance can lead to interesting
results for model combination.
In order to assess the stability and the predictive capability of the models
at hand, we employ different cross-validation techniques: Bootstrap cross-
validation, 10-fold cross validation and Leave One Out cross-validation. Em-
pirical evidence are give on a real application to predict default probabilities
of Small and Medium Enterprises
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Introduction

Literature on combining forecasts is very our extensive, the common thread of
most of the work is that through the combination of models is improved the
accuracy of predictions. In addition, a review of the literature shows that the
simplest methods of combination provide better results than more complex. In
fact, in many cases it was possible to improve the performance of the models
through the simple medium of forecasts obtained by single models.
The early work on the combinations of predictions are due to Reid (1968) and
Bates and Granger (1969) and are considered seminal works. From one point
of view this is correct because they were the first authors to develop an ana-
lytical model to combine optimally two or more predictions and to apply their
models to real-world problems. Stigler (1973) describes a work of Laplace in
which considers the combination of estimates of regression coefficients. Laplace
studied the properties of two estimators, one being least squares and the other
a kind of order statistic, and building on their joint distribution is able to
obtain a formula for the combination and concluded that not being aware of
the distribution of errors the combination could not be done. After Laplace,
the first work that we find in the literature is to Edgerton and Kolbe (1936) in
which the authors reach a combined estimate optimal minimizing the sum of
squares of the differences of standard scores for the estimates. Subsequently,
Horst (1938) determines the maximization of the separation in pairs between
the sampling points. Halperin (1961) has developed to minimize the mean
square error and Geisser (1965) presented a paper with the Bayesian equiv-
alent of previous work Halperin through the posterior distributions. This is
the true birth of the forecast combination; starting, then, since the Seventies
literature has boomed following the work of Bates and Granger (1969).
This topic has experienced intense development in the field of econometrics
and the combination of probability and probability distributions. A new twist
to the studies was given with a series of works of the mid seventies in which
it is taken into account the relative performance of the methods of combi-
nation. We refer in particular to the work of Newbold and Granger (1974)
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and Makridakis et al. (1982, 1983). In particular, the work of Newbold and
Granger (1974) shows how you should ignore the correlation when estimat-
ing the weights of combination by obtaining as a result that the weights that
consider the correlation have poor performance. One of the most important ar-
ticles in the literature combinations of forecasts is to Granger and Ramanathan
(1984) that puts those techniques in the context of regression models where the
variable of interest is the observed response variable and covariates are given
by the prediction obtained by the single models. Further important aspect
of this work is that instead consider constraints on weights claim to apply a
regression without constraints to get a better fit and therefore better forecasts.
Instead, the road Bayesian approach of the problem was opened by the work
of Clemen and Winkler (1986) and Diebold and Pauly (1987).
Concerning applications in the course of the years the problem of the combi-
nations of forecast was extended to the most disparate fields. Sanders (1963)
dealt with the possibility to determine models in average meteorological field.
A very important extension concerned the economic world through inflation,
to exchange rates, to stock prices, social and technological fields and applica-
tions to football, tourism, insurance and many other sectors.
This is, in short, the historical path of the theme on the combination of fore-
casts oer further reading, see the work of Clemen (1989) where report a more
detailed review of the early lettarutura on this issue and an annotate leterature.

We will make a presentation of the models that we have chosen to use for
the problem that we have set, ie the estimated probability of default. It is
models belonging to the class of pattern classifier for the problem of the clas-
sification of statistical units. As we shall see we chose two classes of models:
classical models, Logistic Regression and Classification Tree, and models of
survival analysis, of Cox proportional hazards regression model and Random
Survival Forest.
We will clarify what it means to combine forecasts of the same response vari-
able obtained through different models. We will see what are the methods
most commonly used in the literature for the calculation of the weights of
combination and what are the desirable characteristics for a good combination
method.
We describe the context in which we have worked and the combination method
we have developed to obtained a average model. The innovation, based on our
knowledge, that will be highlighted is the particular use we have made of the
performance measures most commonly used to evaluate the models. Our con-
tribution in the field of model combination is the introduction of performance

xviii



LIST OF TABLES

measures as weights of forecasts obtained by individual models and not used
as measures for evaluate the performance of a model. In addition, we observed
the inconsistency of the performance measures, in particular the Area Under
Curve, highlighting in the work of Hand (2009), we studied the introduction of
distance measures such as combination weights, specifically we used the Ma-
halanobis distance but you can use other distance measures. The selection of
these measures as a combination of weights will be justified in following the
work.
Finally, we show the application of the combination method developed to a
real dataset of small German SMEs and on different datasets in which we sim-
ulate the target varaibile of our interest and we present an application to churn
analysis.

xix





Chapter 1

A look at the models

1.1 Time-dependent and time-independent models with
relative performance measures

In this chapter will be presented two main categories of models: time-dependent
and time-independent. With regard to the first category of models, we focus
our attention on the model of Cox proportional hazards model and Random
Survival Forest. With regard to the time-independent model,we will discuss
the Logistic Regression and Classification Trees.
We describe, also, the performance measures chosen to assess the model in
terms of discriminatory power and predicted capability.

1.2 Time-dependent models: Cox proportional haz-
ard model and Random Survival Forest

This section aims to present the survival analysis approach as we have chosen
for the problem at hand.
Survival analysis studies the time required for an event of interest occurs. The
most common use of this approach is medical analysis, which takes its name
and in general the terminology but in recent years the scope has expanded
greatly, sociology, demography, economics and so on. It is statistical methods
that analyze the distribution of the time of occurrence of an event. In other
words, the survival analysis allows to estimate the probability that an event
will occur at a given instant in time. The following are the main differences
with classical analysis:

• the data are made from a cohort of subjects;

1



A look at the models

• may be present in the sample subjects with unknown survival time, cen-
sored subjects;

• time takes a particular importance, the analysis is conducted on the
interval of time between the entry of the subject in the study and the
end of the study.

Elements that characterize the survival analysis are:

1. an event of interest, typically the death of a patient, but can be any other
event such as the default of an enterprise;

2. survival time, time between the input in the study and the occurrence of
the event of interest;

3. covariates, given by features of the subjects that make up the sample.

For one thing, in this context, one determines the survival time according to
the difference between the instant at which the event occurs and the time of
study entry. Individuals may become part of the study at different points in
time and some of them may have a survival time unknown, so-called censored
subjects. For the latter we only know that they have a longer or equal survival
time than to the end time of the study but not another. They are, basically,
those who have not experienced the event during the study period or subjects
that emerge from the study for reasons other than the realization of the events.
In particular, this subject are defined right-censored.
In this chapter we do a brief description of survival analysis to introduce the fol-
lowing models to estimate the survival function, we refer to section 3.2 for more
exaustive description. Survival times are not normally distributed and it is pos-
sible to estimate the distribution with parametric methods, semi-parametric
and non-parametric. Let T a random variable that represents the survival
time with distribution function P (t) = P (T ≤ t) and the probability density
function p(t) = dP (t)

dt . The survival function S(t) is the complement of the
cumulative distribution function P (t):

S(t) = P (T > t) = 1− P (t). (1)

Equation (1) represents the probability that the random variable T is greater
than a certain time t.
Another element of the analysis of survival is the hazard function that evaluates
the immediate risk of the event occurs at time t conditional on survival to that

2
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Survival Forest

time (see Kleinbaum and Klein, 2005):

λ(t) = lim
∆t→0

P [(t ≤ T < t+ ∆t)|T ≥ t]
∆(t)

,

where ∆(t) is a small time interval.
The difference between S(t) and λ(t) is that the first is not the failure and λ(t)

refers to the failure. This two functions are linked by a very strong relationship:
just to know the shape of one of the two to be able to derive the shape of the
other. Specifically, we have:

S(t) = exp

(∫ t

0
λ(u)du

)
,

λ(t) = −
[
dS(t)
dt

S(t)

]
.

As anticipated, for the estimation of the survival function S(t) is possible to
use models of different nature:

• parametric models which require specific assumptions about the distri-
bution of the survival function ;

• semi-parametric models, where are not necessary to make assumptions
about the survival function and risk function.

• non-parametric models, which do not need to make any assumptions
about the structure of the model.

In literature, the model most widely used to estimate the probability of survival
is the Cox proportional hazards model (Cox, 1972). One of the main features
of this model is that it splits the risk function into two components:

• the baseline function (λ0(t)), which depends only on the time;

• the sum of a linear combination of the covariates in the model (
∑

i βixi),
which guarantees that risk estimates are non-negative.

The Cox model is defined as proportional hazards because is made the assump-
tion that the risk ratio is constant with respect to time or, equivalently, that
the risk of a subject is proportional to the risk of any other subject. In fact,
the Hazard Ratio:

HR =
λ(t, x∗)

λ(t, x)
=
λ0(t)exp (

∑
i βix

∗
i )

λ0(t)exp (
∑

i βixi)

3
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does not depend on time (see Kleinbaum and Klein, 2005). Then the Cox
proportional hazards defined as follows:

λ(t, x) = λ0(t)exp(x′β), (1.1)

tells us that the relationship between the relative risks of two different subjects
is constant over time:

λ0(t, x∗)

λ0(t, x)
=
exp(x∗′β)

exp(x′β)
.

The (2) in terms of the survival function becomes:

S(t, x) = [S0(t)]exp(x
′β) .

If we consider the cumulative hazard H, i.e. the risk of the potential instanta-
neous occurrence of the event at time t, we can rewrite S(t, x) as follows:

S(t, x) = exp
[
−exp(x′β)H0(t)

]
= [S0(t)]exp(x

′β) .

It was pointed out that the model in question assumes the proportionality of
risk so you should verify compliance with this assumption (see Kleinbaum and
Klein, 2005). For this purpose, is possible to use three different approaches:

1. Graphical analysis, is realized graph of the logarithm of H(t, x) for each
layer of the observed variable. If the curves are parallel then it is possible
to say that the assumption of proportionality is respected.

2. Test of goodness of fit, there are several tests to verify the proportionality
of risks. For example, you can use the test based on the Schoenfeld resid-
uals (see Schoenfeld, 1982). The assumption is that if the proportionality
is observed for a given independent variable the Schoenfeld residuals are
not related with the survival time, i.e. the Schoenfeld residuals are un-
correlated in time.

3. To introduce a time dependent variable to assess the significance of the
coefficient of the product between the observed variable and a function
of time.

The second type of time-dependent method we have chosen to study is the
Random Survival Forest which will be presented below.
The Random Forest Survival (RFS) (see Ishwaran et al., 2008) is an extension
of the method, called Random Forest (RF), introduced by Breiman (2001) for
right-censored data. The RSF is closely related to the method of Brieman.

4
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Survival Forest

According to Breiman all aspects of the growth of an RF must consider the
outcome. In the right-censored data this includes the survival time and the
state of censorship. Therefore, the splitting criterion used for the growth of
the tree, in RSF, must include the survival time and the information of cen-
sorship. As we will see below, with the RSF creates a forest made ââup of
random survival trees. Through Bootstrap independent samples, each tree is
determined by randomly selecting a subset of covariates at each node and then
the node is divided on the basis of a survival criterion.
Breiman has shown that the ensemble process of learning can be improved
by introducing randomness in the basic learning. The randomness is intro-
duced both through the determination of samples Bootstrap, which produce
the growth of the tree, and by the fact that at each intermediate node of the
tree is a randomly chosen a subset of covariates that represent the variables
on which the split will occur.
The extension of the RF to survival right-censored data has allowed to over-
come the limitations of the methods used previously. In particular, by having
recourse to the RSF is no longer necessary to consider the hypothesis of pro-
portionality of risks on which is based, for example, the Cox model. The RSF
allows us to identify data structures through the analysis of the features of the
sample observed. In addition, the RSF is a non-parametric method and this
allows us to capture any non-linear effects of the independent variables; with
parametric methods, however, such effects should be treated with transforma-
tions of various kinds or with the appropriate methods.
The RFS algorithm works as follows (see Ishwaran et al., 2008):

1. B bootstrap samples are drawn from the dataset. Bootstrap samples
are independent and exclude about 40 % of the data that constitute the
Out-Of-Bag (OOB) data.

2. It creates a survival tree for each Bootstrap sample. Starting from the
root, each node of the tree the algorithm identifies candidate variables
for the subdivision, the selected variables will be those that maximize
the difference in survival between the nodes.

3. The algorithm proceeds iteratively until the tree reaches its maximum
size on the basis of the constraint that the terminal nodes must have no
less than d0 > 0 unique deaths.

4. It calculates the Cumulative Hazard Function. It calculates the average
of the Cumulative Hazard Function (CHF ) of all the trees to get the

5



A look at the models

ensemble CHF .

5. Calculating the prediction error for ensemble CHF on the OOB data.

The RSF algorithm is very similar to the CART algorithm which will be
described in the section 1.2. The survival trees starting from the root, the
highest node of the tree, determines a split of each node into two child nodes on
the basis of a given survival criterion. It is necessary to evaluate the goodness
of the split. A split is considered good if it is maximized the difference in
survival between the child nodes. Just as in the algorithm CART , is evaluated
the impurity of the nodes of the tree. It measures the effectiveness of the
split in the separation of the data; this means, in this context, to measure
the separation of the difference in survival. In essence, the algorithm selects
from all covariates X and all the values of subdivision c, the variable X∗ and
the value c∗ that maximize the difference of survival and what makes that are
isolated dissimilar cases and, therefore, create sets internally homogeneous in
terms of survival. The algorithm stops when no new node can be formed as it
was satisfied the criterion that requires that each node contains at least d0 > 0

unique deaths.
With the RSF we want to estimate the CHF. To this end, the estimator Nelson-
Aalen is used:

Ĥh(t) =
∑

tl,h≤t

dl,h
Yl,h

,

where dl,h is the number of deaths at time tl,h and Yl,h is the number of people
at risk at time tl,h.
Let H(t|xi) be the CHF for subject i at time t given a set of covariates X.
Because of the binary nature of the tree, xi belong to a single terminal node.
The CHF for all subjects, and then for tree survival, is:

H(t|xi) = Ĥh(t). (1.2)

The identity (1.2) relates to a single tree. To obtain the ensemble CHF need
to calculate the average obtained on B survival trees. It is possible to obtain
both a Bootstrap and OOB estimate. The Bootstrap ensemble CHF is:

H∗l (t|xi) =
1

B

B∑

b=1

Hb(t|xi).

In this case, to obtain the estimates of CHF are used all the trees of survival
and not only those on the OOB data. In the second case, on the other hand,
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1.3 Time-independent models: Logistic regression and Classification trees

we have:

H∗∗l (t|xi) =

∑B
b=1 Ii,bH

∗
b (t|xi)∑B

b=1 Ii,b
,

where Ii,b is the indicator function that takes value one if the observation is
OOB (Ii,b = 1) and zero otherwise (Ii,b = 0). H∗∗l is the average over Boot-
strap samples in which the observations are OOB.

1.3 Time-independent models: Logistic regression and
Classification trees

In this section we rewiev classical models for dichotomous dependent variable:
Logistic Regression and Classification Tree.
First talk about the Logistic Regression model that belongs to a more general
class of linear models, called Generalized Linear Models (GLM).
A generalized linear model relates a function of the expected value of the depen-
dent variable, unpredictable nature, with the independent variables through a
linear equation. In this type of models we can distinguish three components:

1. random component (ie the response variable Y ). Is given by a set of
random variables (Yi), assumed independent, each with distribution that
depends on a single parameter (θi) and that belongs to the exponential
family.

2. systematic component, which describes what are the explanatory vari-
ables and their role in the model through the following linear combina-
tion:

∑k
i=1 βixi = β1x1 + ... + βkxk, where xi are the covariates and βi

are the parameter that define the effect of a single independent variable
on the dependent variable and are, typically, not know.

3. link function, describes the link between random and systematic compo-
nents. This function allows that the explanatory variables (xi) affect the
expected value of the response variable (y) in the manner described by
the function

∑k
i=1 βixi, not necessarily linear.

Let’s see, now, specifically the Logistic Regression (LR) model. This model is
particularly suitable for predicting the values of a binary dependent variable,
based on the independent variables that can be of any nature, qualitative or
quantitative. We consider binary a variable that takes on only two characters,
for example win or not win, which in general define success and failure:
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Y =





1, if outcome is success

0, otherwise

then Y can be defined variable Bernoulli with probability of success P (Y =

1) = π and probability of failure P (Y = 0) = 1 − π. For more details on the
logistic regression see e.g. Dobson and Barnet, 2000.

Concerning single models a competitive model is the classification tree (CART).
It is possible to distinguish between decision trees and classification (regres-
sion) trees according to the response variable is quantitative or qualitative.
Speaking specifically of classification (regression) trees , we can say that it is a
hierarchical method that produces a partition of the observations on the basis
of the relationship between the dependent variable and the independent vari-
ables. On the basis of a dependent variable is found a valid partition and the
algorithm iteratively chooses the classification determined by the explanatory
variables that are closest to the classification made by the response variable.
Each statistical unit along the shaft from the highest node, called the root, to
the terminal node, which takes the name of the leaf, undergoing a classification
to each intermediate node on the basis of the independent variables, generat-
ing a subdivision of the same branch. Essentially, produces a partition of the
observations into groups corresponding to the leaves of the tree. Each unit is
classified according to how the independent variable associated with the leaf
reaches the end of the classification procedure. In general the classification
algorithms seek, starting from the root of the tree, the independent variable
that determines the best subdivision of the observations so that the child nodes
of the root are more homogeneous with respect to the response variable.
There are various algorithms for the construction of classification trees that
differ, mainly, for the splitting criterion and stop adopted. The most common
algorithms are:

• Chi-square Automatic Interaction Detection (CHAID) (see Kass,1980),

• Classification and Regression Tree (CART) (see Breiman, 1984).

1.4 Performance measures

In this section we will present the measures employed to analyze and evalu-
ate the performance of the models studied and presented in sections 1.1 and
1.2. The performance measures must meet certain criteria and it is these that
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have directed our choice. First, we need measures that were able to deal the
problem of binary classification in accordance with the criterion of consistency
which provides a measure for the evaluation of a model must capture the look
of the performance of interest (see Hand, 2009). Specifically, we are interested
in measures that are related to each other and which are combinations of rate
of False Positives (FP ) and False Negative (FN) with the aim of reducing
both. We selected measures that are associated with the ROC curve, which
is described later in this section. These measures are based on a comparison
between the classification of units predicted by the classifier and their classifi-
cation observed. As anticipated, the objective is to reduce classification errors
and thus the FP and FN . To understand what it is we introduce what is
called a confusion matrix:

1 0
1 TP FN
0 FP TN

Table 1.1: Confusion Matrix

so the FP are units predicted as 1 but observed as 0 FN are the units predicted
as 0 but observed like 1; while the True Positive (TP ) are the observations
predicted and observed how 1 and True Negative (TN) are the observation
predicted and observed as 0.
A grafical instrument is the Receiver Operating Characteristic curve (ROC
curve) (see Satchell and Xia, 2006). Suppose we want to know the rating
scores that tell us which debtors of a bank will survive the next year and what
debtors, however, will go into default. The person who must make that deci-
sion you can use a threshold value t and on the basis of this classify debtors.
If the debtors have a credit rating score lower than t will be classified as a
potential defaulter while those with a rating score higher than t will be clas-
sified as those potentially not in default. This leads to four possible outcomes
of the decision-making process, and then of classification, summarized in the
previous Confusion Matrix (see Table 1):

1. if the rating score is lower than t and debtors are effectively in the default
decision is correct (TP );

2. if the rating score is lower than t and debtors are not in the default
decision is wrong, subject not in default classified as in default (FP );

3. if the rating score is higher than t and their debtors they are not really
in the default decision, and then the classification, is correct (TN);
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4. if, finally, the rating score is higher than t and debtors in fact result in
the default decision is wrong, subjects who are in default classified as
non in default (TN).

On the basis of the above, it is possible to define the following quantity
named id Hit Ratio (HR) or False Positive Ratio (FPR) or, even, Sensitivity:

HR =
H(t)

ND
,

where H(t) is the number of subjects in default correctly predicted in corre-
spondence of a cut-off equal to t, and ND is the total number of subjects in
default present in the sample. In essence, HR is the proportion of correctly
classified defaulter given the cut-off t. Furthermore, we define False Alarm
Rate (FAR) or False Positive Rate (FPR), or, even, 1-Specificity the follow-
ing quantity:

FAR(t) =
F (t)

NND
,

where F (t) is the number of non-defaulters misclassified as defaulters in corre-
spondence of a cut-off equal to t and NND is the total number of non-defaulters
present in the sample studied.
Now we have all elements to define the ROC curve. For all possible values of
t in the range of the rating score can be calculated HR and FAR. The ROC
curve is nothing but the graph between HR and FAR, such a curve is one
of the most most widely used graphics tools in the literature to evaluate the
ability of classification of statistical units of a model.
Measures that will be defined below are aggregate measures defined as a func-
tion of the values of the ROC curve and they are: Area Under the ROC curve
(AUC or AUROC), H-measure, Kolmogorov-Smirnov statistic, Area Under
Convex Hull of the ROC curve (AUCH), Gini coefficient, Minimum Error
Rate (MER), Minimun Cost-Weighted Error Rate (MWL), Specificity when
Sensitivity is held fixed at 95%, Sensitivity when Specificity is held fixed at
95%.
AUC is the measure most commonly used to evaluate the performance of a
classification model and is given by the following amounts:

AUC =

∫ 1

0
HR(FAR)d(FAR).

AUC = 0.5 if the model has no discriminative power, which corresponds to
a decision in a completely random. AUC = 1 if the model has perfect dis-
criminative power; for values ââbetween 0.5 and 1, we can assume that the
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analyzed model has an acceptable discriminative power, which of course will
be much better as the AUC value will be close to 1. For more details see
Satchell and Xia, 2006. Over the years several authors have highlighted pos-
itive and negative aspects of such a measure. An element that makes it very
attractive AUC is the fact that it is not necessary to specify a threshold value
t for classification. Then, from the classification rule originates a single value,
which makes the AUC a simple measure that allows to easily compare the
classification rules. Is an objective measure because does not necessary, for
its determination, choose the parameter values and this means that different
subjects can achieve the same results on the same data. On the other hand,
the AUC also presents points of weakness. First, if we compare, for example,
two ROC curve that cross is possible that the AUC of a curve result grater
than the AUC relative to the other curve, but in reality it is the latter to
describe the better performance. Secondly, the AUC corresponds to the av-
erage misclassification loss over a cost ratio distribution that depends on the
score distributions and this implies that the AUC evaluates a classifier using a
measure which depends on the same classifier. In other words, the AUC asses
different classifier using different parameters. This aspect of AUC is defined
inconsistency of this measure, and this leads us to consider more objective
measures for evaluating the performance of a classification model.
AUC implicitly makes use of a weight distributionW (c). Fixing a distribution
W (c) that captures the uncertainty for the end user on the exact values of the
costs we can define:

LW =

∫

c
L(c;Tc)W (c)dc,

which takes name of averaged minimum cost-weighted loss and allows us to
define the AUC in terms of LW even if with a basic choice ofW (c) that depends
on the classifier (for more details see Hand, 2009). This leads us to the limits
already analyzed of the AUC: assess different classifiers with different metrics.
A measure that allows us to overcome this limit is the H-measure (Hand, 2009):

H = 1− LW
LmaxW

,

where LmaxW is the average MWL of the trivial classifier. The fact that LW is
normalized for LmaxW and subtracted to 1 leads to the following interpretation:
the higher the value of H-measure, the greater will be the performance of the
model.
Kolmogorov-Smirnov statistic, considers jointly the Specificity (the proportion
of TN compared to the total actual negative) and Sensitivity (is making the
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relation of TP compared to the total actual positive) and is given by the
maximum value which takes their sum to vary the threshold t. It may also be
interpreted as the maximum vertical distance between the ROC curve and the
diagonal.
AUCH is the area under the convex hull of the ROC curve, we notice that a
ROC curve should not be convex. It has been shown (see Scott, 1998) that a
non-convex classifier can be improved as it is possible to run the classifier on
the convex hull of its ROC curve.
Gini coefficient, is closely related to the AUC and can be defined as follows:

Gini = 2AUC − 1.

The measures we are considering trying to reach a trade-off between FP and
FN . To do this we must refer to the cost of missclassification; i.e. necessary
to identify if it is more grave, on the basis of the analysis conducted, have FP
or FN . Let c be the cost of a FP and 1− c, the cost of a FN . The total cost
is:

L(c; t) = 2(cπ0(1− F0(t))) + ((1− c)π1F1(t)), where

π0 = TP+FP
n , π1 = TP+FN

n , F0(t) = 1 − FPR(t) and F1(t) = 1 − TPR(t).
This quantity allows we to generalizeMER and MWL choosing a threshold
that minimizes L for each value of c:

MWL(c) = L(c;Tc),

where Tc = argmin
t

L(c; t). Thus MER is a special case of MWL for c = 0.5.

To explain Specificity when Sensitivity is held fixed at 95% and Sensitivity
when Specificity is held fixed at 95% must refer to the error rate (ER):

ER =
FP + FN

n
.

The ER considers the FP as important as the FN but this may not be appro-
priate in some areas, such as fraud detection. A valid alternative at the ER is
to establish the Specificity with respect to Sensitivity to a given level and find
the Sensitivity obtained at that level. The most common choice of the level of
Specificity is 95% or 99%. Similar considerations applies to Sensitivity when
Specificity is held fixed at 95%.
Particularly, we are interested in comparing the AUC of the ROC curves de-
termined for the different models considered. For this purpose it is possible
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to appeal to the DeLong test (see DeLong et al., 1988). This test is used to
compare two ROC curves through AUC. Specifically, we look at the p-value for
the test: after fixing the dominant model, i.e. the model with AUC greater, if
the p-value is greater than 0.05 then the AUC of the model is the same as the
AUC of the model with which it is compared.

1.5 Time-dependent performance measures

For the time-dependent models, the Cox proportional hazards model and Ran-
dom Survival Forest presented in section 1.1, we have chosen to study and
apply the Harrell Harrell Concordance index, known as C-index. Harrell et al.
introduced the concordance C-index in 1982. It is a measure of the separation
of two survival distributions. In the last decade this index has spread as an
index for evaluating the performance of prediction in the analysis of survival.
In particular, we chose to use this index because it does not depend on a fixed
instant of time but it is possible to determine its value at multiple points in
time. The index C is connected to the AUC (see Heagerty and Zheng, 2005)
and can be considered as a probability of missclassification. This index is a
great tool to evaluate the discriminative power of the model analyzed. To cal-
culate the C-index must go through the following steps (see Ishwaran et all.,
2008):

1. to form all possible couples of units over the data,

2. to exclude couples whose shortest survival time is censored. It defines
the total number of pairs eligible, named "permissible",

3. for each admissible couples count 1 if the shortest survival time has a
bad outcome expected and count 0.5 if the expected results are related.
If there are eligible couples in which both subjects are dead (for which
the event occurs), count 1 if the results are related, otherwise count 0.5.
If there are couples eligible but the subjects are not both dead (not the
event occurred for both parties) have to count 1 if the subject died have
a bad result, otherwise count 0.5. The C-index is given by the sum of
these values over all pairs permissible,

4. C-index is:
C =

Concordant

Permissible
,

where Concordant is the all couples that are can be considered concor-
dant.
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If C = 0.5 the model is considered to be not good in terms of discrimi-
native power, this corresponds to making a decision with a coin toss. If
0.7 < C < 0.8, instead, the model has a discriminative power acceptable;
if 0.7 < C < 0.8 can be assumed that the model is characterized by a
good discriminative power. Finally, if C ≤ 0.9 the model is characterized
by an excellent discriminative power.
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Chapter 2

Forecast combination

2.1 Introduction

Usually, the interest of the analyst is to identify the best forecast. When this
is identified is used by the analyst while the others forecasts are discarded.
However, we must consider that the forecasts discarded may contain useful
information especially when the purpose is to determine the best possible fore-
cast. In accordance with Bates and Granger (1969), we can affirm that this
information may be of two types:

• forecasts based on different variables or different information,

• forecasts based on different assumption about the relationship between
the variables.

We can desume that if we take into account all the forecasts and we do a
combination we can come to a better and more robust forecasting performance
than what we can achieve in the case of predictions generated by individual
models.
To combine forecasts need to decide which forecasts to include in the combi-
nation and which weights attributed to the forecasts considered. As described
by Aiolfi, Capistrán e Timmermann (2010) this decision-making process is a
two-step process; the first step have to decide to be excluded because the mod-
els are characterized by poor performance. The second step, assignment of
weights, is the most important and will dedicate particular attention in sec-
tion 2.3.
The existing literature concerning forecasts combination suggests that even
when it is possible to identify the best model may be convenient to combine
forecasts since the combination could lead to an increase in the accuracy of the
forecast (see Clemen, 1989).
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There are many aspects that emphasize the usefulness of recourse to forecasts
combination with respect to forecasts from individual models.
Suppose we want to minimize a given loss function and to have two forecasts
generated by different models of the same type of response variable: ŷ1 and
ŷ2. Suppose, also, that the forecast ŷ1 dominates stochastically forecast ŷ2in
the sense that the prediction forecast ŷ1 has an expected loss less than the
forecast ŷ2. This situation leads to the choice of forecast ŷ1 over the forecast
ŷ2. However, we must consider that it is possible to determine a combination
of the two forecasts that generates an expected loss less than that which is
obtained only with the forecast ŷ1.
A second reason that can lead to the forecast combination is given by the
fact that the forecasts from individual models may be suffering from misspec-
ification. Through the combination of different models can lead to a greater
robustness of the forecasts against misspecification and measurement errors.
A third argument, for combination of forecasts, is that the individual forecasts
may be based on different loss functions and this topic holds even if the fore-
casters observe the same information set. Through the inclusion of a constant
in the combination equation will pick up any undesired bias, and when the lat-
ter is constant over time, there is no need to average across different forecasts.
Another aspect to use forecasts combination is that the individual forecasts
may be conditioned by structural breaks. When the data window since the
most recent break is short, the models may adapt more quickly and will pro-
duce the best forecasting performance. Contrariwise, the more data is avail-
able since the most recent break, slowly adapting models can be expected.
The combination of forecasts from models with different degrees of adaptabil-
ity will outperform forecasts from individual models, because it is difficult, in
real time, to identify structural breaks.
In addition to the reasons that highlight the strength of the forecast combina-
tions, is possible to detect several arguments against the use of them.
A problem for many combination techniques is the non-stationarities, that can
lead to instabilities in the combination weights and to difficulties in deriving
a set of combination weights that performs well. Another problem regards the
estimation errors that contaminate the combination weights (especially when
the number of forecasts is greater than the sample size).
Forecast combination problem and standard problem of constructing a single
specification have common problems but they clearly show differences. Firstly,
if we suppose that the individual forecasts are unbiased then also the com-
bined forecast will be unbiased provided that the combination weights are
constrained to sum to unity and an intercept is omitted and this, on condition
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that the unbiasedness assumption holds for each forecast, leads to efficiency
gains. It is not convenient to impose this constraint on the coefficients of a
standard regression model since predictor variables can differ significantly in
their units. Second, the forecasts combined need not be point forecasts but
could take the form of interval. And lastly, when the individual forecasts are
generated by a quantitative models whose parameters are estimated recursively
there is a potential generated regressor problem which could bias estimates of
the combination weights.

2.2 When to combine?

Before trying to understand when and if it is convenient to combine forecasts
from different models we present a simple example that will help us under-
stand what it means to combine forecasts. For simplicity we consider only two
individual forecasts, ŷ1 and ŷ2, with the respectively following forecast errors:

e1 = y − ŷ1

e2 = y − ŷ2

Is assumed that the forecast errors are unbiased:

E [ei] = 0, i = 1, 2

Variance and Covariance of forecast errors are σ2
i , i = 1, 2, and σ1,2. Combined

forecast will be unbiased if the weights satisfy the constrain of su o unity, so
we have:

ỹ = wŷ1 + (1− w)ŷ2.

In the same way combined forecast error is a weighted average of single
forecast errors:

e(w) = we1 + (1− w)e2.

So shown by Timmermann (2006), solving for the Mean Square Error (MSE):

w∗ =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12

1− w∗ =
σ2

1 − σ12

σ2
1 + σ2

2 − 2σ12
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are the optimal combination weights. The optimality of these weights is due to
the fact that comply with one of the properties most desirable for the weights
of combination. In fact, these weights are greater in correspondence of more ac-
curate forecasts, this means that the variance of the prediction errors is lower,
and vice versa in the event of inaccurate forecasts.

In presence of two or more forecasts of the same variable the first question
to answer is whether to combine or not to combine.
It is important to distinguish between the situation where the information sets
underlying the individual forecasts is observed and the situation where they
are unobserved

• information sets are unobserved : often is justified to combine forecasts
provided that the private parts of the information sets are sufficiently
important. When this is satisfied it is difficult to evaluate, but it is
possible to analyze and consider the correlation between forecasts or
forecast errors.

• information sets are completely observed : the combination may be less
justified in the sense that successful combination indicates misspecifica-
tion of the individual models and so a better individual model should be
found.

The tests on the dominance of forecasts are neither necessary nor sufficient to
decide whether or not to combine, and this because in examples where fore-
cast ŷ1 dominates forecast ŷ2 (lower expected loss), yet it remains optimal to
combine the two forecasts.
In general, it requires a test to see if a forecast includes all information con-
tained in another forecast. In the case of MSE loss functions there are these
tests (Chong and Hanry (1986)). Point forecasts are sufficient statistics under
MSE loss and a test of pair-wise encompassing can be based on the regression

yt+h = β0 + β1ŷt+h,t,1 + β2ŷt+h,t,2 + et+h,t, t = 1, 2, . . . , T − h.

The rule of the test provides that, when the parameter restriction (β0 β1 β2) =

(0 1 0) holds, forecast 1 encompasses forecast 2 and when, instead, we have
(β0 β1 β2) = (0 0 1) then forecast 2 encompasses forecast 1.
It is possible that omitting one forecast, in small samples, can obtain to better
out-of-sample forecasts, even if the coefficient on the ignored forecast differs
from zero.
More generally, there is a test based on the hypothesis that β2 = . . . = βN ,
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where forecast 1 encompasses all other models

yt+h − ŷt+h,t,1 = β0 +
N∑

i=2

βiŷt+h,t,i + et+h,t.

When the data is not much informative and it is not possible to detect a dom-
inant model, it makes sense to combine forecasts. The risk of not choosing the
best model diminishes when more methods are considered and forecasts are
averaged and this is proven by showing that the forecasting performance of a
combination strategy enhances as a function of the number of models involved
in the combination.
A model selection criteria, such as the SIC, to choose which forecasts to com-
bine has been proposed by Swanson and Zeng (2001). The combination chosen
by the criteria SIC seems to provide the best overall performance and rarely
is dominated by other methods.
After establishing whether to combine or not, there are several ways to estimate
the combination weights, ω̂t+h,t.

2.3 How to determine the combination weights

Existing results on the properties and performance of forecast combinations
have been derived in the context of a least squares loss function.
To simplify matters we assume that the loss function only depends on the
forecast error from the combination, ect+h,t = yt+h − g(ŷt+h,t;ωt+h,t), i.e.
L = L(et+h).
The parameters of the optimal combination, ω∗t+h,t ∈Wt, solve the problem

ω∗t+h,t = arg min
ωt+h,t∈Wt

E
[
L
(
ect+h,t(ωt+h,t)

)
|ŷt+h,t

]
.

The combination weight can be found, as shown by Elliott and Timmermann
(2004), as the solution to the Taylor series expansion of the loss function around
the bias of the forecast error µet+h,t = E [et+h,t|Ft]

ω∗t+h,t = arg min
ωt+h,t∈Wt

{
L(µet+h,t) +

1

2
L′′µeE

[
(et+h,t − µet+h,t)2|Ft

]

+

∞∑

m=3

Lmµe

m∑

i=0

1

i!(m− i)!E
[
em−it+h,tµ

i
et+h,t

|Ft
]}
,

where Lkµe ≡ ∂kL(et+h,t)/∂
kω|et+h,t=µet+h,t .

This expansion suggests that the collection of individual forecast ŷt+h,t is useful
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in as far as it can predict any of the conditional moments of the forecast error
distribution.
The objective function underlying a combination problem, oftentimes, is mean
squared error (MSE) loss

L(yt+h, ŷt+h,t) = θ(yt+h − ŷt+h,t)2, θ > 0.

In the combination problem are involved two levels of aggregation:

• First step: summarizes individual forecasters’ private information to pro-
duce point forecasts. The difference to the standard forecasting problem
is that the input variable are forecasts from other models, this can leads
to the bias the estimated combination weights and it could explain, in
part, why combinations based on estimated weights often do not perform
well.

• Second step: aggregates the vector of point forecasts to the consensus
measure. This step is likely to lead to more parsimonious forecasting
models when compared to a forecast based on full set of individual fore-
casts.
Information is lost in both steps.

In general, we can expect that the information aggregation to increase the bias
in the forecast but also reduce the variance of the forecast error.

In the literature they are found in the majority of cases, patterns of combi-
nation of the linear type. In essence, if we assume as a loss function the MSE
proceed to a combination of linear forecast models. However, you can also
encounter cases where build combinations of non-linear type or time-varying
combination methods (see Timmermann, 2006).
We can also observe optimal combinations in case of asymmetric loss functions.
However, it should be noted that the work in the literature is the result, also
in this context, use theme as a loss function to minimize. In fact, it was shown
that the standard properties of an optimal prediction in the case of MSE as
a loss function (unbiased, absence of serial correlation between the forecast
errors and increase of the error variance of the time horizon to grow) fall in
the case of asymmetric loss functions.
Bates and Granger (1969) claim that it would be desirable to have more weight
to predictions with less error. Also, they tell us that a good method to deter-
mine the weights of combination should meet the following properties:

1. the average weight must tend to the optimum increases forecasts,
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2. the weights should be able to quickly adapt to new values in case they
should occur changes in the success of one of the predictions,

3. weights should vary slightly compared to the optimal value.

One of the most important observations, in our view, is one that says that the
methods for the determination of the weights should be moderately simple.
One the basis of this consideration in their work, Bates and Granger (1969)
examine five methods to calculate the combination weights. They consider two
forecast and determine a forecast combination at time T , CT and compute a
weights kT the satisfy the condition to sum to one. So, they have weight kT for
forecast one and weight 1−kT for forecast two. This weights are determine on
the basis of the forecasts error until to previous time instant T: e1,1, , e1,T−1;
e2,1, , e2,T−1. We notice that for the first weight k1 the authors choose the value
0.5 for all methods studied. For example the first method presented establishes
the following weight:

wT =
E2

E1 + E2
,

where E1 =
∑T−1

t=Tτ
and the the same is true for E2. For other methods we

please refer Bates and Granger (1969).
In the context of forecast combination play an important role those who

are called equal weights. This weights are considered by Timmerman (2006)
a "natural benchmark" for the problem of forecast combination. This weights
are optimal in the case in which the variances of individual forecast errors are
identical and the pair-waist correlation are exactly alike. They are defined as
follows:

ỹew =
1

n

n∑

i=1

ŷi,

where n is the number of forecasts want to combine.This represent the
common baseline in the combination problem. In essence, it translates in
determining an average of the individual predictions. The great strength of
this combination scheme is due to the fact that simple methods like this are
hard to beat in practice.

2.3.1 An interesting type of weights: relative performance
weights

A major problem with which have to deal when you have to determine the
weights of combination is the estimation of the covariance matrix of errors Σe.
To overcome this aspect Bates and Granger (1969) and Newbold and Granger
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(1974) have been proposed combination weights that disregard the correlation
between the individual forecasts. Winkler and Makridakis (1983) assert that
this means to treat the covariance matrix Σe as a diagonal matrix.
In literature we find the work of Stock and Watson (2001) that present the
combination of weights that ignore the correlation between errors but are
based on the relative performance of the MSE of the individual models. Let
MSEt+h,t,i = 1

τ

∑t
t−τ et−τ,(t−τ)−h,i the MSE of ith models at time t. Then

ŷct+h,t =
N∑

i=1

ŵt+h,t,iŷt+h,t,i

where

ŵt+h,t,i =
(1/MSEkt+h,t,i)∑N
j=1(1/MSEkt+h,t,i)

(2.1)

If it is assumed k = 0 this means giving equal weights to individual forecasts.
The authors say that this weights effectively not consider the correlation be-
tween the forecast errors and perform well in case of large samples.
In letterature, many authors agree with Newbold and Granger (1974) that say
the combination strategy that ignore the correlation between the individual
forecast errors perform better than methods that consider this relationship.
However, even today, after many years of study on the combination methods,
this seems to be an open question.

2.4 The estimation problem

The combination weights are estimated on the basis of past data. Over the
years, several methods have been defined to estimate the combination weights
and this is due primarily to the absence of a single optimal method for their
determination. Moreover, the role that is attributed to the forecast errors
constitutes an element of difference. The only element that seem to have in
common all methods of combination is that the starting point is the equal-
weight combination described in section 1.3. One of the major disadvantages
of the combined forecasts is that they introduce estimation errors related to
the parameters when the weights are, in fact, it is estimated (see Yang, 2004).
In most cases the problem of the estimate of the weights is addressed through
last square estimation. Generally, assumes a linear model in the weights and
the combination weights are estimated through Ordinary Last Square (OLS).
Granger and Ramanathan (1984) consider three regression:

1. yt+h = woh + w
′
hŷt+h,t + εt+h
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2. yt+h = w
′
hŷt+h,t + εt+h

3. yt+h = w
′
hŷt+h,t + εt+h, s.t. w

′
hι = 1.

The regression 1. and 2. can be estimated by ordinary last square, the
difference the difference between both is that the second regression omits the
intercept, while the regression 3. requires the constrained last square. In
general the regression does not impose that the forecast by single models are
unbiased because the bias can be adjusted by intercept terms. The regression
three, instead, require the unbiased forecasts. This can overcome by imposing
that the weights sum to one but this constraint can leads to efficiency losses.
It is necessary to signal that there are in the literature different versions of
basic last square regression.
There are also works that rely estimating combination weights directly on the
loss function but excluding quadratic loss function. This is the case of moment
estimator. The combination weights can be obtained as an moment estimator
based on sample. For more details see Elliot and Timmermann (2004).
Those just described are the methods most commonly used for the estimation
of the weights of combination, also suggest the existence of non-parametric
combination schemes and other methods for which reference should be made
to the work of Timmermann (2006).

In our opinion the starting point, when thinking whether to build or not
predictions combined, is the statement of Clemen (1989): "Combining fore-
casts has been shown to be practical, economical and useful". In fact, the
forecast combination allows us not only to use a broader range of information
than what we allow the individual models but makes possible to overcome, for
example, the misspecification of single models.
Appears evident from the work in the literature that more simple are methods
through which combine forecasts from individual models best are their per-
formance. For this reason the combination methods with equal weights is, in
most cases, the best or at least equal to the combination schemes much more
complex. Then when you want to combine forecasts from single models it is
always convenient to compare the methods selected with the simple and eco-
nomical technique of equal weights.
Moreover, in this chapter we have seen what are the methods most commonly
used to combine the forecasts of the same dependent variable generated based
on different single models. The principal method to determine the combina-
tion weights is to assume a linear model in the weights and the combination
weights are estimated through OLS.
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Forecast combination

From our point of view are of particular interest those who are called relative
performance weights because, as we saw in the previous section, let us overcome
the problem of forecast errors due to the estimated weight of combination. We
notice that in the cases in which the combination weights are imposed instead
be estimated we can overcome the problem of estimation error.
The following chapter shows our methodological suggestion to combine fore-
casts from single models, particularly from models belonging to two different
class of models, time-dependent and time-independent, for the estimation of
binary outcome.
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Chapter 3

The proposal for combination
forecasts

3.1 The context

The goal we are placed in this work is to identify the best model for predicting
the binary response variable, in the specific case we consider the Probability of
Default (PD). Before describing in detail the method that we have developed
to improve forecast, we describe the framework in which we operate. The gen-
eral context in which it occurs our empirical work is to credit risk.
For credit risk refers to the risk that an unexpected change in the creditworthi-
ness of a person, towards whom there is credit exposure, causes a corresponding
unexpected change in the value of the same credit position. It is not the only
possibility that the counterparty becomes insolvent, in fact even the deteri-
oration of the creditworthiness is considered credit risk. An aspect of great
relevance is given by the fact that the variation of the credit position must be
of unexpected nature. There are several types of credit risk, we distinguish
five major categories:

1. risk of insolvency, is the possibility that an entrusted counterparty be-
comes insolvent. The loss made by the creditor is given, of course, by
the difference between the value of the loan and how much is actually
recovered;

2. risk of migration, is the risk of deterioration of the creditworthiness of a
counterparty;

3. risk of recovery, is the possibility that the rate of recovery relative to
exposures to counterparties defaulting is lower than originally estimated;
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4. risk of exposure, is the risk that the size of the exposure against a coun-
terpart increases unexpectedly;

5. spread risk, is the risk that the same credit rating increases the spread.

Among the different types just presented in short we focus our attention
on the risk of insolvency. Specifically, as declared earlier, it is our interest to
identify the best possible model to determine the probability of default (PD).
PD is the counterparty risk of the recipient of credit exposure. In other words,
it is the measurement of the creditworthiness by estimating the probability of
insolvency. As regards the choice of the technique to be used for the estimates
of the probability of a subject to be insolvent, is prossibile say that there is
not a better technique in absolute but certainly we must choose the one which
enables to best use the information that we have to available. To estimate
the probability of default is necessary to understand when a credit position
should be considered in default. Generally, a loan is considered in default
when it is no longer possible or the will of the borrower to meet its financial
obligations. To be more precise, it is necessary to say that there is no single
definition of default but the banks agree that a credit can be defined in default
when they go on suffering (no payment is made by the debtor, the creditor
advances a proposal for restructuring the debt, etc.). According to the rating
agency Standard Poor’s default occurs when the debtor is facing an irreversible
crisis which leads to exclude guarantees related to the credit position and as
to suggest that it will generate the loss of part, or the whole, the capital loaned.

After clarifying which is the final object of our study, it is necessary to em-
phasize that we do not operate in the classic context of forecasting of PD but
we place ourselves in the framework of the cohort studies. In other words, as
is clear from the choice of models declared in Chapter 1, we are in the typical
context of the survival analysis.
To determine the PD we have been developed systems of crew scoringn with
the aim to calculate the probability that a subject that require a loan may go
into default. Over the years the number of statistical models to address this
need has grown more and more but the model, even today, is the most widely
used Logistic Regression (LR) for binary responce variable (see Stepanova and
Thomas, 2002 ). In recent years as part of the credit scoring was introduced
also the survival analysis, branch of statistics that deals with the analysis of
lifetime data. The latter, in general, is used in the medical field for studies
on the administration of drugs or therapies on patients affected by a given
pathology but in recent years is applied in an increasing number of sectors
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(see e.g. Hosmer et al, 2008). In the context of the credit risk of the event of
interest is the default.The application of the survival analysis to credit risk is
due to Narain (1992) developed, then, in the future by Thomas et al. (1999).
Compared to classical models used for predicting the PD, the models in the
survival analysis consent to work on samples containing censored data. Cen-
sorship most common finding is called censorship right and tells us that a
censored subject has not experienced the event of interest, in this case the
default, during the study period; we clarify the concept better later. In the
case of credit risk it is very easy to find in a sample many subjects censored
because the majority of these is not in default.
Another advantage of the survival analysis is that not only allows us to study
the occurrence or not of an event of interest but to study the time necessary to
occur the same. In fact, the target variable is the time to the occurrence of an
event, called survival time. In other words, the survival analysis refers to those
statistical methods that study the distribution of time of an event occurring.
The survival time is given by the difference between the time in which an event
occurs and the time of entry of the subject in the study. Credit risk is closely
related to the survival analysis since the latter by definition is the analysis
of time-to-failure data, where failure to mean, in this case, the default. The
advantages in applying models of survival analysis to the problem of credit risk
are manifold. In particular, ability to insert different types of covariates in the
model, flexibility in parametrizing the default intensity and expand the class
of models applicable in this context
As anticipated, with survival analysis is studied a cohort of subjects for a cer-
tain period of time, this can result that its numerosity various time precisely
the occurrence or nonoccurrence of the event of interest. In fact, one of the
assumptions of this analysis is that the observations entering and leaving the
study randomly. The main features of this type of study are described below:

1. starting point, given by the occurrence of an event well identified over
time;

2. diagnostic and admission criteria: they must be clearly made explicit;

3. methods of subject recruitment\statistical units, all subjects examined
by observers should be included in the study and the number and char-
acteristics of the excluded should be carefully considered and specified;

4. control of all subjects for a certain minimum period;

5. end point, relevant event which has to be defined in advance in an ob-
jective and reliable.
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The time interval between the initial and the terminal event is represented by a
random variable T (T ≥ 0) defined as survival time. Survival times can not be
normally distributed and their distribution is described by survival function
described in section 2.2 by equation (2.1). A very important aspect of the
censored data is that censorship is not considered informative, this assumption
means that the censored subjects have the same risk of non-censored. For this
reason the variable T is not fully observable. All this means that when the
data are censored very numerous than those in suffering statistical methods
used may not be reliable. A widespread problem in the survival analysis is the
presence of censored data, as specified in Section 2.2 we refer to right censored
data. The Figure 3.1 helps to understand the characteristics of a cohort of
subjects typical of survival analysis.

6 Modelling consumer credit risk via survival analysis

Figure 1: Time to default in consumer credit risk.

from right censoring. In case (b) it is only the time from the start of the credit to the end

of the study, while (c) accounts for a situation where anticipated cancellation or the end

of the credit occurs before default.

The available information to model the PD is a sample of n iid random variables

{(Y1,X1,δ1) , . . . ,(Yn,Xn,δn)}, of the random vector {Y,X ,δ}, where Y = min{T,C} is

the observed maturity, T is the time to default, C is the time to the end of the study

or anticipated cancellation of the credit, δ = I(T ≤ C) is the indicator of noncensoring

(default) and X is a vector of explanatory covariates. In this survival analysis setting we

will assume that there exists an unknown relationship between T and X . We will also

assume that the random variables T and C are conditionally independent given X .

In the previous setup it is possible to characterize completely the conditional

distribution of the random variable T using some common relations in survival analysis.

Thus the conditional survival function, S(t|x), the conditional hazard rate, λ(t|x),
the conditional cumulative hazard function, Λ(t|x), and the conditional cumulative

distribution function, F(t|x), are related as follows:

S (t|x) = P(T > t|X = x) =

∫ ∞

t
f (u|x)du

λ(t|x) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t,X = x)

∆t
=

f (t|x)
S(t|x)

Λ(t|x) =
∫ t

0
λ(u|x)du =

∫ t

0

f (t|x)
S(t|x)du

Figure 3.1: Example dataset with right censored data

On the x axis shows the time of study which goes from 0 to τ . The fact
of considering a limited time interval can detrminare the presence of censored
observations right. Censorship can be due to two main reasons: did not occur
the event of interest during the period of the study or the subject comes from
the study for reasons other than the occurrence of the event of interest. for the
subject a event occurs, the default, the studio while subjects b and c represent
two censored data. For the subject b is not the event occurs by the end of
the study and to him we can only say that his survival time is greater than
"tau", end time of the study. The third subject, c, is a subject that comes out
from the study, during the study time, for different reasons after the event,
for example, lost the requirements to be part of the study (see e.g. Cao et al.
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2009).
In this section we have explained why we chose to use for predicting the PD
also models in the survival analysis and as we shall see in Chapter 5 the latter
are competitive or better than the classical models, in particular the LR. The
next section, however, will present the method developed by us to combine
two classic models in the analysis for the prediction of PD, LR and Classifica-
tion Tree (CT), and two models of survival analysis, Cox proportional hazards
regression model (COX) and Random Forest Survival (RSF), in order to im-
prove prediction of PD. We will see not only how we built the average modelbut
also as how we evaluated the performance of individual models than average
models.

3.2 Combination scheme

This section will present the method studied by us to combine models of differ-
ent nature in order to improve the prediction of the PD. Specifically, we will see
that we determined averaged models using weights as performance measures
and distance measures, to our knowledge, is an innovation in the literature of
forecast combination.
The goal of our work is to be able to correctly classify statistic units available
to us with the classification models presented in Chapter 1. Through combia-
tion of these models we want to get a more accurate classification. Accuracy
is the proportion of subjects correctly classified and the sum of True Positives
(TP) and True Negative (TN) on total of statistical units (N) (see Table 1.1) :

Accuracy =
TP + TN

N

This is the reason why we have chosen to use performance measures related to
the Receiver Operating Characteristic (ROC) curve, as explained in Chapter
1. In fact, the area that is below the ROC curve, called Area Under the Curve
(AUC), is the performance measure most widely used for the evaluation of
classification models and is a measure of diagnostic accuracy.

Our problem of combination is divided into two parts:

1. combination of only time-dependent models, that allow us to have esti-
mates of the Probability of Default (PD) for each time step of our study
time,

2. combination of all four models, regardless of the fact that we are time-
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dependent models or less, during this case we obtain the PD estimate of
the entire time period considered.

In both cases the procedure and the combination pattern adopted are the
same, the difference lies only in the fact that in the case of time-dependent
models we obtain estimates for each instant of time of our interest.
The initial idea was to compare the time-dependent models with those time-
independent in terms of AUC to establish the single model that performs better
and then use the same measure as weight for the combination. The choice of
using a performance measure as weight arises from the consideration that the
literature suggests that use weights without any constraint leads to combina-
tion methods more accurate than those that pose conditions on the charac-
teristics of the weights such as, for example, the constraint to sum to one.
During studies there has arisen doubt about using AUC, largely as a measure
for the evaluation of the performance of a model, considering the fact that it is
a measure defined “incoherent”. Observation on incoherence of the AUC as a
measure of comparison of classification models was made first by Hand (2009).
What is Hand says that the assessment made by AUC in comparing models
does not match the one made by other measures based on misclassification
costs. What we want to understand Hand is that given two models m1 and m2

say AUCm1 > AUCm2 does not allow us to say anything about the misclassifi-
cation costs of the same models. It seems to be that the measuring instrument,
the AUC, is different depending on what you want to measure. Citing the same
author we can say that “evaluates different classifiers using different metrics.
It is as if one measured person A’s height using a ruler calibrated in inches
and person B’s using one calibrated in centimetres”. To demonstrate this inco-
herence, Hand determine a linear relationship between the expected minimum
loss and the AUC. This means that if two models have the same AUC does not
mean that they have the same type of expected minimum loss if you have used
different distributions over proportions costs were the same for both models.
For more details we refer the reader to the work of Hand (2009). After the work
of Hand we can find some papers in the literature showing that the AUC is to
be a coherent measure, unlike what it says Hand, if, for example, not using an
optimum threshold or if you do not take into account the classification errors.
In our case we say that for us the AUC is a incoherent measure because we
are interested in their classification errors because, as we shall see shortly, the
evaluation of combined models will be made right on the basis of statistical
units correctly classified.
Inspired by the work of Hand, to overcome the problem of incoherence of the
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AUC we decided to use performance measures identified by him and which are
a “coherent alternative”, as defined by same author, the AUC for the evaluation
of performance of classification models. So we proceed with determining all
the measures presented in Chapter 1 and summarized below: H-measure, Gini
index, AUC, AUCH, Kolmogorov-Smirnov statistic, MER, MWL, Specificity
when Sensitivity is fixed to 95%, Sensitivity when Specificity is fide to 95%.
In this case, our main goal is not to use these measures to assess and compare
the performance of different models considered rather use them as weights in
the combination scheme ensuring, in this way, that the best model has greater
weight and model worst going to weight less at the time of the combination thus
eliminating the specter of incoherence. Since the measures mentioned above
do not guarantee compliance with this condition, in particular the AUC, for
their inconsistency we decided to calculate and use as weight distance measure.
Specifically, we have focused our attention on the Mahalanobis distance for the
reasons which will be indicated below without this represents a limit to the
use of other distance measures.
The Mahalanobis distance is defined as the Euclidean distance between the sta-
tistical units after pulling the main components and have them standardized.
Given two statistical units xi and xj is given by

DM
i,j =

[
(xi − xj)′S−1(xi − xj)]

1
2 , i, j = 1, · · · , n

where S−1 is the inverse of the covariance matrix and n is the total number
of units. It is also known as generalized Mahalanobis distance. If the vari-
ables are uncorrelated, the matrix of variances and covariances is diagonal and
it is reduced to the distance between the units after standardized variables.
The Mahalanobis distance is not affected by correlations between variables,
but tends to mitigate the differences between groups, if any. It is a statistical
measure of the distance between the units, which is calculated net of the cor-
relation between the variables, therefore it allows to eliminate the correlation
between the variables. The choice of this distance measure is due to the follow-
ing reflections. First, in multivariate statistics this measure is used to capture
the similarity between two objects and we are interested to measure the simi-
larity that exists between the response variable observed and forecast the same
made by the different individual models considered. Obviously, we wish that
the expected value is as close as possible to the value actually observed, so we
can only assume that the model is reliable. Second, we wanted a measure that
could be calculated in the same way for all the models under study view of
the different nature of these models. Last but not least, we wanted a simple
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measure to calculate to meet one of the main characteristics of the methods of
combination.
Clarified the weights that we chose we move now to the description of the
combination method adopted. First we specify that the estimates used were
made on the sample for testing following the application of three different
methods of cross-validation. The goal we wanted to achieve through various
methods of cross-validation is the assessment of the stability of the models
and then determine whether a given method of cross-validation postesse affect
results. Selzionate techniques for this purpose are: Bootstrap cross-validation
(Bootcv), K-fold cross-validation (K-foldcv) and Leave-one-out cross-validation
(LOOcv). Considering the Bootstrap approach, we take the entire original data
set; we draw a sufficiently large number B (B=200) of bootstrap samples and
for each boot- strap sample we run our model. Then, we compute the Boot-
strap error. We notice that it is possible to realize this validation technique by
performing either a with replacement or without replacement resampling, ac-
cording to the nature of the original sample data. The second method we used
to assess the models is the K-fold cross vali- dation that divides the data into
K subsets of equal size that are called folds. For each repetition, k1 subsamples
are used to training the models and ki, with i = 1, ..., K , is the validation
sample. For instance, having K=10 folds, we first use data from folds 1 to 9
as training sets and leave the 10th as the validation set. Secondly folds 1 to
8 plus 10 are used as training sets and fold 9 is left as validation set; and so
on iteratively for each of the available K folds. The numbers more frequent
of folds adopted are 5, 10 and 20; we choose to adopt a number of fold equal
to 10. The Leave- One- Out cross validation (LOOcv) is a particular type of
K-fold cross validation. In fact, it is a K- fold cross validation with K = n.
For more details on these techniques of cross-validation we refer the reader to
the work of Mogensen, Ishwaran and Gerds (2012).
First, we only worked on models in order to have time dependent PD estimates
at each instant of time of the study, in order to know not only if the event oc-
curs of interest but also when.

The scheme is organized according to the following four main steps:

1. estimation of the response variable, Y , on the basis of the test samples
as a result of the techniques of cross-validation briefly described,

2. calculation of performance measures and the Mahalanobis distance for
individual models at each instant of the time period of study duration
(6 years),
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3. use of measures calculated in step 2 as weights to create averaging models,

4. evaluation of the performance of individual models and averaging models
and compare them to determine the best model, the assessment is made
on the basis of the units correctly classified.

We specify that in the context of the combination of classification models we
can distinguish two major strategies of combination calls fusion and selection.
The difference of the two strategies is the fact that in the context of the fusion
each model that is part of the ensemble have knowledge of the whole feature
space, while in selection every model knows a part of feature space. In the
strategies of fusion fall combinations determined as the medium while in the
branch of the selection fall the strategies in which select one classifier to label
the input x. This speech is to point out that our combination scheme falls
within the context of the fusion strategies because we determine weighted av-
erage models.
In the case of time-dependent models we calculated all performance measures
mentioned, but not only. In fact, for these models it is possible to calculate
an additional measure of performance which by its nature is time-dependent
and that takes the name of Harrell Concordance index, in a short C-index, de-
scribed in section 1.4. While this index is inherently time-dependent, so we can
easily determine the value for each point in time, other performance measures
are not time-dependent, thus providing a unique value to the whole horizon.
One new feature of this work is the fact that we were able to determine all the
measures, including the Mahalanobis distance, for each point in time and not
only on the entire time horizon.
The weights used, therefore, to create models average for time-dependent
approach are: C-index, AUC, H-measure, Gini index, AUCH, Kolmogorov-
Smirnov statistic, MER, MWL, Specificity when Sensitivity is fixed to 95%,
Sensitivity when Specificity is fide to 95%, Mahalanobis, 1

C ,
1

AUC ,
1

Mahalanobis .
Moreover, we have created the following weights from vector Mahalanobis dis-
tance:

wRP =
1

Mahalanobis

(
n∑

i=1

(Mahalanobisi)
−1

)−1

(3.1)

Weight described by equations 3.1 is particularly important as they fall
into the category of so-called relative performance weigths described in section
2.4.1 and meet one of the most important properties of the optimal combina-
tion weights, that sum to one. Our approach prefer to use weights on which are
not subject to restrictions of any kind because, as the literature suggests and
as described in Chapter 2, weights without constraints provide better perfor-
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mance. However, for completeness of the work we have also identified weights,
starting from the Mahalanobis distance, they were able to meet this impor-
tant constraint. In Chapter 4 we will observe and compare the performance of
combinations obtained using these particular weights.
As regards, instead, the combination scheme adopted for combining both time-
dependent models is time-independent models is summarized in Figure 3.3. In
substance, as already specified, the only difference that one has in this case
compared to the previous is due to the fact that the performance measures are
calculated on the entire time horizon and not for every single moment, since
the nature of the models time-independent prevents us from obtaining such a
result.

The weights used for the combinations are the same as those described for
the approach time-dependent.
At this point we can see how we got combinations. First it should be noted
that in addition to having calculated weighted average models, we included
in our study even the simple average model without weights. This is because
the literature suggests, as discussed in Chapter 2, the simple average of the
forecasts obtained from the individual models is the starting point for the com-
bination models and often should adopt it because performs better or on a par
with much more complex combinations. The average models were determined
in the following way:

CwAUC =
fCoxAUCCox + fRSFAUCRSF + fLRAUCLR + fCTAUCCT

AUCCox +AUCRSF +AUCLR +AUCCT
(3.2)

where C is the combination model, f is the forecast by single model and AUC is
the performance measure used as combinato weights. For example, we showed
the average model weighed to the AUC but likewise were determined other
combinations where instead AUC insert other measures of performance or the
Mahalanobis distance or, even, weights indicated in equations 3.1 and 3.2. We
do not report the equations of all combinations in this chapter for economies of
space but all combianzioni will be present in the appendix. From the equation
3.3 we get a new forecast of the variable response of our interest, the PD, as a
weighted average of the predictions obtained from single models. At this point
we are going to evaluate the performance of all models considered in our study,
single and combained, based on the units correctly classified. Therefore we de-
termine the confusion matrix presented in Chapter 1 Table 1.1. Observing the
confusion matrix we can see the true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), all quantities defined in Chapter 1. In
this case the best model is the one that will have a higher percentage of units
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are correctly classified and therefore true positives and true negatives. As we
will see in chapter 4 matrices of confusion we were determiante at different
cut-off to determine whether the choice of a threshold particoalre could affect
the result.
In this chapter we have made clear, first of all, the context in which we work,
and therefore the concept of credit risk, and what was the object of our inter-
est, namely Probability of Default (PD). Second, we observed that the typical
patterns of the survival analysis have a high utility also in the context of credit
risk as they allow us not only to estimate the PD but also to determine when
you will experience the event of interest, namely the default, through the tem-
poral approach. The most interesting part of this chapter is the section 3.3
which describes the scheme of combination studied. In particular, we see how
we used measures of performance and the Mahalanobis distance as weights
to determine weighted average models. Finally we saw that after the combi-
nations we evaluated and compared the models on the basis of observations
correctly classified through, therefore, the matrix of confusion.
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Chapter 4

The empirical results on real
and simulated datasets

4.1 Data description

Our empirical exercise is based on annual 1996–2004 data from a major rating
agency for Small and Medium Enterprises (SMEs) in Germany, for about 750
firms (Creditform).

When handling bankruptcy data it is natural to label one of the categories
as success (healthy) or failure (default) and to assign them value 0 and 1
respectively. Our data set consists of a binary response variable Solvency (Yit),
a Duration variable and a set of explanatory variables: X1, ..., Xk displayed in
Table 1.

Given our available dataset, we computed this set of 9 financial ratios:

• Capital tied up: this ratio evaluates the turnover of short term debts
with respect to sales.

• Supplier target days: it is a temporal measure of financial sustainability
expressed in days that considers all short and medium term debts as well
as other payables.

• Liabilities ratio: it is a measure of a companyâs financial leverage calcu
lated by dividing a gross measure of longterm debt by the firmâs assets;
also it highlights what debt proportion the company is using to finance
its assets.

• Outside capital structure: this ratio evaluates a firmâs capability to re-
ceive forms of financing other than banksâ loans.
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• Cost income ratio: the cost income ratio is an efficiency measure similar
to the operating margin one which is useful to measure how costs are
changing compared to income.

• Trade payable ratio: this ratio reveals how often the firm payables turn
over during the year; a high ratio means a relatively short time between
purchase of goods and services and their payment; a low ratio may be a
sign that the company has chronic cash shortages.

• Liquidity ratio: this ratio measures the extent to which a firm can quickly
liquidate assets and cover short-term liabilities. It is therefore of interest
to short-term creditors.

• Cash ratio: this ratio indicates the cash a company can generate in
relation to its size.

• Equity ratio: it measures a companyâs financial leverage calculated by
dividing a particular measure of equity by the firmâs total assets.

suggested by Creditreform based on its experience. More details about the
data can be found in Figini and Giudici 2011.

4.2 Empirical evidence

The first step of our work was to select the independent variables to be used for
the construction of the models. As stated in Chapter 1, one of the assumptions
underlying the model of Cox regression (Cox) is the proportion of the risks,
which is why we conducted the tests for verifying the proportionality of the
risks is a prerequisite for applying the Cox model . To test this assumption,
we used a test based on Schoenfeld residuals after estimating model parame-
ters. Before observing the results of the tests we give an interpretation of the
parameters: β > 1 means that the covariate increases the risk, β < 1 means
that the covariate decreases the risk and β = 1 suggests, finally, that covari-
ate risk and are independent. As regards the tests conducted it is the test
proposed by Schienfeld (1982) and based on the residues defined by the same
author. The test tells us that the assumption of proportionality is respected
by a given covariate if the Schoenfeld residuals for this particular covariate are
not in relation with the survival time, that is, the residues of Schienfeld are
uncorrelated with time. Table 4.1 shows the result of the test on all covariates
after the fitina of the Cox model on the whole set of covariates:
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Variable p-value

supplier target days < 0.05
outside capital structure > 0.05

cash ratio > 0.05
capital tied up < 0.05
equity ratio > 0.05

cost income ratio > 0.05
trade payable ratio < 0.05
liabilities ratio > 0.05
liquidity ratio > 0.05

Global < 0.05

Table 4.1: Tests for checking the proportion of the risks for the Cox model

If the p-value of the test is greater than 0.05 for all covariates and for the
overall pattern then the proportional hazards assumption is verified. In this
case, as is possible to see from the second column of Table 4.1, not all the
explanatory variables fulfills this assumption for which we take into account
the only variables that pass the test.
Secondly we fit the Logistic Regression (LR) model and let’s see what covariates
are significant for this model:

1. outside capital structure,

2. capital tied up,

3. cost income ratio,

4. liabilities ratio.

the last selection of the independent variables for the construction of all the
models occurred crossing the results of the test of proportionality of risks in the
Cox model and the significance of variables for the model of LR. This means
that the variables used to build the models are the following:

1. outside capital structure,

2. cost income ratio,

3. liabilities ratio.

At this point we could build the models and begin the process of our com-
bianzione. We will present first the results obtained on only models that are
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Variable coef exp(coef) se(coef) z Pr(>|z|)

outside capital structure pc 2.5924 13.3617 0.6550 3.9580 7.57e-05 ***
cost income ratio pc 3.4582 31.7597 0.5797 5.9650 2.44e-09 ***
liabilities ratio pc 4.4521 85.8039 0.8349 5.3330 9.68e-08 ***

Table 4.2: Fitting semi-parametric Cox model that takes into account the effect
of covariates

time-dependent, the semi-parametric model of Cox and the technique non-
parametric Survial Random Forest (RSF). Fitting the Cox model has provided
the results reported in Table 4.2.

As we can see covariates considered have a great level of significance; met-
timo out that in the initial model, with all covariates, no variable proved
significant for the Cox model.
The second time-dependent model considered is the RSF. The characteristics
of this model are given in Table 4.3.

Sample size 742
Number of deaths 96
Number of trees 100

Minimum terminal node size 3
Average no. of terminal nodes 77.01

No. of variables tried at each split 2
Total no. of variables 3

Analysis RSF
Family surv

Splitting rule logrank *random*
Number of random split points 10

Error rate 23.54%

Table 4.3: Random Survival Forest

As is possible to see from Table 4.3 the number of trees generated is 100.
Table 4.4 summarizes the model RSF obtained.

Variable Importance Relative Imp

outside capital structure 0.0670 1.0000
liabilities ratio 0.0470 0.7009

cost income ratio 0.0235 0.3512

Table 4.4: Importance and relative importance of variables for RSF

According to the output described in Table 4.4 of the variables that are
more important in explaining our dependent variable (Solvency) are: outside
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capital structure pc and liabilities ratio.
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Figure 4.1: Random Survival Forest

The graph on the left in Figure 4.1 represents the fraction of the error rate
for the model RSF as a function of the number of trees. As the graph on the
right shows the out-of-bag value of the importance of covariates. The graphical
analysis confirms the results reported in Table 4.4.
For time-dependent models we calculated the Harrell’s concordance index (C-
index), described in chapter 1 section 1.4. We calculated this index both insam-
ple and through the three cross-validation (cv) techniques presented in chapter
3. Please note that due to space constraints, in this thesis we will present only
the results obtained following the application of 10-fold cross-validation, in
However the full results can be obtained from the authors. The value of the
C-index based on the sample is shown in Table 4.3 with its confidence interval.

Table 4.6 shows the values of the C-index for every moment of the time
horizon of our study of the court. The time range is from 0 to 6. We inform
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Model C-index se lower upper p-value

Cox 0.1945 0.0436 0.1090 0.2800 2.504296e-12
RSF 0.9789 0.0094 0.9545 1.0000 0

Table 4.5: C-Index with CI

Model time 1 time 2 time 3 time 4 time 5 time 6

Cox 0.8500 0.8040 0.7950 0.7950 0.7950 0.7950
RSF 0.6330 0.6330 0.7640 0.7640 0.7640 0.7640

Table 4.6: C-index 10-fold cv

you that from now on, given the stability of the results from the third point
in time, we report only risulati for the first three years of study. This stability
is supposed to be due to the absence of the subject censored after the third
year. As is possible to see, the results from cross-validation showed a situation
upside down from those shown in Table 4.5. In the latter the best model in
terms of C-index is the RSF that has a high index value (0.9789), while the
Cox model seems to provide worse results of those that we can have by en-
trusting the choice to the case (value of C -index <0.5). The results collected
in Table 4.6, however, tell us that the best model, for each instant of time,
is the Cox model. We notice the difference between the two models is that
the Cox has a performance that worsens with increasing time while the RSF
appears to provide results Sharpening time increases. It must be said that the
results in sample are obtained over the entire time horizon while the results
from cross-validation are determined at each point in time. Insample results,
see Table 4.5, of C-index suggest that the Cox has a poor discriminative power,
what we get from the Cox model is worst of example results that would realize
through the toss of a coin. Instead, the RSF presents excellent discriminative
power (C − index ≥ 0.9). The results reported in Table 4.6, however, tell us
that the Cox has a good discriminative power (0.8 < C − index < 0.9) for
instant T = 1 while the power becomes acceptable (0.7 < C − index < 0.8)
increasing time spent. The RSF has a reasonable discriminating power in the
first two time instants (T = 1 and T = 2), T = 3 forwards increases the power
that can be considered good.
Table 4.7 shows the performance measuresfor the two models, Cox and RSF,
at different points in time. Point out that the measures set out in Table 4.7
are those described in chapter 1, SpSe99 is the specificity when the sensitivity
is set at a level of 99% while SeSp99 is nothing more than the Sensitivity when
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4.2 Empirical evidence

specificity is set at a level of 99%. Consider, as an example the column that
shows the AUC value, we consider this measure since it is the most used to
evaluate the performance of a model. What is more evident is that the Cox
model presents a strong stability of the results over the period while the RSF
is characterized by an improvement, in the case of AUC, the performance time
increases.
We remember that in our study the main interest is not to use the measures
listed in Table 4.7 as a tool for assessing the performance of the models, but
to use them as weights to the forecasts obtained from these models in order to
create weighed averaged models.
A very important measure for our work is the Mahalanobis distance. In fact
this distance, along with the measures just observed, will be used also as a
weight in the combination scheme of forecasts. We chose this distance because
it allows us to assess the similarity, and so the proximity between two objects,
in our case the observed Solvency and Solvency expected. Obviously what we
want is that the estimate of our dependent variable, Solvency, is as close as
possible to the observed value of the same variable. To interpret this measure,
it is clear that the more the two objects is considered to resemble the more
will be the small value of the Mahalanobis distance which is to measure the
similarity.
In Table 4.8 we report the main summary statistics that describe the vector of
Mahalanobis distances. From the first column we have, in order, the minimum
(Min), the first quartile (Q1), the second quartile (Q2), the average (Mean),
the third quartile (Q3), the maximum (Max), these indexes position used to
steal information about the Mahalanobis distance. The last two columns of
the same table, instead, show the measures of variability. The penultimate
column shows the reciprocal of the variance while the last column we find the
coefficient of variation.

At this point we have calculated all the measures we need to determine
which average models as indicated by the equation (3.3). Once you get your
models again we calculate average performance measures and the Mahalanobis
distance so you can compare models combined with those individuals. The Ta-
ble 4.9 shows the summarizing statistics for all average models, we remember
that we are still working in the approach time-dependent models for which we
average at different points in time and then performance measures and Maha-
lanobis distance to the corresponding instants, in the specific Tables 4.9 and
4.10 summarize the risults obtained in T=3, results for the moments T=1 and
T=2 are shown in Appendix B. In row we have average models. Specifically,
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Table 4.7: Performance measure for Cox and RSF at different time points

Model Min Q1 Q2 Mean Q3 Max 1
σ2 CV

CoxT1 0.1484 0.1856 0.2439 1.9970 0.3047 238.8000 0.0097 5.0879
RSFT1 0.1527 0.1527 0.1527 1.9970 0.1527 608.8000 0.0020 11.2616
CoxT2 0.1484 0.1906 0.2574 1.9970 0.3291 205.6000 0.0121 4.5591
RSFT2 0.1484 0.1725 0.1725 1.9970 0.1944 110.9000 0.0155 4.0151
CoxT3 0.1484 0.2572 0.4910 1.9970 0.8581 24.5800 0.0765 1.8105
RSFT3 0.1484 0.3147 0.6145 1.9970 1.2590 23.8600 0.0946 1.6276

Table 4.8: Summary statistics of Mahalanobis distance for Cox and RSF for
different time points
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with mean we denote the simple average of the forecasts obtained from the in-
dividual models, meanC indicates the average of individual forecasts weighing
with the C-index associated with the corresponding model and so on. While in
the column, in Table 4.9 are the summary statistics of Mahalanobis distance
and Table 4.10, however, we find the performance measures.
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Table 4.9: Summary statistics of Mahalanobis distance for all time-dependent
average models (T=3)

We look in particular the AUC shown in Table 4.10. The average model
that performs better in terms of AUC is the one obtained with the weight de-
scribed in equation (3.1) followed by the model mean99 following by mean99.
We notice that average models mean 1

M
and meanRP have the same perfor-
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mance in terms of AUC (AUC=0.9671). This model performs better even the
Cox that in T=3 has an AUC equal to 0.8403 while the RSF has an AUC
equal to 0.9856 and this means that it has a level of performance superior to
all models both individual and average, as you can see in Table 4.7.
Table 4.11 summarizes the results of the performance of individual and average
models in T=3 in terms of AUC with its confidence interval (CI). We note that
the average patterns obtained using as weights the performance measures are
all characterized by a level of accuracy, measured in terms of AUC, lower than
the RSF while all average models have a performance much better than the
Cox.

The final evaluation of our models is done in terms of matrices of confu-
sion.For every single model and we calculate the average matrix of confusion
and try to understand if the estimates made on the basis of the model is correct
or not. Let’s look in particular:

1. True Positive (TP) when the positive forecast corresponds to a positive
obsereved value,

2. True Negative (TN), when the negative forecast corresponds to a negative
obsereved value,

3. False Positive (FP), when the positive forecast corresponds to a negative
obsereved value,

4. False Negative(FN) when the negative forecast corresponds to a positive
obsereved value.

Look, for example, the scores for the Cox model at time T=3 given in
Table 4.12. The results were obtained, in this case, with a cut-off equal to 0.5.
Over 742 statistical units the data involving the real situation of Solvency are
13.34% (TP+TN), versus the 86.65% that produce a bad results. We observe a
big value of FN for all models and for all point in time. Based on the confusion
matrix we can calculate Sensitivity and Specificity. The first is the ratio of TP
and the total units planned as positive (TP+FN) and is defined accuracy rate
tells us how many observations are estimated correctly positive compared to
the total of positive comments. Specificity is the ratio between TN and the
total of the observations provided negative (FP+TN). Continuing with our
look at the Cox model in T=3 we see:

1. Sensitivity: TP
TP+FN = 72

72+619 = 10.42%,
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Table 4.10: Performance measure for all time-dependent average models (T=3)

2. Specificity: TN
TN+FP = 27

27+24 = 52, 94%.

We include Accuracy and Total Error (TE) in order to draw conclusions on
perormance model. The Accuracy is the ratio between the correct units of
total forecast (TP+TN

N ) and measure the model’s ability to predict correctly.
While, TE is the complementary index of the accuracy and gives additional
information about the error committed by the forecast model.
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Model AUC CI

Cox 0.8199 0.7784-0.8614
RSF 0.9842 0.9770-0.9914
mean 0.9530 0.9383-0.9677
meanC 0.9519 0.9370-0.9669
mean 1

C
0.9543 0.9399-0.9687

meanH 0.9721 0.9616-0.9827
meanGini 0.9630 0.9504-0.9756
meanAUC 0.9582 0.9445-0.9718
meanAUCH 0.9578 0.9440-0.9715
meanKS 0.9661 0.9542-0.9780
meanMER 0.9078 0.8843-0.9314
meanMWL 0.8771 0.8474-0.9067
meanSpSe99 0.9786 0.9696-0.9877
meanSeSp99 0.9796 0.9709-0.9884
mean 1

AUC
0.9480 0.9322-0.9637

meanM 0.9335 0.9156-0.9514
mean 1

M
0.9671 0.9550-0.9791

meanRP 0.9671 0.9551-0.9792

Table 4.11: AUC and relative CI for all time-dependent models (T=3)

• Accuracy: 72+27
742 = 13.34%,

• TE: 1−Accuracy = 1− 0.1334 = 86.66%.

The model examined correctly predicts 13.34% of cases compared to 86.66%
error. When it will positively have a chance of being correct 10.42% if it
includes the negative will have a percentage of correctness highest at 52.94%.
In the same way we can evaluate the performance of all other models.

Consider, now, the time-independent approach. First we calculated the
performance measures and the vector of the Mahalanobis distances for pre-
dictions obtained through the single models. The table 4:16 describes the
measures of performance for all four models (Cox, RSF, CT, LR), while Table
4:17 shows the measures of synthesis of Mahalanobis distance for the same
models. We observe, in Table 16.4, the single best model in terms of AUC is
the RSF with AUC = 0.9833, followed by LR (AUC = 0.8203), then CT with
AUC = 0.7994 and finally the Cox model (0.7522).
We use the information contained in tables 4.16 and 4.17 for build average mod-
els. After obtaining the weighted average models with different performance
measures and the Mahalanobis distance, again we calculate such measures to
compare the results obtained on the basis of individual models with those pro-
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Model TP TN FP FN

Cox 0.0970 0.0364 0.0323 0.8342
RSF 0.0283 0.0256 0.1011 0.8450
mean 0.0687 0.0283 0.0606 0.8423
meanC 0.0687 0.0283 0.0606 0.8423
mean 1

C
0.0674 0.0283 0.0620 0.8423

meanH 0.0526 0.0256 0.0768 0.8450
meanGini 0.0606 0.0256 0.0687 0.8450
meanAUC 0.0633 0.0283 0.0660 0.8423
meanAUCH 0.0647 0.0283 0.0647 0.8423
meanKS 0.0566 0.0256 0.0728 0.8450
meanMER 0.0889 0.0296 0.0404 0.8410
meanMWL 0.0957 0.0337 0.0337 0.8369
meanSpSe99 0.0364 0.0256 0.0930 0.8450
meanSeSp99 0.0350 0.0270 0.0943 0.8437
mean 1

AUC
0.0350 0.0270 0.0943 0.8437

meanM 0.0674 0.0445 0.0620 0.8261
mean 1

M
0.0687 0.0175 0.0606 0.8531

meanRP 0.0687 0.0175 0.0606 0.8531

Table 4.12: Confusion matrix for all time-dependent models at cut-off=0.5
(T=3)

vided by the average patterns. Tables 4.18 and 4.19 show, respectively, the
summary statistics of Mahalanobis distance and performance measures for all
average models.
Looking at the table 4.19 we can see that the average model that performs best
in terms of AUC meanRP followed by mean 1

M
with AUC, respectively, 0.9681

and 0.9659. We note that all the average models have a performance, in terms
of AUC, better than the individual models to the exclusion of the RSF with
AUC equal to 0.9833, as reported in the Table 4.16. The same conclusions can
be drawn by looking at the Table 4.20 that summarizing the accuracy of the
individual and average models in terms of AUC. In the third column of the
same table we find the CI of AUC.

As in the case of time-dependent models, also in the time-independent
context we go to observe the confusion matrices. We calculate the Specificity,
the Sensitivity, Accuracy and Total Error for RSF:

1. Sensitivity: TP
TP+FN = 80

80+26 = 75.47%,

2. Specificity: TN
TN+FP = 620

620+16 = 97.48%,

3. Accuracy: 80+620
742 = 94.34%,
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Model TP TN FP FN

Cox 0.0795 0.0647 0.0499 0.8059
RSF 0.0040 0.0472 0.1253 0.8235
mean 0.0391 0.0512 0.0903 0.8194
meanC 0.0391 0.0512 0.0903 0.8194
mean 1

C
0.0377 0.0512 0.0916 0.8194

meanH 0.0189 0.0431 0.1105 0.8275
meanGini 0.0296 0.0485 0.0997 0.8221
meanAUC 0.0377 0.0485 0.0916 0.8221
meanAUCH 0.0377 0.0499 0.0916 0.8208
meanKS 0.0243 0.0458 0.1051 0.8248
meanMER 0.0593 0.0606 0.0701 0.8010
meanMWL 0.0647 0.0606 0.0647 0.8010
meanSpSe99 0.0108 0.0404 0.1186 0.8302
meanSeSp99 0.0081 0.0404 0.1213 0.8302
mean 1

AUC
0.0418 0.0526 0.0876 0.8181

meanM 0.0404 0.0687 0.0890 0.8019
mean 1

M
0.0350 0.0404 0.0943 0.8302

meanRP 0.0350 0.0404 0.0943 0.8302

Table 4.13: Confusion matrix for all time-dependent models at cut-off=0.6
(T=3)

4. TE: 1−Accuracy = 1− 0.9434 = 5.66%.

The RSF correctly predicts,with a cut-off=0.5, 94.34% of cases compared
to 5.66% error. When it will positively have a chance of being correct 75.47% if
it includes the negative will have a percentage of correctness highest at 97.48%.
In the same way we can evaluate the performance of all other models.

In conclusion we can say that we get excellent performance in terms of
accuracy and correctly classified observations, when we consider the time-
independent approach, while the only time-dependent models commit a high
percentage of error in the classification of statistical units, however, must con-
sider that they have a good ability to predict the units classified negatively
(about 52%) compared with 10% probability of correctly classify positive units.
TM

4.2.1 Churn analysis example

In many sectors of the customers become churners when they cease their sub-
scription and decide to sign a new contract with a competitor. This event is a
major concern for businesses with customers who can easily become customers
of competitors, for example, credit card issuers, insurance companies, pay per
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4.2 Empirical evidence

Model TP TN FP FN

Cox 0.0539 0.1213 0.0755 0.7493
RSF 0.0013 0.0849 0.1280 0.7857
mean 0.0121 0.1065 0.1173 0.7642
meanC 0.0121 0.1065 0.1173 0.7642
mean 1

C
0.0121 0.1065 0.1173 0.7642

meanH 0.0013 0.0916 0.1280 0.7790
meanGini 0.0054 0.1011 0.1240 0.7695
meanAUC 0.0081 0.1051 0.1213 0.7655
meanAUCH 0.0081 0.1051 0.1213 0.7655
meanKS 0.0027 0.0984 0.1267 0.7722
meanMER 0.0323 0.1132 0.0970 0.7574
meanMWL 0.0418 0.1173 0.0876 0.7534
meanSpSe99 0.0013 0.0863 0.1280 0.7844
meanSeSp99 0.0013 0.0863 0.1280 0.7844
mean 1

AUC
0.0162 0.1105 0.1132 0.7601

meanM 0.0135 0.1267 0.1159 0.7439
mean 1

M
0.0094 0.0795 0.1199 0.7911

meanRP 0.0094 0.0795 0.1199 0.7911

Table 4.14: Confusion matrix for all time-dependent models at cut-off=0.7
(T=3)

view companies and telecommunications companies. In recent years the major
changes of the markets in which these companies have made strategic manage-
ment churn to compete on the market and to create a series of customer-focused
marketing operations. Through good management churn the company is able
to determine which customers are more likely to churn and which are the most
loyal customer. Churn management also allows companies to give a value to
the customers, that is to figure out when it is convenient to keep a customer
and when the customer agrees that migrate to another company for little or no
profitable. With all this information available to the company can implement
marketing strategies that allow you to attract customers more profitable and
have a lower likelihood of churn. One of the most used techniques to cope with
the abandonment is the data mining that can be used for two main purposes:

1. predict whether a particular customer will churn and when it will happen,

2. understand why particular customers churn.

Through the prevision of clients who are at risk of churn, the company is able
to reduce the dropout rate by offering, for example, services that convince the
customer to stay. Understanding the reason for abandonment, however, it is
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Model TP TN FP FN

Cox 0.0296 0.2304 0.0997 0.6402
RSF 0 0.1509 0.1294 0.7197
mean 0.0013 0.1819 0.1280 0.6887
meanC 0.0013 0.1860 0.1280 0.6846
mean 1

C
0.0013 0.1819 0.1280 0.6887

meanH 0.0013 0.1792 0.1280 0.6914
meanGini 0.0013 0.1806 0.1280 0.6900
meanAUC 0.0013 0.1806 0.1280 0.6900
meanAUCH 0.0013 0.1806 0.1280 0.6900
meanKS 0.0013 0.1792 0.1280 0.6914
meanMER 0.0108 0.1968 0.1186 0.6739
meanMWL 0.0189 0.2170 0.1105 0.6536
meanSpSe99 0 0.1739 0.1294 0.6968
meanSeSp99 0 0.1725 0.1294 0.6981
mean 1

AUC
0.0013 0.1819 0.1280 0.6887

meanM 0.0013 0.2116 0.1280 0.6590
mean 1

M
0.0013 0.1456 0.1280 0.7251

meanRP 0.0013 0.1456 0.1280 0.7251

Table 4.15: Confusion matrix for all time-dependent models at cut-off=0.8
(T=3)

Model H Gini AUC AUCH KS MER MWL SpSe99 SeSp99

Cox 0.2143 0.5045 0.7522 0.7692 0.4300 0.1294 0.3235 0.1250 0
RSF 0.3111 0.5414 0.9833 0.7891 0.4470 0.1213 0.1246 0.0668 0.0833
CT 0.3701 0.5988 0.7994 0.7994 0.4926 0.0997 0.1143 0.0346 0.1636
LR 0.3456 0.6406 0.8203 0.8329 0.5306 0.1240 0.1057 0.1811 0.0521

Table 4.16: Performance measure for single models

Model Min Q1 Median Mean Q3 Max 1
V ariance

CV

Cox 0.1484 0.2697 0.4122 1.9970 0.5658 136.9000 0.0249 3.1726
RSF 0.1484 0.2907 0.5992 1.9970 0.9650 15.9600 0.0945 1.6286
CT 0.2185 0.2460 0.2460 1.9970 0.3017 20.8700 0.0566 2.1038
LR 0.1484 0.3057 0.5895 1.9970 1.0070 24.8100 0.0909 1.6607

Table 4.17: Summary statistics of Mahalanobis distance for single models

useful to society to implement policies that enable the customer satisfaction
before it abandons the company in favor of a competitor.
After clarifying what does the churn analysis are going to present our method
of combining forecasts to a problem of churn analysis of data from a company’s
pay-per-view. Below in the datail riesults obtained. As regards the variables
studied it comes to variables that relate to the type of subscription as, for
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Table 4.18: Summary statistics of Mahalanobis distance for average models

example, the rental of the decoder, the packages included in the offer (sports,
movies, etc.), the income range, type of decoder , etc. Then we have a variable
duration and the dependent variable of our interest that represents the state
of the client (abandoned or not).
Table 4.25 shows the values of in sample C-index for the Cox and RSF. How
can we make out of the id that index in the first column of the tabellla RSF has
an excellent discriminating power suggested by a C-index equal to 0.9320 while
the Cox model has an acceptable discriminative power (C-index = 0.7142).
In Table 4.26 we have the performance measures for the single models. The
first thing you notice is that the Cox model and LR are characterized by the
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Table 4.19: Performance measure for all model combinations

same level of performance. All models have a good level of accuracy but the
models that perform best are the Cox model and LR.
Table 4.27 gathers summary statistics of the Mahalanobis distance. Recall that
the indicators considered are, starting from the leftmost column, the minimum,
the first quartile, median, average, the third quartile, maximum, the reciprocal
of the variance and the variation coefficient. Table 4.28 reports summary
statistics of Mahalanobis distance for average models.
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4.2 Empirical evidence

Model AUC CI

Cox 0.7522 0.7064-0.7980
RSF 0.9833 0.9761-0.9905
CT 0.7994 0.7465-0.8522
LR 0.8203 0.7788-0.8618
mean 0.9311 0.9119-0.9503
meanH 0.9344 0.9158-0.9530
meanGini 0.9293 0.9097-0.9490
meanAUC 0.9305 0.9111-0.9498
meanAUCH 0.9306 0.9113-0.9499
meanKS 0.9288 0.9090-0.9485
meanMER 0.9301 0.9108-0.9494
meanMWL 0.9329 0.9141-0.9516
meanSpSe99 0.9095 0.8867-0.9323
meanSeSp99 0.9479 0.9323-0.9636
mean 1

AUC
0.9314 0.9124-0.9505

meanM 0.9005 0.8776-0.9234
mean 1

M
0.9659 0.9528-0.9791

meanRP 0.9681 0.9557-0.9806

Table 4.20: AUC and relative CI for all models

Model TP TN FP FN

Cox 0.0162 0.83560 0.1132 0.0350
RSF 0.1078 0.8356 0.0216 0.0350
CT 0.0121 0.8585 0.0876 0.0418
LR 0.0135 0.8571 0.1105 0.0189
mean 0.0391 0.8639 0.0903 0.0067
meanH 0.0458 0.8639 0.08362 0.0067
meanGini 0.0391 0.8625 0.0903 0.0081
meanAUC 0.0391 0.8639 0.0903 0.0067
meanAUCH 0.0391 0.8639 0.0903 0.0067
meanKS 0.0391 0.8639 0.0903 0.0067
meanMER 0.0364 0.8652 0.0930 0.0054
meanMWL 0.0391 0.8639 0.0903 0.0067
meanSpSe99 0.0229 0.8598 0.1065 0.0108
meanSeSp99 0.0189 0.8518 0.0741 0.0553
mean 1

AUC
0.0391 0.8639 0.0903 0.0067

meanM 0.0526 0.8329 0.0768 0.0377
mean 1

M
0.0283 0.8679 0.1011 0.0027

meanRP 0.0283 0.8679 0.1011 0.0027

Table 4.21: Confusion matrix for all models at cut-off=0.5
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Model TP TN FP FN

COX 0.0094 0.8437 0.1199 0.0270
RSF 0.0863 0.8491 0.0431 0.0216
CT 0.0418 0.8585 0.0876 0.0121
LR 0.0040 0.8652 0.1253 0.0054
mean 0.0148 0.8679 0.1146 0.0027
meanH 0.0148 0.8693 0.1146 0.0013
meanGini 0.0121 0.8693 0.1173 0.0013
meanAUC 0.0135 0.8679 0.1159 0.0027
meanAUCH 0.0135 0.8679 0.1159 0.0027
meanKS 0.0121 0.8679 0.1173 0.0027
meanMER 0.0162 0.8679 0.1132 0.0027
meanMWL 0.0162 0.8679 0.1132 0.0027
meanSpSe99 0.0135 0.8679 0.1159 0.0027
meanSeSp99 0.0391 0.8625 0.0903 0.0081
mean 1

AUC
0.0148 0.8679 0.1146 0.0027

meanM 0.0243 0.8477 0.1051 0.0229
mean 1

M
0.0108 0.8693 0.1186 0.0013

meanRP 0.0121 0.8693 0.1173 0.0013

Table 4.22: Confusion matrix for all models at cut-off=0.6

Model TP TN FP FN

Cox 0.0040 0.8504 0.1253 0.0202
RSF 0.0647 0.8612 0.0647 0.0094
CT 0.0418 0.8585 0.0876 0.0121
LR 0 0.8679 0.1294 0.0027
mean 0.0067 0.8706 0.1226 0
meanH 0.0054 0.8706 0.1240 0
meanGini 0.0067 0.8706 0.1226 0
meanAUC 0.0067 0.8706 0.1226 0
meanAUCH 0.0067 0.8706 0.1226 0
meanKS 0.0067 0.8706 0.1226 0
meanMER 0.0067 0.87066 0.1226 0
meanMWL 0.0067 0.8706 0.1226 0
meanSpSe99 0.0027 0.8706 0.1267 0
meanSeSp99 0.0202 0.8679 0.1092 0.0027
mean 1

AUC
0.0067 0.8706 0.1226 0

meanM 0.0067 0.8625 0.1226 0.0081
mean 1

M
0.0040 0.8706 0.1253 0

meanRP 0.0054 0.8706 0.1240 0

Table 4.23: Confusion matrix for all models at cut-off=0.7
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4.2 Empirical evidence

Model TP TN FP FN

Cox 0.0013 0.8544 0.1280 0.0162
RSF 0.4580 0.8693 0.0836 0.0013
CT 0 0.8706 0.1294 0
LR 0 0.8706 0.1294 0
mean 0 0.8706 0.1294 0
meanH 0 0.8706 0.1294 0
meanGini 0 0.8706 0.1294 0
meanAUC 0 0.8706 0.1294 0
meanAUCH 0 0.8706 0.1294 0
meanKS 0 0.8706 0.1294 0
meanMER 0 0.8706 0.1294 0
meanMWL 0 0.8706 0.1294 0
meanSpSe99 0 0.8706 0.1294 0
meanSeSp99 0.0027 0.8706 0.1267 0
mean 1

AUC
0 0.8706 0.1294 0

meanM 0 0.8706 0.1294 0
mean 1

M
0 0.8706 0.1294 0

meanRP 0 0.8706 0.1294 0

Table 4.24: Confusion matrix for all models at cut-off=0.8

In Table 29.4 are the performance measures for all average models. Looking
at the column corresponding to the AUC we may note that the model that
presents the best performance is the average model weighed with the relative
performance weight (AUC=0.8721) followed by the average model weighed
with reciproca of Mahalanobis distance (AUC=0.8710). If we compared with
the results for individual models we see that the Cox model (AUC = 0.8915)
and LR (AUC = 0.8915) have a performance in terms of accuracy better than
meanRP and mean 1

M
. While the CT (AUC = 0.8714) has a performance

almost equal to the last two. The model achieves a performance worse is the
RSF (AUC = 0.8328) compared to all single and average models.
Table 4.30 summarizes the results just commented with regard to the AUC
and reports the respective confidence intervals.
Tables 31.4, 4.32, 4.33 and 4.34 show the results of the confusion matrices. We
focus our attention on the table 4.34. We observe, for example, the results
for the model meanRP . We calculate the Specificity, the Sensitivity, Accuracy
and Total Error:

1. Sensitivity: TP
TP+FN = 3549

3549+13132 = 21.28%,

2. Specificity: TN
TN+FP = 17546

17546+774 = 95.78%,
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Table 4.25: AUC for all models for real and simulated data (1)
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Table 4.26: AUC for all models for real and simulated data (2)
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The empirical results on real and simulated datasets

3. Accuracy: 3549+13132
35000 = 47.66%,

4. TE: 1−Accuracy = 1− 0.4766 = 52.34%.

meanRP correctly predicts,with a cut-off=0.8, 47.66% of cases compared to
52.34% error. When it will positively have a chance of being correct 21.28% if
it includes the negative will have a percentage of correctness highest at 95.78%.
In the same way we can evaluate the performance of all other models at all
cut-off.
Table 4.35 reports the results of the AUC in different points in time for the Cox
model and the RSF, we emphasize that it is cross-validation results obtained
by 10-fold cross-validation method. for the first four time instants the AUC of
RSF is smaller in AUC of the Cox model, starting from T = 15 the tendency
is reversed and the RSF shows higher AUC than those for the Cox model. It
is specified that, for the analysis of churn the time instants are considered on
a monthly basis unlike what happened in the case of the analysis of PD incui
time is expressed in years. We note also that the AUC from the table 4:35 to
RSF increases all’aumetare time while the Cox follows this same trend up to
T = 51, then he begins to address decreasing with increasing time.
Table 4.36, instead, shows the results in terms of C-index, always obtained with
the method 10-fold cross-validation. Also in this case the RSF shows values
of the C-index almost always greater than the Cox model, so it has a greater
discriminating power in many time instants. We note that the decrease in the
C-inex for the Cox model is smaller than what happens to the RSF. Infact,
in T=3 the C-index of Cox is 0.9570 while the RSF is 0.9810, T=72 in the
C-index for the Cox model is 0.9003 while the RSF is equal to 0.8790.
Table 4.37 shows the summary statistics of Mahalanobis distance for models
single time instant T=3. While the Table 4.38 gathers perfrmance measures
always for the single models in T=3. From Table 4.87 let ’s see now that the
model with a best performance at T=3 is the Cox model compared to RSF.
Table 4.39 shows summury statistics for all average models inT=3. we note
that these indicators are all very close to each other for each combination of
patterns.
Table 4.40 contains the results of the measures of performance for all models
average. Focusing on the column of the AUC, of our interest, we see that the
performance of all models combianti is almost similar, with respect to the in-
dividual models, we can say that, in terms of AUC, the Cox has a perfromance
slightly higher than weighted average models as compared to RSF these mod-
els are best. In this case, therefore, the single model is improved, even if only
slightly, the combined models. As usual, we summarize the results in terms of
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4.2 Empirical evidence

AUC in T=3, both for the individual models for both patterns average, in the
Table 4.41 where we report the value of the AUC and its confidence interval.
Tables 4.42, 4.43, 4.44 and 4.45 summarize the confusion matrices in correspon-
dence, respectively, of the cut-off 0.5, 0.6, 0.7 and 0.8 for all models analyzed.
We look average models meanRP in Table 4.45 and determine:

1. Sensitivity: TP
TP+FN = 3717

3717+30531 = 10.85%,

2. Specificity: TN
TN+FP = 130

130+606 = 17.66%,

3. Accuracy: 3717+130
35000 = 10.99%,

4. TE: 1−Accuracy = 1− 0.1099 = 89.01%.

The meanRP correctly predicts,with a cut-off=0.8, 10.99% of cases com-
pared to 89.01% error. When it will positively have a chance of being correct
10.85% if it includes the negative will have a percentage of correctness highest
at 17.66%. The results obtained for the other models can be commented on in
the same way. We deduce that in the churn analysis time-dependent approach
commit a high percentage of error in the classification of units, while the time-
independent approach has better performance in terms of units are correctly
classified.
The results for the time-dependent models were calculated for a time period
that ranges from 3 to 72 months. We stress that their analysis of the PD,
conducted in section 4.3, for churn analysis time is expressed in months and
not in years. For reasons of economy of space it is not possible to report the
results for all time instants but we considered that the results obtained are
similar to those presented to the instant T=3.

Model C-index se lower upper p-value

Cox 0.7142 0.0051 0.7043 0.7241 0
RSF 0.9320 0.0015 0.9282 0.9357 0

Table 4.27: C-Index for Cox and RSF with CI for churn analysis
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The empirical results on real and simulated datasets

Model H Gini AUC AUCH KS MER MWL SpSe99 SeSp99

Cox 0.5059 0.7830 0.8915 0.8927 0.6221 0.0848 0.0818 0.1946 0.3546
RSF 0.4465 0.6656 0.8328 0.8555 0.5626 0.0921 0.0946 0.2831 0.2697
CT 0.5207 0.7428 0.8714 0.8714 0.6481 0.0909 0.0762 0.5861 0.3437
LR 0.5059 0.7830 0.8915 0.8927 0.6221 0.0848 0.0818 0.1946 0.3547

Table 4.28: Performance measure for single models for churn analysis

Model Min Q1 Median Mean Q3 Max 1
V ariance

CV

Cox 0.1409 0.1869 0.2809 2.0000 0.3532 33.0200 0.0547 2.1375
RSF 0.1409 0.1901 0.2395 2.0000 0.2423 60.9700 0.0405 2.4839
CT 0.1904 0.2374 0.2374 2.0000 0.4209 32.8000 0.0592 2.0545
LR 0.1409 0.1869 0.2809 2.0000 0.3532 33.0200 0.0547 2.1375

Table 4.29: Summary statistics of Mahalanobis distance for single models for
churn analysis
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Table 4.30: Summary statistics of Mahalanobis distance for average models for
churn analysis
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Table 4.31: Performance measure for all model combinations for churn analysis
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4.2 Empirical evidence

Model AUC CI

Cox 0.8915 0.8681-0.8969
RSF 0.8328 0.8254-0.8402
CT 0.8714 0.8649-0.8779
LR 0.8915 0.8861-0.8969
mean 0.8635 0.8577-0.8692
meanH 0.8651 0.8595-0.8708
meanGini 0.8652 0.8595-0.8708
meanAUC 0.8643 0.8586-0.8700
meanAUCH 0.8640 0.8583-0.8697
meanKS 0.8649 0.8593-0.8706
meanMER 0.8627 0.8570-0.8685
meanMWL 0.8613 0.8555-0.8672
meanSpSe99 0.8660 0.8604-0.8716
meanSeSp99 0.8674 0.8618-0.8729
mean 1

AUC
0.8627 0.8569-0.8684

meanM 0.8634 0.8581-0.8688
mean 1

M
0.8710 0.8651-0.8768

meanRP 0.8721 0.8663-0.8779

Table 4.32: AUC and relative CI for all models for churn analysis

Model TP TN FP FN

Cox 0.0540 0.8601 0.0695 0.0164
RSF 0.1050 0.3652 0.0185 0.5113
CT 0.0476 0.8615 0.0759 0.0151
LR 0.0540 0.8601 0.0695 0.0164
mean 0.1141 0.4581 0.0093 0.4184
meanH 0.1140 0.4669 0.0095 0.4097
meanGini 0.1139 0.4671 0.0096 0.4095
meanAUC 0.1141 0.4603 0.0094 0.4162
meanAUCH 0.1141 0.4593 0.0094 0.4172
meanKS 0.1140 0.4661 0.0095 0.4105
meanMER 0.1142 0.4569 0.0093 0.4196
meanMWL 0.1143 0.4494 0.0092 0.4271
meanSpSe99 0.1169 0.4660 0.0066 0.4105
meanSeSp99 0.1137 0.4838 0.0098 0.3927
mean 1

AUC
0.1141 0.4573 0.0093 0.4192

meanM 0.1147 0.4763 0.0088 0.4003
mean 1

M
0.1137 0.4499 0.0098 0.4266

meanRP 0.1135 0.4552 0.0100 0.4213

Table 4.33: Confusion matrix for all models at cut-off=0.5 for churn analysis
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The empirical results on real and simulated datasets

Model TP TN FP FN

Cox 0.0450 0.8673 0.0785 0.0092
RSF 0.1048 0.3736 0.0187 0.5031
CT 0.0339 0.8715 0.0896 0.0050
LR 0.0450 0.8673 0.0785 0.0092
mean 0.1123 0.4833 0.0112 0.3932
meanH 0.1121 0.4895 0.0113 0.3871
meanGini 0.1121 0.4898 0.0113 0.3867
meanAUC 0.1122 0.4869 0.0113 0.3896
meanAUCH 0.1122 0.4865 0.0113 0.3901
meanKS 0.1121 0.4891 0.0113 0.3875
meanMER 0.1123 0.4704 0.0111 0.4061
meanMWL 0.1121 0.4666 0.0114 0.4099
meanSpSe99 0.1134 0.4892 0.0101 0.3873
meanSeSp99 0.1121 0.4982 0.0114 0.3783
mean 1

AUC
0.1121 0.4754 0.0113 0.4011

meanM 0.1125 0.5121 0.0109 0.3644
mean 1

M
0.1124 0.4677 0.0111 0.4088

meanRP 0.1123 0.4774 0.0111 0.3991

Table 4.34: Confusion matrix for all models at cut-off=0.6 for churn analysis

Model TP TN FP FN

Cox 0.0361 0.8717 0.0873 0.0048
RSF 0.1042 0.3894 0.0193 0.4871
CT 0.0334 0.8715 0.0896 0.0050
LR 0.0361 0.8717 0.0873 0.0048
mean 0.1092 0.4952 0.0143 0.3813
meanH 0.1011 0.5195 0.0224 0.3571
meanGini 0.1101 0.5049 0.0133 0.3716
meanAUC 0.1101 0.4971 0.0134 0.3794
meanAUCH 0.1097 0.4967 0.0138 0.3799
meanKS 0.1100 0.5039 0.0135 0.3726
meanMER 0.1088 0.4909 0.0147 0.3856
meanMWL 0.1076 0.4881 0.0159 0.3885
meanSpSe99 0.1104 0.5044 0.0131 0.3721
meanSeSp99 0.1110 0.5099 0.0125 0.3666
mean 1

AUC
0.1081 0.4917 0.0154 0.3848

meanM 0.1099 0.5365 0.0135 0.3400
mean 1

M
0.1058 0.4857 0.0177 0.3908

meanRP 0.1089 0.4939 0.0146 0.3827

Table 4.35: Confusion matrix for all models at cut-off=0.7 for churn analysis
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4.2 Empirical evidence

Model TP TN FP FN

Cox 0.0306 0.8738 0.0929 0.0027
RSF 0.1031 0.3987 0.0204 0.4778
CT 0.0339 0.8715 0.0896 0.0050
LR 0.0306 0.8738 0.0929 0.0027
mean 0.1014 0.5071 0.0221 0.3694
meanH 0.1011 0.5195 0.0224 0.3571
meanGini 0.1010 0.5202 0.0225 0.3563
meanAUC 0.1014 0.5090 0.0221 0.3675
meanAUCH 0.1014 0.5087 0.0221 0.3678
meanKS 0.1013 0.5140 0.0222 0.3625
meanMER 0.1014 0.5052 0.0221 0.3713
meanMWL 0.1015 0.4669 0.0220 0.3796
meanSpSe99 0.1011 0.5196 0.0223 0.3569
meanSeSp99 0.1006 0.5381 0.0229 0.3384
mean 1

AUC
0.1014 0.5058 0.0221 0.3707

meanM 0.1011 0.5652 0.0224 0.3113
mean 1

M
0.1015 0.4976 0.0219 0.3789

meanRP 0.1014 0.5013 0.0221 0.3752

Table 4.36: Confusion matrix for all models at cut-off=0.8 for churn analysis
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The empirical results on real and simulated datasets

Time AUC Cox AUC RSF

T3 0.7112 0.6205
T6 0.7375 0.6776
T9 0.7375 0.7086
T12 0.7392 0.7260
T15 0.7372 0.7461
T18 0.7282 0.7567
T21 0.7305 0.7636
T24 0.7241 0.7894
T27 0.7207 0.8038
T30 0.7249 0.8205
T33 0.7282 0.8291
T36 0.7299 0.8346
T39 0.7310 0.8422
T42 0.7319 0.8481
T45 0.7324 0.8530
T48 0.7327 0.8564
T51 0.7317 0.8613
T54 0.7316 0.8654
T57 0.7312 0.8678
T60 0.7261 0.8701
T63 0.7237 0.8726
T66 0.7189 0.8742
T69 0.7147 0.8756
T72 0.7120 0.8763

Table 4.37: AUC for Cox and RSF at different points in time for churn analysis
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4.2 Empirical evidence

Time C-index Cox C-index RSF

T3 0.9570 0.9810
T6 0.9640 0.9760
T9 0.9670 0.9720
T12 0.9470 0.9460
T15 0.9460 0.9430
T18 0.9480 0.9410
T21 0.9490 0.9360
T24 0.9470 0.9310
T27 0.9450 0.9280
T30 0.9410 0.9220
T33 0.9380 0.9190
T36 0.9360 0.9160
T39 0.9320 0.9110
T42 0.9310 0.9100
T45 0.9300 0.9080
T48 0.9270 0.9050
T51 0.9270 0.9020
T54 0.9210 0.8980
T57 0.9180 0.8940
T60 0.9150 0.8910
T63 0.9100 0.8860
T66 0.9080 0.8840
T69 0.9040 0.8810
T72 0.9003 0.8790

Table 4.38: C-index of Cox and RSF at different points in time

Model Min Q1 Median Mean Q3 Max 1
V ariance

CV

Cox 0.1409 0.1590 0.1607 2.0000 0.1607 145.6000 0.0162 3.9272
RSF 0.1409 0.1622 0.1630 2.0000 0.1630 108.7000 0.0224 3.3405

Table 4.39: Summary statistics of Mahalanobis distance for single models for
churn analysis (T=3)

Model H Gini AUC AUCH KS MER MWL SpSe99 SeSp99

Cox 0.2069 0.4223 0.7112 0.7289 0.3575 0.1086 0.1391 0.4665 0.1789
RSF 0.1449 0.2409 0.6205 0.6295 0.2090 0.1073 0.1712 0.5241 0.2210

Table 4.40: Performance measure for single models for churn analysis (T=3)
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The empirical results on real and simulated datasets
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Table 4.41: Summary statistics of Mahalanobis distance for all time-dependent
average models for churn analysis (T=3)
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4.2 Empirical evidence
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Table 4.42: Performance measure for all model combinations for churn analysis
(T=3)
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The empirical results on real and simulated datasets

Model AUC CI

Cox 0.7112 0.7029-0.7194
RSF 0.6205 0.6112-0.6298
mean 0.7024 0.6939-0.7109
meanC 0.7022 0.6937-0.7107
mean 1

C
0.7026 0.6941-0.7111

meanH 0.7060 0.6976-0.7145
meanGini 0.7085 0.7001-0.7169
meanAUC 0.7043 0.6958-0.7127
meanAUCH 0.7044 0.6959-0.7129
meanKS 0.7083 0.6999-0.7168
meanMER 0.7025 0.6940-0.7110
meanMWL 0.6995 0.6910-0.7080
meanSpSe99 0.7010 0.6925-0.7095
meanSeSp99 0.7023 0.6938-0.7108
mean 1

AUC
0.7005 0.6920-0.7090

meanM 0.7041 0.6956-0.7127
mean 1

M
0.7009 0.6924-0.7093

meanRP 0.7043 0.6958-0.7129

Table 4.43: AUC and relative CI for all models for churn analysis (T=3)

Model TP TN FP FN

Cox 0.1153 0.0005 0.0065 0.8761
RSF 0.1136 0.0003 0.0099 0.8763
mean 0.1161 0.0002 0.0074 0.8763
meanC 0.1161 0.0002 0.0074 0.8763
mean 1

C
0.1162 0.0002 0.0729 0.8763

meanH 0.1161 0.0003 0.0074 0.8762
meanGini 0.1161 0.0003 0.0074 0.8763
meanAUC 0.1162 0.0002 0.0073 0.8763
meanAUCH 0.1162 0.0002 0.0073 0.8763
meanKS 0.1161 0.0003 0.0074 0.8763
meanMER 0.1162 0.0002 0.0073 0.8763
meanMWL 0.1158 0.0002 0.0077 0.8763
meanSpSe99 0.1160 0.0002 0.0075 0.8763
meanSeSp99 0.1161 0.0002 0.0074 0.8763
mean 1

AUC
0.1157 0.0002 0.0077 0.8763

meanM 0.1168 0.0002 0.0067 0.8763
mean 1

M
0.1131 0.0005 0.0104 0.8760

meanRP 0.1168 0.0002 0.0067 0.8763

Table 4.44: Confusion matrix for all models at cut-off=0.5 for churn analysis
(T=3)
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4.3 Summary

4.3 Summary

In this chapter we have presented several examples of application of our method
combianzione models. We have shown that it is possible to apply the method
to all the problems of analysis in which you have a binary response variable
through the use of two different datasets, the first concerning the prediction of
probability of default (section 4.3) and the second, which takes into account
the churn analysis (section 4.3.1). In conclusion for PD example we can say
that we get excellent performance in terms of accuracy and correctly classified
observations, when we consider the time-independent approach, while the only
time-dependent models commit a high percentage of error in the classification
of statistical units, however, must consider that they have a good ability to
predict the units classified negatively compared with probability of correctly
classify positive units.
If we look at the approach to the time-dependent case of churn analysis we can
say that the probability of having the observations correctly classisìficate is
almost the same as which ones to make mistakes in the classification.It must,
however, be observed that the models, in this case, have a high probability to
correctly classify the negative units. Regarding the time-dependent approach
we can say that the probability of making errors in classification is very high,
then even in this case works best time-independet approaches.
If we want to evaluate the performance of the models in terms of AUC, we can
say that the models with average weights constructed with the Mahalanobis
distance have a level of performance higher than all the others. Therefore, the
method identified, that is to use measures of distance as weights combination
of forecasts obtained from the individual models and overcomes the problem
of the inconsistency of the measures of performance, it seems to provide added
value compared to other methods.
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The empirical results on real and simulated datasets

Model TP TN FP FN

Cox 0.1017 0.0013 0.0132 0.8752
RSF 0.1109 0.0004 0.0126 0.8761
mean 0.1113 0.0012 0.0122 0.8753
meanC 0.1113 0.0012 0.0122 0.8753
mean 1

C
0.1113 0.0012 0.0122 0.8753

meanH 0.1119 0.0012 0.0116 0.8753
meanGini 0.1121 0.0012 0.0114 0.8753
meanAUC 0.1115 0.0012 0.0120 0.8753
meanAUCH 0.1115 0.0012 0.0120 0.8753
meanKS 0.1121 0.0012 0.0114 0.8753
meanMER 0.1113 0.0012 0.0122 0.8753
meanMWL 0.1107 0.0012 0.0127 0.8753
meanSpSe99 0.1111 0.0012 0.0124 0.8753
meanSeSp99 0.1113 0.0012 0.0122 0.8753
mean 1

AUC
0.1109 0.0012 0.0126 0.8753

meanM 0.1126 0.0011 0.0109 0.8754
mean 1

M
0.1076 0.0015 0.0159 0.8751

meanRP 0.1026 0.0011 0.0109 0.8754

Table 4.45: Confusion matrix for all models at cut-off=0.6 for churn analysis
(T=3)
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4.3 Summary

Model TP TN FP FN

Cox 0.1062 0.0027 0.0173 0.8739
RSF 0.1044 0.0032 0.0191 0.8733
mean 0.1060 0.0026 0.0175 0.8739
meanC 0.1059 0.0026 0.0175 0.8739
mean 1

C
0.1061 0.0026 0.0174 0.8739

meanH 0.1055 0.0026 0.0180 0.8739
meanGini 0.1059 0.0026 0.0176 0.8739
meanAUC 0.1063 0.0026 0.0171 0.8739
meanAUCH 0.1063 0.0025 0.0171 0.8740
meanKS 0.1060 0.0026 0.0175 0.8739
meanMER 0.1061 0.0026 0.0174 0.8739
meanMWL 0.1059 0.0026 0.0176 0.8739
meanSpSe99 0.1059 0.0026 0.0176 0.8739
meanSeSp99 0.1059 0.0026 0.0175 0.8739
mean 1

AUC
0.1059 0.0026 0.0176 0.8739

meanM 0.1088 0.0024 0.0147 0.8741
mean 1

M
0.1035 0.0029 0.0199 0.8736

meanRP 0.1088 0.0024 0.0147 0.8741

Table 4.46: Confusion matrix for all models at cut-off=0.7 for churn analysis
(T=3)
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The empirical results on real and simulated datasets

Model TP TN FP FN

Cox 0.1030 0.0063 0.0205 0.8702
RSF 0.1030 0.0043 0.0205 0.8722
mean 0.1015 0.0043 0.0219 0.8723
meanC 0.1016 0.0043 0.0219 0.8723
mean 1

C
0.1015 0.0043 0.0219 0.8722

meanH 0.1014 0.0043 0.0221 0.8722
meanGini 0.1012 0.0044 0.0223 0.8721
meanAUC 0.1015 0.0044 0.0220 0.8721
meanAUCH 0.1015 0.0044 0.0220 0.8721
meanKS 0.1012 0.0044 0.0223 0.8721
meanMER 0.1015 0.0043 0.0219 0.8722
meanMWL 0.1020 0.0043 0.0215 0.8723
meanSpSe99 0.1020 0.0043 0.0215 0.8723
meanSeSp99 0.1016 0.0043 0.0219 0.8723
mean 1

AUC
0.1020 0.0043 0.0215 0.8723

meanM 0.1062 0.0037 0.0173 0.8729
mean 1

M
0.1007 0.0057 0.0227 0.8708

meanRP 0.1062 0.0037 0.0173 0.8723

Table 4.47: Confusion matrix for all models at cut-off=0.8 for churn analysis
(T=3)
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Chapter 5

Conclusion and future research

5.1 Summary and future development

Literature on combining forecasts is very our extensive, the common thread
of most of the work is that through the combination of models is improved
the accuracy of predictions. In addition, a review of the literature shows that
the simplest methods of combination provide better results than more com-
plex. In fact, in many cases it was possible to improve the performance of the
models through the simple medium of forecasts obtained by single models. In
chapter 1 we have presented two main categories of models: time-dependent
and time-independent. With regard to the first category of models, we focus
our attention on the model of Cox proportional hazards model and Random
Survival Forest. With regard to the time-independent model,we will discuss
the Logistic Regression and Classification Trees.
We have described, also, the performance measures chosen to assess the model
in terms of discriminatory power and predicted capability. Also the perfor-
mance measures are of double nature: for time-dependent and time-independent
models. The characteristic of all performance measures used is that are releted
with the Roc curve.
In the Chapter 2 we have presented the concept of forecast combination. The
forecast combination are born at the moment when we can have two or more
predictions of the same event. Usually, the interest of the analyst is to iden-
tify the best forecast. When this is identified is used by the analyst while the
others forecasts are discarded. However, we must consider that the forecasts
discarded may contain useful information especially when the purpose is to
determine the best possible forecast. We can desume that if we take into ac-
count all the forecasts and we do a combination we can come to a better and
more robust forecasting performance than what we can achieve in the case of
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Conclusion and future research

predictions generated by individual models. The existing literature concerning
forecasts combination suggests that even when it is possible to identify the best
model may be convenient to combine forecasts since the combination could lead
to an increase in the accuracy of the forecast. We ave described many aspects
that emphasize the usefulness of recourse to forecasts combination with respect
to forecasts from individual models, for example forecast combinato leads to
overcomes misspecification problem. In presence of two or more forecasts of
the same variable the first question to answer is whether to combine or not to
combine and we treat this aspect in Chapter 2. We emphasized that there are
different combinato schemes. In the literature they are found in the majority
of cases, patterns of combination of the linear type. In essence, if we assume
as a loss function the MSE proceed to a combination of linear forecast models.
However, you can also encounter cases where build combinations of non-linear
type or time-varying combination methods. In our opinion the starting point,
when thinking whether to build or not predictions combined, is the statement
of Clemen (1989): "Combining forecasts has been shown to be practical, eco-
nomical and useful". In fact, the forecast combination allows us not only to use
a broader range of information than what we allow the individual models but
makes possible to overcome, for example, the misspecification of single models.
We will present the method studied by us to combine models of different na-
ture in order to improve the prediction of the PD. Specifically, we will see
that we determined averaged models using weights as performance measures
and distance measures, to our knowledge, is an innovation in the literature of
forecast combination. The goal of our work is to be able to correctly classify
statistics units. We choose two doefferent approaches: time-dependent and
time-independent, in both cases we apodo the same combination scheme as
described in Chapter 3. The initial idea was to compare the time-dependent
models with those time-independent in terms of AUC to establish the single
model that performs better and then use the same measure as weight for the
combination. The choice of using a measure of performance as weight arises
from the consideration that the literature suggests that use weights without
any constraint leads to combination methods more accurate than those that
pose conditions on the characteristics of the weights. Since the performance
measures can be incoherent, in particular the AUC, we decided to calculate
and use as weight distance measure, specifically we have focused our attention
on the Mahalanobis distance. The choice of this distance measure is due to the
following reflections. First, in multivariate statistics this measure is used to
capture the similarity between two objects and we are interested to measure the
similarity that exists between the response variable observed and forecast the
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5.1 Summary and future development

same made by the different individual models considered. Second, we wanted
a measure that could be calculated in the same way for all the models under
study view of the different nature of these models. Last but not least, we
wanted a simple measure to calculate to meet one of the main characteristics
of the methods of combination. We determine the combination models as a
weigthed average models in which the weigths are performance and distance
measures. We evaluate the performance of all models considered in our study,
single and combained, based on the units correctly classified. Therefore we
determine the confusion matrix and we can see the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN). In this case the
best model is the one that will have a higher percentage of units are correctly
classified and therefore true positives and true negatives.
In Chapter 4 we presented two examples of application of the method of combi-
nation designed to provide empirical evidence of the results that this method
leads. We presented two applications of the method to problems of predic-
tion of dichotomous data. In the first case we have applied the method to a
problem of credit risk with the aim to predict the probability of default, while
in the second case we have focused our attention on the churn analysis with
the aim to predict the likelihood of abandonment. Otteuti The results have
been described in detail in Chapter 4, it is pointed out that empirical evidence
suggests that the approach seems to work better than time-independent time-
dependent. Weights that determine the best combination models are those
based on the Mahalanobis distance.
As regards future developments, the idea that can be realized is that which is
based on the use of concordance measures for dichotomous data for the evalua-
tion of the models. The concordance should be calculated between the response
variable of interest and forecasts of that obtained through the combined models
with certain weights introduced in this study.
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Appendix A

Confusion matrix for simulated
data

Model TP TN FP FN

Cox 0.0013 0.9623 0.0094 0.0270
RSF 0 0.9043 0.0108 0.0795
CT 0 0.9097 0.0108 0.0121
LR 0.0013 0.9690 0.0994 0.0202
mean 0 0.9596 0.0108 0 .0296
meanH 0 0.9367 0.0108 0.0526
meanGini 0 0.9420 0.0108 0.0472
meanAUC 0 0.9528 0.0108 0.0364
meanAUCH 0 0.9582 0.0108 0.0310
meanKS 0 0.9420 0.0108 0.0472
meanMER 0.0013 0.9650 0.0013 0.0243
meanMWL 0 0.9879 0.0108 0.0013
meanSpSe99 0 0.9367 0.0108 0.0526
meanSeSp99 0 0.9191 0.0108 0.0101
mean 1

AUC
0.0013 0.9650 0.0094 0.0243

meanM 0 0.9232 0.0108 0.0660
mean 1

M
0 0.9636 0.0108 0.0256

meanRP 0 0.9636 0.0108 0.0256

Table A.1: Confusion matrix for all models at cut-off=0.7 (P=0.01)
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Confusion matrix for simulated data

Model TP TN FP FN

Cox 0.0027 0.9474 0.0243 0.0256
RSF 0 0.8881 0.0270 0.0849
CT 0.0013 0.8949 0.0256 0.0782
LR 0.0013 0.9528 0.0256 0.0202
mean 0 0.9730 0.0270 0
meanH 0 0.9730 0.0270 0
meanGini 0 0.9730 0.0270 0
meanAUC 0 0.9730 0.0270 0
meanAUCH 0 0.9730 0.0270 0
meanKS 0 0.9730 0.0270 0
meanMER 0 0.9730 0.0270 0
meanMWL 0 0.9730 0.0270 0
meanSpSe99 0.0027 0.9730 0.0243 0
meanSeSp99 0.0040 0.9730 0.0229 0
mean 1

AUC
0 0.9730 0.0270 0

meanM 0 0.9730 0.0270 0
mean 1

M
0 0.9730 0.0270 0

meanRP 0 0.9730 0.0270 0

Table A.2: Confusion matrix for all models at cut-off=0.7 (P=0.02)

Model TP TN FP FN

Cox 0.0013 0.9340 0.0377 0.0270
RSF 0.0027 0.8787 0.0364 0.0822
CT 0.0054 0.8868 0.0337 0.0741
LR 0 0.9394 0.0391 0.0216
mean 0 0.9609 0.0391 0
meanH 0.0013 0.9609 0.0270 0.0377
meanGini 0 0.9609 0.0391 0
meanAUC 0 0.9609 0.0391 0
meanAUCH 0 0.9609 0.0391 0
meanKS 0 0.9609 0.0391 0
meanMER 0 0.9609 0.0391 0
meanMWL 0 0.9609 0.0391 0
meanSpSe99 0.0013 0.9609 0.0377 0
meanSeSp99 0.0040 0.9609 0.0350 0
mean 1

AUC
0 0.9609 0.0391 0

meanM 0 0.0148 0.0387 0.9461
mean 1

M
0 0.9609 0.0391 0

meanRP 0.0391 0 0 0.9609

Table A.3: Confusion matrix for all models at cut-off=0.7 (P=0.03)
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Model TP TN FP FN

Cox 0.0013 0.9461 0.0256 0.0270
RSF 0.0040 0.8922 0.0229 0.0809
CT 0.0027 0.8962 0.0243 0.0741
LR 0 0.9515 0.0256 0.0216
mean 0 0.9730 0.0270 0
meanH 0 0.9730 0.0270 0
meanGini 0 0.9730 0.0270 0
meanAUC 0 0.9730 0.0270 0
meanAUCH 0 0.9730 0.0270 0
meanKS 0 0.9730 0.0270 0
meanMER 0 0.9730 0.0270 0
meanMWL 0 0.9730 0.0270 0
meanSpSe99 0 0.9730 0.0270 0
meanSeSp99 0 0.9730 0.0270 0
mean 1

AUC
0 0.9730 0.0270 0

meanM 0 0.9730 0.0270 0
mean 1

M
0 0.9730 0.0270 0

meanRP 0 0.9730 0.0270 0

Table A.4: Confusion matrix for all models at cut-off=0.7 (P=0.04)

Model TP TN FP FN

Cox 0.0013 0.9380 0.0337 0.0270
RSF 0.0013 0.8814 0.0337 0.0836
CT 0.0040 0.8895 0.0310 0.0755
LR 0.0013 0.9447 0.0337 0.0202
mean 0 0.9650 0.0350 0
meanH 0.0013 0.9650 0.0337 0
meanGini 0 0.9650 0.0350 0
meanAUC 0 0.9650 0.0350 0
meanAUCH 0 0.9650 0.0350 0
meanKS 0 0.9650 0.0350 0
meanMER 0 0.9650 0.0350 0
meanMWL 0 0.9650 0.0350 0
meanSpSe99 0 0.9650 0.0350 0
meanSeSp99 0.0054 0.9650 0.0296 0
mean 1

AUC
0 0.9650 0.0350 0

meanM 0 0.9650 0.0350 0
mean 1

M
0 0.9650 0.0350 0

meanRP 0 0.9650 0.0350 0

Table A.5: Confusion matrix for all models at cut-off=0.7 (P=0.05)
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Confusion matrix for simulated data

Model TP TN FP FN

Cox 0.0013 0.9245 0.0472 0.0270
RSF 0.0040 0.8706 0.0445 0.0809
CT 0.0081 0.8801 0.0404 0.0714
LR 0.0013 0.9313 0.0472 0.0202
mean 0 0.9515 0.0485 0
meanH 0.0485 0 0.9515 0
meanGini 0.0418 0.9515 0.0067 0
meanAUC 0.0081 0.9515 0.0404 0
meanAUCH 0.0081 0.9515 0.0404 0
meanKS 0.0418 0.9515 0.0067 0
meanMER 0 0.9515 0.0485 0
meanMWL 0 0.9515 0.0485 0
meanSpSe99 0.0485 0.9515 0 0
meanSeSp99 0.0485 0.9515 0 0
mean 1

AUC
0 0.9515 0.0485 0

meanM 0.0040 0.9501 0.0445 0.0013
mean 1

M
0 0.9515 0.0485 0

meanRP 0 0.9515 0.0485 0

Table A.6: Confusion matrix for all models at cut-off=0.7 (P=0.06)

Model TP TN FP FN

Cox 0 0.9003 0.0714 0.0283
RSF 0.0067 0.8504 0.0647 0.0782
CT 0.0081 0.8571 0.0633 0.0714
LR 0 0.9070 0.0714 0.0216
mean 0 0.9286 0.0714 0
meanH 0.0580 0.9286 0.0135 0
meanGini 0.0216 0.9286 0.0499 0
meanAUC 0 0.9286 0.0714 0
meanAUCH 0 0.9286 0.0714 0
meanKS 0.0202 0.9286 0.0512 0
meanMER 0 0.9286 0.0714 0
meanMWL 0 0.9286 0.0714 0
meanSpSe99 0.0633 0.9285 0.0081 0
meanSeSp99 0.0687 0.9285 0.0027 0
mean 1

AUC
0 0.285 0.0714 0

meanM 0 0.9272 0.0714 0.0013
mean 1

M
0.0013 0.9286 0.0701 0

meanRP 0.0013 0.9286 0.0701 0

Table A.7: Confusion matrix for all models at cut-off=0.7 (P=0.07)
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Model TP TN FP FN

Cox 0.0027 0.8787 0.0930 0.0256
RSF 0.0081 0.8275 0.0876 0.0768
CT 0.0067 0.8315 0.0889 0.0728
LR 0 0.8827 0.0957 0.0216
mean 0 0.9043 0.0957 0
meanH 0.0189 0.9043 0.0768 0
meanGini 0.0121 0.9043 0.0836 0
meanAUC 0 0.9043 0.0957 0
meanAUCH 0 0.9043 0.0957 0
meanKS 0.0121 0.9043 0.0836 0
meanMER 0 0.9043 0.0957 0
meanMWL 0 0.9043 0.0957 0
meanSpSe99 0.0283 0.9043 0.0674 0
meanSeSp99 0.0431 0.9030 0.0526 0.0013
mean 1

AUC
0 0.9043 0.0957 0

meanM 0.0054 0.9030 0.0903 0.0013
mean 1

M
0 0.9043 0.0957 0

meanRP 0 0.9043 0.0957 0

Table A.8: Confusion matrix for all models at cut-off=0.7 (P=0.08)

Model TP TN FP FN

Cox 0.0040 0.8976 0.0741 0.0243
RSF 0.0094 0.8466 0.0687 0.0755
CT 0.0108 0.8531 0.0674 0.0687
LR 0.0027 0.9030 0.0755 0.0189
mean 0 0.9218 0.0782 0
meanH 0 0.9218 0.0782 0
meanGini 0 0.9218 0.0782 0
meanAUC 0 0.9218 0.0782 0
meanAUCH 0 0.9218 0.0782 0
meanKS 0 0.9218 0.0782 0
meanMER 0 0.9218 0.0782 0
meanMWL 0 0.9218 0.0782 0
meanSpSe99 0 0.9218 0.0782 0
meanSeSp99 0 0.9218 0.0782 0
mean 1

AUC
0 0.9218 0.0782 0

meanM 0 0.9218 0.0782 0
mean 1

M
0 0.9218 0.0782 0

meanRP 0 0.9218 0.0782 0

Table A.9: Confusion matrix for all models at cut-off=0.7 (P=0.09)
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Confusion matrix for simulated data

Model TP TN FP FN

Cox 0.0027 0.8787 0.0930 0.0256
RSF 0.0108 0.8302 0.0849 0.0741
CT 0.0081 0.8329 0.0876 0.0714
LR 0.0027 0.8854 0.0957 0.0189
mean 0 0.9043 0.0782 0
meanH 0.0148 0.9043 0.0809 0
meanGini 0.0040 0.9043 0.0916 0
meanAUC 0 0.9043 0.0782 0
meanAUCH 0 0.9043 0.0782 0
meanKS 0.0040 0.9043 0.0916 0
meanMER 0 0.9043 0.0782 0
meanMWL 0 0.9043 0.0782 0
meanSpSe99 0.0189 0.9043 0.0768 0
meanSeSp99 0.0296 0.9043 0.0660 0
mean 1

AUC
0 0.9043 0.0782 0

meanM 0.0013 0.9043 0.0943 0
mean 1

M
0.0782 0.9016 0 0.0027

meanRP 0 0.9043 0.0782 0

Table A.10: Confusion matrix for all models at cut-off=0.7 (P=0.10)

Model TP TN FP FN

Cox 0.0027 0.9346 0.1631 0.0256
RSF 0.0121 0.7615 0.1536 0.0728
CT 0.0148 0.7695 0.1509 0.0647
LR 0.0040 0.8167 0.1617 0.0175
mean 0.1334 0.8315 0.0323 0.0027
meanH 0.1658 0.6456 0 0.1887
meanGini 0.1658 0.7210 0 0.1132
meanAUC 0.1644 0.8208 0.0013 0.0135
meanAUCH 0.1644 0.8235 0.0013 0.0108
meanKS 0.1658 0.7453 0 0.0889
meanMER 0 0.8342 0.1658 0
meanMWL 0 0.8342 0.1658 0
meanSpSe99 0.1658 0.6321 0 0.2022
meanSeSp99 0.1658 0.5916 0 0.2426
mean 1

AUC
0.0310 0.8329 0.1348 0.0013

meanM 0.0216 0 0.0013 0.7776
mean 1

M
0.1240 0.8302 0.0418 0.0040

meanRP 0.1348 0.8302 0.0310 0.0040

Table A.11: Confusion matrix for all models at cut-off=0.7 (P=0.15)
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Model TP TN FP FN

Cox 0.0067 0.79116 0.15911 0.0216
RSF 0.0189 0.7466 0.1685 0.0660
CT 0.0202 0.7534 0.1671 0.0593
LR 0.0040 0.7951 0.1833 0.0175
mean 0.0094 0.8019 0.1780 0.0108
meanH 0.0162 0.7884 0.1712 0.0243
meanGini 0.0458 0.7197 0.1415 0.0930
meanAUC 0.0175 0.7978 0.1698 0.0148
meanAUCH 0.0108 0.7978 0.1765 0.0256
meanKS 0.0175 0.7871 0.1698 0.0889
meanMER 0.0108 0.8019 0.1765 0.0108
meanMWL 0.0067 0.8032 0.1806 0.0094
meanSpSe99 0 0.8127 0.1873 0
meanSeSp99 0 0.8127 0.1873 0
mean 1

AUC
0.0054 0.8032 0.1819 0.0094

meanM 0.0148 0.7210 0.1725 0.0916
mean 1

M
0.0040 0.7628 0.1833 0.0499

meanRP 0.0027 0.7776 0.1846 0.0350

Table A.12: Confusion matrix for all models at cut-off=0.7 (P=0.20)

Model TP TN FP FN

Cox 0.0094 0.6927 0.2790 0.0189
RSF 0.0310 0.6577 0.2574 0.0539
CT 0.0229 0.6550 0.2655 0.0566
LR 0.0108 0.7008 0.2776 0.0108
mean 0.2884 0.6792 0 0.0323
meanH 0.2884 0.2372 0 0.4744
meanGini 0.2884 0.2830 0 0.4286
meanAUC 0.2884 0.5768 0 0.1348
meanAUCH 0.2884 0.5916 0 0.1199
meanKS 0.2884 0.3059 0 0.4056
meanMER 0 0.7116 0.2884 0
meanMWL 0 0.7116 0.2884 0
meanSpSe99 0.2884 0.4717 0 0.2399
meanSeSp99 0.2884 0.4582 0 0.2534
mean 1

AUC
0.1860 0.7075 0 0.0040

meanM 0.2857 0.6078 0.0027 0.1038
mean 1

M
0.2884 0.1186 0 0.5930

meanRP 0.2655 0.5606 0.0229 0.1509

Table A.13: Confusion matrix for all models at cut-off=0.7 (P=0.25)
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Confusion matrix for simulated data

Model TP TN FP FN

Cox 0.0094 0.6846 0.2871 0.0189
RSF 0.0202 0.6388 0.2763 0.0647
CT 0.0189 0.6429 0.2766 0.0606
LR 0.0067 0.6887 0.2898 0.0148
mean 0.0472 0.7035 0.2493 0.0620
meanH 0.2965 0.6415 0 0.4744
meanGini 0.2965 0.6495 0 0.0539
meanAUC 0.2439 0.7008 0.0526 0.0027
meanAUCH 0.2049 0.7035 0.0916 0
meanKS 0.2965 0.6725 0 0.0310
meanMER 0 0.7035 0.2965 0
meanMWL 0 0.7035 0.2965 0
meanSpSe99 0.2925 0.6806 0.0040 0.0229
meanSeSp99 0.2911 0.6819 0.0054 0.0216
mean 1

AUC
0.0013 0.7035 0.2951 0

meanM 0.2156 0.6698 0.0809 0.0337
mean 1

M
0.1644 0.7035 0.1321 0

meanRP 0.1051 0.7035 0.1914 0

Table A.14: Confusion matrix for all models at cut-off=0.7 (P=0.30)

Model TP TN FP FN

Cox 0.0094 0.6456 0.3261 0.0189
RSF 0.0323 0.6119 0.3032 0.0526
CT 0.0267 0.6119 0.3086 0.0526
LR 0.0081 0.6509 0.3275 0.0135
mean 0.0094 0.6590 0.3261 0.0054
meanH 0.0027 0.6361 0.3329 0.0283
meanGini 0.0121 0.5674 0.3235 0.0970
meanAUC 0.0094 0.6146 0.3162 0.0499
meanAUCH 0.0081 0.6469 0.3275 0.0175
meanKS 0.0067 0.6051 0.3288 0.0593
meanMER 0.0108 0.6509 0.3248 0.0135
meanMWL 0.0108 0.6590 0.3248 0.0054
meanSpSe99 0 0.6644 0.3356 0
meanSeSp99 0 0.6644 0.3356 0
mean 1

AUC
0.0081 0.6590 0.3275 0.0054

meanM 0.0660 0.5674 0.2695 0.0970
mean 1

M
0.0229 0.5243 0.3127 0.1402

meanRP 0.0148 0.5377 0.3208 0.1267

Table A.15: Confusion matrix for all models at cut-off=0.7 (P=0.35)

88



Model TP TN FP FN

Cox 0.0121 0.5916 0.3801 0.0162
RSF 0.0431 0.5660 0.3491 0.0418
CT 0.0364 0.5647 0.3558 0.0431
LR 0.0094 0.5957 0.3827 0.0121
mean 0.3922 0.3989 0 0.2089
meanH 0.3922 0.0795 0 0.5283
meanGini 0.3922 0.1024 0 0.5054
meanAUC 0.3922 0.2520 0 0.3558
meanAUCH 0.3922 0.2588 0 0.3491
meanKS 0.3922 0.1119 0 0.4960
meanMER 0 0.6078 0.3922 0
meanMWL 0 0.6078 0.3922 0
meanSpSe99 0.3922 0.1846 0 0.4232
meanSeSp99 0.3922 0.0863 0 0.5216
mean 1

AUC
0.3895 0.5526 0.0027 0.0053

meanM 0.0660 0.4879 0 0.1105
mean 1

M
0.3733 0.3679 0.0189 0 .2399

meanRP 0.3720 0.3693 0.0202 0.2385

Table A.16: Confusion matrix for all models at cut-off=0.7 (P=0.40)

Model TP TN FP FN

Cox 0.0135 0.5296 0.4420 0.0148
RSF 0.0364 0.4960 0.4191 0.0485
CT 0.0350 0.5000 0.4205 0.0445
LR 0.0094 0.5323 0.4461 0.0121
mean 0.4394 0.1213 0.0162 0.4232
meanH 0.4542 0.0620 0.0013 0.4825
meanGini 0.4555 0.0485 0 0.4960
meanAUC 0.4501 0.0849 0.0054 0.4596
meanAUCH 0.4488 0.0849 0.0067 0.4596
meanKS 0.4542 0.0633 0.0013 0.4811
meanMER 0.4191 0.2183 0.0364 0.3261
meanMWL 0.4151 0.2345 0.0404 0.3099
meanSpSe99 0.4286 0.2318 0.0270 0.3127
meanSeSp99 0.3113 0.4286 0.1442 0.1159
mean 1

AUC
0.4245 0.2022 0.0309 0.3423

meanM 0.4555 0.1253 0 0.4191
mean 1

M
0.4084 0.0970 0.0472 0.4474

meanRP 0.4111 0.0916 0.0445 0.4528

Table A.17: Confusion matrix for all models at cut-off=0.7 (P=0.45)
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Confusion matrix for simulated data

Model TP TN FP FN

Cox 0.0162 0.4744 0.4973 0.0121
RSF 0.0391 0.4407 0.4744 0.0458
CT 0.0377 0.4447 0.4757 0.0418
LR 0.0148 0.4798 0.4987 0.0067
mean 0.5121 0.0984 0.0013 0.4420
meanH 0.5135 0.0445 0 0.4825
meanGini 0.5135 0.0175 0 0.4960
meanAUC 0.5135 0.0728 0 0.4137
meanAUCH 0.5135 0.0741 0.0067 0.4124
meanKS 0.5135 0.0148 0 0.4717
meanMER 0.4973 0.1712 0.0162 0.3154
meanMWL 0.4960 0.1725 0.0175 0.3140
meanSpSe99 0.5135 0.0458 0 0.4407
meanSeSp99 0.5135 0.0526 0 0.4340
mean 1

AUC
0.3868 0.1066 0.1267 0.3801

meanM 0.4946 0.1429 0.0189 0.3437
mean 1

M
0.4784 0.0836 0.0350 0.4030

meanRP 0.4798 0.0768 0.0337 0.4097

Table A.18: Confusion matrix for all models at cut-off=0.7 (P=0.50)
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Appendix A

Combination formulas

CwH =
fCoxHCox + fRSFHRSF + fLRHLR + fCTHCT

HCox +HRSF +HLR +HCT

CwGini =
fCoxGiniCox + fRSFGiniRSF + fLRGiniLR + fCTGiniCT

GiniCox +GiniRSF +GiniLR +GiniCT

CwAUCH =
fCoxAUCHCox + fRSFAUCHRSF + fLRAUCHLR + fCTAUCHCT

AUCHCox +AUCHRSF +AUCHLR +AUCHCT

CwKS =
fCoxKSCox + fRSFKSRSF + fLRKSLR + fCTKSCT

KSCox +KSRSF +KSLR +KSCT

CwMER =
fCoxMERCox + fRSFMERRSF + fLRMERLR + fCTMERCT

MERCox +MERRSF +MERLR +MERCT

CwMWL =
fCoxMWLCox + fRSFMWLRSF + fLRMWLLR + fCTMWLCT

MWLCox +MWLRSF +MWLLR +MWLCT

CwSpSe99 =
fCoxSpSe99Cox + fRSFSpSe99RSF + fLRSpSe99LR + fCTSpSe99CT

SpSe99Cox + SpSe99RSF + SpSe99LR + SpSe99CT

CwSeSp99 =
fCoxSeSp99Cox + fRSFSeSp99RSF + fLRSeSp99LR + fCTSeSp99CT

SeSp99Cox + SeSp99RSF + SeSp99LR + SeSp99CT
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Combination formulas

Cw 1
AUC

=
fCox

1
AUCCox

+ fRSF
1

AUCRSF
+ fLR

1
AUCLR

+ fCT
1

AUCCT
1

AUCCox
+ 1

AUCRSF
+ 1

AUCLR
+ 1

AUCCT

CwM =
fCoxMCox + fRSFMRSF + fLRMLR + fCTMCT

MCox +MRSF +MLR +MCT

Cw 1
M

=
fCox

1
MCox

+ fRSF
1
MRSF

+ fLR
1
MLR

+ fCT
1
MCT

1
MCox

+ 1
MRSF

+ 1
MLR

+ 1
MCT

CwRP =
fCoxRPCox + fRSFRPRSF + fLRRPLR + fCTRPCT

RPCox +RPRSF +RPLR +RPCT

CwC =
fCoxCCox + fRSFCRSF + fLRCLR + fCTCCT

CCox + CRSF + CLR + CCT

Cw 1
C

=
fCox

1
CCox

+ fRSF
1
CRSF

+ fLR
1
CLR

+ fCT
1
CCT

1
CCox

+ 1
CRSF

+ 1
CLR

+ 1
CCT
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