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Abstract In many real datasets, the same variables are measured extofspm
different groups, and the covariance structure may vamnfgooup to group. Of-
tentimes, the underlying population covariance matricesnat identical, yet they
still have a common basic structure, e.g. there exists sotation that diagonal-
izes simultaneously all covariance matrices in the groapall covariances can be
made congruent by some translation and/or dilation. Thpga# of this paper is to
show how a test of homoscedasticity can be made more inforertat performing a
separate check for equality between shapes and equalitgéetorientations of the
concentration ellipsoids. This approach, combined witfsipgonious parametriza-
tion in mixture data modeling, provides a formal hypothésiing procedure for
model assessment.
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1 Introduction and basic definitions

In multivariate analysis it is customary to employ an unéthsgersion of the likeli-
hood ratio (LR) test to ascertain equality of the covariamegrices referred to sev-
eral groups. However, in many applications, data groupapestrom homoscedas-
ticity; nevertheless, one can observe some sort of commsic B&ucture among
covariance matrices, f.i. they share orientation or shap@ze. To this aim, their
spectral decomposition is employed, i.e. #igenvaluesndeigenvectorsepresen-
tation, as suggested by many authors in the literature,§gdr clustering males
and females blue crab®][by a mixture model-based approach, Peel and McLachlan
[?] assumed that the two group-conditional distributionsen@variate normal with
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common covariance matrix, on the basis of Hawkins’ test. disted out by the au-
thors, this assumption produced a larger misallocation ttzn the unconstrained
model. Greselin and Ingrassia i?] fesolved this apparent contradiction, requiring
only covariances matrices with the same set of (ordere@neaues, i.e. ellipsoids
of equal concentration with the same size and shape. In gsept paper, Flury’s
proposal and the above remarks on patterned covariancieesadre jointly consid-
ered to provide a unified framework for a more informativedscsticity comparison
among groups.

Now we introduce some basic notation and definition: suppp deal withp

variables measured on objects arising fraimx 2 groups, Ieb<<1h>,.‘.,x§12) denote
n, independent observations, for thtéh group, drawn from a normal distribution
with mean vectoy;, and covariance matri&,, h=1,... k. Let £, = FpApl |, be
the spectral decomposition &f,, whereAy = diag()\l(h), ... ,)\,gh)) is the diagonal
matrix of the eigenvalues &, sorted in non-increasing order afg is thep x p

orthogonal matrix whose columryéh), ey yé,h) are the normalized eigenvectors of
2, ordered according to their eigenvalubs; 1,...,k; here, and in what follows,
the prime denotes the transpose of a matrix. On the other, kaosdlariance matrices
which share the same matrix of orthonormalized eigenvedier=--- = =T
have ellipsoids of equal concentration with the saxis orientationn p-space, i.e.
they are congruent up to a suitable dilation/contractidtei@ion in size) and/or
“deformation” (alteration in shape). By using the Greekrtétropos (orientation),
we call it “homotroposcedasticity

When homometroscedasticity and homotroposcedasticityl&meously hold,
we have homoscedastic data. Moreover, an intermediatatisitubetween het-
eroscedasticity and homoscedasticity, denotedagsak homoscedasticitgan be
devised, when only one of the two above conditions holds.

2 More informative multiple tests to compare “scedasticity”

Consider the null hypothesis of homometroscedastidfy: Ay = -+ = Ax = A
versus the alternativid] : Ap # A, for someh, | € {1,... k},h#1.H) = =
Ik =T versus the aIternati\Adf :Th #£ 1 for someh, | € {1,... .k}, h#1.

A test of homoscedasticity can be re-expressed by a untensiction (Ul) test
asHS : HY' NH) versusH$ : H{' UH] . Differently from a usual test of homoscedas-
ticity, the present approach shows its profitability whesvethe null hypothesilsioS
is rejected: the component tests féf andH/ can discriminate the nature of the
departure fronHOS. On the other hand, a test of weak homoscedasticity may be for
mulated as an intersection-union (IU) ted’ : H' UH[ versusHV : H' N HT .

Testing homometroscedasticityLet X;, and S, respectively be the sample mean
vector and the unbiased sample covariance matrix irhthegroup,h =1,... k.
Moreover, letG,, be thep x p orthogonal matrix whose columns are the normal-
ized eigenvectors 0%, ordered by the non-increasing sequence of the eigenval-
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ues ofS,, h=1,...,k. According to theprincipal component (linear) transforma-
tion xfh) — yi(h) = G’h(xi(h) —Xp), 1 =1,...,ny, the datay(lh),...,yﬁ,:), are uncorre-
lated, and their covariance matrix, is the diagonal matrix containing the non-
negative eigenvalues &,. Since the assumption of multivariate normality holds,

these components are also independent and normally digttibBased on these re-
sults, the null hypothesis{)‘ can be re-expressed as followé‘ : ﬂle Hé\j, where

ng : )\j(l) == /\j(k> = Aj, andA; is the unknownjth eigenvalue, common to the
k groups. The problem can now be approached by a Ul test, throsgnpler tests
of equality of variances ik groups.

Testing homotroposcedasticity.Consider the spectral decomposition 5f, i.e.
Zh = MwAnlCh. UnderHl, the matrixI” simultaneously diagonalizes all covari-
ance matrices and generates the eigenvalue maf(lripé’s’nusHor can be restated as
HY :F'ZhlF =Ap,h=1,... k.

To the best of the authors’ knowledge, a direct method to déthl the latter
expression f0|H(’)' does not exist. However, under the assumption of multitaria
normality, Flury derived the log-LR statistics for testitige weaker null hypothesis
of common principal componenk§PC: 'Syl = Ap, h=1,....k wherel is a
p x p orthonormalized matrix that diagonalizes all covarianarioes, andAy, is
one of the possible! diagonal matrices of eigenvalues in it grouph=1,... k.
Note that, in contrast with the latter formulation idf , no canonical ordering of
the columns ofl” is specified here. In order to apply Flury’s proposal, F&
algorithmcan estimate the sample countergarof I . UnderHOCPC, the following

transformationd” — y" = G'(x" — %) holds, where the datg”...., yiy are

uncorrelated with diagonal covariance matrix(the sample counterpart 8f), for
h=1,... k. From a geometrical point of view, undblrg thek ellipsoids of equal
concentration have the same orientatiorpispace while, undehﬁloCPC they have
only the same principal axes. For Hence, to H@t first we perform Flury’s test
HSPC of equality between principal axes; afterward${§f°Cis accepted, perform a
statistical test to evaluatd. For further details about the tests, s@k Finally we
remark that in order to preserve the chosen levébr the overall null hypothesis,
the significance levels in the individual tests have to besdelwith some care. In
any case, the implement&routine requires only the overall significance level and
derives the component ones.

3 An application to clustering

In mixture-model based clustering, the conceptual amalysisimilarities between
covariance matrices allows a more parsimonious pararagtiz, and the scedas-
ticity tests can be employed for model assessment. Theafimitpexample illus-
trates the real gain in using these multiple tests combittiegn to parsimonious
parametrization in mixture-modeling.
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Table ?? shows the results obtained by applying el ust procedures, fol-
lowed by the normality and scedasticity tests on the obthalesters on the Crab
dataset. The package suggests three best models, butghéicantly differ in co-

Ml ust results Test results
Model{number of groups identifier ~ BIC Normality Scedasticity
1 2 EEV -916.1354 in both groups homometroscedasticity
2 2 VVV -925.2317 in both groups homometroscedasticity
3 3 EEV -933.9190only in 2 groups  homometroscedasticity

Table 1 BestMcl ust models on the Crab dataset and tests results for model assessment.

variance structure and/or number of groups.ker2, a homometroscedastic (EEV)
and a heteroscedastic (VVV) model are proposed; furtherslight difference of
0.983% in BIC values is of little help for the choice. Now, cafeiing the first
model and performing Mardia’s test on each cluster, the thgsis of normality is
accepted in both groups, while Box’s test fails, the newstassess equality of the
eigenvalues and reject equality of the eigenvectors invloegroups. In the second
model, even if normality holds in each cluster and the teshémoscedasticity fails
(as we expected, for a VVV model), the homometroscedagtiest on the two clus-
ters assesses that they have the same eigenvalues. Thadictitn leads to discard
the second model. With reference to the third model, Masdi@ét rejects the null
hypothesis of normality in one out of three groups and tHsaals to discard the
model. Hence the testing methodology selects the first mmatedf the three pro-
posed by Mclust. As the true classification on the Crab is kmowe can verify also
that the first model has a significantly lower misclassifmatrror, showing the real
gain achieved by the testing methodology.

References

1. E. Anderson. The irises of the Gaspe peninsBlalettin of the American Iris Societ$9:2-5,
1935.

2. J.D. Banfield and A.E. Raftery. Model-based gaussian and aossgan clusterindgiometrics
49:803-821, 1993.

3. N.A. Campbell and R.J. Mahon. A multivariate study of variatio two species of rock crab
of genus Leptograpsudwustralian Journal of Zoology22:417-425, 1974.

4. B.N. Flury. Common Principal Components and Related Multivariate Modéiéin Wiley &
Sons, 1988.

5. F. Greselin and S. Ingrassia. Weakly homoscedastic constraintsxtures oft distributions.
In Andreas Fink, Berthold Lausen, Wilfried Seidel, and Adfrdltsch, editors Advances in
Data Analysis, Data Handling and Business Intelligerfspringer, 2009.

6. F. Greselin S. Ingrassia and A. Punzo. A more informative apgpré@a compare scedas-
ticity under the assumption of multivariate normalityRapporti di ricerca Dip. Metodi
Quantitativi Sc. Econ. ed AziendalUniv. Milano Bicocca, n°166, 2009, available at
http://www.dimequant.unimib.itficerca/pubblicazione.jsp?id=189.

7. D. Peel and G.J. McLachlan. Robust mixture modelling using thistribution. Statistics &
Computing 10:339-348, 2000.



