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A B S T R A C T

Streaming data are relevant to finance, computer science, and

engineering, while they are becoming increasingly important

to medicine and biology. Continuous time Bayesian networks

are designed for analyzing efficiently multivariate streaming

data, exploiting the conditional independencies in continu-

ous time homogeneous Markov processes. Continuous time

Bayesian network classifiers are a specialization of continuous

time Bayesian networks designed for multivariate streaming

data classification when time duration of events matters and

the class occurs in the future.

Continuous time Bayesian network classifiers are presented

and analyzed. Structural learning is introduced for this class

of models when complete data are available. A conditional

log-likelihood scoring is derived to improve the marginal log-

likelihood structural learning on continuous time Bayesian net-

work classifiers. The expectation maximization algorithm is de-

veloped to address the unsupervised learning of continuous

time Bayesian network classifiers when the class is unknown.

Performances of continuous time Bayesian network classi-

fiers in the case of classification and clustering are analyzed

with the help of a rich set of numerical experiments on syn-

thetic and real data sets. Continuous time Bayesian network

classifiers learned by maximizing marginal log-likelihood and

conditional log-likelihood are compared with continuous time

naive Bayes and dynamic Bayesian networks. Results show that

the conditional log-likelihood scoring combined with Bayesian

parameter estimation outperforms marginal log-likelihood scor-
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ing and dynamic Bayesian networks in the case of supervised

classification. Conditional log-likelihood scoring becomes even

more effective when the amount of available data is limited.

Continuous time Bayesian network classifiers outperform dy-

namic Bayesian networks even on data sets generated from dis-

crete time models. Clustering results show that in the case of

unsupervised learning the marginal log-likelihood score is the

most effective way to learn continuous time Bayesian network

classifiers. Continuous time models again outperform dynamic

Bayesian networks even when applied on discrete time data

sets.

A Java software toolkit implementing the main theoretical

achievements of the thesis has been designed and developed

under the name of the CTBNCToolkit. It provides a free stand-

alone toolkit for multivariate trajectory classification and an

open source library, which can be extend in accordance with the

GPL v.2.0 license. The CTBNCToolkit allows classification and

clustering of multivariate trajectories using continuous time

Bayesian network classifiers. Structural learning, maximizing

marginal log-likelihood and conditional log-likelihood scores,

is provided.
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L I S T O F N O TAT I O N S

Variables have their names capitalized (i.e. X).

A state of a variable is written in lower case letters (i.e. x).

Vectors are represented by boldface letters (i.e. X, x).

Sets are represented by calligraphic letters (i.e. D).

B Bayesian Network.

C Continuous Time Bayesian Network Classifier.

D Data set of trajectories.

FamScore(X,PaG(X) : D) Local score function for CTBN and

CTBNC structural learning.

L Likelihood function.

M[x, x′ | pa(X)] Number of times X transitions from state x to

state x′ when the state of its parents (i.e. Pa(X)) is set to

pa(X).

M[x | pa(X)] Number of transitions from state x of variable X

when the state of its parents (i.e. Pa(X)) is set to pa(X).

M[y] Number of trajectories in the data set labeled with class

Y = y.

M̄ Expected value of sufficient statistics M.

Mi M sufficient statistics computed on the i-th trajectory.

MLLscore (G : D) Marginal Log-likelihood score function for

CTBN and CTBNC structural learning.
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ℵ Continuous Time Bayesian Network.

Pℵ(t) Probability distribution of the variables in ℵ at time t.

Pℵ(s, t) Joint probability distribution of the variables in ℵ over

two time points.

P0X Initial probability distribution over X.

Pa(X) Parent set of variable X.

pa(X) Instantiation of the variable X’s parent set (i.e. Pa(X)).

q
pa(X)
xx′ Rate of arriving to state x′ from state x for a specific

instantiation pa(X) of Pa(X).

q
pa(X)
x Rate of leaving state x for a specific instantiation pa(X)

of Pa(X).

QPa(X)
X Conditional Intensity Matrices of X, given its parents

(i.e. Pa(X)).

score (G : D) Bayesian score function for CTBN and CTBNC struc-

tural learning.

T [x | pa(X)] Amount of time spent in state x by variable X

when the state of its parents (i.e. Pa(X)) is set to pa(X).

T̄ Expected value of sufficient statistics T .

T i T sufficient statistics computed on the i-th trajectory.

Val(X) State space of X.

X = {X1 . . . Xn} Set of variables (class excluded).

Xt = x Point evidence at time t.

X[t1,t2) = x[t1,t2) Continuous evidence over the time interval

[t1, t2).

xi



xii

(x1, . . . xJ) J-evidence-stream of X variables over the J-time-

stream (i.e. [0, t1); [t1, t2); ...; [tJ−1, T)).

Y Class variable.

α Imaginary counts for the M sufficient statistics.

Γ(. . . ) Gamma function.

θ
pa(X)
xx′ Probability of transitioning from state x to state x′, when

it is known that the transition occurs at a given instant

in time.

θy Probability of class Y of being in state y.

τ Imaginary counts for the T sufficient statistics.

πn Instantiation of variable Xn’s parent set without the Y =

y class (i.e. πn = {pa(Xn)/y}).
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1
I N T R O D U C T I O N

1.1 motivations

The number of sources generating streaming data has rapidly

increased over the last few years. Streaming data are relevant

in finance, computer science, and engineering while they are

becoming increasingly important in medicine and biology (Bar-

ber and Cemgil, 2010). High frequency trading is an example

where streaming data is relevant to finance (Dacorogna, 2001).

Computer science offers many examples of streaming data, sys-

tem error logs, web search query logs, network intrusion de-

tection and social networks, to mention just a few (Simma and

Jordan, 2010). In image processing, acoustic and vision appli-

cations streaming data are used to solve engineering problems

(Yilmaz et al., 2006). An emerging paradigm in medicine is that

of patient monitoring based on sensor data and that of continu-

ous time diagnosis, including the study of computational firing

pattern of neurons (Truccolo et al., 2005). Finally, the increas-

ing amount of time course data generated in biology allows to

discover gene regulatory networks to model the evolution of

infections and to learn and analyze metabolic networks (Voit,

2012).

Data streaming problems may be approached with algo-

rithms and models that can represent dynamics, sequences and

1



1.1 motivations 2

time. Among these, Dynamic Bayesian Networks (DBNs) (Dean

and Kanazawa, 1989) and Hidden Markov Models (HMMs) (Ra-

biner, 1989) have received great attention for modeling tempo-

ral dependencies. However, DBNs are concerned with discrete

time and thus suffer from several limitations due to the fact that

it is not clear how timestamps should be discretized. In the case

where a too slow sampling rate is used the data will be poorly

represented, while a too fast sampling rate rapidly makes learn-

ing and inference prohibitive. Furthermore, it has been pointed

out (Gunawardana et al., 2011) that when allowing long term

dependencies, it is necessary to condition on multiple steps into

the past. Thus the choice of a too fast sampling rate will in-

crease the number of such steps that need to be conditioned

on. Continuous Time Bayesian Networks (CTBNs) (Nodelman

et al., 2005), Continuous Time Noisy-OR (CT-NOR) (Simma et al.,

2008), Poisson cascades (Simma and Jordan, 2010) and Poisson

networks (Rajaram et al., 2005) together with the Piecewise-

constant Conditional Intensity Model (PCIM) (Gunawardana

et al., 2011) are interesting models to represent and analyze

continuous time processes. CT-NOR and Poisson cascades are

devoted to model event streams while they require the modeler

to specify a parametric form for temporal dependencies. This

aspect significantly impacts performance, and the problem of

model selection in CT-NOR and Poisson cascades has not been

addressed yet. This limitation is overcome by PCIMs which per-

form structure learning to model how events in the past affect

future events of interest. Continuous Time Bayesian Networks

are continuous time homogeneous Markov models which allow

to represent joint trajectories of discrete finite variables, rather

than models of event streams in continuous time.

Temporal classification is one of the most interesting prob-

lems concerning stream data analysis. In this dissertation atten-



1.2 contributions 3

tion is focused on temporal classification in the case where data

stream measurements are available over a period of time in his-

tory, while the class is expected to occur in the future. This kind

of problem can be addressed by discrete and continuous time

models. Discrete time models such as dynamic Latent Classifi-

cation Models (Zhong et al., 2012) and Dynamic Bayesian Net-

works (Dean and Kanazawa, 1989), both also able to make clas-

sification in the case where the class changes over time. Con-

tinuous time models, such as Continuous Time Bayesian Net-

work Classifiers (CTBNCs) (Stella and Amer, 2012), overcame the

problem of timestamps discretization. For this reason CTBNCs

deserve particular attention.

CTBNCs parameter learning and inference algorithm were in-

troduced by Stella and Amer (2012). Nevertheless, many open

issue have to be addressed. How is it possible to learn the struc-

ture of CTBNCs? Is the Bayesian score introduced by Nodelman

et al. (2002b) for CTBN the best approach to learn CTBNCs? How

is it possible to address unsupervised learning (i.e. clustering)

using CTBNCs? How does this model perform over real world

data sets?

This dissertation answers these open issues providing the ad-

ditional contribution of the CTBNCToolkit, an open source Java

toolkit for CTBNCs, which makes freely available a toolkit for

temporal classification. It can be used for scientific purposes,

such as model comparison and temporal classification of in-

teresting scientific problems, but it can be used as well as a

prototype to address real world problems.

1.2 contributions

The class of CTBNCs is introduced and analyzed. The structural

learning of CTBNCs is addressed by applying the algorithm in-
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troduced by Nodelman et al. (2002b) for CTBN. This approach,

based on Bayesian scoring maximization, is improved introduc-

ing a Conditional Log-likelihood scoring function. The Condi-

tional Log-likelihood scoring is derived and used to develop a

structural learning algorithm for CTBNC.

Unsupervised learning (i.e. clustering) is addressed by using

the Expectation Maximization (EM) algorithm to learn CTBNCs

when the class is unknown.

Classification and clustering are studied on a rich set of syn-

thetic data sets and on real world data sets as well. Comparison

between CTBNCs, Continuous Time Naive Bayes (CTNB) and the

state of the art is provided by using Dynamic Bayesian Network

Classifiers (DBNCs).

Two important real world problems are analyzed by using

CTBNCs: gesture recognition for post-stroke rehabilitation move-

ments and traffic profile classification.

The main contributions of the dissertation are the following:

• definition of new models from the class of CTBNCs;

• derivation of a Conditional Log-likelihood scoring func-

tion for CTBNCs structural learning;

• development of soft and hard assignment EM algorithms

for CTBNCs clustering;

• classification and clustering performance analysis be-

tween CTBNCs learned by maximizing the Marginal Log-

likelihood and Conditional Log-likelihood scoring func-

tions, CTNB, and DBNCs;

• performance analysis of CTBNCs on the post-stroke re-

habilitation problem and the traffic profile classification

problem;
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• development of CTBNCToolkit, an open source Java

toolkit for CTBNCs, which can be used as a stand-alone

application and as an open source library as well.

1.3 overview

The dissertation is organized as follows.

Chapter 2 provides an overview of the classification state of

the art, with particular interest for temporal classification.

Preliminary notions about CTBNs and CTBNCs are provided in

Chapter 3.

The contributions of the dissertation are presented and dis-

cussed in the following chapters. In Chapter 4, the structural

learning problem for CTBNCs is addressed. A Conditional Log-

likelihood scoring function is derived. A rich set of experi-

ments on synthetic data sets are provided comparing CTBNCs

learned by maximizing the Marginal Log-likelihood scoring

function, the Conditional Log-likelihood scoring function, CTNB

and DBNCs.

Chapter 5 introduces the clustering problem by using the EM

algorithm to learn CTBNCs when the class is unknown. Tests are

made to compare the clustering performances, over a rich set of

synthetic data sets, by using external measures. Again CTBNCs

learned by maximizing the Marginal Log-likelihood and Condi-

tional Log-likelihood scores are compared to CTNB and DBNCs.

In Chapter 6 two interesting real world problems are ad-

dressed. Gesture recognition for post-stroke rehabilitation and

traffic profile classification are introduced. Tests are made in

the case of supervised and unsupervised learning, by using the

CTBNCs introduced and comparing them with DBNCs.

Conclusions are made in Chapter 7, which outlines the work

done in this dissertation and proposes the future works.
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Additionally, two appendixes are provided. Appendix A ex-

plains in detail the CTBNCToolkit, analyzing the stand-alone

usage, which allows to replicate the experiments reported in

this dissertation and analyzing the code, which can be extended

in accordance with the CTBNCToolkit license.

Finally, Appendix B provides all the results which, for matter

of clarity and brevity, were summarized with graphics.



2
S TAT E O F T H E A RT

“Classification is a basic task in data analysis and pattern recognition

that requires the construction of a classifier, that is, a function that

assigns a class label to instances described by a set of attributes”

(Friedman et al., 1997).

Classification often is the first step in dealing with complex

decision problems and is a challenging task. Starting from a

training set, i.e. a set of instances used to learn a model, a classi-

fier must be learned. The learned model is then used to address

the classification task on new instances (i.e. different instances

never seen before). The learning process can be supervised and

unsupervised. In supervised classification each instance of the

training set has a class associated to the attributes, so the classi-

fier is learned starting from labeled examples. In unsupervised

learning, usually referred to as clustering, the training set in-

stances are not associated with a class or label, and the classifier

must learn to distinguish the classes by exploiting the values of

the attributes.

In both supervised and unsupervised classification it is possi-

ble to speak about static classification (Section 2.1) and dynamic

classification (Section 2.2). Static classification is the problem of

associating a label to an instance, which is described with at-

tributes values that do not change in time. Dynamic classifica-

7



2.1 static classification 8

tion regards the problem of classifying a process that evolves

over time.

The last distinction that must be made is between complete

observability and partial observability. A problem is completely

observable if all the attributes which describe its state are speci-

fied. Instead, a partially observable problem is characterized by

instances where some attributes may be not specified. In this

dissertation learning and classification are addressed only on

completely observable problems.

2.1 static classification

Static classification is one of the first tasks that was studied

in data mining and pattern recognition. For this reason many

classification models have been developed over the years.

Decision trees (Quinlan, 1986; Dietterich, 2000) and random

forests (i.e. a collection of decision trees) (Breiman, 2001) are

algorithms that allow classification through successive steps in

a tree. The path in the tree brings to a leaf which is associ-

ated to the classification label. Neural Networks (NNs) (Bishop,

1995; Ripley, 2007) are a well studied classification framework

introduced with the purpose of simulating the human brain. A

neural network can be interpreted as a black box that through

the learning process (i.e. back propagation algorithm) is capa-

ble of learning complex functions, mapping the attributes to the

class variable. Support Vector Machine (SVM) (Vapnik and Kotz,

1982; Burges, 1998; Joachims, 1998) is a model capable of sepa-

rating the training data according to their classes. Each training

instance is seen as a vector in the attribute state space. Classifi-

cation is addressed as the problem of finding the hyperplanes

which maximize the margin that separates the training data ac-



2.1 static classification 9

cording to the classes. Kernel functions are often used to map the

data in a new state space which allows for better classification.

Bayesian Networks (BNs) (Pearl, 1988) are a framework that

allows general inference over static domains. BNs efficiently rep-

resent a probability distribution over the problem state space.

The idea behind the BNs is to exploit the conditional independen-

cies relationships between the problem variables. Using BNs it

is possible to address many types of inference problems: one of

these is classification (Friedman et al., 1997).

Naive Bayes (NB) (Duda et al., 1973; Langley et al., 1992) is

the simplest classification model that originates from the BN

framework. BNs allow to exploit all the relationships between

the attributes, while NBs force the conditional independence as-

sumption between attributes given the class. This assumption

is rarely verified and forces the relationships between all the

attributes and the class, even if some of these relationships do

not hold. Nevertheless, NB is one of the most used classification

models due to its simplicity. It usually offers good classification

performances compared to the computational effort needed to

learn a BN. Structural learning for BNs is a NP-hard problem,

while NBs require only parameter learning.

Friedman et al. (1997) analyzed the class of BN classifiers and

proposed the Tree-Augmented Naive Bayes (TAN) model. TAN

is an extension of the NB where the conditional independence

assumption of the attributes is relaxed thanks to a tree structure

learned between the attributes. Friedman et al. (1997) showed

that by limiting the attribute dependencies to a tree structure,

it is possible to learn these relationships in polynomial time.

For this reason TANs offer a solution to improve NBs perfor-

mances without requiring too much computational effort. In

the same work Friedman et al. (1997) introduced the concept of

Conditional Log-likelihood. To learn a Bayesian model usually
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scores which use Log-likelihood are maximized. Log-likelihood

is a function that measures how well the learned model repre-

sents the training set. In the case of a classification problem,

maximizing the Log-likelihood function is the same as learning

the best representation of the studied problem. This representa-

tion may not correspond to the structure which allows the best

classification performances. Friedman et al. (1997) showed that

maximizing Conditional Log-likelihood corresponds learning

the model that maximizes the classification performances (see

Section 4.3.2).

However, it is not possible to learn in a close form the

BN parameters that maximize Conditional Log-likelihood. For

this reason other approaches have been proposed. Greiner and

Zhou (2002) described a gradient-descent algorithm to opti-

mize an empirical Conditional Log-likelihood scoring function.

Grossman and Domingos (2004) proposed an algorithm for BN

learning where structural learning is performed by maximizing

the Conditional Log-likelihood, while parameter learning relies

on Log-likelihood maximization.

2.2 dynamic classification

Dynamic or temporal classification is the task of classifying a

process that evolves over time. An instance which describes the

process behavior through attributes which change over time is

called trajectory.

Trajectories can be specified in discrete or continuous time.

Discrete time trajectories describe the evolution of the process

using time steps. At each time step the attribute values repre-

sent the process state in that particular instant. On the contrary,

continuous time trajectories are representations of the world

during the whole time interval. In this case each attribute can
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change state asynchronously, and it is possible to distinguish

two types of evidence: continuous evidence where an attribute

is specified for a complete interval and point evidence where an

attribute is specified only for a particular instant.

Since the system evolves over the time, it is possible to deal

with the classification problem in two ways:

• classify the process in order to find a hidden class or a

class that will occur in the future (i.e. one single class that

explains the entire trajectory);

• find the classes associated with each single instant of

time during which the trajectory evolves (i.e. the class can

change over time).

Some models are able to address both classification types, while

others are designed to deal with the first type.

2.2.1 Dynamic Time Warping

The trajectory attributes can take value on a discrete or contin-

uous state space. One of the most successful approaches in the

specialized literature to deal with discrete time and continu-

ous state space trajectories is the Dynamic Time Warping (DTW)

(Keogh and Pazzani, 2000; Ratanamahatana and Keogh, 2004).

DTW uses dynamic programming to efficiently compare two

trajectories. DTW is in some way similar to the text edit distance.

The first step to calculate DTW distance is to generate a N×M
matrix, where N and M are the dimensions of the two com-

pared trajectories (i.e. X, Y). Each cell (i, j) contains the distance

between the ith state of the first trajectory and the jth state of the

second trajectory (i.e. d(xi,yj)). Once the matrix is generated,

the goal is to find the warping path (W = w1, . . . ,wK), a continu-

ous path that defines the mapping between the two trajectories.
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Since the mapping must be complete, the path starts from one

corner of the matrix to arrive to the opposite one. The warping

path is the path in the matrix that minimizes the warping cost

(i.e. dDTW(X, Y) = min
{√∑Kwk

}
= min

{√∑K d(xi,yj)k

}
).

This path can be efficiently calculated using dynamic program-

ming (Keogh and Ratanamahatana, 2005).

Once defined how to efficiently calculate a distance between

trajectories, the classification problem can be addressed with

a Nearest Neighbor Classifier (NNC) (Cover and Hart, 1967;

Dasarathy, 1991). NNCs are classifiers that use the k closest

training set instances to classify a new instance according to

the most common label.

To improve the computational effort of the classification pro-

cess some solutions have been proposed. Regarding the DTW

calculation, studies have focused on how far the warping path

may stray from the main diagonal of the distance matrix (Keogh

and Ratanamahatana, 2005). Following this line an approxi-

mation often used consists of defining a warping window that

bounds the portion of the distance matrix in which the warping

path is allowed to go through (Sakoe and Chiba, 1978; Itakura,

1975). NNC algorithm requires a linear computation time re-

spect to the dimension of the training set. To improve its ef-

ficiency data reduction techniques are used (Dasarathy, 1991;

Pękalska et al., 2006; Xi et al., 2006). The idea is to reduce the

number of training set instances, maintaining its representativ-

ity and removing only instances in which information is dupli-

cated.

Dynamic Time Warping was developed to compare two com-

plete trajectories. In many real world problems it is necessary

compare a complete trajectory (i.e. new instance) to find the

best partial matching with the training set instances (i.e. ref-

erence instances). Tormene et al. (2009) introduced Open-End
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Dynamic Time Warping (OE-DTW) to address this task. The idea

behind OE-DTW is to calculate the DTW distances between the

trajectory to classify and the reference trajectory truncated in

all its points (i.e. dOE(X, Y) = minj=1,...M
{
dDTW(X, Y(j))

}
). This

operation can be done efficiently thanks again to dynamic pro-

gramming.

Theoretically both DTW and OE-DTW can be used over discrete

state space, since a distance is defined between the states. In

the case where the states do not have a clear ordering the trivial

metric must be used (Hazewinkel, 1993):

dT (xi,yj) =

 0 if xi = yj

1 if xi 6= yj
.

In this case the DTW distances greatly lose their effectiveness.

Since this work is mainly focused on the problems of classi-

fication and clustering of continuous time multivariate trajec-

tories, DTW distances are not used in performance comparison.

An exception is made for the post-stroke rehabilitation problem

that provides continuous state space trajectories (see Section

6.1).

2.2.2 Dynamic Bayesian Network Classifiers

Dynamic Bayesian Networks (DBNs) are an extension of

Bayesian Networks introduced to model systems which evolve

over discrete time (Dean and Kanazawa, 1989; Ghahramani,

1998; Friedman et al., 1998; Murphy, 2002). DBNs represent a

Markov process over time using the factorization introduced

with the BNs.

A DBN consists of a sequence of BNs, one for each time in-

stant. Each of these BNs is a local model called time slice. Since

the local probability distribution does not change over time, we

can define a DBN by a local probability distribution that models
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the intra slice dependencies of the variables, a prior distribution

that defines the knowledge about the initial state of the pro-

cess, and a transition distribution that models how the variables

evolve over time. The transition distribution must satisfy the

Markov property: the knowledge of the past does not influence

the future, if the present state is known (i.e. ∀s,k, t ∈ N : 0 6

s 6 t,P (X(t+ k) | X(s), . . . ,X(t)) = P (X(t+ k) | X(t)). Since

both the local and the transition distributions do not change

over time and because of the Markov property, a DBN can be

defined by two adjacent time slices. The first models the prior

distribution, the second models the local distribution, while the

transition distribution is modeled by the dependencies between

the variables of the two time slices.

DBNs allow general inference such as filtering, prediction,

smoothing, and the most probable explanation. Filtering consists

of calculating the probability distribution of a present variable,

given the evidence from the past. Prediction consists of calcu-

lating the probability distribution of a future variable, given

the evidence from the past. Smoothing consists of calculating

the probability distribution of a past variable, given all the time

evidence (past and future). The most probable explanation is

the sequence of variable states that better explain the evidence

over time. The most probable explanation for a class variable

corresponds to the classification problem over a variable that

changes in time. DBNs can be used to infer a static class that

does not change over time, forcing to zero the probability of

the class changing state.

Hidden Markov Models (HMMs) (Rabiner and Juang, 1986;

Rabiner, 1989) and Kalman filters (Welch and Bishop, 1995) are

a simplification of DBNs. An HMM is a DBN where the state is

hidden, and only some variables can be used to infer the state

of the system (i.e. observations). These observation variables
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are independent over time, given the hidden state of the sys-

tem. A Kalman filter is an HMM where exactly one variable is

connected to the adjacent time slices.

The Latent Classification Model (LCM) is a Naive Bayes ex-

tension that relaxes the conditional independence assumption

using latent variables (Zhang et al., 2004; Langseth and Nielsen,

2005). Dynamic latent classification models (Zhong et al., 2010,

2012) are generative models that extend the LCMs to address

the classification problem over dynamic systems. The idea is to

use a LCM as a local model in each time slice. Nevertheless, dy-

namic latent classification models are a specialization of DBNs.

Since DBN is the general framework and is one of the most

relevant models that the state of the art proposes to address

the classification problem of multivariate trajectories, Dynamic

Bayesian Network Classifiers (DBNCs) are used as a competitor

for the Continuous Time Bayesian Network Classifier frame-

work discussed in this dissertation.

2.2.3 Continuous Time Bayesian Network Classifier

Continuous Time Bayesian Networks (CTBNs) are a framework

introduced by Nodelman et al. (2002a) to make inference on

continuous time trajectories. The idea behind CTBNs (Nodelman

et al., 2002a; Nodelman, 2007) is to exploit the conditional in-

dependency relationships between the variables that define a

homogeneous continuous Markov process. Finding the struc-

ture behind a continuous Markov process allows to represent

it very efficiently, similarly to how BNs compactly represent a

static probability distribution.

CTBNs represent a process that evolves over continuous time.

The memoryless assumption is made to model the time evolu-

tion using the exponential distribution. Nevertheless, it has been
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shown that it is possible to use other probability distribu-

tions to model the process evolution with the CTBN framework.

Gopalratnam et al. (2005) propose an extension of CTBN that

uses Erlang-Coxian approximation to model arbitrary transi-

tion time distribution while maintaining the learning process

tractable.

CTBNs structural learning has shown to be very efficient be-

cause the acyclicity constrain of BN and DBN does not hold

(Nodelman et al., 2002b). While learning BNs and DBNs is an

NP-hard problem, learning the structure of CTBNs is a polyno-

mial problem with respect to the number of variables and the

size of the data set. In addition, the parent set of each variable

can be learned independently, allowing the parallelization of

the structural learning.

Contrary to DBNs, inference in CTBNs does not require en-

rolling the time slices. Nevertheless, inference in CTBNs is still

an NP-hard problem (Nodelman et al., 2002a). For this reason

approximate algorithms were introduced: Expectation Propaga-

tion (Nodelman et al., 2005; Saria et al., 2007), Importance Sam-

pling (Fan and Shelton, 2008) and, Gibbs sampling (El-Hay et al.,

2008).

Continuous Time Bayesian Network Classifiers (CTBNCs)

were introduced by Stella and Amer (2012) as a specialization

of the CTBNs, designed to address the problem of multivariate

continuous time trajectories classification in polynomial time.

The idea behind CTBNCs is to add a static class variable which

represents an unknown class that will occur in the future or a

static explanation of the trajectory.

The structure of a CTBNC can be learned efficiently as the

structure of a CTBN. Structural learning is polynomial with re-

spect to the number of variables and the size of the data set, but

the number of variable parameters is exponential with respect
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to the maximum number of parents which must be fixed in ad-

vance. For this reason Stella and Amer (2012) introduced the

Continuous Time Naive Bayes (CTNB) model. CTNB is a Naive

Bayes model designed to classify in continuous time.

2.3 multivariate trajectories clustering

Clustering is the classification problem when the training set in-

stances are not labeled (Hartigan, 1975). For this reason cluster-

ing relies on finding a natural division between the instances.

Clustering algorithms are often based on some measure of

distance. The most known example of distance based cluster-

ing is the k-means algorithm (Pelleg et al., 2000). k-means is an

iterative algorithm. It requires the definition of the number of

clusters (i.e. k) before running the algorithm. The initialization

consists of randomly choosing k points in the state space. These

points are the centroids of the initial clusters. Then the algo-

rithm requires the iteration of the following two steps until the

convergence:

• assigns to each instance of the training set the closest cen-

troid (i.e. cluster);

• calculates the mean between the points in each cluster and

sets the means as new centroids.

This iteration process will arrive to a convergence when the

centroids are the same after two consecutive iterations.

Alternatives distance based clustering are the hierarchical clus-

tering algorithms (Witten and Frank, 2005). Hierarchical clus-

tering is a category of clustering algorithms that proposes a

hierarchy of clusters. There are two types of hierarchical clus-

tering: divisive and agglomerative. The first category starts with

one single cluster and divides it into many clusters in a top-
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down approach. The second category starts with many single

instance clusters and aggregates them step by step in a bottom-

up strategy.

Oates et al. (1999) suggested using DTW distance to realize an

agglomerative hierarchical clustering between trajectories. The

idea is to start with single trajectory clusters and iteratively

merge the couple of clusters that have the minimum average

inter-cluster distance. To avoid having to one single cluster a

stopping criteria must be defined. Oates et al. (1999) propose

to not merge clusters for which the mean inter-cluster distance

is significantly different from the mean intra-cluster distance

verified with a t-test.

As pointed out in Section 2.2.1, it is not really effective to

use Dynamic Time Warping on discrete state space trajectories.

For this reason, instead of focusing on distance based cluster-

ing that required DTW distance, the focus is directed on prob-

abilistic graphical models and Expectation Maximization (EM) al-

gorithm (Koller and Friedman, 2009). EM is an iterative algo-

rithm used to optimize the likelihood function in probabilistic

graphical models learning when there are missing data. In the

case of the clustering on completely observable data, the only

missing value is the class.

EM is based on two steps: expectation and maximization. The

idea is to start with a random instantiation of the model param-

eters or a random filling of the missing values (i.e. the class).

Here let’s consider starting with a random instantiation of the

model parameters. Using the current model we can estimate the

probability distribution over the class values. Using this distri-

bution, the first step (i.e. expectation step) consists of calculat-

ing the expected sufficient statistics. In the next step (i.e. max-

imization step), the model parameters are calculated by maxi-

mizing the likelihood with respect to the calculated sufficient
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statistics. EM iteration steps are repeated until reaching a stop-

ping criteria. Common stopping criteria are related to small

changes of likelihood values or parameter values between con-

secutive iterations.

It is possible to distinguish two types of EM clustering: hard-

assignment and soft-assignment. The difference relies on the ex-

pectation step. In the case of soft-assignment EM the expected

sufficient statistics are calculated using the probability distribu-

tion of the class. In the case of hard-assignment EM the suffi-

cient statistics are calculated supposing to fill the class missing

values with the most probable class.



3
P R E L I M I N A RY N O T I O N S

This Chapter presents the basic notions necessary to under-

stand the rest of the dissertation.

First the Continuous Time Bayesian Network (CTBN) frame-

work is introduced as a viable alternative in order to overcome

Dynamic Bayesian Networks (DBNs) limitations (Section 3.1). In-

ference, parameter learning and structural learning are progres-

sively addressed. Finally, Continuous Time Bayesian Network

Classifiers (CTBNCs) are introduced to efficiently address the

temporal classification problem of a static class variable (i.e.

data change over time, while the class is static).

3.1 continuous time bayesian networks

Dynamic Bayesian Networks (DBNs) model dynamic systems

without representing time explicitly. They discretize time to rep-

resent a dynamic system through several time slices. Nodelman

et al. (2002a) pointed out that “since DBNs slice time into fixed in-

crements, one must always propagate the joint distribution over the

variables at the same rate" . Therefore, if the system consists of

processes which evolve at different time granularities and/or

the obtained observations are irregularly spaced in time, the

inference process may become computationally intractable.

20
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Continuous Time Bayesian Networks (CTBNs) overcome the

limitations of DBNs by explicitly representing temporal dynam-

ics and thus allow us to recover the probability distribution

over time when specific events occur. CTBNs have been used to

discover intrusion in computers (Xu and Shelton, 2008), to an-

alyze the reliability of dynamic systems (Boudali and Dugan,

2006), for learning social networks dynamics (Fan and Shel-

ton, 2009) and to model cardiogenic heart failure (Gatti et al.,

2011). CTBNs are based on homogeneous continuous Markov pro-

cesses where transition intensities do not depend on time.

Let X be a random variable whose state changes continuously

over time and takes value on domain Val(X) = {x1, ..., xm} then

the continuous Markov process X(t) can be represented with

the following intensity matrix:

QX =


−qx1 qx1x2 · · · qx1xm
qx2x1 −qx2 · · · qx2xm

...
... . . . ...

qxmx1 qxmx2 · · · −qxm


,

where qxi =
∑
i 6=j qxixj . The QX matrix allows the description

of the transient behavior of X(t). If X(0) = xi is assumed, then

the variable X stays in state xi for an amount of time which

is a random variable distributed according to the exponential

distribution with parameter value equal to qxi . Therefore, the

probability density function f together with the corresponding

distribution function F for the process X(t) to remain in state xi
are defined as follows:

f(t) = qxiexp(−qxit), t > 0

F(t) = 1− exp(−qxit), t > 0.

Thus, the expected time of leaving the state xi is equal to 1
qxi

,

while
qxixj
qxi

is the probability of transitioning from state xi to



3.1 continuous time bayesian networks 22

state xj, when it is known that the transition occurs at a given

instant in time.

A Continuous Time Bayesian Network (CTBN) is a probabilis-

tic graphical model whose nodes are associated with random

variables and whose state evolves continuously over time. Evo-

lution of each variable depends on the state of its parents in the

graph associated with the CTBN model. A CTBN consists of two

main components: i) an initial probability distribution and ii)

the dynamics which rule the evolution over time of the proba-

bility distribution associated with the CTBN.

Definition 3.1.1. (Continuous Time Bayesian Network (CTBN)).

(Nodelman et al., 2002a). Let X be a set of random variables

X1,X2, ...,XN. Each Xn has a finite domain of values Val(Xn) =

{x1, x2, ..., xI}. A Continuous Time Bayesian Network (CTBN) ℵ

over X consists of two components: the first is an initial distribu-

tion P0X, specified as a Bayesian network B over X. The second

is a continuous transition model, specified as:

• a directed (possibly cyclic) graph G whose nodes are

X1,X2, ...,XN; Pa(Xn) denotes the parents of Xn in G.

• a conditional intensity matrix, QPa(Xn)
Xn

, for each variable

Xn ∈ X.

Given the random variable Xn, the Conditional Intensity Ma-

trix (CIM) QPa(Xn)
Xn

consists of a set of intensity matrices, one

intensity matrix

Qpa(Xn)
Xn

=


−q

pa(Xn)
x1 q

pa(Xn)
x1x2 · · · q

pa(Xn)
x1xI

q
pa(Xn)
x2x1 −q

pa(Xn)
x2 · · · q

pa(Xn)
x2xI

...
... . . . ...

q
pa(Xn)
xIx1 q

pa(Xn)
xIx2 · · · −q

pa(Xn)
xI


,

for each instantiation pa(Xn) of the parents Pa(Xn) of node Xn,

where qpa(Xn)xi =
∑
xj 6=xi

q
pa(Xn)
xixj is the rate of leaving state xi for
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a specific instantiation pa(Xn) of Pa(Xn), while qpa(Xn)xixj is the

rate of arriving to state xj from state xi for a specific instan-

tiation pa(Xn) of Pa(Xn). Matrix Qpa(Xn)
Xn

can equivalently be

summarized by using two types of parameters, qpa(Xn)xi which

is associated with each state xi of the variable Xn when its par-

ents are set to pa(Xn), and θpa(Xn)xixj =
q
pa(Xn)
xixj

q
pa(Xn)
xi

which represents

the probability of transitioning from state xi to state xj, when it

is known that the transition occurs at a given instant in time.

Example 3.1.1. Figure 1 shows a part of the drug network in-

troduced in Nodelman et al. (2002a). It contains a cycle, indi-

cating that whether a person is hungry (H) depends on how

full his/her stomach (S) is, which depends on whether or not

he/she is eating (E), which in turn depends on whether he/she

is hungry. Assume that E and H are binary variables with states

no and yes while the variable S can be in one of the following

states; full, average or empty. Then, the variable E is fully spec-

ified by the [2×2] CIM matrices Qn
E , and Qy

E, the variable S is

fully specified by the [3×3] CIM matrices Qn
S and Qy

S, while the

the variable H is fully specified by the [2×2] CIM matrices Qf
H,

Eating

(E)

Hungry

(H)

Full

stomach

(S)

Figure 1.: A part of the drug network.



3.1 continuous time bayesian networks 24

Qa
H and, Qe

H. For matters of brevity only Qy
S with two equiva-

lent parametric representations is shown:

Qy
S =


−qyf q

y
f,a q

y
f,e

q
y
a,f −qya q

y
a,e

q
y
e,f q

y
e,a −qye



=


−0.03 0.02 0.01

5.99 −6.00 0.01

1.00 5.00 −6.00

 (1)

Qy
S =


q
y
f 0 0

0 q
y
a 0

0 0 q
y
e





0 θ
y
f,a θ

y
f,e

θ
y
a,f 0 θ

y
a,e

θ
y
e,f θ

y
e,a 0

− I



=


0.03 0 0

0 6.00 0

0 0 6.00





0 0.02
0.03

0.01
0.03

5.99
6.00 0 0.01

6.00

1.00
6.00

5.00
6.00 0

− I

 (2)

where I is the identity matrix.

If the hours are the units of time, then a person who has

an empty stomach (S=empty) and is eating (E=yes) is expected

to stop having an empty stomach in 10 minutes (1.006.00 hour).

The stomach will then transition from state empty (S=empty) to

state average (S=average) with probability 5.00
6.00 and to state full

(S=full) with probability 1.00
6.00 . Equation 1 is a compact represen-

tation of the CIM while Equation 2 is useful because it explicitly

represents the transition probability value from state x to state

x ′, i.e. θpa(X)xx′ .

CTBNs allow two types of evidence, namely point evidence and

continuous evidence, while Hidden Markov Models (HMMs) and

DBNs allow only point evidence. Point evidence at time t for a

subset of variables X1,X2, ...,Xk ∈ X is the knowledge of the
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states x1, x2, ..., xk at time t for the variables X1,X2, ...,Xk. Point

evidence will be referred to as Xt1 = x1,Xt2 = x2, ...,Xtk = xk or

in compact notation as Zt = z, where Z = (X1,X2, ...,Xk) while

z = (x1, x2, ..., xk). Continuous evidence is the knowledge of the

states x1, x2, ..., xk of a set of variables X1,X2, ...,Xk ∈ X through-

out an entire interval of time [t1, t2) (that it is taken to be a

half-closed interval). It is worthwhile to notice that the states

x1, x2, ..., xk of the set of variables X1,X2, ...,Xk do not change

over the considered time interval [t1, t2). Continuous evidence

over time interval [t1, t2) for the set of variables X1,X2, ...,Xk
will be referred to as X[t1,t2)

1 = x1,X
[t1,t2)
2 = x2, ...,X[t1,t2)

k =

xk. Analogously to point evidence a compact notation is in-

troduced where continuous evidence over the time interval

[t1, t2) for the set of variables X1,X2, ...,Xk will be written as

Z[t1,t2) = z[t1,t2), where Z[t1,t2) = (X
[t1,t2)
1 ,X[t1,t2)

2 , ...,X[t1,t2)
k )

while z[t1,t2) = (x
[t1,t2)
1 , x[t1,t2)

2 , ..., x[t1,t2)
k ).

3.1.1 Inference

A CTBN exploits conditional independence relationships be-

tween variables to obtain a factored representation of a ho-

mogeneous continuous Markov process. Given the CIMs asso-

ciated with the variables of the CTBN, the amalgamation oper-

ation (Nodelman et al., 2002a) over the CIMs allows to recover

the joint intensity matrix of a homogeneous continuous Markov

process as follows:

Qℵ =
∏
Xi∈X

QXi|pa(Xi).

Amalgamation takes two CIMs and produces a single bigger

CIM. Given the sets of variables S1, S2,C1,C2 ∈ X and two CIMs

QS1|C1 and QS2|C2 the amalgamated CIM QS|C = QS1|C1 ·QS2|C2
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contains the intensities for the variables in S = S1 ∪ S2 condi-

tioned on those in C = (C1∪ C2) − S.

CTBNs can be used to answer to all the questions which can

be answered by homogeneous Markov processes. Indeed, it is

always possible to recover the joint intensity matrix Qℵ from

the variables’ intensity matrices (i.e. QXi|pa(Xi),Xi ∈ X). Given

the joint intensity matrix Qℵ it is possible to compute the dis-

tribution over the values of the variables as follows:

Pℵ(t) = P
0
ℵ exp(Qℵt)

where P0ℵ is the initial distribution over the variables, compactly

represented as a Bayesian network in the CTBN framework. Sim-

ilarly the joint distribution over two time points can be com-

puted as follows:

Pℵ(s, t) = Pℵ(s) exp Qℵ(t− s)

with t > s. The above formula shows that CTBNs and homoge-

neous Markov processes inherit the memoryless property from

the exponential distribution.

Inference in CTBNs can be performed by exact and approxi-

mate algorithms. Full amalgamation (Nodelman et al., 2002a) is

an exact algorithm that involves generating an exponentially-

large matrix representing the transition model over the entire

state space. Exact inference in CTBNs is known to be NP-hard,

and thus different approximate algorithms have been proposed.

Nodelman et al. (2005) introduced the Expectation Propagation

(EP) algorithm which allows both point and interval evidence. It

exploits message passing in a cluster graph, where the clusters

contain distributions over trajectories of the variables through

a time duration. Saria et al. (2007) presented a new EP-based

algorithm, which uses a flexible cluster graph architecture that

fully exploits the natural time-granularity at which different
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sub-processes evolve. It also dynamically chooses the appropri-

ate level of granularity to use in each cluster at each point in

time. Alternatives are offered by sampling based inference al-

gorithms. The Importance Sampling algorithm (Fan and Shelton,

2008) computes the expectation of any function of a trajectory,

conditioned on any evidence set constraining the values of sub-

sets of the variables over subsets of the timeline. El-Hay et al.

(2008) developed a Gibbs sampling procedure for CTBNs which it-

eratively samples a trajectory for one of the components given

the remaining ones. This approach naturally exploits the struc-

ture of the CTBN to optimize the computational cost of each

step. This procedure is the first that can provide asymptotically

unbiased approximations in such processes.

3.1.2 Parameter learning

Given a data set D and a fixed structure of a CTBN, parameter

learning is based on Bayesian estimation. Parameter learning

accounts for the imaginary counts of the hyperparameters αpa(X)x ,

α
pa(X)
xx′ and, τpa(X)x . The parameters qpa(X)x and θ

pa(Xn)
xx′ can be

estimated as follows:

• qpa(X)x =
α
pa(X)
x +M[x|pa(X)]

τ
pa(X)
x +T [x|pa(X)]

;

• θpa(X)xx′ =
α
pa(X)

xx′ +M[x,x′|pa(X)]

α
pa(X)
x +M[x|pa(X)]

.

where M[x, x′ | pa(X)], M[x | pa(X)] and T [x | pa(X)] are the

sufficient statistics computed over D:

• M[x, x′ | pa(X)]: number of times X transitions from state

x to state x′ when the state of its parents Pa(X) is set to

pa(X);
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• M[x | pa(X)] =
∑
x′ 6=xM[x, x′ | pa(X)]: number of tran-

sitions from state x of variable X when the state of its

parents Pa(X) is set to pa(X);

• T [x | pa(X)]: amount of time spent in state x by variable X

when the state of its parents Pa(X) is set to pa(X).

3.1.3 Structural learning

The problem of learning the structure of a CTBN from a data set

D has been addressed in (Nodelman et al., 2002b) as the prob-

lem of finding the structure G which maximizes the following

Bayesian score:

score (G : D) = lnP(D|G) + lnP(G). (3)

This is an optimization problem over possible CTBN struc-

tures whose search space is significantly simpler than that of

Bayesian Networks (BNs) or DBNs. While it is known that learn-

ing the optimal structure of a BN is NP-hard, the same does not

hold true in the context of CTBN learning where all edges are

across time and thus represent the effect of the current value of

one variable on the next value of the other variables. Therefore,

no acyclicity constraints arise, and it is possible to optimize the

parent set for each variable of the CTBN independently. This can

be easily done for each variable exploring its parent space with

a local search to find the best score value. Fixing the maximum

number of parents local search is polynomial with respect to

the number of variables and the size of the data set (Nodelman

et al., 2002b).

Efficiency of the optimization algorithm relies on the fact

that the prior satisfies structure and parameter modularity.

Structure prior P(G) satisfies structure modularity if P(G) =∏
i P(Pa(Xi) = PaG(Xi)) while parameter prior satisfies parame-
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ter modularity if given any pair of structures G and G′ such that

PaG(X) = PaG′(X) the following equality holds P(qX,θX | G) =

P(qX,θX | G′). Nodelman et al. (2002b) show that the marginal

likelihood P(D | G) of the data D given the CTBN’s structure G

decomposes to

P(D | G) =

(∫
qG

L(qG : D)P(qG)dqG

)
·

(∫
θG

L(θG : D)P(θG)dθG

)
where L stands for the likelihood function.

The first term of P(D | G) is equal to

∏
X

∏
pa(X)

∏
x

Γ(α
pa(X)
x +M[x | pa(X)] + 1)(τ

pa(X)
x )α

pa(X)
x +1

Γ(α
pa(X)
x + 1)(τ

pa(X)
x + T [x | pa(X)])α

pa(X)
x +M[x|pa(X)]+1

while the second term is equal to

∏
X

∏
pa(X)

∏
x

Γ(α
pa(X)
x )

Γ(α
pa(X)
x +M[x | pa(X)])

·

·
∏
x′ 6=x

Γ(α
pa(X)
xx′ +M[x, x′ | pa(X)])

Γ(α
pa(X)
xx′ )

where Γ is the gamma function.

Thanks to the previous decomposition and the structure mod-

ularity assumption, the Bayesian score (Equation 3) decom-

poses in a sum of local scores (i.e. family scores). Each local

score (i.e. FamScore(X,PaG(X) : D)) measures the quality of the

parent set (i.e. Pa(X)) of a variable (i.e. X) given the data (i.e. D).

This allows to separately optimize the parent set of each vari-

able by maximizing the variable family score (Nodelman et al.,

2002b).

3.2 ctbnc previous works and basic notions

Continuous Time Bayesian Network Classifiers (CTBNCs) (Stella

and Amer, 2012) are a specialization of CTBNs. They allow poly-

nomial time classification, while for CTBNs general inference is
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NP-hard. Classifiers from this class explicitly represent the evo-

lution in continuous time of the set of random variables Xn,

n = 1, 2, ...,N which are assumed to depend on the class node

Y. A CTBNC is defined as follows.

Definition 3.2.1. (Continuous Time Bayesian Network Classi-

fier (CTBNC))1. A Continuous Time Bayesian Network Classifier

is a pair C = {ℵ,P(Y)} where ℵ is a CTBN model with attribute

nodes X1,X2, ...,XN, Y is the class node with marginal probabil-

ity P(Y) on states Val(Y) = {y1,y2, ...,yK}, G is the graph of the

CTBNC, such that the following conditions hold:

• Pa(Y) = ∅, the class variable Y is associated with a root

node;

• Y is fully specified by P(Y) and does not depend on time.

An instance of a CTBNC consisting of six attributes

X1,X2, ...,X6 and the class Y is depicted in Figure 2. The class

variable Y is associated with the only root node. It is worth-

while to note that the model contains a cycle involving nodes

X3 and X4, which is allowed in CTBNs, while not in BNs.

Parameter learning of CTBNCs corresponds with the paramet-

ric learning of CTBNs (Section 3.1.2). The only difference is re-

lated to the necessity of learning the probability distribution

over the class node. Because the class node is a static node, this

can be done easily as follows:

θy =
αy +M[y]∑
y′ αy′ +M[y′]

whereM[y] is the number of trajectories in the training set with

class Y sets to y and, αy are the imaginary counts related to the

class variable.
1 This definition differs from the one proposed by Stella and Amer (2012). In

fact, the definition proposed here does not require the CTBNC graph to be

connected and thus allows structural learning algorithms to automatically

perform feature selection.
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Y

X1

X2

X3

X4

X5

X6

Figure 2.: Continuous Time Bayesian Network Classifier; six attribute

nodes X1, . . . ,X6 and the class node Y.

Given a data set D with no missing data, a CTBNC can be

learned by maximizing the score function score (G : D) (3) sub-

jected to the constraints listed in Definition 3.2.1. Exact learning

requires to set in advance the maximum number of parents L

for the nodes X1,X2, ...,XN (Nodelman et al., 2005). In the case

where L is not small a considerable computational effort is re-

quired to find the graph structure G∗ which maximizes the score

function score (G : D) (3). Therefore, to find an approximate so-

lution to the considered optimization problem it is necessary

to resort to hill-climbing optimization procedures. Continuous

Time Naive Bayes (CTNB) was introduced to limit the computa-

tional effort to find the optimal graph structure G∗.

Definition 3.2.2. (Continuous Time Naive Bayes (CTNB) (Stella

and Amer, 2012)). A Continuous Time Naive Bayes is a contin-

uous time Bayesian network classifier C = {ℵ,P(Y)} such that

Pa(Xn) = {Y}, n = 1, 2, ...,N.
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3.2.1 Classification

As pointed out before CTBNCs are a specialization of CTBNs.

A CTBNC can be written using CTBN framework representing

the class probability distribution with a prior distribution P0Y ,

and a CIM that does not allow transitions. The motivation to

study CTBNCs is given by inference. Inference for CTBNs is an

NP-hard problem. Nodelman et al. (2002a) developed the only

known exact inference algorithm. It has an exponential com-

plexity in time and space (see Section 3.1.1). Stella and Amer

(2012) showed that with CTBNC it is possible to compute exact

inference, in terms of classification over completely observable

trajectories, in polynomial time.

According to Stella and Amer (2012) a CTBNC C =

{ℵ,P(Y)} classifies a stream of continuous time evidence z =

(x1, x2, ..., xN) for the attributes Z = (X1,X2, ...,XN) over J con-

tiguous time intervals, i.e. a stream of continuous time evidence

Z[t1,t2) = z[t1,t2), Z[t2,t3) = z[t2,t3), . . . , Z[tJ−1,tJ) = z[tJ−1,tJ), by

selecting the value y∗ for the class Y which maximizes the pos-

terior probability

P(Y|z[t1,t2), z[t2,t3), ..., z[tJ−1,tJ)),

which is proportional to

P(Y)

J∏
j=1

q
pa(Xmj

)

x
j
mj
x
j+1
mj

N∏
n=1

exp
(
−q

pa(Xn)

x
j
n

δj

)
, (4)

where:

• qpa(Xn)
x
j
n

is the parameter associated with state xjn, in which

the variable Xn was during the jth time interval, given the

state of its parents pa(Xn) during the jth time intervals;

• qpa(Xm)

x
j
mx

j+1
m

is the parameter associated with the transition

from state xjm, in which the variable Xm was during the
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jth time interval, to state xj+1m , in which the variable Xm

will be during the (j+ 1)th time interval, given the state

of its parents pa(Xm) during the jth and the (j+ 1)th time

intervals,

while δj = tj − tj−1 is the length of the jth time interval of the

stream z[t1,t2), z[t2,t3), ..., z[tJ−1,tJ) of continuous time evidence.

The inference algorithm for CTBNCs (Algorithm 1) is de-

scribed in (Stella and Amer, 2012). Stella and Amer (2012) used

the Bayesian estimation to learn parameters for CTNBs (see

Section 3.1.2). In Section 4 the Naive Bayes limitation is over-

come by taking into account the structural learning problem for

generic CTBNC. A new scoring function that uses Conditional

log-likelihood is proposed for CTBNCs.

Example 3.2.1. Figure 3 depicts the structure of a CTBNC to di-

agnose eating disorders from the eating process (Figure 1). An

example of the eating process is shown in Figure 4.
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 {anorexia,bulimia,no disorder}
Disorder

(D)

{yes,no}︸ ︷︷ ︸
Eating

(E)

[2x2] Qn
E

[2x2] Qy
E



{yes,no}︸ ︷︷ ︸
Hungry

(H)


Qf
H [2x2]

Qa
H [2x2]

Qe
H [2x2]

︷ ︸︸ ︷
{full,average, empty}

Full

stomach

(S)

 Qn
S [3x3]

Qy
S [3x3]

Figure 3.: CTBNC to diagnose eating disorders observing the eating

process.

time

E

n

y

time

S

e

a

f

time

H

n

y

Figure 4.: Example of eating process.
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Algorithm 1 Inference algorithm for CTBNCs.

Require: a CTBNC C = {ℵ,P(Y)} consisting of N attribute nodes

and a class node Y such that Val(Y) = {y1,y2, ...,yK}, a fully

observed evidence stream
(
x1, x2, ..., xJ

)
.

Ensure: the maximum a posteriori classification y∗ for the fully

observed evidence-stream
(
x1, x2, ..., xJ

)
.

1: for k = 1 to K do

2: logp(yk)← logP(yk)

3: end for

4: for k = 1 to K do

5: for j = 1 to J do

6: for n = 1 to N do

7: logp(yk) := logp(yk) − q
pa(Xn)

x
j
n

(tj − tj−1)

8: if xjn 6= xj+1n then

9: logp(yk) := logp(yk) + log
(
q
pa(Xn)

x
j
nx

j+1
n

)
10: end if

11: end for

12: end for

13: end for

14: y∗ ← arg maxy∈Val(Y) logp(y).

15: return y∗



4
C T B N C S T R U C T U R A L L E A R N I N G

In this Chapter the problem of structural learning for

Continuous Time Bayesian Network Classifiers (CTBNCs) is ad-

dressed to overcome the Naive Bayes (NB) limitation of Stella

and Amer (2012). A parallel between Static Bayesian Classifiers

structural learning and Continuous Time Classifiers structural

learning is made exploiting Friedman et al. (1997) contribute.

A Conditional Log-likelihood scoring function which out-

perform Marginal Log-likelihood score especially on limited

amount of data is introduced.

A synthetic tests campaign is done by comparing the per-

formances of different CTBNC models with Dynamic Bayesian

Networks (DBNs).

Results on real data sets are shown in Chapter 6.

4.1 why learn the structure?

Stella and Amer (2012) introduced the Continuous Time

Bayesian Network Classifiers (CTBNCs) framework, how to

make inference on CTBNCs and defined Continuous Time Naive

Bayes (CTNB) (Section A.1.2.2). In their work, using CTNBs, the

problem of structural learning is not addressed.

CTNBs, as all the Naive Bayes (NB) models, assume the con-

ditional independence of the features given the class. In the

36
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specialized literature this is a well known assumption for static

Bayesian models (Friedman et al., 1997). In many cases con-

ditional independence is not a realistic assumption and intro-

duces errors which limit the classification performances. The

main error sources for NB models are:

• when two or more features are not independent (see Ex-

ample 4.1.1);

• when there is not a direct relation between a feature and

the class node (see Example 4.1.1).

Example 4.1.1. Figure 5 shows an example of CTBNC where the

naive Bayes assumption is a strong limitation. The network be-

low is a toy classification model to discover the presence of

traffic congestions on a target street. The features are: a sensor

on the street where the traffic congestion must be discovered, a

sensor on an adjacent street, the traffic light color at the end of

the interested street, the traffic light color in the perpendicular

direction, the weather condition and an unrelated node inform-

ing about the Pope’s presence in Rome (Figure 5).

Traffic

congestion

Sensor

target

street

Sensor

adjacent

street

Traffic

light

Perpendicular

traffic light

Weather

Pope

Figure 5.: CTBNC toy example for traffic congestion classification.

If conditional independence is forced, the following errors

are introduced:
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• the relation between the state of the sensor and the traffic

light color is lost (i.e. a red traffic light can be a motivation

for a queue on the sensor);

• the relations between the sensors in adjacent streets are

lost;

• the independence between the traffic light in the perpen-

dicular street and the classification problem, given the

traffic light on the target street is lost (i.e. the colors of

the perpendicular street are obviously related: the color

in one direction informs about the color in the conflictual

direction);

• the introduction of a fake dependency (i.e. noise) between

the Pope’s presence in Rome and the classification prob-

lem.

As shown in Example 4.1.1 the conditional independence as-

sumption can introduce many errors that often bring to wrong

classifications. To overcome the Naive Bayes limitations, in this

section the problem of structural learning for CTBNCs is studied.

4.2 max-k classifiers

The Tree-Augmented Naive Bayes (TAN) model was introduced

by Friedman et al. (1997) with the aim to achieve a good trade-

off between the model’s expressiveness and the model’s com-

plexity. In particular, the TAN was designed to model relation-

ships between attributes and thus to overcome the strong as-

sumption of conditional independence between attributes on

which the Naive Bayes classifiers relies.

In the case where Bayesian Network (BN) classifiers are con-

sidered it must be taken into account the acyclicity constraint

which limits the structure of the graph of the corresponding
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Bayesian Network. Thus, the TAN model guarantees that struc-

tural learning time is still polynomial, while increasing the pos-

sibility to improve the classification accuracy compared to the

one archived by Naive Bayes classifier.

However, when CTBNCs are considered, the acyclicity con-

straint is removed. Nevertheless, it is valuable to relax the con-

ditional independence assumption of the CTNB bounding the

structure dimension. Indeed, fixing the maximum number of

parents, structural learning in Continuous Time Bayesian Net-

works (CTBNs) is polynomial with respect to the number of vari-

ables and the size of the data set, but the number of parameters

for a node is exponential with respect to the node parents. Too

many parents leads to a heavy computational effort in the struc-

tural learning process. Increasing the maximum number of par-

ents also implies working with more data for learning the node

parameters conditioned on all the possible parent instantiations.

In contrast with static Bayesian classifiers, in CTBNCs there are

no reasons to constrain the graph associated with the classifier

to have a tree structure. The above consideration suggests the

need to define the following instances of the class of CTBNCs:

the max-k Augmented Continuous Time Naive Bayes (ACTNB)

and the max-k CTBNC.

Definition 4.2.1. (Max-k Continuous Time Bayesian Network

Classifier (Codecasa and Stella, 2013)). A max-k Continuous

Time Bayesian Network Classifier is a couple M = {C,k}, where

C is a CTBNC C = {ℵ,P(Y)} such that the number of parents

|Pa(Xn)| for each attribute node Xn is bounded by a positive in-

teger k. Formally, the following condition holds; |Pa(Xn)| 6 k,

n = 1, 2, ...,N, k > 0.

Definition 4.2.2. (Max-k Augmented Continuous Time Naive

Bayes (Codecasa and Stella, 2013)). A max-k Augmented Con-

tinuous Time Naive Bayes is a max-k CTBNC such that the
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class node Y belongs to the parents set of each attribute node

Xn, n = 1, 2, ...,N. Formally, the following condition holds;

Y ∈ Pa(Xn), n = 1, 2, ...,N.

The definition of max-k CTBNC allows to conclude that a

CTNB is a max-1 Augmented Continuous Time Naive Bayes.

Max-k ACTNBs are particular cases of max-k CTBNCs. The def-

inition of max-k ACTNB constrains the class variable Y to be a

parent for each attribute node Xn, n = 1, 2, ...,N. The rationale

behind this constraint is to compensate the fact that some direct

dependencies between the attribute nodes are discarded due to

the upper bound in the number of parents.

4.3 structural learning

4.3.1 Bayesian scoring

Learning a CTBNC from data consists of learning a CTBN model

where a specific node, i.e. the class node Y, does not depend

on time (see Section 3.1.3). The constraint that the class node Y

must have no parents makes the learning problem straightfor-

ward. Indeed, in such a particular case the learning algorithm

runs, for each attribute node Xn, n = 1, 2, ...,N, a local search

procedure to find its optimal set of parents, i.e. the set of par-

ents which maximizes a given score function. Furthermore, for

each attribute node Xn, n = 1, 2, ...,N, no more than L parents

are selected.

The structural learning algorithm proposed by Nodelman

et al. (2002b) uses the score function score (G : D) (3). The choice

of the scoring function to be optimized is fundamental for struc-

tural learning of CTBNCs. Nodelman et al. (2002b) proposed a

Bayesian scoring function to learn CTBN models (Equation 3).

The same learning algorithm can be adapted to learn a CTBNC
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by introducing the constraint that the class node Y does not

depend on time.

4.3.2 Conditional log-likelihood scoring

4.3.2.1 Why conditional log-likelihood?

Scores based on the Log-likelihood are not the only scoring

functions which can be used to learn the structure of a CTBNC.

Following what was presented and discussed by Friedman et al.

(1997), the log-likelihood function consists of two components:

LL(M | D) =
∑|D|
i=1 logPℵ(yi | x1i , ..., xJii )

+ logPℵ(x1i , ..., xJii ). (5)

The first component, i.e. logPℵ(yi | x1i , ..., xJii ), measures the clas-

sification capability of the model. The second component, i.e.

logPℵ(x1i , ..., xJii ), measures how well the model represents the

join distribution of the attributes.

Friedman et al. (1997) remarked that in the case where the

number of attribute nodes Xn, n = 1, 2, ...,N is large, the con-

tribution to the likelihood function (Equation 5) of the second

component overwhelms the contribution of the first component.

However, the contribution of the second component is not di-

rectly related to the classification performance achieved by the

learned classifier.

Therefore, to improve the classification performance Fried-

man et al. (1997) suggested to use the conditional log-likelihood

in the scoring functions. In such a case the maximization of the

conditional log-likelihood results in maximizing the classifica-

tion performance of the model without paying specific atten-

tion to the discovery of the existing dependencies between the

attribute nodes Xn, n = 1, 2, ...,N.
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4.3.2.2 Conditional log-likelihood scoring

CTBNCs, as static Bayesian classifiers, can be learned by using

log-likelihood and conditional log-likelihood as well.

In the case where CTBNCs are considered, the conditional log-

likelihood can be written as follows (Codecasa and Stella, 2013):

CLL(M | D) =

|D|∑
i=1

logPℵ(yi | x1i , ..., xJii )

=

|D|∑
i=1

log

(
Pℵ(x1i , ..., xJii | yi)Pℵ(yi)

Pℵ(x1i , ..., xJii )

)

=

|D|∑
i=1

log (Pℵ(yi))

+

|D|∑
i=1

log
(
Pℵ(x1i , ..., xJii | yi)

)
−

−

|D|∑
i=1

log

∑
y′

Pℵ(y
′)Pℵ(x1i , ..., xJii | y′)

 . (6)

It is clear from (6) that the conditional log-likelihood func-

tion consists of the following three terms: the class probability

term (7), the posterior probability term (8), and finally the denomi-

nator term (9). These three terms can be estimated by using the

available data set D as described in the following.

The class probability term is estimated as follows:

|D|∑
i=1

log (Pℵ(yi)) =
∑
y

M[y] log(θy) (7)

where θy represents the parameter associated with the proba-

bility of class y (see Section 3.1).
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From Equation (4) it is possible to write the following:

Pℵ(x1, ..., xJ | y) =

=

J∏
j=1

q
pa(Xmj

)

x
j
mj
x
j+1
mj

N∏
n=1

exp
(
−q

pa(Xn)

x
j
n

δj

)

=

J∏
j=1

q
pa(Xmj

)

x
j
mj

θ
pa(Xmj

)

x
j
mj
x
j+1
mj

N∏
n=1

exp
(
−q

pa(Xn)

x
j
n

δj

)
Therefore, the posterior probability term can be estimated as fol-

lows:∑
|D|
i=1 log

(
Pℵ(x1i , ..., xJii | yi)

)
=

=

N∑
n=1

∑
xn,pa(Xn)

M[xn | pa(Xn)] log
(
q
pa(Xn)
xn

)
−

− q
pa(Xn)
xn T [xn | pa(Xn)]+

+
∑
x′n 6=xn

M[xnx
′
n | pa(Xn)] log(θpa(Xn)xnx′n

). (8)

The denominator term is similar to the first two components.

Unfortunately, because of the sum the denominator term cannot

be further decomposed, while sufficient statistics allow us to

write:

∑
|D|
i=1 log

∑
y′

Pℵ(y
′)Pℵ(x1i , ..., xJii | y′)

 =

= log

∑
y′

θy′

N∏
n=1

∏
xn,pa′(Xn)

(q
pa′(Xn)
xn )M[xn|pa

′(Xn)]

exp(−qpa
′(Xn)

xn T [xn | pa′(Xn)])∏
x′n 6=xn

(θ
pa′(Xn)
xnx′n

)M[xnx
′
n|pa

′(Xn)]

 (9)

where pa(Xn) = {πn ∪ y}, pa′(Xn) = {πn ∪ y′}, while πn is the

instantiation of the non-class parents of the attribute node Xn.

Unfortunately, no closed form solution exists to compute the

optimal value of the model parameters, i.e. those parameter val-
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ues which maximize the conditional log-likelihood (6). There-

fore, the approach introduced and discussed by Grossman and

Domingos (2004) for static classifiers is followed. The scoring

function is computed by using the conditional log-likelihood,

while parameters values are obtained by using the Bayesian ap-

proach as described by Nodelman et al. (2002b).

4.4 synthetics test

Considering the Bayesian score (Equation 3), the prior dis-

tribution of the structure (i.e. lnP(G)) becomes less relevant

with the increasing of the data set dimension. In the case

where the data set dimension tends to infinity (i.e. | D |→∞), the Bayesian score is equivalent to the Marginal Log-

likelihood (MLL) score (i.e. MLLscore (G : D) = lnP(D|G)). To

fairly compare the classification performance achieved when

using the Conditional Log-likelihood (CLL) score (Equation 6),

which does not use a graph’s structure penalization term, the

Marginal Log-likelihood score is used instead of the Bayesian

score.

Numerical experiments are devoted to comparing the per-

formance of the following types of continuous time Bayesian

Network classifiers; CTNB, k = 2 ACTNB, k = 2 CTBNC, k = 3

CTBNC, and k = 4 CTBNC. Each classifier is associated with a

suffix which informs about the particular scoring function used

for its structural learning. In particular, the suffix MLL will be

used when the Marginal Log-likelihood scoring function is op-

timized, while the CLL suffix is used when the Conditional Log-

likelihood scoring function is optimized for structural learning.

It is worthwhile to notice that when the structural learning is

performed by optimizing the conditional log-likelihood scoring
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function, the parametric learning task is based on Bayesian es-

timation.

In this section the tests performed by exploiting synthetic

data sets are described. Real data sets are addressed in Chapter

6.

4.4.1 Tests campaign

Synthetic data sets, used to compare classification perfor-

mances, learning time, and inference time of different classi-

fication models, are generated by sampling structures of in-

creasing complexity. The rationale for this choice is that sim-

ple classifiers (i.e. Naive Bayes models) tend to work well for

simple problems, while are not capable of modeling complex

structures. On the other hand, classifiers that can learn com-

plex structures are subject to overfitting.

4.4.1.1 Competitors’ models

Continuous Time Classifiers’ performances achieved by using

MLL and CLL scoring functions are compared with the per-

formances achieved by Dynamic Bayesian Network Classifiers

(DBNC) (Section 2.2.2).

Regarding Dynamic Bayesian Network Classifiers (DBNCs),

experiments are made by using Naive Bayes models and mod-

els where the structure over adjacent time slices is learned.

MATLAB Bayesian Nets toolbox (Murphy et al., 2001) is used

for the experiments.

Two Naive Bayes models are tested. In both cases each vari-

able depends on its state at the previous time slice, but the first

model (DBN-NB1) allows the Naive Bayes relations intra slice (i.e.

Figure 6a), while the second model (DBN-NB2) allows the Naive

Bayes relations through consecutive time slices (i.e. Figure 6a).
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Two models are used also in the case where the dependencies

(t− 1) (t)

(a)

(t− 1) (t)

(b)

Figure 6.: DBN-NB1 (a) and DBN-NB2 (b) tested models.

over time are learned. The first one (DBNC1) does not allow

any intra slice dependencies. The second (DBNC2) allows only

Naive Bayes intra slice dependencies, similarly to the DBN-NB1

model. In both cases the maximum number of parents from the

previous time slice is set to 2.

It is valuable to recall that Dynamic Bayesian Networks

(DBNs) use more parameters compared to the corresponding

CTBNs. This is because the DBNs capability to model intra and

extra time slice parental relations. This is because to the dis-

crete time models need to capture all the information lost in

the time between two consecutive time slices. This is well ex-

plained by the concept of Granger causality (Granger, 1969).

Granger (1969) shows how causality happens only in time: the

appearance of instantaneous causality “arises due to slowness

in recording information or because a sufficiently wide class of

possible causal variables has not been used”.
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4.4.1.2 CTBN synthetic data sets

Part of the data sets are generated by sampling from CTBNC

models of different complexity. While the structure of the mod-

els is given, the values of the parameters associated with each of

its nodes (q parameters) are obtained by sampling from a given

interval. Each pair (structure, parameters assignment), is used to

generate a learning data set.

Data sets consist of 1, 000 trajectories with average length

ranging from 300 (CTNBs) to 1,400 (max-4 CTBNCs). Analyzed

model structures are CTNB (Figure 7(a)), max-2 ACTNB (Figure

7(b,c)), max-2 CTBNC (Figure 7(d-f)), max-3 CTBNC (Figure 7(g-

i)), and max-4 CTBNC (Figure 7(j-l)).

Table 1 summarizes the structures used to generate the syn-

thetic data sets. The table shows the class cardinality and the

sampling interval for each node. Performance comparison is

based on a 10 fold cross validation on full data sets (100%) and

reduced data sets, i.e. when the number and the length of trajec-

tories are reduced to: 80%, 60%, 40%, and 20%.

Figure 7 shows the structures of the CTBNC models used for

generating the synthetic data sets. The number associated with

each node represents the cardinality of the corresponding at-

tribute. The color of each node is associated with the interval

used to sample the values of the q parameters (see Table 1).

DBNs classifiers are used to compare CTBNCs with the state of

the art in multivariate trajectory classification. For this reason

a sampling ratio is used to discretize the continuous time tra-

jectories in order to apply DBNCs. Because of the computational

effort to deal with DBNs, it was necessary to force a sampling

ratio that generates no more then 50 time slices per trajectory.

In the same way the generated data sets were too big to allow

the structural learning of DBNs. For this reason just DBN-NB1
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Figure 7.: CTNB (a), max-2 ACTNB (b,c), max-2 CTBNC (d-f), max-3

CTBNC (g-i) and, max-4 CTBNC (j-l) tested structures. Num-

bers associated with nodes represent the cardinality of the

corresponding variables. Red nodes are associated with

classes, while the colors of the other nodes represent the

intervals used to sample the q parameters (see Table 1).

and DBN-NB2 models are used for comparison of the continu-

ous time approaches over the data sets generated from CTBNCs.

4.4.1.3 DBN synthetic data sets

Continuous Time Bayesian Network Classifiers (CTBNCs) are

compared with Dynamic Bayesian Network Classifiers (DBNCs).

To have a fair comparison a portion of the synthetic data sets are

generated starting from Dynamic Bayesian Networks (DBNs).
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Test Figure# classes qs range qs range qs range Test Figure # classesqs rangeqs rangeqs range

name red blue green yellow name red blue green yellow

CTNB1 7a 4 [1, 2] [2, 4] [4, 8] k2ACTNB1 7b 4 [1, 2] [2, 4] [4, 8]

CTNB2 7a 4 [1, 2] [4, 8] [8, 16] k2ACTNB2 7b 4 [10, 20] [20, 40] [40, 80]

CTNB3 7a 4 [10, 20] [20, 40] [40, 80] k2ACTNB3 7b 10 [10, 20] [20, 40] [40, 80]

CTNB4 7a 10 [1, 2] [2, 4] [4, 8] k2ACTNB4 7c 4 [1, 2] [2, 4] [4, 8]

CTNB5 7a 10 [10, 20] [20, 40] [40, 80] k2ACTNB5 7c 4 [10, 20] [20, 40] [40, 80]

k2CTBNC1 7d 4 [1, 2] [2, 4] [4, 8] k3CTBNC1 7g 4 [1, 2] [2, 4] [4, 8]

k2CTBNC2 7d 4 [10, 20] [20, 40] [40, 80] k3CTBNC2 7g 4 [10, 20] [20, 40] [40, 80]

k2CTBNC3 7e 4 [1, 2] [2, 4] [4, 8] k3CTBNC3 7h 4 [1, 2] [2, 4] [4, 8]

k2CTBNC4 7e 4 [10, 20] [20, 40] [40, 80] k3CTBNC4 7h 4 [10, 20] [20, 40] [40, 80]

k2CTBNC5 7f 4 [1, 2] [2, 4] [4, 8] k3CTBNC5 7i 4 [1, 2] [2, 4] [4, 8]

k2CTBNC6 7f 4 [10, 20] [20, 40] [40, 80] k3CTBNC6 7i 4 [10, 20] [20, 40] [40, 80]

Test Figure # classes qs range qs rangeqs range

name red blue green yellow

k4CTBNC1 7j 4 [1, 2] [2, 4] [4, 8]

k4CTBNC2 7j 4 [10, 20] [20, 40] [40, 80]

k4CTBNC3 7k 4 [1, 2] [2, 4] [4, 8]

k4CTBNC4 7k 4 [10, 20] [20, 40] [40, 80]

k4CTBNC5 7l 4 [1, 2] [2, 4] [4, 8]

k4CTBNC6 7l 4 [10, 20] [20, 40] [40, 80]

Table 1.: Summary of the CTBNC tested structures. Test name repre-

sents the name of the structure. Figure specifies the figure

number of the structure. # classes represents the number of

classes. The remaining columns show the sampling interval

for the value of the q parameter for each node, depending

on its color as depicted in the figures.

Trajectory generation follows the same guideline explained in

Section 4.4.1.2 for continuous time trajectory generation. Mod-

els of growing complexity are used to generate discrete time

trajectories by using DBNCs with a maximum of 2, 3, and 4 par-

ents per node. Parameters of DBNC nodes are sampled from

the Dirichelet distribution, except for first time slice and class

nodes whose parameter values are sampled from the uniform
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distribution. Because CTBNC makes inference about a static

class that will occur in the future, DBNC data sets have been

generated by models where the class value does not change

over time.

Figure 8 shows two DBNs models used to generate the data

sets. The other three models have a similar structure, but each

node has a greater number of parental relations from the previ-

ous time slice.
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Figure 8.: Example of DBN models used to generate discrete time data

sets. Red nodes are associated with classes. Numbers rep-

resent the cardinality of each node. Figure (a) depicts the

structure of DBNTest1 model. DBNTest2 has the same class

relations, but blue nodes in the first time slice are con-

nected with 2 nodes of the next time slice. Figure (b) depicts

the structure of DBNTest3. DBNTest4 and DBNTest5 have the

same class relations, but blue nodes in the first time slice

are connected with 2 (DBNTest4) and 3 (DBNTest5) nodes

of the next time slice.
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All five data sets consists of 100 trajectories of 20 time slices

each. Because DBNC data sets are simpler than data sets gener-

ated by using CTBNCs (20 time slices instead of 50), tests show

the performance comparisons between all CTBNC models, the

DBNC models tested in the CTBNC data sets (i.e. DBN-NB1 and

DBN-NB2) and the DBNC models where the intra-slice dependen-

cies are fixed, while the dependencies over time are learned (i.e.

DBNC1 and DBNC2) (see Section 4.4.1.1).

4.4.2 Results

4.4.2.1 CTBN synthetic data sets

Accuracy values on full data sets (100% data sets) are summa-

rized in Table 2. The Table shows that DBNCs are strongly out-

performed by all the continuous time models, CTNB included.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

CTNB 0.95 0.95 0.93 0.93 0.92 0.93 0.82 0.93 0.64 0.80 0.81

K2ACTNB 0.78 0.89 0.92 0.76 0.92 0.76 0.85 0.76 0.72 0.62 0.63

K2CTBNC 0.68 0.84 0.86 0.85 0.86 0.85 0.76 0.85 0.60 0.48 0.50

K3CTBNC 0.49 0.65 0.63 0.66 0.63 0.79 0.75 0.79 0.64 0.32 0.33

K4CTBNC 0.64 0.74 0.79 0.69 0.79 0.76 0.94 0.79 0.90 0.40 0.40

Table 2.: Classifier’s average accuracy value with respect to different

categories of the data set generating model, 10 fold cross val-

idation over 100% data sets. Bold characters are associated

with the best model with 90% confidence.

Figure 9 depicts the best average performances between

DBNCs, CTNB and, CTBNCs when Marginal Log-likelihood and

Conditional Log-likelihood scoring functions are used. The fig-
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Figure 9.: Comparison of the best average performances between

CTBNCs learned by using MLL and CLL scores, CTNB and

DBN models. X-axis is associated with the model used to

generate the data sets. The continuous line is associated

with MLL, the thin dotted line with CLL, the big dotted line

with CTNB and the fragmented line with DBN.

ure shows that DBNCs are strongly outperformed by the con-

tinuous time models over all the tested levels of structure com-

plexity.

CTNB performs well on simple structures and obviously loses

its effectiveness gradually when the maximum number of par-

ents of the data set models is increased. On the max-4 CTBNCs

data sets the CTNBs performances are still poor, but not as much

as expected compared to the other models. Probably this is due

to the necessity to have more data to learn complex structures

such as max-4 models. In these cases a simple model (i.e. CTNB)

brings suboptimal results, but does not require a significant in-

crease of the amount of data. This is confirmed by the tests on

the reduced data sets, shown in the following part of the section

(see also Figure 11).

Figure 9 also shows the performances of continuous time

models learned with both the scoring functions. Performance

are comparable except that for the max-4 data sets. The reason



4.4 synthetics test 53

of this is the ability of Conditional Log-likelihood scoring func-

tion to perceive weak dependencies, even when this is due to

the shortage of data because of the increasing of the structure

complexity. Indeed, the increase of the number of node parents

leads to the necessity of learning the node parameters over a

greater amount of data. This is confirmed by Figure 10.
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Figure 10.: Percentage of tests when the MLL (CLL) scoring is better

than the CLL (MLL) scoring with 90% confidence and while

considering all the reduced data sets. X-axis in Figure (a) is

associated with the models used to generate the data sets.

X-axis in Figure (b) is associated with the data sets’ per-

centage reduction. The continuous line is associated with

the Marginal Log-likelihood scoring function, while the

thin dotted line is associated with the Conditional Log-

likelihood scoring function.
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Figure 10 depicts the comparison between Marginal Log-

likelihood and Conditional Log-likelihood scoring functions

when the reduced data sets are also considered. In detail, Fig-

ure 10 shows the percentage of tests in which the choice of

one scoring function instead of the other one gives better per-

formances. The comparison is made fixing the structure com-

plexity of the models (i.e. k = 2 ACTNB, k = 2 CTBNC, ...) and

using 90% of confidence1. When a great amount of data is pro-

vided Marginal Log-likelihood seems to perform better than

Conditional Log-likelihood, even if the best models learned

with the two scores generate the same average performances

(Figure 9). This is probably due to the tendency of Condi-

tional Log-likelihood to overfit (see Figure 12). Instead, Con-

ditional Log-likelihood scoring strongly outperforms Marginal

Log-likelihood scoring when the amount of data is limited (Fig-

ure 10). This is due, as outlined before, to the effectiveness

of the Conditional Log-likelihood scoring function to discover

weak dependencies between variables and thus to its tendency

to add the class variable as a parent of all nodes which are

useful for the classification task. The capability of the Condi-

tional Log-likelihood scoring function to discover the depen-

dencies between the class node and the features can be ob-

served in Figure 10a where Conditional Log-likelihood strongly

outperforms Marginal Log-likelihood on the ACTNB data set.

On the other hand, when the amount of data is too scarce,

Conditional Log-likelihood scoring tends to overfit by learning

classifiers which are too complex for the available amount of

data. In these cases, where also Marginal Log-likelihood scor-

ing achieves poor accuracy, simple models like CTNBs are the

best option (see Figure 11).

1 The values do not sum to 100% because the case when both scoring func-

tions are comparable must be taken into account.
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Figure 11.: Percentage of tests in which the CTNB is better or compa-

rable to the best Continuous Time model. The x-axis is

associated with the data sets’ percentage reduction.

The tendency of the Conditional Log-likelihood scoring func-

tion to overfit can be seen in Figure 12. The Figure depicts the

structures learned by the different Continuous Time models.

The Conditional Log-likelihood scoring function seems to facil-

itate the presence of arcs (see Figure 12e-g). The structure of the

Conditional Log-likelihood scoring function tends to favor an

on-off behavior, either many parents or no parents are added

to each attribute node. On the contrary, learning by optimiz-

ing the Marginal Log-likelihood scoring function tends to miss

many arcs with specific reference to data sets where the causal

relation is weak (see Figure 12d).

This behavior of the two scoring functions allows to see in the

k = 2ACTNB classifier learned by optimizing the Conditional

Log-likelihood scoring as a good trade-off between model com-

plexity and effectiveness. Of course, the performance of a

model strongly depends on the structure of the models that

generate the data set. Nevertheless, k = 2 ACTNB allows to limit

the maximum number of parents; at the same time it allows,

thanks to the Conditional Log-likelihood scoring function, to

exploit only those relationships between attribute nodes which
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Figure 12.: k2CTBNC1 tests: (a) real structure, (b) structure learned by

k = 2ACTNB-MLL, (c) structure learned by k = 2ACTNB-

CLL, (d) structure learned by k = 2CTBNC-MLL, k =

3CTBNC-MLL, and k = 4CTBNC-MLL (e) structure learned

by k = 2CTBNC-CLL, (f) structure learned by k = 3CTBNC-

CLL, (g) structure learned by k = 4CTBNC-CLL. The learned

structures are the same across all folds.

improve the classification performance. This is in contrast to

what happens when learning a k = 2 ACTNB classifier by opti-

mizing the MLL score function, which tends to miss weak de-

pendency.

Inference times on continuous time models are comparable,

while DBNCs inference strongly depends on the time discretiza-

tion rate. Tests are made by using a rate that reduces the num-

ber of data rows. This was mandatory to make the tests feasible

using DBNCs. For this reason it is impossible to exactly compare

the time performances between continuous time classifiers and

DBNCs. Nevertheless, it is clear that dealing with discrete time

models requires more computational efforts than working in

continuous time. This is because discrete models need to un-
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roll many time slices, while continuous time models implicitly

represent time (Nodelman, 2007).

Learning and inference times are summarized in Figure

13. Numerical experiments have been performed on Intel(R)

Xeon(R) CPU X5670 2.93GHz, 15Gb RAM. Inference time is al-

most the same for all the continuous time classifiers (Figure

13b), while learning time varies across classifiers because of the

different values of parent bounds (Figure 13a). There is not a
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Figure 13.: Average learning (a) and inference (b) time for each model;

in order: CTNB, k = 2ACTNB-MLL, k = 2ACTNB-CLL,

k = 2CTBNC-MLL, k = 2CTBNC-CLL, k = 3CTBNC-MLL,

k = 3CTBNC-CLL, k = 4CTBNC-MLL, k = 4CTBNC-CLL. X-

axis is associated with the models used to generate the

data sets.

clear relation between learning time required by MLL and CLL.
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Theoretically CLL should be more expensive to compute and

should require little additional time than MLL, but probably due

to the hill climbing algorithm and the structures induced by

CLL, it happens that often learning with CLL is faster than learn-

ing with MLL. Since CTNB does not require structural learning,

but only parameter learning, it is the fastest model to learn.

It is worthwhile to mention that the k = 2ACTNB classifier,

learned by optimizing the Conditional Log-likelihood score

function, also implements a good trade-off between classifica-

tion accuracy and learning time.

4.4.2.2 DBN synthetic data sets

Accuracy values on data sets generated by using DBN modes

are reported in Table 3.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test CTNB ACTNB ACTNB CTBNC CTBNC CTBNCCTBNC ! CTBNCCTBNC

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

DBNTest1 1.00 1.00 1.00 0.99 0.37 0.99 0.35 0.99 0.35

DBNTest2 0.86 0.91 0.98 0.85 0.26 0.85 0.26 0.85 0.26

DBNTest3 1.00 1.00 1.00 0.98 0.67 0.98 0.67 0.98 0.67

DBNTest4 0.82 0.82 0.96 0.81 0.35 0.81 0.35 0.81 0.35

DBNTest5 0.64 0.64 0.73 0.64 0.2 0.64 0.2 0.64 0.2

Test DBN- DBN- DBNC1 DBNC2

NB1 NB2

DBNTest1 1.00 1.00 1.00 1.00

DBNTest2 0.90 0.91 0.95 0.91

DBNTest3 0.98 0.98 0.99 0.95

DBNTest4 0.80 0.83 0.87 0.74

DBNTest5 0.63 0.68 0.62 0.64

Table 3.: Classifiers’ accuracy values on the discrete time data sets.

Tests made with 10 fold cross validation. Bold digits are as-

sociated with the best model with 90% confidence.
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Results show that complex CTBNCs do not perform well while

CTNB, k = 2 ACTNB-MLL and k = 2 ACTNB-CLL achieve good

performances. This confirms what emerged from the analysis

on continuous time synthetic data sets (Section 4.4.2.1) where

a too small amount of data made the simple models the most

effective ones.

Particularly surprising is the behavior of CTBNCs when

learned with the CLL scoring function. In this case CLL seems

not able to learn the dependencies between the nodes, in contra-

diction with what happened on the continuous time synthetic

data sets. A reason could be the discretization process. Contin-

uous time trajectories hide two dependency factors: the time

ratio of the transitions and the transition probabilities between

states. In case of discrete trajectories the time dependencies are

less evident and this, added to the short length of the trajecto-

ries, seems to have a strong impact on CLL performances.

It is worthwhile to note that almost all the models that per-

form well on these data sets have naive Bayes relations forced

into their structure. Differently from the continuous time data

sets, DBNCs perform well. Nevertheless, k = 2 ACTNB-CLL once

more is the most effective model. Indeed, k = 2 ACTNB-CLL

performs statistically better than all the DBNCs on the DBNTest4

data set, and on all the other data sets it achieves performance

values never inferior to those achieved by the best DBNC. It is

also important to recall that CTBNCs are computationally more

efficient than DBNCs and have less degrees of freedom because

of the smaller number of parameters.

4.4.3 Synthetic tests summary

In this Chapter a synthetic tests campaign was addressed. Here

follows a short summary of the main results:
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• CTBNCs are an efficient and effective framework to classify

multivariate trajectories;

• CTBNCs structural learning using Conditional Log-

likelihood scoring function allows to also catch the weak

dependencies;

• Conditional Log-likelihood scoring is clearly more ef-

fective than Marginal Log-likelihood scoring when the

amount of data is limited;

• CTBNCs strongly outperform DBNCs on continuous time

data sets;

• CTBNCs models also work well on discrete time data sets

generated from DBNCs;

• k = 2 ACTNB-CLL is the best compromise between model

complexity and effectiveness;

• k = 2 ACTNB-CLL is comparable and in two cases even

better than the best DBNCs on discrete time data sets.



5
C L U S T E R I N G U S I N G C T B N C

Continuous Time Bayesian Network Classifiers (CTBNCs) allow

to efficiently address the classification task over continuous

time multivariate trajectories. The supervised classification, i.e.

the classification of trajectories when the model is learned from

labeled data, is not the only classification task that real world

problems need to address. Another interesting problem is rep-

resented by clustering: the problem of learning natural groups

from unlabeled data.

In this chapter the clustering problem is addressed using

CTBNCs. In Section 5.1 the unsupervised learning process is in-

troduced. The test campaign over synthetic data sets is shown

in Section 5.2. Performances are compared with the ones

achieved by Dynamic Bayesian Network Classifiers (DBNCs).

Results on real data sets are shown in Chapter 6.

5.1 ctbnc for clustering

5.1.1 EM parametric learning

The differences between supervised classification and cluster-

ing using CTBNCs is only in the parametric learning. Given the

structure, parameters can be learned from sufficient statistics in

the same way as for supervised classification. The problem is to

61
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estimate the sufficient statistics in which the unobserved class is

involved. From Definition 3.2.1, the class is a root node. There-

fore, the computation of the sufficient statistics differs from the

supervised classification only for the class variable and for the

variables which have the class in their parent set.

For parametric learning the well known Expectation Maxi-

mization (EM) algorithm can be used (Koller and Friedman,

2009). EM is an iterative algorithm used to optimize the likelihood

in probabilistic graphical models learned on missing data. The

EM algorithm also fits in the case of clustering over complete

observable data. In this case only the class is not observed.

EM consists of two steps: expectation and maximization which

are repeated iteratively until reaching a stopping criteria. The

expectation step is the step where expected sufficient statistics

are calculated. The maximization step is the step where the

parameters are calculated from the expected sufficient statistics

by maximizing the likelihood.

5.1.1.1 Expectation

The main part of the learning process on missing data relies on

the expectation step of the EM algorithm. In the case of cluster-

ing on observable data the expectation step needs to calculate

the sufficient statistics as in a classical learning process, with

the exception for the nodes that have the class in the parent set

and the class itself.

There are two types of sufficient statistics: the occurrence

counts (i.e. M) and the time counts (i.e. T )1. Because only the

class node (a static node) is unobserved, all the time spent by

the variables in their states is known. Both time counts and oc-

currence counts of attributes with the class in their parent set

1 Time count sufficient statistics refers to the time spent in a particular state

by a variable given the state of its parents.
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must be weighted for the class probability. The class prior dis-

tribution can be estimated from the class expected occurrences.

Let’s suppose that the EM iterative algorithm starts with a ran-

dom instantiation of the model parameters2. Using the current

model parameters we can estimate the probability distribution

of the class for each trajectory. Let’s take the ith trajectory of

the data set D as example. P(Y | zi,1, . . . , zi,J) is the probability

distribution of i ∈ {1, . . . , | D |}, where zi,j = (xi,j1 , . . . , xi,jN ) is the

state of each variable of trajectory i at the jth time interval (see

notation in Section 3.2.1).

The trajectory contributions to the sufficient statistics are as

follows. Contribution to the class count sufficient statistics for

class Y = y is:

M̄[y] = M̄[y] + P(y | zi,1, . . . , zi,J).

Contribution to the occurrence count sufficient statistics of at-

tribute Xn such that Y ∈ Pa(Xn) and Y = y is:

M̄[xn, x′n | pa(Xn)] = M̄[xn, x′n | pa(Xn)]

+Mi[xn, x′n | pa(Xn)/y] · P(y | zi,1, . . . , zi,J),

where Mi[xn, x′n | pa(Xn)/y] represents the number of times Xn

transitions from state xn to state x′n in the ith trajectory when

Xn’s parents without the class node (i.e. Pa(Xn)/Y) are set to

pa(Xn)/y. Contribution to the time count sufficient statistics of

attribute Xn such that Y ∈ Pa(Xn) and Y = y is:

T̄ [xn | pa(Xn)] =T̄ [xn | pa(Xn)]

+ T i[xn | pa(Xn)/y] · P(y | zi,1, . . . , zi,J),

where T i[xn | pa(Xn)/y] is the amount of time along the ith

trajectory in which attribute Xn is in state xn when its parents

without the class node (i.e. Pa(Xn)/Y) are set to pa(Xn)/y.

2 The algorithm could also start with a random instantiation of the class value

for each trajectory. Since it is an iterative algorithm that stops in local opti-

mum, different starting points can achieve different results.
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Expected sufficient statistics (i.e. M̄ and T̄ ) can be calculated

by summing the contributions of the sufficient statistics, occur-

rences (i.e.Mi) and times (i.e. T i) for each trajectory of the train-

ing set (i.e. i ∈ {1, . . . , | D |}).

5.1.1.2 Maximization

Once calculated the expected sufficient statistics, the maximiza-

tion step is the same as for complete observable trajectories.

According to the Maximum Likelihood Estimation (MLE) the

parameters are calculated as follows:

• qpa(X)x =
M̄[x|pa(X)]
T̄ [x|pa(X)]

;

• θpa(X)xx′ =
M̄[x,x′|pa(X)]
M̄[x|pa(X)]

;

• θy = M̄[y]∑
y′ M̄[y′|pa(X)]

;

where M̄[x | pa(X)] =
∑
x′ M̄[x, x′ | pa(X)].

Of course also in the case of clustering the imaginary counts

of the hyperparameters αpa(X)x , αpa(X)xx′ and, τpa(X)x can be used

(see Section A.1.2.2). Using Bayesian estimation the parameters

are calculated as follows:

• qpa(X)x =
α
pa(X)
x +M̄[x|pa(X)]

τ
pa(X)
x +T̄ [x|pa(X)]

;

• θpa(X)xx′ =
α
pa(X)

xx′ +M̄[x,x′|pa(X)]

α
pa(X)
x +M̄[x|pa(X)]

;

• θy =
αy+M̄[y]∑
y′ αy′+M̄[y′]

.

5.1.1.3 Stopping criteria

EM algorithm is an optimization algorithm that maximizes the

likelihood with iterative steps. It stops when it converges to a

local optimum. In practice, EM goes closer to the local optimum

iteration after iteration, but never reaches it. For this reason it is
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necessary to define a stopping criterion (Koller and Friedman,

2009).

The idea is to stop the algorithm when it reaches a point close

enough to the local optimum. To do this consecutive iterations

are compared, and when the likelihood values or the parameter

values are very similar the algorithm is terminated. The two

comparison methods bring different results and performances,

but it is not possible to define which is better. It differs from

data set to data set.

5.1.2 Hard-assignment EM

In Section 5.1.1 the soft-assignment EM algorithm was shown.

It is called soft-assignment EM because the class probability

distribution is used to bias the sufficient statistics. With soft-

assignment EM each trajectory contributes to the sufficient

statistics for each class.

Hard-assignment EM labels each trajectory with the most

probable class. Then, the new labeled trajectories are used to

calculate the sufficient statistics.

The trajectory contributions to the sufficient statistics in the

case of hard-assignment EM are as follows. Contribution to the

class count sufficient statistics for class Y = y is:

M̄[y] = M̄[y] +

 1 if y = arg maxy′ P(y′ | zi,1, . . . , zi,J)

0 otherwise
.

Contribution to the occurrence count sufficient statistics of at-

tribute Xn such that Y ∈ Pa(Xn) and Y = y is:

M̄[xn, x′n | pa(Xn)] = M̄[xn, x′n | pa(Xn)]

+

 Mi[xn, x′n | pa(Xn)/y] if y = arg maxy′ P(y′ | zi,1, . . . , zi,J)

0 otherwise
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where Mi[xn, x′n | pa(Xn)/y] represents the number of times Xn

transitions from state xn to state x′n in the ith trajectory when

Xn’s parents without the class node (i.e. Pa(Xn)/Y) are set to

pa(Xn)/y. Contribution to the time count sufficient statistics of

attribute Xn such that Y ∈ Pa(Xn) and Y = y is:

T̄ [xn | pa(Xn)] = T̄ [xn | pa(Xn)]

+

 T i[xn | pa(Xn)/y] if y = arg maxy′ P(y′ | zi,1, . . . , zi,J)

0 otherwise

where T i[xn | pa(Xn)/y] is the amount of time along the ith tra-

jectory in which attribute Xn is in state xn when when its par-

ents without the class node (i.e. Pa(Xn)/Y) are set to pa(Xn)/y.

Once calculated the sufficient statistics (i.e. expectation step)

the hard-assignment EM relies on the same maximization step

as the soft-assignment EM.

5.1.3 Structural learning

Learning the structure of CTBNCs over unlabeled data requires

the same algorithms as in the case of supervised learning. Start-

ing from an initial structure an optimization algorithm can be

used to locally maximize the scoring function, as done in the

case of supervised learning (Chapter 4). In this work the Naive

Bayes structure is used as the starting point.

Scoring functions, i.e. Marginal Log-likelihood and Condi-

tional Log-likelihood scores, are based on the training set suffi-

cient statistics, for this reason the sufficient statistics of the last

iteration of the EM algorithm are used.

Learning the structure in case of clustering is a computation-

ally demanding procedure that requires to iterate the EM pa-

rameter learning and the structural learning algorithm since the

reaching of a termination point. The termination point is found
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when changing the structure does not improve the score with

respect to the current model parameters and sufficient statis-

tics. The structural learning process can be addressed indepen-

dently for each variable (Algorithm 2).

Algorithm 2 CTBNCs unsupervised structural learning algo-

rithm.

Require: a data set D of unlabeled trajectories without missing

data.

Ensure: a learned CTBNC model C.

1: Cmax := NaiveBayesModel(D)

2: for X ∈ Cmax do

3: [Cmax, M̄, T̄ ] := EM(Cmax,X,D)

4: s := Score(M̄, T̄ ,Cmax,X,D)

5: repeat

6: C := Cmax

7: M := Neighbors(C,X)

8: for Cn ∈M do

9: [Cn, M̄n, T̄n] := EM(Cn,X,D)

10: sn := Score(M̄n, T̄n,Cn,X,D)

11: if s < sn then

12: s := sn

13: Cmax := Cn

14: end if

15: end for

16: until C 6= Cmax

17: end for

18: return C
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5.2 synthetic tests

5.2.1 Test campaign

In this section the synthetic test campaign is presented and

described, while the real world data set experiments are ad-

dressed in Chapter 6.

The clustering synthetic campaign is parallel to the super-

vised classification synthetic campaign discussed in Section 4.4.

Numerical experiments are devoted to comparing the perfor-

mance of the previously tested CTBNCs, learned by maximiz-

ing both the Marginal Log-likelihood and the Conditional Log-

likelihood scoring functions, with Dynamic Bayesian Networks

(DBNs). CTBNCs and DBNs are both learned using the EM algo-

rithm.

DBNs are implemented using the MATLAB Bayesian Nets

toolbox (Murphy et al., 2001). This library does not allow to

learn the structure over partially observable trajectories. For

this reason DBN-NB1 and DBN-NB2 are the DBNCs tested (see

Figure 6).

The synthetic clustering tests are realized over CTBNCs data

sets and DBNs data sets as well. CTBNCs data sets were described

in Table 1. These data sets were generated by using the models

depicted in Figure 7 (Section 4.4.1.2). DBNs data sets were de-

scribed in Section 4.4.1.3.

In many clustering problems the number of clusters is un-

known. Discovering the optimal number of clusters is a diffi-

cult problem. Because the cluster number discovery is not in

the purpose of this dissertation, it is assumed that the correct

number of clusters is known.
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Section 5.2.3.1 shows the performances achieved over the con-

tinuous time data sets, while Section 5.2.3.2 shows the perfor-

mances achieved over the discrete time data sets.

5.2.2 Performance measures

Clustering evaluation can be performed by using external mea-

sures, internal measures or, relative measures (Halkidi et al., 2001;

Gan et al., 2007; Xu and Wunsch, 2008).

Internal and external measures are based on statistical tests.

Relative measures are not based on statistical tests, and for

this reason they are more efficient (Halkidi et al., 2001). The

idea of relative approaches is to compare the clustering perfor-

mance on the basis of a predefined criterion. Relative measures

can be used, for example, to test the number of clusters (i.e.

Calinski-Harabasz index (Caliński and Harabasz, 1974) and,

Davies-Bouldin index (Davies and Bouldin, 1979)).

Internal measures evaluate the similarity of the clusters using

distance functions (i.e. the CoPhenetic Correlation Coefficient

(Sokal and Rohlf, 1962)). The advantage of internal approaches

is the possibility to obtain performance measures also when the

label is unknown in the evaluation data sets. On the contrary,

if it is difficult to calculate a good quality distance, internal

measures lose their effectiveness. This is the case of continuous

time multivariate trajectories (see Section 2.2.1).

External measures evaluate the clusters using the label infor-

mation. In this case the label is ignored during the clustering

process, but it is mandatory to calculate the performances. The

advantages of external approaches is that they do not require

a distance function. On the contrary, the class label must be

known, and in many real problems this is difficult, expensive

or even impossible.
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The labels are available in the synthetic and real world data

sets used in this dissertation. This allows to use external mea-

sures, which are the most effective way to calculate perfor-

mances considering the difficulties of finding good quality dis-

tances on multivariate continuous time trajectories.

The external measures used are Rand index (R) (Rand, 1971),

Jaccard’s coefficient (J) (Halkidi et al., 2001) and, Fowlkes–Mallows

index (FM) (Fowlkes and Mallows, 1983). These measures can

be calculated as follows. Let’s consider a clustering partition-

ing C = {C1, . . . ,Ch} and the real partitioning P = {P1, . . . ,Ps}.

Given a couple of clustered instances in the data set it is possi-

ble to distinguish the following four cases (Halkidi et al., 2002):

• SS: both points belong to the same cluster and the same

partition;

• SD: both points belong to the same cluster, but a different

partitions;

• DS: the points belong to a different clusters, but the same

partition;

• DD: the points belong to different clusters and partitions.

Considering a data set of | D | instances and all the possible

M couples of instances in the data set (i.e. M =
|D|(|D|−1)

2 ), let’s

call #SS, #SD, #DS and, #DD the number of couples in each of

the four possible configurations (i.e.M = #SS + #SD + #DS +

#DD). The number of occurrences in each of the four cases rep-

resents useful information for evaluating the clustering quality.

Starting from these values the following external measures are

calculated (Halkidi et al., 2002):

• Rand index: R = #SS+#DD
M

• Jaccard’s coefficient: J = #SS
#SS+#SD+#DS
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• Fowlkes–Mallows index: FM =
√

#SS
#SS+#SD

#SS
#SS+#DS

These three measures take value in [0, 1]. The more similar the

clusters are to the original partitioning, the higher values the

three indexes have.

In addition to these measures, also precision, recall and e f-

measure are calculated between each cluster-partition couple.

5.2.3 Results

5.2.3.1 CTBN synthetic data sets

Figure 14 depicts the best average performances in terms of

Rand index, Jaccard’s coefficient, and Fowlkes–Mallows index.

For each measure and for each class of models (i.e. MLL, CLL,

CTNB, and DBN) the best average performances are reported.

The picture clearly shows the effectiveness of Continuous

Time Bayesian Network Classifiers learned by maximizing the

Marginal Log-likelihood scoring function. In the clustering case,

the Conditional Log-likelihood score does not perform well.

Indeed, CTBNCs learned with Conditional Log-likelihood per-

form comparably or worse than Continuous Time Naive Bayes

(CTNB).

DBNs are less effective than the continuous time model. DBNs

results are clearly worse than the one achieved by CTBNC

learned by maximizing the Marginal Log-likelihood score.

Figure 15 depicts the average learning time for the CTBNCs.

As for supervised learning over continuous time trajectories, it

was necessary to discretize the trajectories to apply DBNs. For

each trajectory a sampling rate has been chosen that allows to

generate 50 data rows. The discretization process makes the

learning time of CTBNCs and DBNs not directly comparable. Nev-
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Figure 14.: Best average performances, i.e. Rand index (a), Jaccard’s

coefficient (b), and Fowlkes–Mallows index (c), between

MLL, CLL, CTNB, and DBN models. The x-axis is associated

with the CTBNCs used to generate the data sets.

ertheless, the results clearly showed that CTBNCs are more effi-

cient than DBNs.
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Figure 15.: Average learning time for each CTBNC model. The x-axis is

associated with the models used to generate the data sets.

Among CTBNCs, CTNB is of course the most efficient approach

because it does not require the structural learning process. The

main differences in terms of learning time between CTBNCs

emerge when the maximum number of parents is increased.

CTBNCs learned by maximizing Marginal Log-likelihood seem

to be learned faster than the corresponding models learned by

maximizing the Conditional Log-likelihood. This is in contra-

diction with what observed in the case of supervised learning

where the time difference between the two learning functions

was not clear and seems to be in favor of the Conditional Log-

likelihood scoring function.

As in the case of supervised learning, k = 2 Augmented Con-

tinuous Time Naive Bayes (ACTNB) offers a good compromise

between model complexity and effectiveness. The complete re-

sults in Section B.2.2 show the capability of k = 2 ACTNB to pro-

vide good performance, even on data sets generated by more

complex models.

5.2.3.2 DBN synthetic data sets

The results over CTBNCs synthetic data sets are confirmed by

the results on the DBNs synthetic data sets. Figure 16 depicts
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the best performances in term of Rand index, Jaccard’s coeffi-

cient, and Fowlkes–Mallows index. For each measure and for

each class of models (i.e. MLL, CLL, CTNB, and DBN) the best

performances are reported.

DBNCs synthetic data sets are composed of discrete time tra-

jectories. Nevertheless, discrete time models (i.e. DBNs) do not

perform well as continuous time models. Even in this case,

CTBNCs learned with the Marginal Log-likelihood score outper-

form all the other models. CTBNCs learned by maximizing Con-

ditional Log-likelihood perform better than DBNCs, but their

performances are inferior to the ones achieved by CTNB.

In the case of discrete time representation k = 2 ACTNB shows

its capability to provide good performances even more. In the

case of clustering over the DBNCs data sets, k = 2 ACTNB-MLL is

the model that provides the best performances.

5.2.3.3 Synthetic test summary

In this Section a synthetic test campaign for the problem of mul-

tivariate trajectories clustering was addressed. Here is a short

summary of the main results:

• CTBNCs are an efficient and effective framework to cluster

multivariate trajectories;

• Marginal Log-likelihood score performs better than Con-

ditional Log-likelihood score in the case of clustering;

• CTBNCs learned by maximizing the Marginal Log-

likelihood scoring function greatly outperform DBNCs,

both on continuous and discrete time data sets;

• k = 2 ACTNB-Marginal Log-likelihood (MLL) is the best

compromise between model complexity and effectiveness.
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Figure 16.: Best performances, i.e. Rand index (a), Jaccard’s coefficient

(b), and Fowlkes–Mallows index (c), between MLL, CLL,

CTNB, and DBN models. The x-axis is associated with the

DBNCs used to generate the data sets.



6
R E A L W O R L D P R O B L E M A P P L I C AT I O N S

This chapter presents two real world problems addressed effi-

ciently and effectively with Continuous Time Bayesian Network

Classifiers (CTBNCs).

Post-Stroke rehabilitation (Section 6.1), and classification of

traffic profiles (Section 6.2) are described. Both classification

and clustering is addressed over the real world data sets.

6.1 post-stroke rehabilitation

6.1.1 Case study

Rehabilitation after hospital treatment is an important chal-

lenge for health systems all over the world. Tormene et al. (2009)

pointed out how this is also true for post-stroke rehabilitation.

In terms of costs and effectiveness it is very important to start

the physical therapy as soon as possible (Paolucci et al., 2000;

Kwakkel et al., 2004; Forster and Young, 2002). This is often

hard to realize because a supervisor should be present dur-

ing the rehabilitation exercises. Another problem is the diffi-

culty for many patients to reach a rehabilitation structure after

a stroke, mainly because many of them live alone.

Tormene et al. (2009) proposed an automatic movement

recognition system to face these difficulties. The idea is to pro-

76
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vide the patient with a system that can recognize his/her move-

ments and inform him/her about the correctness of the rehabil-

itation exercise. The supervision of the rehabilitation therapies

can be guaranteed remotely. The system must be able to recog-

nize the correctness of the movements in real time before the

exercises are completed and the full trajectories are recorded.

Tormene et al. (2009) focused on the upper limb post-stroke

rehabilitation. Nevertheless, this method can be applied for all

rehabilitation therapies. The authors provide a data set of 7

rehabilitation exercises (Table 4). For each exercise 120 multi-

variate trajectories are provided, thanks to 29 sensors analyzed

with a frequency of 30 Hz (Tormene and Giorgino, 2008). Each

movement is addressed separately as a classification problem

with 2, 4, and 6 classes (see Table 5).

Movement id Description

1 Abduction-adduction of the upper limb on a frontal plane

2 Abduction-adduction of the upper limb on a sagittal plane

3 External rotation of the forearm

4 Flexion-extension of the elbow

5 Pronation-supination of the forearm

6 Functional activity: eating

7 Functional activity: combing

Table 4.: Description of the 7 rehabilitation exercises (Tormene et al.,

2009).

Tormene et al. (2009) addressed the post-stroke rehabilitation

problem with 1-Nearest Neighbor Classifier (NNC) using both

Dynamic Time Warping (DTW) (Keogh and Ratanamahatana,

2005) and Open-End Dynamic Time Warping (OE-DTW) dis-

tances (see Section 2.2.1). OE-DTW is a variation of DTW that

allows to effectively deal with incomplete trajectories. The idea

is to match the input trajectory with the reference trajectories,

considering all the possible points in which the references can
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Class index Correctness Speed Description

1 Correct Slow Reference

2 Correct Average Reference

3 Correct Fast Reference

4 Incorrect Average Movement too small

5 Incorrect Average Typical compensatory action (first)

6 Incorrect Average Typical compensatory action (second)

Table 5.: Description of the 6 movement classes (Tormene et al., 2009).

The 2 class problem identifies only the correctness of the

movement while the 4 class problem identifies correct move-

ments and the different types of incorrect movements.

be truncated. The OE-DTW is the minimum of all the distances

calculated for all the possible truncations. The results showed

the ability of both distances to deal with the rehabilitation prob-

lem. Tests were also made with half length trajectories. In this

case DTW was not able to perform efficiently, while OE-DTW was

not strongly affected by length reduction.

Dynamic Time Warping distances are an efficient way of

calculating the distance between trajectories in a continuous

state space. When the state space is discrete and without any

states ordering, the DTW distances lose their effectiveness be-

cause they are based on the trivial metric (Hazewinkel, 1993).

To understand how well CTBNCs perform after discretization

compared to DTW approaches on real world problems with con-

tinuous state space, tests are made on discretized post-stroke

rehabilitation data sets.

6.1.2 Supervised classification experiments

Tormene et al. (2009) used leave-one-out cross-validation to es-

timate the performances. Because of the computational effort
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needed to test all the models, in particular Dynamic Bayesian

Networks (DBNs), the experiments here were made using 10

fold cross-validation.

Table 6 shows accuracy, precision and recall values, averaged

over movements, achieved by CTBNCs and Dynamic Bayesian

Network Classifiers (DBNCs) for 2 and 6 class classification

problems (Codecasa and Stella, 2013). CTBNCs performances are

comparable with DTW performances obtained by Tormene et al.

(2009)1, even after the great simplification due to the original

state space discretization.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

# classes Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

Accuracy 0.98 0.97 0.99 0.87 0.85 0.87 0.92 0.87 0.95 0.97 0.97

2 classesPrecision 0.97 0.97 0.99 0.86 0.85 0.86 0.93 0.86 0.95 0.97 0.97

Recall 0.98 0.98 0.99 0.88 0.84 0.88 0.92 0.88 0.96 0.97 0.97

Accuracy 0.91 0.91 0.89 0.81 0.88 0.81 0.88 0.81 0.88 0.87 0.87

6 classesPrecision 0.92 0.91 0.89 0.84 0.89 0.84 0.89 0.84 0.90 0.88 0.87

Recall 0.90 0.90 0.88 0.81 0.88 0.82 0.88 0.82 0.89 0.87 0.87

Table 6.: Average accuracy, precision and, recall for the post-stroke

rehabilitation data set (10 fold CV). Bold characters indicate

the best models with 90% confidence.

Accuracy values achieved by almost all CTBNCs with the

Conditional Log-likelihood (CLL) scoring function are better

than accuracy values achieved by the corresponding models

using the Marginal Log-likelihood (MLL) scoring function.

For the 6 class classification problem, in the case where no in-

formation about variable dependency is available (i.e. the links

between the class and the other variables), Conditional Log-

1 DTW and OE-DTW obtained 0.99 accuracy values over the 2 class data set,

while DTW obtained 0.88 and OE-DTW obtained 0.87 accuracy values over the

6 class data set (Tormene et al., 2009).
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likelihood always outperforms Marginal Log-likelihood. Per-

formance achieved by CTBNCs learned with Conditional Log-

likelihood are robust with respect to the choice of the imagi-

nary count values, while the same does not apply to Marginal

Log-likelihood.

k = 2 ACTNB, learned with Conditional Log-likelihood scor-

ing, implements the optimal trade-off between the continuous

time models in terms of time and accuracy. Indeed, for both 2

and 6 class classification problems, the k = 2 ACTNB model

when learned with Conditional Log-likelihood, achieves the

highest accuracy value and is the fastest to learn because of

the small number of parents.

All the approaches (i.e. CTBNCs, DTW, and DBNs) seem to pro-

vide good results when the best model is selected. It is likely

that learning different models for each movement brings great

simplification that allows to reach good performances with all

the approaches. Nevertheless, DBNs are much more computa-

tionally demanding than CTBNCs.

Further analyses were made with CTBNCs when the percent-

age of the data set it reduced. As in Section 4.4, the reduction

of the data set dimension is made both in terms of trajectory

length and number. This differs from what Tormene et al. (2009)

made. In their work only the length of the test set trajectories

was cut. Tormene et al. (2009) were interested in understand-

ing the performances of DTW approaches during the movement

execution, while in this thesis the interest is focused on under-

standing the behavior of CTBNCs’ learning process when the

amount of data decreases.

Figure 17 shows how the Conditional Log-likelihood scor-

ing function outperforms the Marginal Log-likelihood scoring

function. The effectiveness of Conditional Log-likelihood grows

when the data amount is reduced. In this case Conditional Log-
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likelihood is able to also perceive weak dependencies between

the variables and the class node. When the data amount is

greatly reduced, the Conditional Log-likelihood scoring func-

tion tends to generate too complex structures with respect to

the amount of available data. In these cases, simple models such

as Continuous Time Naive Bayes (CTNB) are the most effective

ones.
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Figure 17.: Percentage of numerical experiments where MLL (CLL) is

better than CLL (MLL) with 90% confidence. Analysis is

performed on post-stroke reduced data sets. The x-axes

represent data set percentage reduction. Figure (a) refers

to 2 class problem, while Figure (b) refers to 6 class prob-

lem.

Results on the post-stroke rehabilitation data set confirmed

the consideration evidenced in the synthetic experiments (Sec-
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tion 4.4). Additionally, CTBNC is an effective and efficient frame-

work to address post-stroke rehabilitation gesture recognition

problems even after the simplification due to state space dis-

cretization. Performances are comparable to the one obtained

by the DTW approaches. Nevertheless, CTBNCs offer an efficient

alternative in order to avoid the computational effort of com-

paring many trajectories during the 1-NNC classification proce-

dure.

6.1.3 Clustering experiments

In order to test the clustering algorithms on real world prob-

lems the post-stroke rehabilitation data sets are used.

Table 7 summarizes the average performances (see Section

5.2.2) of the different tested models. The results do not evi-

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .596 .575 .543 .563 .560 .526 .509 .567 .516 .522 .527

2 classes J .451 .406 .374 .399 .401 .363 .352 .405 .346 .448 .453

FM .595 .575 .543 .566 .569 .533 .521 .574 .513 .636 .640

R .750 .733 .723 .738 .724 .754 .724 .739 .730 .426 .526

6 classes J .170 .164 .161 .154 .137 .170 .127 .158 .113 .167 .167

FM .291 .285 .282 .267 .242 .287 .226 .274 .204 .357 .334

Table 7.: Average clustering performances for 2 and 6 class post-

stroke rehabilitation problems. R stands for the Rand in-

dex, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index.

dence a more effective approach. Different measures seem to

give advantage to different models, since they evaluate differ-

ent aspects of the clustering. The Rand index seems to give

advantage to continuous time approaches, CTNB in particular.

Jaccard’s coefficient does not clearly shows a more efficient ap-



6.2 traffic profile classification 83

proach, while the Fowlkes–Mallows index seems to give advan-

tage to discrete time approaches. The reason for this can proba-

bly be found in the post-stroke rehabilitation problem. Indeed,

the rehabilitation movements are quite similar and do not de-

fine well separated clusters of trajectories. A better clustering

real world example is provided in the next section.

6.2 traffic profile classification

6.2.1 Case study

Today traffic congestion is one of the main concerns to cope

with in all the big cities of the world. Wasting time driving a car

is source of stress and has big impacts on economic activities.

Arnott and Small (1994) estimate a cost of 48 billion dollars

due to traffic congestion in 39 metropolitan areas in the United

States with a population of one million or more. This does not

include the cost due to unpredictability of traffic delays, the

cost of extra fuel and air pollution.

The environmental issue is not less important. Traffic is one

of the main causes of environmental and acoustic pollution

which leads to high social costs. The relationships between pol-

lution and allergies, asthma, tumors and, immune system dis-

eases are clear (Gualtieri et al., 2005; Mantecca et al., 2007). An-

alyzing these data it easy to see that traffic can be considered

an important social problem that must be faced to reduce its

daily impact.

Urban Traffic Control (UTC) is one of the major challenges

for traffic engineers. It promises to be one of the most effec-

tive ways to cope with traffic congestion in metropolitan areas.

This is particularly true considering the evolution of new tech-

nologies, such as sensors to monitor the streets (i.e. loops, cam-
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eras, ...) and the increase of computational capabilities of mod-

ern computers. Nevertheless, because traffic is a chaotic system,

and traffic profile changes continuously during the day, the traf-

fic light control is still an open problem.

Traffic light control and coordination is a well studied prob-

lem in the specialized literature (Papageorgiou et al., 2003).

The following commercial solutions are very important: TRAN-

SYT (Robertson, 1969), an off-line optimization model; SCOOT

(Robertson and Bretherton, 1991), SCATS (Sims and Dobinson,

1980) and UTOPIA2 which offer traffic-responsive strategies.

The improvement of artificial intelligent models has brought

new intelligent transportation system approaches (Stella et al.,

2006). The literature shows many solutions to the traffic light

control problem which use artificial intelligence models. Yu

and Recker (2006) propose a discrete-time, stationary, Markov

decision process in order to solve the problem of traffic con-

trol. Haijema and van der Wal (2008) proposed a Markov deci-

sion process decomposition approach to control isolated inter-

sections. A reinforcement learning approach is used by Thorpe

and Anderson (1996) and Wiering (2000) to define a UTC system

with learning capability. Also approaches using expert systems

(Felici et al., 2006; Hirankitti and Krohkaew, 2007), fuzzy logic

(Favilla et al., 1993; Angulo et al., 2011), neural networks (Spall

and Chin, 1997), auto-organization systems (Gershenson, 2004;

Lämmer and Helbing, 2008) and evolutionary algorithms (Park

and Messer, 1998) were proposed.

Only few of these approaches can be applied in the real

world. This is because of the need for strong assumptions and

approximations to address the computational effort of manag-

ing real networks and complex systems. Classification of the

traffic profile (i.e. the state of the traffic) is a way to simplify

2 http://www.swarco.net/
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the traffic light optimization. The idea is classify or cluster the

traffic condition off-line in order to find the best plan for each

particular condition. Then, in real time choose the plan which

as the most similar precalculated traffic profile and eventually

propose some modifications to adapt the traffic light plans to

the actual traffic condition. This approach is not new in the

literature: Angulo et al. (2011) use fuzzy clustering of origin-

destination matrix as an intermediate step to their UTC ap-

proach.

Urban Traffic Control is out of the scope of this thesis, but

classification and clustering of traffic light profiles using real

time square waves generated by loop sensors positioned under

the concrete of the roads (see Figure 18) represents an innova-

tive, efficient and effective way to deal with this problem.

Figure 18.: Example of loop square wave. One indicates a vehicle pass-

ing over the loop, zero indicates a loop free of vehicles.

Four data sets were generated using the TSIS-CORSIM sim-

ulator (Daigle et al., 1997; Owen et al., 2000). The data sets are

generated using 100 seconds and 300 seconds as length of trajec-

tories. Data are sampled with a frequency of 10Hz. Sensors (i.e.

loops) are positioned at the beginning and at the end of each

link (i.e. a road that links two crossroads). Two data sets from

a toy network example (Figure 19a) and two data sets from a

portion of Monza’s road network (Figure 19b) are generated.
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(a)

(b)

Figure 19.: Toy road network (a) and Monza’s road network (b) used

to generate the two data sets.

The choice of this portion of Monza’s road network is partic-

ularly valuable because it is one of the most crucial and most

congested areas in Monza. This is confirmed by the partnership

of Monza in the CIVITAS ARCHIMEDES European project3

with the purpose of introducing “innovative, integrated and

ambitious strategies for clean, energy-efficient, sustainable ur-

ban transport and thereby have a significant impact on poli-

cies concerning energy, transport, and environmental sustain-

ability”.

Performance of CTBNCs in traffic profile classification (Section

6.2.2) and clustering (Section 6.2.3) are analyzed. Since the real

Monza road network is not equipped with 2 sensors for each

link, tests are also made using the actual six sensors present on

the network. The impact of the sensors in the classification task

can suggest if and where to add or to remove sensors.

3 http://www.civitas.eu/archimedes
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6.2.2 Supervised classification experiments

Table 8 shows the classification performances over the traffic

profiling data sets. CTBNC is an effective framework to deal with

traffic profile classification.

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Road Trajectories CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

network length (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

Toy 100 seconds 0.91 0.92 0.91 0.92 0.86 0.93 0.86 0.93 0.86 0.86 0.83

network 300 seconds 0.95 0.95 0.95 0.95 0.93 0.95 0.93 0.95 0.93 0.89 0.88

Monza’s 100 seconds 0.75 0.73 0.75 0.73 0.72 0.73 0.72 0.72 0.72 0.67 0.67

network 300 seconds 0.82 0.79 0.82 0.79 0.80 0.79 0.80 0.78 0.80 0.75 0.75

Monza’s network100 seconds 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.54 0.53

real loops 300 seconds 0.72 0.70 0.72 0.70 0.72 0.70 0.72 0.70 0.72 0.63 0.61

Table 8.: Accuracy for the traffic profiling problem (10 fold CV). The

bolt characters indicate the best models with 90% of confi-

dence.

In traffic state of the art the loop square waves are aggregated

over time generating three main measures: vehicle counts, ve-

hicle average speed and density. These measures are used to

develop intelligent transportation systems. The idea to directly

use the square wave generated by loops is new. The results

show that with Continuous Time Bayesian Network Classifiers

this approach is feasible and effective.

Simple models such as CTNB seem good enough for classi-

fication purpose. Probably the reason is the complexity of the

traffic dynamics that does not show strong dependency rela-

tions between sensors in an urban network. These dependen-

cies would be more evident in freeways, where the flow is more

regular, and it would be possible see groups of vehicle moving

on the highways.

300 second trajectories allow for better classification, proba-

bly due to the smaller influence of traffic light cycles. Regarding



6.2 traffic profile classification 88

Monza’s road network the strong sensor reduction (i.e. from 32

sensors to 6 sensors) has only a limited impact on the classifica-

tion performances. Accuracy is reduced by 10% when reducing

81% of the sensors. This highlights the fact that 2 sensors for

each link generates duplicated information, while the position

of the real world sensors is well studied. Nevertheless, some

new sensors can offer more information for the traffic profile

classification.

In terms of continuous versus discrete time models, CTBNCs

perform statistically significantly better than DBNs also in this

problem. In the case of the real world road network CTBNCs

show an increase of accuracy between 7% and 9%.

6.2.3 Clustering experiments

Traffic profile clustering is a solution to simplify the traffic sig-

nal optimization problem. Using clustering it is possible to iden-

tify, without any supervision, clusters of similar traffic profiles.

A different traffic plan can be used to manage each traffic pro-

file in the same cluster. In this section the clustering perfor-

mances of CTBNCs and DBNs are compared over the traffic pro-

file classification data sets.

Figure 20 depicts the best performances in terms of the Rand

index, Jaccard’s coefficient, and the Fowlkes–Mallows index

(see Section 5.2.2). For each measure and for each class of mod-

els (i.e. MLL, CLL, CTNB, and DBN) the best performances are

shown4.

The results, summarized in Table 25, show the effective-

ness of continuous time classifiers. CTBNCs strongly outperform

DBNs. CTBNCs learned by maximizing Marginal Log-likelihood

4 For computational reasons a random subset of trajectories is used in the

Monza road network tests.
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are the best approaches to deal with the clustering problem.

Nevertheless, CTNB and CTBNCs learned by maximizing Condi-

tional Log-likelihood perform well. Both these approaches are

more effective than DBNs.
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Figure 20.: The Rand index (a), Jaccard’s coefficient (b), and the

Fowlkes–Mallows index (c), between MLL, CLL, CTNB, and

DBN models. The x-axis is associated with the used data

sets4. “T100” and “T300” indicate the toy network data

sets. “M100”, “M300”, “M100-real”, and “M300-real” indi-

cate the Monza road network data sets with all the sensors

and with only the real sensors.
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C O N C L U S I O N S

7.1 work overview

Real world problems which generate streaming data have

rapidly increased over the last years. This has made data min-

ing of temporal data to be an increasingly important problem

to cope with. Recently, many approaches have been proposed

in the specialized literature. Continuous Time Bayesian Net-

works (CTBNs) is one of these approaches introduced to effi-

ciently model temporal data (Nodelman et al., 2002a). CTBNs

represent multivariate trajectories using the exponential distri-

bution to model variable evolution over continuous time. This

allows to avoid the time discretization which can introduce un-

necessary complexity (Nodelman et al., 2002a).

Classification is one of the most important problems in the

mining of streaming data. In this dissertation temporal classi-

fication of multivariate trajectories was analyzed. Continuous

Time Bayesian Network Classifiers (CTBNCs), a specialization of

CTBNs, which allows temporal classification when the class is

static were studied. Before this work, CTBNCs were introduced

and tested only using the naive Bayes approach (Stella and

Amer, 2012). In this thesis the structural learning of CTBNCs was

addressed. First, the Marginal Log-likelihood scoring, function

introduced by Nodelman et al. (2002b) for CTBNs, was used to

91



7.1 work overview 92

learn CTBNCs. Then, a Conditional Log-likelihood scoring func-

tion was derived and applied to learn CTBNCs improving their

classification performances (Chapter 4).

Unsupervised learning, i.e. the clustering problem, was ad-

dressed for the first time using CTBNCs. The Expectation Max-

imization (EM) algorithm with soft and hard assignment was

developed and tested (Chapter 5).

A rich test campaign using synthetic and real world data

sets was performed to compare the classification and the clus-

tering performances of the proposed models. CTBNCs learned

by maximizing Marginal Log-likelihood, and Conditional Log-

likelihood scores were compared with the existing approaches

in the state of the art: Continuous Time Naive Bayes (CTNB) and

Dynamic Bayesian Network Classifiers (DBNCs). Regarding the

supervised classification problem, CTBNCs learned by maximiz-

ing the Conditional Log-likelihood score are the most effective

approaches. This is particularly true when the amount of data

is reduced. When the clustering problem is addressed, CTBNCs

learned by maximizing the Marginal Log-likelihood score are

the most effective approaches. In both cases, i.e. supervised

classification and clustering, CTBNCs outperformed DBNCs even

on discrete time problems. This is also true on synthetic data

sets generated from Dynamic Bayesian Networks (DBNs). The

experiments showed that max-2 Augmented Continuous Time

Naive Bayes (ACTNB) is the best compromise between model

complexity and effectiveness.

Two interesting real world problems were addressed using

the proposed models: gesture recognition for post-stroke reha-

bilitation and traffic profile classification (Chapter 6). CTBNCs

were found to be an effective approach to dealing with both the

problems. CTBNCs performed better than DBNCs, the approach

of the state of the art used for comparison.



7.2 future works and perspectives 93

The last contribution of the thesis was the CTBNCToolkit: an

open source toolkit for CTBNCs. The toolkit is described in Ap-

pendix A. Using it, it is possible to replicate the numerical ex-

periments described in this dissertation.

7.2 future works and perspectives

CTBNCs were recently introduced in the literature. After the con-

tributions of this thesis (Section 1.2) there are still open issues

that must be taken into account.

CTBNCs efficiently address the classification problem of mul-

tivariate trajectories when the class is static and the trajectories

are completely observable. Relaxing these two assumptions is

the first natural future step. It would be interesting to try to

understand if there is an efficient way to deal with missing

value trajectories under particular conditions. The same ques-

tion holds when the class changes over time. Is it possible to

preserve the efficient inference of the CTBNCs under some as-

sumption even when the class changes over time?

Another natural extension is to model the time evolution us-

ing different distributions. Some work has been done in this

direction for CTBNs (Gopalratnam et al., 2005; Nodelman et al.,

2012). This is particularly interesting in the case of real world

applications where the memoryless property of the exponen-

tial distribution can be a limitation. In this sense further exper-

iments, especially addressed to real world clustering problems,

would be interesting.

Enlarging the horizon, two other paths seem promising: to

try to apply the inference algorithm of CTBNCs on Piecewise-

constant Conditional Intensity Models (PCIMs) (Gunawardana

et al., 2011; Weiss and Page, 2013) and to try to add decision and
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utility nodes on CTBNs in order to model the decision process

over continuous time.



A
C T B N C T O O L K I T

In this dissertation Continuous Time Bayesian Network Classi-

fiers (CTBNCs) have been studied. An open source Java toolkit

has been developed to provide a CTBNCs implementation. The

toolkit can be used as a stand-alone application (Section A.1),

it can be used as an external library or it can be extended to

provide new features (Section A.4).

Section A.1 provides a guide about the CTBNCToolkit stand-

alone usage; download information is provided in Section A.1.1.

Section A.2 explains how to read the results of the classification

inference, while Section A.3 provides a tutorial set of examples

to use the package as a stand-alone application. Finally, the

code is presented and analyzed in Section A.4.

a.1 ctbnctoolkit how to

a.1.1 Download

CTBNCToolkit can be downloaded as a stand-alone application.

It requires opencsv-2.3 library1 to read the csv files and commons-

math3-3.0 library2 for the Gamma function calculation.

1 http://opencsv.sourceforge.net/

2 http://commons.apache.org/proper/commons-math/download_math.cgi
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To download and use the compiled CTBNCToolkit follow

these steps:

• download CTBNCToolkit .jar file from http:

//dcodecasa.wordpress.com/ctbnc/ctbnctoolkit/

website3;

• download opencsv library from http://sourceforge.

net/projects/opencsv/ web site (tests were made with

version 2.3);

• download commons math library from http://commons.

apache.org/proper/commons-math/download_math.cgi

web site (tests were made with version 3.0).

The compiled CTBNCToolkit can be used as a stand-alone ap-

plication, as showed in the next sections. On the same website

where the .jar file is released, it is possible to find the pub-

lished papers related to CTBNCs and a collection of free data

sets to test CTBNCToolkit (see Section A.3).

CTBNCToolkit source code is released under GPL v2.04 li-

cense. The source code is available on GitHub at the following

url: https://github.com/dcodecasa/CTBNCToolkit3. It can be

freely used in accordance with the GPL v2.0 license.

a.1.2 Run experiments from the command line

Once downloaded the CTBNCToolkit jar file, or generated from

the source code, it can be run as follows:

java -jar CTBNCToolkit.jar <parameters> <data> �
where <parameters> are the CTBNCToolkit parameters (i.e mod-

ifiers), addressed in the following, and <data> is a directory

3 CTBNCToolkit is not available yet for publication reasons. It will be soon

available as described.
4 GPL v2.0 license: http://www.gnu.org/licenses/gpl-2.0.html

http://dcodecasa.wordpress.com/ctbnc/ctbnctoolkit/
http://dcodecasa.wordpress.com/ctbnc/ctbnctoolkit/
http://sourceforge.net/projects/opencsv/
http://sourceforge.net/projects/opencsv/
http://commons.apache.org/proper/commons-math/download_math.cgi
http://commons.apache.org/proper/commons-math/download_math.cgi
https://github.com/dcodecasa/CTBNCToolkit
http://www.gnu.org/licenses/gpl-2.0.html
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containing a data set. This data set is used to generate both

the training set and the test set (see Section A.1.2.4), unless

--training or --testset modifier are used. In this case <data>

is considered the test set, and it can refer to a single file (see

Section A.1.2.19 and Section A.1.2.20). Hereafter the terms pa-

rameters and modifiers will be used interchangeably.

For sake of simplicity, the paths of the required libraries

are defined in the manifest file contained in the .jar archive.

Libraries are supposed to be saved in lib/ directory. Tests

are made using the Java virtual machine version 1.7.0_25 in

ubuntu.

It is worthwhile to note that it is often necessary to add the

Java virtual machine parameter -Xmx to increase the heap space

and to avoid out of memory exceptions (for example -Xmx2048m

increases the heap dimension to 2Gb).

CTBNCToolkit parameters can be without any arguments, if

specified as --modifier; or with any number of arguments, if

specified as --modifier=arg1,arg2,..,argN. Table 9 summarizes

all the parameters while Table 10 shows parameter incompat-

ibilities and dependencies. The next sections address each pa-

rameter separately.

a.1.2.1 Help

--help prints on the screen the help that shows the allowed pa-

rameters. For each parameter a short description is provided.

When help is shown all the other parameters are ignored, and

the program terminates after printing help.

java -jar CTBNCToolkit.jar --help �
a.1.2.2 Models to learn

--CTBNC modifier allows to specify the list of CTBNCs to test.

The models allowed follow:
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Parameter Method Arguments Section

--help printHelp no A.1.2.1

--CTBNC setCTBNCModels yes A.1.2.2

--model setModels yes A.1.2.3

--validation setValidationMethod yes A.1.2.4

--clustering setClustering yes A.1.2.5

--1vs1 setModelToClass no A.1.2.6

--bThreshold setBinaryDecider yes A.1.2.7

--testName setTestName yes A.1.2.8

--ext setFileExt yes A.1.2.9

--sep setFileSeparator yes A.1.2.10

--className setClassColumnName yes A.1.2.11

--timeName setTimeColumnName yes A.1.2.12

--trjSeparator setTrjSeparator yes A.1.2.13

--validColumns setValidColumns yes A.1.2.14

--cvPartitions setCVPartitions yes A.1.2.15

--cvPrefix setCVPrefix yes A.1.2.16

--cutPercentage setCutPercentage yes A.1.2.17

--timeFactor setTimeFactor yes A.1.2.18

--training setTrainingSet yes A.1.2.19

--testset setTestSet yes A.1.2.20

--rPath setResultsPath yes A.1.2.21

--confidence setConfidence yes A.1.2.22

--noprob disableProbabilities no A.1.2.23

--v setVerbose no A.1.2.24

Table 9.: It is shown for each modifier: the method of the CommandLine

class that manages it, the presence or absence of arguments,

and the Section in which the modifier is described.

• CTNB: Continuous Time Naive Bayes (CTNB) (Definition

3.2.2) (Stella and Amer, 2012; Codecasa and Stella, 2013);
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Idx Parameter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 --help X X X X X X X X X X X X X X X X X X X X X X X

2 --CTBNC X

3 --model X X D D

4 --validation X X

5 --clustering X X X X

6 --1vs1 X X X

7 --bThreshold X X

8 --testName X

9 --ext X

10 --sep X

11 --className X

12 --timeName X

13 --trjSeparator X

14 --validColumns X

15 --cvPartitions X D

16 --cvPrefix X D D

17--cutPercentage X

18 --timeFactor X

19 --training X D

20 --testset X D D D

21 --rPath X

22 --confidence X

23 --noprob X

24 --v X

Table 10.: Incompatibilities (X marks) and dependencies (D marks) be-

tween the modifiers. Incompatibility relations are symmet-

ric; this does not hold for dependency relations, i.e. a modi-

fier requires a particular value for another modifier, but the

opposite it is not necessarily true. Modifiers are indicated

by an index for due to the problems of space (first column).

• ACTNBk-f: Max-k Augmented Continuous Time Naive

Bayes (ACTNB) (Definition 4.2.2) (Codecasa and Stella,

2013) where k is the number of parents (> 2) and f is the

scoring function used to learn the structure (LL or CLL);
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• CTBNCk-f: Max-k Continuous Time Bayesian Network Clas-

sifier (CTBNC) (Definition 4.2.1) (Codecasa and Stella,

2013) where k is the number of parents (> 1) and f is the

scoring function used to learn the structure (LL or CLL);

where

• LL stands for Marginal Log-likelihood scoring function

(Section 3.1.3) (Nodelman et al., 2002b; Codecasa and

Stella, 2013);

• CLL stands for Conditional Log-likelihood scoring func-

tion (Section 4.3.2) (Codecasa and Stella, 2013).

After each model definition, it is possible to specify the mod-

ifier parameters, which define the imaginary counts of the hy-

perparameters (Section 3.1.2):

• Mk: k are the imaginary counts related to the number of

transitions for each variable (default value: 1.0);

• Tk: k is the imaginary amount of time spent in a variable

state (default value: 0.005);

• Pk: k are the imaginary counts related to the class occur-

rences (default value: 1.0).

It is a good habit to avoid zero values for the imaginary counts.

Indeed, when the data set is not big enough, some model pa-

rameters can be 0 with the risk of a division by 0 error.

In addition to each model learned with the structural learn-

ing, it is possible to add the following parameter:

• penalty: adds the dimension penalty during the structural

learning process; if omitted the penalty is disabled5.

Here is an example:

5 The penalty flag is ignored if applied with the CTNB model.
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java -jar CTBNCToolkit.jar --CTBNC=CTNB,M0.1,T0.001,ACTNB2-

CLL,CTBNC4-LL,penalty <data> �
The previous line enables the following tree models:

• a CTNB with 0.1 as prior for the variable counts, 0.001 as

the time prior and the standard 1.0 as class imaginary

counts;

• a Max-2 ACTNB learned maximizing the Conditional Log-

likelihood score and with the default parameter priors;

• a Max-4 CTBNC learned maximizing the Marginal Log-

likelihood, using the default priors and enabling the di-

mension penalty during the learning process.

a.1.2.3 Model loading

--model modifier allows to specify the file paths of CTBNC mod-

els to load6. The models must be in the .ctbn format (see Sec-

tion A.4.3.3). If a training set is defined, the training set will be

used only to learn models defined with the --CTBNC modifier

(see Section A.1.2.2).

Here are some examples:

• tests the model stored in model.ctbn file:

java -jar CTBNCToolkit.jar --model=models/model.ctbn <

other_parameters> <data>

• tests the models stored in model1.ctbn and model2.ctbn

files, and learn and test a CTNB model:

java -jar CTBNCToolkit.jar --model=models/model1.ctbn,

models/model2.ctbn

--CTBNC=CTNB <other_parameters> <data>

6 The --model modifier will be soon implemented.
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It is not possible to apply the --1vs1 modifier or to load mod-

els generated using the --1vs1 modifier (see Section A.1.2.6).

The loaded models must be compatible with the input of --

className modifier (see Section A.1.2.11) and --validColumns

modifier (see Section A.1.2.14).

a.1.2.4 Validation method

The --validation modifier allows to specify the validation

method to use. The CTBNCToolkit provides three validation

methods: hold-out, cross-validation (Witten and Frank, 2005) and

a validation method used for the clustering tests. The cluster-

ing validation method is automatically used when the cluster-

ing is enabled (see Section A.1.2.5). While hold-out and cross-

validation can be enabled as follows:

• --validation=HO,0.6: enables the hold out validation

method with a random partitioning of the data set in the

training set (60%) and test set (40%) (default value: 0.7);

• --validation=CV,k: enables the cross-validation with k

folds (default value: 10).

Here are some examples:

• 70%-30% hold-out partitioning:

java -jar CTBNCToolkit.jar --validation=HO <

other_parameters> <data> �
• 60%-40% hold-out partitioning:

java -jar CTBNCToolkit.jar --validation=HO,0.6 <

other_parameters> <data> �
• 10-folds cross-validation:
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java -jar CTBNCToolkit.jar --validation=CV <

other_parameters> <data> �
• 8-folds cross-validation:

java -jar CTBNCToolkit.jar --validation=CV,8 <

other_parameters> <data> �
No validation method can be specified in case of clustering

(see Section A.1.2.5).

a.1.2.5 Clustering

The --clustering modifier disables the supervised learning and

enables clustering (Hartigan, 1975). Tests require labeled data

sets because the performances are calculated over the complete

data set using external measures (see Section A.2.2), i.e. the

Rand index (R) (Rand, 1971), Jaccard’s coefficient (J) (Halkidi et al.,

2001) and, the Fowlkes–Mallows index (FM) (Fowlkes and Mal-

lows, 1983) (see Section 5.2.2).

CTBNC clustering is implemented using Expectation Maxi-

mization (EM) (Koller and Friedman, 2009). Both soft-assignment

and hard-assignment clustering are implemented (Section 5.1.1).

The parameters allow to specify the clustering method and the

termination criterion as follows:

• hard/soft: enable the clustering method (default value:

soft);

• an integer number (i.e. 15): set to 15 the maximum number

of iteration in the EM algorithm (default value: 10);

• a double number (i.e. 0.1): percentage of the data set tra-

jectories; if less trajectories change class the EM algorithm

is interrupted (default value: 0.01).
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All these parameter values are optional and can be inserted in

any order.

Here are some examples:

• soft clustering, 10 iterations, 1% as the trajectory thresh-

old:

java -jar CTBNCToolkit.jar --clustering <

other_parameters> <data> �
• soft clustering, 15 iterations, 10% as the trajectory thresh-

old:

java -jar CTBNCToolkit.jar --clustering=soft,0.1,15 <

other_parameters> <data> �
• soft clustering, 10 iterations, 3% as the trajectory thresh-

old:

java -jar CTBNCToolkit.jar clustering=0.03 <

other_parameters> <data> �
• hard clustering, 6 iterations, 5% as the trajectory thresh-

old:

java -jar CTBNCToolkit.jar --clustering=6,0.05,hard <

other_parameters> <data> �
When the clustering is enabled a dedicated validation

method is used. For this reason the validation modifier cannot

be used (see Section A.1.2.4). Also the classification threshold

for binary class problem cannot be used (see Section A.1.2.7).

a.1.2.6 One model one class

--1vs1 modifier enables the one model one class modality. This

modality generates for each model specified with the --CTBNC
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modifier (see Section A.1.2.2) a set of models, one for each class.

For example, if a CTNB is required using the --CTBNC modifier

over a 10 class data set, this modifier will force the generation

of 10 CTNB models. Each one of the ten generated models will

discriminate one class against the others. During the classifica-

tion process each model returns the probability related to the

class for which it is specialized. The classification class is the

one with the highest probability.

java -jar CTBNCToolkit.jar --1vs1 <other_parameters> <data> �
a.1.2.7 Binary class threshold

The --bThreshold modifier changes the probability threshold

used for choosing the class in supervised classification of bi-

nary problems. The default value is 0.5 and indicates that the

class with the highest probability will be chosen.

Here are some examples:

• a trajectory is classified in the first class only if its proba-

bility to be in that class is greater or equal to 0.4:

lstinline{java -jar CTBNCToolkit.jar --bThreshold=0.4

<other_parameters> <data> �
• a trajectory is classified in the first class only if its proba-

bility to be in that class is greater or equal to 0.6:

\lstinline{java -jar CTBNCToolkit.jar --bThreshold=0.6

<other_parameters> <data> �
Classes are ordered alphabetically. For example, if “A” and “B”

are the classes, the first example gives advantage to class “A”,

while the second example gives advantage to class “B”.

This modifier can be used only on data sets with two class

states and cannot be used in the case of clustering (see Section

A.1.2.5).
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a.1.2.8 Test name

The --testName modifier specifies the name of the test. This

name is used during the printing of the results to identify the

particular test. The default value is specified by the current time

using the "yyMMddHHmm\_Test" format.

java -jar CTBNCToolkit.jar --testName=CTNBTest1 <

other_parameters> <data> �
a.1.2.9 File extension

The --ext modifier allows to specify the extension of the files

to load in the data set directory (default value: .csv).

With the following command all the files in the data set di-

rectory with .txt extension are loaded:

java -jar CTBNCToolkit.jar --ext=.txt <other_parameters> <

data> �
a.1.2.10 Column separator

The --sep modifier allows to specify the column separator of

the file to load (default value: ,).

java -jar CTBNCToolkit.jar --sep=; <other_parameters> <data> �
a.1.2.11 Class column name

The --className modifier specifies the name of the class column

in the file to load (default value: class).

java -jar CTBNCToolkit.jar --className=weather <

other_parameters> <data> �
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a.1.2.12 Time column name

The --timeName modifier specifies the name of the time column

in the file to load (default value: t).

java -jar CTBNCToolkit.jar --className=time <

other_parameters> <data> �
a.1.2.13 Trajectory separator column name

Many data sets provide multiple trajectories in the same file.

The --trjSeparator enables trajectory separation using the in-

formation provided by a target column. For example, if the

trajectories are indexed by an incremental number (“trjIndex”

column) that indicates the trajectories in the file, it is possible

to split the trajectories automatically, as follows:

java -jar CTBNCToolkit.jar --trjSeparator=trjIndex <

other_parameters> <data> �
By default this modifier is not used, and a one file - one tra-

jectory matching is assumed.

a.1.2.14 Data columns

The --validColumns modifier allows to specify the columns of

the file that correspond to the variables in the models to be

generated. By default, i.e. when the modifier is not specified,

all the columns except the time column (see Section A.1.2.12)

and the trajectory separator column (see Section A.1.2.13) are

considered variables.

It is possible to specify any number of columns as arguments

of the modifier.

java -jar CTBNCToolkit.jar --validColumns=clmn1,clmn2,clmn3

<other_parameters> <data> �
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a.1.2.15 Cross-validation partitions

The --cvPartitions modifier allows to specify a partition-

ing when the cross-validation method is enabled (see Sec-

tion A.1.2.4). This modifier indicates a file in which a

cross-validation partitioning is specified. The cross-validation

method will follow the partitioning instead of generating a new

one.

The partitioning file can be a result file, generated by the

CTBNCToolkit (see Section A.2.1):

Test1

trj12.txt: True Class: 4, Predicted: 4, Probability:

0.893885

...

trj87.txt: True Class: 2, Predicted: 2, Probability:

0.494983

Test2

trj26.txt: True Class: 2, Predicted: 2, Probability:

0.611254

...

trj96.txt: True Class: 2, Predicted: 3, Probability:

0.637652

Test3

trj1.txt: True Class: 4, Predicted: 4, Probability:

0.5697770

...

trj80.txt: True Class: 1, Predicted: 1, Probability:

0.938935

Test4

trj15.txt: True Class: 4, Predicted: 4, Probability:

0.624698

...

trj8.txt: True Class: 2, Predicted: 2, Probability:

0.7586410
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Test5

trj11.txt: True Class: 4, Predicted: 4, Probability:

0.911368

...

trj99.txt: True Class: 4, Predicted: 4, Probability:

0.413442 �
or a text file where the word Test identifies the cross-validation

folders, and the following lines specify the trajectories to load

for each folder7:

Test 1 of 5:

trj12.txt

...

trj87.txt

Test 2 of 5:

trj26.txt

...

trj96.txt

Test 3 of 5:

trj1.txt

...

trj80.txt

Test 4 of 5:

trj15.txt

...

trj8.txt

Test 5 of 5:

trj11.txt

...

trj99.txt �
Here is an example where the file partition.txt in the CV

directory is loaded:

7 The one trajectory - one file matching is supposed.
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java -jar CTBNCToolkit.jar --cvPartitions=CV/partition.txt <

other_parameters> <data> �
This modifier requires to enable cross-validation (see Section

A.1.2.4).

a.1.2.16 Cross-validation prefix

The --cvPrefix allows to specify a prefix to remove from the

trajectory names in the partition file.

For example, if the partition file loaded with the --

cvPartitions modifier has for some reasons the following form:

Test 1 of 5:

ex-trj12.txt

...

ex-trj87.txt

Test 2 of 5:

ex-trj26.txt

...

ex-trj96.txt

Test 3 of 5:

ex-trj1.txt

...

ex-trj80.txt

Test 4 of 5:

ex-trj15.txt

...

ex-trj8.txt

Test 5 of 5:

ex-trj11.txt

...

ex-trj99.txt �
the ex- prefix can be removed automatically as follows:



A.1 ctbnctoolkit how to 111

java -jar CTBNCToolkit.jar --cvPrefix=ex- <other_parameters>

<data> �
This modifier requires the definition of a cross-validation par-

tition file (see Section A.1.2.15).

a.1.2.17 Data sets reduction

The --cutPercentage modifier allows to reduce the data set

dimension in terms of number of trajectories and trajectory

length. With only one parameter (which is a percentage) it is

possible to perform tests over reduced data sets in order to eval-

uate the ability of the models to work with a restricted amount

of data.

The following line forces a random selection of 60% of the

data set trajectories and reduces each selected trajectory to 60%

of its original length:

java -jar CTBNCToolkit.jar --cutPercentage=0.6 <

other_parameters> <data> �
The default value is 1.0 that does not change the data

amount.

a.1.2.18 Time modifier

The --timeFactor modifier specifies a time factor used to scale

the trajectory timing.

Here are some examples:

• doubles the trajectory timing:

java -jar CTBNCToolkit.jar --timeFactor=2.0 <

other_parameters> <data> �
• reduces the trajectory timing by a factor of ten:
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java -jar CTBNCToolkit.jar --timeFactor=0.1 <

other_parameters> <data> �
The default value is 1.0, which implies no time transforma-

tions.

a.1.2.19 Training set

The --training modifier specifies the directory that contains

the training set. Using this modifier the <data> path in the com-

mand line is used as the test set. If the --training modifier is

used, <data> can be a file or a directory.

Here are some examples:

• the files in the trainingDir/ directory compose the train-

ing set, while the files in testDir/ compose the test set:

java -jar CTBNCToolkit.jar --training=trainingDir/ <

other_parameters> testDir/ �
• the files in the training/ directory compose the training

set, while the models are tested on the testDir/trj.txt

file:

java -jar CTBNCToolkit.jar --training=training/ <

other_parameters> testDir/trj.txt �
This modifier requires the use of the hold out validation

method.

a.1.2.20 Test set

The --testset modifier forces to consider <data> as the test set8.

<data> can be a folder or a file. This modifier can be used with

8 --testset modifier will be soon implemented.
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the --model modifier (see Section A.1.2.3) and the hold out vali-

dation method to avoid splitting the input data set into training

and test set, when the definition of a training set is not neces-

sary (i.e. when --CTBNC modifier is not used). This modifier can

be omitted, if --training modifier (see Section A.1.2.19) is used.

Here are some examples:

• the files in the trainingDir/ directory compose the train-

ing set, while the files in testDir/ compose the test set:

java -jar CTBNCToolkit.jar --training=trainingDir/ <

other_parameters> testDir/ �
• the files in the trainingDir/ directory compose the train-

ing set, while the files in testDir/ compose the test set:

java -jar CTBNCToolkit.jar --training=trainingDir/ --

testset <other_parameters> testDir/ �
• no training set is specified, model.ctbn is loaded and tested

on testDir/trj.txt file:

\lstinline{java -jar CTBNCToolkit.jar --testset --

model=model.ctbn <other_parameters> testDir/trj.txt �
This modifier requires the use of the hold out validation

method.

a.1.2.21 Results path

The --rPath modifies specifies the directory where to store

the results (see Section A.2). If it is not specified, the results

are stored in a directory named as the test name (see Section

A.1.2.8) under the directory of the data (i.e. <data>) specified in

the CTBNCToolkit command line.

Here are some examples:
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• save the results in resultDir/ directory:

java -jar CTBNCToolkit.jar --rPath=resultDir --

testName=Test1 <other_parameters> <data> �
• save the results in testDir/Test2/ directory:

java -jar CTBNCToolkit.jar --testName=Test2 <

other_parameters> testDir/ �
• save the results in testDir/Test3/ directory:

java -jar CTBNCToolkit.jar --testName=Test3 <

other_parameters> testDir/file.txt �
a.1.2.22 Confidence interval

The --confidence modifier allows to specify the confidence level

to use in the model evaluation. The confidence level is used for

model comparison in the case of supervised classification (see

Section A.2.1.3). The allowed levels of confidence are: 99.9%,

99.8%, 99%, 98%, 95%, 90%, and 80%. 90% is the default value.

Here are some examples:

• 90% confidence:

java -jar CTBNCToolkit.jar <other_parameters> <data> �
• 90% confidence:

java -jar CTBNCToolkit.jar --confidence=90% <

other_parameters> <data> �
• 99% confidence:

java -jar CTBNCToolkit.jar --confidence=99% <

other_parameters> <data> �
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a.1.2.23 Disable class probability

The --noprob modifier disables the calculation of the class prob-

ability distribution all across the trajectory. The only probability

values are calculated at the end of the trajectory. This allows to

speed up the computation.

java -jar CTBNCToolkit.jar --noprob <other_parameters> <data

> �
a.1.2.24 Verbose

The --v modifier enables the verbose modality. This modality

prints more information that helps to follow the execution of

the CTBNCToolkit.

java -jar CTBNCToolkit.jar --v <other_parameters> <data> �
a.2 read the results

Once a test is executed, the performances are printed in the

results directory (see Section A.1.2.21). The directory contains

the performances of all the tested models. The performances

of each model are identified by its name. Model names start

with Mi, where i is the index that identifies the model in the

command line.

For example, the command line:

java -jar CTBNCToolkit.jar --CTBNC=CTNB,M0.1,T0.001,ACTNB2-

CLL,CTBNC4-LL,penalty <data> �
generates the following model names: M0_CTNB, M1_ACTNB2-CLL,

M2_CTBNC4-LL.

In the case where external models are loaded (Section

A.1.2.3), the i index first refers to the model defined with the
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--CTBNC modifier (Section A.1.2.2), then it refers to the external

models.

Here is another example. The command line:

java -jar CTBNCToolkit.jar --model=models/model1.ctbn,models

/model2.ctbn --CTBNC=CTNB

<other_parameters> <data> �
generates the following model names: M0_CTNB, M1_model1, M2_

model2.

The following sections describe the performances calculated

in the case of classification and clustering. In both cases the

results directory contains a file that shows the modifiers used

in the test.

a.2.1 Classification

a.2.1.1 Results file

For each tested model a results file is provided. It can be found

in the test directory and contains the results for each classified

data set instance. For each instance the name, the true class,

the predicted class and the probability of the predicted class is

shown.

Here is an example:

trj1: True Class: s2, Predicted: s2, Probability:

0.9942336124116266

trj10: True Class: s4, Predicted: s2, Probability:

0.9896614159579054

trj100: True Class: s1, Predicted: s1, Probability:

0.9955018513870293

trj11: True Class: s4, Predicted: s4, Probability:

0.977733953650775

trj12: True Class: s3, Predicted: s3, Probability:

0.9997240904249852
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... �
a.2.1.2 Metrics

In the results directory the metric file is stored. It is the .csv file

that contains the following performances for each tested model

(Witten and Frank, 2005; Fawcett, 2006; Japkowicz and Shah,

2011):

• Accuracy: accuracy value with the confidence interval cal-

culated in accordance with the defined level of confidence

(Section A.1.2.22);

• Error: the percentage of wrong classified instances;

• Precision: precision value for each class;

• Recall: recall value for each class9;

• F-Measure: balanced f-measure for each class (i.e. preci-

sion and recall weigh equally);

• PR AUC: precision-recall AUC (Area Under the Curve)

for each class;

• Sensitivity: sensitivity for each class9;

• Specificity: specificity for each class;

• TP-Rate: true positive rate for each class9;

• FP-Rate: false positive rate for each class;

• ROC AUC: ROC Area Under the Curve for each class;

• Brier: brier value;

• Avg learning time: learning time or average learning time

in case of multiple tests (i.e. cross-validation);

9 Sensitivity, TP-rate and Recall are the same.
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• Var learning time: learning time variance in case of multi-

ple tests (i.e. cross-validation);

• Avg inference time: average inference time between all the

tested instances;

• Var inference time: inference time variance between all the

tested instances;

Some information in the metric file depends on the validation

method. In the case of cross validation (Section A.1.2.4), the

file contains both the micro-averaging and the macro-averaging

performances.

a.2.1.3 Model comparison

The model comparison file in the results directory contains the

comparison matrices between the tested models.

A comparison matrix is a squared matrix that compares each

pair of tested models by using their corresponding accuracy

values. The comparison file contains the comparison matrices

for the following confidence levels 99%, 95%, 90%, 80%, and

70%.

Here is an example of the comparison matrix with 99%

confidence:

Comparison test 99%

M0 M1 M2 M3 M4 M5 M6

M0 UP UP UP UP UP 0

M1 LF UP 0 UP 0 LF

M2 LF LF LF 0 LF LF

M3 LF 0 UP UP 0 LF

M4 LF LF 0 LF LF LF

M5 LF 0 UP 0 UP LF

M6 0 UP UP UP UP UP
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UP indicates that the upper model is statistically better than

the left model, LF indicates that the left model is statistically

better than the upper model, while 0 indicates that the models

are indistinguishable .

a.2.1.4 Single run data

The results directory contains a directory for each model. In the

case of cross-validation, the model directory stores a directory

named “runs” that contains a metric file with the performances

of each single run. In this directory all the models generated by

the learning process are stored.

a.2.1.5 ROC curve

The model directory also contains a directory named “ROCs”

which stores the ROC curves for each class (Fawcett, 2006). In

the case of cross-validation the curves calculated in micro and

macro averaging are stored. The macro averaging curves show

the confidence interval due to the vertical averaging. The con-

fidence interval can be set using the --confidence modifier (see

Section A.1.2.22).

a.2.1.6 Precision-Recall curve

The model directory contains a directory named “Precision-

Recall” which stores the precision-recall curves for each class

(Fawcett, 2006). In the case of cross-validation the curves cal-

culated in micro and macro averaging are stored. The macro

averaging curves show the confidence interval due to the ver-

tical averaging. The confidence interval can be set using the

--confidence modifier (see Section A.1.2.22).
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a.2.1.7 Lift chart and cumulative response

The directories of the models also contain a directory named

“CumulativeResp&LiftChar” which stores the cumulative re-

sponse curves and the lift charts for each class (Fawcett, 2006).

In the case of cross-validation the curves calculated in micro

and macro averaging are stored. The macro averaging curves

show the confidence interval due to the vertical averaging. The

confidence interval can be set using the --confidence modifier

(see Section A.1.2.22).

a.2.2 Clustering

In the case of clustering, the results directory contains a direc-

tory for each tested model. Each directory contains a read me

file with some information related to the test and the following

files.

a.2.2.1 Results file

As in the case of supervised classification for each tested model

a result file is provided. It contains the results for each classified

data set instance. For each instance the name, the true class, the

predicted cluster and the probability of the predicted cluster is

shown. Of course there is no correspondence between class and

cluster names.

Here is an example of the results file:

trj1.txt: True Class: 3, Predicted: 2, Probability:

0.9998733687935368

trj10.txt: True Class: 3, Predicted: 2, Probability:

0.9999799985527281

trj100.txt: True Class: 3, Predicted: 2, Probability:

0.9998951904099552



A.3 tutorial examples 121

trj11.txt: True Class: 3, Predicted: 2, Probability:

0.9999999967591123

trj12.txt: True Class: 4, Predicted: 4, Probability:

0.9999999983049304

... �
a.2.2.2 Performances

The file performances contains the following external measures

(Halkidi et al., 2001; Gan et al., 2007; Xu and Wunsch, 2008):

• the Rand index (R) (Rand, 1971);

• Jaccard’s coefficient (J) (Halkidi et al., 2001);

• the Fowlkes–Mallows index (FM) (Fowlkes and Mallows,

1983).

In addition to these measures, association matrix, clustering-

partition matrix, precision matrix, recall matrix, and f-measure

matrix are shown. Learning time, average inference time and

inference time variance are also shown.

a.2.2.3 Model file

The model file shows the CTBNC learned in the test. Since the

clustering validator learns one model all over the data set, just

one model file is generated. .ctbn is the format used (see Sec-

tion A.4.3.3).

a.3 tutorial examples

This section provides replicable examples of CTBNCToolkit us-

age. To execute the tests follow the next steps:
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• download the compiled version of the CTBNCToolkit

or download and compile the source code (see Section

A.1.1);

• create a directory for the tests where the compiled CTB-

NCToolkit must be copied (let’s call the directory “tuto-

rial”);

• create a sub-directory named “lib” containing the re-

quired libraries (see Section A.1.1)10;

• copy in the “tutorial” directory, for each of the following

tests, the data sets used (see Section A.1.1).

a.3.1 Classification

In this section the tutorial examples of classification are given.

For these tests “naiveBayes1” synthetic data set is used. The

data set has to be downloaded and copied under the “tuto-

rial” directory. The trajectories will be available in the “tutori-

al/naiveBayes1/dataset/” directory.

a.3.1.1 Hold out

Assume we are interested in making classifications using CTNB,

ACTNB learned by maximizing Conditional Log-likelihood and

CTBNC learned by maximizing Marginal Log-likelihood. The

last two models learned setting to two the maximum number of

parents. To evaluate the performances of the models we want

to use the hold out validation method.

The data set is stored in .txt files. Trajectories use “Class” as

the class column name and “t” as the time column name. To

10 Other directories can be used once the manifest file in the CTBNCToolkit

.jar, is modified.
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realize the test the following command must be used setting

“tutorial” as the current directory11:

java -jar CTBNCToolkit.jar --CTBNC=CTNB,ACTNB2-CLL,CTBNC2-LL

--validation=HO --ext=.txt --className=Class

naiveBayes1/dataset/ �
where:

• --CTBNC=CTNB,ACTNB2-CLL,CTBNC2-LL specifies the models to

test (Section A.1.2.2);

• --validation=HO specifies hold out as the validation

method (Section A.1.2.4);

• --ext=.txt specifies that the data set files have .txt exten-

sion (Section A.1.2.9);

• --className=Class specifies that the class column has the

name “Class” (“class” is the default value, see Section

A.1.2.11);

• naiveBayes1/dataset/ specifies the directory which con-

tains the data set (Section A.1.2).

It is worthwhile to note that the time column name is not spec-

ified because “t” is the default name (Section A.1.2.12). Even-

tually the --v modifier can be added to enable the verbose

modality in order to monitor the program execution (Section

A.1.2.24).

The results are stored in a directory with a name similar

to “131014_1041_Test”. To specify a different name use the --

testName modifier (Section A.1.2.8).

The results follow the guidelines explained in Section A.2.1.

11 This test may takes a while.
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a.3.1.2 Cross validation loading a partitioning

Assume we are interested in making classifications using just

a CTNB. To evaluate the performances we use a 10 fold cross-

validation, loading a pre-defined partitioning. The partitions

are described by the NB-results.txt file in the “naiveBayes1/”

directory.

Similarly to the previous example, here is the command line

to execute the test:

java -jar CTBNCToolkit.jar --CTBNC=CTNB --validation=CV --

cvPartitions=naiveBayes1/NB-results.txt --ext=.txt --

className=Class naiveBayes1/dataset/ �
The difference from the classification example in Section A.3.1.1

relies on the following two points:

• --validation=CV enables cross-validation to validate the

models (Section A.1.2.4);

• --cvPartitions=naiveBayes1/NB-results.txt specifies the

file which contains the cross-validation partitioning (Sec-

tion A.1.2.15).

NB-results.txt is the results file (Section A.2.2.1) of a CTNB

model learned on the same data set during the experiment cam-

paign realized for this dissertation (Section 4.4). The results file

can be loaded as a partitioning file (Section A.1.2.15). This al-

lows to replicate the executed tests.

To compare the results just obtained with those of this disser-

tation see Table 12 Section B.1.2.

a.3.2 Clustering

In this section a tutorial example of clustering is described. Also

in this case the “naiveBayes1” synthetic data set is used. The
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data set has to be downloaded and copied under the “tutorial”

directory. The trajectories will be contained in “tutorial/naive-

Bayes1/dataset/” directory.

Assume we are interested in making clustering using CTNB

and CTBNC learned by maximizing Marginal Log-likelihood

when the maximum number of parents is set to two.

The data set is stored in .txt files. Trajectories use “Class” as

the class column name and “t” as the time column name. To

execute the test the following command must be used setting

“tutorial” as the current directory11:

java -jar CTBNCToolkit.jar --CTBNC=CTNB,CTBNC2-LL --

clustering --ext=.txt --className=Class naiveBayes1/

dataset/ �
The command is similar to the one used in Section A.3.1.1, the

main difference is the use of the --clustering modifier which

substitutes the validation modifier (Section A.1.2.5).

The results are stored in a directory with a name similar

to “131014_1252_Test”. To specify a different name use the --

testName modifier (Section A.1.2.8).

The results follow the guidelines explained in Section A.2.2.

Since learning and testing in case of clustering are done using

the whole data set, it is easy to replicate the clustering experi-

ments shown in Section 5.2.3.

To compare the results just obtained with those of this disser-

tation see Table 20 Section B.2.2.1. The clustering results could

be quite different due to the random instantiation of the EM

algorithm (Section 5.1).
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a.4 ctbnctoolkit library

CTBNCToolkit is released under the GPL v2.012 license. It is

available on GitHub at the following url: https://github.com/

dcodecasa/CTBNCToolkit. See section A.1.1 for more informa-

tion regarding the CTBNCToolkit download.

The CTBNCToolkit is a library to manage CTBNCs. It pro-

vides:

• a CTBNC model representation which can be easily ex-

tended to define other types of models (Section A.4.3);

• a supervised learning algorithm (Section A.4.4);

• soft and hard assignment EM algorithms for clustering

purposes (Section A.4.5);

• two different scoring functions to learn CTBNCs (Section

A.4.4);

• CTBNCs inference algorithm for static classification (Sec-

tion A.4.6);

• three different validation methods to realize experiments

(Section A.4.7),

• a rich set of performance measures for supervised classi-

fication and clustering as well (Section A.4.8);

• a set of utilities for data set and experiment managing

(Sections A.4.1 and A.4.9);

• an extendable command line front-end (Section A.4.10).

In the following part of this section the main software com-

ponents are analyzed from the development point of view.

12 GPL v2.0 license: http://www.gnu.org/licenses/gpl-2.0.html

https://github.com/dcodecasa/CTBNCToolkit
https://github.com/dcodecasa/CTBNCToolkit
http://www.gnu.org/licenses/gpl-2.0.html
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a.4.1 Input trajectories

Figure 21 depicts the simplified class diagram of interfaces and

classes used for representing trajectories.

(a)

(b)

Figure 21.: Simplified class diagram of the trajectory managing com-

ponents.

ITrajectory is the interface that defines the trajectories. Each

trajectory consists of a sequence of transitions. Each transition

(i.e. ITransition) occurs at a particular time. Transition time

is generalized using <TimeType extends Number> generic. Since

CTBNCs model continuous time trajectories, in the stand-alone

CTBNCToolkit implementation the TimeType generic is filled

with Double class. Nevertheless, each extension of Number and

Comparable classes can be potentially used as time representa-

tion; i.e. the Integer class can be specified to represent discrete

time trajectories.
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CTTransition and CTTrajectory provide a standard implemen-

tation of ITransition and ITrajectory.

IClassificationTransition and IClassificationResult inter-

faces define an extension of ITransition and ITrajectory which

allows to mange classified trajectories. They allow to insert the

probability distribution for each transition into a trajectory.

ClassificationTransition and ClassificationResults imple-

ment a standard version of the interfaces for the classified tra-

jectories and transitions.

Example A.4.1. Here is how to generate a trajectory.

0.0 Va12 Vb1 Vc123

0.2 Va12 Vb2 Vc123

0.6 Va3 Vb3 Vc123

1.3 Va4 Vb4 Vc4 �
The previous trajectory shows multiple changes of states for

each time instant, even if theoretically this cannot happen. This

can be implemented by the following code:

// Nodes-column name definition

String[] nodeNames = new String[3];

nodeNames[0] = "A"; nodeNames[1] = "B"; nodeNames[2] = "C";

NodeIndexing nodeIndexing = NodeIndexing.getNodeIndexing("

IndexingName", nodeNames, nodeNames[0], null);

// Time jump definition

String[] v;

List<Double> times = new Vector<Double>();

List<String[]> values = new Vector<String[]>();

times.add(0.0);times.add(0.2);times.add(0.6);times.add(1.3);

// State definition

v = new String[3];

v[0] = "Va12"; v[1] = "Vb1"; v[2] = "Vc123";

values.add(v);
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v = new String[3];

v[0] = "Va12"; v[1] = "Vb2"; v[2] = "Vc123";

values.add(v);

v = new String[3];

v[0] = "Va3"; v[1] = "Vb3"; v[2] = "Vc123";

values.add(v);

v = new String[3];

v[0] = "Va4"; v[1] = "Vb4"; v[2] = "Vc4";

values.add(v);

// Trajectory creation

CTTrajectory<Double> tr = new CTTrajectory<Double>(

nodeIndexing, times, values); �
Section A.4.2 provides a clarification about NodeIndexing class.

The CTBNCTestFactory class, a class used in test management

(see Section A.4.9), provides a set of static methods which are

useful for dealing with data sets:

• loadDataset: loads a data set;

• partitionDataset: partitions a data set in accordance with

a partitioning file (i.e. cross-validation folding, Section

A.1.2.15);

• loadResultsDataset: loads a data set composed of classi-

fied trajectories; for each transition the probability of the

class has to be specified;

• partitionResultDataset: partitions a data set of results in

accordance with a partitioning file (i.e. cross-validation

folding);

• permuteDataset: randomly permutes a data set;

• cutDataset: reduces the original data set in terms of num-

ber and length of trajectories (Section A.1.2.17).
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a.4.2 Global node indexing

Before introducing the models in section A.4.3, it is necessary to

deal with the global node indexing system. Models nodes, vari-

ables, and columns in a trajectory use the same names. Indeed,

objects like model nodes or state values in a trajectory have to

be stored by using the same names. To allow a really efficient

method to recover these objects the NodeIndexing class is devel-

oped. A model node can be recovered using its name, which

corresponds to a column name in the trajectories, or using its

index. Recovering objects by name uses a tree structure. This is

efficient, but it is possible to improve it. The index solution is

developed to be an O(1) entity recovery system.

To guarantee the same indexing for all the trajectory columns

and all the model nodes, the class NodeIndexing is used. The

idea is that each trajectory and each model has to be syn-

chronized with the same NodeIndexing instance. To ensure this,

NodeIndexing provides a static method (i.e. getNodeIndexing)

which allows to obtain or create a NodeIndexing instance us-

ing an unique name. This name usually corresponds to the test

name.

Example A.4.2. Here is an example of how to create a new

NodeIndexing class.

String[] nodeNames = new String[3]; nodeNames[0] = " class ";

nodeNames[1] = "N1"; nodeNames[2] = "N2";

NodeIndexing nodeIndexing = NodeIndexing.getNodeIndexing("

IndexingName", nodeNames, nodeNames[0], null); �
The first argument is the unique key associated with the index.

Using the same key in successive calls of the getNodeIndexing

method allows to recover the same indexing instance. The sec-

ond argument (i.e. nodeNames) is the array of all the node names,

while the third argument is the class node name. The last argu-



A.4 ctbnctoolkit library 131

ment is the set of all the node names in the nodeNames array to

which an index will be associated. This argument allows to se-

lect just a subset of the names specified in the second argument.

If it is left to null, all the names are loaded.

When two objects are synchronized with the same

NodeIndexing instance, they use the same loaded indexing. This

allows the direct communication index-to-index between all the

objects with the same synchronization.

a.4.3 CTBNCToolkit models

Figure 22 depicts the simplified class diagram of the interfaces

and classes to be used to work with the models.

a.4.3.1 Nodes

A model consists of nodes which represent the model variables.

Node objects are shown in Figure 22b. INode interface defines

the generic properties of a node, while IDiscreteNode interface

defines the properties of a discrete state space node.

Node class is an abstract class which implements the prop-

erties that all the nodes require. Those properties are mainly

related to the naming and the dependency relations between

nodes. DiscreteNode class implements all the requirements of a

discrete node. It does not specify any quantitative component

as Conditional Intensity Matrix (CIM) or Conditional Probabil-

ity Tables (CPT), but only manages the discrete states of a vari-

able.

CTDiscreteNode class implements all the properties which the

CTBNC nodes require. It allows the CIMs definition and can im-

plement both a continuous time node and a static node for con-

tinuous time models (i.e. the class node).
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(a)

(b)

Figure 22.: Simplified class diagram of the model managing compo-

nents.

Example A.4.3. Here is an example of how to create a continu-

ous time discrete node (i.e. CTDiscreteNode).

// State definition

Set<String> states2;Set<String> states3;

states2 = new TreeSet<String>();

states2.add("n1_1");states2.add("n1_2");

states3 = new TreeSet<String>();

states3.add("n1_1");states3.add("n1_2");states3.add("n1_3");

// Node creation

CTDiscreteNode node = new CTDiscreteNode("node",states3,

false);
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CTDiscreteNode parent = new CTDiscreteNode("parent",states2,

true);

parent.addChild(node);

// CIM definition

double[][] cim = new double[3][3];

cim[0][0] = -2; cim[0][1] = 1; cim[0][2] = 1;

cim[1][0] = 2; cim[1][1] = -4; cim[1][2] = 2;

cim[2][0] = 2; cim[2][1] = 1; cim[2][2] = -3;

node.setCIM(0, cim);

node.setCIM(1, cim);

assertTrue( node.checkCIMs() == -1); �
a.4.3.2 Models

Generic model properties are defined by the IModel interface.

Part of these properties are implemented by the DiscreteModel

abstract class. Instead, the ICTClassifier interface defines the

properties related to the classification process, which a continu-

ous time classifier has to satisfy.

CTBNCs are implemented by CTBNClassifier class. While the

MultipleCTBNC class implements a continuous time classifier

composed of a set of binary CTBNCs, each one is specialized

to recognize a class against the others (see Section A.1.2.6).

Models are simple Java classes used like containers of nodes.

The real complexity related to the learning and the classifica-

tion processes relies on the algorithm classes.

Example A.4.4. Here is an example that shows how to create a

CTBNClassifier.

// Node names and indexing definition

String[] nodesNames = new String[4];

nodesNames[0] = "Class"; nodesNames[1] = "A";

nodesNames[2] = "B"; nodesNames[3] = "C";
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NodeIndexing nodeIndexing = NodeIndexing.getNodeIndexing("

IndexingName", nodesNames, nodesNames[0], null);

// State generation

CTDiscreteNode classNode, aNode, bNode, cNode;

Set<String> states2 = new TreeSet<String>();

Set<String> states3 = new TreeSet<String>();

Set<CTDiscreteNode> nodes = new TreeSet<CTDiscreteNode>();

states2.add("s1");states2.add("s2");

states3.add("s1");states3.add("s2");states3.add("s3");

// Node generation

nodes.add(classNode = new CTDiscreteNode(nodesNames[0],

states2, true));

nodes.add(aNode = new CTDiscreteNode(nodesNames[1], states2,

false));

nodes.add(bNode = new CTDiscreteNode(nodesNames[2], states3,

false));

nodes.add(cNode = new CTDiscreteNode(nodesNames[3], states3,

false));

// Model structure definition

classNode.addChild(aNode);

classNode.addChild(bNode);

classNode.addChild(cNode);

// Node CIM definition

double[][] cim;

cim = new double[1][2]; cim[0][0] = 0.5; cim[0][1] = 0.5;

classNode.setCIM(0, cim);

assertTrue(classNode.checkCIMs() == -1);

cim = new double[2][2];

cim[0][0] = -0.1; cim[0][1] = 0.1;
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cim[1][0] = 0.1; cim[1][1] = -0.1;

aNode.setCIM(0, cim);

cim = new double[2][2];

cim[0][0] = -5; cim[0][1] = 5;

cim[1][0] = 5; cim[1][1] = -5;

aNode.setCIM(1, cim);

assertTrue(aNode.checkCIMs() == -1);

cim = new double[3][3];

cim[0][0] = -0.7; cim[0][1] = 0.5; cim[0][2] = 0.2;

cim[1][0] = 1.0; cim[1][1] = -1.6; cim[1][2] = 0.6;

cim[2][0] = 2; cim[2][1] = 1.3; cim[2][2] = -3.3;

bNode.setCIM(0, cim);cNode.setCIM(0, cim);

cim = new double[3][3];

cim[2][2] = -0.7; cim[2][1] = 0.5; cim[2][0] = 0.2;

cim[1][0] = 1.0; cim[1][1] = -1.6; cim[1][2] = 0.6;

cim[0][2] = 2; cim[0][1] = 1.3; cim[0][0] = -3.3;

bNode.setCIM(1, cim); cNode.setCIM(1, cim);

assertTrue(bNode.checkCIMs() == -1);

assertTrue(cNode.checkCIMs() == -1);

// Model generation

CTBNClassifier model = new CTBNClassifier(nodeIndexing, "

c lass i f ier ", nodes); �
a.4.3.3 .ctbn format

.ctbn is the space-separated text format in which the CTBNC-

Toolkit saves the learned models. The toString() method in the

CTBNClassifier class is the method which provides the model

text representation.

.ctbn format starts with the following lines:

-----------------------

BAYESIAN NETWORK
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-----------------------

BBNodes N

----------------------- �
where N is the number of nodes in the CTBNC (class node in-

cluded).

Then each node is specified with the couple <node_name

states_number> as follows:

Class 4

N01 2

N02 2

N03 2

...

N15 4

----------------------- �
where data in the same line are separated by spaces or tabs,

and the first node is the class.

The next lines in the .ctbn format define the Bayesian Net-

work (BN) structure, which represents the initial probability

distribution of the CTBNC. Each line starts with the considered

node and then lists all its parents, using the space-separator

format. Each line has to stop with a zero. Here is an example:

Class 0

N01 Class 0

N02 Class N01 0

N03 Class 0

...

N15 Class N07 0

----------------------- �
The .ctbn format allows to define the initial probability dis-

tribution by using a Bayesian Network. On the contrary, the

CTBNCToolkit does not support an initial probability distribu-

tion yet, but assumes an initial uniform distribution between
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the variables states. The only exception is for the class which

has its own probability distribution, as specified later. For this

reason, for the moment the initial distribution is represented as

a disconnected Bayesian network.

Class 0

N01 0

N02 0

N03 0

...

N15 0

----------------------- �
Note that lines composed of minus signs separate the different

file sections.

The next lines inform about the conditional probability distri-

butions of the defined BN. Each CPT is written following the or-

dering of the parent nodes defined in the previous section. The

CPTs are separated by a line composed by minus signs. Here is

an example in case of uniform distribution for a disconnected

BN:

Class

0 0 0 0

-----------------------

N01

0.5 0.5

-----------------------

...

-----------------------

N15

0.25 0.25 0.25 0.25

----------------------- �
where the line of the class probability distribution contains ze-

ros, due to the fact that the class prior will be defined in the



A.4 ctbnctoolkit library 138

next section of the file format. Since CTBNCToolkit currently

supports only an initial uniform distribution, the CPTs shown

are straightforward. Nevertheless, the .ctbn format supports

complex CPTs, where each line is the probability distribution

setting the value of the parent set. Considering the definition

of the parent set of node N02:

N02 Class N01 0 �
where Class node is binary, node N01 is ternary, and N02 has

4 states. Node N02 CPTs can be defined by the probability

distribution lines in the following order:

Class N01 probability distribution line

0 0 0.2 0.3 0.1 0.4

1 0 0.15 0.2 0.35 0.3

0 1 0.42 0.08 0.23 0.27

1 1 0.15 0.2 0.35 0.3

0 2 0.2 0.3 0.1 0.4

1 2 0.23 0.5 0.15 0.12

With the previous lines we defined the model variables and

then the initial probability distribution. In the next part of the

file format the temporal model is defined.

First the graph structure is defined in the same way as previ-

ously done for the BN:

-----------------------

DIRECTED GRAPH

-----------------------

Class 0

N01 Class N05 0

N02 Class N01 0

N03 Class N01 0

...
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N15 Class N11 0

----------------------- �
For each node its parents are specified.

Then the CIMs are defined for each node. Each line represents

a complete CIM given the parent set instantiation. The parent

sets are defined iterating the parent values starting from the

left as previously shown for the Bayesian Network CPTs.

-----------------------

CIMS

-----------------------

Class

0.2323008849557522 0.2488938053097345 0.2610619469026549

0.2577433628318584

-----------------------

N01

-1.7437542178131549 1.7437542178131549 1.6677084125959616

-1.6677084125959616

-1.1359184948768346 1.1359184948768346 1.468624833995604

-1.468624833995604

-1.655441390834388 1.655441390834388 1.9083015334745217

-1.9083015334745217

-1.992223211031885 1.992223211031885 1.128540290987483

-1.128540290987483

-1.4597541436405608 1.4597541436405608 1.3875353532121044

-1.3875353532121044

-1.8514888977211081 1.8514888977211081 1.2036550623637277

-1.2036550623637277

-1.5536818371118852 1.5536818371118852 1.06784175008451

-1.06784175008451

-1.2675007732387165 1.2675007732387165 1.8220901564788115

-1.8220901564788115

----------------------- �
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It is worthwhile to note that for the class node the prior proba-

bility distribution is specified and not a temporal model since

the class is a static node.

a.4.4 Learning algorithms

Figures 23 and 24 depict the simplified class diagram of the

components used to provide learning algorithms.

Figure 23.: Learning algorithms simplified class diagram.

Figure 24.: Simplified class diagram of the learning result compo-

nents.

Learning algorithms are modeled by the ILearningAlgorithm

interface, which defines the parameter management and the

learning methods.

LearningAlgorithm is an abstract class

which provides an initial implementation

of the parameter managing methods. While

CTBNCParameterLLAlgorithm, CTBNCLocalStructuralLearning,
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and MultipleCTBNCLearningAlgorithm are the learning algorithm

implementations.

CTBNCParameterLLAlgorithm implements the parameter learn-

ing Stella and Amer (2012). This algorithm has to define the

CTBNC structure that specifies the dependencies between the

variables in advance. The parameters learning algorithm is the

basis for all the structural learning algorithms.

CTBNCLocalStructuralLearning implements the structural

learning for CTBNCs using the local search (Nodelman et al.,

2002b; Codecasa and Stella, 2013). The searching algorithm re-

lies on the optimization classes shown in Figure 25.

MultipleCTBNCLearningAlgorithm is the implementation of the

local searching algorithm for MultipleCTBNC models (see Section

A.1.2.6). Its implementation is strictly related to the classical

structural learning.

All the learning algorithms have to return the results of the

learning process implemented by the ILearningResults inter-

face.

ILearningResults defines the learning results as a container for

the sufficient statistics (i.e. SufficientStatistics class).

GenericLearningResults and MultipleCTBNCLearningResults

provide a standard implementation of learning results,

respectively for CTBNCs and for MultipleCTBNC models.

ClusteringResults extends the GenericLearningResults class to

implement the learning results for the clustering algorithm (see

Section A.4.5).

Figure 25 shows the simplified class diagram of the classes

used for the local search in structural learning.

CTBNCs structural learning can be seen as an optimization

problem. The CTBNCToolkit provides two scoring functions de-

fined as static methods in StructuralLearningScoringFormulae

class. The scoring functions rely on Marginal Log-likelihood
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Figure 25.: Hill climbing simplified class diagram.

(MLL) (Nodelman et al., 2002b) and Conditional Log-likelihood

(CLL) calculation (Codecasa and Stella, 2013).

Since the learning procedure is a maximization problem re-

spect to a selected scoring function, the IOptimizationElement

interface is defined. The interface provides a simple defini-

tion of an element that must be evaluated for optimization

purposes. The ILocalSearchIndividual interface extends the

IOptimizationElement interface, defining the properties of a lo-



A.4 ctbnctoolkit library 143

cal search element such as the ability to find the best neighbor

(i.e. getBestNeighbor method).

CTBNCHillClimbingIndividual is the actual implementation of

an individual in the local search procedure. It is the core of the

local search algorithm implementation.

To generalize the local search algorithm, implemented in the

CTBNCLocalStructuralLearning class, the factory pattern is used

to generate local search individuals.

IElementFactory is the interface that defines the properties

of a factory of IOptimizationElement. The use of Java generics

helps the code generalization. The ICTBNCHillClimbingFactory

interface extends the IElementFactory interface to define the re-

quirements for generating CTBNCHillClimbingIndividual.

LLHillClimbingFactory and CLLHillClimbingFactory are the

two factories that generate CTBNCHillClimbingIndividual. The

first factory generates the individuals for the Marginal Log-

likelihood score maximization, while the second factory gen-

erates the individuals for the Conditional Log-likelihood score

maximization.

Example A.4.5. Here is an example of parameter learning.

// Model definition

CTBNClassifier clModel = new CTBNClassifier(nodeIndexing, "

c lass i f ier ", nodes);

// Structure definition

boolean[][] adjMatrix = new boolean[4][4];

for(int i = 0; i < adjMatrix.length; ++i)

for(int j = 0; j < adjMatrix[i].length; ++j)

adjMatrix[i][j] = false;

adjMatrix[0][1] = true;adjMatrix[0][2] = true;

adjMatrix[0][3] = true;

// Learning algorithm instantiation
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CTBNCParameterLLAlgorithm alg = new

CTBNCParameterLLAlgorithm();

// Learning algorithm parameter (i.e. priors) definition

Map<String,Object> params = new TreeMap<String,Object>();

params.put("Mxx_prior", 1.0);

params.put("Tx_prior", 0.01);

params.put("Px_prior", 1.0);

// Learning algorithm parameters and structure setting

alg.setParameters(params);

alg.setStructure(adjMatrix);

// Parameter learning

Collection<ITrajectory<Double>> dataset = generateDataset();

alg.learn(clModel, dataset); �
Example A.4.6. Here is an example of structural learning using

the Marginal Log-likelihood scoring.

// Parameter learning algorithm to use in the structural

learning

CTBNCParameterLLAlgorithm paramsAlg = new

CTBNCParameterLLAlgorithm();

Map<String,Object> params = new TreeMap<String,Object>();

params.put("Mxx_prior", 1.0);

params.put("Tx_prior", 0.01);

params.put("Px_prior", 1.0);

paramsAlg.setParameters(params);

// Hill climbing factory definition

LLHillClimbingFactory elemFactory = new

LLHillClimbingFactory(paramsAlg, 3, false, false);

// Definition of the local search starting structure
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int iClass = nodeIndexing.getClassIndex();

int iA = nodeIndexing.getIndex("A");

int iB = nodeIndexing.getIndex("B");

int iC = nodeIndexing.getIndex("C");

boolean[][] adjMatrix = new boolean[4][4];

for(int i = 0; i < adjMatrix.length; ++i)

for(int j = 0; j < adjMatrix[i].length; ++j)

adjMatrix[i][j] = false;

adjMatrix[iClass][iA] = true;adjMatrix[iClass][iB] = true;

adjMatrix[iClass][iC] = true;

// Definition of the structural learning algorithm and

setting of the initial structure

CTBNCLocalStructuralLearning<String,

CTBNCHillClimbingIndividual> alg = new

CTBNCLocalStructuralLearning<String,

CTBNCHillClimbingIndividual>(elemFactory);

alg.setStructure(adjMatrix);

// Structural learning of a target model

ICTClassifier<Double, CTDiscreteNode> model =

generateClassifierModel();

alg.learn(model, trainingSet);

boolean[][] learnedStructure = model.getAdjMatrix(); �
a.4.5 Clustering

Figure 26 depicts the simplified class diagram of the clustering

learning.

IClusteringAlgorithm is the interface that defines the cluster-

ing learning algorithms. It extends the ILearningAlgorithm inter-

face (Section A.4.4).
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Figure 26.: Simplified class diagram of the clustering learning.

ClusteringAlgorithm is an abstract class which implements

the basis functionality of the clustering learning algorithm,

while CTBNClusteringParametersLLAlgorithm implements the soft

and hard assignment EM algorithms for clustering purposes

(see Section 5.1). The structural learning algorithm relies on the

optimization algorithms, used also in the case of supervised

learning (Section A.4.4).

IStopCriterion interface defines the stopping criterion for the

EM iterative algorithm, and the StandardStopCriterion class pro-

vides a basic stop criterion implementation.

Example A.4.7. Here is an example of soft-assignment cluster-

ing.

// Parameter definition

Map<String, Object> params = new TreeMap<String,Object>();

params.put("Mxx_prior", 1.0);

params.put("Tx_prior", 0.005);

params.put("Px_prior", 1.0);

params.put("hardClustering", false);

StandardStopCriterion stopCriterion = new

StandardStopCriterion(iterationNumber, 0.1);

// Classification algorithm definition
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Map<String, Object> paramsClassifyAlg = new TreeMap<String,

Object>();

paramsClassifyAlg.put(" probabilities ", true);

CTBNCClassifyAlgorithm classificationAlg = new

CTBNCClassifyAlgorithm();

classificationAlg.setParameters(paramsClassifyAlg);

// Clustering algorithm initialization

CTBNClusteringParametersLLAlgorithm cAlg = new

CTBNClusteringParametersLLAlgorithm();

cAlg.setParameters(params);

cAlg.setClassificationAlgorithm(classificationAlg);

cAlg.setStopCriterion( stopCriterion);

// Clustering learning

ClusteringResults<Double> results = cAlg.learn(model,

dataSet); �
a.4.6 Inference algorithms

Figure 27 depicts the simplified class diagram of the inference

algorithm classes.

Figure 27.: Simplified class diagram of inference components.
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IClassifyAlgorithm is the interface that defines the properties

of an inference algorithm. It mainly defines properties related

to parameter managing and classification methods. Classifica-

tion methods return IClassificationResult. As for the learn-

ing algorithms (Section A.4.4), an abstract class is developed

to manage the parameters, i.e. ClassifyAlgorithm. Generics are

used to generalize the time representation and the nodes in the

model to classify.

CTBNCClassifyAlgorithm implements the classification algo-

rithm for CTBNCs, as described by Stella and Amer (2012).

Example A.4.8. Here is an example of classification inference.

// Generate the trajectory to classify

ITrajectory<Double> testTrajectory = new CTTrajectory<Double

>(nodeIndexing, times, values);

// Classification

CTBNCClassifyAlgorithm clAlgorithm = new

CTBNCClassifyAlgorithm();

IClassificationResult<Double> result = clAlgorithm.

classify(learnedModel, testTrajectory, 0.9); �
Usually the classification relies on the most probable

class, but defining a IClassifyDecider it is possible to use

another classification criteria. BinaryDecider implements the

IClassifyDecider interface to allow an unbalanced classification

in the case of two class problems. The decider allows to define

a threshold to use in the classification in order to give an ad-

vantage to one of the two classes.

a.4.7 Validation methods

Figure 28 depicts the simplified class diagram of the validation

methods used to realize tests and to calculate performances.
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Figure 28.: Simplified class diagram of the validation methods.

To execute the tests over a data set, validation methods are

implemented. IValidationMethod is the interface that defines the

validation method properties. BaseValidationMethod is the ab-

stract class that implements the base functions of the validation

methods.

HoldOut, CrossValidation and ClusteringInSample are the

classes that implement different validation methods (Section

A.1.2.4). Each validation approach, one executed using validate

method, returns the performances of the tested algorithm (Sec-

tion A.4.8).

HoldOut class implements the hold out validation, where train-

ing set and test set are used to calculate the performances.

CrossValidation class implements the cross validation method

(Witten and Frank, 2005). ClusteringInSample class implements

a validation method, where learning and testing are both real-

ized over the same complete data set; this can be used to test

clustering approaches (Section A.1.2.5).

Example A.4.9. Here is an example of classification inference.

// Instantiation of the cross validation method

CrossValidation<Double,CTDiscreteNode,CTBNClassifier,

MicroMacroClassificationPerformances<Double,

ClassificationStandardPerformances<Double>>,

ClassificationStandardPerformances<Double>>
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validationMethod = new CrossValidation<...>(

performanceFactory, 10, true);

validationMethod.setVerbose(true);

// Test execution using a validation method

performances = validationMethod.validate( model,

learningAlgorithm, inferenceAlgorithm, dataset); �
performanceFactory is a factory to generate new test perfor-

mances. For more details about performances see Section A.4.8.

a.4.8 Performances

The CTBNCToolkit provides a rich set of performances to eval-

uate the experiments. Different performances are provided in

the case of classification (Section A.2.1) and clustering (Sec-

tion A.2.2). The simplified class diagrams of the classification

and the clustering performances are depicted in Figures 29

and 30. In both cases the class hierarchy is the same. Differ-

ent classes are provided to calculate single run and aggregate

performances (i.e. for cross-validation multiple runs). To allow

the best possible generalization, factory classes are provided

to generate the performances. The simplified class diagram of

the performance factories is depicted in Figure 31. A factory

argument is required in all the validation methods in order to

generate the performances during the tests (see Section A.4.7).

IPerformances is the interface which defines a

generic performance, while ISingleRunPerformances and

IAggregatePerformances respectively define the single run and

the aggregate performances.

In the case of classification the IClassificationPerformances

interface is provided. In the case of clustering the performances
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Figure 29.: Simplified class diagram of the supervised classification

performances.

definitions relies on IExternalClusteringPerformances; only ex-

ternal clustering measures are provided (see Section 5.2.2).

IClassificationSingleRunPerformances is the inter-

face which defines the single run classification perfor-

mances, while the IClassificationAggregatePerformances

interface defines the aggregate classification perfor-

mances. Similarly, the clustering performances are de-
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Figure 30.: Simplified class diagram of the clustering performances.

fined by IExternalClusteringSingleRunPerformances and

IExternalClusteringAggregatePerformances interfaces.

The ClassificationStandardPerformances class, together with

the ClusteringExternalPerformances class, implements the

performances for single runs in the case of classifica-

tion and clustering. Aggregate performances are provided

in micro and macro averaging. Micro averaging perfor-

mances are calculated extending the single run perfor-

mances. MicroAvgAggregatePerformances is the class that im-
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plements the micro averaging in the case of classification,

while MicroAvgExternalClusteringAggregatePerformances imple-

ments the micro averaging performances in the case of cluster-

ing.

Macro averaging classification performances are provided by

the MacroAvgAggregatePerformances class. Macro averaging per-

formances for unsupervised learning (i.e. clustering) are pro-

vided by the MarcoAvgExternalClusteringAggregatePerformances

class.

In order to have the possibility to calculate both micro and

macro averaging performances, two classes that hide both the

averaging approaches are provided in the case of classification

(i.e. MicroMacroClassificationPerformances) and in the case of

clustering (i.e. MicroMacroClusteringPerformances).

Figure 31 depicts the simplified class diagram of the perfor-

mance factory classes.

Figure 31.: Simplified class diagram of the performance factories.

The ISingleRunPerformancesFactory interface defines the

factory for single run performances. The factory for aggregate

performances is defined by the IAggregatePerformancesFactory

interface. In the case of classification and in the case of

clustering two factories are provided: one for the single run

performances and one for the combination of micro and macro
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averaging aggregate performances. In the case of classification

ClassificationStandardPerformancesFactory is provided for

single runs, and MicroMacroClassificationPerformancesFactory

is provided for aggregate performances. In

the case of clustering the provided classes

are: ClusteringExternalPerformancesFactory and

MicroMacroClusteringPerformancesFactory.

a.4.9 Tests

To perform the test experiments a set of utilities have been de-

veloped. Figure 32 depicts the simplified class diagram of these

utilities.

Figure 32.: Simplified class diagram of the classes used to test CTBNCs.

IModelFactory interface defines a factory to generate new

models. CTBNClassifierFactory implements a simple way to

generate synthetic CTBNCs. This class has been used to gener-

ate the models tested in the synthetic test campaigns.

Example A.4.10. Here is an example of factory for the CTNB

models.

// Number of variables

int N = 16;
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// Number of states for each variable

int[] nStates = new int[N];

nStates[0] = 10; // class variable

nStates[1] = 2; ...; nStates[15] = 4;

// Range in which sample the lambda values of the

exponential distribution

double[][] lambdaRanges = new double[2][N];

lambdaRanges[0][1] = 10; lambdaRanges[1][1] = 20;

...

lambdaRanges[0][15] = 40; lambdaRanges[1][15] = 80;

// Initialize the factory

CTBNClassifierFactory modelFactory = CTBNClassifierFactory(

"naiveBayes", nStates, lambdaRanges);

// Generate a model

CTBNClassifier model = modelFactory.newInstance(); �
ITestFactory is an interface which defines a factory for tests.

The idea is to provide a factory instance with the parameters

of the tests, for example the learning and inference algorithms,

and then to run a test calling a method. CTBNCTestFactory im-

plements a test factory for CTBNCs. It provides the possibility

to use a model factory to generate and test different data sets

created from different model instances, and it provides the pos-

sibility to execute the tests over a data set in input.

In both cases GenericTestResults class is returned. This class

implements a test result defined by the ITestResults interface

and contains the performances of the tests.

Example A.4.11. Here is an example of CTBNCTestFactory use.

Generics are widely used to have a complete generalization.

// Factory instantiation
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CTBNCTestFactory<Double,CTDiscreteNode,CTBNClassifier,

MicroMacroClassificationPerformances<Double,

ClassificationStandardPerformances<Double>>> testFactory

;

testFactory = new CTBNCTestFactory<Double,CTDiscreteNode,

CTBNClassifier,MicroMacroClassificationPerformances<

Double,ClassificationStandardPerformances<Double>>>(

modelFactory, validationMethod, nbParamsLearningAlg,

classificationAlg);

// Test execution

GenericTestResults<Double,CTDiscreteNode,CTBNClassifier,

MicroMacroClassificationPerformances<Double,

ClassificationStandardPerformances<Double>>> resultNB =

testFactory.newTest("NB", datasetDim);

// Performances recovering

String resultNB.performancesSummary(testName,

confidenceLevel, datasetDim, kFolds); �
In addition to the basic methods, GenericTestResults and

CTBNCTestFactory classes provide a set of general utilities to

manage the tests. GenericTestResults provides a set of static

methods to print the classification and clustering performances.

CTBNCTestFactory provides a set of static methods to load and

to manage the input data sets (see Section A.4.1).

a.4.10 Command line front-end

CTBNCToolkit.frontend is the package that contains the front-

end. Currently, only a command line front-end is developed.

The package consist of two classes: Main and CommandLine. Main

class is due to start the command line front-end implemented

by the CommandLine class.
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a.4.10.1 Command line parameters

The CommandLine class was developed to easily add new com-

mand line parameters (i.e. modifiers).

The command line parameters use an array of Strings that

gathers the information necessary to manage the modifiers (i.e.

modifiersList).

private String[][] modifiersList = {

{"help", "printHelp", " print the CTBNCToolkit help", "

enabled"},

... ,

{"validation", "setValidationMethod", " specify the

validation method:\n" +

"\t−−validation=CV,k \tk−folds cross validation is

used\n" +

"\t−−validation=HO,0.6\thold out is used", "enabled"},

... ,

{"v", "setVerbose", "enable the verbose comments", "

enabled"}

}; �
Each line consists of four columns:

i. name of the modifier, i.e. "help" is the modifier name that

can be called from the command line writing --help;

ii. name of the function called to manage the modifier, i.e.

when the --help modifier is inserted, the printHelp() func-

tion is called;

iii. modifier description, automatically printed when the --

help modifier is inserted;

iv. flag to enable or not the modifier: if the fourth column

contains "enabled" the modifier is enabled, otherwise it is

completely ignored, even in the printing of the help.
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When the command line is started, the input parameters are

analyzed in order to call the appropriate methods. It is possible

to define a method without parameters, i.e. printHelp():

public void printHelp() {

System.out.println("CTBNCToolkit for classif ication ");

....

} �
or a method with parameters, i.e. setValidationMethod( vMethod

):

public void setValidationMethod( LinkedList<String> vMethod)

{

....

} �
The inputs are passed to the method through a linked list au-

tomatically generated from the command line parameters. The

command line parameters with arguments have to be in the

following form:

--modifier=arg1,arg2,..,argN �
this generates a linked list of the following Strings: "arg1", "

arg2", ..., "argN". Using the example of the validation method

(A.1.2.4): the command line input --validation=HO,0.6 gener-

ates a linked list where "HO" is the first argument and "0.6" is

the second.

Using the modifiersList and the automatic managing of the

modifier parameters it is possible to add a new modifier just

adding in the code a line in the modifiersList and the corre-

sponding method, which can have in input any number of ar-

guments.
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a.4.10.2 Program execution

The command line parameters are used to set the parameters

required during the program execution, while the real CTBNC-

Toolkit starter relies on the CommandLine() constructor.

The constructor first initializes the modifier methods using

Java reflexivity. This is done in the initModifiers() method. It

then analyzes the command line parameters, calling the right

methods and checking the compatibilities between the parame-

ters.

Once the modifiers are managed, the CTBNCToolkit starts

with the following steps:

• data set loading and generation of a CTNB, provided by

the loadDatasets(..) method (see Section A.4.1);

• loading of the learning algorithms to test, provided by the

loadLearningAlgorithms(..) method (see Section A.4.4);

• loading of the classification algorithm, provided by the

loadInferenceAlgorithm() method (see Section A.4.6);

• test generation, provided by the generateTestFactories

(..) method (see Section A.4.9);

• test execution, provided by the executeTests(..) method

(see Section A.4.9).



B
M O R E R E S U LT S

This sections shows some of the test results obtained that for

reasons of brevity were not inserted in the main chapters of the

dissertation.

b.1 classification

b.1.1 DBN synthetic data sets

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN- DBNC1DBNC2

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

DBNTest1 1 1 1 .99 .37 .99 .35 .99 .35 1 1 1 1

DBNTest2 .86 .91 .98 .85 .26 .85 .26 .85 .26 .90 .91 .95 .91

DBNTest3 1 1 1 .98 .67 .98 .67 .98 .67 .98 .98 .99 .95

DBNTest4 .82 .82 .96 .81 .35 .81 .35 .81 .35 .80 .83 .87 .74

DBNTest5 .64 .64 .73 .64 .2 .64 .2 .64 .2 .63 .68 .62 .64

Table 11.: Average accuracy value for each DBN test and for each model. The bold characters

indicate the best models with 90% confidence. Tests are made using 10 fold cross

validation.
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b.1.2 CTBNC synthetic data sets

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

CTNB1 .972 .972* .965 .968* .961 .968* .913 .968* .772 .847 .849

CTNB2 .973 .973* .961 .970* .956 .970* .895 .970* .779 .858 .866*

CTNB3 .984 .984* .979 .983 .979 .983* .920 .983* .806 .890 .892

CTNB4 .906 .906* .854 .824 .845* .824* .666 .824* .394 .697 .704

CTNB5 .933 .933* .881 .889 .881 .889* .720 .889* .466 .712 .725*

k2ACTNB1 .823 .914 .965* .796 .960* .796 .940* .796 .839* .666 .666

k2ACTNB2 .804 .967 .968 .958 .968* .958* .920 .958* .794 .659 .681*

k2ACTNB3 .589 .654 .739* .198 .739* .198 .510* .198 .309* .408 .418

k2ACTNB4 .814 .937 .966* .877 .966* .877 .930* .877* .844 .669 .674

k2ACTNB5 .846 .959 .960 .951 .960 .951* .926 .951* .799 .675 .694*

k2CTBNC1 .627 .807 .840* .781 .840* .781 .755 .781* .592 .492 .508*

k2CTBNC2 .690 .890 .924* .873 .924* .873* .852 .873* .691 .541 .568*

k2CTBNC3 .733 .832* .809 .859* .809 .859* .708 .859* .557 .544 .559

k2CTBNC4 .757 .858* .826 .872* .826 .872* .694 .872* .555 .520 .535

k2CTBNC5 .578 .813 .868* .823 .868* .823* .777 .823* .597 .397 .399

k2CTBNC6 .665 .837 .865* .878 .865 .878* .762 .878* .599 .412 .440*

k3CTBNC1 .508 .670 .701* .629 .701* .898 .923* .898* .780 .326 .354*

k3CTBNC2 .565 .732 .735 .730 .735 .909 .927 .909* .795 .373 .415*

k3CTBNC3 .602 .787* .757 .789* .757 .934* .877 .934* .744 .366 .363

k3CTBNC4 .622 .784 .793 .809 .793 .942* .915 .942* .806 .384 .384

k3CTBNC5 .539 .803* .674 .808* .674 .887* .805 .887* .637 .363 .371

k3CTBNC6 .563 .776 .778 .822* .778 .927* .834 .927* .697 .405 .420*

k4CTBNC1 .426 .436 .560* .236 .560* .236 .864* .236 .875* .290 .297

k4CTBNC2 .399 .501 .633* .462 .633* .594 .848* .773 .876* .293 .279

k4CTBNC3 .870 .937 .924 .951* .926 .984* .967 .984* .887 .445 .435

k4CTBNC4 .885 .952* .931 .958* .931 .994* .977 .994* .901 .644 .641

k4CTBNC5 .584 .718 .830* .648 .831* .736 .975* .736 .911* .363 .383

k4CTBNC6 .643 .873 .869 .886 .869 .996 .995 .996* .947 .388 .390

Table 12.: Average accuracy value for each CTBNC test and for each model. Tests are made

using 10 fold cross validation. The bold characters indicate the best models with

90% confidence. For the CTBNCs the asterisk indicates which scoring function (i.e.

MLL or CLL) is better with 90% confidence, once the structure constraints (i.e.

number of parents) are set. For the DBNs the asterisk indicates which DBN is the

best with 90% confidence.
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k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .954 .954 .928 .927 .924 .927 .823 .927 .643

80% .918 .918 .859 .725 .857 .725 .718 .725 .550

CTNB 60% .847 .847 .758 .596 .758 .596 .586 .596 .441

40% .703 .703 .566 .184 .561 .184 .406 .184 .333

20% .444 .444 .337 .187 .340 .187 .287 .187 .242

100% .775 .886 .920 .756 .919 .756 .845 .756 .717

80% .722 .793 .826 .568 .818 .568 .729 .568 .582

K2ACTNB 60% .642 .662 .697 .336 .695 .336 .564 .336 .427

40% .515 .518 .497 .247 .488 .247 .373 .247 .297

20% .341 .341 .300 .197 .302 .197 .290 .197 .228

100% .675 .840 .855 .848 .855 .848 .758 .848 .599

80% .619 .781 .784 .774 .781 .774 .674 .774 .519

K2CTBNC 60% .538 .654 .673 .567 .664 .567 .541 .567 .406

40% .478 .514 .542 .358 .538 .358 .425 .358 .329

20% .329 .329 .322 .228 .312 .228 .246 .228 .255

100% .486 .650 .634 .655 .634 .785 .754 .785 .637

80% .445 .550 .579 .480 .579 .568 .669 .568 .509

K3CTBNC 60% .387 .442 .479 .362 .477 .381 .527 .381 .388

40% .317 .320 .362 .213 .345 .213 .325 .213 .249

20% .272 .270 .280 .233 .267 .233 .249 .233 .220

100% .635 .736 .791 .690 .792 .757 .938 .787 .900

80% .589 .679 .727 .642 .727 .726 .869 .755 .767

K4CTBNC 60% .542 .601 .648 .559 .648 .592 .765 .592 .610

40% .461 .465 .493 .360 .480 .360 .518 .360 .392

20% .341 .341 .299 .258 .297 .258 .308 .258 .260

Table 13.: Average accuracy value for each test model category and for each CTBNC model,

changing the dimension of the data set used. The first column indicates the model

category that generates the data sets used in the tests. The second column indi-

cates the percentage of the original data set used (i.e. X% indicates that only X%

of the data set trajectories are used, and each trajectory is cut in order to be X%

of the original length). Tests are made using 10 fold cross validation. The bold

characters indicate the best models with 90% confidence.
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b.1.2.1 CTNB tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .972 .972* .965 .968* .961 .968* .913 .968* .772

80% .954 .954* .920 .904 .929* .904* .815 .904* .684

CTNB1 60% .918 .918* .873 .813 .882* .813* .722 .813* .573

40% .82 .82* .7 .255 .683* .255 .530* .255 .463*

20% .645 .645* .52 .26 .545* .26 .465* .26 .375*

100% .973 .973* .961 .970* .956 .970* .895 .970* .779

80% .955 .955* .929 .916 .920 .916* .818 .916* .676

CTNB2 60% .897 .897* .837 .733 .835* .733* .680 .733* .538

40% .793 .793* .695 .225 .698* .225 .528* .225 .418*

20% .525 .525* .365 .23 .36* .23 .32* .23 .265

100% .984 .984* .979 .983 .979 .983* .920 .983* .806

80% .96 .96* .936 .955 .936 .955* .8725 .955* .695

CTNB3 60% .918 .918* .860 .878 .860 .878* .732 .878* .537

40% .808 .808* .683 .250 .683* .250 .540* .250 .458*

20% .59 .59* .49 .275 .49* .275 .415* .275 .335

100% .906 .906* .854 .824 .845* .824* .666 .824* .394

80% .855 .855* .761 .085 .751* .085 .518* .085 .331*

CTNB4 60% .727 .727* .563 .092 .555* .092 .378* .092 .232*

40% .523 .523* .378 .080 .368* .080 .233* .080 .170*

20% .24 .24* .165 .075* .16 .075 .105* .075 .085

100% .933 .933* .881 .889 .881 .889* .720 .889* .466

80% .868 .868* .751 .765 .751 .765* .564 .765* .363

CTNB5 60% .773 .773* .657 .465 .657* .465* .420 .465* .325

40% .570 .570* .373 .110 .373* .110 .198* .110 .155

20% .220 .220* .145 .095 .145* .095 .13 .095 .150*

Table 14.: Average accuracy value for each CTNB test and for each CTBNC model, changing

the dimension of the data set used. The second column indicates the percentage

of the original data set used (i.e. X% indicates that only X% of the data set trajec-

tories are used, and each trajectory is cut in order to be X% of the original length).

Tests are made using 10 fold cross validation. The bold characters indicate the

best models with 90% confidence. The asterisk indicates which scoring function

(i.e. MLL or CLL) is better with 90% confidence once set the structure constraints

(i.e. number of parents).
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b.1.2.2 k2ACTNB tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .823 .914 .965* .796 .960* .796 .940* .796 .839*

80% .766 .791 .926* .359 .911* .359 .854* .359 .673*

k2ACTNB1 60% .703 .703 .858* .210 .837* .210 .728* .210 .565*

40% .595 .595 .56 .275 .553* .275 .46* .275 .353*

20% .325 .325 .34 .22 .340* .22 .345* .22 .275

100% .804 .967 .968 .958 .968* .958* .920 .958* .794

80% .778 .908 .911 .849 .911* .849 .839 .849* .683

k2ACTNB2 60% .723 .748 .797* .480 .797* .480 .658* .480 .470

40% .565 .565 .573 .380 .573* .380 .390 .380 .323

20% .415 .415 .380 .225 .380* .225 .340* .225 .235

100% .589 .654 .739* .198 .739* .198 .510* .198 .309*

80% .516 .524 .489 .099 .489* .099 .310* .099 .213*

k2ACTNB3 60% .397 .397 .367 .087 .367* .087 .212* .087 .192*

40% .243 .243 .245 .100 .245* .100 .140* .100 .130

20% .160 .160 .160 .160 .160 .160 .170 .160* .115

100% .814 .937 .966* .877 .966* .877 .930* .877* .844

80% .758 .819 .939* .653 .915* .653 .860* .653 .716*

k2ACTNB4 60% .675 .675 .813* .273 .822* .273 .697* .273 .527*

40% .550 .550 .585 .270 .550* .270 .458* .270 .335*

20% .345 .345 .295 .165 .305* .165 .290* .165 .250*

100% .846 .959 .960 .951 .960 .951* .926 .951* .799

80% .794 .921* .864 .881 .864 .881* .781 .881* .623

k2ACTNB5 60% .713 .788* .650 .628 .650 .628* .523 .628* .383

40% .620 .635* .520 .208 .520* .208 .418* .208 .343*

20% .460 .460* .325 .215 .325* .215 .305* .215 .265

Table 15.: Average accuracy value for each k2ACTNB test and for each CTBNC model, chang-

ing the dimension of the data set used. The second column indicates the percent-

age of the original data set used (i.e. X% indicates that only X% of the data set

trajectories are used, and each trajectory is cut in order to be X% of the original

length). Tests are made using 10 fold cross validation. The bold characters indi-

cate the best models with 90% confidence. The asterisk indicates which scoring

function (i.e. MLL or CLL) is better with 90% confidence once set the structure

constraints (i.e. number of parents).
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b.1.2.3 k2CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .627 .807 .840* .781 .840* .781 .755 .781* .592

80% .566 .732 .770* .703 .765* .703* .675 .703* .549

k2CTBNC1 60% .505 .590 .700* .252 .672* .252 .545* .252 .403*

40% .453 .453 .555* .208 .533* .208 .408* .208 .353*

20% .285 .285 .270 .220 .245* .220 .250* .220 .260*

100% .690 .890 .924* .873 .924* .873* .852 .873* .691

80% .649 .839 .846 .805 .846* .805* .738 .805* .551

k2CTBNC2 60% .547 .747* .708 .695 .708 .695* .605 .695* .445

40% .453 .453 .468 .283 .468* .283 .375* .283 .270

20% .355 .355* .285 .255 .285 .255* .195 .255 .230

100% .733 .832* .809 .859* .809 .859* .708 .859* .557

80% .675 .768* .744 .745 .736 .745* .635 .745* .503

k2CTBNC3 60% .605 .605 .632 .415 .610* .415 .528* .415 .385

40% .490 .490 .503 .280 .485* .280 .398* .280 .303

20% .285 .285 .325 .190 .285* .190 .305* .190 .225

100% .757 .858* .826 .872* .826 .872* .694 .872* .555

80% .679 .825* .750 .833* .750 .833* .646 .833* .501

k2CTBNC4 60% .572 .698* .648 .763* .648 .763* .495 .763* .367

40% .550 .640* .545 .573 .545 .573* .450 .573* .378

20% .430 .430 .405 .225 .405* .225 .275* .225 .360*

100% .578 .813 .868* .823 .868* .823* .777 .823* .597

80% .532 .761 .796* .759 .795* .759* .678 .759* .508

k2CTBNC5 60% .460 .568 .692* .532 .692* .532 .545 .532* .448

40% .438 .438 .578* .198 .593* .198 .453* .198 .323*

20% .355 .355 .355 .210 .360* .210 .220 .210 .210

100% .665 .837 .865* .878 .865 .878* .762 .878* .599

80% .614 .759 .795* .800 .795 .800* .670 .800* .499

k2CTBNC6 60% .538 .717* .655 .745* .655 .745* .528 .745* .388

40% .483 .610 .605 .603 .605 .603* .468 .603 * .345

20% .265 .265 .290 .270 .290 .270 .230 .270 .245

Table 16.: Average accuracy value for each k2CTBNC test and for each CTBNC model, chang-

ing the dimension of the data set used. The second column indicates the percent-

age of the original data set used (i.e. X% indicates that only X% of the data set

trajectories are used, and each trajectory is cut in order to be X% of the original

length). Tests are made using 10 fold cross validation. The bold characters indi-

cate the best models with 90% confidence. The asterisk indicates which scoring

function (i.e. MLL or CLL) is better with 90% confidence once set the structure

constraints (i.e. number of parents).
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b.1.2.4 k3CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .508 .670 .701* .629 .701* .898 .923* .898* .780

80% .489 .479 .663* .255 .663* .255 .846* .255 .684*

k3CTBNC1 60% .428 .428 .553* .235 .547* .235 .708* .235 .512*

40% .330 .330 .398* .168 .380* .168 .430* .168 .308*

20% .295 .295 .255 .295 .25 .295* .215 .295* .220

100% .565 .732 .735 .730 .735 .909 .927 .909* .795

80% .490 .618 .644 .648 .644 .814 .829 .814* .618

k3CTBNC2 60% .438 .467 .528* .330 .528* .330 .625* .330 .427*

40% .325 .325 .355 .183 .355* .183 .348* .183 .268*

20% .275 .275 .280 .225 .280 .225 .255 .225 .275

100% .602 .787* .757 .789* .757 .934* .877 .934* .744

80% .551 .753* .704 .729 .704 .884* .790 .884* .620

k3CTBNC3 60% .460 .672* .603 .598 .607 .598 .687* .598* .505

40% .363 .363 .445* .218 .430* .218 .413* .218 .313*

20% .290 .290 .325 .210 .290* .210 .220 .210 .160

100% .622 .784 .793 .809 .793 .942* .915 .942* .806

80% .559 .750* .725 .776* .725 .923* .749 .923* .563

k3CTBNC4 60% .527 .692* .577 .697* .577 .827* .530 .827* .398

40% .410 .443* .383 .398 .383 .400* .348 .400* .260

20% .305 .305* .240 .250 .240 .250 .215 .250 .230

100% .539 .803* .674 .808* .674 .887* .805 .887* .637

80% .489 .555 .606* .271 .606* .271 .714* .271 .536*

k3CTBNC5 60% .420 .408 .540* .257 .527* .257 .557* .257 .428*

40% .405 .408 .513* .278 .430* .278 .378* .278 .303

20% .300 .300 .305 .230 .255 .230 .250 .230 .210

100% .563 .776 .778 .822* .778 .927* .834 .927* .697

80% .536 .693 .709 .678 .709 .826* .758 .826* .543

k3CTBNC6 60% .438 .427 .552* .418 .552* .418 .585* .418 .448

40% .385 .368 .440* .243 .440* .243 .355* .243 .293*

20% .235 .235 .245 .280 .245 .280 .260 .280* .220

Table 17.: Average accuracy value for each k3CTBNC test and for each CTBNC model, chang-

ing the dimension of the data set used. The second column indicates the percent-

age of the original data set used (i.e. X% indicates that only X% of the data set

trajectories are used, and each trajectory is cut in order to be X% of the original

length). Tests are made using 10 fold cross validation. The bold characters indi-

cate the best models with 90% confidence. The asterisk indicates which scoring

function (i.e. MLL or CLL) is better with 90% confidence once set the structure

constraints (i.e. number of parents).
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b.1.2.5 k4CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test data set CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC

% (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL)

100% .426 .436 .560* .236 .560* .236 .864* .236 .875*

80% .369 .369 .500* .236 .500* .236 .771* .236 .774*

k4CTBNC1 60% .337 .337 .420* .273 .420* .273 .593* .273 .548*

40% .338 .338 .358 .273 .358* .273 .403* .273 .290

20% .270 .270 .300 .290 .310 .290 .275 .290 .250

100% .399 .501 .633* .462 .633* .594 .848* .773 .876*

80% .379 .448 .529* .420 .529* .544 .689* .718* .583

k4CTBNC2 60% .348 .427 .465* .268 .465* .268 .575* .268 .418*

40% .270 .270 .293 .195 .293* .195 .363* .195 .298*

20% .235 .235 .280 .250 .280 .250 .265 .250 .285

100% .870 .937 .924 .951* .926 .984* .967 .984* .887

80% .819 .896 .885 .895 .889 .963* .929 .963* .795

k4CTBNC3 60% .768 .827 .828 .813 .832 .813 .845* .813* .628

40% .658 .645 .653 .248 .623* .248 .610* .248 .448*

20% .445 .445* .275 .210 .285* .210 .295* .210 .295*

100% .885 .952* .931 .958* .931 .994* .977 .994* .901

80% .848 .906* .869 .925* .869 .980* .926 .980* .796

k4CTBNC4 60% .763 .857* .788 .868* .788 .955* .825 .955* .665

40% .713 .690 .668 .703 .668 .703* .578 .703* .428

20% .470 .470* .340 .300 .340 .300 .295 .300* .230

100% .584 .718 .830* .648 .831* .736 .975* .736 .911*

80% .540 .663 .763* .619 .760* .693 .944* .693 .809*

k4CTBNC5 60% .505 .580 .673* .535 .672* .535 .865* .535 .703*

40% .348 .348 .485* .285 .438* .285 .568* .285 .425*

20% .315 .315 .345 .270 .310* .270 .385* .270 .250

100% .643 .873 .869 .886 .869 .996 .995 .996* .947

80% .581 .794 .814 .759 .814* .940 .955 .940* .844

k4CTBNC6 60% .530 .575 .712* .595 .712* .707 .885* .707 .695

40% .438 .500 .498 .458 .498 .458 .588* .458 .460

20% .310 .310 .255 .225 .255 .225 .330* .225 .250

Table 18.: Average accuracy value for each k4CTBNC test and for each CTBNC model, chang-

ing the dimension of the data set used. The second column indicates the percent-

age of the original data set used (i.e. X% indicates that only X% of the data set

trajectories are used, and each trajectory is cut in order to be X% of the original

length). Tests are made using 10 fold cross validation. The bold characters indi-

cate the best models with 90% confidence. The asterisk indicates which scoring

function (i.e. MLL or CLL) is better with 90% confidence once set the structure

constraints (i.e. number of parents).



B.2 clustering 168

b.2 clustering

b.2.1 DBN synthetic data sets

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R 1 1 .872 .260 .616 .924 .594 .903 .613 .705 .547

DBNTest1 J 1 1 .624 .260 .148 .775 .164 .712 .150 .271 .185

FM 1 1 .770 .510 .258 .880 .282 .835 .261 .426 .319

R .683 .762 .675 .248 .622 .248 .622 .248 .633 .617 .498

DBNTest2 J .256 .356 .216 .248 .146 .248 .141 .248 .168 .150 .206

FM .409 .525 .355 .498 .255 .498 .247 .498 .287 .261 .365

R .991 1 .839 .907 .248 .865 .598 .853 .248 .607 .443

DBNTest3 J .962 1 .516 .689 .248 .588 .147 .563 .248 .150 .219

FM .981 1 .681 .816 .498 .742 .257 .722 .498 .262 .398

R .727 .695 .658 .266 .631 .266 .623 .266 .636 .617 .546

DBNTest4 J .306 .277 .208 .266 .162 .266 .161 .266 .175 .149 .184

FM .469 .434 .345 .516 .280 .516 .278 .516 .298 .259 .317

R .687 .672 .665 .256 .630 .256 .631 .256 .622 .617 .325

DBNTest5 J .238 .218 .212 .256 .148 .256 .149 .256 .139 .148 .243

FM .384 .357 .350 .506 .258 .506 .260 .506 .244 .257 .464

Table 19.: Clustering performances for each DBN test and for each model. R stands for the

Rand index, J stands for Jaccard’s coefficient and FM for the Fowlkes–Mallows

index.
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b.2.2 CTBNC synthetic data sets

b.2.2.1 CTNB tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .972 .973 .830 .917 .964 .914 .784 .913 .627 .566 .509

CTNB1 J .896 .900 .526 .717 .866 .710 .402 .703 .147 .175 .199

FM .945 .947 .692 .835 .928 .830 .573 .826 .256 .304 .349

R .971 .971 .958 .936 .959 .933 .805 .936 .625 .495 .491

CTNB2 J .889 .892 .845 .772 .848 .765 .439 .774 .144 .201 .203

FM .941 .943 .916 .871 .918 .867 .610 .873 .252 .355 .360

R .983 .985 .973 .952 .973 .950 .714 .959 .626 .431 .293

CTNB3 J .935 .942 .896 .826 .896 .818 .273 .849 .145 .219 .245

FM .966 .970 .945 .905 .945 .900 .429 .918 .253 .399 .478

R .958 .953 .846 .100 .858 .100 .821 .100 .820 .741 .509

CTNB4 J .653 .624 .137 .100 .173 .100 .056 .100 .053 .071 .090

FM .790 .769 .241 .316 .295 .316 .107 .316 .100 .140 .219

R .926 .970 .848 .886 .866 .846 .822 .927 .819 .740 .259

CTNB5 J .480 .739 .151 .284 .205 .150 .060 .479 .053 .071 .099

FM .649 .850 .262 .442 .341 .260 .113 .648 .101 .140 .285

Table 20.: Clustering performances for each CTNB test and for each model. R stands for the

Rand index, J stands for Jaccard’s coefficient and FM for the Fowlkes–Mallows

index.
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b.2.2.2 k2ACTNB tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .828 .917 .780 .675 .707 .740 .634 .758 .626 .553 .580

k2ACTNB1 J .488 .716 .389 .219 .265 .324 .155 .352 .144 .180 .172

FM .656 .834 .560 .360 .418 .490 .268 .520 .252 .312 .298

R .813 .967 .695 .892 .800 .920 .627 .894 .626 .534 .249

k2ACTNB2 J .456 .875 .242 .645 .430 .723 .145 .649 .143 .189 .249

FM .626 .933 .390 .784 .601 .839 .253 .787 .250 .330 .499

R .830 .838 .824 .100 .822 .100 .820 .100 .820 .604 .133

k2ACTNB3 J .093 .108 .065 .100 .061 .100 .056 .100 .052 .086 .100

FM .171 .196 .122 .317 .115 .317 .105 .317 .099 .194 .311

R .774 .945 .726 .760 .662 .763 .635 .781 .626 .429 .349

k2ACTNB4 J .384 .802 .300 .352 .194 .376 .156 .398 .143 .220 .235

FM .555 .890 .462 .520 .325 .547 .270 .570 .250 .401 .447

R .845 .957 .702 .923 .738 .902 .626 .938 .625 .617 .275

k2ACTNB5 J .529 .840 .258 .733 .319 .672 .143 .778 .144 .148 .246

FM .692 .913 .410 .846 .483 .804 .251 .875 .251 .258 .487

Table 21.: Clustering performances for each k2ACTNB test and for each model. R

stands for the Rand index, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index.
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b.2.2.3 k2CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .687 .786 .638 .743 .738 .784 .627 .776 .627 .576 .452

k2CTBNC1 J .233 .408 .161 .330 .318 .400 .145 .384 .145 .170 .213

FM .378 .580 .278 .497 .483 .571 .254 .555 .253 .295 .385

R .672 .787 .637 .892 .631 .840 .628 .798 .626 .589 .578

k2CTBNC2 J .212 .418 .159 .646 .152 .516 .149 .448 .143 .166 .170

FM .350 .590 .275 .785 .265 .680 .260 .620 .251 .287 .294

R .744 .849 .749 .764 .655 .853 .626 .845 .627 .453 .490

k2CTBNC3 J .326 .535 .339 .359 .194 .546 .144 .525 .144 .213 .202

FM .491 .697 .506 .528 .325 .707 .252 .689 .252 .384 .359

R .723 .762 .676 .879 .668 .886 .636 .881 .627 .581 .537

k2CTBNC4 J .307 .355 .213 .610 .206 .628 .157 .616 .145 .167 .187

FM .470 .524 .352 .758 .342 .772 .271 .762 .253 .290 .326

R .646 .758 .753 .822 .642 .836 .626 .819 .625 .556 .337

k2CTBNC5 J .171 .347 .342 .474 .165 .505 .145 .471 .143 .180 .237

FM .292 .515 .510 .643 .284 .671 .253 .640 .250 .312 .454

R .690 .826 .637 .905 .634 .842 .626 .902 .627 .616 .267

k2CTBNC6 J .236 .483 .158 .681 .155 .520 .145 .673 .145 .147 .247

FM .381 .651 .273 .810 .268 .684 .253 .805 .253 .257 .491

Table 22.: Clustering performances for each k2CTBNC test and for each model. R

stands for the Rand index, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index.
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b.2.2.4 k3CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .635 .677 .634 .250 .632 .874 .636 .868 .626 .573 .439

k3CTBNC1 J .156 .217 .158 .250 .152 .596 .157 .581 .143 .173 .217

FM .270 .356 .273 .500 .264 .747 .271 .735 .251 .299 .395

R .642 .674 .632 .685 .628 .813 .625 .838 .629 .547 .432

k3CTBNC2 J .173 .225 .152 .231 .146 .456 .144 .511 .147 .184 .218

FM .295 .368 .265 .376 .255 .626 .252 .677 .257 .320 .398

R .664 .711 .664 .785 .627 .934 .626 .897 .626 .579 .342

k3CTBNC3 J .199 .268 .198 .398 .146 .767 .144 .662 .143 .171 .236

FM .332 .423 .330 .569 .255 .868 .251 .797 .250 .295 .451

R .645 .728 .640 .831 .657 .942 .626 .930 .625 .600 .327

k3CTBNC4 J .169 .306 .163 .495 .190 .793 .144 .756 .142 .158 .239

FM .289 .469 .281 .662 .320 .884 .251 .861 .249 .273 .460

R .646 .672 .638 .693 .632 .770 .628 .899 .625 .594 .250

k3CTBNC5 J .172 .212 .162 .249 .156 .391 .145 .665 .142 .161 .250

FM .294 .350 .279 .399 .270 .563 .254 .799 .249 .279 .500

R .639 .666 .631 .827 .629 .809 .627 .868 .627 .593 .440

k3CTBNC6 J .160 .202 .151 .486 .151 .485 .149 .583 .144 .162 .216

FM .276 .336 .263 .654 .263 .657 .259 .737 .252 .281 .393

Table 23.: Clustering performances for each k3CTBNC test and for each model. R

stands for the Rand index, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index.
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b.2.2.5 k4CTBNC tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Test Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

(MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .628 .632 .628 .250 .627 .250 .634 .250 .626 .607 .444

k4CTBNC1 J .148 .153 .146 .250 .148 .250 .154 .250 .144 .155 .215

FM .257 .265 .256 .500 .258 .500 .267 .500 .251 .268 .390

R .628 .627 .624 .249 .626 .249 .626 .767 .625 .571 .574

k4CTBNC2 J .147 .145 .143 .249 .145 .249 .144 .368 .142 .172 .170

FM .256 .253 .250 .499 .253 .499 .251 .538 .249 .298 .295

R .876 .937 .790 .880 .780 .983 .692 .984 .629 .617 .362

k4CTBNC3 J .602 .778 .419 .620 .400 .934 .239 .938 .148 .147 .233

FM .752 .875 .591 .766 .572 .966 .385 .968 .257 .257 .439

R .884 .945 .829 .955 .871 .994 .662 .993 .627 .603 .477

k4CTBNC4 J .623 .801 .493 .834 .589 .976 .194 .972 .144 .155 .206

FM .768 .889 .660 .910 .742 .988 .326 .986 .252 .270 .368

R .644 .812 .631 .691 .640 .778 .626 .788 .625 .556 .495

k4CTBNC5 J .168 .453 .151 .255 .162 .385 .144 .408 .142 .180 .201

FM .288 .624 .262 .406 .280 .556 .252 .579 .249 .312 .356

R .672 .791 .635 .804 .639 .997 .629 .997 .626 .528 .267

k4CTBNC6 J .206 .411 .157 .440 .160 .988 .148 .988 .143 .190 .247

FM .342 .583 .272 .611 .276 .994 .258 .994 .250 .333 .490

Table 24.: Clustering performances for each k4CTBNC test and for each model. R

stands for the Rand index, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index.
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b.2.3 Traffic profiling tests

k = 2 k = 2 k = 2 k = 2 k = 3 k = 3 k = 4 k = 4

Road Trajectories Measure CTNB ACTNBACTNB CTBNCCTBNC CTBNCCTBNC CTBNCCTBNC DBN-DBN-

network length (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) (MLL) (CLL) NB1 NB2

R .932 .930 .933 .931 .867 .923 .933 .860 .931 .476 .647

100 seconds J .700 .693 .704 .700 .500 .667 .704 .489 .696 .193 .184

Toy FM .823 .818 .826 .823 .667 .800 .827 .658 .821 .375 .321

netwok R .819 .874 .877 .898 .950 .968 .912 .957 .885 .486 .306

300 seconds J .397 .532 .535 .568 .771 .847 .664 .798 .544 .164 .183

FM .571 .696 .698 .725 .871 .917 .805 .888 .705 .318 .393

R .797 .806 .796 .805 .805 .795 .800 .788 .805 .253 .344

100 seconds J .287 .304 .288 .301 .296 .280 .281 .274 .309 .176 .171

Monza’s FM .446 .466 .447 .463 .457 .438 .438 .431 .472 .399 .367

netwok* R .819 .817 .805 .811 .832 .823 .810 .821 .820 .535 .540

300 seconds J .341 .357 .376 .328 .364 .333 .321 .321 .336 .244 .252

FM .508 .527 .554 .494 .534 .500 .486 .486 .503 .461 .474

R .772 .776 .759 .774 .757 .766 .772 .781 .759 .588 .502

Monza’s 100 seconds J .213 .243 .207 .242 .225 .223 .229 .236 .218 .145 .156

network FM .352 .391 .343 .389 .368 .365 .372 .382 .358 .270 .305

real loops* R .790 .807 .771 .810 .808 .797 .805 .803 .813 .607 .573

300 seconds J .260 .297 .245 .305 .289 .272 .295 .307 .315 .193 .198

FM .413 .458 .394 .467 .448 .428 .456 .471 .479 .349 .366

Table 25.: Clustering performances on the traffic profiling prediction data sets. R stands

for the Rand index, J stands for Jaccard’s coefficient and FM for the

Fowlkes–Mallows index. The asterisk indicates that for computational reasons

a random subset of trajectories was used for the experiments.
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