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Chapter 1

dgasjdbjasd
dkajsgdaosd
bdasgdasodga
sdgasoudgasod
dgasdasodagda

Introduction

dgfsdugfsudf
fgsdufgsdf

The landscape of human transcription

usdfgsdgf

After more than a century from the definition of the basic rules of
hereditary, the gene is heading an identity crisis. A lot of debates about
gene description are going in recent years [99, 126, 38, 40; 127; 11,103]
thereby definition of the “gene” evolved from “the site of hereditable
trait” to “the genomic region from where the mRNA that encodes a
protein is transcribed”, which defined the molecular biology’s central
dogma [23].

In the last century, with the advent of the new technologies, the
transcriptional-centered view is becoming more complicated. In par-
ticular, the alternative splicing process and the discovery of non coding
RNAs (ncRNAs) suggest that most of the human transcripts may not
encode for proteins [53, 133]. Also with the addiction of precious in-
formations coming from the ENCODE Project Consortium, further
highlighted that the bulk of the genome is pervasively transcribed al-
though the functional relevance of these transcripts remains a source
of debate [2, 29; 45] (Figure 1).

The evolving definition of the gene and the growing transcriptional
complexity complicate the scientific works and the common language
in which scientists discuss. For this reason the modern effort to re-
define the gene is attempting to retrofit biological complexity into an
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existing vocabulary that is understable to scientists across a range of
disciplines. To this end, Gerstein and colleagues recently proposed a
new concept of gene as “a union of genomic sequences encoding a co-
herent set of potentially overlapping functional products” [38], but also
this definition is limited to unit of functionality and does not include
the collective term for a group of transcripts. There are other impor-
tant open questions concealed within the “what is a gene?” debate,
for example the size of the transcriptome and the relative functional
portion, what is the real meaning of “functional” gene and how func-
tionality can be captured in gene annotation.

A key point in the definition of the total number of human tran-
scripts is the significant difference of transcripts produced and ex-
pressed in cells of distinct tissues and developmental stages [55, 121,
161, 9, 65]. Moreover, splicing abnormalities as well as the presence
of polymorfism are commonly observed in both cancer and immortal-
ized cells [10, 162, 16, 26; The ENCODE Project Consortium 2012]
as well as the presence of polymorfism [106; 128; 42]. No single hu-
man transcriptome can be considered as a reference, so a “consensus”
set of transcripts that combines all known transcripts into one “gene
set” is necessary. Several large-scale gene annotation projects on hu-
man genome are evolving, including GENCODE [53], RefSeq [131] and
UCSC Genes [30]. These projects are mainly based on transcriptomics
data and represent a merge between models of different data sources:
GENCODE includes Ensembl models and manually annotated HA-
VANA transcripts, RefSeq combines manual and automated processed
(most human annotation takes place on full-length cDNAs that are
subsequently linked to the chromosome) and finally UCSC joins Ref-
Seq models and other sources as GenBank ESTs.
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Protein-coding genes 33%
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fgsdufgsdf
Figure 1. Long non-coding RNAs are the most abundant ncRNA species

in the mammalian genome. Pie charts showing the genome-wide distribution of
protein- and non-coding genes in the human and mouse genomes. Percentages shown are
calculated from the GENCODE version 22 (http:// www.gencodegenes.org).

fgsdufgsdf
dgfsdugfsudfù

In particular the GENCODE gene sets are used by the entire EN-
CODE consortium and by many other projects (eg. 1000 Genomes) as
reference gene sets. These datasets revealed that a total of 62% and
75% of the human genome is covered by either processed or primary
transcripts, respectively, with an overall estimation of 80% potentially
functional sequence in human DNA. Coding and non coding transcripts
are predominantly localized in the cytosol and nucleus, respectively,
and protein coding genes expression is higher than non coding coun-

9



terparts [132]. Approximately, 6% of all annotated coding and non
coding transcripts overlap with small RNAs (sRNAs) and are proba-
bly precursor of these RNAs. Several RNA-seq analyses have shown
that splicing events occur predominantly during transcription and are
fully completed in cytosolic polyA+ RNA [154]. Moreover, lncRNAs
have canonical gene structures and histone modification, appear to
be subjected to weaker evolutionary constraint than coding genes and
are preferentially enriched in nucleus of the cells [25]. All these grow-
ing projects aimed at identifying all functional elements in the human
genome, point out that the transcriptional regulation is controlled by
complex interactions between DNA sequence, transcription factors, hi-
stone tail modifications, DNA methylation as well as by a new layer of
regulation: the non coding RNAs [132].

dgfsdugfsudf
fgsdufgsdf

Non coding RNA genes and the modern RNA

world

dgfsdugfsudf

The class of non coding RNAs catalized the interest in the field of
functional genomics in the last decade [61]. They are mainly classified
based on their size into small and long non coding RNAs (Tabella 1).
Some of these RNAs have general housekeeping functions and include
ribosome-associated RNA (rRNA), transfer RNA (tRNA) and small
nuclear/nucleolar RNA (sn/snoRNAs). Different classes of short RNAs
(miRNAs, siRNAs and piRNAs) posses regulatory functions in several
cellular processes including cell [6, 20], cencer progression [37, 176]
and immunity [49, 91]. The class of long non coding RNAs (lncRNA)
encompasses a different set of functional transcripts characterized by a
length over 200 nucleotides with no potential to encode for functional
proteins of more than 30 aminoacids [86, 102].
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SHORT
miRNAs Micro RNAs 21–23 In animals, associate with the miRNA-induced silencing complex (RISC) and silence the

expression of target genes mostly post-transcriptionally (

snoRNAs Small nucleolar RNAs 60–300 Help the chemical modification of mRNAs, thereby influencing stability, folding, and
protein-interaction properties ( , )

snRNAs Small nuclear RNAs 150 Assist splicing ofi ntrons from primary genomic transcripts ( 10, 11)

piRNAs Piwi-interacting RNAs 25–33 Associate with the highly conserved Piwi family of argonaute proteins and are essential for
retrotransposon silencing in germline, epigenetic modifications, DNA rearrangements, mRNA
turnover, and translational control also in soma ( 12–14)

PASRs Promoter-associated
short RNAs

22–200 Enriched at the 5’ end of genes, within 0.5 kb of TSS. Can be transcribed both sense and
antisense. Their function and biogenesis is not fully understood ( 15, 16)

TASRs Termini-associated
short RNAs

22–200 Can be transcribed both sense and antisense near termination sites of protein-coding genes.
Their function and biogenesis is not fully understood ( 15, 16)

siRNAs Short interfering RNAs 21–23 Processed from a plethora of genomic sources, both foreign (viruses) and endogenous (repetitive
sequences). Canonically induce the degradation of perfectly complementary target RNAs ( 17, 18)

tiRNAs Transcription initiation
RNAs

15–30 Enriched immediately downstream transcriptional start sites (TSSs) of highly expressed genes.
Their function and biogenesis is not fully understood ( 16, 19, 20)

LONG
NATs Natural antisense

transcripts
> 200 Transcribed from the same locus but opposite strand of the overlapping protein-coding

sequence. Involved in gene expression regulation, RNA editing, stability, and translation ( 21, 22)

PALRs Promoter-associated
long RNAs

200–1000 Enriched at promoters, found to regulate gene expression ( 23, 24)

PROMPTs Promoter upstream
transcripts

200–600 Enriched at TATA-less, CpG-rich promoters with broad TSSs. Affect promoter methylation and
regulate transcription ( 25–27)

T-UCRs Transcribed
ultraconserved regions

> 200 Perfectly conserved between human, rat, and mouse. Frequently located at fragile sites and at
genomic regions involved in cancer ( 28)

Intronic
RNAs

> 200 Transcribed from introns of overlapping protein-coding sequences. Involved in the control of
gene expression, alternative splicing, and source for generation of shorter regulatory RNAs ( 29)

eRNAs Enhancer-derived
RNAs

> 200 Function still not completely understood. May functionally contribute to the enhancer function
(30–32)

LincRNAs Long intervening
(intergenic) RNAs

> 200 Gene expression regulation, regulation of cellular processes ( 33, 34)

uaRNAs 3 �UTR-derived RNAs < 1000 Derive within 3’ untranslated region (3’ UTR) sequences. Function still not clearly understood ( 35)

circRNA Circular RNA 100 to > 4000 Diverse, from templates for viral replication to transcriptional regulators ( 36)

Table 1. Different classes of short and long regulatory non-coding RNAs

[124].
fgsdufgsdf
dgfsdugfsudfù

lncRNAs are commonly classified in association with annotated
protein-coding mRNAs (Figure 2) and comprise the long intergenic
ncRNAs (lincRNA), intronic lncRNA, sense or antisense lncRNA, com-
petitive endogenous RNAs (ceRNAs) and enhancer RNA (eRNA). The
prominent category of ncRNAs are sense ncRNAs that overlap coding
mRNAs on the same strand and share some sequence with the latter,

11



yet do not encode proteins [67, 24, 26, 94]. This class includes unspliced
sense partially intronic RNAs (PINs) and spliced transcripts that com-
bine exons from coding and non coding region of a gene [26, 94]. The
intronic lncRNAs (TINs) are produced starting from the intron of a
protein coding gene and these transcripts compose the majority (about
70%) of all non coding (non-rRNA) nuclear-encoded RNA. Some of
these transcripts represent intronic circular ncRNAs (ciRNAs) that
are produced from introns that escape debranching and are involved
in the regulation of the expression of their parent genes [174]. Another
class of lncRNAs, defined as natural antisense transcripts (NATs), over-
lap the opposite DNA strand of the associated protein coding genes
and occur in 50-70% of all protein-coding genes [17, 69]. LncRNAs
are defined bidirectional when their expression and the expression of a
neighboring coding transcript is initiated in close proximity and inter-
genic lncRNAs if they lie between two different coding regions with no
overlap [25]. Intergenic long ncRNAs are the most studied lncRNAs
because they are independent transcritpional units and are more likely
associated with an intrinsic function than being transcriptional noise.
LincRNAs are the main subject of this thesis (Figure 2).

5’
5’
3’

3’

Coding region

mRNA isoforms

Coding region

Sense

Antisense

Intronic

Overlapping Intergenic

mRNA

Divergent

Figure 2. Long non-coding RNAs classification. Long non-coding RNAs are
generally defined after their genomic and transcriptional context. The figure shows the
possible relationships between long ncRNAs (in orange), coding regions (in dark green),
and transcribed mRNA (in light green) [120].
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LncRNAs are also classified according to localization in the cells:
nuclear lncRNAs and citoplasm lncRNAs. Nuclear lncRNAs have been
found so far to be mainly implicated in the recruitment of chromatin
modifiers in specific genomic loci [133, 4, 48, 72]. In particular they re-
cruit DNA methyltransferase (DNMT3) and histone modifiers as poly-
comb repressive complex PRC2 [135, 175] and H3K9 methyltransferase
[111, 122]. Not only the recrutiment of repressive complex trigger
transcriptional repression by formation of repressive heterocromatin
[34], but the act of lncRNA transcription itself can negatively affects
gene expression [98, 78]. Moreover, lncRNAs can work also as tran-
scriptional activators through the recruitment of chromatin-modifying
complexes, such as H3K4 methyltransferase MLL1 complexes [164, 7]
and by changes in three-dimensional chromatin conformation mediated
by the activation of specific enhancer regions [164, 119, 85].

It is possible to distinguish nuclear lncRNAs by their course of ac-
tion: cis- and trans-acting lncRNAs (Figure 3). The first class is in-
volved in the control of the expression of genes located in the proximity
of their transcription sites and sometimes can spread their action to
long distances on the same chromosome [34]. trans-acting lncRNAs
can both activate or repress the expression of genes located in indipen-
dent loci [135, 4, 48]. Targeting mechanisms of lncRNAs and retention
to their binding sites are still largely unknown, but different hypothesis
have been proposed, including formation of RNA-DNA triplex [143],
DNA recognition by RNA structures [19] and bridging protein recruit-
ment [62].

fgsdufgsdf
dgfsdugfsudf
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IncRNA gene

DNMT3

PRC2

Xist promoter

EHMT2

5mC H3K4me3

MLL1
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IncRNA gene

IncRNA gene

Chromatin-
modifying
complex

IncRNA

H3K27me3

SOX2OCT4

Chromatin-
modifying
complex

Transcriptional regulator

IncRNA

H3K27me3 H3K4me3

PRC2
complex

PRC2
complex

KDM1A–coREST–
REST complex

B  Trans -acting IncRNAs

A  Cis -acting IncRNAs

Ba  HOTAIR

H3K27me3

H3K9me2 or H3K9me3

Aa  Xist , Kcnq1ot1 and Airn

Bc  Jpx

CTCF

Bb  IncRNA-ES1 and IncRNA-ES2

Ab  HOTTIP

Repressive histone modification
Activating histone modification

  

fgsdufgsdf
Figure 3. Models of nuclear lncRNA function. Examples of long non-codingRNAs

(lncRNAs) that regulate transcription in cis (part A) and in trans (part B), by recruiting
specific transcriptional regulators onto specific chromosomal loci. Aa) Xist, Kcnq1ot1 and
Airn are lncRNAs involved in the formation of repressive chromatin through recruitment
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of DNMT3 which induces DNA methylation, PRC2 related to H3K27me3 production
and EHMT2 that produces H3K9me2 abd H3K9me3 [79]. Ab) HOTTIP recruits MLL1
complex inducing the activation of transcription through H3K4me3 activation [164] Ba)
HOTAIR is a trans-acting regulator of HOXD genes [135] that recruits in the same lo-
cus PRC2 and H3K4 demethylation complexing KDM1A-coREST-REST (lysine-specific
histone demethylase 1A-REST corepressor 1-RE1-silencing transcriptional factor) Bb)
lncRNA-ES1 and lncRNA-ES2 associate with both PRC2 and SOX2 inducing the silenc-
ing of SOX2-bound developmental genes to control embrionic stem cell pluripotency [116]
Bc) Jpx lncRNA interacts with the transcriptional repressor CTCF to block their binding
to Xist promoter activating Xist transcription [151] [34].

fgsdufgsdf
dgfsdugfsudfù

Cytoplasmic lncRNAs mediated gene regulation mechanisms [4] (Fig-
ure 4). These lncRNAs often show sequence complementarity with
transcripts generated from either the same chromosomal locus or in-
dipendent loci and this implies that they can modulate the control of
translation by base pairing recognition of the target. In the same way,
lncRNAs can modulate mRNA stability: both b-site APP-cleaving en-
zyme 1-antisense (BACE1-AS) [31] and tissue differentiation-inducing
non- protein-coding RNA (TINCR) [75] increase the stability of their
target mRNAs, whereas half-STAU1 (staufen double-stranded RNA-
binding protein 1)-binding site RNAs (1/2sbsRNAs) [41, 163] decrease
target mRNA stability (Figure 4).

fgsdufgsdf
dgfsdugfsudfù
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fgsdufgsdf
Figure 4. Models of cytoplasmic lncRNA function. The mechanism involved

a base-pairing complementarity between lncRNAs and target RNA sequence. a) comple-
mentarity between BACE1 mRNA and ist antisense transcripts BACE1-AS, increasing
BACE1 stability and protein expression [31]. b) STAU1-mediated mRNA decay mech-
anism based on intermolecular base pairing between Alu element in 3’UTR of STAU1
mRNA and Alu element within 1/2sbsRNA lncRNA with recruitment of UPF1 RNA
helicase. c) Contrariwise, STAU1-mediated mRNA stabilization with the implication of
TINCR that recognizes its target mRNA through a 25base-long motif. [75]. d) Mecha-
nism of inhibition of translation that implicates Trp53cor1 lncRNA together with RNA
helicase RCK [171]. e) Uchl1-as1 lncRNA induced translation upon stress induction [14]
[34].

fgsdufgsdf
dgfsdugfsudfù

A peculiar mode of action of lncRNAs is represented by competitive
endogenous RNAs (ceRNAs) class. They are transcripts independently
originated by protein coding genes and are previously described as
transcribed retropseudogenes that retain the miRNA-binding function
of their parent miRNAs [141]. The main function proposed for ceRNAs
is de-repressing the level of protein coding gene that share with ceRNA
the same miRNA response elements (MREs), also defined as miRNA

16



“decoys” or “sponges” [141]. The transcriptonal regulation mediated by
ceRNAs represents and elegant mechanism by which lncRNAs control
the function of protein coding genes through miRNA mediators [58].
Recently, an additional example of ceRNA was found in a newly iden-
tified class of circular RNAs (circRNAs) [52, 51, 101], which function
as sponges for miRNAs in neuronal cells (Figure 5). Whereas the lin-
ear ceRNAs have a short half-life that allows a rapid control of sponge
activity, circRNAs have much greater stability and their turnover can
be controlled by the presence of a perfectly matched miRNA target
site [52, 51, 101].

fgsdufgsdf
dgfsdugfsudfù

AAAAA

AAAAA

AAAAA

ORF

ORF

IncRNA

mRNA

Pseudogenes

B circRNAs

miRNAs

AAAAA

AAAAA

fgsdufgsdf
Figure 5. Model of ceRNA action. This mechanism is base on complementarity

between miRNAs and different targets (circRNAs, lncRNAs, pseudogenes and mRNAs).
This represents a new type of regulatory circuitry in which different types of RNAs (both
coding and non-coding) can crosstalk to each other by competing for shared miRNAs [52,
51, 129, 141, 15] [34].

fgsdufgsdf
dgfsdugfsudfù

Recent evidences ascribed a potential roles of long non coding RNAs
at enhancer regions [141]. In particular, RNA-seq, ChIP-seq, and
chromatin-conformation-capture studies have defined that these ge-
nomic regions transcribe for new transcripts defined enhancer RNAs
(eRNAs). The putative enhancer regions are marked by high levels
of H3K4me1 and H3K4me2 relative to the H3K4me3 [154]. eRNAs
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are 5’ capped [160, 63] but don’t exhibit 3’ polyadenilation or splic-
ing events. They have a rate of transcription frequency comparable
to protein coding genes [63] but the half-life is shorter compared to
lncRNAs and other mRNAs. Whether eRNAs are merely a correlation
or a functional component of enhancers activity is actually a source
of debate. Three possibilities have been considered with respect to
the physiological roles of enhancer transcription. The first hypotesis
considers enhancer transcription as “noise” from the spurious engage-
ment of RNA PolII complexes to the open chromatin environment of
enhancers. The second possibility hypothesizes that it is the process
of transcription, not the features of the eRNA transcript itself, that
is necessary for the activating functions of enhancers. The third pos-
sibility is that the RNA transcripts per se functionally contribute to
enhancer activity [85, 58]. These possibilities are not mutually exclu-
sive and are under investigations.

fgsdufgsdf
dgfsdugfsudfù

Predicting long non coding RNAs using RNA dgf

sequencing

dgfsdugfsudf

The majority of non coding RNAs was initially discovered through
earlier studies on expressed sequence tags (ESTs) and tilling microarray
[61]. These studies identified a large and previously unknown repertoire
of transcripts that have been subsequently validated by deep sequenc-
ing approaches. As opposed to conventional microarray-based tech-
nology that is used to profile only known transcripts, deep-sequencing
approaches, in particular RNA-seq, facilitate a genome-wide expres-
sion profiling including the identification of novel and rare transcripts
like long non coding RNAs and novel alternative splicing isoforms [96,
106, 107, 109, 110, 148].

18



To better understand the potential functional role of newly de-
scribed lncRNAs, the first step is their accura te identification and
annotation. Non coding RNAs are now more easily and more accu-
rately identified by transcriptome sequencing (RNA-seq). This tech-
nology allows the reconstruction of virtually whole transcriptome and
the discovery of novel transcripts and of their relative abundance [58].
Many RNA-seq studies have now been performed aimed at the charac-
terization of long non coding RNAs in different organisms, cell types
and tissues [12, 47, 172, 150, 125, 112, 84, 26, 5]; at the same time
a lot of computational approaches for the reconstruction of the tran-
scriptomes have been developed that revealed several features of lncR-
NAs. For example the classification of lncRNA loci with respect to
protein coding genes can be achieved only through the analysis of
RNA-seq data. Moreover defintion of lncRNAs transcript abundance,
exon composition and splicing efficiency could not be obtained without
RNA-sequencing approaches [58]. Nonetheless other NGS strategies
are necessary for lncRNAs prediction: full-lenght cDNA sequencing,
chromatin state maps and RNA polymerase II occupancy (Figure 6).
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Figure 6. Common methods for predicting lncRNA loci using NGS. The bottom

panel represents a lncRNA that is transcribed from the genome. The remaining
panels represent the expected distribution of sequenced reads across this lncRNA
locus [58].
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The optimal strategy to obtain accurate transcript models is the
full-lenght cDNA sequencing. This strategy was adopted by FAN-
TOM project [70] that initially annotated more than 21000 cDNA
clones, 3000 of which were defined as “unclassifiable” because showed
no homology to known protein coding genes, no discernible protein
motif and no open reading frame longer than 100 aa [70]. The FAN-
TOM data were subsequently integrated with transcriptional start site
(TSSs) informations using CAGE (Cap-Analysis of Gene Expression)
technology and about 30% of the total number of transcripts were an-
notated as non coding RNAs [13]. Moreover, other studies of annotated
coding loci demonstrated that many of them transcribed additional
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co-regulated non coding sense and antisense transcripts [69, 134]. The
advent of ChIP (Chromatin ImmunoPrecipitation) coupled with NGS
(ChIP-seq) provided a more comprehensive chromatin state maps to
investigate the regulatory elements and region of the genome [3, 104,
139]. For example, the relative aboundance of H3K4me1 and H3K4me3
are indicative markers of active promoters and enhancer elements [54],
while the “K4-K36 domains”, characterized by H3K36me3 that denotes
transcribed gene bodies coupled with H3K4me3 that is also a marker
for the definition of TSS, outside annotated protein coding genes could
potentially described novel lncRNA loci [46] (Figure 6). Finally, the
information on all the fragments bound to RNApol II and subjected
to NGS is important to infer transcription at these loci and this ap-
proach was widely adopted to identify non-coding transcription [58].
This method, though, has limitations: RNApol II occupancy is not in-
dicative of transcriptional elongation, for this reason it is not possible
to separate random RNApol II binding events from non-random oc-
cupancy related to transcription. Moreover, it is difficult to associate
intergenic RNApol II binding to lncRNA loci when these are in close
proximity to protein coding genes [66]. Despite these limitations, the
studies based on these approaches have provided an initial insights into
the nature of intergenic transcription.
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A workflow for the discovery of lncRNAs has been outlined in the
last years and followed in several studies (Figure 7).
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3. Predicting lncRNAs using RNA-seq

A workflow for the discovery of lncRNAs is outlined in Fig. 2A.
While the study design will dictate how analysis of the resulting
data is performed, lncRNA discovery approaches show similarities
among many studies (Table 1). Below we discuss steps and consid-
erations required for detecting lncRNAs using RNA-seq.

3.1. RNA-seq library type

3.1.1. Ribosomal RNA removal
Approximately 90% of total RNA is ribosome-associated (rRNA).

If this fraction were not to be removed then the majority of se-
quenced reads would align only to rRNA, leaving relatively few
reads to allow the assembly and abundance estimation of mRNA
and non-coding RNA transcripts. Removal of rRNAs from a sample
is commonly achieved either by selecting only RNA molecules that
contain a poly-A tail (poly-A+), or by specifically depleting rRNA.
Depletion uses the hybridisation of total RNA to biotinylated (or
magnetic bead-associated) antisense oligomers to rRNA tran-
scripts, resulting in preferential removal of rRNA.

The extent to which each protocol affects the power to dis-
cover different categories of lncRNAs remains incompletely

understood. Using poly-A+ selection and retention of the poly-
A! fraction, Yang and colleagues determined the presence of tran-
scripts that were polyadenylated (poly-A+), non-polyadenylated
(poly-A!) or bimorphic (those present in both fractions) in human
H9 and HeLa cells [52]. Between 74% and 84% of transcripts were
found in the poly-A+ fraction in these cells, with between 13% and
23% found in both poly-A+ and poly-A! fractions; only approxi-
mately 2.5% of transcripts were found exclusively in the poly-
A! fraction [52]. Analyses conducted by the ENCODE consortium
revealed similar proportions across 16 human cell lines: only
about 3.3% of GENCODE transcripts fell exclusively in the poly-
A! fraction [49]. While the proportion of lncRNA transcripts pres-
ent in the poly-A! fraction is higher than for coding mRNAs
across multiple cells [13], using poly-A+ selection in an RNA-seq
experiment will allow the recovery of the vast majority of anno-
tated transcripts, at least in these cell types. One advantage of
poly-A+ selection over rRNA depletion is that pre-mRNA mole-
cules are also removed. The presence of pre-mRNA transcripts
will reduce depth of coverage across exons, because retained in-
trons are also sequenced.

Non-polyadenylated lncRNA transcripts that have been iden-
tified include intronic products of splicing that are unusual in
resisting enzymatic degradation [49,52]. Whilst determining
the complete transcriptional repertoire present in a sample

A B

Fig. 2. Predicting lncRNAs using RNA-seq. A workflow for predicting lncRNAs using deep RNA sequencing. Steps from RNA extraction through computational analysis are
shown. Considerations at individual stages of analysis are coloured red. B Representation of unstranded vs. stranded RNA seq libraries after mapping to a reference genome.
The upper panel represents sequences generated from an unstranded RNA-seq library. The strand of origin is impossible to infer as reads can be generated from either cDNA
strand, thereby removing information regarding transcriptional orientation. In this situation it is impossible to resolve artefacts of transcription (read-through transcription at
the 30 end of the protein coding gene or retained intronic sequence) from lncRNA transcription in the opposite direction. The lower panel represents RNA-seq reads generated
from a stranded library. Reads generated from the ‘+’ strand are displayed in blue and reads from the ‘!’ strand are displayed in red. Using this technique, it is possible to
resolve antisense lncRNA transcription from transcriptional artefacts.

N.E. Ilott, C.P. Ponting /Methods 63 (2013) 50–59 53
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Figure 7. A) workflow for predicting lncRNAs using deep RNA sequencing.
B) Representation of unstranded vs. stranded RNA seq libraries after mapping

to a reference genome [58].
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Ribosomal RNA removal: The first step is based on removal
of ribosome-associated RNA (rRNAs) that represents the 90% of the
total RNA. If this fraction is maintained in the sample, the majority
of the sequenced reads would align only to rRNA, leaving relatively
few reads for assembly and abundance estimation of both coding and
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non coding transcripts. For this reason RNA-sequencing experiments
are commonly performed only on RNA molecules that contain a polyA
tail or on RNA specifically depleted of rRNA [58]. Studies conducted
by the ENCODE consortium revealed that only 3.3% of transcripts fell
exclusively in the polyA- fraction [26], then using polyA+ selection in a
RNA-seq experiment not only ensures the recovery of the vast majority
of annotated transcripts, but also removes pre-mRNA molecules that
would reduce coverage depth across exons [58].

Paired-end versus single-end sequecing: sequencing is per-
formed on cDNA libraries that comprise all the fragments correspond-
ing to the set of transcripts of a given sample. The sequencing strategy
to “read” these fragments could be single-end (SE) if just one end of
each fragment is sequenced, paired-end if read pairs corresponding to
both the start and the end of each cDNA fragment are generated [58].
The length of the reads is generally between 50-130 bp with the cur-
rently available technologies (e.g. Illumina), and the majority of these
are present uniquely in the genome because the number of fragments
is very large. As library fragments are about 300-400 bp long, only a
portion of the cDNA fragment can be covered by the sequencing read,
so it is possible that two single-end reads map to the same start or end
position within the fragment. Moreover single-end reads that include
repetive sequence are excluded because they cannot mapped uniquely
in the genome assembly lowering the number of mapped reads. Paired-
end solution improves the sequencing experiment providing long-range
positional information that is crucial in lncRNA discovery as these
transcripts are not only expressed at low levels but they are also en-
riched for repetitive elements.

Stranded protocols: the information about the strand of ori-
gin of a transcript is lost with RNA-seq protocols that started from
a double-strand cDNA for the preparation of the library. Recently,
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stranded protocols (also known as “directional”) have been developed
[58]. This is an important advantage in RNA-seq technology, especially
for the discovery of lncRNAs, because the conservation of the infor-
mation about strand allows the discrimination between overlapping
sense and antisense transcripts. When this information is not availble,
the most used computational tools (e.g. Cufflinks) [156, 58], infers
the transcriptional direction of a transcript using canonical splice site
information, but this strategy isn’t useful when non-canonical splice
sites are present or when a transcript is monoexonic. For this reason,
stranded RNA-seq has clearly improved the understanding of perva-
siveness of non coding sense and antisense transcription (Figure 7) [58].
Mapping algorithms: Following the primary analysis of quality con-
trol and possibly trimming of sequenced reads, the first step to com-
putationally identify novel lncRNAs is the mapping of the sequenced
reads to a reference genome if available [58]. Given the large number of
reads produced in a RNA-seq experiment (ranging between 20-100s of
million reads for single sample), a lot of algorithms and software have
been developed such as Bowtie [77], BWA [82], Stampy [93] and GEM
[95] to efficently map the reads to a reference genome. These tools store
the genomic coordinates of short oligomers as an indexed genome using
hash table indexing and compression with Burrows-Wheeler transform
or other indexing scheme [95] and these features confer high perfor-
mance. Several factors contribute to the accuracy of the alignments:
first, most algorithms miss some read-genome matches due to non-
exhaustive searching. Second, the sequenced reads include biological
variability derived from SNPs variant, small indels as well as sequenc-
ing errors and finally, the sequenced reads could potentially map to
two genomic regions with large gaps that span spliced introns [58].
This is a crucial point in RNA-seq technology because the detection
of novel intron-spanning junctions is important for the discovery of

24



lncRNAs. Several algorithms are being developed to efficiently and
accurately identify these features, including TopHat [155], spliceMap
[1], MapSplice, GSNAP [168], RUM [44] and STAR [28] that is the
official ENCODE Project mapper. Most of these aligners provide an
initial mapping to a reference genome and/or transcriptome using a
short read alignment tool as Bowtie or BWA [155, 44, 168], afterwards
the unmapped reads are aligned to inferred or known junctions [155] or
to the genome using gapped aligner as BLAT [44]. Single-step methods
have been developed, such STAR [44, 28], to improve the sensitivity.
Moreover the memory usage and run time are important characteris-
tics in this step of analysis, therefore the computing capacity available
in the lab needs to be taken into account: for example, STAR is the
fastest mapper with low false positive rate in junction discovery, but
it uses a lot of memory [28], instead GSNAP poorly performs in terms
of number of reads mapped and also memory usage. TopHat is the
mapper that has been used for a long time, specially in the first stud-
ies on long non coding identification [12, 172, 150, 125, 112, 84, 5, 88].
TopHat is considered one of the best in junction mapping and, despite
improvements of recently developed tools, it maintains the advantages
in speed and memory usage. Nevertheless, the sequencing technology
is under continuous development producing longer reads to improve
detection therefore more sensitive and specific alignment tools such
RUM and STAR will be increasingly used.

Transcripts reconstruction: It is possible to asses the identifi-
cation and quantification of lncRNA transcripts by two approaches:
quantification and coverage estimation of mapped reads over lncRNA
existing annotation sets [12, 46, 47, 142, 25] or ab initio transcripts
reconstruction and then novel annotation definition if no annotation
is available for the species of interest. The second approach is also
applied if the aim is the identification of novel lncRNAs in a specific
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biological context. The power of RNA-seq in the detection of novel
lncRNAs (and transcripts in general) derives from the identification of
novel splicing events and then definition of the exonic structure thanks
to the distribution of sequenced reads across splice junction, whereas
other sequencing technology like ChIP-seq provides information only
about active transcriptional regions [58]. Two general strategy could
be adopted for transcripts assembling: mapping-first approaches with
Cufflinks [156] and Scripture [47] and assembly-first methods to per-
form de novo reconstruction of transcriptome, including Trinity [43],
SOAPdenovo [83], transAbyss [137] and Oases [145]. The first strategy
is often successful in reconstructing transcripts, recapitulating known
isoforms as well as novel lncRNAs transcript models because it uses the
splice reads to reconstruct individual transcripts after the alignment to
reference genome (Figura 8). This strategy cannot be applied when a
reference genome is not available or when the reference transcriptome
includes many rearrangements, like in cancer genomes [58].
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Figure 8. An overview of Cufflinks assembly method. First paired-end reads

(mates shown connected by solid lines) are mapped to the genome using a spliced
read mapper that can map reads across junctions (shown in dotted lines). The
reference annotation (blue) is used to generate faux-read alignments that tile the
transcripts (green). The faux-read alignments are used together with the spliced
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read alignments to generate a reference genome based assembly (black). This
assembly is merged with the reference annotation, and “noisy” read mappings are
filtered resulting in all reference annotation transcripts in the output (blue) as well
as novel transcripts (light blue) [136].
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The de novo methods are based on strategy originally adopted
for genome assembly: short sequences (k-mer) are extracted from se-
quenced reads and all the reads that share a partcular k-mer are over-
lapped and assembled into contigs, scaffolds and eventually transcript
models [58] (Figura 9).

fgsdufgsdf
dgfsdugfsudf

NATURE BIOTECHNOLOGY  VOLUME 29   NUMBER 7   JULY 2011 645

complexity of overlaps between variants. Finally, Butterfly (Fig. 1c) 
analyzes the paths taken by reads and read pairings in the context of 
the corresponding de Bruijn graph and reports all plausible transcript 
sequences, resolving alternatively spliced isoforms and transcripts 
derived from paralogous genes. Below, we describe each of Trinity’s 
modules.

Inchworm assembles contigs greedily and efficiently
Inchworm efficiently reconstructs linear transcript contigs in six steps 
(Fig. 1a). Inchworm (i) constructs a k-mer dictionary from all sequence 
reads (in practice, k = 25); (ii) removes likely error-containing k-mers 
from the k-mer dictionary; (iii) selects the most frequent k-mer in the 
dictionary to seed a contig assembly, excluding both low-complexity 

For transcriptome assembly, each path in the graph represents a possible 
transcript. A scoring scheme applied to the graph structure can rely on 
the original read sequences and mate-pair information to discard non-
sensical solutions (transcripts) and compute all plausible ones.

Applying the scheme of de Bruijn graphs to de novo assembly of 
RNA-Seq data represents three critical challenges: (i) efficiently con-
structing this graph from large amounts (billions of base pairs) of raw 
data; (ii) defining a suitable scoring and enumeration algorithm to 
recover all plausible splice forms and paralogous transcripts; and (iii) 
providing robustness to the noise stemming from sequencing errors 
and other artifacts in the data. In particular, sequencing errors would 
introduce a large number of false nodes, resulting in a massive graph 
with millions of possible (albeit mostly implausible) paths.

Here, we present Trinity, a method for the 
efficient and robust de novo reconstruction of 
transcriptomes, consisting of three software 
modules: Inchworm, Chrysalis and Butterfly, 
applied sequentially to process large volumes 
of RNA-Seq reads. We evaluated Trinity on 
data from two well-annotated species—one 
microorganism (fission yeast) and one mam-
mal (mouse)—as well as an insect (the whitefly 
Bemisia tabaci), whose genome has not yet been 
sequenced. In each case, Trinity recovers most 
of the reference (annotated) expressed tran-
scripts as full-length sequences, and resolves 
alternative isoforms and duplicated genes, per-
forming better than other available transcrip-
tome de novo assembly tools, and similarly to 
methods relying on genome alignments.

RESULTS
Trinity: a method for de novo 
transcriptome assembly
In contrast to de novo assembly of a genome, 
where few large connected sequence graphs 
can represent connectivities among reads 
across entire chromosomes, in assembling 
transcriptome data we expect to encounter 
numerous individual disconnected graphs, 
each representing the transcriptional com-
plexity at nonoverlapping loci. Accordingly, 
Trinity partitions the sequence data into these 
many individual graphs, and then processes 
each graph independently to extract full-
length isoforms and tease apart transcripts 
derived from paralogous genes.

In the first step in Trinity, Inchworm 
assembles reads into the unique sequences of 
transcripts. Inchworm (Fig. 1a) uses a greedy 
k-mer–based approach for fast and efficient 
transcript assembly, recovering only a single 
(best) representative for a set of alternative 
variants that share k-mers (owing to alterna-
tive splicing, gene duplication or allelic varia-
tion). Next, Chrysalis (Fig. 1b) clusters related 
contigs that correspond to portions of alterna-
tively spliced transcripts or otherwise unique 
portions of paralogous genes. Chrysalis then 
constructs a de Bruijn graph for each cluster 
of related contigs, each graph reflecting the 
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Figure 1  Overview of Trinity. (a) Inchworm assembles the read data set (short black lines, top) by 
greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color 
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored 
lines) if they share at least one k – 1-mer and if reads span the junction between contigs, and then it 
builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis 
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with 
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each 
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).
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Figure 9. Overview of Trinity. (a) Inchworm assembles the read data set (short

black lines, top) by greedily searching for paths in a k-mer graph (middle), resulting
in a collection of linear contigs (color lines, bottom), with each k-mer present only
once in the contigs. (b) Chrysalis pools contigs (colored lines) if they share at least
one k – 1-mer and if reads span the junction between contigs, and then it builds
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individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn
graph from Chrysalis (top), and trims spurious edges and compacts linear paths
(middle). It then reconciles the graph with reads (dashed colored arrows, bottom)
and pairs (not shown), and outputs one linear sequence for each splice form and/or
paralogous transcript represented in the graph (bottom, colored sequences) [50].
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To avoid the problem of non-uniformity of sequenced reads across
transcriptomes, it is possible to use different length of k-mers, gener-
ating different assemblies that can be merged to correctly reconstruct
the transcriptome [145]. A problem that arises in novel lncRNA iden-
tification is that these transcripts are mainly lowly expressed and the
de novo assemblers do not perform well in the detection of transcripts
with low expression values. Consequently, if a good reference genome
is available, a mapping-first approach using Cufflinks show an high
performance compared to de novo methods in term of number of full-
length transcripts reconstructed [145], albeit it generates more false
positive transcripts.

Protein coding potential: The evaluation of the coding poten-
tial for a transcript is the most important step in the pipeline for the
identification of lncRNAs. First of all, the assembled transcripts repre-
senting known protein coding genes need to be removed, so that all the
transcripts that overlap known protein coding annotation available in
different sources (Ensembl, UCSC or RefSeq) are not considered. How-
ever, the datasets are not completely overlapping in their annotations:
it is possible that part of transcripts annotated as protein coding in one
database haven’t their counterparts in other sources. For this reason, if
multiple annotation are available for the organism of interest, it is nec-
essary to merge all the information to asses the novelty of the potential
lncRNA [58]. The second point is the assessment of the coding poten-
tial of an identified transcript. Recent studies about ribosome associa-
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tion of lncRNA transcripts [60] suggested that some of these transcripts
have the potential to be translated and generate small low abundance
peptides, whose function is independent of the RNA-dependent func-
tional moieties [58]. Two computational methods have been developed
to evaluate the coding potential of lncRNAs transcripts: open reading
frame (ORF)-based and comparative sequence analysis. In the first ap-
proach, the transcript is translated in all the six frames into aminoacids
sequences and then compared, using BLASTX, against known protein
coding sequences or domain (PFAM and SwissProt database). This
method, though, does not allow a proper classification of transcripts as
coding or non coding, in fact bona fide lncRNAs, such as transcribed
pseudogenes that may derived from protein coding genes and thus
maintain sequence similarities to their parent gene, could be misclassi-
fied as being protein coding. Moreover, another criteria considered in
the evaluation of coding potential is the length of the ORF: the ma-
jority of protein coding genes have ORF longer than 200 nucleotides.
The Coding Potential Calculator CPC [74] is commonly used by the
scientific community for assessing the protein coding potential. It is
a SVM (Support Vector Machine) framework that includes informa-
tion on both ORFs homology and integrity: the SVM is trained on
annotated set of protein coding and non coding genes and assigns a
score to the analyzed transcript on the basis of the distance from the
classification hyperplane [58]. The approaches based on comparative
sequence analysis exploit information from multiple species alignments,
considering the conservation of aminoacid sequence. PhyloCSF [90] is
a method that discriminates between coding/non coding transcripts
based on the codon substitution frequency (CSF): it relies on the ex-
pected frequency of nucleotide substitution at the three positions in a
codon between a query sequence and homologous sequences [89]. The
statistical method is based on the comparison of two model for each
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transcript: one with coding model parameters and one with non cod-
ing model parameters, then transcripts are classified as coding or non
coding using maximum likehood estimation. Recently, other tools have
been developed to improve accuracy and run time, e.g. iSeeRNA and
CPAT [149, 165].

“gold standard” annotation: the current annotation of lncRNAs
is not stable and is a source of debate because the discovery of these
transcripts is clearly not yet saturated and still at a preliminary stage
[100]. Several international consortia and platforms as well as HUGO
Gene Nomenclature Committee (HGNC), that provided the first guide-
lines for lncRNA annotation, are attempting to develop e more unified
system for lncRNA annotation. The term “lncRNA” itself is temporary
because generally associated only to transcripts length, for this reason
a unique identifier should be given to each novel transcripts. One pro-
posed nomenclature comprises a catchy and easily recalled name with
a unique numerical identifier of the sequence and genomic coordinates
(referring to a specific genome assembly) for the exons of the transcript
and its isoforms that can always be retrieved irrespective of changing
genome coordinates and annotations [100]. Other ways to disseminate
or describe lncRNA could be to provide contextual information in term
of anatomical position relative to adjacent protein-coding genes (for ex-
ample, overlapping antisense, overlapping sense, intronic, bidirectional
and intergenic). To provide positional criteria that might help the
scientific community to univocally identify lncRNAs in the literature,
Mattick and Rinn recently proposed to name transcripts as follows:

Antisense transcripts: denoted as AS-GENENAME
Intronic transcripts: denoted as INT-GENENAME
Bidirectional transcripts: denoted as BI-GENENAME
Intergenic transcripts: denoted as LINC-X, where X represents

a number. Although description of a lncRNA by naming it LINC-Y,
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where Y is the most 3’-adjacent gene, might be useful for its identifi-
cation, this can generate problems when comparison across genomes is
performed in which neighboring genes may no longer be syntenic.

Overlapping transcripts: denoted as OT-GENENAME
Descriptive transcripts: If function is ascribed to a given lncRNA

through experimental studies, it is reasonable to name the gene accord-
ingly. The HUGO committee has imposed some rules to prevent the
use of commonly used or already existing annotations.

In the next years, the human annotation should become transcript
centric rather than gene centric, because it is increasingly clear that
the transcriptome is far more complex than the genome.
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Functional interactions among microRNAs and long

non coding RNAs

In recent years there is an increasing interest in understanding the
cross-regulation between microRNAs and lncRNAs and of the molec-
ular mechanisms underlying reciprocal control of their activity [169].
Several studies have begun to uncover the interaction among mam-
malian lncRNA and miRNAs and different mechanism are proposed:
i) targeting of lncRNAs by microRNAs to reduce their stability ii)
lncRNA as molecular decoys or sponges of microRNAs [141] iii) com-
petition between microRNAs and lncRNAs for binding to shared target
mRNAs and iv) lncRNAs as precursor for the generation of miRNAs
to silence target mRNA [169].

microRNA-triggered lncRNA decay
microRNAs control the level of abundance of numerous lncRNAs

(Figure 10, Table 2). Since the involvment of lncRNAs in different cell
functions, as proliferation, differentiation, senescence, apoptosis and
transformation, changes in the level of abundance of lncRNAs directly
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alter and influence the cellular response and pathologic processes [169].
Examples lncRNAs regulated by this mechanism are: lincRNA-p21,
HOTAIR, MALAT1, LOC285194, PTCSC3, H19 and lincRNA-RoR.

The stability of lincRNA-p21, a lncRNAs transcriptionally activated
by p53, is related to changes in its turnover rate: miRNA let-7b to-
gether with RBP (RNA-binding protein), HuR and Ago2 contribute
to lowering the stability of the lincRNA in human cervical carcinoma
cells. This was demonstrated through overespression of let-7b that fa-
cilitated the degradation of the lincRNAs, as well as the depletion of
HuR stabilized lincRNA-p21. The recruitment of let-7b and HuR also
influence the stability of HOTAIR, suggesting that the mechanism of
lncRNA decay mediated by HuR-enhanced microRNA interactions is
widely shared [170]. In this model, HuR binds several microRNAs,
including different members of let-7b family and also promotes the
interation between Ago2 and let-7b [170, 108]. The high levels of HO-
TAIR are important for the formation of a platform to encourage the
interaction of associated RBPs (for example Dzip3 and Mex3b, two
E3 ligases), increasing the ubiquitination of Ataxin-1 and Snurportin-
1. Moreover, miR-34a is involved in the decrease of HOTAIR stability
in human prostate cancer cell lines [18]. Also MALAT1 is targeted
by microRNA-Ago2-RISC in human primary glioblastoma and human
Hodkin cell line L428 [81]. In particular, silencing of Ago2 or miR-
9 increased the steady-state of MALAT1, whereas the overexpression
caused its decrease. This event was observed in the nucleus, highlight-
ing a nuclear decay-promoting function for this miRNA. The tumor
suppressor LOC285194, a p53-inducible lncRNA, is the target of Ago2
and miR-211 in colon cancer cell line HTC-116 [92], PTCSC3 is another
cancer-related lncRNA targeted by miR-574-5p in tyroid cancer [33],
H19 includes 4 let-7 target sites within its sequence [64] and its down-
modulation by these miRNAs promoted myotube formation in C2C12
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myoblats [64]. Finally, lincRNA-RoR is targeted by many miRNAs
including the putative rugulators miR145-5p, miR-181a-5p and miR-
99b-3p that specifically decrease the activity of the lncRNA in human
embryonic stem cell [166].
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lncRNA gen erating  miRNAslncRNA-miRNA competi tion  for mR NA
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Figure 10. Modes of direct post-transcriptional interaction among lncR-

NAs and miRNAs. Schematic of the major forms of interplay among lncRNAs and
miRNAs. (A) Some lncRNAs are degraded by miRNAs, as described for lincRNA-p21
(degraded by let-7), HOTAIR (by let-7), MALAT1 (by miR-9), LOC285194 (by miR-211),
PTCSC3 (by miR-574-5p), H19 (by let-7), and lincRNA-RoR (by miR145-5p and miR-
181a-5p). (B) Other lncRNAs can serve as sponges/decoys for microRNAs, as described
for linc-MD1 (sequestering miR-133 and miR-135), circular RNAs (sequestering miR-7,
although many more examples are predicted to occur), lincRNA-RoR (miR-145-5p), and
H19 (let-7). (C) A few examples of lncRNAs that compete with miRNAs for binding to
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mRNAs have also been reported, including BACE1AS, which competes with miR-485-
5p for binding to BACE1 mRNA, and ncNRFR, which competes with let-7 to derepress
let-7 site-bearing mRNAs to promote carcinogenesis. (D) Several lncRNAs also produce
microRNAs and other small RNAs, as shown for linc-MD1, which generates miR-206
and miR-133b, H19 (generates miR-675), and RMRP (generates miRNAs RMRP-S1 and
RMRP-S2) [169].
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lncRNAs as miRNA sponges/decoys
Recent evidence showed that also lncRNA can affect the levels and

function of microRNAs (Figure 10, Table 2). It has been proposed
that the levels of microRNAs in the cytoplasm (but also in the nu-
cleus) can be titrated by lncRNAs that harbor similar microRNA
target sequences so they can sequester microRNAs away from mR-
NAs [35]. These lncRNAs are also known as competing endogenous
(ce)RNAs [141, 68, 153]. Some examples include PTENP1, that is the
first ceRNA described (ref 56 yoon) involved in the regulation of the
tumor suppressor PTEN. PTENP1 RNA elicited this influence acting
as a decoy for PTEN-mRNA-targeting microRNAs. Also linc-MD1
modulates the muscle differentiation process by competing with miR-
NAs for the binding to specific mRNA target [15]. This lincRNAs if
overexpressed, accellerates muscle differentiation in mouse enhancing
the expression of MAML1 and MEF2C mRNAs by reducing the level
of miR-133 and miR-135, respectively. Moreover, it has been recently
proposed a feed-forward regulatory loops in which high level of linc-
MD1 in early stages of myogenesis sponges miR-133 away from HuR,
allowing it to accumulate in cells and establish a myogenic expression
gene program [80]. lincRNA-RoR and H19 described above are also in-
volved in sponge activity through self-regulatory loop: lincRNA-RoR
transcription is activated by Nanog, Oct4 and Sox2 (in turn regu-
lated by miR-145-5p) allowing the maintenance of hESC pluripotency
whereas H19 is an antagonist of let-7 during muscle differentiation [64].
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lncRNA microRNA Interplay  Consequences 
lincRNA-p21 let-7b  lncRNA decay Translational  repression  of

JUNB and CTNNB mRNAs
HOTAIR let-7a,  miR-34a  lncRNA decay Ataxin-1  and Snurportin-1

ubiquitination
lncRNA decay Tumorigenesis  

MALAT1 miR-9  lncRNA decay Repression  of MALAT1 
LOC285194 miR-211  lncRNA sisenegiromuTyaced  
PTCSC3 miR-574-5p  lncRNA decay Tumorigenesis

proliferation
H19 let7a,b,g,i  lncRNA decay, decoy Decay of let-7  target

mRNAs in  muscle  cells
miR-675  miRNA  production  Proliferation,  myogenesis  

lincRNA-RoR miR145-5p
miR-181a-5p
miR-99b-3p

lncRNA decay
miRNA  competition
lncRNA decay
lncRNA decay

Stability  of Nanog, Oct4,
and Sox2 mRNAs

Linc-MD1  miR-133
miR-135
miR-206
miR-133b

miRNA  competition
miRNA  competition
miRNA  production
miRNA  production

Muscle  differentiation,  and
abundance  of MAML1 and
MEF2C mRNAs

CDR1as/ciRS-7 miR-7  miRNA  sponge Neuronal  function  
Sry miR-138  miRNA  sponge
BACE1AS miR-485-5p  miRNA  competition  Brain  
ncNRFR let-7b,c,d,e,f,g,i

miR-98
miRNA  competition
miRNA  competition

Tumorigenesis  
RMRP RMRP-S1

RMRP-S2
miRNA  production
miRNA  production

CHH (Cartilage-Hair
Hypoplasia)  disease
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Table 2. Examples of direct cross-regulation among lncRNAs and miR-

NAs. LncRNAs (column 1) affecting the levels and/or activity of microRNAs (column 2)
and vice versa are summarized (column 3); if known, the consequences on gene expression
are also indicated (column 4) [169].
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lncRNAs competing with miRNAs for interaction with mR-
NAs

LncRNAa can also compete with miRNAs for binding to target mR-
NAs (Figure 10, Table 2). BACE1AS lncRNA promotes the stabiliza-
tion of BACE1 mRNA, that is target of miR-485-5p in human embry-
onic kidney, protecting it from RISC-mediated degradation from the
possible access and binding of the miRNA [32]. The tumor-promoting
lncRNA ncNRFR, when overexpressed, suppresses let-7 actions in colonic
epithelial cell line YAMC, increasing the level of let-7 target mRNAs.
The lncRNA contains a 22nt sequence identical to let-7a and similar
to other microRNAs of the same family [36].

fgsdufgsdf
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lncRNAs generating miRNAs
Finally, mature miRNAs can be generated by lncRNAs process-

ing (Figure 10, Table 2). For example, linc-MD1 generates miR-206
and miR-133b from an intron and an exon, respectively [15] whereas
lncRNA H19 creates miR-675, a process that is repressed by HuR [71],
in turn suppressing translation of the Insulin Growth Factor Receptor
(Igf1r) mRNA in mouse. Finally, a mitochondrial lncRNA RMRP,
produces two miRNAs, RMRP-S1 and RMRP-S2, that are putative
regulators of two mRNAs (PTCH2 and SOX4) that encode proteins
linked to human Cartilage Hair Hypoplasia [138]. Many evindeces re-
veals that lncRNAs and microRNAs work jointly to contribute to a
robust and dynamic control of gene expression through complex post-
transcriptional mechanisms.

Bioinformatic tools to investigate lncRNAs-miRNAs crosstalk
Different resources have been developed to discover miRNA-lncRNA
interactions: miRcode (http://www.mircode.org/), DIANA-LncBase
(http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=lncBase/index)
and the most comprehensive starBase v2.0 (http://starbase.sysu.edu.cn/).
The first provides "whole transcriptome" human microRNA target pre-
dictions based on the comprehensive GENCODE gene annotation, in-
cluding >10,000 long non-coding RNA genes. This tool identifies pu-
tative target sites based on established principles: seed complementar-
ity and evolutionary conservation. DIANA-LncBase unravels miRNA-
lncRNA putative functional interactions, hosting transcriptome-wide
experimentally verified and computationally predicted miRNA recogni-
tion elements (MREs) on human and mouse lncRNAs. The experimen-
tally supported entries available correspond to >5000 interactions be-
tween 2,958 lncRNAs and 120 miRNAs, while the computationally pre-
dicted interactions exceed 10 million. starBase v2.0 is focused on the
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identification of general RNA–RNA and protein–RNA interaction net-
works from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH)
data sets generated by 37 independent studies. By analyzing millions
of RNA-binding protein binding sites, the tool collect ⇠9000 miRNA-
circRNA, 16000 miRNA-pseudogene and 285 000 protein–RNA regu-
latory relationships. It also provide the most comprehensive CLIP-Seq
experimentally supported miRNA-mRNA and miRNA-lncRNA inter-
action networks. These new available resources will contribute to ex-
pand our understanding of ncRNA functions and their coordinated
regulatory networks.
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Long intergenic non coding RNA: novel drivers in

human lymphocyte differentiation

dgfsdugfsudf

With the advent of RNA-seq technologies and their application in
the study of non coding world, the interest toward lncRNAs has been
rapidly growing as well as the understanding of their multiple cellular
functions and possible involvement in different pathologies. In the last
years many studies were focused on lncRNAs quantification in different
tissues and cell types, which generated different lncRNA catalogs with
little overlap due to the high specificity of these RNA molecules [124].
In fact, unlike protein coding genes whose number has been remark-
ably stable over the years, lncRNAs seem to be more cell-specific than
mRNAs with a lower but dinamically expression in different stages of
differentiation. For this reason, the immune system is an excellent
context in which the knowledge on lncRNAs could be gained. Indeed,
little is known about the role of lncRNAs in human adaptive immune
system, while the involvment of these molecules in innate branch is
most studied [87, 59]. The adaptive immune system represents a great
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system for the study of the role of lincRNAs in differentiation [124].
In particular, upon antigene recognition CD4+ naïve T cells differen-
tiate into distinct T helper subsets characterized by the expression of
specific master trascription factors and release of different cytokines.
In recent years the concept of distinct T helper cell subsets as ter-
minally differentiated lineages has been revisited; there are increasing
evidences that CD4+ T cell populations can alter the range of cy-
tokines they produce in response to environmental clues, exhibiting
substantial plasticity. In this context, lncRNAs have a foundamental
role in governing flexibiliy and plasticity or in the maintenance of cell
identity together with lineage-specific transcription factors, cytokines
and other ncRNAs. In particular, ncRNAs seems to act as fine-tuners
of fate choices: they are involved in changes of extrinsic signals that
can alter the phenotype [120, 140, 158] or, in the context of the sta-
bility of lineage identity, they can also directly interact on histone and
DNA modifiers redefining this enviroment or acting as maintainers of
cell identity.

LncRNAs must be considered as minor players in a huge intercon-
nected network [105], interacting with few partners. This allows them
to be more flexible and sensitive to the variation, without affecting the
integrity of the whole network. Moreover lncRNAs, differently from the
protein coding counterparts, provide robustness to the network and are
the fastest in evolving sequences in the genome [76, 114, 130, 144]. In-
deed, few protein coding genes have been lost from worms to humans
and mutations occour in pathologies [39, 118]. Recent single-case or
genome wide studies on lncRNAs have been conducted in mouse im-
mune system (Table 3), whereas only few studies are available in the
human context.
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noitcnuFsANRcnLelpmaS

Granulocytes, monocytes, NK, B, naïve
CD8 + and CD4 + , memory humanT cells;
in vitro polarized precursors T-helper, T H0,
TH1, and T H2 human cells

240 lncRNAs associated with
autoimmune disease (AID)
loci (RNA-seq)

Analysis of the expression profile of the AID-associated lncRNAs
(186 )

CD4 − CD8 − , CD4 + CD8 + , CD4 + CD8 − ,
activated CD4 + mouse T cells

31423 lncRNAs (lncRNA
microarray)

Expression analysis and prediction off unction ( 187 )

17 T-cell leukemia cell lines Thy-ncR1 (expression profiling
of 10 thymus-specific ncRNA)

Enriched in human immature cells; acts as a cytoplasmic
riboregulator that reduces the level of MFAP4 mRNA ( 188 )

Naïve, memory, activated, non-activated
mouse CD8 + T cells

Over 1000 mouse and human
lncRNAs (microarray)

Expression and conservation analysis ( 37)

CD4 − CD8 − , CD4 + CD8 + , CD4 + , CD8 +

mouse thymic T cells, and thymus-derived
Treg cells. In vitro differentiated T H1, T H2,
TH17, and induced T reg

1524 lincRNA genes
(RNA-seq); LincR-Ccr2-5’ AS

Expression analysis and ChIP-seq data analysis to identify lincRNA
genes and possible regulators. LincR-Ccr2-5’ AS is TH 2-specific and it
reduces the expression of Ccr1 , Ccr2 , Ccr3 , and Ccr5 . It contributes
to the migration of T H2 cells ( 189 )

-NFIfonoitazilibatslanoitpircsnart-tsopcimsalpotyCSA-1ANFIsetycohpmylBawlamaNdetcefnI α1 RNA masking
a miRNA-binding site ( 190 )

Jurkat cells, primary lymphomas,
lymphoma cell lines, CD19 + B cells

nideriapmisihcihwsaFfognicilpsevitanretlaehtsetalugeR1SA-SAF/faS
non-Hodgkin’s lymphomas associated with poor prognosis ( 191 , 192 )

Activated human CD4 + T cells BIC RNA (EST library analysis) Proto-oncogene, induced upon activation, sensitive to
immunosuppressive drugs ( 193 )

nwod-kconkANRhs(NORNsllectakruJ
screening)

Regulates NFAT subcellular localization as part of an RNA–protein
complex ( 84)

CEM-C7 CKM1, jurkat JKM1, human
primary lymphocytes

morfgnitepmocstcA.tserrahtworgroftneicfifusdnayrasseceN5SAG
GREs ( 71, 106 )

Human CD4 + , CD8 + cells, PBMC NTT Unknown, it shows a similar expression pattern to IFN γR (194 )

JfoytivitcaehttcurtsnIAETsetycomyhT α promoters and recombination ( 103 , 195 )

HumanT H FNdna,teb-T,4TATSnotnednepeD1SA-GNFI/1gpvemT/TSeNsllec1 κB. Contributes to Ifng
expression by bindingWDR5 and alter H3K4me3 ( 196 , 197 )

Human primary CD4 + and CD8 + T cells,
primary and polarized (from CD4 + and
CD8 + T) CD4 + CM, T H1, T H2, T H17, and
Treg cells; neutrophils, basophils, CD8 +

CM, B cells

GATA3-AS1 Specifically expressed in T H2 cells ( 198 )

Table 3. Studies on lncRNAs in the adaptive immune system [124].
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The importance of lncRNAs investigation in human immune sys-
tem is underlined by the many debates about the differences between
experimental animal model and human in term of immune responses
[147, 152, 157]. More important, ncRNAs seem to be poorly conserved
between human and mouse [114, 115] and these sentences is supported
by the fact that over 80% of the human lncRNAs that arose in the
primate lineage, only 3% are conserved across tetrapods and also lack
of known orthologs outside vertebrate [97].

The first functional study on adaptive immune system in mouse
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and human was focused in TH1 and TH2 lymphocytes. In this study
the authors showed that lincRNA Tmevpg1, selectively expressed in
TH1 cells via STAT4 and T-bet, is involved in the induction of IFN-g
expression in response only to TH1 differentiation program and not
in other cellular context [21]. GATA3-AS1 is another investigated
lincRNAs, specifically expressed in primary TH2 cells and involved
in a co-regulation with GATA3 [173]. Another study showed that
GAS5 lncRNA, expressed in human T lymphocytes, is accumulated in
starving condition and contributes to growth arrest suppressing GR-
mediated transcription [73, 167]. Other genome-wide analyses aimed
at profiling the lncRNA transcriptome, have been performed on CD8+

and CD4+ T cells in mice model, providing different set of specifically
expressed lncRNA genes [123, 57]. In CD8+context, hundreds lncR-
NAs were identified in mouse genome, many of which were lymphoid
cell-specific and differentially expressed in naïve, memory and effector
CD8+ cells. Indeed, 1524 lincRNA gene clusters were identified in a
panel of CD4+ subsets, that exhibited dynamic, cell- and activation
state-specific expression. Also in B cells, mediators of the antibody-
dependent humoral arm of the adaptive immunity, express lncRNAs.
The antisense lncRNA Fas-AS1 controls the production of soluble Fas
receptor (sFas) that binds Fas ligand to regulate Fas-induced apopto-
sis in B cell lymphomas [146]. Fas-AS1 inhibits the alternative skip-
ping of the exon 6 of Fas that is required for the generation of sFas
mRNA. Because serum sFas levels are associated with poor prognosis
in non-Hodgkin’s lymphoma [117], the Fas-AS1 lncRNA is a potential
therapeutic target in this setting. Finally in B cells, chromatin remod-
eling associated with V(D)J recombination has been potentially linked
to a widespread antisense intergenic transcription that occurs in the
variable (V) region of the immunoglobulin heavy chain (Igh) locus [8,
159]. These few examples are just clues of the importance of lncRNAs
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in human immune system and further deeper analyses are necessary to
highlight their role in this context.
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Scope of the thesis

6, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176
6, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176

In this thesis we investigated and provided the first comprehensive
transcriptome analysis of human lymphocytes, focusing on the expres-
sion of long intergenic non coding RNAs (lincRNAs). Given the high
specificity of these genes, we not only considered lincRNA collected in
public databases, but we adopted a de novo approach to identify novel
lincRNAs that are specifically expressed in our cells. Moreover, apply-
ing stringent filters, we identified lincRNAs "signature" that can play
a key role in lymphocyte differentiation. We focused our attention on
a TH1-specific lincRNA, called linc-MAF-4, that we demonstrated to
be involved in the maintenance of TH1 cell identity via an epigenetic-
repression of MAF gene.
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Abstract 

 

Long non-coding-RNAs are emerging as important regulators of cellular functions 

but little is known on their role in human immune system. Here we investigated long 

intergenic non-coding-RNAs (lincRNAs) in thirteen T and B lymphocyte subsets by 

RNA-seq analysis and de-novo transcriptome reconstruction. Over five hundred new 

lincRNAs were identified and lincRNAs signatures were described. Expression of linc-

MAF-4, a chromatin associated TH1 specific lincRNA, was found to anti-correlate with 

MAF, a TH2 associated transcription factor. Linc-MAF-4 down-regulation skews T cell 

differentiation toward TH2. We identified a long-distance interaction between linc-

MAF-4 and MAF genomic regions, where linc-MAF-4 associates with LSD1 and EZH2, 

suggesting linc-MAF-4 regulated MAF transcription by chromatin modifiers 

recruitment. Our results demonstrate a key role of lincRNAs in T lymphocyte 

differentiation. 
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Introduction  

 

Lymphocytes enable us to fight and survive infections, but are also major drivers of 

immune-mediated diseases, such as allergy and autoimmunity. These different type of 

immune responses are mostly coordinated by distinct CD4+ T cell subsets through 

signals delivered both by cytokines and by cell-to-cell contacts1. Development and 

differentiation programs of CD4+ T lymphocytes subsets with distinct effector functions 

have been extensively studied in terms of signalling pathways and transcriptional 

networks, and a certain degree of functional plasticity between different subsets has 

been recently established2. Indeed, CD4+ T cell subset flexibility in the expression of 

genes coding for cytokines and transcription factors allows the immune system to 

dynamically adapt to the many challenges it faces3. As CD4+ T lymphocyte subsets are 

no longer considered stable and terminally differentiated cell lineages, the question 

arises as to how lymphocyte phenotype and functions can be modulated and whether 

these new findings offer new therapeutic opportunities. 

Besides the well-established role of transcription factors as instructive signals for cell 

differentiation toward a given lineage, other cues, such as epigenetic modifications, can 

regulate maintenance of cellular states4. In this context non-coding RNAs (ncRNAs) are 

emerging as a new regulatory layer impacting on both the development and the 

functioning of the immune system5, 6. Among the several classes of ncRNAs that play a 

specific role in lymphocyte biology, microRNAs are the best-characterized7, 8, 9, 10, 11, 12. 

As to long intergenic non-coding RNAs (lincRNAs), although thousands of them have 

been identified in the mammalian genome by bioinformatics analyses of transcriptomic 

data13, 14, their functional characterization is still largely incomplete. The functional 

studies performed so far have shown that lincRNAs contribute to the control of cell 

differentiation and to the maintenance of cell identity through different modes of 

action15. Nuclear lincRNAs act mainly through their association with chromatin-

modifying complexes16, 17, 18. Whereas, cytoplasmic lincRNAs can modulate 

translational control19 and transcripts stability20 directly by base pairing with specific 

targets or indirectly as competing endogenous RNAs21, 22, 23. Few examples of 

functional lincRNAs have been recently described in the mouse immune system. A 

broad analysis performed by interrogating naïve and memory CD8+ cells purified from 



	
   66 

mouse spleen with a custom array of lincRNAs reported the identification of 96 

lymphoid-specific lincRNAs and suggested a role for lincRNAs in lymphocyte 

differentiation and activation24. The lincRNA NeST has been found to be 

downregulated during lymphocyte activation in a reciprocal manner to IFN-g and to 

control susceptibility to Theiler’s virus and Salmonella infection in mice through 

epigenetic regulation of the IFN-g locus25, 26. More recently, mouse lincRNA-Cox2 has 

been reported to be induced downstream Toll-like receptor signalling and to mediate the 

activation and repression of distinct sets of immune target genes involved in 

inflammatory responses27. Another study on mouse thymocytes and mature peripheral T 

cells allowed the identification of lincRNAs with specific cell expression pattern during 

T cell differentiation and of a CD4+ TH2 specific lincRNA - LincR-Ccr2-5’AS - 

involved in the regulation of CD4+ TH2 lymphocytes migration28. Although these 

studies highlight the relevance of lincRNAs in regulating immune responses, a thorough 

analysis of their expression profile and functional role in the human immune system is 

still lacking. 

The present study is based on a RNA-seq analysis of thirteen highly purified primary 

human lymphocytes subsets. We performed a de novo transcriptome reconstruction, and 

discovered over five hundred new long intergenic non-coding RNAs (lincRNAs). We 

identified several lymphocyte subset-specific lincRNAs signatures, and found that linc-

MAF-4, a chromatin associated CD4+ TH1 specific lincRNA, correlates inversely with 

the transcription factor MAF and that its down-regulation skews CD4+ T cell 

differentiation toward TH2 phenotype.  

We provide the first comprehensive inventory of human lymphocytes lincRNAs and 

demonstrate that lincRNAs can be key to lymphocyte differentiation. This resource will 

likely help a better definition of lincRNAs role in lymphocytes differentiation, plasticity 

and effector functions.  
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Results 

 

LincRNAs identify human lymphocyte subsets better than protein coding genes  

To assess lincRNA expression in human primary lymphocytes, RNA was extracted 

from thirteen lymphocyte cell subsets (Table 1) purified from peripheral blood 

mononuclear cells (PBMCs) of five healthy donors12. The polyadenylated RNA fraction 

was then analysed by paired-end RNA sequencing obtaining about 1.7 billion mapped 

reads. In order to enrich for transcripts deriving from “bona fide” active genes we 

applied an expression threshold (“0.21” FPKM) defined through the integration of 

RNAseq and chromatin state ENCODE project data29. We found a total of 31,902 

expressed genes (including both protein coding and non coding genes) in the 13 subsets 

(Table 1 and Supplementary Fig. 1a), of which 4,201 were lincRNAs annotated in 

public resources13, 30 (Fig. 1a). In order to identify novel lincRNAs expressed in primary 

human lymphocytes, we used three de novo transcriptome reconstruction strategies that 

are based on the combination of two different sequence mappers, TopHat and Star31, 32, 

with two different tools for de novo transcripts assembly, Cufflinks and Trinity33, 34. 

LincRNAs were identified within the newly described transcripts exploiting the 

following process: i) selection of transcripts longer than 200 nucleotides and 

multiexonic, which did not overlap with protein coding genes (thus counting out 

unreliable single-exon fragments assembled from RNA-seq); ii) exclusion of transcripts 

that contain a conserved protein-coding region and transcripts with ORFs that contain 

protein domains catalogued in Pfam protein family database35; iii) exploitation of 

PhyloCSF, a comparative genomics method that assesses multispecies nucleotide 

sequence alignment based on a formal statistical comparison of phylogenetic codon 

models36, which efficiently identifies non-coding RNAs as demonstrated by ribosome 

profiling experiments37. Finally we defined a stringent de novo lincRNA set including 

those genes for which at least one lincRNA isoform was reconstructed by two 

assemblers out of three. Through this conservatively multi-layered analysis we 

identified 563 novel lincRNAs genes, increasing by 11.8% the number of lincRNAs 

expressed in human lymphocytes. The different classes of RNAs are evenly distributed 

among different lymphocytes subsets (Supplementary Fig. 1b) and the ratio of already 

annotated and newly identified lincRNAs is similar across different chromosomes 
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(Supplementary Fig. 1c) and across various lymphocyte subsets (Supplementary Fig. 

1d). As previously observed in different cell types13, 33, also in human lymphocytes 

lincRNAs are generally expressed at lower levels than protein coding genes 

(Supplementary Fig. 1e). However, when transcripts were divided based on their 

expression in cell-specific and non specific (Supplementary Fig. 1f), we found that cell 

specific lincRNAs and cell specific protein coding genes, display similar expression 

levels (Supplementary Fig. 1e-g). 

Lymphocytes subsets display very different migratory abilities and effector functions, 

yet they are very closely related from the differentiation point of view. As lincRNAs are 

generally more tissue specific than protein coding genes13, 38, we assessed the 

lymphocyte cell-subset specificity of lincRNAs. We therefore classified genes 

according to their expression profiles by unsupervised K-means clustering and found 

that lincRNAs are defined by 15 clusters and protein coding genes by 24 clusters (Fig. 

1b and Supplementary Fig. 1h). Remarkably, the percentage of genes assigned to the 

clusters specific for the different lymphocyte subsets is higher for lincRNAs (71%) than 

for protein coding genes (34%) (Fig.  1c). This superiority stands out even when 

lincRNAs are compared with membrane receptor coding genes (40%) (Fig. 1d), which 

are generally considered the most accurate markers of different lymphocyte subsets. 

Similar results were obtained also using the heuristic expression threshold of FPKM>1 

(Supplementary Fig. 1i). 

Altogether, based on RNA-seq analyses of highly purified primary T and B lymphocyte 

subsets, we provide a comprehensive landscape of lincRNAs expression in human 

lymphocytes. Exploiting a de novo transcriptome reconstruction we discovered 563 new 

lincRNAs, and found that lincRNAs are very effective in marking lymphocyte cell 

identity.  

 

Identification of lincRNA expression signatures of human lymphocyte subsets 

Next, we interrogated our dataset for the presence of lincRNAs signatures in the 

different lymphocyte subsets. We therefore looked for lincRNAs differentially 

expressed (p<0.05; non-parametric Kruskal-Wallis test) that had more than 2.5 fold 

expression difference in a given cell subset compared to all the other subsets and that 

were expressed in at least 3 out of 5 individuals and found 172 lincRNAs that met these 
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criteria (Fig. 2a and Supplementary Fig. 2b-m). We integrated the human transcriptome 

database with our newly identified transcripts and thus created a new reference to assess 

more thoroughly expression of new transcripts, in other human tissues. Looking at 

lincRNAs signatures in a panel of sixteen human tissues (Human BodyMap 2.0 project) 

we found that lymphocytes signature lincRNAs are not only very poorly expressed in 

non-lymphoid tissues  (Fig. 2a), but also that most signature lincRNAs are not 

detectable even in lymphoid tissues. These findings underscore the importance of 

assessing expression of lincRNAs (as well as of any highly cell-specific transcripts) in 

purified primary cells rather than in total tissues where a given cell-subset-specific 

transcript is diluted by the transcripts of all the other cell types of the tissue. 

It is important to note that, the newly identified lincRNAs defined as signatures are 

more expressed (Fig. 2c) and more cell-specific (Supplementary Fig. 2b-m) than the 

already annotated lincRNAs defined as signatures. The representative data in Fig. 2b 

refer to the CD4+ TH1 cell subset; similar results were obtained for all the other subsets 

(Supplementary Fig. 2b-m). 

Finally, to confirm and extend our signature data, we assessed the expression of CD4+ 

TH1 lincRNAs by RT-qPCR in a new set of independent samples of primary human 

CD4+ naïve, Treg and TH1 cells, as well as in naïve CD4+ T cells that were activated in 

vitro and induced to differentiate toward TH1 or TH2 cells. Specific subset expression 

was confirmed for 90% of the CD4+ TH1 signature lincRNAs (Fig. 2d). Moreover, 90% 

of CD4+ TH1 signature lincRNAs that are expressed in resting CD4+ TH1 cells purified 

ex vivo, are highly expressed also in naïve CD4+ T cells differentiated under TH1 

polarizing conditions in vitro, whereas they are poorly expressed in naïve CD4+ T cells 

that are differentiated towards TH2 in vitro (Fig. 2e). As a corollary to these findings, 

we observed by RNA-seq that CD4+ naïve signature lincRNAs are mostly down-

regulated during differentiation towards TH0 cells in vitro, when TH1, TH2 and TH17 

signature lincRNAs are mostly up-regulated (Supplementary Fig. 2a). 

Taken together our data demonstrate that lincRNAs provide excellent signatures of 

human lymphocyte subsets, and suggest that human CD4+ T lymphocytes acquire most 

of their memory specific lincRNAs signatures during their activation-driven 

differentiation from naïve to memory cells. 
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Linc-MAF-4 downregulation skews CD4+ T cell differentiation towards TH2  

As lincRNAs have been reported to influence the expression of neighbouring genes25, 26, 

28, 39, we asked whether protein coding genes proximal to lymphocytes signature 

lincRNAs were involved in key cell-functions. To this purpose we used the FatiGO tool 

from the Babelomics suite for functional enrichment analysis40 and found that protein 

coding genes neighbouring to signature lincRNAs are enriched for Gene Ontology 

terms strongly correlated with lymphocyte T cell activation (Fig. 3a), pointing to a 

possible role of signature lincRNAs in important lymphocyte functions. In order to 

obtain proof of concept of this hypothesis, we chose to characterize in depth linc-MAF-

4 (also referred to as linc-MAF-2 in LNCipedia database http://www.lncipedia.org41), a 

TH1 signature lincRNA, localized 139.5 Kb upstream of the MAF gene. MAF encodes a 

transcription factor involved in TH2 differentiation42, which is also required for the 

efficient development of TH17 cells43 and controls IL4 transcription in CD4+ T 

follicular helper cells44. Our sequencing data showed that high expression of linc-MAF-

4 correlates with low levels of MAF transcript in CD4+ TH1 cells, conversely TH2 cells 

have low expression levels of linc-MAF-4 and high levels of MAF transcript. The anti-

correlation of expression between lincRNAs and their neighbouring genes is not a 

common feature of all lincRNAs (13, 16), and it is probably restricted to a limited number 

of cis-acting lincRNAs. This observation is confirmed also in our dataset (data not 

shown). Moreover, no correlation is observed between the expression linc-MAF-4 and 

its proximal upstream protein coding genes: CDYL2 and DYNLRB2 (Supplementary 

Fig. 3a).  

The same inverse relation between linc-MAF-4 and MAF is observed when naïve CD4+ 

T cells are differentiated in vitro towards TH1 or TH2 cells. In details, Fig. 3b shows that 

in T lymphocytes differentiating towards TH1 cells, MAF transcript increases up to day 

3 and then drops. Conversely, linc-MAF-4 is poorly expressed for the first three days 

but then increases progressively. In CD4+ T lymphocytes differentiating towards TH2 

cells, we found the opposite situation, both MAF transcript and protein levels increase 

constantly up to day 8 while Iinc-MAF4 remains constantly low (Fig. 3b and 

Supplementary Fig. 3c), similarly to what observed in CD4+ T lymphocytes 

differentiating towards TH17 cells (Supplementary Fig. 3d). 
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We further characterized MAF transcriptional regulation by looking at H3K4 tri-

methylation (H3K4me3) level and RNA polymerase II occupancy at MAF promoter 

region in TH1 and TH2 cells. Consistent with a higher active transcription of MAF in 

CD4+ TH2 cells, we found that H3K4me3 levels in TH2 cells are greater than in TH1 

cells and that RNA polymerase II binding at MAF promoter is higher in TH2 than in TH1 

cells (Fig. 3c). Intriguingly, linc-MAF-4 knock-down in activated CD4+ naïve T cells 

leads to MAF increased expression (Fig. 3e and Supplementary Fig. 3e). All the above 

results indicate that modulation of MAF transcription in T cells depends on tuning of its 

promoter setting, and suggest a direct involvement of linc-MAF-4 in the regulation of 

MAF transcriptional levels.  

We then assessed the overall impact of linc-MAF-4 knock-down on CD4+ T cell 

differentiation by performing transcriptome profiling and Gene Set Enrichment 

Analysis (GSEA). We defined as reference Gene-Sets the genes upregulated in CD4+ 

naïve T cells differentiated in vitro towards TH1 or TH2 types (Supplementary Table 1). 

We found that the CD4+ TH2 gene set is enriched for genes that are overexpressed in 

linc-MAF-4 knock-down cells, whereas the CD4+ TH1 gene set is depleted of these 

same genes (Fig. 3f). Concordant with these findings, the expression of GATA3 and IL4, 

two genes characteristic of TH2 cells, is increased after linc-MAF-4 knock-down (Fig. 

3g and Supplementary Fig.3e).  

Taken together these results demonstrate that linc-MAF-4 down regulation contributes 

to the skewing of CD4+ T cells differentiation towards TH2. 
 

Epigenetic regulation of MAF transcription by linc-MAF-4 

Since linc-MAF-4 gene maps in relative proximity (139.5 Kb) to MAF gene we asked 

whether linc-MAF-4 can down-regulate MAF transcription, and, we investigated 

whether their genomic regions could physically interact. Chromosome conformation 

capture (3C) analysis	
   was exploited to determine relative crosslinking frequencies 

among regions of interest. We tested the conformation of the linc-MAF-4 - MAF 

genomic region in differentiated CD4+ TH1 cells. A common reverse primer mapping 

within the MAF promoter region, was used in combination with a set of primers 

spanning the locus, and interactions were analysed by PCR. Specific interactions 

between MAF promoter and 5’ and 3’ end regions of linc-MAF-4 were detected (Fig. 



	
   72 

4a,b and Supplementary Fig. 4a), indicating the existence of an in cis chromatin looping 

conformation that brings linc-MAF-4 in close proximity to MAF promoter. Interestingly, 

the subcellular fractionation of in vitro differentiated CD4+ TH1 lymphocytes revealed a 

strong enrichment of linc-MAF-4 in the chromatin fraction (Fig. 4c). Because other 

chromatin-associated lincRNAs regulate neighbouring genes by recruiting specific 

chromatin remodellers, we tested in RNA immunoprecipitation (RIP) assays the 

interaction of linc-MAF-4 with different chromatin modifiers, including activators and 

repressors (data not shown), and found a specific enrichment of linc-MAF-4 in the 

immunoprecipitates of two repressors, EZH2 and LSD1 (Fig. 4d and Supplementary Fig. 

4b). In agreement with these findings, we found that linc-MAF-4 knock-down in 

activated CD4+ naïve T cells reduces both EZH2 and LSD1 levels and correlates with 

the reduction of EZH2 enzymatic activity at MAF promoter as demonstrated by the 

H3K27me3 reduction at this locus (Fig. 4e). Remarkably, H3K27me3 levels were 

reduced neither at MYOD1 promoter region (a known target of EZH2) nor at a region 

within the chromatin loop between linc-MAF-4 and MAF marked by H3K27me3 

(Supplementary Fig. 4c). 

Altogether, these results demonstrate that there is a long distance interaction between 

linc-MAF-4 and MAF genomic regions, through which linc-MAF-4 could act as a 

scaffold to recruit both EZH2 and LSD1 and modulate the enzymatic activity of EZH2 

on MAF promoter, thus regulating its transcription (Fig. 4f). 
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Discussion 

 

Mammalian genomes encode more long non-coding RNAs than previously thought16, 45 

and the number of lincRNAs playing a role in cellular processes steadily grows. As 

there are relatively few examples of functional long non-coding RNAs in the immune 

system24, 25, 26, 27, 28, with the present study we depict a comprehensive landscape of 

lincRNAs expression in thirteen subsets of human primary lymphocytes. Moreover, we 

identified a lincRNA (linc-MAF-4) that appear to play a key role in CD4+ T helper cell 

differentiation. 

 LincRNAs have been reported to have high tissue specificity13 and our study of 

lincRNAs expression in highly pure primary human lymphocyte provides an added 

value because it allows the identification of lincRNAs whose expression is restricted to 

a given lymphocyte cell subset. Interestingly, we found that lincRNAs define the 

cellular identity better than protein coding genes, even than surface receptor coding 

genes that are generally considered the most precise markers of lymphocytes subsets. 

Due to their specificity of expression, human lymphocytes lincRNAs that are not yet 

annotated in public resources would have not been identified without performing de 

novo transcriptome reconstruction. Indeed by exploiting three different de novo 

strategies we identified 563 novel lincRNAs and increased by 11.8% the number of 

lincRNAs expressed in human lymphocytes. As our conservative analysis was limited 

to thirteen cellular subsets, one may wonder how many novel lincRNAs could be 

identified by transcriptome analysis of all of the several hundreds human cell types.  

We Compared our data with previous analyses of lincRNAs expression in mouse 

immune system28 exploiting the LNCipedia database (http://www.lncipedia.org 41) and 

we found that 51% of the human lincRNA signatures are conserved in mouse, that is 

similar to the overall conservation between human and mouse lincRNAs (60%). 

However further studies will be necessary to asses that also their function is conserved. 

Based on our findings, signature lincRNAs might be exploited to discriminate and 

differentiate at the molecular level those cell subsets that cannot be distinguished easily 

based on cell surface markers because of their cellular heterogeneity, such as CD4+ 

regulatory T cells (Treg cells). Furthermore, most lincRNA signatures defined for each 

of the thirteen lymphocytes subsets are not detected in human lymphoid tissues that 
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include all the lymphocyte subsets we analyzed. Indeed, to get the best out of the 

enormous molecular resolution achievable with Next-Generation-Sequencing one 

should perform transcriptomic studies on single cells, or at least on functionally 

homogenous cell subsets. As lincRNAs expression in a tissue is averaged across all the 

cell types composing that tissue, a transcriptome analysis on unseparated tissue-derived 

cells will result in an underestimation both of the expression of a cell specific lincRNA 

and of its functional relevance.  

The lincRNAs role in differentiation has been described in different cell types17, 20, 23, 46, 

47. In the mouse immune system it has been found that lincRNAs expression changes 

during naïve to memory CD8+ T cell differentiation24 and during naïve CD4+ T cells 

differentiation into distinct helper T cell lineages28.  We show in human primary 

lymphocytes that activation induced differentiation of CD4+ naïve T cells is associated 

with increased expression of lincRNAs belonging to the CD4+ TH1 signature suggesting 

that upregulation of TH1 lincRNAs is part of the cell differentiation transcriptional 

program. Indeed, linc-MAF-4, one of the TH1 signature lincRNA, is poorly expressed in 

TH2 cells and its experimental downregulation skews differentiating T helper cells 

toward a TH2 transcription profile. We have found that linc-MAF-4 regulates 

transcription exploiting a chromatin loop that brings its genomic region close to the 

promoter of MAF gene. We propose that the chromatin organization of this region 

allows linc-MAF-4 transcript to recruit both EZH2 and LSD1 and modulate the 

enzymatic activity of EZH2 negatively regulating MAF transcription with a mechanism 

of action similar to that shown for the lincRNAs HOTAIR48 and MEG3 49. We therefore 

provide a mechanistic proof of concept that lincRNAs can be important regulators of 

CD4+ T-cell differentiation. Given the number of specific lincRNAs expressed in the 

different lymphocytes subsets, it can be postulated that many other lincRNAs might 

contribute to cell differentiation and to the definition of cell identity in human 

lymphocytes. 

These findings and the high cell specificity of lincRNAs suggest lincRNAs as novel and 

highly specific molecular targets for the development of new therapies for diseases (e.g. 

autoimmunity, allergy, and cancer) in which altered CD4+ T-cell functions play a 

pathogenic role. 
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Online Methods 
 

Purification of primary immunological cell subsets 
Buffy-coated blood of healthy donors was obtained from the Ospedale Maggiore in 

Milan and peripheral blood mononuclear cells were isolated by Ficoll-hypaque density 

gradient centrifugation. The ethical committee of Istituto di Ricovero e Cura a Carattere 

Scientifico Policlinico Ospedale Maggiore approved the use of PBMCs from healthy 

donors for research purposes, and informed consent was obtained from subjects. Human 

blood primary lymphocyte subsets were purified >95% by cell sorting using different 

combinations of surface markers (Table 1). For in vitro differentiation experiments 

resting naïve CD4+ T cells were purified >95% by negative selection with magnetic 

beads with the isolation kit for human CD4+ Naïve T cells of Miltenyi and stimulated 

with Dynabeads Human T-Activator CD3/CD28 (Life Technologies). IL-2 was added at 

20 IU/ml (Novartis). TH1 polarization was initiated with 10 ng/ml IL12 (R&D Systems) 

and TH2 neutralizing antibody anti-IL4 (2 mg/ml). TH2 polarization was induced by 

activation with  Phytohaemagglutinin, PHA (4mg/mL) in the presence of IL-4 (R&D 

Systems) (10 ng/ml), and neutralizing antibodies to IFN-γ (2 mg/ml) and anti-IL12 (2 

mg/ml). For GATA-3 and c-Maf intracellular staining, cells were harvested and then 

fixed for 30 min in Fixation/permeabilisation  Buffer (Ebioscience) at 4°C. Cells were 

stained with antibodies anti-GATA-3 (BD bioscience) and anti-c-Maf (Ebioscience) in 

washing buffer for 30 min at 4°C. Cells were then washed two times, resuspended in 

FACS washing buffer and analysed by flow cytometry. 

 

RNA isolation and RNA sequencing 

Total RNA was isolated using mirVana Isolation Kit. Libraries for Illumina sequencing 

were constructed from 100 ng of total RNA with the Illumina TruSeq RNA Sample 

Preparation Kit v2 (Set A). The generated libraries were loaded on to the cBot 

(Illumina) for clustering on a HiSeq Flow Cell v3. The flow cell was then sequenced 

using a HiScanSQ (Illumina). A paired-end (2×101) run was performed using the SBS 

Kit v3 (Illumina). Real-time analysis and base calling was performed using the HiSeq 

Control Software Version 1.5 (Illumina). 
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RNA-seq and publicly available datasets  
RNA-seq data representative of 13 lymphocyte populations were collected for 

transcriptome reconstruction. Five biological replicates were analyzed for all 

populations except for CD8+ TCM and B CD5+ (four samples). The whole dataset was 

aligned to GRCh37 (Genome Reference Consortium Human Build 37) with TopHat 

v.1.4.132 for a total of over 1.7 billions mapped paired-end reads (30 million reads per 

sample on average). These data were also mapped with the aligner STAR v.2.2.031. 

RNA-seq datasets of 16 human tissues belonging to the Illumina Human BodyMap 2.0 

project (ArrayExpress accession no. E-MTAB-513) were mapped following the same 

criteria.  

 

Reference annotation 
An initial custom reference annotation of unique, non-redundant transcripts was built by 

integrating the Ensembl database (version 67 from May 2012) with the lincRNAs 

identified by Cabili et al. 2011 using Cuffcompare v.2.1.133. The annotated human 

lincRNAs were extracted from Ensembl using BioMart v.67 and subset by gene biotype 

‘lincRNA’  (5,804 genes). Other classes of genes were integrated in the annotation: the 

list of protein coding genes  (21,976 genes), the receptors genes collection defined in 

BioMart under GO term GO:000487 (2,043 genes with receptor activity function) and 

the class of genes involved in metabolic processes corresponding to GO term 

GO:0008152 (7,756 genes). Hence, the complete reference annotation consisted of 

195,392 transcripts that referred to 62,641 genes, 11,170 of which are non-redundant 

lincRNA genes. 

 

De novo genome-based transcripts reconstruction 
A comprehensive catalogue of lincRNAs specifically expressed in human lymphocyte 

subsets was generated using a de novo genome-based transcripts reconstruction 

procedure with three different approaches. Two aligners were used: TopHat v.1.4.1 and 

STAR v. 2.2.0. The de novo transcriptome assembly was performed on the aligned 

sequences (samples of the same population were concatenated into one “population 

alignment“) generated by STAR and TopHat using Cufflinks v. 2.1.1 with reference 
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annotation to guide the assembly (-g option) coupled with multi-read (-u option) and 

fragment bias correction (-b option) to improve the accuracy of transcripts abundance 

estimates. With this method, about 30,000-50,000 new transcripts were identified in 

each lymphocyte population. The third approach employed the genome-guided Trinity 

software (http://pasa.sourceforge.net/#A_ComprehensiveTranscriptome), which 

generates novel transcripts performing a local assembly on previously mapped reads 

from specific location. The Trinity50 default aligner was substituted with STAR. Each 

candidate transcript was then processed using the PASA pipeline, which reconstructs 

the complete transcript and gene structures, resolving incongruences derived from 

transcript misalignments and alternatively splices events, refining the reference 

annotation when there are enough evidences and proposing new transcripts and genes in 

case no previous annotation can explain the new data. 

 

Novel lincRNA genes identification  
Annotated transcripts and new isoforms of known genes were discarded, retaining only 

novel genes and their isoforms located in intergenic position. In order to filter out 

artifactual transcripts due to transcriptional noise or low polymerase fidelity, only multi-

exonic transcripts longer than 200 bases were retained. Then, the HMMER3 algorithm35 

was run for each transcript in order to identify occurrences of any protein family 

domain documented in the Pfam database (release 26; used both PfamA and PfamB). 

All six possible frames were considered for the analysis, and the matching transcripts 

were excluded from the final catalogue. 

The coding potential for all the remaining transcripts was then evaluated using 

PhyloCSF (phylogenetic codon substitution frequency)36 (PhyloCSF was run on a 

multiple sequence alignment of 29 mammalian genomes (in MAF format) 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/) to obtain the best 

scoring ORF greater than 29 aminoacids across all three reading frames. To efficiently 

access the multialignment files (MAF) the bio-maf (https://github.com/csw/bioruby-

maf) Ruby biogem51 was employed. This library provides indexed and sequential access 

to MAF data, as well as performing fast manipulations on it and writing modified MAF 

files. Transcripts with at least one open reading frame with a PhyloCSF score greater 

than 100 were excluded from the final catalogue. The PhyloCSF score threshold of 100 
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was determined by Cabili et al. 2011 to optimize specificity and sensitivity when 

classifying coding and non coding transcripts annotated in RefSeq (RefSeq coding and 

RefSeq lincRNAs). PhyloCSF score =100 corresponds to a false negative rate of 6% for 

coding genes (i.e., 6% of coding genes are classified as non-coding) and a false positive 

rate of ~10% (i.e., 9.5% of noncoding transcripts are classified as coding). 

 

De novo data integration 

Duplicates among the transcripts identified with the same de novo method were 

resolved using Cuffcompare v2.1.1. In the same way, the resulting three datasets were 

further merged to generate a non-redundant atlas of lincRNAs in human lymphocytes 

and only genes identified by at least 2 out of 3 software were considered.  A unique 

name was given to each newly identified lincRNA gene composed by the prefix “linc-” 

followed by the Ensembl gene name of the nearest protein coding gene (irrespective of 

the strand). The additional designation “up” or “down” defines the location of the 

lincRNA with respect to the sense of transcription of the nearest protein coding gene. In 

addition, either “sense” or “antisense” was added to describe the concordance of 

transcription between the lincRNA and its nearest coding gene. A numerical counter 

only of newly identified lincRNAs related to the same protein coding gene is added as 

suffix (such as ‘linc-geneX-(up|down)-(sense|antisense)_#n’). This final non-redundant 

catalogue of newly identified lincRNAs includes 4,666 new transcripts referring to 

3,005 new genes.   

 
LincRNA signatures definition 
A differential expression analysis among the thirteen cell subsets profiled was 

performed using Cuffdiff v.2.1.1. This analysis was run using --multi-read-correction (-

u option) and upper quartile normalization (--library-norm-method quartile) to improve 

robustness of differential expression calls for less abundant genes and transcripts. Only 

genes expressed over 0.21 FPKM 29were considered in the downstream analysis  to 

filter out genes that are merely by-products of leaky gene expression, sequencing errors, 

and/or off-target read mapping. After adding a pseudo-count of 1 to the raw FPKM 

(fragments per kilobases of exons per million fragments mapped) for each gene, 

applying log2 transformation and Z-score normalization, K-means clustering with 

Euclidean metric was performed on lincRNAs expression values using 
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MultiExperiment Viewer v.4.6 tool. The same procedure was then applied to the 

expression values of protein coding, metabolic and receptors genes. The Silhouette 

function52 was used to select an appropriate K (number of clusters). A K ranging from 

13 to 60 was tested, and the value associated with the highest Silhouette score for each 

class of genes was selected. The number of clusters that maximizes the Silhouette score 

is 15 for lincRNA (Supplementary Figure 1h), 24 for protein coding genes and 23 and 

36 for receptors and metabolic genes respectively. The centroid-expression profile of 

each cluster was then evaluated in order to associate each cluster to a single cellular 

population (Figure 1).  

In order to select specifically expressed lincRNA genes, K-means results were 

subsequently intersected with the JS score, a cell-specificity measure based on Jensen–

Shannon divergence and only the genes assigned to the same cellular population by 

both techniques were retained for further analysis. The estimation procedure for the JS 

score was adapted by building a reference model composed of 13 cell subsets. For the 

selected lincRNAs, the intrapopulation consistency among different samples was 

subsequently evaluated to minimize the biological variability: only genes expressed in 

at least 3/5 (or 3/4 replicates for CD8+ CM and CD5+ B) of the profiled samples whose 

maximal expression value was >2.5 fold compared to all other lymphocyte subsets were 

considered. Finally, non-parametric Kruskal-Wallis test was applied to select only 

lincRNA genes with a significant difference across the medians of the different 

lymphocyte populations: a p-value lower than 0.05 was considered and the lincRNA 

genes that meet these selection criteria were selected as signature genes. 

 

Gene Ontology Enrichment Analysis 

A Gene Ontology (GO) enrichment analysis was performed for biological process terms 

associated with protein coding genes that are proximal to lincRNA signatures at 

genomic level. For each lincRNA signature, the proximal protein- coding gene was 

selected regardless of the sense of transcription. FatiGO tool of Babelomics suite 

(version 4.3.0) was used to identify the enriched GO terms of the 158 protein coding 

genes (input list). All protein coding genes that are expressed in lymphocyte subsets 

(19,246 genes) (except the genes proximal to a lincRNA signature gene [input list]) 

defined the background list. Only GO terms with adjusted pvalue lower than 0.01 were 
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considered (10 GO terms). Moreover, we performed a gene ontology semantic 

similarity analysis on the 51 GO terms with adjusted pvalue lower than 0.1 resulting 

from previous analysis using G-SESAME tool. This analysis provides as a result a 

symmetric matrix where each value represents a similarity score between GO term pairs. 

Then, we carried out a hierarchical clustering based on semantic similarity matrix to 

group together all GO terms with common GO parent.  

 

Naïve CD4+ T cells siRNA transfection 
Activated CD4+ naïve T Cells, were transfected with 300 nM FITC-labelled- linc-MAF-

4 siRNA or FITC-labelled-AllStars negative control (Qiagen) with Lipofectamine 2000 

(Life Technologies) according to the manufacturer protocol. FITC positive cells were 

sorted and lysated 72 hours post transfection. See Supplementary Table 2 for siRNAs 

sequences. 

 

Gene Expression Analysis 

Gene expression analysis of transfected activated CD4+ naive cells was performed with 

Illumina Direct Hybridization Assays according to the standard protocol (Illumina). 

Total RNA was isolated, quality controlled and quantified as described above; for each 

sample 500 ng of total RNA were reverse transcribed according to the Illumina 

TotalPrep RNA Amplification kit (AMIL1791 - LifeTechnologies) and cRNA was 

generated by in vitro transcription (14 hours). Hybridization was performed according 

to the standard Illumina protocol on Illumina HumanHT-12 v4 Expression BeadChip 

arrays (BD-103-0204 - Illumina). Scanning was performed on an Illumina HiScanSQ 

System and data were processed with Genome Studio; arrays were quantile normalized, 

with no background subtraction, and average signals were calculated on gene-level data 

for genes whose detection p-value was lower than 0.001 in at least one of the cohorts 

considered.  

 

GSEA (Gene Set Enrichment Analysis) 

GSEA is a statistical methodology used to evaluate whether a given gene set is 

significantly enriched in a list of gene markers ranked by their correlation with a 

phenotype of interest. In order to evaluate this degree of 'enrichment', the software 
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calculates an enrichment score (ES) by moving down the ranked list, i.e., increasing the 

value of the sum if the marker is included in the gene set and decreasing this value if the 

marker is not in the gene set. The value of the increase depends on the gene-phenotype 

correlation. GSEA was performed comparing gene expression data obtained from 

activated CD4+ naïve T cells transfected with linc-MAF-4 siRNAs vs. control siRNAs. 

The experimentally generated dataset from the in vitro differentiated cells (in TH1 or 

TH2 polarizing conditions respectively) derived from CD4+ naïve T cells of the same 

donors where linc-MAF-4 down-regulation was performed, were used to construct 

reference gene sets for TH1 and a TH2 cells. RNA for gene expression analysis of TH1 

and TH2 differentiating cells was collected 72 hours  after activation (i.e., the same 

time-point of RNA collection in the linc-MAF-4 downregulation experiments) but a 

fraction of cells was further differentiated up to day 8 to assess IFN-g and IL-13 

production by TH1 and TH2 cells. The TH1 and TH2 datasets were ranked as log2 ratios 

of the expression values for each gene in the two conditions (TH1/TH2), and the most 

upregulated/downregulated genes (having log2 ratios ranging from |3| to |0.6|) were 

assigned to the TH1 and TH2 reference sets respectively. 

Genes from the TH1 gene list which were downregulated in a TH1 vs. control-siRNA 

comparison and genes from the TH2 gene list which were downregulated in a TH2 vs. 

control-siRNA comparison were filtered out, obtaining a TH1-specific gene set (74 

genes) and a TH2-specific gene set  (141 genes) (Supplementary Table 1). GSEA was 

then performed on the linc-MAF-4 specific siRNA vs. control siRNA dataset. The 

metric used for the analysis is the log2 Ratio of Classes, with 1,000 gene set 

permutations for significance testing.  

 

RT-qPCR Analysis 
For reverse transcription, equal amounts of DNA-free RNA (500 ng) were reverse-

transcribed with SuperScript III (LifeTechnologies) following the suggested conditions. 

Diluted cDNA was then used as input for RT-qPCR to assess MAF (Hs00193519_m1), 

IL4 (Hs00174122_m1), GATA3 (Hs01651755_m1), TBX21 (Hs00203436_m1), RORC 

(Hs01076119_m1), IL17 (Hs00174383_m1), Linc00339 (Hs04331223_m1), Malat1 

(Hs01910177_s1), RNU2.1 (Hs03023892_g1) and GAPDH (Hs02758991_g1) gene 

expression levels with Inventoried TaqMan Gene Expression assays (LifeTechnologies) 

were used. For assessment of linc-MAF-4 and validation of CD4+ TH1 signature 
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lincRNAs specific primers were designed and 2.5 mg of CD4+ TH1, Treg or naive cells 

RNA were used for reverse transcription with SuperScript III (LifeTechnologies). RT-

qPCR was performed on diluted cDNA with PowerSyberGreen (LifeTechnologies) and 

specificity of the amplified products was monitored by performing melting curves at the 

end of each amplification reaction. The primers used in qPCR are listed in 

Supplementary Table 2. 

 

Cell fractionation 

In vitro differentiated TH1 cells were resuspended in RLN1 buffer (50 mM Tris-HCl pH 

8, 140 mM NaCl; 1.5 mM MgCl2, 0.5% NP-40) supplemented with SUPERase�In 

(Ambion) for 10 minutes on ice. After a centrifugation at 300g for 2 minutes, the 

supernatant was collected as the cytoplasmic fraction. The pellet was resuspended in 

RLN2 buffer (50 mM Tris-HCl pH 8, 500 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40) 

supplemented with RNase inhibitors for 10 minutes on ice. Chromatin was pelletted at 

maximum speed for 3 minutes. The supernatant represents the nuclear fraction. All the 

fractions were resuspended in TRIzol (Ambion) to 1 ml and RNA was extracted 

following the standard protocol. 

 

RNA immunoprecipitation (RIP) 

In vitro differentiated TH1 cells were UV-crosslinked at 400 mJ/cm2 in ice-cold D-PBS 

and then pelleted at 1350 g for 5 minutes. The pellet was resuspended in ice-cold lysis 

buffer (25 mM Tris-HCl, 150 mM NaCl, 0.5% NP-40) supplemented with 0.5 mM 𝛽-

mercaptoethanol, Protease Inhibitor Cocktail Tablets cOmplete, EDTA-free (Roche) 

and SUPERase�In (Ambion) and left rocking at 4°C until the lysis is complete. Debris 

was centrifuged at 13000 g for 10’. The lysate was precleared with Dynabeads® Protein 

G (Novex®) for 30 minutes at 4°C and then incubated for 2 hours with 7 mg of 

antibodies specific for EZH2 (Active Motif - 39875); LSD1 (Abcam – ab17721), or HA 

(Santa Cruz) as mock control. The lysate was coupled with Dynabeads® Protein G 

(Novex®) for 1 hour at 4°C. Immunoprecipitates were washed for five times with lysis 

buffer. RNA was then extracted following mirVana miRNA Isolation Kit (Ambion) 

protocol. Levels of Linc-MAF-4 or of the negative controls b-actin, RNU2.1 and a 

region upstream the TSS of linc-MAF-4 (linc-MAF-4 control) were assed by RT-qPCR. 
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Chromatin Immunoprecipitation analysis (ChIP) 

In vitro differentiated TH1 and TH2 cells were crosslinked in their medium with 1/10 of 

fresh formaldehyde solution (50 mM Hepes-KOH pH 7.5, 100 mM NaCl, 1 mM EDTA, 

0.5 mM EGTA, 11% formaldehyde) for 12 minutes. Then they were treated with 1/10 

of 1.25 M glycine for 5 minutes and centrifuged at 1350 g for 5 minutes at 4°C. Cell 

membranes were lysated in LB1 (50 mM Hepes-KOH pH 7.5, 10 mM NaCl, 1 mM 

EDTA, 10% glycerol, 0.5% NP-40 and 0.25% Triton X-100) supplemented with 

Protease Inhibitor Cocktail Tablets cOmplete, EDTA-free (Roche) and 

Phenylmethanesulfonyl fluoride (Sigma) at 4°C. Nuclei were pelletted at 1350 g for 5 

minutes at 4°C and washed in LB2 (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA) supplemented protease inhibitors. Nuclei were again pelleted at 

1350 g for 5 minutes at 4°C and resuspended with a syringe in 200 𝜇l LB3 (10 mM 

Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 

0.5% N-lauroylscarcosine) supplemented with protease inhibitors. Cell debris were 

pelleted at 20000 g for 10 minutes at 4°C and a ChIP was set up in LB3 supplemented 

with 1% Triton X-100, protease inhibitors and antibodies against H3K4me3, 

H3K27me3 (Millipore), RNA polymerase II STD repeat YSPTSPS, LSD1 (Abcam), 

EZH2 (Active Motif) or no antibody (as negative control) o/n at 4°C. The day after 

Dynabeads® Protein G (Novex®) were added at left at 4°C rocking for 2 hours. Then the 

beads were washed twice with Low salt wash buffer (0.1% SDS, 2 mM EDTA, 1% 

Triton X-100, 20 mM Tris-HCl pH 8.0, 150 mM NaCl) and with High salt wash buffer 

(0.1% SDS, 2 mM EDTA, 1% Triton X-100, 20 mM Tris-HCl pH 8.0, 500 mM NaCl). 

Histones IPs were also washed with a LiCl solution (250 mM LiCl, 1% NP-40, 1 mM 

EDTA, 10 mM Tris-HCl pH 8.0). All samples were finally washed with 50 mM NaCl in 

1X TE. Elution was performed o/n at 65°C in 50 mM Tris-HCl pH 8.0, 10 mM EDTA, 

1% SDS. Samples were treated with 0.02 𝜇g/𝜇l RNase A (Sigma) for 2 hours at 37 °C 

and with 0.04 𝜇g/𝜇l proteinase K (Sigma) for 2 hours at 55°C. DNA was purified with 

phenol/chloroform extraction.  
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Chromosome Conformation Capture (3C) 

For 3C analysis cells were crosslinked and digested as described for ChIP53. Nuclei 

were resuspended in 500 𝜇l of 1.2X NEB3 buffer (New England BioLabs) with 0.3% 

SDS and incubated at 37°C for 1h and then with 2% Triton X-100 for another 1h. 

Digestion was performed with 800U of BglII (New England BioLabs) o/n at 37°C 

shaking. Digestion was checked loading digested and undigested controls on a 0.6% 

agarose gel. Then the sample was incubated with 1.6% SDS for 25 minutes at 65°C and 

with 1.15X ligation buffer (New England BioLabs) and 1% Triton X-100 for 1 hour at 

37°C. Ligation was performed with 1000U of T4 DNA ligase (New England BioLabs) 

for 8 hours at 16°C and at room temperature for 30 minutes. DNA was purified with 

phenol-chloroform extraction after RNase A (Sigma) and Proteinase K (Sigma) 

digestion. As controls, BACs corresponding to the region of interested were digested 

with 100U BglII in NEB3 buffer in 50 𝜇l o/n at 37°C. Then fragments were ligated with 

400U T4 DNA ligase o/n at room temperature in 40 𝜇l. PCR products amplified with 

GoTaq Flexi (Promega) for BACs and samples were run on 2.5% agarose gels and 

quantified with ImageJ software. Primers are listed in Supplementary Table 3. 

 
Accession numbers 

ArrayExpress accession: E-MTAB-2319  

Reviewer account:   

Username: Reviewer_E-MTAB-2319 

Password: ppkieb1o  
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Figure and Table Legends 

 
Table 1. Purification and RNA-sequencing of human primary lymphocyte subsets 

Purity achieved (mean ± SD) by sorting 13 human lymphocyte subsets (isolated from 

peripheral blood lymphocytes) by various surface marker combinations (sorting 

phenotype) and number of expressed genes (FPKM> 0.21). Cells were sorted from 4-5 

different individuals for each lymphocyte subset and RNA sequencing carried out for 

each sample separately.  

 

Figure 1. Identification of lincRNAs expressed in human lymphocyte subsets 

(a) RNA-seq data generated from 63 lymphocyte samples were processed according to 

two different strategies: quantification of lincRNAs already annotated in public 

resources and de novo Genome Based Transcripts Reconstruction for the quantification 

of new lincRNAs expressed in human lymphocytes. Three methods for the 

identification of new transcripts were adopted: Reference Annotation Based assembly 

by Cufflinks with two different aligners (TopHat and STAR) and an approach that 

integrates Trinity and PASA software. Only transcripts reconstructed by at least two 

assemblers were considered. Novel transcripts were filtered with a computational 

analysis pipeline to select for lincRNAs. The number of lincRNA genes and transcripts 

identified in lymphocytes subsets is indicated. 

(b) Expression profiles of lincRNA and protein coding genes across 13 human 

lymphocyte subsets according to K-Means clusters definition. The black line represents 

the mean expression of the genes belonging to the same cluster. The peaks of 

expression profiles refer to the populations reported in legend according to numbering. 

(c) Specificity of lincRNAs and protein coding genes. Rows and columns are ordered 

based on a K-Means clustering of lincRNAs and protein coding genes across 13 human 

lymphocyte populations. Colour intensity represents the Z-score log2-normalized raw 

FPKM counts estimated by Cufflinks. 79% of lincRNAs genes and 39% of protein 

coding genes are assigned to specific clusters. See also Supplementary Fig. 1h. 

(d) As in (c), performed on receptors and metabolic processes genes. 
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Figure 2. Definition of lincRNA signatures in human lymphocyte subsets 

(a) Heatmap of normalized expression values of lymphocytes signature lincRNAs 

selected on the basis of fold change (>2.5 with respect to all the other subsets), 

intrapopulation consistency (expressed in at least 3 out of 5 samples) and non 

parametric Kruskal-Wallis test (pval < 0.05). Signature lincRNAs relative expression 

values were calculated as log2 ratios between lymphocyte subsets and a panel of human 

lymphoid and non lymphoid tissues of the Human BodyMap 2.0 project  (See also 

Supplementary Fig. 2b-m). 

(b) CD4+ TH1 signature lincRNAs extracted from panel (A). The barcode on the left 

indicates already annotated lincRNAs (white) and newly described lincRNAs (brick 

red). For newly described lincRNAs name, ‘S’ and ‘AS’ indicates  ‘sense’ and 

‘antisense’ respectively. 

(c) Average expression levels of already annotated (white) and newly described (brick 

red) lincRNAs in human lymphocyte subsets and lymphoid or non-lymphoid human 

tissues. 

(d) Validation of TH1 signature lincRNAs expression by RT-qPCR on primary CD4+ 

naïve, TH1 and Treg cells sorted from PBMC of healthy donors (average of three 

independent experiments ± SEM). 

(e) RT-qPCR analysis of TH1 signature lincRNAs expression in a time course of CD4+ 

naïve T cells differentiated in TH1 and TH2 polarizing conditions presented as relative 

quantity (RQ) relative to time zero (average of three independent experiments). 

 

Figure 3. Linc-MAF-4 contributes to TH1 cell differentiation. 

(a) Gene Ontology (GO) semantic similarity matrix of protein coding genes proximal to 

lincRNA signatures. The semantic similarity scores for all GO term pairs were clustered 

using hierarchical clustering method. On the right of the matrix a bar plot of the 

adjusted p-values for each GO term is reported. Red bars represent GO terms that are 

significantly enriched in Gene Ontology analysis. Common ancestor is reported for each 

cluster. 
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(b) Expression of linc-MAF-4 and MAF assessed at different time points by RT-qPCR 

in activated CD4+ naïve T cells differentiated in TH1 or TH2 polarizing conditions 

(average of four technical replicates ± SEM). See also Supplementary Fig. 3c. 

(c) ChIP-qPCR analysis of H3K4me3 and RNA polymerase II occupancy at MAF locus 

in CD4+ naïve T cells differentiated in TH1 or TH2 polarizing conditions at day 8 post 

activation. Enrichment is a percentage of input (average of at least 5 independent 

experiments ± SEM). One-tailed t-test * p < 0.05. 

(d) As in (c) at IFNG locus as control (average of at least 10 independent experiments ± 

SEM). One-tailed t-test * p < 0.05; ** p < 0.01. 

(e) Linc-MAF-4 and MAF expression levels determined by RT-qPCR in activated CD4+ 

naïve T cells (in the absence of polarizing cytokines) and transfected at the same time 

with linc-MAF-4 siRNA (black) or ctrl siRNA (white). Transcripts expression was 

detected 72 hours post transfection (average of six independent experiments ± SEM). 

One-tailed t-test ** p < 0.01; * p < 0.05.  

(f) Results of GSEA (Gene Set Enrichment Analysis) performed on gene expression 

data obtained from siRNA mediated knock-down of linc-MAF-4 in activated CD4 naïve 

T cells. Activation and transfection conditions were as in (e). The red and blue line 

represent the observed enrichment score profile of genes in the linc-MAF-4 / ctrl siRNA 

treated cells compared to the CD4 TH1 and TH2 reference gene sets respectively 

(average of four independent experiments). Nominal p-val <0.05 

(g) GATA3 and IL4 expression levels determined by RT-qPCR in activated CD4+ naïve 

T cells transfected with linc-MAF-4 siRNA (black) or ctrl siRNA (white) (average of 

six independent experiments ± SEM). One-tailed t-test ** p < 0.01; * p < 0.05. 
 

Figure 4. Epigenetic characterization of linc-MAF4/MAF genomic locus 

 (a) Schematic representation of the region analyzed by 3C. The M1 primer, located 

near the 5’-end of MAF, was used as bait. Primers spanning the region between linc-

MAF-4 and MAF were tested for interaction. 3C results show the relative frequency of 

interaction between MAF 5’-end and linc-MAF-4 5’- (L7 primer) and 3’- (L12 primer) 

ends in CD4+ naïve T cells differentiated in TH1 polarizing conditions (day 8) (average 

of three independent experiments ± SEM). (b) Sequencing results with pertaining 

electropherograms and BLAST alignments for M1-L7 and M1-L12 amplicons.  
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(c) Relative abundance of linc-MAF-4 transcript in cytoplasm, nucleus and chromatin in 

CD4+ naïve T cells differentiated in TH1 polarizing conditions (day 8). Linc-00339, 

Malat1 and RNU2.1 were used respectively as cytoplasmic, nuclear and chromatin-

associated controls (average of three independent experiments ± SEM). 

(d) RIP assay for LSD1 and EZH2 in CD4+ naïve T cells differentiated in TH1 

polarizing conditions (day 8). The enrichment of linc-MAF-4 is relative to mock. β-

actin, RNU2.1 and a region upstream the TSS of linc-MAF-4 were chosen as controls 

(average of six independent experiments ± SEM). The statistical significance was 

determined with ANOVA and Dunnet post-hoc test: *p<0.05; **p<0.01. 

(e) ChIP-qPCR analysis of EZH2, H3K27me3 and LSD1 occupancy at MAF locus in 

activated CD4+ naïve T cells transfected with linc-MAF-4 siRNA (black) or ctrl siRNA 

(white) (average of at least three independent experiments ± SEM). One-tailed t-test * p 

< 0.05. 

 (f) Model for linc-MAF-4-mediated MAF repression in TH1 lymphocytes. When linc-

MAF-4 is expressed, it recruits chromatin remodelers (i.e. LSD1 and EZH2) at MAF 5’-

end, taking advantage of a DNA loop that brings in close proximity linc-MAF-4 5’- and 

3’- end and MAF 5’-end. This event causes the downregulation of MAF transcription 

and enforces TH1 cell fate, contrasting TH2 differentiation. 

 

 



Subset Purity (%) Sorting phenotype Genes 
CD4+ naïve 99.8 ± 0.1 CD4+ CCR7+ CD45RA+ CD45RO– 20061 
CD4+ TH1 99.9 ± 0.05 CD4+ CXCR3+ 20855 
CD4+ TH2 99.7 ± 0.3 CD4+ CRTH2+ CXCR3– 19623 
CD4+ TH17 99.1 ± 1 CD4+ CCR6+ CD161+ CXCR3– 20959 
CD4+ Treg 99.0 ± 0.8 CD4+ CD127– CD25+ 21435 
CD4+ TCM 98.4 ± 2.8 CD4+ CCR7+ CD45RA– CD45RO+ 20600 
CD4+ TEM 95.4 ± 5.5 CD4+ CCR7– CD45RA– CD45RO+ 19800 
CD8+ TCM 98.3 ± 0.8 CD8+ CCR7+ CD45RA– CD45RO+ 20901 
CD8+ TEM 96.8 ± 0.9 CD8+ CCR7– CD45RA– CD45RO+ 21813 
CD8+ naïve 99.3 ± 0.2 CD8+ CCR7+ CD45RA+ CD45RO– 20611 
B naïve 99.9 ± 0.1 CD19+ CD5– CD27– 21692 
B memory 99.1 ± 0.8 CD19+ CD5– CD27+ 21239 
B CD5+ 99.1 ± 0.8 CD19+ CD5+ 22499 
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Supplementary Figure 1 

Distribution and expression of lincRNAs in primary human lymphocytes subsets. 

(a) Bar plots of expressed genes across a panel of 13 lymphocyte subsets. Average expression (± sdev) of at least four samples for 



Nature Immunology: doi:10.1038/ni.3093 

each subset is reported 

(b) Stacked bar plots of expressed genes percentages according to their biotype (protein coding, lincRNAs, pseudogenes, non-coding 
genes and other) across the analyzed human lymphocyte subsets 

(c) Distribution of novel (striped) and previously annotated (black) lincRNAs in all human chromosomes 

(d) Distribution of expressed novel (striped) and previously annotated (black) lincRNAs across the analyzed human lymphocyte 
subsets. 

(e) Boxplots of gene expression values of lincRNA (blue) and protein coding genes (red) on either the whole dataset (global expression) 
or on a dataset filtered according to the specificity score (specific expression, Maximal JS score > 0.4) 

(f) The density distribution of JS score for cell-specific receptor genes (black line) was fitted to a log-normal distribution (dotted red line). 
In order to derive a threshold for the cell-specificity score, we calculated the JS score value corresponding to one standard deviation 
away from the mean value of the fitted distribution (0.27). As a reference, the JS density distribution for the metabolic genes is reported 
(green line) 

(g) Density distributions of maximal expression values of lincRNAs (blue area plot) and protein coding genes (red line), divided 
according to cellular specificity (maximal JS score < 0.4 or JS score > 0.4) 
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Supplementary Figure 2 

Specificity of lincRNAs and protein-coding genes in primary human lymphocytes subsets. 

(a) Silhouette scores (y-axis) are reported as a function of K (x-axis), the number of clusters used to partition the gene expression 
dataset of lincRNA genes. The average Silhouette value was calculated by taking the average of each clusters's average Si. In the 
graph Si data are reported for lincRNAs genes, for which the highest Si value (implying better clustering of the data) is 15 

(b) Specificity of lincRNAs and protein coding genes (FPKM >1) by K-Means clustering across 13 human lymphocyte populations. 
Colour intensity represents the Z-score log2-normalized raw FPKM counts estimated by Cufflinks 
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Supplementary Figure 3 

LincRNA signatures in a differentiation time course. 
 

CD4
+
 naïve, TH1, TH2 and TH17 signature lincRNAs trends in CD4

+
 naïve T cells differentiated in TH0 conditions. RNA was collected at 

different time points during CD4+ naïve T cells differentiation and RNA-seq experiments were performed. Thin lines represent the 
trends of each signature lincRNA. Bold lines represent the average trend of all signature lincRNAs for each subset. Data are 
represented as a log2 normalized ratio between each time point and the relative time 0. 
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Supplementary Figure 4 

Regulation of MAF transcription by linc-MAF-4. 

(a) Expression levels (FPKM) of linc-MAF-4 and its neighboring protein coding genes DYNLRB2 and CDYL2 in CD4+ T cell subsets 

(b) Expression of TBX21 an GATA3 in activated CD4+ naïve T cells differentiated in TH1 or TH2 polarizing conditions assessed at 
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different time points by RT-qPCR (average of four independent experiments ± SEM) 

(c) Expression of linc-MAF-4 and MAF assessed at different time points by RT-qPCR in activated CD4+ naïve T cells differentiated in 
TH1, TH2 and TH0 polarizing conditions. Bar plot of the percentage of c-Maf positive cells determined by intracellular staining at different 
time points is also shown (average of four independent experiments ± SEM) 

(d) CD4+ naïve T cells differentiated in TH17 polarizing conditions according to Kleinewietfeld et al. (Nature 2013; 496, 518). Upper 
panels: intracellular staining of IL-17 and CCR6 protein expression at day 8 of differentiation (data are representative of four 
independent experiments) Lower panels: linc-MAF-4, MAF, RORC and IL17 transcript levels assessed at different time points by RT-
qPCR (average of four independent experiments ± SEM) 

(e) Test of linc-MAF-4 siRNAs in CD4+ naïve T cells. Four siRNA sequences were transfected independently in activated CD4+ naïve T 
cells and linc-MAF-4, MAF, GATA3 and IL4 transcript levels were assessed by RT-qPCR at day 3 post-transfection and activation 
(average of five independent experiments ± SEM) 

(f) Intracellular staining of c-Maf and GATA-3 in naive CD4+ T cells stimulated with anti-CD3 and anti-CD28 and transfected with a 
control siRNA or linc-MAF-4 siRNA assessed at day 4 post-transfection and activation. Data are representative of five independent 
experiments 
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Supplementary Figure 5 

Chromosome-conformation capture on in vitro–differentiated CD4
+
 TH1 cells. 

(a) 2.5% agarose gel of the experimental triplicate used for 3C followed by BAC controls amplified with different primers that span the 
region between linc-MAF-4 and MAF 

(b) Sequencing results with pertaining electropherograms and BLAST alignments for M1-L7 and M1-L12 amplicons 

(c) Validation of anti-LSD1 and EZH2 antibodies used in RIP assay. LSD1 and EZH2 immunoprecipitates specifically retrieve HOTAIR 
RNA in HeLa cells as shown by Tsai et al. Science 329, 689 (2010). RNU2.1 and a region upstream the TSS of linc-MAF-4 were used 
as negative controls 

(d) ChIP-qPCR analysis of EZH2 and H3K27me3 at MYOD1 locus, of H3K27me3 at a control region within the chromatin loop and of 
LSD1 at beta-actin locus in activated CD4+ naïve T cells transfected with linc-MAF-4 siRNA (black) or ctrl siRNA (white) (average of at 
least three independent experiments ± SEM) 

 



Additional considerations for de novo genome-based transcripts 
reconstruction 

Three different approaches were adopted to define a new catalog of lincRNA 

specifically expressed in human lymphocyte subsets. These approaches are 

based on the application of two different mappers TopHat v.1.4.1 (Trapnell et 

al. 2009) and STAR v. 2.2.0 (Dobin et al. 2012) and two tools for new 

transcripts reconstruction: Cufflinks v. 2.1.1 (Trapnell et al. 2010)  and Trinity 

(Grabherr et al. 2011) . 

TopHat was used in combination with Cuffilinks, while STAR mapper both 

with Cufflinks and Trinity. 

TopHat is a spliced read mapper that detects splice sites ab initio by 

identifying reads that span exon junctions. The pipeline is divided into two 

steps: mapping of all reads to the reference genome using 

Bowtie  (Langmead et al. 2009), an ultra-fast short-read mapping program. 

Then TopHat assembles the mapped reads extracting the sequences and 

inferring them to be a putative exons while the reads that do not map are set 

aside (unmapped reads). These reads are afterwards indexed and aligned to 

potential splice junction that are sequences flanking potential donor/acceptor 

splice sites within neighbouring regions. 

STAR is the RNA-seq aligner used by the ENCODE Project and is designed 

to align the non-contiguous sequences directly to the reference genome 

making this software faster than other RNA-seq aligners. Initially STAR 

searches for each read the maximum mappable length and the matches to 

the genome create a lot of seeds. If the read comprises a splice junction, the 

search is repeated for the unmapped portions of the read. The sequential 

application of the search of maximum read match to the genome only to the 

unmapped portion of the reads makes STAR extremely fast. Later the 

software builds alignments of the read sequence clustering the seeds within a 

genomic window defined. All these seeds are stitched together according to a 

local alignment scoring scheme and the stitched combination with highest 

score is chosen as the best alignment of a read.  

The number of mapped reads are similar between both aligners for all 

samples analyzed. 

Nature Immunology: doi:10.1038/ni.3093



These two tools were used because they map reads over exon/intron 

junctions, which is a critical feature when aligning RNA-seq reads to a 

reference genome. Moreover, by improving alignment precision and 

sensitivity, exon junctions and splicing events are better defined in the 

reconstruction of new transcripts.  

The alignments generated by STAR and TopHat were then considered as 

input for software that perform identification of new transcripts. Samples 

belonging to the same population were concatenated into one “population 

alignment” to improve coverage depth. Cufflinks v. 2.1.1 and Trinity were both 

evaluated for this purpose. Cufflinks, which uses a mapping-first approach, 

first aligns all the reads to a reference genome and then merges sequences 

with overlapping alignment, spanning splice junctions with paired-end reads. 

To identify a set of novel transcripts expressed in human lymphocyte subsets, 

a reference annotation is considered to guide the assembly (-g option, RABT 

assembly) coupled with multi-read (-u option) and fragment bias correction (-b 

option) to improve the accuracy of transcripts abundance estimates. 

The third approach exploits STAR in combination with the genome-guided 

Trinity software. To address the computational complexity of assembling the 

human transcriptome by de novo approach, Trinity uses a specifc pipeline 

named “Genome-guided Trinity” combined with the Program to Assemble 

Spliced Alignments (PASA). The pipeline has two major steps.  

The first uses the “Genome-guided Trinity” where reads are initially aligned to 

the genome and partitioned according to locus, followed by the “classic” 

Trinity de novo transcriptome assembly at each locus. In particular, the Trinity 

default aligner (GSNAP) was substituted with STAR which performs better in 

terms of accuracy and computing time. The “Genome-guided Trinity” was 

used with the paramenters suggested in the main documentation and the 

input alignments were generated using STAR with the default parameters. 

The second phase of the pipeline runs PASA having in input all the putative 

transcripts generated by the first step above. Initially PASA maps transcripts 

and aligns them to the reference  genome; in this case we customized PASA 

to use START for long reads. STAR required to be customized changing the 

variables “MAX_READ_LENGTH = 100.000” inside the file “IncludeDefine.h” 

and recompiled from source code using “make STARlong” which makes 
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available the “COMPILE_FOR_LONG_READS” option. The resulting 

alignments were validated as nearly perfect with an identity of 95% and 

percentage of transcript length of about 90% (default PASA’s parameters). 

The valid transcript alignments are clustered based on genome mapping 

location and assembled into gene structures; those alignment assemblies 

which are located in the same locus with a significant overlap and are 

predicted to be on the same strand  are clustered together. Finally, comparing 

the provided annotation with the clusters, PASA reconstructs the complete 

transcript and gene structures, resolving incongruencies, refining the 

reference annotation when there are enough evidences and proposing new 

transcripts and genes in case any previous annotation can explain the new 

data. 

 

K- means clustering of gene expression patterns: the Silhouette 
function 
 
For the clusters presented in this paper K=16 was used for lincRNA genes 

after optimizing the selection of K to minimize the distances of data within 

clusters while maximizing the distance between clusters using a Silhouette 

function (Rousseeuw 1987). 

Briefly, K-means clustering was used with different values of K 

(k=13,14..20..40). For each run, the Silhouette function was calculated on 

each gene’s expression pattern 𝑒!: 

𝑆𝑖 𝑒! =   
𝑏 𝑒! − 𝑎 𝑒!

max(𝑎 𝑒! , 𝑏(𝑒!)) 

where: 

𝑎 𝑒! = 𝐸(𝐷𝑖𝑠𝑡(𝑒! , 𝑒!)|𝑒!   ∈ 𝑐!  𝑎𝑛𝑑  𝑒!   ∈ 𝑐!), where cx  is the cluster to which 

ei was assigned. 𝑎 𝑒!  corresponds to the average dissimilarity between 𝑖 and 

all other points of the cluster to which 𝑖 belongs 

and: 

𝑏 𝑒! = 𝑚𝑖𝑛!"𝑥𝐸(𝐷𝑖𝑠𝑡(𝑒! , 𝑒!)|𝑒!𝑛𝑜𝑡   ∈ 𝑐𝑜!  𝑎𝑛𝑑  𝑒!   ∈ 𝑐𝑜!) 

𝑏 𝑒!  can be seen as the dissimilarity between 𝑖 and its “neighbor” cluster, 

i.e., the nearest one to which it does not belong 
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The Silhouette graph (shown in Supplementary  Figure 1h) reports the optimal 

number of clusters (bins) that the K-means algorithm needs in order to 

categorize the dataset in a reliable and reproducible way (when the algorithm 

reaches convergence). The 𝑆(𝑖) function calculates for each datum 𝑖 (in our 

case the expression profile of a single gene) the average dissimilarity with all 

other data within the same cluster, and confronts these results with the lowest 

average dissimilarity of 𝑖 (the 'neighbouring cluster') to any other cluster which 

𝑖 is not a member. The final Silhouette score is averaged over all data points 

in the dataset, and reported in the aforementioned graph (Supplementary  

Figure 1h). 

 

Specificity score of gene expression patterns: Jensen-Shannon 
divergence 

 

The clustering results were integrated with an entropy-based methodology 

that assigns a cell-specificity score to each gene based on Jensen–Shannon 

divergence (Trapnell et al., 2010). 

The JS divergence of two discrete probability distributions 𝑝1, 𝑝2, is defined to 

be: 

𝐽𝑆 𝑝!,𝑝! = 𝐻
𝑝! + 𝑝!

2 −
𝐻 𝑝! + 𝐻(𝑝!)

2  

where 𝐻 is the entropy of a discrete probability distribution: 

𝑝 = 𝑝!,𝑝!. .𝑝! , 0 ≤ 𝑝! ≤ 1  and  𝑝! = 1!
!!!  

𝐻 𝑝 = − 𝑝!log  (𝑝!)
!

!!!

 

Relying on the theorem that the square root of the JS divergence is a metric 

(Fuglede and Topsoe 2004), the distance between two expression patterns, 

𝑒! and 𝑒! , 𝑒! = (𝑒!! , . . 𝑒!! ), was defined as  

𝐽𝑆!"#$ 𝑒!, 𝑒! = 𝐽𝑆(𝑒!, 𝑒!) 

  

This metric quantifies the similarity between a transcript's expression pattern 

and another predefined pattern that represent an extreme case in which a 
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transcript is expressed in only one condition. In our case we built a reference 

model composed of 13 cell subsets. Then, the JS method captures the shape 

of the distribution and the general trend of expression assigning a gene X to 

the population for whom it appears to be more specific. The integration of 

these two approaches has the power to group gene expression profiles 

according to their cell-specificity. 

 

In order to define a JS score threshold that roughly identifies specifically 

expressed genes, a log-normal fitting was performed on the JS score density 

distribution of receptor genes (Supplementary Fig. 1f), that are generally 

considered the most precise markers of lymphocytes subsets. The metabolic 

genes density distribution (the non-specific counterpart) is reported as 

reference. 

The threshold value for the JS score was calculated by considering one 

standard deviation away from the mean of the fitted distribution (0.4). 

The value corresponding to one standard deviation away (0.4) from the mean 

of the fitted distribution (0.27) was used as a threshold to define a specific 

expression. 
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Heatmaps of signature lincRNAs expression for each lymphocytes subset. For each lincRNA gene id, locus, strand prediction and number of isoforms are also 
reported. Right panel represents signature lincRNAs relative expression values in a panel of 16 human tissues (Human BodyMap 2.0 project).
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Table 3 

 

VALIDATION PRIMERS 

PRIMER ID TARGET SEQUENCE (5’-> 3’) 
linc-MAF-4 F XLOC_012017 GGCTACGTCTCCATTGTTT 
linc-MAF-4 R XLOC_012017 TGGTGTTTGGGATCATTTGT 
T6F ENSG00000257860 TTTCATGGTGAGGGAGAATGG 
T6R ENSG00000257860 CTGGGTCTTGCCTCTTAATGT 
T8F2 INGMG_000772 AGCCTGGGCTTTGGAGTC 
T8R3 INGMG_000772 GGCTTTGCCAGGATCTCACA 
T21F2 ENSG00000234535 GAAATGCCAATGAAGCAGAAAG 
T21R2 ENSG00000234535 GTGCAAAGAATAGGAGGTTTGA 
T24F1 XLOC_002906 GTTATCTGTTGCCAGTTGTT 
T24R1 XLOC_002906 ACCTCTGCTTATTGCTGATT 
T27F1 ENSG00000253988 ACATGGATGCAGCTGGAG 
T27R1 ENSG00000253988 TGAGAACATGCCTTTCTTGG 
T28F4 XLOC_013498 TACAGCCTCCACCTATTGATT 
T28R4 XLOC_013498 ATGGCTTACAGGTAGGAGTTT 
T30F3 XLOC_012199 CTGGGTGAACACTGTCTAA 
T30R3 XLOC_012199 GCTCAGAGTAAACGGCTAA 
T31F1 XLOC_011294 TCGTGTGGGTGAGGAGAA 
T31R1 XLOC_011294 AGTGTAGGAGGGCAGTGT 
 

siRNA 

siRNA ID TARGET SEQUENCE (5’-> 3’) 
T2_si1 XLOC_012017 GGACCAACCTCTTGTCTTA 
T2_si2 XLOC_012017 GTACTGCAAAGGTCTAATA 
T2_si3 XLOC_012017 CCGCATACTTTCAGACTTT 
T2_si4 XLOC_012017 GCTTGAACTCACAAAGAAA 
 

 

ChIP PRIMERS 

PRIMER ID TARGET SEQUENCE (5’-> 3’) REFERENCE 
GAS1f MAF-promoter TTAAGTGCAGTGCTATAAAGTTGTT Rani et al., 2011 
GAS1r MAF-promoter GGGGAAGACCATTCTGAAGTG Rani et al., 2011 
IFNgf IFN -promoter AAATACCAGCAGCCAGAGGA  
IFNgr IFN -promoter AGCTGATCAGGTCCAAAGGA  
ILCRf Internal loop control region TGAGCAGAGAAAGTGCATAG  
ILCRr Internal loop control region TCACAGGCATTCTTTGTACC  
MyoD1f MyoD1 5’ regulatory region ACGTGCAGATTTAGATGGAG  
MyoD1r MyoD1 5’ regulatory region ATCGGAGATTGCTGCTAAAG  
ACTBcf ACTB-promoter AAAGAGCGAGAGCGAGAT  
ACTBcr ACTB-promoter AACGCCAAAACTCTCCCT  
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3C PRIMERS 

PRIMER ID SEQUENCE (5’-> 3’) 
M1 GCAGAACTCGCCTAATGG 
L1 TGATTAATGCTGGGTAAAGG 
L2 TTCAGCCTTTGTTTTTCTCC 
L3 GGTCTTCAATTACAATAGCC 
L4 CCAATTGGAAGTCTGAAGGC 
L5 ACTGCCCTTCAAGTCCTTGC 
L6 ACAGGGAGAGCTGACCTTTG 
L7 ATTGAAAGCCATGTTTTTAAG 
L8 ACTGCATGGCATTTGTCTGG 
L9 CCTTTTTCGCTAGTAGAGCC 
L10 TCTCTGGCTGACAGTCTACC 
L11 GTACAGCAGCCTCCACAAAG 
L12 ATACATATTGGGAGGCCTGGAA 
L13 GCTGCAAATCTTGGGATTGG 
L14 GCTGAGGTCACAGAGCTAGG 
L15 TGCAGGCTCCAAAATAAACC 
L16 AGTACAGTAGGCCTCCTTTC 
L17 TTTGGGTGTTCTGGGATCTG 
L18 TGCCTATGAGTGCTACTGAG 
L19 AGGCCCTGCAATATGCACAC 
L20 TCCAGCCAGGGCATCCAATC 
L21 ACACCCACCAACTTTATTGG 
L22 ATAGCGCTGTCTGTGTCTAC 
L23 CCCTATCAGCCTGATTTGAG 
L24 AGGCCAAACGTAGTGGGTTC 
 

 

RIP PRIMERS 

PRIMER ID TARGET SEQUENCE (5’-> 3’) REFERENCE 
Actin_sy-F2 β-actin CATCCTCACCCTGAAGTACC  
Actin_sy-R2 β-actin CACGCAGCTCATTGTAGAAG  
LincM_pr-F1 linc-MAF-4 (control) AGGTCATGAGGCAGAGGAGA  
LincM_pr-R1 linc-MAF-4 (control) TCCCTTTGGGAGGTAAAACC  
HOTAIR/H2-F HOTAIR/H2 GGTAGAAAAAGCAACCACGAAGC Tsai et al., 2010 
HOTAIR/H2-R HOTAIR/H2 ACATAAACCTCTGTCTGTGAGTGCC Tsai et al., 2010 
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Abstract 

 

The miRBase is the official miRNA repository which keeps the annotation updated on 

newly discovered miRNAs: it is also used as a reference for the design of miRNA 

profiling platforms. Nomenclature ambiguities generated by loosely updated platforms 

and design errors lead to incompatibilities among plat- forms, even from the same 

vendor. Published miRNA lists are thus generated with different profiling plat- forms 

that refer to diverse and not updated annotations. This greatly compromises searches, 

comparisons and analyses that rely on miRNA names only without taking into account 

the mature sequences, which is particularly critic when such analyses are carried over 

automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA 

nomenclature, which takes into account the original miRBase versions from 10 up to 

21, and annotations of 25 common profiling platforms from nine brands that we 

manually curated. miRiadne uses the miRNA mature sequence to link miRBase 

versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed 

to simplify and support biologists and bioinformaticians in re-annotating their own 

miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological 

maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. 

miRiadne is freely accessible from the URL http://www.miriadne.org. 
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Introduction  

MicroRNAs (miRNAs) are short endogenous non-coding RNAs varying in length from 

19 to 25 nucleotides. They inhibit expression of their cognate target genes by post 

transcriptional regulation (1), playing a relevant role in a vast array of molecular and 

cellular processes (2). miRNAs have been shown to be involved in several diseases, 

such as type 2 diabetes, cardiovascular disease and cancer (3,4), to be key regulators of 

gene expression and differentiation (5,6) and they have been exploited as circulating 

biomarkers both in health and disease (7). The first miRNA was identified in 

Caenorhabditis elegans in 1993 (8,9), while the name ‘miRNA’ was introduced almost 

a decade later in 2001 (10). Subsequently miRNA research gained momentum and an 

organic naming system was proposed (11), then implemented into a curated and 

regularly updated repository largely adopted by the scientific community: the miRBase 

(12). miRBase collects precursor and mature miRNA sequences and is now the 

authoritative reference for miRNA nomenclature constantly addressing the increasing 

complexity using and updating suffixes of mature miRNA names. Microarray and 

RTqPCR-based expression profiling methods of mature miRNAs have become 

increasingly common in recent years establishing themselves as methods of election for 

miRNA expression studies. Next-generation sequencing technologies are now pushing 

forward the discovery of new sequences significantly increasing the number of known 

miRNAs in each specific organism (13). The correct categorization and collection of 

mature miRNAs into consistently annotated catalogs is thus an instrumental process for 

managing and integrating miRNA expression data sets. Unfortunately the fast changing 

rate of miRNA nomenclature generates confusion in miRNA research that is 

acknowledged by the scientific community: this problem has been addressed by the 

development of webservers that allows to browse across versions of the miRBase such 

as the ‘miRBase Tracker’ (14) and ‘miRSystem’ (15). While the first allows to browse 

miRNA annotations according to the miRBase, the second is mainly devoted to the 

characterization of miRNA targets and contains a feature used to con- vert miRNAs 

names; both of them use the miRBase only as underlying source of heterogeneous 

annotations. miRBase also provides a list of previous names of its entries, nevertheless 

none of these resources deal with sequences generated by the profiling platforms. The 

highly detrimental miRNA nomenclature maze it is not only due to the evolving 
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annotations, but also––and somehow mainly––due to the use of heterogeneously 

annotated profiling data sets generated by diverse and not updated detection platforms: 

this often impairs the straightforward integration of different data sets to deliver meta 

analyses that could be beneficial to miRNA research. On these premises we decided to 

implement an application specifically devoted to the re-annotation of miRNA signatures 

and profiling data sets, natively embedding the annotation and probe sequences of 40 

common profiling platforms (27 human and 13 rodents) from nine brands integrated 

with the annotations of miRBase from version 10 to the most recent. Our webserver 

application, miRiadne, goes beyond browsing miRNA nomenclature across miRBase 

versions, by offering translation and updating of miRNA namelists and data sets 

annotations enforcing consistency between miRNA name and their mature sequences. 

The novelty of our application is the curation of experimental profiling platforms’ 

annotations checking for the consistency between miRNA names used by these 

platforms and their probes’ sequences. Such consistency is a prerequisite that would 

make meta analysis of miRNA expression data sets easier. While the community is 

moving toward higher quality standards for miRNA repositories (13) and efforts are 

made to re-annotate miRNA entries with data from next-generation sequencing 

experiments (16), heterogeneous and inconsistent miRNA profile nomenclature will 

remain in the literature affecting future meta analyses; moreover, many detection 

platforms that adopt different standards are still in use thus generating more 

inconsistencies. Therefore miRiadne aims at improving interoperability among miRNA 

data sets and at exploiting all the information contained in already produced miRNA 

profiling data without any loss of knowledge. 

 

Implementation 

 

The tool was implemented as a web application written in Ruby on Rails. miRBase data 

from version 10 to 21 were downloaded (in the form of the officially released txt files), 

from the miRBase FTP server and reorganized in a SQLite database. Probes’ 

Annotation Information Files from 40 different detection platforms of nine vendors 

(Supplementary Tables S1 and S2 and Supplementary Figures S1 and S2) were 
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retrieved and used in the application as reference for the miRNA name to mature 

sequence correspondence of each single probe (Supplementary Figure S3). Probes an- 

notation files were stored in the SQLite database. miRiadne is fully compliant with 

HTML5 and using Twitter Bootstrap framework provides a responsive web site for 

variable desktop sizes and mobile devices. 

 
Features and inputs 

 

miRiadne application presents two main features: the first one includes four slightly 

different methods, collectively referred to as ‘Rosetta functions’, and allows the user to 

trans- late miRNA names from diverse sources into more established and controlled 

ones: they are the functions ‘Translation, and Overlap’ (in the ‘Rosetta Stone’ menu) 

and the functions ‘Update and Intersect’ (in the ‘Rosetta Data’ menu). While the first 

two work on miRNA names only, the third and fourth accept also whole miRNA 

expression data sets. The second main feature is the ‘Time Warp’ function that allows 

the user to browse the evolution of miRNA annotations across miRBase versions and 

serves as a standalone function or as a substantial consistency crosscheck for any 

miRNA list whose annotation has been translated or converted with the Rosetta 

functions (Figure 1). 

Data can be entered into the miRiadne application in a few different ways: all 

miRiadne’s functions are accessed by a main ‘input data window’ where miRNA names 

can be typed one by one or they can be pasted from external documents; either typed or 

pasted, miRNA names must be separated by a space or a new line. Lists can also be 

imported directly dragging files containing the query miRNA list into the data window 

(files being in tab delimited or comma separated values format). 

Rosetta Stone––Translation 

This feature allows to translate miRNA name lists from a specific platform’s annotation 

to a different one, from a specific miRBase version to a different one or between a 

combination of platform and miRBase versions: any of the four possible paired 

combinations among platforms and miRBases is allowed and can be selected choosing 
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one of the four buttons below the data input window (Supplementary Figure S4). The 

user can enter an miRNA name or name list as it appears in a given vendor platform 

(among the plat- forms implemented as shown in Supplementary Tables S1 and S2) or 

as reported in a list referring to a specific miRBase version, and obtain a translation 

either (i) into names of a different, ‘destination’ platform, or (ii) into names ac- cording 

to a different, usually more recent, miRBase version. After entering the miRNA names 

in the specific field and choosing one of the available conversions, a contextual menu 

appears offering the user the possibility to specify sources and destination (i.e. from 

which specific profiling platform to which miRBase version); then a simple click to the 

‘convert’ button results in the elaboration and production of the Result Table. 

Submission of such a query will result in a converted list of names, with graphical 

evidence for miRNAs that cannot be translated due to different reasons (a different 

background for dead, changed or not present miRNAs or for miRNAs with multiple 

names). The Result Table can also be downloaded as csv files. 

Rosetta Stone––Overlap 

The ‘Overlap’ function does not need any input query file because it is used to find and 

highlight the miRNAs in common between two different detection platforms (i.e. 

present on both platforms with the same mature sequence regardless names variations), 

between two miRBase versions or between platforms and miRBase versions. The first 

case (Platform versus Platform) can be used to evaluate the potential detection ability of 

different platforms (Supplementary Figure S5), the second case (Platform versus 

miRBase) is useful to evaluate the miRBase coverage of different detection platforms; 

finally the third case (miRBase versus miRBase) shows which miRNAs are conserved, 

in terms of sequence conservation between two different miRBase versions even after 

any annotation change. This function directly interrogates the integrated database 

populated by the miRBase versions from 10 to the most recent and the annotations files 

from the detection platforms considered. 

Rosetta Data––Update 

This function is a particular form of annotation translation in which annotation of 

miRNA data matrices (i.e. miRNA lists with expression values for a number of samples 
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in tabular format) can be updated to a more recent version of the miRBase (Platform to 

miRBase), or converted to the annotation of a different detection platform (Platform to 

Platform), carrying over the corresponding data (expression values) from the original 

data set (Supplementary Figure S6). This function can be used to convert miRNA 

profiling 

data sets previously generated with different platforms or referring to different miRBase 

versions prior to a new analysis or just for comparison with more updated data sets. The 

input data should be in tabular form, where rows are relative to miRNAs and columns to 

samples: thus the first column contains the miRNA list used as query list, the first row 

(the header) reports the samples’ id and all other columns the expression data that will 

be carried over in the ‘Data’ column of the Result Table. 

Annotations (miRNA names) of the original data set are reported in the Result Table 

side by side with the updated annotations (name and mature sequence) and the 

corresponding expression values in the original data set are carried over in the ‘Data’ 

column. The updated data matrix can be downloaded as a csv file, downloaded data 

values can be displayed in separate columns too, thus allowing further elaboration 

and/or analyses. 

In case input query miRNA names cannot be translated or are not present any more in 

the updated annotation set: a warning is displayed. A detailed list of miRNAs that can- 

not be found in the destination annotation (either a more recent miRBase version or a 

different platform) is reported shaded in red at the bottom of the table. The single hits 

that may have changed, dropped out or associated with multiple names are highlighted 

with a yellow (missing, dead or changes) or blue (multiple names) shading in the table. 

Non- miRNA annotations such as those from control probes, non miRNA-probes or 

endogenous controls (i.e. any annotation which is by definition not included in the 

miRBase) can- not be recognized and thus will trigger the above mentioned warning. 

Rosetta Data––Intersection 

This feature allows finding common miRNAs from two profile human data sets (data 

matrices with miRNA expression values/rows in a number of samples/columns) 



	
   131 

regardless any change that could have occurred to the miRNA names. This function is 

useful when one needs to obtain a new data set from two human miRNA data sets 

generated by two different profiling platforms which contains common miRNAs only. 

The newly generated data set will be populated with all the miRNAs present in both 

original data sets according to the mature sequence (i.e. that have the same sequence), 

thus allowing to perform downstream analysis without the risk of missing any 

information (Supplementary Figure S7). This feature also allows the carryover of the 

expression values (only of the miRNAs shared between the two data sets) and the input 

format of the query data set tables is the same as the one previously described for the 

‘Update’ function. 

Time Warp 

This is the other main function of the miRiadne application: it allows to track miRNA 

names evolution (name changes, survival and/or drop outs) through the miRBase 

versions from number 10 to the most current one. Name changes, new miRNA entries 

and miRNAs deleted from the miRBase are taken into consideration. Mature sequence 

for each entry is always appended. 

User can input one or more miRNA names, directly typing them or uploading (drag and 

drop method) a text file with the names list. The search can be started from a selected 

miRBase version, or, alternatively, the default search that spans all miRBases in 

miRiadne (from version 10 to the latest miRBase) can be performed. Searches can be 

stringent (default) or relaxed: in the first case search will retrieve only miRNAs with 

exactly the same name as typed, in the second case all miRNA names containing the 

search string will be retrieved. The Homo sapiens is set as the default species but if the 

species is not selected the search will be performed on the entire miRBase and results 

will comprise all species in the miRBase. As an additional function it is also possible to 

display the profiling platforms implemented in miRiadne that can detect the searched 

miRNA(s). Matching miRNA(s) are displayed in a result table with relative IDs (MI 

and MIMAT), names, sequences, strand and length: a graphical indicator shows if that 

miRNA is stable, if it was deleted, at which miRBase version the searched miRNA was 

introduced (the name is introduced) or a name change occurred (new name displayed) 

(Supplementary Figure S8). 
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Discussion 

 

Detection methods based on hybridization technologies such as microarrays or RTqPCR 

that exploit designed probes to detect mature miRNA expression are widely used and 

their probesets refer to and are designed on different miRBase releases. Unfortunately, 

miRNA probe lists in the detection platforms sometime are not explicitly associated 

with probe sequences and often the miRBase unique identifier (the so-called MIMAT 

id) is often not reported. Moreover, a substantial portion of publications on human 

miRNAs (more than half, as shown in a survey of 100 recent papers (14)) relies on 

miRNA names without disclosing sequences of investigated miRNAs, thus contributing 

to annotation uncertainty in the literature. Other tools have partially overlapping 

functions with parts of miRiadne: for instance the miRBase Tracker (14) is redundant 

with the miRiadne’s Time Warp function and miRBase itself provides a list of previous 

names of miRNA sequences. Nevertheless, miRiadne offers a novel profiling platform-

centric approach which protects from the confusion generated by names used in 

publications and experimental resources that have become out-of-date with the official 

names in the current version of the miRBase. While the miRBase is regularly updated 

and miRNA sequences can be renamed, or even deleted or added, the commercial 

probe- sets do not undergo a regular re-annotation (exceptions exist) thus they are 

usually not updated. The result is high heterogeneity in names usage when referring to 

list of expressed, differential expressed or selected miRNAs. Lower costs and 

availability of high-throughput technologies in the miRNA profiling field generated so 

far a body of literature suffering from a relevant degree of nomenclature 

inconsistencies; moreover, the lack of standard guidelines for data profiling hampers the 

possibility to take advantage from the wide variety of tissues and conditions in which 

miRNAs expression has been investigated. miRBase recently began an effort of 

additional annotation producing a high confidence side version of the miRBase using 

next-generation sequencing data (13); this is an admirable intent but, as stated by 

miRBase curators themselves, miRNA names remain ‘entirely unsuitable to encode 

information about complex sequence relationships’ (17). 

Thus evolving nomenclature leads to inconsistencies, and as a consequence, name-

driven comparisons of miRNA lists (such as signatures) from diverse sources (papers, 
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databases) can be risky, and higher meta-analyses virtually impossible. As an example, 

we extracted the miRNA signature from two recent papers about miRNAs carried by 

human exosomes (18,19) and compared them both ‘as they are’ originally reported and 

‘after translation’ using the miRiadne ‘Intersect’ function. The two works used different 

platforms and, as expected, slightly different experimental conditions: nonetheless if 

miRNAs detected both in exosomes (18) and in HDL- associated exosomes (19) were 

searched for, performing a name based overlap analysis between the two original sig- 

natures, discrepancies not merely due to annotations would be found. The use of 

miRiadne allows to perform the signatures’ comparison much faster, with sequence 

consistency and uncovering four name changes and one retired miRNA (Figure 2); such 

differences would not have been detected by a mere manual comparison of miRNA 

names. Even subtler changes can take place across miRBase versions, deriving from 

immediate replacement of dead entries when the biogenesis process is discovered and 

needs to be corrected; such a case is the one of hsa-miR-453 that being processed from 

the 5p arm of miR-323b from miRBase 15 onward became hsa-miR-325b-5p. Such 

changes would not be a problem for researchers focused on a few or a single miRNA, 

which can be individually followed in its evolution by the Time Warp function of 

miRiadne or other applications (14,15) but it is a major bottleneck when doing 

screening and automated data processing of profiling data: the use of a tool such as 

miRiadne will alleviate the difficulty in performing meta analyses with miRNA 

expression profiling data. 
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Figure and Table Legends 

 
Figure 1. miRiadne main features. The five miRiadne’s features grouped in two main 

classes: the first class includes the four Rosetta features used to translate miRNA names 

(Rosetta Stone functions) and data sets (Rosetta Data functions) produced by human 

miRNAs detection platforms: they are the Translation, Overlap, Intersection and Update 

functions. The second main feature is the Time Warp that allows one to browse any 

miRNA name or name lists evolution across miRBase versions, in any species. 

Figure 2. Name-driven miRNA list comparison. (a) Overlap of miRNA signatures 

from two different papers (18,19). Overlap between miRNA names as they are reported 

in the papers (Venn diagram on the left) shows 16 commonly detected miRNAs, while 

overlap between miRNA signatures with updated annotations (Venn diagram on the 

right) shows 15 common miRNAs. Further overlap between the two commonly detected 

miRNAs uncovers that only 11 miRNAs are not affected by inconsistent annotations 

between the two papers and are correctly included in the comparison in both cases, and 

one miRNA (hsa-miR-923, underlined) is not present in the updated list. (b) The 15 

miRNAs commonly detected by the two works in the result table obtained with the 

‘Rosetta Intersect’ function. Names are automatically updated to latest miRBase 

version, mature sequences appended and retired miRNAs (such as hsa-miR-923) 

highlighted and excluded. Destiny of retired miRNAs can be further investigated with 

the Time Warp function. 
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SUPPLEMENTARY FIGURE AND TABLE CAPTIONS 

Supplementary table 1. Human profiling platforms. Table of detection profiling platforms whose annotation 

information files were considered and that are used by the miRiadne translation engine. Columns of the table 

show, from left to right: brand and commercial name of platform, platform version (release), technology used 

(microarray, RTqPCR or beads counter); miRBase version to which the platform's annotations refer to, 

number of miRNAs detectable by the platform; platforms that disclose miRNA probes sequences, platform that 

do not disclose them (or for which a sequence retrieval from miRBase was necessary).   

Supplementary figure 1. Number o f human miRNAs per pla tform. Histogram showing number of human 

miRNAs detected by the 27 platforms taken into account by miRiadne. Control probes were excluded from the 

count. 

Supplementary table 2. Rodent profiling platforms. Table of detection profiling platforms whose annotation 

information files were considered and that are used by the miRiadne translation engine. Columns of the table 

show, from left to right: brand and commercial name of platform, platform version (release), technology used 

(microarray, RTqPCR or beads counter); miRBase version to which the platform's annotations refer to, 

number of miRNAs detectable by the platform; platforms that disclose miRNA probes sequences, platform that 

do not disclose them (or for which a sequence retrieval from miRBase was necessary).   

Supplementary figure 2. Number o f rodent miRNAs per platform. Histogram showing number of mouse 

and rat miRNAs detected by the of the 13 platforms taken into account by miRiadne. Control probes were 

excluded from the count. 

Supplementary figure 3. AIFs v alidation procedure. The figure shows the validation process of AIFs 

(Annotation Information Files, the probes' annotations supplied with each detection platform) before their 

inclusion into miRiadne database. If the probe/miRNA sequences were originally included in the supplied AIF 

they were taken into account and stored with miRNA names; if they were not, mature miRNA sequences were 

exrtacted from the miRBase version whose the specific platform refers to, then subjected by a manual 

curation to find any inconsistence between probe names and miRBase miRNA names. 



 

 

Supplementary figure 4. Ros etta Stone - Translation. How to use the Rosetta translation function: select 

the function from menu (1-2); import the data either by typing it or dragging and dropping in the window a txt 

file (tab delimited or comma separated value) with the miRNA names list (3); select one of the four possible 

translation combination, in the screenshot the "from platform to miRBase" is selected (4); select the starting 

platform and the destination miRBase from the corresponding menus (5); run the conversion (6); review the 

result table (7). The results display the miRNA names searched, the names in the starting and destination 

queries (before and after translation), the alternative name (if present in the detection platform's annotation) 

and the mature sequence. Two cases in which a single miRNA has been annotated with more than one name 

(8) and one case of a retired miRNA (9) are shown (the result table in the screenshot is truncated).  

Supplementary figure 5. Ros etta Stone - Overlap. How to use the Rosetta overlap function: this function 

does not need any input file since it is used to see overlap between platforms' probes and/or miRBase 

versions. Three options are available, overlap between different platforms, between different miRBase 

versions and between specific platforms and miRBase versions. Select the function from menu (1-2); choose 

one of the three options (3), select the two terms of comparison, either platforms and/or miRBases according 

to the option chosen (4-5); run the job (6) and review the result table (7). The result table contains all and only 

those miRNAs that, according to mature sequence identity, are contained in both terms of comparison. 

Supplementary figure 6. Rosetta Data - Update. How to use the Rosetta update function: select the function 

from menu (1-2); import the data, the easier and safer way is to drag and drop in the window a txt file 

containing the miRNA expression dataset (tab delimited or comma separated value) with the miRNA names 

list in the first column (3); choose one of the two possible options, either to update the dataset from the 

generating platform to a specific miRBase version or to the annotation of another detection platform (4); 

specify the generating platform on the left and the landing translation on the right (5); run the translation job 

(6) and review the result table (7). The result table contains all and only those miRNAs that are present in the 

landing platform or miRBase (i.e. those miRNAs that can be updated given the chosen parameters), the 

mature sequence is displayed and the original data matrix is appended in the "Data" column. The result table 

can be downloaded (8) as a comma separated value file and quickly imported in spreadsheet format, the data 

column which contains space delimited data is also carried over and easily restored (9).  

Supplementary figure 7. Ros etta Data - In tersect. How to use the Rosetta intersect function: select the 

function from menu (1-2); import the data either by typing it or dragging and dropping in the two windows a txt 

file (tab delimited or comma separated value) with the miRNA names list: a separate input window is used for 

the two miRNA lists or datasets that are going to be intersected. In the case of profiling datasets (with 



 

 

expression values) or long miRNA lists the "drag and drop" method is the easier and safer (3-4); specify the 

first (5) and the second (6) platform, then submit the job (7) and review the result table (8). miRNAs present in 

both submitted datasets or lists are displayed in the result table, their names are updated to the ltest miRBase 

version and mature sequence is appended. Those miRNAs in the input that cannot be found are highlighted at 

the bottom of the table and a warning messade is display at the top of the table.   

Supplementary figure 8. Time Warp. How to use the Time Warp function: select the function from menu (1); 

decide whether to perform a stringent search (default) or select the "Relax search" option to search for partial 

or incomplete matches; you can also decide to display the platforms able to detect the searched miRNAs, if 

any (2);  the data can be imported either by typing it directly or dragging and dropping in the window a txt file 

(tab delimited or comma separated value) with the miRNA names list. For short miRNA lists, miRNA names 

can be typed either separated by a new line (carriage return) or separated by a comma (3). Select the miRNA 

version to be considered as the one where to start the analysis from, the default span is all miRBases in 

miRiadne, i.e. from version 10 to the latest (4); select the species, the default is Homo sapiens (5): if the 

"blank" option is explicitly selected, search is performed over all species in miRBase, and "Relax search" 

should be selected too in order to facilitate matching; run the job clicking "Search" (6) and review the result 

table (7). The result table displays searched miRNAs with their IDs, sequence, strand positioning and length. If 

no specific miRBase versions were selected the table display results from miRBase 10 to the latest and for 

each version a colored dot is used to indicate stability of the annotation (green dot) or retirement of the miRNA 

(red dot). Name changes are indicated with the new miRNA name in place of the dot. If a specific miRBase 

version was selected (miRBase 14 as shown in the screenshot) (8) Time Warp will start analysis from that 

version number and any miRNA occasionally retired before that version will not displayed (as it is the case of 

hsa-miR-801 in the figure) (9).  

 



Supplementary Table 1

Platform name Release Tecnology miRBase # miRNA Seq by vendor Seq by miRBase

GeneChip miRNA Array

GeneChip miRNA Array

GeneChip miRNA Array

GeneChip miRNA Array

Human miRNA Microarray

Human miRNA Microarray

Human miRNA Microarray

Human miRNA Microarray

Human miRNA Microarray

Human miRNA Microarray

TaqMan Array Human microRNA

TaqMan Array Human microRNA

microRNA Ready-to-Use PCR panels

microRNA Ready-to-Use PCR panels

microRNA Ready-to-Use PCR panels

miRCURY LNA microRNA Array

miRCURY LNA microRNA Array

miRCURY LNA microRNA Array

miRCURY LNA microRNA Array

miRCURY LNA microRNA Array

Human microRNA expression panel

nCounter Human miRNA panel

miScript miRNA PCR Arrays

qScript microRNA System

SmartChip Human MicroRNA Panel

1

2

3

4

2

3

14

16

18

19

2

3

3

2

3

4

10

11

5th gen

6th gen

7th gen

1

2

3

16

1

1

microarray

microarray

microarray

microarray

microarray

microarray

microarray

microarray

microarray

microarray

RT-qPCR

RT-qPCR

RT-qPCR

RT-qPCR

RT-qPCR

RT-qPCR

microarray

microarray

microarray

microarray

microarray

microarray

microarray

counter

RT-qPCR

microarray

microarray
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1218
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x

x

x

x

x

x

x

x

x

x
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x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
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OpenArray Human microRNA
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Supplementary Table 2

Platform name Release Tecnology miRBase # miRNA Seq by vendor Seq by miRBase
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microRNA Ready-to-Use PCR panels Mouse

microRNA Ready-to-Use PCR panels Mouse

TaqMan Array Rodent microRNA

2

2

3

3

4

4

1

1

2

3

4

3

3

microarray

microarray

microarray

microarray

microarray

microarray

microarray

microarray

RT-qPCR

RT-qPCR

RT-qPCR

RT-qPCR

RT-qPCR

15

15

17

17

20

20

20

20

16

18

20

14

14

717

387

1111

679

1908

728

561

338

749

752

752

750

750

x

x

x

x

x

x

x

x

x

A�ymetrics

Quanta BioSciences

Exiqon

LifeTech
(Applied Biosystems) OpenArray Rodent microRNA

x

x

x

x



0

500

1000

1500

2000

A�ymetri
cs

A�ymetri
cs

A�ymetri
cs

A�ymetri
cs

A�ymetri
cs

A�ymetri
cs

Quanta BioSce
nce

s

Quanta BioSce
nce

s

Exiqon

Exiqon

Exiqon

Life
 Te

ch
 TLDA

Life
 Te

ch
 O

A

Re
le

as
e 

2 
m

ou
se

Re
le

as
e 

2 
ra

t

Re
le

as
e 

3 
m

ou
se

Re
le

as
e 

3 
ra

t

Re
le

as
e 

4 
m

ou
se

Re
le

as
e 

4 
ra

t

Re
le

as
e 

1 
m

ou
se

Re
le

as
e 

1r
at

Re
le

as
e 

2 
m

ou
se

Re
le

as
e 

3 
m

ou
se

Re
le

as
e 

4 
m

ou
se

Re
le

as
e 

3 
m

ou
se

 +
 ra

t

Re
le

as
e 

3 
m

ou
se

 +
 ra

t

Supplementary Figure 2



select platform

obtain AIF
(Annotation Information File)

isolate probe names

Are 
sequences 
available in 

AIF?

Retrieve sequences from 
DECLARED version of miRBase

Associate miRBase retrieved 
sequences to AIF’s probe names

Are there 
discrepancies 

between probe names 
and miRBase 

mirna 
names?

YESAssociate sequences 
to probe names

NO

Accept names to sequen-
ces associations

NO

YES

Manually curate

Annotated AIF

DB of Annotated AIFs

Check platform version
Check version of referenced miRBase

Supplementary Figure 3



1

Supplementary Figure 4

2

3

4

56

7

8

9

8



Supplementary Figure 5

1

2
3

54

7

6



1 Supplementary Figure 6

2

3

4

56

78

9 original data matrix

original data matrix



Supplementary Figure 7

12

3

4

5 6

7

8



Supplementary Figure 8

1

2

3

5
4

7
6

9

8



	
   151 

References 
1. Bartel,D.P. (2009) MicroRNAs: target recognition and 

regulatory functions. Cell, 136, 215–233.  

2. Zhang,B., Wang,Q. and Pan,X. (2007) MicroRNAs and their 
regulatory roles in animals and plants. J. Cell. Physiol., 
210, 279–289.  

3. Lu,M., Zhang,Q., Deng,M., Miao,J., Guo,Y., Gao,W. and 
Cui,Q. (2008) An analysis of human microRNA and 
disease associations. PLoS One, 3, e3420.  

4. Nelson,K.M. and Weiss,G.J. (2008) MicroRNAs and cancer: 
past, present, and potential future. Mol. Cancer Ther., 7, 3655–
3660.  

5. Pagani,M., Rossetti,G., Panzeri,I., de Candia,P., 
Bonnal,R.J.P., Rossi,R.L., Geginat,J. and Abrignani,S. (2013) 
Role of microRNAs and long-non-coding RNAs in CD4(+) T-
cell differentiation. Immunol. Rev., 253, 82–96. 

6. Rossi,R.L., Rossetti,G., Wenandy,L., Curti,S., Ripamonti,A., 
Bonnal,R.J.P., Birolo,R.S., Moro,M., Crosti,M.C., Gruarin,P. et 
al. (2011) Distinct microRNA signatures in human lymphocyte 
subsets and enforcement of the naive state in CD4+ T cells by 
the microRNA miR-125b. Nat. Immunol., 12, 796–803. 

7. De Candia,P., Torri,A., Pagani,M. and Abrignani,S. (2014) 
Serum microRNAs as biomarkers of human lymphocyte 
activation in health and disease. Front. Immunol., 5, 43. 

8. Lee,R.C., Feinbaum,R.L. and Ambros,V. (1993) The C. 
elegans heterochronic gene lin-4 encodes small RNAs with 
antisense complementarity to lin-14. Cell, 75, 843–854. 

9. Lee,R., Feinbaum,R. and Ambros,V. (2004) A short history 
of a short RNA. Cell, 116, S89–S92. 



	
   152 

10. Lagos-Quintana,M., Rauhut,R., Lendeckel,W. and Tuschl,T. 
(2001) Identification of novel genes coding for small expressed 
RNAs. Science, 294, 853–858. 

11. Ambros,V., Bartel,B., Bartel,D.P., Burge,C.B., 
Carrington,J.C., Chen,X., Dreyfuss,G., Eddy,S.R., Griffiths-
Jones,S., Marshall,M. et al. (2003) A uniform system for 
microRNA annotation. RNA, 9, 277–279. 

12. Griffiths-Jones,S. (2004) The microRNA Registry. Nucleic 
Acids Res., 32, D109–D111. 

13. Kozomara,A. and Griffiths-Jones,S. (2013) miRBase: 
annotating high confidence microRNAs using deep sequencing 
data. Nucleic Acids Res., 42, D68–D73. 

14. Van Peer,G., Lefever,S., Anckaert,J., Beckers,A., Rihani,A., 
Van Goethem,A., Volders,P.-J., Zeka,F., Ongenaert,M., 
Mestdagh,P. et al. (2014) miRBase Tracker: keeping track of 
microRNA annotation changes. Database (Oxford)., bau080. 

15. Lu,T.-P., Lee,C.-Y., Tsai,M.-H., Chiu,Y.-C., Hsiao,C.K., 
Lai,L.-C. and Chuang,E.Y. (2012) miRSystem: an integrated 
system for characterizing enriched functions and pathways of 
microRNA targets. PLoS One, 7, e42390. 

16. Brown,M., Suryawanshi,H., Hafner,M., Farazi,T.A. and 
Tuschl,T. (2013) Mammalian miRNA curation through next-
generation sequencing. Front. Genet., 4, 145. 

17. Griffiths-Jones,S., Grocock,R.J., van Dongen,S., 
Bateman,A. and Enright,A.J. (2006) miRBase: microRNA 
sequences, targets and gene nomenclature. Nucleic Acids Res., 
34, D140–D144. 

18. Skogberg,G., Gudmundsdottir,J., van der Post,S., Sandstro ̈ 
m,K., Bruhn,S., Benson,M., Mincheva-Nilsson,L., Baranov,V., 



	
   153 

Telemo,E. and Ekwall,O. (2013) Characterization of human 
thymic exosomes. PLoS One, 8, e67554. 

19. Vickers,K.C., Palmisano,B.T., Shoucri,B.M., 
Shamburek,R.D. and Remaley,A.T. (2011) MicroRNAs are 
transported in plasma and delivered to recipient cells by high-
density lipoproteins. Nat. Cell Biol., 13, 423–433. 

 

 



Chapter 4
dgasjdbjasd

dkajsgdaosd

bdasgdasodga

sdgasoudgasod

dgasdasodagda

Conclusions and perspectives in aag-

daatranslational medicine
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Thanks to new sequencing technologies, it has become clear that
the non-coding part of the genome plays a fundamental role in dif-
ferent cellular functions. The number of non-coding transcripts grows
steadily every day but relatively few examples of functional lncRNAs
have been described in adaptive immune system. With our study, we
not only investigated the expression landscape of annotated lincRNAs
in 13 subsets of human primary lymphocytes, but we also identified
novel lincRNA specifically expressed in these cells. The identification
of new lincRNAs by de novo approaches is one of the most important
features of the study because these transcripts, thanks to their high
specificity and restricted expression, define cellular identity better than
protein-coding genes.

Given these observations, it is not surprising that an altered expres-
sion of lncRNAs could be linked to many different pathologies (Table
4). Indeed, it has been found that the >90% of disease-associated ge-
netic variants identified by Genome Wide Association Studies (GWAS)
are located outside protein coding regions implicated in transcription
control (promoters and enhancers) or in gene expression (non coding
genes) [12, 26]. In particular, it has been estimated that 7% of SNPs
associated to immuno-mediated diseases are in intergenic non coding
region (lincRNAs). A powerful method to elucidate the genetic com-
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ponent underlying altered gene expression is mapping of expression
quantitative trait loci (eQTLs): some GWAS-SNPs have eQTLs ef-
fects on these lncRNA transcripts [17]. If the majority of lncRNAs is
involved in the regulation of protein coding genes expression, the SNPs
associated with these transcripts may in turn indirectly influence the
protein genes related to a given disease.

sdgasoudgasod

dgasdasodagda

 

ncRNA Diseases Type mRNA or loci affected

DBET Facioscapulohumeral muscular 
dystrophy

lncRNA 4q35 locus

BACE1-AS Alzheimer’s disease NAT BACE1

DISC2 Schizophrenia NAT DISC1

HIF1A Cancer, myocardial ischaemia NAT HIF1A

MALAT1 Cancer lncRNA Many

ATXN8OS Spinocerebellar ataxia NAT SCA8

FMR4 Fragile X syndrome lncRNA FMR1

FMR1-AS Fragile X syndrome NAT FMR1

PINK1-AS Parkinson’s disease, diabetes NAT PINK1

CDKN2B-AS1 Cancer, diabetes,  
cardiovascular disease

lncNRA CDKN2A , CDKN2B

NPPA-AS Cardiovascular disease NAT NPPA

NAT-RAD18 Alzheimer’s disease NAT RAD18

BOK-AS Cancer NAT BOK

HTT-AS Huntington’s disease NAT HTT

HAR1R Huntington’s disease NAT HAR1F

P15-AS Leukaemia NAT CDKN2B

lincRNA-p21 Cancer lncRNA CDKN1A

P21-AS Cancer NAT CDKN1A

HOTAIR Cancer lncRNA Many

LSINCT5 Cancer lncRNA Many

PTCSC3 Cancer lncRNA Many

TUG1 Cancer lncRNA Many

lincRNA-EPS Anaemia lncRNA Many

HELLPAR HELLP syndrome lncRNA Many

UCA1 Cancer lncRNA Many

GAS5 Autoimmune disease, cancer lncRNA Many

DA125942 Brachydactyly type E lncRNA Many

sdgasoudgasod

Table 4. LncRNAs with potential roles in human diseases [37].
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The potential role and involvment of lncRNAs related to immune-
mediated diseases is still unclear, reflecting the poor knowledge on this
field. Emerging lines of evidence suggest that expression dysregulation
and large or small-scale mutations in primary sequence of lncRNAs
are strongly linked with phenotype changes and disease susceptibility.
In particular, if genetic mutations are located within regulatory mo-
tifs of lncRNAs, when these molecules are transcribed their functions
could be compromised. Indeed, alterations of the lncRNA functions
could potentially induce changes in their folding patterns, secondary
structure stability and affect expression [22]. For example, a system-
atic study of all annotated IBD (inflammatory bowel disease) and T1D
(type 1 diabetes) loci-associated lncRNAs showed that several SNPs
within these loci have a significant propensity to disrupt lncRNA sec-
ondary structures. These SNPs induce structural perturbations that
influence the molecular function of lncRNAs, altering their transcrip-
tion levels, their associated protein coding genes and contributing to-
wards disease phenotype [22]. Another lncRNA called ANRIL has been
identified within p15/CDKN2B-p16/CDKN2A-p14/ARF gene cluster
as a major hotspot in GWAS studies associated to coronary disease,
intracranial aneurysm and type 2 diabetes. This lncRNA has been
shown to regulate its neighbor tumor suppressors CDKN2A/B by epi-
genetic mechanisms, through the binding to two polycomb proteins
CBX7 (PCR1) and SUZ12 (PCR2), which result in the regulation of
histone modification in CDKN2A/B locus. More recently ANRIL was
linked to several cancers, glaucoma, endometriosis and diabetes. For
example, it is over-expressed in leukemia patients leukocytes compared
with normal controls, while CDKN2B showed the opposite pattern of
expression [43]. Remarkably, GWAS studies have detected a risk allele
for acute lymphoblastic leukemia in the first exon of CDKN2A [28],
coinciding with the promoter region of ANRIL. Moreover, ANRIL is
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also up-regulated in prostate cancer tissues in comparison with normal
epithelial cells, accompanied by down-regulation of CDKN2A [41].

A genome-wide profiling of mRNA and lincRNA in human primary
NT cells, CD4+ T central memory cells, and TH1, TH2, TH17, and
Treg cells was performed by Zhang et al., to identified TH2-specific
markers relevant for allergy. They found that lncRNA GATA3-AS1
is specifically expressed in primary TH2, it is significantly correlated
with GATA3 and it shares the same promoter. This lncRNA showed an
increase expression in patients with TH2-associated disease (seasonal
allergic rhinitis) compared to healthy control subjects. Then, lncRNA
GATA3-AS1 is now considered a specific indicator of TH2-response
and TH2-associated diseases [44].

Also ulcera colitis and Chron’s disease (CD) are connected to lncR-
NAs. In particular LRRK2 gene, encoded by a major susceptibility
gene for CD and ulcera colitis, is a component of a complex that di-
rectly inhibits the traslocation of the transcription factor NFAT to
the nucleus, altering the immune responses. This complex includes
the lncRNA NRON (NFAT repressor) that is directly involved in the
binding of NFAT and LRRK2, in fact the knockdown of NRON results
in the release of LRRK2 and translocation of NFAT to the nucleus
[21]. Another lncRNA, DQ786243, correlates with the severity of CD
[25]. This lncRNA affects the expression of CREB and Foxp3 through
which it regulates Treg cells function [45]. DQ786243 is upregulated in
the blood of patients and it seems to be involved in the regulation of
CREB phosphorylation, contributing to the development of CD [25].

LncRNA play also a special role in the control of autoimmune dis-
eases. The increase risk of autoimmune thyroid disease (AITD) is
correlated to the SNP Ex9b-SNP10 [29] that resides in intron 9 of
the protein-coding gene ZFAT and the promoter region of the anti-
sense lncRNA SAS-ZFAT. When the variation is present, SAS-ZFAT
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is upregulated and in turn downregulates the expression level of its
antisense counterpart. SAS-ZFAT is exclusively expressed in CD19+B
cells in peripheral blood lymphocytes, therefore this lncRNA play a
critical role in B cell function and determine susceptibility to AITD
[18]. Another example is lncRNA PRINS (Psoriasis Susceptibility-
related non-coding RNA gene) that harbors two repeat elements [30].
This lncRNA is expressed at different levels in several human tissues
but shows a higher expression in the uninvolved epidermis of psoriatic
patients than in both psoriatic lesional and healthy epidermis, sug-
gesting a role in psoriatic susceptibility. The RNA expression level
of PRINS is decreased in the uninvolved psoriatic, but not healthy,
epidermis with treatment of T-lymphokines that are known to precip-
itate psoriatic symptoms. Moreover, downregulating the RNA level of
PRINS by RNAi can impair cell viability after serum starvation, but
not under normal serum conditions. Then, PRINS acts as “riboregu-
lator” involved in the proliferation and survival of cells [18].

A recent study bu Hrdlickova and collegues, investigated the shared
genetics of autoimmune and immune-related diseases (AID) consider-
ing eight different AID pathologies [14]: autoimmune thyroid disease
[5], celiac disease (CeD) [35], inflammatory bowel disease (IBD) [16],
juvenile idiopathic arthritis (JIA) [13], primary biliary cirrhosis (PBC)
[20], psoriasis (PS) [36], primary sclerosing cholangitis (PsCh) [19] and
rheumatoid arthritis (RA) [7]. They identified 284 loci related to these
pathologies, 119 of which overlapped partly or completely in two or
more AID (defined “AID shared loci”). These loci harbour 240 lncR-
NAs and 626 protein coding genes. Comparing the mean expression
levels of lncRNAs versus protein coding genes, only a two-fold lower ex-
pression of AID lncRNAs clearly emerged, suggesting that these tran-
scripts in AID are expressed to higher levels than previously assumed
in particular in cell types functionally involved in the disease. This
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observation highlights an important role of lncRNAs located at AID
loci, as descriptors more specific than AID protein coding genes [14].

Also bioinformatic tools are used to integrate and update informa-
tion about lncRNAs and diseases.

LncRNADisease (http://www.cuilab.cn/lncrnadisease) is a manu-
ally curated database that collects all “lncRNA–disease” relations ex-
perimentally reported in the literature. Of all the included pathologies,
cancer (39.8%), cardiovascular disease (10.8%) and neurodegeneration
disease (8.4%) are the top three classes. Moreover novel lncRNA–disease
associations are predicted based on the genomic context of a given
lncRNA and integrated into the database [3].

Long noncoding RNAs could also be promising novel target for ther-
apies or biomarkers for diagnosis and prognosis. The currently avail-
able drugs and tool compounds are focused on inhibitory mechanism
of action and only very few pharmaceutical agents are able to increase
the activity of effectors or pathways for therapeutic benefit. In spe-
cific contexts, though, the upregulation of key genes, as transcription
factors, tumor suppressors, growth factors or more recently discovered
lncRNA regulators, would be desired in specific context [37].

Different strategies for the therapeutical manipulation of NATs (Nat-
ural Antisense Transcripts) and other lncRNAs are evolving in the last
years. Single-stranded oligonucleotides (also called “antago-NATs”) are
designed to specifically block the interaction between NAT transcript
and sense gene mRNA and/or degrade the NAT transcript itself. The
outcome of this approach is transcriptional derepression of the gene
(Figure 11).
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mRNA

CleveageBlockade

AntagoNAT AntagoNAT

NAT

mRNA

NAT

mRNA

NAT

Figure 11. Simplified scheme of antagoNAT design. Natural antisense tran-
scripts (NATs) can repress mRNA gene expression at the transcriptional level. Targeting
NATs with single-stranded oligonucleotides named antagoNATs can result in mRNA de-
repression. AntagoNATs can act by blocking the interactions of NATs with effector pro-
teins (bottom left) and/or by causing RNAase H-mediated degradation of the antisense
transcript (bottom right). LSD1, lysine-specific histone demethylase 1; PRC2, Polycomb
repressive complex 2 [37].
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Several characteristics should be considered to develop an antag-
oNAT with potential in vivo applications, including modifications to
promote metabolic stability and to minimize the oligonucleotide length
for cellular uptake and off-target activities. This method induces locus-
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specific upregulation of the gene of interest without affecting unrelated
or neighboring genes. Also double-stranded small interfering RNAs
(siRNAs) are exploited in vitro to induce upregulation of genes, tar-
geting a region that does not directly overlap with sense transcript [37].
Finally, promoter region targeting by small double-stranded RNAs has
also been considered as a tool to increase gene expression [37].

It is also important to underline the differences between inhibition
of NATs and miRNAs. First of all, NATs are involved in the repression
of transcription acting as chromatin regulators, whereas miRNAs are
translational repressors that affect mRNA stability in the cytoplasm.
Second, the action of cis-acting NATs is gene-locus specific, whereas
the number of miRNAs targets is larger and therefore the effects of
these molecules less specific. Third, the number of NATs discovered is
steadily growing whereas the miRNAs counterpart is less abundant and
already extensively studied. Finally, NAT inhibition by an antagoNAT
can be achieved by the cleavage or blockade of RNA or a protein target,
whereas steric blockade is the primary option for the inhibition of a
mature miRNA.

There are important aspects in targeting lncRNAs that cannot be
ignored: the toxicity and off-target effects. These effects, observed with
all oligonucleotide antisense technologies, may be due to protein bind-
ing [1]. Although the oligonucleotide chemistry can have an impact
on adverse events, both the prevalence and incidence of these adverse
events are sequence-dependent. However, in most instances it remains
unclear which sequence motifs underlie such liabilities, so preclinical
experiments in animal models are required to eliminate those sequences
that appear to be most toxic. Unwanted and unanticipated events can
results also by hybridization of the oligonucleotides with off-targets.
This effect is difficult to control, but it is possible to predict some of
nonspecific hybridization events using bioinformatics tools. It is emerg-
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ing for antagoNATs, that only 10-50% of these molecules will reduce
the expression of the target, these numbers are in line with what has
been observed for other oligonucleotide antisense technologies. Also
RNA structure and association with various proteins could potentially
influence the effects of antisense technologies. Safe and efficient in vivo
delivery is another crucial hurdle that lncRNA targeting technologies
have in common with oligonucleotide-based therapies. Systemic de-
livery by once-weekly intravenous treatment was approved in January
2013 by the US Food and Drug Administration (FDA) for a NAT tar-
geting the mRNA for apolipoprotein B, but denied by the European
Medicines Agency panel due to potential adverse effect. Targeted or
highly localized delivery was used to treat the central nervous system
(CNS) with relative success [39, 40, 32, 42, 31], especially through the
intrathecal route [11, 27]. Acting on chemical modifications [6] or us-
ing various delivery approaches (viral or non-viral vectors) can help to
decrease immune activation and to achieve a proper dosing control of
treatments. Notably, a major advantage of antagoNATs is their ability
to be administered systemically without requirement for any delivery
vehicles [40, 33].

The immune system is an interesting model for lncRNAs-mediated
therapies. Given that lncRNAs act as fine-tuners of cell differentia-
tion, we could modulate the differentiation network acting through
lncRNAs, ensuring a proper immune response to different external
clues and challenges in a way that is advantageous in terms of host
defense. These therapies could provide a way to modulate the bal-
ance between effector lymphocytes reprogramming already differenti-
ated cells in a less invasive and more specific way. Indeed, given that
lncRNAs are not major hubs within cell networks, their overexpres-
sion or downregulation would cause a more physiological cascade with
minor perturbations if compared to the overexpression or downregu-
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lation of a key regulatory hub such as a master gene. As in our case,
understanding the mechanisms of function of lncRNAs in driving the
differentiation events in the human immune system is of central im-
portance for the identification of novel and more specific therapeutic
targets for immune-related diseases.
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