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Abstract In many real datasets, the same variables are measured on objects from
different groups, and the covariance structure may vary from group to group. Of-
tentimes, the underlying population covariance matrices are not identical, yet they
still have a common basic structure, e.g. there exists some rotation that diagonal-
izes simultaneously all covariance matrices in the groups,or all covariances can be
made congruent by some translation and/or dilation. The purpose of this paper is to
show how a test of homoscedasticity can be made more informative by performing a
separate check for equality between shapes and equality between orientations of the
concentration ellipsoids. This approach, combined with parsimonious parametriza-
tion in mixture data modeling, provides a formal hypothesistesting procedure for
model assessment.
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1 Introduction and basic definitions

In multivariate analysis it is customary to employ an unbiased version of the likeli-
hood ratio (LR) test to ascertain equality of the covariancematrices referred to sev-
eral groups. However, in many applications, data groups escape from homoscedas-
ticity; nevertheless, one can observe some sort of common basic structure among
covariance matrices, f.i. they share orientation or shape or size. To this aim, their
spectral decomposition is employed, i.e. theeigenvaluesandeigenvectorsrepresen-
tation, as suggested by many authors in the literature, see [?]). In clustering males
and females blue crabs [?] by a mixture model-based approach, Peel and McLachlan
[?] assumed that the two group-conditional distributions were bivariate normal with
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common covariance matrix, on the basis of Hawkins’ test. As pointed out by the au-
thors, this assumption produced a larger misallocation rate than the unconstrained
model. Greselin and Ingrassia in [?] resolved this apparent contradiction, requiring
only covariances matrices with the same set of (ordered) eigenvalues, i.e. ellipsoids
of equal concentration with the same size and shape. In the present paper, Flury’s
proposal and the above remarks on patterned covariance matrices are jointly consid-
ered to provide a unified framework for a more informative scedasticity comparison
among groups.

Now we introduce some basic notation and definition: supposing to deal withp

variables measured on objects arising fromk ≥ 2 groups, letx(h)
1 , . . . ,x(h)

nh denote
nh independent observations, for thehth group, drawn from a normal distribution
with mean vectorµh and covariance matrixΣΣΣh, h = 1, . . . ,k. Let ΣΣΣh = ΓΓΓ hΛΛΛ hΓΓΓ ′

h be

the spectral decomposition ofΣΣΣh, whereΛΛΛ h = diag(λ (h)
1 , . . . ,λ (h)

p ) is the diagonal
matrix of the eigenvalues ofΣΣΣh sorted in non-increasing order andΓΓΓ h is thep× p

orthogonal matrix whose columnsγ(h)
1 , . . . ,γ(h)

p are the normalized eigenvectors of
ΣΣΣh ordered according to their eigenvalues,h = 1, . . . ,k; here, and in what follows,
the prime denotes the transpose of a matrix. On the other hand, k covariance matrices
which share the same matrix of orthonormalized eigenvectors ΓΓΓ 1 = · · · = ΓΓΓ k = ΓΓΓ
have ellipsoids of equal concentration with the sameaxis orientationin p-space, i.e.
they are congruent up to a suitable dilation/contraction (alteration in size) and/or
“deformation” (alteration in shape). By using the Greek term ”tròpos” (orientation),
we call it “homotroposcedasticity”.

When homometroscedasticity and homotroposcedasticity simultaneously hold,
we have homoscedastic data. Moreover, an intermediate situation between het-
eroscedasticity and homoscedasticity, denoted as “weak homoscedasticity” can be
devised, when only one of the two above conditions holds.

2 More informative multiple tests to compare “scedasticity”

Consider the null hypothesis of homometroscedasticityHΛ
0 : Λ1 = · · · = Λk = Λ

versus the alternativeHΛ
1 : Λh 6= Λl for someh, l ∈ {1, . . . ,k}, h 6= l . HΓ

0 : Γ1 = · · ·=
Γk = Γ versus the alternativeHΓ

1 : Γh 6= Γl for someh, l ∈ {1, . . . ,k}, h 6= l .
A test of homoscedasticity can be re-expressed by a union-intersection (UI) test

asHS
0 : HΛ

0 ∩HΓ
0 versusHS

1 : HΛ
1 ∪HΓ

1 . Differently from a usual test of homoscedas-
ticity, the present approach shows its profitability whenever the null hypothesisHS

0
is rejected: the component tests forHΛ

0 andHΓ
0 can discriminate the nature of the

departure fromHS
0 . On the other hand, a test of weak homoscedasticity may be for-

mulated as an intersection-union (IU) test:HW
0 : HΛ

0 ∪HΓ
0 versusHW

1 : HΛ
1 ∩HΓ

1 .

Testing homometroscedasticity.Let xh andSh respectively be the sample mean
vector and the unbiased sample covariance matrix in thehth group,h = 1, . . . ,k.
Moreover, letGh be thep× p orthogonal matrix whose columns are the normal-
ized eigenvectors ofSh ordered by the non-increasing sequence of the eigenval-
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ues ofSh, h = 1, . . . ,k. According to theprincipal component (linear) transforma-

tion x(h)
i → y(h)

i = G′
h(x

(h)
i − xh), i = 1, . . . ,nh, the datay(h)

1 , . . . ,y(h)
nh , are uncorre-

lated, and their covariance matrixLh is the diagonal matrix containing the non-
negative eigenvalues ofSh. Since the assumption of multivariate normality holds,
these components are also independent and normally distributed. Based on these re-

sults, the null hypothesisHΛ
0 can be re-expressed as followsHΛ

0 :
⋂p

j=1H
λ j
0 , where

H
λ j
0 : λ (1)

j = · · · = λ (k)
j = λ j , andλ j is the unknownjth eigenvalue, common to the

k groups. The problem can now be approached by a UI test, through p simpler tests
of equality of variances ink groups.

Testing homotroposcedasticity.Consider the spectral decomposition ofΣΣΣh, i.e.
ΣΣΣh = ΓΓΓ hΛΛΛhΓΓΓ ′

h. UnderHΓ
0 , the matrixΓΓΓ simultaneously diagonalizes all covari-

ance matrices and generates the eigenvalue matricesΛh. ThusHΓ
0 can be restated as

HΓ
0 : ΓΓΓ ′ΣΣΣhΓΓΓ = ΛΛΛ h, h = 1, . . . ,k.
To the best of the authors’ knowledge, a direct method to dealwith the latter

expression forHΓ
0 does not exist. However, under the assumption of multivariate

normality, Flury derived the log-LR statistics for testingthe weaker null hypothesis
of common principal componentsHCPC

0 : ΓΓΓ
˜

′ΣΣΣhΓΓΓ
˜

= ΛΛΛ h
˜

, h = 1, . . . ,k, whereΓΓΓ
˜

is a
p× p orthonormalized matrix that diagonalizes all covariance matrices, andΛΛΛ h

˜

is
one of the possiblep! diagonal matrices of eigenvalues in thehth group,h= 1, . . . ,k.
Note that, in contrast with the latter formulation ofHΓ

0 , no canonical ordering of
the columns ofΓΓΓ

˜
is specified here. In order to apply Flury’s proposal, theF-G

algorithmcan estimate the sample counterpartG
˜

of ΓΓΓ
˜

. UnderHCPC
0 , the following

transformationx(h)
i → y

˜

(h)
i

= G
˜

′(x(h)
i − xh) holds, where the datay

˜

(h)
1 , . . . , y

˜

(h)
nh are

uncorrelated with diagonal covariance matrixL
˜

h (the sample counterpart ofΛh
˜

), for

h = 1, . . . ,k. From a geometrical point of view, underHΓ
0 thek ellipsoids of equal

concentration have the same orientation inp-space while, underHCPC
0 they have

only the same principal axes. For Hence, to testHΓ
0 , first we perform Flury’s test

HCPC
0 of equality between principal axes; afterwards, ifHCPC

0 is accepted, perform a
statistical test to evaluateHR

0 . For further details about the tests, see [?]. Finally we
remark that in order to preserve the chosen levelα for the overall null hypothesis,
the significance levels in the individual tests have to be devised with some care. In
any case, the implementedR routine requires only the overall significance level and
derives the component ones.

3 An application to clustering

In mixture-model based clustering, the conceptual analysis on similarities between
covariance matrices allows a more parsimonious parametrization, and the scedas-
ticity tests can be employed for model assessment. The following example illus-
trates the real gain in using these multiple tests combiningthem to parsimonious
parametrization in mixture-modeling.
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Table?? shows the results obtained by applying theMclust procedures, fol-
lowed by the normality and scedasticity tests on the obtained clusters on the Crab
dataset. The package suggests three best models, but they significantly differ in co-

Mclust results Test results
Model number of groups identifier BIC Normality Scedasticity

1 2 EEV -916.1354 in both groups homometroscedasticity
2 2 VVV -925.2317 in both groups homometroscedasticity
3 3 EEV -933.9190only in 2 groups homometroscedasticity

Table 1 BestMclust models on the Crab dataset and tests results for model assessment.

variance structure and/or number of groups. Fork= 2, a homometroscedastic (EEV)
and a heteroscedastic (VVV) model are proposed; further, the slight difference of
0.983% in BIC values is of little help for the choice. Now, considering the first
model and performing Mardia’s test on each cluster, the hypothesis of normality is
accepted in both groups, while Box’s test fails, the new tests assess equality of the
eigenvalues and reject equality of the eigenvectors in the two groups. In the second
model, even if normality holds in each cluster and the test for homoscedasticity fails
(as we expected, for a VVV model), the homometroscedasticity test on the two clus-
ters assesses that they have the same eigenvalues. This contradiction leads to discard
the second model. With reference to the third model, Mardia’s test rejects the null
hypothesis of normality in one out of three groups and this allow us to discard the
model. Hence the testing methodology selects the first modelout of the three pro-
posed by Mclust. As the true classification on the Crab is known, we can verify also
that the first model has a significantly lower misclassification error, showing the real
gain achieved by the testing methodology.
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