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Preface

In this thesis we discuss several aspects of the implied volatility surface. We �rst derive some
model independent results, linking tail probabilities to option price and implied volatility.
We then apply these results to a speci�c stochastic volatility model, obtaining a complete
picture of the asymptotic volatility smile for bounded maturity.

In Chapter 1 we present an extended summary of all the results obtained in this thesis.
The details are contained in the following chapters, that are structured as follows.

In Chapter 2 we show that, under general conditions satis�ed by many models, the
probability tails of the log-price under the risk-neutral measure determine the behavior of
European option prices and of the implied volatility, in the regime of either extremes strike
(with bounded maturity) or short maturity. Our results provide a powerful extension of
previous work by Benaim and Friz [BF09]. We discuss the application to some poupular
models, including Carr-Wu �nite moment logstable moment, Heston's model and Merton's
jump di�usion model.

In Chapter 3 we devote ourselves to the analysis of the implied volatility for a speci�c
model, that has been recently shown by Andreoli, Caravenna, Dai Pra and Posta [ACDP12]
to reproduce the multiscaling of moments and clustering of volatility observed in many
�nancial series. Based on Chapter 2, this amounts to give sharp estimates on the tails
of the log-price distribution. Although the moment generating function of the log-price is
not known explicitly, we show that the tails can be well estimated via Large Deviation
techniques, notably the Gärter-Ellis theorem.

In Chapter 4 we propose a possible enrichment of the model, adding jumps to the log-
price in order to take account of the so called leverage e�ect. We prove some basic results and
we describe a natural one-parameter family of martingale measures for this enriched model.
We also show that the price of European options can be expressed through a generalization
of the celebrated Hull&White formula, by averaging the usual Black&Scholes formula with
respect to both a random volatility and a random spot price.

Finally, in Chapter 5 we describe a numerical algorithm to price European option under
the enriched model presented in Chapter 4, exploiting the generalized Hull&White formula.
The algorithm uses a strati�cation method in order to improve the speed. Some preliminary
results on the calibration of the model with real data, taken from the DAX index, are
presented and discussed.
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Chapter 1

Overview of the thesis

In this thesis we obtain asymptotic results on the asymptotic behavior of option prices, and
of the related implied volatility, for a stochastic volatility model which exhibits multiscaling
of moments, recently introduced in [ACDP12]. These results are described in Chapters 3
and 4, while some numerical investigations are presented in Chapter 5.

Our approach is based on explicit formulas that link the asymptotic behavior of the
implied volatility to the tail probability of the log-price. These results, presented in Chap-
ter 2, provide a powerful extension of previous work by Benaim and Friz [BF09] and are of
independent interest, since they can be applied to a wide family of models.

We now give a short overview of the content of each chapter.

1.1 Chapter 2. General smile asymptotics with bounded ma-
turity

The price of a European option is typically expressed in terms of the Black&Scholes implied
volatility σimp(κ, t), cf. [Gat06], where κ denotes the log-strike and t the maturity. Benaim
and Friz [BF09] have provided explicit conditions on the log-return distribution to obtain
the asymptotic behavior of σimp(κ, t), in the special regime |κ| → ∞ for �xed t > 0.

Here we strengthen and extend their results, allowing κ and t to vary simultaneously
along an arbitrary curve, such that either |κ| → ∞ with bounded t, or t→ 0 with arbitrary
κ. Our results are organized as follows.

• First we provide universal formulas that link the asymptotic behavior of the implied
volatility σimp(κ, t) to that of the call c(κ, t) and put p(κ, t) option prices, cf. �2.1.2.

• Then we show that the asymptotic behavior of c(κ, t) and p(κ, t) can be linked ex-
plicitly to the tail probabilities F t(κ) := P(Xt > κ) and Ft(κ) := P(Xt ≤ κ), where
Xt denotes the risk-neutral log-return, cf. �2.1.3.

The main results are Theorems 2.1.1, 2.1.5 and 2.1.11.
As a consequence, whenever enough information on the tail probabilities is available, it

is possible to write down explicitly the asymptotic behavior of the implied volatility. We
illustrate this fact in Section 2.2, determining the complete asymptotic pro�le of the implied
volatility with bounded maturity for the model of Carr&Wu, cf. Theorem 2.2.1. We also
discuss the application of our results to the Heston and Merton models.

1



Overview of the thesis 2

The application of our results to the multiscaling stochastic volatility model introduced
in [ACDP12] is the subject of Chapter 3.

1.2 Chapter 3. The asymptotic smile of a multiscaling stochas-
tic volatility model

In this chapter we apply the results of Chapter 2 to a stochastic volatility model that exhibits
multiscaling of moments, recently introduced in [ACDP12]. Very brie�y, the model can be
described as follows: under the risk-neutral measure, the price (St)t≥0 evolves according to
the stochastic di�erential equation

dSt
St

= σt dBt , (1.2.1)

where (Bt)t≥0 is a Brownian motion and (σt)t≥0 is an independent process, function of three
real parameters D ∈ (0, 1

2), V and λ ∈ (0,∞), de�ned as follows: denoting by (Nt)t≥0 a
Poisson process independent of (Bt)t≥0 of rate λ, with jump times 0 < τ1 < τ2 < . . .,

σt = V
λD−

1
2

Γ(2D)
(t− τNt)D−

1
2 . (1.2.2)

In words, the volatility σt explodes at each jump time of the Poisson process (note that τNt
is the epoch of the last jump of the Poisson process before time t) after which it decays as
an inverse power, with exponent tuned by D (see Figure 3.1 on page 40 in Chapter 3).

The properties of this model (under the historical measure) have been investigated in
[ACDP12], and it was shown that interesting features emerge, namely:

• Heavy tails: the distribution of the log-price Xt := log(St/S0) is asymptotically
Gaussian for large time t, but asymptotically heavy tailed for short time.

• Multiscaling of moments: as ∆t ↓ 0, the moments E(|Xt+∆t−Xt|q) of the log-price
rescale as (∆t)A(q), where A(q) = q

2 (as one would naively guess) only up to a critical

moment q < q∗ :=
(

1
2 −D

)−1 ∈ (2,∞), while for q > q∗ one has A(q) < q
2 .

• Clustering of volatility: the covariance between |Xt+h−Xt| and |Xt+∆t+h−Xt+∆t|
decays exponentially fast for large ∆t, but slower (polynomially) for ∆t = O(1).

In Chapter 3 we derive the asymptotic behavior of option prices and of the related
implied volatility, showing that it displays interesting features. For instance, despite the
price having continuous paths, the out-of-the-money implied volatility diverges in the small-
maturity limit, with an explicit limiting shape displaying a very pronounced smile. More
precisely, the following asymptotic formula holds both in the deep out-of-the-money regime
(|κ| → ∞ for �xed t > 0) and in the short maturity regime (t ↓ 0 for �xed κ 6= 0):

σimp(κ, t) ∼ A

(
|κ|/t√

log(|κ|/t)

) 1−2D
2−2D
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where A ∈ (0,∞) is an explicit constant (depending on the parameters of the model).
We refer to Theorem 3.2.1 for the complete results about the asymptotics of the implied

volatility, which cover a wide range of regimes for (κ, t). The corresponding estimates for
the tail probability and for the option price are given in Theorems 3.3.1, 3.3.2 and 3.3.3.

1.3 Chapter 4. Enriching the model and pricing

The model considered in Chapter 3 is a stochastic volatility model, cf. (1.2.1), in which the
volatility process (σt)t≥0 is independent of the Brownian motion (Bt)t≥0 that drives the
evolution of the price. It is well-known [RT96] that for such models the implied volatility
is always a symmetric function of the log-strike, i.e. σimp(−κ, t) = σimp(κ, t).

For this reason, in order to take into account the so-called leverage e�ect, we enrich
the model introducing a jump component in the log-price, using the same Poisson process
(Nt)t≥0 that drives the evolution of the volatility (σt)t≥0, cf. (1.2.2). The intuitive meaning
is that shocks in the market, represented by jumps in the Poisson process, determine both
an increase in the volatility and a jump in the price.

We thus introduce a further parameter % ∈ R, which represent the jump size in the
log-price at shock-times: under the historical measure, the log-price Xt evolves as

dXt = σt dXt + % d(Nt − λt) .

where (σt)t≥0 is the same process as in (1.2.2). It is natural to wonder whether and how the
properties of the original model are modi�ed by the addition of jumps. We prove that we
still have the clustering of volatility and the heavy tails distribution for small time, however
the multiscaling of moments disappears, as we discuss in �4.1.

We then describe a natural one-parameter family of martingale measures for this en-
riched model (as well for the original model) indexed by the intensity λ̃ ∈ (0,∞) of the Pois-
son process, which can be modi�ed arbitrarily with respect to the original value λ ∈ (0,∞).
Renaming λ̃ as λ for simplicity, under the enriched model the price evolves by

dSt
St

= σt dBt + % d(Nt − λt) . (1.3.1)

Even though in the enriched model the volatility process (σt)t≥0 is not independent of
the Brownian motion (Bt)t≥0, the price of European options can be expressed through a gen-
eralization of the celebrated Hull&White formula, i.e. by averaging the usual Black&Scholes
formula with to both a random volatility and a random spot price, cf. Theorem 4.2.2. This
allows for a fast Monte Carlo evaluation of option prices, as we discuss in Chapter 5.

1.4 Chapter 5. Simulation and numerics

Exploiting the generalized Hull&White formula described in Chapter 4, in Chapter 5 we
describe a numerical algorithm to price European option under the enriched model, which
uses a strati�cation method in order to improve the speed. The actual code for the both the
C and the MATLAB R© languages is given in Appendix A. Some preliminary results on the
calibration of the model with real data from the DAX index are presented.



Overview of the thesis 4



Chapter 2

General smile asymptotics with

bounded maturity

In this chapter we provide explicit conditions on the distribution of risk-neutral log-returns
which yield sharp asymptotic estimates on the implied volatility smile. These conditions
extend previous results of Benaim and Friz [BF09] and are valid in great generality, both
for extreme strike (with arbitrary bounded maturity, possibly varying with the strike) and
for small maturity (with arbitrary strike, possibly varying with the maturity). Applications
to popular models as the Carr-Wu �nite moment logstable model, Merton's jump di�usion
model, and Heston's model are discussed.

2.1 Introduction

The price of a European option is typically expressed in terms of the Black&Scholes implied
volatility σimp(κ, t), cf. [Gat06], where κ denotes the log-strike and t the maturity. Benaim
and Friz [BF09] provide explicit conditions on the log-return distribution to obtain the
asymptotic behavior of σimp(κ, t), in the special regime κ → ±∞ for �xed t > 0. In this
chapter we strengthen and extend their results, allowing κ and t to vary simultaneously
along an arbitrary curve such that either |κ| → ∞ with bounded t, or t→ 0 with arbitrary
κ.

This �exibility allows to determine the asymptotics of σimp(κ, t) as a surface, when (κ, t)
vary in open regions of the plane. We illustrate this fact in Section 2.2, where we apply our
results to some concrete models (see Remarks 2.2.2, 2.2.4 and 2.2.5 below).

Our results are organized as follows.

• First we provide universal formulas that link the asymptotic behavior of the implied
volatility σimp(κ, t) to that of the call c(κ, t) and put p(κ, t) option prices, cf. �2.1.2.

• Then we show that the asymptotic behavior of the option prices c(κ, t) and p(κ, t) can
be linked explicitly to the tail probabilities F t(κ) := P(Xt > κ) and Ft(κ) := P(Xt ≤
κ), where Xt denotes the risk-neutral log-return, cf. �2.1.3.

Combining these results, whenever enough information on the tail probabilities is available,
it is possible to write down explicitly the asymptotic behavior of the implied volatility.

5



General smile asymptotics with bounded maturity 6

2.1.1 The setting

We consider a generic stochastic process (Xt)t≥0 representing the log-price of an asset,
normalized by X0 := 0. We work under the risk-neutral measure, that is (assuming zero
interest rate) the price process (St := eXt)t≥0 is a martingale. European call and put options,
with maturity t > 0 and a log-strike κ ∈ R, are priced respectively

c(κ, t) = E[(eXt − eκ)+] , p(κ, t) = E[(eκ − eXt)+] , (2.1.1)

and are linked by the call-put parity relation:

c(κ, t)− p(κ, t) = 1− eκ . (2.1.2)

In all of our results, we take limits along an arbitrary family (or �path�) of values of
(κ, t). It is immaterial whether this is a sequence ((κn, tn))n∈N or a curve ((κs, ts))s∈[0,∞),
therefore we omit subscripts. Without loss of generality, we assume that all the κ's have
the same sign (just consider separately the subfamilies with positive and negative κ's). To
simplify notation, we only consider positive families κ ≥ 0 and give results for both κ and
−κ.

Our main interest is for families of values of (κ, t) such that

either κ→∞ with bounded t , or t→ 0 with arbitrary κ ≥ 0 . (2.1.3)

Note that (2.1.3) gathers many interesting regimes, namely:

(1) κ→∞ and t→ t̄ ∈ (0,∞);

(2) κ→∞ and t→ 0;

(3) κ→ κ̄ ∈ (0,∞) and t→ 0;

(4) κ→ 0 and t→ 0.

Remarkably, while regime (4) needs to be handled separately, regimes (1)-(2)-(3) will be
analyzed at once, as special instances of the case �κ is bounded away from zero�.

Whenever (2.1.3) holds, one has (see �2.5.1)

c(κ, t)→ 0 , p(−κ, t)→ 0 , (2.1.4)

but relation (2.1.4) is more general, as it can be satis�ed also when t→∞. Except for the
results in �2.1.2, which are valid in complete generality under (2.1.4), we stick to the case
of bounded t (we refer to [Te09, JKM13] for results in the regime t→∞).

A key quantity of interest is the implied volatility σimp(κ, t) of the model, de�ned as the
value of the volatility parameter σ ∈ [0,∞) that plugged into the Black&Scholes formula
yields the given call and put prices c(κ, t) and p(κ, t) (see �2.3.2-�2.3.3 below). Note that
σimp(κ, t) = 0 if c(κ, t) = 0 and, likewise, σimp(−κ, t) = 0 if p(−κ, t) = 0. Consequently, to
avoid trivialities, we focus on families of (κ, t) such that c(κ, t) > 0 and p(−κ, t) > 0.

Throughout the chapter, we write f(κ, t) ∼ g(κ, t) to mean f(κ, t)/g(κ, t) → 1. Let us
recall a useful standard device, referred to as subsequence argument : to prove an asymptotic
relation, such as e.g. f(κ, t) ∼ g(κ, t), along a given family of values of (κ, t), it su�ces to
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show that from every subsequence one can extract a further sub-subsequence along which
the relation holds. As a consequence, in the proofs we may always assume that all quantities
of interest have a (possibly in�nite) limit, e.g. κ → κ̄ ∈ [0,∞] and t → t̄ ∈ [0,∞), because
this is always true extracting a suitable subsequence.

2.1.2 From option price to implied volatility

We �rst show that, whenever the option prices c(κ, t) or p(−κ, t) vanish, they determine
the asymptotic behavior of the implied volatility through explicit universal formulas.

We need to introduce some notation. Denote by φ(·) and Φ(·) respectively the density
and distribution function of a standard Gaussian (see (2.3.1) below), and de�ne the function

D(z) :=
1

z
φ(z)− Φ(−z), ∀z > 0 . (2.1.5)

As we shown in �2.3.1 below, D is a smooth and strictly decreasing bijection from (0,∞)
to (0,∞). Its inverse D−1 : (0,∞)→ (0,∞) is also smooth, strictly decreasing and satis�es

D−1(y) ∼
√

2 (− log y) as y ↓ 0 , D−1(y) ∼ 1√
2π

1

y
as y ↑ ∞ . (2.1.6)

The following theorem, proved in Section 2.3, describes the link between option price
and implied volatility asymptotics, extending Benaim and Friz [BF09, Lemma 3.3]. As we
discuss in Remark 2.1.3 below, it overlaps with recent results by Gao and Lee [GL14].

Theorem 2.1.1 (From option price to implied volatility). Consider an arbitrary family of
values of (κ, t) with κ ≥ 0 and t > 0, such that c(κ, t)→ 0, resp. p(−κ, t)→ 0.

• Case of κ bounded away from zero (i.e. lim inf κ > 0).

σimp(κ, t) ∼
(√
− log c(κ, t)

κ
+ 1−

√
− log c(κ, t)

κ

)√
2κ

t
, resp.

σimp(−κ, t) ∼
(√
− log p(−κ, t)

κ
−
√
− log p(−κ, t)

κ
− 1

)√
2κ

t
.

(2.1.7)

• Case of κ→ 0, with κ > 0.

σimp(κ, t) ∼ 1

D−1
(
c(κ,t)
κ

) κ√
t
, resp.

σimp(−κ, t) ∼ 1

D−1
(
p(−κ,t)

κ

) κ√
t
.

(2.1.8)

• Case of κ = 0.

σimp(0, t) ∼
√

2π
c(0, t)√

t
=
√

2π
p(0, t)√

t
. (2.1.9)

Note that Theorem 2.1.1 requires no assumption on the model : the link between σimp(κ, t)
and the option prices c(κ, t) and p(κ, t) is universal, being essentially a statement about
the inversion of Black&Scholes formula (see Theorem 2.3.3 for an explicit reformulation).
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Remark 2.1.2. The formulas in Theorem 2.1.1 become more explicit when additional
information on the asymptotic behavior of c(κ, t) and p(−κ, t) is available. For instance,

whenever − log c(κ,t)
κ →∞, resp. − log p(−κ,t)

κ →∞, formula (2.1.7) reduces to

σimp(κ, t) ∼ κ√
2t (− log c(κ, t))

, resp. σimp(−κ, t) ∼ κ√
2t (− log p(−κ, t))

. (2.1.10)

Likewise, using the estimates in (2.1.6), formula (2.1.8) can be rewritten as follows:

σimp(κ, t) ∼



κ√
2t (− log(c(κ, t)/κ))

if
c(κ, t)

κ
→ 0 ;

κ

D−1(a)
√
t

if
c(κ, t)

κ
→ a ∈ (0,∞) ;

√
2π

c(κ, t)√
t

if
c(κ, t)

κ
→∞, or if κ = 0 ,

(2.1.11)

and analogously for σimp(−κ, t), just replacing c(κ, t) by p(−κ, t).
It is interesting to observe that the �rst relation in (2.1.10) coincides with the �rst line

of (2.1.11) when κ→ 0 slowly enough, more precisely when

− log κ = o
(
− log c(κ, t)

)
, (2.1.12)

so that − log(c(κ, t)/κ) ∼ − log c(κ, t). This means that relations (2.1.7) and (2.1.8) match
at the boundary of their respective domain of validity. On the other hand, when κ→ 0 fast
enough so that (2.1.12) fails, relation (2.1.7) must be replaced by (2.1.8)-(2.1.9).

Remark 2.1.3. Taking the square of both sides of the �rst line of (2.1.7), one can rewrite
it as

σimp(κ, t)2 t

κ
∼ ψ

(
− log c(κ, t)

κ

)
, with ψ(x) := 2− 4

[√
x2 + x− x

]
,

which is the key formula in Lemma 3.3 of Benaim and Friz [BF09] (who considered the
regime κ→∞ for �xed t and made some additional assumptions). Theorem 2.1.1 provides
a substantial extension, allowing for any regime of (κ, t) and making no extra assumptions.

We point out that equation (2.1.7) in full generality has been recently proved by Gao and
Lee [GL14] (extending previous results of Lee [Le04], Roper and Rutkowski [RR09], Gulisas-
hvili [Gu10]). Actually, Gao and Lee prove much more than (2.1.7), since their approach
provides explicit estimates for the error and allows to obtain higher order asymptotics. On
the other hand, in [GL14] condition (2.1.12) is assumed (cf. equation (4.2) therein), which
means that all regimes in which κ→ 0 �fast enough� are excluded from their analysis.

Summarizing, our Theorem 2.1.1 provides a simple and comprehensive account of �rst
order asymptotics for the implied volatility as a function of the option price, which can be
applied to any family of (κ, t) such that c(κ, t)→ 0, resp. p(−κ, t)→ 0 (with no restriction
such as (2.1.12)). This is especially useful for the results in the next subsection, which cover
all possible regimes of (κ, t) with bounded t. For these reasons, despite the overlap with
[GL14], we give a complete and self-contained proof of Theorem 2.1.1 in Section 2.3.
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2.1.3 From tail probability to option price

For Theorem 2.1.1 to be concretely useful, one needs to control the asymptotic behavior of
c(κ, t) and p(−κ, t). We are going to show that this can be extracted from the asymptotic
behavior of the tail probabilities of the risk-neutral log-price (Xt)t≥0, de�ned by:

F t(κ) := P(Xt > κ) , Ft(−κ) := P(Xt ≤ −κ) . (2.1.13)

We need to distinguish two regimes for (κ, t), namely when the tail probabilities converge
to a strictly positive limit (typical deviations) or when they vanish (atypical deviations).

Atypical deviations. We �rst focus on families of values of (κ, t) such that

F t(κ)→ 0 , resp. Ft(−κ)→ 0 . (2.1.14)

We stress that this includes regimes (1), (2) and (3) on page 6, and also regime (4) provided
κ→ 0 su�ciently slow. We need to formulate a regularity assumption on the decay of F t(κ),
resp. Ft(−κ), which is a natural generalization of the regular variation condition of Benaim
and Friz [BF09] (see Remark 2.1.7 below for more details).

Hypothesis 2.1.4 (Regular decay of tail probability). The family of values of (κ, t) with
κ > 0, t > 0 satis�es (2.1.14), and for every % ∈ [1,∞) the following limit exists in [0,+∞]:

I+(%) := lim
logF t(%κ)

logF t(κ)
, resp. I−(%) := lim

logFt(−%κ)

logFt(−κ)
, (2.1.15)

and moreover
lim
%↓1

I+(%) = 1 , resp. lim
%↓1

I−(%) = 1 . (2.1.16)

(The limits in (2.1.15) are taken along the given family of values of (κ, t).)

Further assumptions on I±(·), depending on the regime of κ, will be required below,
coupled to suitable moment conditions, that we state here for convenience.

• Given η ∈ (0,∞), the �rst moment condition is

lim sup E[e(1+η)Xt ] <∞ , (2.1.17)

where the lim sup is taken along the given family of values of (κ, t) (however, only t
enters in this relation). Note that if t ≤ T it su�ces to require that

E[e(1+η)XT ] <∞ , (2.1.18)

because (e(1+η)Xt)t≥0 is a submartingale and hence E[e(1+η)Xt ] ≤ E[e(1+η)XT ].

• Always for η ∈ (0,∞), the second moment condition is

lim sup E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
<∞ , (2.1.19)

along the given family of values of (κ, t). Note that for η = 1 this simpli�es to

∃C ∈ (0,∞) : E[e2Xt ] ≤ 1 + Cκ2 . (2.1.20)
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The following theorems, proved in �2.4.1, give the link between tail probabilities and
option prices. Due to di�erent assumptions, we present separately the results on c(κ, t) and
p(−κ, t).

Theorem 2.1.5 (Right-tail atypical deviations). Consider a family of values of (κ, t) with
κ > 0, t > 0 such that Hypothesis 2.1.4 is satis�ed by the right tail probability F t(κ).

• Case of κ bounded away from zero and t bounded away from in�nity (lim inf κ > 0,
lim sup t < ∞). Let the moment condition (2.1.17) hold for every η > 0, or alterna-
tively let it hold only for some η > 0 but in addition assume that

I+(%) ≥ % , ∀% ≥ 1 . (2.1.21)

Then

log c(κ, t) ∼ logF t(κ) + κ , (2.1.22)

which yields, by Theorem 2.1.1,

σimp(κ, t) ∼

√− logF t(κ)

κ
−

√
− logF t(κ)

κ
− 1

√2κ

t
. (2.1.23)

In the special case when − logF t(κ)/κ→∞, assumption (2.1.21) can be relaxed to

lim
%→∞

I+(%) =∞ , (2.1.24)

relation (2.1.22) reduces to

log c(κ, t) ∼ logF t(κ) , (2.1.25)

and (2.1.23) simpli�es to

σimp(κ, t) ∼ κ√
2t (− logF t(κ))

. (2.1.26)

• Case of κ→ 0 and t→ 0. Let the moment condition (2.1.19) hold for every η > 0, or
alternatively let it hold only for some η > 0 but in addition assume (2.1.24). Then

log
(
c(κ, t)/κ

)
∼ logF t(κ) , (2.1.27)

which yields, by Theorem 2.1.1, precisely the same asymptotics (2.1.26) for σimp(κ, t).

Theorem 2.1.6 (Left-tail atypical deviations). Consider a family of values of (κ, t) with
κ > 0, t > 0 such that Hypothesis 2.1.4 is satis�ed by the left tail probability Ft(−κ).
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• Case of κ bounded away from zero and t bounded away from in�nity (lim inf κ > 0,
lim sup t < ∞). With no moment condition and no extra assumption on I−(·), one
has

log p(−κ, t) ∼ logFt(−κ)− κ , (2.1.28)

which yields, by Theorem 2.1.1,

σimp(−κ, t) ∼

(√
− logFt(−κ)

κ
+ 1−

√
− logFt(−κ)

κ

)√
2κ

t
. (2.1.29)

In the special case when − logFt(−κ)/κ→∞, relation (2.1.28) reduces to

log p(−κ, t) ∼ logFt(−κ) , (2.1.30)

and (2.1.29) simpli�es to

σimp(−κ, t) ∼ κ√
2t (− logFt(−κ))

. (2.1.31)

• Case of κ→ 0 and t→ 0. Let the moment condition (2.1.19) hold for every η > 0, or
alternatively let it hold only for some η > 0 but in addition assume that

lim
%↑∞

I−(%) =∞ . (2.1.32)

Then

log
(
p(−κ, t)/κ

)
∼ logFt(−κ) , (2.1.33)

which yields, by Theorem 2.1.1, precisely the same asymptotics (2.1.31) for σimp(−κ, t).

Remark 2.1.7. Let us compare our Hypothesis 2.1.4 with the key assumption of Benaim
and Friz [BF09], the regular variation of the tail probabilities, i.e. there exist α > 0 and a
slowly varying function† L(·) = Lt(·) such that, as κ→∞ for �xed t > 0,

logF t(κ) ∼ −L(κ)κα , resp. logFt(−κ) ∼ −L(κ)κα . (2.1.34)

If (2.1.34) holds, conditions (2.1.15) and (2.1.16) are satis�ed, with I±(%) = %α. Remarkably,
in the special regime κ → ∞ with �xed t, conditions (2.1.15) and (2.1.16) are actually
equivalent to (2.1.34), by [BGT89, Theorem 1.4.1]. Thus Hypothesis 2.1.4 is a natural
extension of the regular variation assumption of Benaim and Friz, when the maturity t is
allowed to vary.

Remark 2.1.8. The assumptions for left-tail asymptotics in Theorem 2.1.6 are weaker
than those for right-tail asymptotics in Theorem 2.1.5. For instance, the left-tail condition
E[e−ηXT ] <∞ required in [BF09, Theorem 1.2] is not needed, allowing to treat the case of
a polynomially decaying left tail, like in the Carr-Wu model described in Section 2.2.

†A positive function L(·) is slowly varying if limx→∞ L(%x)/L(x) = 1 for all % > 0.
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Remark 2.1.9. We stress that the �special case� conditions

− logF t(κ)

κ
→∞ , resp. − logFt(−κ)

κ
→∞ , (2.1.35)

are always ful�lled if t→ 0 and κ is bounded away from in�nity (say κ→ κ̄ ∈ (0,∞)).
For families of (κ, t) with κ→∞, conditions (2.1.35) are satis�ed if lim sup E[e(1+η)Xt ] <

∞, resp. lim sup E[e−ηXt ] < ∞, for every η ∈ (0,∞), by Markov's inequality (see (2.4.5)
below).

Typical deviations. We next focus on the case when κ → 0 and t → 0 in such a way that
the tail probability F t(κ), resp. Ft(−κ) converges to a strictly positive limit. To deal with
this regime, we make the following natural assumption.

Hypothesis 2.1.10 (Small time scaling). There is a positive function (γt)t>0 with limt↓0 γt =
0 such that Xt/γt converges in law as t ↓ 0 to some random variable Y :

Xt

γt

d−−→
t↓0

Y . (2.1.36)

Note that (2.1.36) is a condition on the tail probabilities: for all a ≥ 0 with P(Y = a) = 0,

F t(aγt)→ P(Y > a) , Ft(aγt)→ P(Y ≤ a) . (2.1.37)

In particular, the limits in (2.1.37) are strictly positive for every a ≥ 0 if the support of the
law of Y is unbounded from above and below.

We can �nally state the following result, proved in �2.4.2 below.

Theorem 2.1.11 (Right- and left-tail typical deviations). Assume that Hypothesis 2.1.10
is satis�ed, and moreover the moment condition (2.1.19) holds for some η > 0 with κ = γt:

∃η > 0 : lim sup
t→0

E

[∣∣∣∣eXt − 1

γt

∣∣∣∣1+η]
<∞ . (2.1.38)

Then the random variable Y in (2.1.36) is in L1 and satis�es E[Y ] = 0.
For any family of values of (κ, t) such that

t→ 0 and
κ

γt
→ a ∈ [0,∞) ,

assuming that P(Y > a) > 0, resp. P(Y < −a) > 0, one has

c(κ, t) ∼ γt E[(Y − a)+] , resp. p(−κ, t) ∼ γt E[(Y + a)−] . (2.1.39)

This yields, by Theorem 2.1.1,

σimp(±κ, t) ∼ C±(a)
γt√
t
, with C±(a) =


a

D−1
(E[(Y∓a)±]

a

) if a > 0 ,

√
2πE[Y ±] if a = 0 .

(2.1.40)
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2.1.4 Discussion and structure of the chapter

Theorems 2.1.5, 2.1.6 and 2.1.11 are useful because their assumptions, involving asymp-
totics for the tail probabilities F t(κ) and Ft(−κ), can be veri�ed for concrete models (see
Section 2.2 for some examples). The di�erence between the regimes of typical and atypical
deviations can be described as follows:

• for typical deviations, the key assumption is Hypothesis 2.1.10, which concerns the
weak convergence of Xt, cf. (2.1.36)-(2.1.37);

• for atypical deviations, the key assumption is Hypotehsis 2.1.4, which concerns the
large deviations properties of Xt, cf. (2.1.15)-(2.1.16).

In particular, it is worth stressing that Hypotehsis 2.1.4 requires sharp asymptotics
only for the logarithm of the tail probabilities logF t(κ) and logFt(−κ), and not for the tail
probabilities themselves, which would be a considerably harder task (out of reach for many
models). As a consequence, Hypotehsis 2.1.4 can often be checked through the celebrated
Gärtner-Ellis Theorem [DZ98, Theorem 2.3.6], which yields sharp asymptotics on logF t(κ)
and logFt(−κ) under suitable conditions on the moment generating function of Xt.

The rest of the chapter is structured as follows.

• In Section 2.2 we apply our results to the �nite moment logstable model of Carr-
Wu, determining the complete asymptotic behavior of the implied volatility smile
for bounded maturity. We then discuss the Heston model and the Merton model,
while a stochastic volatility model recently introduced in [ACDP12] will be discusse
in Chapter 3.

• In Section 2.3 we prove Theorem 2.1.1.

• In Section 2.4 we prove Theorems 2.1.5, 2.1.6 and 2.1.11.

• Finally, a few technical points have been deferred to Section 2.5.

2.2 Examples

We apply our main results to some models: the the Carr-Wu model in �2.2.1, the Heston
model in �2.2.2 and the Merton model in �2.2.3.

2.2.1 Carr-Wu's Finite Moment Logstable Model

Carr and Wu [CW04] consider a model where the log-strike Xt has characteristic function

E
[
eiuXt

]
= et[iuµ−|u|

ασα(1+i sign(u) tan(πα
2

))] , (2.2.1)

where σ ∈ (0,∞), α ∈ (1, 2], while µ := σα/ cos(πα2 ) in the risk-neutral measure, cf. [CW04,
Proposition 1]. The moment generating function of Xt is

E
[
eλXt

]
=

e[λµ− (λσ)α

cos(πα2 )
] t

if λ ≥ 0 ,

+∞ if λ < 0 .
(2.2.2)



General smile asymptotics with bounded maturity 14

Note that as α→ 2 one recovers Black&Scholes model with volatility
√

2σ, cf. �2.3.2 below.

Let Y denote a random variable with characteristic function

E[eiuY ] = e−|u|
α(1+i sign(u) tan(πα

2
)) , (2.2.3)

i.e. Y has a strictly stable law with index α and skewness parameter β = −1, and E[Y ] = 0.
Applying Theorems 2.1.5, 2.1.6 and 2.1.11, we obtain the following complete characteriza-
tion of the volatility smile asymptotics with bounded maturity for this model.

Theorem 2.2.1 (Smile asymptotics of Carr-Wu model). The following asymptotics hold.

• Atypical deviations. Consider any family of (κ, t) such that

0 < t ≤ T for some �xed T <∞, and
κ

t1/α
→∞ . (2.2.4)

(This includes, in particular, the regimes (1), (2), (3) on page 6, as well as part of
regime (4).) Then one has the right-tail asymptotics

σimp(κ, t) ∼ Bα
(
κ

t

)− 2−α
2(α−1)

, where Bα :=
(ασ)

α/2
α−1

√
2 | cos(πα2 )|

1/2
α−1

, (2.2.5)

and the left-tail asymptotics

σimp(−κ, t) ∼

√ log κα

t

κ
+ 1−

√
log κα

t

κ

√2κ

t
, (2.2.6)

which can be made more explicit as follows:

σimp(−κ, t) ∼



√
2κ

t
if

κ

log 1
t

→∞ ,

√
1 + a− 1√

a

√
2κ

t
if

κ

log 1
t

→ a ∈ (0,∞) ,

κ√
2t log κα

t

if
κ

log 1
t

→ 0 .

(2.2.7)

• Typical deviations. For any family of (κ, t) with

t→ 0 ,
κ

t1/α
→ a ∈ [0,∞) , (2.2.8)

one has

σimp(±κ, t) ∼ C±(a) t
2−α
2α , with C±(a) :=


a

D−1
(E[(σY∓a)±]

a

) if a > 0 ,

√
2π σE[Y ±] if a = 0 .

(2.2.9)
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Remark 2.2.2 (Surface asymptotics for the Carr-Wu model). The fact that relations
(2.2.5) and (2.2.6) hold for any family of (κ, t) satisfying (2.2.4) yields interesting con-
sequences. In fact, for any T ∈ (0,∞) and ε > 0, we claim that there exists M =
M(ε, T ) ∈ (0,∞) such that the following inequalities hold for all (κ, t) in the region
AT,M := {0 < t ≤ T, κ > Mt1/α}:

(
1− ε

)
Bα

(
κ

t

)− 2−α
2(α−1)

≤ σimp(κ, t) ≤
(
1 + ε

)
Bα

(
κ

t

)− 2−α
2(α−1)

; (2.2.10)

analogous inequalities can be written for σimp(−κ, t), using relations (2.2.6)-(2.2.7). Like-
wise, in the typical deviations regime, by (2.2.9), we claim that for every ε > 0 there exist
δ = δ(ε) > 0 such that for all (κ, t) in the region Bδ := {0 < t < δ, 0 ≤ κ < δ} one has

(
1− ε

)
C±

(
κ

t1/α

)
t

2−α
2α ≤ σimp(±κ, t) ≤

(
1 + ε

)
C±

(
κ

t1/α

)
t

2−α
2α , (2.2.11)

Relations like (2.2.10) and (2.2.11) provide uniform approximations of the volatility surface
σimp(κ, t) that hold for (κ, t) in open regions of the plane, and not only along �thin lines�.

The proof of the above relations is simple. Let us focus on (2.2.10), for de�niteness,
and assume by contradiction that there exist T, ε ∈ (0,∞) such that for every M ∈ (0,∞)
relation (2.2.10) fails for some (κM , tM ) ∈ AT,M ; then the family ((κM , tM ))M∈(0,∞) satis�es
(2.2.4) but (2.2.5) does not hold, contradicting Theorem 2.2.1.

Proof of Theorem 2.2.1. If we set

Yt :=
Xt − µt
σt1/α

, (2.2.12)

it follows by (2.2.1) that Yt has the same distribution as Y in (2.2.3), because

E[eiuYt ] = E[eiuY ] = e−|u|
α(1+i sign(u) tan(πα

2
)) . (2.2.13)

It follows by (2.2.12) that
Xt

t1/α
d−−→
t↓0

σY , (2.2.14)

hence Hypothesis 2.1.10 is satis�ed with γt := t1/α.

It is well-known that Y has a density which is strictly positive everywhere, hence P(Y >
a) > 0 and P(Y < −a) > 0 for all a ∈ R. We also note that the right tail of Y has a super-
exponential decay: as κ→∞

log P(Y > k) ∼ −B̃α κα/(α−1) where B̃α :=
α− 1

α

( | cos(πα2 )|
α

)1/(α−1)

, (2.2.15)

cf. [CW04, Property 1 and references therein]. On the other hand the left tail is polynomial:
there exists c = cα ∈ (0,∞) such that

P(Y ≤ −κ) ∼ c

κα
, hence log P(Y ≤ −κ) ∼ −α log κ . (2.2.16)
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Recalling that F t(κ) := P(Xt > κ) and Ft(−κ) := P(Xt ≤ κ), by (2.2.12) we can write

F t(κ) = P

(
Y >

k − µt
σt1/α

)
, Ft(−κ) = P

(
Y ≤ −k − µt

σt1/α

)
, (2.2.17)

hence we can transfer the estimates (2.2.15) and (2.2.16) to Xt.
Henceforth we consider separately the regimes of atypical deviations (2.2.4), and that of

typical deviations (2.2.8). Note that it is easy to check that (2.2.6) is equivalent to (2.2.7).

Atypical deviations

Let us �x an arbitrary family of values of (κ, t) satisfying (2.2.4). Then also κ/t → ∞
(because α > 1 and 0 < t ≤ T ), hence

κ− µt
σt1/α

∼ κ

σt1/α
→∞ ,

−κ− µt
σt1/α

∼ −κ
σt1/α

→ −∞ .

By (2.2.15), (2.2.16) and (2.2.17) we then obtain

logF t(κ) ∼ −B̃α
(

κ

σt1/α

)α/(α−1)

, logFt(−κ) ∼ − log
κα

t
. (2.2.18)

Let us now check the assumptions of Theorem 2.1.5.

• The �rst relation in (2.2.18) shows that Hypothesis 2.1.4 is satis�ed by the right tail
F t(κ), with I+(%) = %α/(α−1). Note that I+(%) ≥ % for all % ≥ 1, since α > 1, hence
also condition (2.1.21) is satis�ed.

• Condition (2.1.17) is satis�ed because (2.1.18) holds for all T > 0 and η > 0, by
(2.2.2).

• It remains to check condition (2.1.19). As we prove below, for all η ∈ (0, α − 1) and
T > 0 there are constants A,B,C ∈ (0,∞), depending on η, T and on the parameters
α, σ, such that for all 0 < t ≤ T and κ ≥ 0 the following inequality holds:

E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
≤ A

((
t1/α

κ

)B
+ C

)
. (2.2.19)

In particular, since κ/t1/α →∞ by assumption (2.2.4), condition (2.1.19) is satis�ed.

Applying Theorem 2.1.5, since − logF t(κ)/κ → ∞ by the �rst relation in (2.2.18), the
asymptotic behavior of σimp(κ, t) is given by (2.1.26), which by (2.2.18) coincides with
(2.2.5).

Next we want to apply Theorem 2.1.6. By the second relation in (2.2.18), Hypothe-
sis 2.1.4 is satis�ed by the left tail Ft(−κ), with I−(%) ≡ 1. If κ is bounded away from zero,
the asymptotic behavior of σimp(κ, t) is given by (2.1.29), which by (2.2.18) yields precisely
(2.2.6).

If κ→ 0 we cannot apply directly Theorem 2.1.6, because the moment condition (2.1.19)
is satis�ed only for some η > 0, and condition (2.1.32) is not satis�ed, since I−(%) ≡ 1.
However, we can show that (2.1.33) still holds by direct estimates. By (2.1.1)

p(−κ, t) = E[(e−κ − eXt)1{Xt<−κ}] ≥ E[(e−κ − eXt)1{Xt<−2κ}] ≥ (e−κ − e−2κ)Ft(−2κ) ,
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and since (e−κ−e−2κ) = e−2κ(eκ−1) ≥ e−2κκ, we can write by (2.2.18) (recall that κ→ 0)

log
(
p(−κ, t)/κ

)
≥ −2κ− log

(2κ)α

t
∼ − log

κα

t
. (2.2.20)

Next we give a matching upper bond on p(−κ, t). Since µt ≤ κ eventually (recall that
κ/t1/α →∞, hence κ/t→∞), by (2.2.17) and (2.2.16) we obtain, for all y ≥ 1

Ft(−κy) ≤ P

(
Y ≤ − 2κy

σt1/α

)
≤ c′ t

καyα
,

for some c′ = c′α,σ,µ ∈ (0,∞). Then by Fubini's theorem

p(−κ, t) = E[(e−κ − eXt)1{Xt<−κ}] = E

[ ∫ ∞
κ

e−x1{x<−Xt}dx

]
=

∫ ∞
κ

e−x Ft(−x) dx

= κ

∫ ∞
1

e−κy Ft(−κy) dy ≤ c′κ t

κα

∫ ∞
1

1

yα
dy =: c′′κ

t

κα
,

hence

log
(
p(−κ, t)/κ

)
≤ log c′′ − log

κα

t
∼ − log

κα

t
.

This relation, together with (2.2.20), yields

log
(
p(−κ, t)/κ

)
∼ − log

κα

t
.

Since κ/t1/α →∞, this shows that we are in the regime when κ→ 0 and p(−κ, t)/κ→ 0.
We can thus apply equation (2.1.8) in Theorem 2.1.1, which recalling Remark 2.1.2 simpli�es
as the �rst line in (2.1.11) (with p(−κ, t) instead of c(κ, t)), yielding

σimp(−κ, t) ∼ κ√
2t (− log(p(−κ, t)/κ))

∼ κ√
2t log κα

t

,

hence (2.2.6) is proved also when κ→ 0 (cf. the last line of (2.2.7)).

Typical deviations.

Let us �x an arbitrary family of values of (κ, t) satisfying (2.2.8). Relation (2.2.19) for
κ = γt = t1/α shows that condition (2.1.38) is satis�ed, and Hypothesis 2.1.10 holds by
(2.2.14). We can then apply Theorem 2.1.11, and relation (2.1.40) gives precisely (2.2.9).

Proof of (2.2.19). Since | ex−1
x | ≤ 1 if x < 0 and | ex−1

x | ≤ e
x if x ≥ 0, we have | ex−1

x | ≤ 1+ex

for all x ∈ R. If p, q > 1 are such that 1
p + 1

q = 1, Young's inequality ab ≤ 1
pa

p + 1
q b
q yields∣∣∣∣eXt − 1

κ

∣∣∣∣ =

∣∣∣∣Xt

κ

∣∣∣∣ ∣∣∣∣eXt − 1

Xt

∣∣∣∣ ≤ 1

p

(
|Xt|
κ

)p
+

1

q

(
1 + eXt

)q
.

Noting that (a + b)r ≤ 2r−1(ar + br) for r ≥ 1, by Hölder's inequality, and denoting by
c = cp,η a suitable constant depending only on p, η, we can write∣∣∣∣eXt − 1

κ

∣∣∣∣1+η

≤ c
(
|Xt|p(1+η)

κp(1+η)
+ 1 + eq(1+η)Xt

)
.
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Given 0 < η < α − 1, we �x p = pη,α > 1 such that B := p(1 + η) < α. (Note that B
depends only on η, α.) Moreover, it follows by (2.2.12) that

E[|Xt|B] = (σt1/α)B E[|Y |B]
(
1 +O(tB(1−1/α))

)
,

and note that E[|Y |B] < ∞, because Y has �nite moments of all orders strictly less than
α, cf. [CW04, Property 1]. Since for t ≤ T one has E[eq(1+η)Xt ] ≤ E[eq(1+η)XT ] < ∞, by
(2.2.2), relation (2.2.19) is proved.

2.2.2 The Heston Model

Given the parameters λ, ϑ, η, σ0 ∈ (0,∞) and % ∈ [−1, 1], the Heston model [Hes93] is a
stochastic volatility model (St)t≥0 de�ned by the following SDEs

dSt = St
√
Vt dW

1
t ,

dVt = −λ(Vt − ϑ) dt + η
√
Vt dW

2
t ,

X0 = 0 , V0 = σ0 ,

where (W 1
t )t≥0 and (W 2

t )t≥0 are standard Brownian motions with 〈dW 1
t , dW

2
t 〉 = % dt.

Unlike the Carr-Wu model, here St displays explosion of moments, i.e. E[SpT ] = ∞ for
p > 1 large enough (note that E[St] = 1, since (St)t≥0 is a martingale). In particular for
any �xed t ≥ 0 we de�ne the explosion moment p∗(t) as

p∗(t) := sup{p > 0 : E[Spt ] <∞} ,

so that E[Spt ] < ∞ for p < p∗(t) while E[Spt ] = ∞ for p > p∗(t). The behavior of the
explosion moment p∗(t) is described in the following Lemma, proved below.

Lemma 2.2.3. If % = −1, then p∗(t) = +∞ for every t ≥ 0.
If % > −1, then p∗(t) ∈ (1,+∞) for every t > 0. Moreover, as t ↓ 0

p∗(t) ∼ C

t
,

where

C = C(%, η) :=


2

η
√

1− %2

(
arctan

√
1− %2

%
+ π1%<0

)
if % < 1

2

η
if % = 1

. (2.2.21)

The asymptotic behavior of the implied volatility σimp(κ, t) for the Heston model is
known in the regimes of large strike (with �xed maturity) and small maturity (with �xed
strike).

• In [BF08], Benaim and Friz show that for �xed t > 0, when κ→ +∞

σimp(κ, t) ∼
k↑∞

√
2κ√
t

(√
p∗(t)−

√
p∗(t)− 1

)
, (2.2.22)

based on the estimate (cf. also [AP07])

− log P(Xt > κ) ∼
k↑∞

p∗(t)κ . (2.2.23)
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• In [FJ09], Forde and Jacquier have proved that for any �xed κ > 0, as t ↓ 0

σimp(κ, t) ∼
t↓0

κ√
2 Λ∗(κ)

, (2.2.24)

where Λ∗(·) is the Legendre transform of the function Λ : R+ → R+ ∪ {∞} given by

Λ(p) :=


σ0p

η
(√

1− %2 cot
(

1
2ηp
√

1− %2
)
− %
) if p < C ,

∞ if p ≥ C ,
(2.2.25)

where C is the constant in (2.2.21). Their analysis is based on the estimate

− log P(Xt ≥ κ) ∼
t↓0

1

t
Λ∗(κ) , (2.2.26)

obtained by showing that the log-price (Xt)t≥0 in the Heston model satis�es a large
deviations principle as t ↓ 0, with rate 1/t and good rate function Λ∗(κ).

We �rst note that the asymptotics (2.2.22) and (2.2.24) follow easily from our Theo-
rem 2.1.5, plugging the estimates (2.2.23) and (2.2.26) into relations (2.1.23) and (2.1.26),
respectively.

We also observe that the estimates (2.2.22) and (2.2.24) match, in the following sense:
if we take the limit t → 0 of the right hand side of (2.2.22) (i.e. we �rst let κ ↑ +∞ and
then t ↓ 0 in σimp(κ, t)), we obtain

(2.2.22) ∼
t↓0

√
2κ√
t

1

2
√
p∗(t)

∼
√

2κ√
t

1

2
√

C
t

=

√
κ√

2C
. (2.2.27)

If, on the other hand, we take the limit κ ↑ 0 of the right hand side of (2.2.24) (i.e. we �rst
let t ↓ 0 and then κ ↑ +∞ in σimp(κ, t)), since Λ∗(κ) ∼ Cκ,† we obtain

(2.2.24) ∼
κ↑+∞

κ√
2Cκ

=

√
κ√

2C
, (2.2.28)

which coincides with (2.2.27). Analogously, also the estimates (2.2.23) and (2.2.26) match.
It is then natural to conjecture that, for any family of values of (κ, t) such that κ ↑ +∞

and t ↓ 0 jointly, one should have

log P(Xt ≥ κ) ∼ −C κ

t
, (2.2.29)

where C is the constant in (2.2.21). If this holds, applying Theorem 2.1.5, relation (2.1.26)
yields

σimp(κ, t) ∼
√
κ√

2C
, (2.2.30)

providing a smooth interpolation between (2.2.22) and (2.2.24).

†This is because Λ(p) ↑ +∞ as p ↑ C, hence the slope of Λ∗(κ) converges to C as κ→∞.
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Remark 2.2.4 (Surface asymptotics for the Heston model). If (2.2.30) holds for any family
of values of (κ, t) with κ → ∞ and t → 0, it follows that for every ε > 0 there exists
M = M(ε) ∈ (0,∞) such that the following inequalities hold:

(
1− ε

) √κ√
2C
≤ σimp(κ, t) ≤

(
1 + ε

) √κ√
2C

,

for all (κ, t) in the region AT,M := {0 < t ≤ 1
M , κ > M}, as it follows easily by contradiction

(cf. Remark 2.2.2 for a similar argument).

Proof of Lemma 2.2.3. Given any number p > 1 we de�ne the explosion time T ∗(p) as

T ∗(p) := sup{t > 0 : E[Spt ] <∞} .

Note that if T ∗(p) = t ∈ (0,+∞) then p∗(t) = p. By [AP07] (see also [FK09])

T ∗(p) =



+∞ if ∆(p) ≥ 0, χ(p) < 0 ,

1√
∆(p)

log

(
χ(p)+

√
∆(p)

χ(p)−
√

∆(p)

)
if ∆(p) ≥ 0, χ(p) > 0 ,

2√
−∆(p)

(
arctan

√
−∆(p)

χ(p) + π1χ(p)<0

)
if ∆(p) < 0 ,

(2.2.31)

where
χ(p) := %ηp − λ , ∆(p) := χ2(p)− η2(p2 − p) ,

Observe that if % = −1, then χ(p) = −ηp−λ < 0 and ∆(p) = λ2 +p
(
2ηλ+ η2

)
≥ 0, which

implies T ∗(p) = +∞ for every p > 1, or equivalently p∗(t) = +∞ for every t > 0.
On the other hand, since

∆(p) = %2η2p2 + λ2 − 2η%λp− η2p2 + η2p = η2p2(%2 − 1) + p(η2 − 2η%λ) + λ2 ,

we observe that if % 6= 1, then ∆p < 0 as p→ +∞, which implies

T ∗(p) ∼
p↑∞

2

p(η
√

1− %2)

(
arctan

ηp
√

1− %2

%ηp
+ π1%<0

)

=
1

p

2

η
√

1− %2

(
arctan

√
1− %2

%
+ π1%<0

)
.

(2.2.32)

In particular this leads to the conclusion that, if |%| 6= 1, then

p∗(t) ∼
t↓0

C

t

where C was de�ned in (2.2.21).
It remains to study the case % = 1, in which χ(p) > 0 for every p. We have two

possibilities: if η > 2λ then ∆(p) > 0 when p→ +∞, and so by (2.2.31)

T ∗(p) ∼
p↑∞

1√
p(η2 + 2ηλ)

log

(
1 + 2

√
p(η2 + 2ηλ)

ηp−
√
p(η2 + 2ηλ)

)
∼ 2

η

1

p
.
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On the other hand, if η < 2λ, then ∆(p) < 0 when p→∞ and so

T ∗(p) ∼
p↑∞

2√
p(2ηλ− η2)

(
arctan

√
p(2ηλ− η2)

pη

)
∼ 2

η

1

p
.

Finally if η = 2λ, ∆(p) = λ2, and so

T ∗(p) =
1

λ
log

(
1 +

2λ

ηp− 2λ

)
∼
p↑∞

2

η

1

p
.

In all the cases we obtain p∗(t) ∼
t↓0

2
η

1
t , in agreement with (2.2.21).

2.2.3 Merton's Jump Di�usion Model

Consider a model [M76] where the log-return Xt has an in�nitely divisible distribution,
whose moment generating function is given by

E [exp(zXt)] = exp

(
t

{
zµ+

1

2
z2σ2 + λ

(
ezα+z2 δ2

2 − 1

)})
, (2.2.33)

where µ, α ∈ R and σ, λ, δ ∈ (0,∞) are �xed parameters.
Benaim and Fritz [BF09] observed that for �xed t > 0, as κ→∞,

log P(Xt ≥ κ) ∼ −κ
δ

√
2 log

κ

t
, (2.2.34)

deducing that

σ2
imp(κ, t) ∼ κ

2t

δ√
2 log κ

t

. (2.2.35)

Remarkably, formula (2.2.35) holds for any family of (κ, t) such that t is bounded, say

0 < t ≤ T , and κ�
√

log 1
t , by our Theorem 2.1.5, because the asymptotic relation (2.2.34)

also holds for any such family (we thank Stefan Gerhold for this observation). In fact, for
any c ∈ (1,∞) such that E[ecXt ] <∞, we can write

P(Xt ≥ κ) =
1

2πi

∫ c+i∞

c−i∞

E[esXt ] e−κs

s
ds .

The asymptotic evaluation of this integral can be done by saddle point methods: the relevant
estimate for the saddle point ŝ, taken from [FGY14],† reads as follows:

ŝ =

√
2 log κ

δ
− µ

δ2
+O

(
log log κ√

log κ

)
,

which gives precisely (2.2.34):

log P(Xt ≥ κ) ∼ −κŝ+ logMXt(ŝ) ∼ −
κ

δ

√
2 log

κ

t
+

κ

δ
√

2 log κ
t

∼ −κ
δ

√
2 log

κ

t
.

†The formula for ŝ2 at the end of the section �The Merton Model� in [FGY14] contains a misprint,
since the term − log(λTδ2) should be replaced by − log(λδ2). We also refer to [GMZ14] for the special case
κ→∞ with �xed t, with a more detailed computation.
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Remark 2.2.5 (Surface asymptotics for the Merton model). In analogy with Remark 2.2.4,

since formula (2.2.35) holds for any family of (κ, t) with t bounded and κ �
√

log 1
t , for

every ε > 0 there exists M = M(ε) ∈ (0,∞) such that the following inequalities hold for
all (κ, t) in the region AT,M := {0 < t ≤ T, κ > Mt}:

(
1− ε

) κ
2t

δ√
2 log κ

t

≤ σ2
imp(κ, t) ≤

(
1 + ε

) κ
2t

δ√
2 log κ

t

.

2.3 From option price to implied volatility

In this section we prove Theorem 2.1.1. We start with some background on Black&Scholes
model and on related quantities.

2.3.1 Mills ratio

We let Z be a standard Gaussian random variable and denote by φ and Φ its density and
distribution functions:

φ(z) :=
P(Z ∈ dz)

dz
=
e−

1
2
z2

√
2π

, Φ(z) := P(Z ≤ z) =

∫ z

−∞
φ(t) dt . (2.3.1)

The Mills ratio U : R→ (0,∞) is de�ned by

U(z) :=
1− Φ(z)

φ(z)
=

Φ(−z)
φ(z)

, ∀z ∈ R . (2.3.2)

The next lemma summarizes the main properties of U that will be used in the sequel.

Lemma 2.3.1. The function U is smooth, strictly decreasing, strictly convex and satis�es

U ′(z) ∼ − 1

z2
as z ↑ ∞ . (2.3.3)

Proof. Since Φ′(z) = φ(z) and φ is an analytic function, U is also analytic. Since φ′(z) =
−zφ(z), one obtains

U ′(z) = zU(z)− 1 , U ′′(z) = U(z) + zU ′(z) = (1 + z2)U(z)− z . (2.3.4)

Recalling that U(z) > 0, these relations already show that U ′(z) < 0 and U ′′(z) > 0 for all
z ≤ 0. For z > 0, the following bounds hold [S54, eq. (19)], [P01, Th. 1.5]:

z

z2 + 1
=

1

z + 1
z

< U(z) <
1

z + 1
z+ 2

z

=
z2 + 2

z3 + 3z
, ∀z > 0 . (2.3.5)

Applying (2.3.4) yields U ′′(z) > 0 and − 1
1+z2 < U ′(z) < − 1

3+z2 for all z > 0, hence
(2.3.3).
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We recall that the smooth function D : (0,∞)→ (0,∞) was introduced in (2.1.5). Since

D′(z) = − 1

z2
φ(z) < 0 , (2.3.6)

D(·) is a strictly decreasing bijection (note that limz↓0D(z) = ∞ and limz→∞D(z) = 0).
Its inverse D−1 : (0,∞) → (0,∞) is then smooth and strictly decreasing as well. Writing
D(z) = φ(z)(1

z − U(z)), it follows by (2.3.5) that 1
z − U(z) ∼ 1

z3 as z ↑ ∞, hence

D(z) ∼ 1

z3
φ(z) ∼ e−

1
2
z2

√
2π z3

as z ↑ ∞ , D(z) ∼ 1

z
φ(0) =

1√
2πz

as z ↓ 0 .

It follows easily that D−1(·) satis�es (2.1.6).

2.3.2 Black&Scholes formula

The Black&Scholes model is de�ned by a risk-neutral log-price (Xt := σBt − 1
2σ

2t)t≥0,
where (Bt)t≥0 is a standard Brownian motion and the parameter σ ∈ (0,∞) represents
the volatility. The Black&Scholes formula for the price of a normalized European call is
CBS(κ, σ

√
t), where κ is the log-strike, t is the maturity and we de�ne

CBS(κ, v) := E[(evZ−
1
2
v2 − eκ)+] =

{
(1− eκ)+ if v = 0 ,

Φ(d1)− eκΦ(d2) if v > 0 ,
(2.3.7)

where Φ is de�ned in (2.3.1), and we set{
d1 = d1(κ, v) := −κ

v + v
2 ,

d2 = d2(κ, v) := −κ
v −

v
2 ,

so that

{
d2 = d1 − v ,
d2

2 = d2
1 + 2κ .

(2.3.8)

Note that CBS(κ, v) is a continuous function of (κ, v). Since eκφ(d2) = φ(d1), for all
v > 0 one easily computes

∂CBS(κ, v)

∂v
= φ(d1) > 0 ,

∂CBS(κ, v)

∂κ
= −eκΦ(d2) < 0 ,

hence CBS(κ, v) is strictly increasing in v and strictly decreasing in κ (see Figure 2.1). It is
also directly checked that for all κ ∈ R and v ≥ 0 one has

CBS(κ, v) = 1− eκ + eκCBS(−κ, v) . (2.3.9)

In the following key proposition, proved in Section 2.5.2, we show that when κ ≥ 0 the
Black&Scholes call price CBS(κ, v) vanishes precisely when v → 0 or d1 → −∞ (or, more
generally, in a combination of these two regimes, when min{d1, log v} → −∞). We also
provide sharp estimates for each regime, that will play a crucial role in the sequel.

Proposition 2.3.2. For any family of values of (κ, v) with κ ≥ 0, v > 0, one has

CBS(κ, v)→ 0 if and only if min{d1, log v} → −∞ , (2.3.10)

that is, CBS(κ, v) → 0 if and only if from any subsequence of (κ, v) one can extract a
sub-subsequence along which eiter d1 → −∞ or v → 0. Moreover:
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Figure 2.1: A plot of (κ, v) 7→ CBS(κ, v), for κ ∈ [−10, 10] and v ∈ [0, 4].

• if d1 := −κ
v + v

2 → −∞, then

CBS(κ, v) ∼ φ(d1)
v

−d1(−d1 + v)
; (2.3.11)

• if v → 0, then
CBS(κ, v) ∼ −U ′(−d1)φ(d1) v ; (2.3.12)

where φ(·) and U(·) are de�ned in (2.3.1) and (2.3.2).

2.3.3 Implied volatility

Since the function v 7→ CBS(κ, v) is a strictly increasing bijection from [0,∞) to [(1−eκ)+, 1),
it admits an inverse function c 7→ VBS(κ, c), de�ned by

CBS(κ,VBS(κ, c)) = c . (2.3.13)

By construction, VBS(κ, ·) is a strictly increasing bijection from [(1− eκ)+, 1) to [0,∞). We
will mainly focus on the case κ ≥ 0, for which VBS(κ, ·) : [0, 1)→ [0,∞).

Consider an arbitrary model, with a risk-neutral log-price (Xt)t≥0, and let c(κ, t) be the
corresponding price of a normalized European call option, cf. (2.1.1). Since z 7→ (z−eκ)+ is
a convex function, one has c(κ, t) ≥ (E[eXt ]−eκ)+ = (1−eκ)+ by Jensen's inequality; since
(z − eκ)+ < z+, one has c(κ, t) < E[eXt ] = 1. Having shown that c(κ, t) ∈ [(1 − eκ)+, 1),
one de�nes the implied volatility σimp(κ, t) of the model as the unique value of σ ∈ [0,∞)
for which the Black&Scholes call price CBS(κ, σ

√
t) equals c(κ, t). Equivalently, by (2.3.13),

σimp(κ, t) :=
VBS(κ, c(κ, t))√

t
. (2.3.14)

It is now convenient to rewrite Theorem 2.1.1 more transparently in terms of the function
VBS. To this purpose, inspired by (2.1.2), let us de�ne a new variable p = p(κ, c) by

p := c− (1− eκ) . (2.3.15)
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Theorem 2.3.3. Consider a family of values of (κ, c), such that either κ ≥ 0, c ∈ (0, 1)
and c→ 0, or alternatively κ ≤ 0, p ∈ (0, 1) and p→ 0, where p is de�ned in (2.3.15).

• If κ bounded away from zero (lim inf |κ| > 0), one has

VBS(κ, c) ∼


√

2 (− log c+ κ)−
√

2 (− log c) if κ > 0 ,√
2 (− log p)−

√
2 (− log p+ κ) if κ < 0 .

(2.3.16)

• If κ is bounded away from in�nity (lim sup |κ| <∞), one has

VBS(κ, c) ∼



κ

D−1( cκ)
if κ > 0 ,

√
2π c =

√
2π p if κ = 0 ,

−κ
D−1( p

−κ)
if κ < 0 ,

(2.3.17)

where D−1(·) is the inverse of the function D(·) de�ned in (2.1.5), and satis�es (2.1.6).

We give the proof in a moment (see �2.3.4 below), restricting to the case κ ≥ 0, because
the complementary case κ ≤ 0 follows by symmetry, as we now brie�y discuss. It follows
by (2.3.9) and (2.3.13) that for all k ∈ R and c ∈ [(1− eκ)+, 1) one has

VBS(κ, c) = VBS(−κ, 1− e−κ + e−κc) = VBS(−κ, e−κp) ,

where we recall that p is de�ned in (2.3.15). As a consequence, in the case κ ≤ 0, replacing
κ by −κ and c by e−κp in the �rst line of (2.3.16), one obtains the second line of (2.3.16).
Performing the same replacements in the �rst line of (2.3.17) yields

VBS(κ, c) ∼ −κ
D−1(e−κ p

−κ)
,

which is slightly di�erent with respect to the third line of (2.3.17). However, the discrepacy is
only apparent, because we claim that D−1(e−κ p

−κ) ∼ D−1( p
−κ). This is checked as follows:

if κ → 0, then e−κ p
−κ ∼

p
−κ ; if, on the other hand, κ → κ̄ ∈ (−∞, 0), since p → 0

by assumption, the �rst relation in (2.1.6) yields D−1(e−κ p
−κ) ∼

√
2(− log( p

−κ̄) + κ̄) ∼√
2(− log( p

−κ̄)) ∼ D−1( p
−κ), as requested. (For more details, see the end of the proof of

Theorem 2.3.3, cf. (2.3.26) and the following lines.)
In conclusion, it su�ces to prove Theorem 2.3.3 in the case κ ≥ 0, and Theorem 2.1.1

follows.

2.3.4 Proof of Theorem 2.3.3 for κ ≥ 0.

We prove separately relations (2.3.16) and (2.3.17).

Proof of (2.3.16). We �x a family of values of (κ, c) with c→ 0 and κ bounded away from
zero, say κ ≥ δ for some �xed δ > 0. Our goal is to prove that relation (2.3.16) holds. If we
set v := VBS(κ, c), by de�nition (2.3.13) we have CBS(κ, v) = c→ 0.
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Let us �rst show that d1 := −κ
v + v

2 → −∞. By Proposition 2.3.2, CBS(κ, v)→ 0 implies
min{d1, log v} → −∞, which means that every subsequence of values of (κ, c) admits a
further sub-subsequence along which either d1 →∞ or v → 0. The key point is that v → 0
implies d1 → −∞, because d1 ≤ − δ

v + v
2 (recall that κ ≥ δ). Thus d1 → −∞ along every

sub-subsequence, which means that d1 → −∞ along the whole family of values of (κ, c).
Since d1 → −∞, we can apply relation (2.3.11). Taking log of both sides of that relation,

recalling the de�nition (2.3.1) of φ and the fact that CBS(κ, v) = c, we can write

log c ∼ −1

2
d2

1 − log
√

2π + log
v

−d1(−d1 + v)
. (2.3.18)

We now show that the last term in the right hand side is o(d2
1) and can therefore be

neglected. Note that −d1 ≥ 1 eventually, because d1 → −∞, hence

log
v

−d1(−d1 + v)
≤ log

v

1 + v
≤ 0 .

Since v 7→ −d1+v
v is decreasing for −d1 > 0, in case v ≥ −d1 one has∣∣∣∣ log

v

−d1(−d1 + v)

∣∣∣∣ = log
−d1(−d1 + v)

v
≤ log(−2d1) = o(d2

1) .

On the other hand, recalling that d1 ≤ − δ
v + v

2 , in case v < −d1 one has d1 ≤ − δ
v −

d1
2 ,

which can be rewritten as v ≥ 2δ
−3d1

and together with v < −d1 yields∣∣∣∣ log
v

−d1(−d1 + v)

∣∣∣∣ = log
−d1(−d1 + v)

v
≤ log

−d1(−d1 − d1)
2δ
−3d1

= log

(
3(−d1)3

2δ

)
= o(d2

1) .

In conclusion, (2.3.18) yields log c ∼ −1
2d

2
1, that is there exists γ = γ(κ, c) → 0 such

that (1 + γ) log c = −1
2d

2
1, and since log c ≤ 0 we can write

(1 + γ)| log c| = 1

2
d2

1 =
1

2

(
κ2

v2
+
v2

4
− κ
)
.

This is a second degree equation in v2, whose solutions (both positive) are

v2 = 2κ

[
1 + 2

(1 + γ)| log c|
κ

± 2

√(
(1 + γ)| log c|

κ

)2

+
(1 + γ)| log c|

κ

]
. (2.3.19)

Since d1 → −∞, eventually one has d1 < 0: since d1 = −κ
v + v

2 = − 1
2v (
√

2κ− v)(
√

2κ+ v),
it follows that v2 < 2κ, which selects the �−� solution in (2.3.19). Taking square roots of
both sides of (2.3.19) and recalling that v = VBS(κ, c) yields the equality

VBS(κ, c) =
√

2(1 + γ)| log c|+ 2κ−
√

2(1 + γ)| log c| , (2.3.20)

as one checks squaring both sides of (2.3.20).
Finally, since γ → 0, it is quite intuitive that relation (2.3.20) yields (2.3.16). To prove

this fact, we observe that by (2.3.20) we can write

VBS(κ, c)√
2| log c|+ 2κ−

√
2| log c|

= fγ

(
κ

| log c|

)
, (2.3.21)
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where for �xed γ > −1 we de�ne the function fγ : [0,∞)→ (0,∞) by

fγ(x) :=

√
1 + γ + x−

√
1 + γ√

1 + x− 1
for x > 0 , fγ(0) := lim

x↓0
fγ(x) =

1√
1 + γ

.

By direct computation, when γ > 0 (resp. γ < 0) one has d
dxfγ(x) > 0 (resp. < 0) for all

x > 0. Since limx→+∞ fγ(x) = 1, it follows that for every x ≥ 0 one has fγ(0) ≤ fγ(x) ≤ 1
if γ > 0, while 1 ≤ fγ(x) ≤ fγ(0) if γ < 0; consequently, for any γ,

1√
1 + |γ|

≤ fγ(x) ≤ 1√
1− |γ|

, ∀x ≥ 0 ,

which yields limγ→0 fγ(x) = 1 uniformly over x ≥ 0. By (2.3.21), relation (2.3.16) is proved.

Proof of (2.3.17). We now �x a family of values of (κ, c) with c→ 0 and κ bounded away
from in�nity, say 0 ≤ κ ≤M for some �xed M ∈ (0,∞), and we prove relation (2.3.17).

We set v := VBS(κ, c) so that CBS(κ, v) = c→ 0, cf. (2.3.13). (Note that v > 0, because
c > 0 by assumption.) Applying Proposition 2.3.2 we have min{d1, log v} → −∞, i.e. either
d1 → −∞ or v → 0 along sub-subsequences. However, this time d1 → −∞ implies v → 0,
because d1 ≥ −M

v + v
2 (recall that κ ≤M), which means that v → 0 along the whole given

family of values of (κ, c).
Since v → 0, relation (2.3.12) yields

c ∼ −U ′(−d1)φ(d1) v . (2.3.22)

Let us focus on U ′(−d1): recalling that d1 = −κ
v + v

2 and v → 0, we �rst show that

U ′(−d1) ∼ U ′
(
κ

v

)
. (2.3.23)

By a subsequence argument, we may assume that κv → % ∈ [0,∞], and we recall that v → 0:

• if % <∞, U ′(−d1) and U ′(κv ) converge to U ′(%) 6= 0, hence U ′(−d1)/U ′(κv )→ 1;

• if % =∞, −d1 and
κ
v diverge to∞ and (2.3.3) yields U ′(−d1)/U ′(κv ) ∼ (κv )/(−d1)→ 1.

The proof of (2.3.23) is completed. Next we observe that, again by v → 0,

φ(−d1) =
1√
2π
e−

1
2
d2

1 =
1√
2π
e−

1
2

(κ
2

v2 + v2

2
−κ) ∼ e

1
2
κ 1√

2π
e−

1
2
κ2

v2 = e
1
2
κφ

(
κ

v

)
.

We can thus rewrite (2.3.22) as

c ∼ −U ′
(
κ

v

)
φ

(
κ

v

)
e

1
2
κ v . (2.3.24)

If κ = 0, recalling (2.3.4) we obtain c ∼ φ(0)v = 1√
2π
v, which is the second line of (2.3.17).

Next we assume κ > 0. By (2.3.4), (2.3.2) and (2.1.5), for all z > 0 we can write

−U ′(z)φ(z) = −φ(z)
(
zU(z)− 1

)
= φ(z)− zΦ(−z) = zD(z) ,
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hence (2.3.24) can be rewritten as

c ∼ κ e
1
2
κD

(
κ

v

)
, i.e. (1 + γ)c = κ e

1
2
κD

(
κ

v

)
,

for some γ = γ(κ, c)→ 0. Recalling that v = VBS(κ, c), we have shown that

VBS(κ, c) =
κ

D−1
(

(1+γ)c

κe
1
2κ

) . (2.3.25)

We now claim that

D−1

(
(1 + γ)c

κe
1
2
κ

)
∼ D−1

(
c

κ

)
. (2.3.26)

By a subsequence argument, we may assume that c
κ → η ∈ [0,∞] and κ→ κ̄ ∈ [0,M ].

• If η ∈ (0,∞), then κ̄ = 0 (recall that c → 0) hence (1 + γ)c/(κe
1
2
κ) → η; then both

sides of (2.3.26) converge to D−1(η) ∈ (0,∞), hence their ratio converges to 1.

• If η =∞, then again κ̄ = 0, hence (1 + γ)c/(κe
1
2
κ)→∞: since D−1(y) ∼ 1√

2π
y−1 as

y →∞, cf. (2.1.6), it follows immediately that (2.3.26) holds.

• If η = 0, then (1 + γ)c/(κe
1
2
κ)→ 0: since D−1(y) ∼

√
2| log y| as y → 0, cf. (2.1.6),

D−1

(
(1 + γ)c

κe
1
2
κ

)
∼

√
2

∣∣∣∣( log
c

κ

)
+

(
log

1 + γ

e
1
2
κ

)∣∣∣∣ ∼
√

2

∣∣∣∣ log
c

κ

∣∣∣∣ ,
because | log c

κ | → ∞ while | log[(1 + γ)/e
1
2
κ]| → 1

2 κ̄ ∈ [0, M2 ], hence (2.3.26) holds.

Having proved (2.3.26), we can plug it into (2.3.25), obtaining precisely the �rst line of
(2.3.17). This completes the proof of Theorem 2.3.3.

2.4 From tail probability to option price

In this section we prove Theorems 2.1.5, 2.1.6 and 2.1.11.

2.4.1 Proof of Theorem 2.1.5 and 2.1.6

We prove Theorem 2.1.5 and 2.1.6 at the same time. We recall that the tail probabilities
F t(κ), Ft(−κ) are de�ned in (2.1.13). Throughout the proof, we �x a family of values of
(κ, t) with κ > 0 and 0 < t < T , for some �xed T ∈ (0,∞), such that Hypothesis 2.1.4 is
satis�ed.

Extracting subsequences, we may distinguish three regimes for κ:

• if κ→∞ our goal is to prove (2.1.22), resp. (2.1.28);

• if κ → κ̄ ∈ (0,∞) our goal is to prove (2.1.25), resp. (2.1.30), because in this case,
plainly, one has − logF t(κ)/κ→∞, resp. − logFt(−κ)/κ→∞, by (2.1.14);

• if κ→ 0, our goal is to prove (2.1.27), resp. (2.1.33).
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Of course, each regime has di�erent assumptions, as in Theorem 2.1.5 and 2.1.6.

Step 0. Preparation. It follows by conditions (2.1.15) and (2.1.16) that

∀ε > 0 ∃%ε ∈ (1,∞) : I±(%ε) < 1 + ε , (2.4.1)

therefore for every ε > 0 one has eventually

logF t(%εκ) ≥ (1 + ε) logF t(κ) , resp.

logFt(−%εκ) ≥ (1 + ε) logFt(−κ) ,
(2.4.2)

where the inequality is �≥� instead of �≤�, because both sides are negative quantities.
We stress that F t(κ)→ 0, resp. Ft(−κ)→ 0, by (2.1.14), hence

logF t(κ)→ −∞ , resp. logFt(−κ)→ −∞ . (2.4.3)

Moreover, we claim that in any of the regimes κ→∞, κ→ κ̄ ∈ (0,∞) and κ→ 0 one has

logF t(κ) + κ→ −∞ . (2.4.4)

This follows readily by (2.4.3) if κ → 0 or κ → κ̄ ∈ (0,∞). If κ → ∞ we argue as follows:
by Markov's inequality, for η > 0

F t(κ) ≤ E[e(1+η)Xt ]e−(1+η)κ , (2.4.5)

hence
logF t(κ) + κ ≤ −ηκ+ log E[e(1+η)Xt ] .

Since in the regime κ → ∞ we assume that the moment condition (2.1.17) holds for some
or every η > 0, the term log E[e(1+η)Xt ] is bounded from above, hence eventually

logF t(κ) + κ ≤ −η
2
κ , (2.4.6)

which proves relation (2.4.4).

The rest of the proof is divided in four steps, in each of which we prove lower and upper
bounds on c(κ, t) and p(−κ, t), respectively.

Step 1. Lower bounds on c(κ, t). We are going to prove sharp lower bounds on c(κ, t), that
will lead to relations (2.1.22), (2.1.25) and (2.1.27).

By (2.1.1) and (2.4.1), for every ε > 0 we can write

c(κ, t) ≥ E[(eXt − eκ)1{Xt>%εκ}] ≥ (e%εκ − eκ)F t(%εκ) , (2.4.7)

and applying (2.4.2) we get

log c(κ, t) ≥ log
(
e%εκ − eκ

)
+ (1 + ε) logF t(κ) . (2.4.8)

If κ→∞, since log(e%εκ − eκ) = κ+ log(e(%ε−1)κ − 1) ≥ κ eventually, we obtain

log c(κ, t) ≥ κ+ (1 + ε) logF t(κ) = (1 + ε)
(

logF t(κ) + κ
)
− εκ

≥ (1 + 2ε+ 2
ηε)
(

logF t(κ) + κ
)
,

(2.4.9)
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where in the last inequality we have applied (2.4.6). It follows that

lim sup
log c(κ, t)

logF t(κ) + κ
≤ 1 + 2ε+ 2

ηε , (2.4.10)

where the lim sup is taken along the given family of values of (κ, t) (note that log c(κ, t) and
logF t(κ) + κ are negative quantities, cf. (2.4.4), hence the reverse inequality with respect
to (2.4.9)). Since ε > 0 is arbitrary and η > 0 is �xed, we have shown that

lim sup
log c(κ, t)

logF t(κ) + κ
≤ 1 , (2.4.11)

that is we have obtained a sharp bound for (2.1.22).
If κ → κ̄ ∈ (0,∞), since log(e%εκ − eκ) → log(e%εκ̄ − eκ̄) is bounded while logF t(κ) →

−∞, relation (2.4.8) gives

lim sup
log c(κ, t)

logF t(κ)
≤ 1 + ε .

Since ε > 0 is arbitrary, we have shown that when κ→ κ̄ ∈ (0,∞)

lim sup
log c(κ, t)

logF t(κ)
≤ 1 , (2.4.12)

obtaining a sharp bound for (2.1.25).
Finally, if κ→ 0, since for κ ≥ 0 by convexity log(e%εκ − eκ) = κ+ log(e(%ε−1)κ − 1) ≥

κ+ log((%ε − 1)κ) = κ+ log(%ε − 1) + log κ, relation (2.4.8) yields

log
c(κ, t)

κ
= log c(κ, t)− log κ ≥ log(%ε − 1) + (1 + ε) logF t(κ) .

Again, since log(%ε − 1) is constant and logF t(κ)→ −∞, and ε > 0 is arbitrary, we get

lim sup
log
(
c(κ, t)/κ

)
logF t(κ)

≤ 1 , (2.4.13)

proving a sharp bound for (2.1.27).

Step 2. Lower bounds on p(−κ, t). We are going to prove sharp lower bounds on p(−κ, t),
that will lead to relations (2.1.28), (2.1.30) and (2.1.33).

Recalling (2.1.1) and (2.4.1), for every ε > 0 we can write

p(−κ, t) ≥ E[(e−κ − eXt)1{Xt≤−%εκ}] ≥ (e−κ − e−%εκ)Ft(−%εκ) , (2.4.14)

and applying (2.4.2) we obtain

log p(−κ, t) ≥ log
(
e−κ − e−%εκ

)
+ (1 + ε) logFt(−κ) . (2.4.15)

If κ → ∞, since log(e−κ − e−%εκ) = −κ + log(1 − e−(%ε−1)κ) ∼ −κ, eventually one has
log(e−κ − e−%εκ) ≥ −(1 + ε)κ and we obtain

log p(−κ, t) ≥ (1 + ε)
(

logFt(−κ)− κ
)
.



General smile asymptotics with bounded maturity 31

Since ε > 0 is arbitrary, it follows that

lim sup
log p(−κ, t)

logFt(−κ)− κ
≤ 1 , (2.4.16)

which is a sharp bound for (2.1.28).
If κ → κ̄ ∈ (0,∞), since log(e−κ − e−%εκ) → log(e−κ̄ − e−%εκ̄) is bounded while

logFt(−κ)→ −∞, and ε > 0 is arbitrary, relation (2.4.15) gives

lim sup
log p(−κ, t)
logFt(−κ)

≤ 1 , (2.4.17)

which is a sharp bound for (2.1.30).
Finally, if κ→ 0, since e−κ− e−%εκ = e−%εκ(e(%ε−1)κ−1) ≥ e−%εκ(%ε−1)κ by convexity,

since κ ≥ 0, one has eventually

log
(
e−κ − e−%εκ

)
≥ log κ+ log

(
e−%εκ(%ε − 1)

)
≥ log κ+ ε logFt(−κ) ,

because log
(
e−%εκ(%ε−1)

)
→ log(%ε−1) > −∞ while logFt(−κ)→ −∞. Relation (2.4.15)

then yields, eventually,

log
p(−κ, t)

κ
= log p(−κ, t)− log κ ≥ (1 + 2ε) logFt(−κ) .

Since ε > 0 is arbitrary, we have shown that

lim sup
log
(
p(−κ, t)/κ

)
logFt(−κ)

≤ 1 , (2.4.18)

obtaining a sharp bound for (2.1.33).

Step 3. Upper bounds on c(κ, t). We are going to prove sharp upper bounds on c(κ, t), that
will complete the proof of relations (2.1.22), (2.1.25) and (2.1.27). We �rst consider the case
when the moment assumptions (2.1.17) and (2.1.19) hold for every η > 0.

Let us look at the regimes κ → ∞ and κ → κ̄ ∈ (0,∞) (i.e. κ is bounded away from
zero), assuming that condition (2.1.17) holds for every η > 0. By Hölder's inequality,

c(κ, t) = E[(eXt − eκ)1{Xt>κ}] ≤ E[eXt1{Xt>κ}] ≤ E[e(1+η)Xt ]
1

1+η F t(κ)
η

1+η . (2.4.19)

Let us �x ε > 0 and choose η = ηε large enough, so that η
1+η > 1 − ε. By assumption

(2.1.17), for some C ∈ (0,∞) one has

E[e(1+η)Xt ]
1

1+η ≤ C ,

hence eventually, recalling that logF t(κ)→ −∞, by (2.4.3),

log c(κ, t) ≤ logC + (1− ε) logF t(κ) ≤ (1− 2ε) logF t(κ) . (2.4.20)

Since ε > 0 is arbitrary, this shows that

lim inf
log c(κ, t)

logF t(κ)
≥ 1 , (2.4.21)
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which together with (2.4.11) completes the proof of (2.1.22), if κ→∞, because logF t(κ) ∼
logF t(κ)−κ when condition (2.1.17) holds for every η > 0, by (2.4.5) (cf. also Remark 2.1.9).
If κ→ κ̄ ∈ (0,∞), relation (2.4.21) together with (2.4.12) completes the proof of (2.1.25).

We then consider the regime κ → 0, assuming that condition (2.1.19) holds for every
η > 0. We modify (2.4.19) as follows: since (eXt − eκ) ≤ (eXt − 1) ≤ |eXt − 1|,

c(κ, t) ≤ E[|eXt − 1|1{Xt>κ}] ≤ κE

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η] 1
1+η

F t(κ)
η

1+η . (2.4.22)

Let us �x ε > 0 and choose η = ηε large enough, so that η
1+η > 1 − ε. By assumption

(2.1.19), for some C ∈ (0,∞) one has

E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η] 1
1+η

≤ C , (2.4.23)

hence relation (2.4.22) yields eventually

log
c(κ, t)

κ
≤ logC + (1− ε) logF t(κ) ≤ (1− 2ε) logF t(κ) . (2.4.24)

Since ε > 0 is arbitrary, we have proved that

lim inf
log
(
c(κ, t)/κ

)
logF t(κ)

≥ 1 , (2.4.25)

which together with (2.4.13) completes the proof of (2.1.27).

It remains to consider the case when the moment assumptions (2.1.17) and (2.1.19)
holds for some η > 0, but in addition conditions (2.1.21) (if κ→∞ or κ→ κ̄ ∈ (0,∞)) or
(2.1.24) (if κ→ 0) holds. We start with considerations that are valid in any regime of κ.

De�ning the constant

A := lim sup

{
−κ

logF t(κ) + κ

}
+ 1 , (2.4.26)

where the lim sup is taken along the given family of values of (κ, t), we claim that A <∞.
This follows by (2.4.4) if κ → 0 or if κ → κ̄ ∈ (0,∞) (in which case, plainly, A = 1),
while if κ→ +∞ it su�ces to apply (2.4.6) to get A ≤ 2/η + 1. It follows by (2.4.26) that
eventually

κ ≤ −A(logF t(κ) + κ) . (2.4.27)

Next we show that, for all �xed ε > 0 and 1 < M <∞, eventually one has

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ (1− ε)

(
logF t(κ) + κ

)
, (2.4.28)

which means that the sup is approximately attained for y = 1. This is easy if κ → 0 or if
κ→ κ̄ ∈ (0,∞): in fact, since κ→ F t(κ) is non-increasing, we can write

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ log

(
eκMF t(κ)

)
= κM + logF t(κ)

=
(

logF t(κ) + κ
)

+ (M − 1)κ ,
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and since logF t(κ) + κ→ −∞ by (2.4.4), while (M − 1)κ is bounded, (2.4.28) follows.
To prove (2.4.28) in the regime κ→∞, we are going to exploit the assumption (2.1.21).

First we �x δ > 0, to be de�ned later, and set n̄ := dM−1
δ e and an := 1+nδ for n = 0, . . . , n̄,

so that [1,M ] ⊆
⋃n̄
n=1[an−1, an]. For all y ∈ [an−1, an] one has, by (2.1.15),

logF t(κy) ≤ logF t(κan−1) ∼ I+(an−1) logF t(κ) ≤ an−1 logF t(κ) ,

having used that I+(%) ≥ %, by (2.1.21), hence eventually

logF t(κy) ≤ (1− δ)an−1 logF t(κ) , ∀y ∈ [an−1, an] .

Recalling that an = an−1 +δ, we can write an ≤ (1−δ)an−1 +δ(1+M), because an−1 ≤M
by construction, and since eκy ≤ eκan for y ∈ [an−1, an], it follows that

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ max

n=1,...,n̄

(
anκ+ (1− δ)an−1 logF t(κ)

)
= max

n=1,...,n̄

(
(1− δ)an−1

(
logF t(κ) + κ

)
+ δ(1 +M)κ

)
.

Plainly, the max is attained for n = 1, for which an−1 = a0 = 1. Recalling (2.4.27), we get

log

(
sup

y∈[1,M ]
eκy F t(κy)

)
≤ (1− δ(1 +A+AM))

(
logF t(κ) + κ

)
.

Choosing δ := ε/(1 +A+AM), the claim (2.4.28) is proved.

We are ready to give sharp upper bounds on c(κ, t), re�ning (2.4.19). For �xed M ∈
(0,∞), we write

c(κ, t) = E[(eXt − eκ)1{κ<Xt≤κM}] + E[(eXt − eκ)1{Xt>κM}] , (2.4.29)

and we estimate the �rst term as follows: by Fubini-Tonelli's theorem and (2.4.28),

E[(eXt − eκ)1{κ<Xt≤κM}] = E

[(∫ ∞
κ

ex 1{x<Xt} dx

)
1{κ<Xt≤κM}

]
=

∫ κM

κ
ex P(x < Xt ≤ κM) dx ≤

∫ κM

κ
ex F t(x) dx

= κ

∫ M

1
eκy F t(κy) dy ≤ κ (M − 1) e(1−ε)(logF t(κ)+κ) .

(2.4.30)

To estimate the second term in (2.4.29), we start with the cases κ→∞ and κ→ κ̄ ∈ (0,∞),
where we assume that (2.1.17) holds for some η > 0, as well as (2.1.24), hence we can �x
M > 1 such that I+(M) > 1+η

η . Bounding (eXt − eκ) ≤ eXt , Hölder's inequality yields

E[(eXt − eκ)1{Xt>κM}] ≤ E[e(1+η)Xt ]
1

1+η F t(κM)
η

1+η = C F t(κM)
η

1+η ,

where C ∈ (0,∞) is an absolute constant, by (2.1.17). Applying relation (2.1.15) together
with I+(M) > 1+η

η we obtain

η

1 + η
logF t(κM) ∼ η

1 + η
I+(M) logF t(κ) ≤ logF t(κ) , (2.4.31)
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hence eventually

log E[(eXt − eκ)1{Xt>κM}] ≤ (1− ε) logF t(κ) ≤ (1− ε)
(

logF t(κ) + κ
)
. (2.4.32)

Recalling (2.4.6) and (2.4.4), eventually κ(M − 1) ≤ e−ε(logF t(κ)+κ), hence by (2.4.30)

log E[(eXt − eκ)1{κ<Xt≤κM}] ≤ (1− 2ε)
(

logF t(κ) + κ
)
. (2.4.33)

Looking back at (2.4.29), since

log(a+ b) ≤ log 2 + max{log a, log b} , ∀a, b > 0 , (2.4.34)

by (2.4.32), (2.4.33) and again (2.4.4) one has eventually

log c(κ, t) ≤ log 2 + (1− 2ε)
(

logF t(κ) + κ
)
≤ (1− 3ε)

(
logF t(κ) + κ

)
.

Since ε > 0 is arbitrary, this shows that

lim inf
log c(κ, t)

logF t(κ) + κ
≥ 1 , (2.4.35)

which together with (2.4.11) completes the proof of (2.1.22), if κ→∞. Since logF t(κ)+κ ∼
logF t(κ) if κ→ κ̄ ∈ (0,∞), by (2.4.3), we can rewrite (2.4.35) in this case as

lim inf
log c(κ, t)

logF t(κ)
≥ 1 , (2.4.36)

which together with (2.4.12) completes the proof of (2.1.25).
It remains to consider the case when κ → 0, where we assume that relation (2.1.19)

holds for some η ∈ (0,∞), together with (2.1.24). As before, we �x M > 1 such that
I+(M) > 1+η

η . Since

E

[(
eXt − eκ

κ

)1+η

1{Xt>κ}

]
≤ E

[∣∣∣∣eXt − 1

κ

∣∣∣∣1+η]
≤ C , (2.4.37)

for some absolute constant C ∈ (0,∞), by (2.1.19), the second term in (2.4.29) is bounded
by

E[(eXt − eκ)1{Xt>κM}] ≤ κE

[∣∣∣∣eXt − eκκ

∣∣∣∣1+η] 1
1+η

F t(κM)
η

1+η ≤ κC F t(κM)
η

1+η . (2.4.38)

In complete analogy with (2.4.31)-(2.4.32), we obtain that eventually

log
E[(eXt − eκ)1{Xt>κM}]

κ
≤ (1− ε) logF t(κ) . (2.4.39)

By (2.4.4), eventually (M − 1) ≤ e−ε(logF t(κ)+κ), hence by (2.4.30)

log
E[(eXt − eκ)1{κ<Xt≤κM}]

κ
≤ (1− 2ε)(logF t(κ) + κ) . (2.4.40)
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Recalling (2.4.29) and (2.4.34), we can �nally write

log
c(κ, t)

κ
≤ log 2 + (1− 2ε)

(
logF t(κ) + κ

)
≤ (1− 3ε) logF t(κ) ,

because κ→ 0 and logF t(κ)→ −∞. Since ε > 0 is arbitrary, we have proved that

lim inf
log
(
c(κ, t)/κ

)
logF t(κ)

≥ 1 , (2.4.41)

which together with (2.4.13) completes the proof of (2.1.27).

Step 4. Upper bounds on p(−κ, t). We are going to prove sharp upper bounds on p(−κ, t),
that will complete the proof of relations (2.1.28), (2.1.30) and (2.1.33).

By (2.1.1) we can write

p(−κ, t) = E[(e−κ − eXt)1{Xt≤−κ}] ≤ e
−κ Ft(−κ) ,

therefore
log p(−κ, t)

logFt(−κ)− κ
≥ 1 , (2.4.42)

which together with (2.4.16) completes the proof of (2.1.33), if κ→∞. On the other hand,
if κ→ κ̄ ∈ (0,∞), since relation (2.4.42) implies (recall that κ ≥ 0)

log p(−κ, t)
logFt(−κ)

≥ 1 , (2.4.43)

in view of (2.4.17), the proof of (2.1.30) is completed.
It remains to consider the case κ → 0. If relation (2.1.19) holds for every η ∈ (0,∞),

we argue in complete analogy with (2.4.22)-(2.4.23)-(2.4.24), getting

lim inf
log
(
p(−κ, t)/κ

)
logFt(−κ)

≥ 1 , (2.4.44)

which together with (2.4.18) completes the proof of (2.1.33). If, on the other hand, relation
(2.1.19) holds only for some η ∈ (0,∞), we also assume that condition (2.1.32) holds, hence
we can �x M > 1 such that I−(M) > 1+η

η . Let us write

p(−κ, t) = E[(e−κ − eXt)1{−κM<Xt≤−κ}] + E[(e−κ − eXt)1{Xt≤−κM}] . (2.4.45)

In analogy with (2.4.30), for every �xed ε > 0, the �rst term in the right hand side can be
estimated as follows (note that y 7→ Ft(−κy) is decreasing):

E[(e−κ − eXt)1{−κM<Xt≤−κ}] ≤
∫ −κ
−κM

ex Ft(x) dx = κ

∫ M

1
e−κy Ft(−κy) dy

≤ κ(M − 1)Ft(−κ) ≤ κ e(1−ε) logFt(−κ) .

The second term in (2.4.45) is estimated in complete analogy with (2.4.37)-(2.4.38)-(2.4.39),
yielding

log
E[(e−κ − eXt)1{Xt≤−κM}]

κ
≤ (1− ε) logFt(−κ) .
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Recalling (2.4.34), we obtain from (2.4.45)

log
p(−κ, t)

κ
≤ log 2 + (1− ε) logFt(−κ) ≤ (1− 2ε) logFt(−κ) ,

and since ε > 0 is arbitrary we have proved that relation (2.4.44) still holds, which together
with (2.4.18) completes the proof of (2.1.33), and of the whole Theorem 2.1.5.

2.4.2 Proof of Theorem 2.1.11

By Skorokhod's representation theorem, we can build a coupling of the random variables
(Xt)t≥0 and Y such that relation (2.1.36) holds a.s.. Since the function z 7→ z+ is continuous,
recalling that γt → 0, for κ ∼ aγt we have a.s.

(eXt − eκ)+

γt
=

(
eY γt(1+o(1)) − 1

γt
− eaγt(1+o(1)) − 1

γt

)+
a.s.−−→
t↓0

(Y − a)+ , (2.4.46)

and analogously for κ ∼ −aγt

(eκ − eXt)+

γt

a.s.−−→
t↓0

(−a− Y )+ = (Y + a)− . (2.4.47)

Taking the expectation of both sides of these relations, one would obtain precisely (2.1.39).
To justify the interchanging of limit and expectation, we observe that the left hand sides
of (2.4.46) and (2.4.47) are uniformly integrable, being bounded in L1+η. In fact

|eXt − eκ|
γt

≤ |e
Xt − 1|
γt

+
|eκ − 1|
γt

,

and the second term in the right hand side is uniformly bounded (recall that κ ∼ aγt by
assumption), while the �rst term is bounded in L1+η, by (2.1.38).

2.5 Miscellanea

2.5.1 About conditions (2.1.3) and (2.1.4)

Recall from �2.1.1 that (Xt)t≥0 denotes the risk-neutral log-price, and assume that Xt →
X0 := 0 in distribution as t→ 0 (which is automatically satis�ed if X has right-continuous
paths). For an arbitrary family of values of (κ, t), with t > 0 and κ ≥ 0, we show that
condition (2.1.3) implies (2.1.4).

Assume �rst that t→ 0 (with no assumption on κ). Since κ ≥ 0, one has (eXt−eκ)+ →
(1 − eκ)+ = 0 in distribution, hence c(κ, t) → 0 by (2.1.1) and Fatou's lemma. With
analogous arguments, one has p(−κ, t)→ 0, hence (2.1.4) is satis�ed.

Next we assume that κ→∞ and t is bounded, say t ∈ (0, T ] for some �xed T > 0. Since
z 7→ (z− c)+ is a convex function and (eXt)t≥0 is a martingale, the process ((eXt−eκ)+)t≥0

is a submartingale and by (2.1.1) we can write

0 ≤ c(κ, t) ≤ E[(eXT − eκ)+] = E[(eXT − eκ)1{XT>κ}] ≤ E[eXT 1{XT>κ}] .

It follows that, if κ → +∞, then c(κ, t) → 0. With analogous arguments, one shows that
p(−κ, t)→ 0, hence condition (2.1.4) holds.
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2.5.2 Proof of Proposition 2.3.2

Let us �rst prove (2.3.11) and (2.3.12). Since φ(d2)ek = φ(d1), cf. (2.3.1) and (2.3.8),
recalling (2.3.2) we can rewrite the Black&Scholes formula (2.3.7) as follows:

CBS(κ, v) = φ(d1)
(
U(−d1)− U(−d2)

)
= φ(d1)

(
U(−d1)− U(−d1 + v)

)
. (2.5.1)

If d1 → −∞, applying (2.3.3) we get

U(−d1)− U(−d1 + v) = −
∫ −d1+v

−d1

U ′(z) dz ∼
∫ −d1+v

−d1

1

z2
dz =

v

−d1(−d1 + v)
,

and (2.3.11) is proved. Next we assume that v → 0. By convexity of U(·) (cf. Lemma 2.3.1),

−U ′(−d1 + v) ≤ U(−d1)− U(−d1 + v)

v
≤ −U ′(−d1) ,

hence to prove (2.3.12) it su�ces to show that U ′(−d1 + v) ∼ U ′(−d1). To this purpose,
by a subsequence argument, we may assume that d1 → d1 ∈ R ∪ {±∞}. Since d1 ≤ v

2
for κ ≥ 0, when v → 0 necessarily d1 ∈ [−∞, 0]. If d1 = −∞, i.e. −d1 → +∞, then
−d1 + v ∼ −d1 → +∞ and U ′(−d1 + v) ∼ U ′(−d1) follows by (2.3.3). On the other hand,
if d1 ∈ (−∞, 0] then both U ′(−d1) and U ′(−d1 +v) converge to U ′(−d1) 6= 0, by continuity
of U ′, hence U ′(−d1)/U ′(−d1 + v)→ 1, i.e. U ′(−d1 + v) ∼ U ′(−d1) as requested.

Let us now prove (2.3.10). Assume that min{d1, log v} → −∞, and note that for every
subsequence we can extract a sub-subsequence along which either d1 → −∞ or v → 0. We
can then apply (2.3.11) and (2.3.12) to show that CBS(κ, v)→ 0:

• if d1 → −∞, the right hand side of (2.3.11) is bounded from above by φ(d1)/(−d1)→
0;

• If κ ≥ 0 and v → 0, then d1 ≤ v
2 → 0 and consequently φ(d1)U ′(−d1) is uniformly

bounded from above, hence the right hand side of (2.3.12) vanishes (since v → 0).

Finally, we assume that min{d1, log v} 6→ −∞ and show that CBS(κ, v) 6→ 0. Extracting
a subsequence, we have min{d1, log v} ≥ −M for some �xed M ∈ (0,∞), i.e. both v ≥
ε := e−M > 0 and d1 ≥ −M , and we may assume that v → v ∈ [ε,+∞] and d1 → d1 ∈
[−M,+∞]. Consider �rst the case v = +∞, i.e. v → +∞: by (2.3.8) one has −d1 + v =
−d2 ≥ v

2 → +∞, hence φ(d1)U(−d1 + v)→ 0 (because φ is bounded), and recalling (2.3.2)
relation (2.5.1) yields

CBS(κ, v) = Φ(d1)− φ(d1)U(−d1 + v)→ Φ(d1) > 0 .

Next consider the case v < +∞: since d1 ≤ v
2 , we have d1 ≤ v

2 and again by (2.5.1) we
obtain CBS(κ, v)→ φ(d1)(U(−d1)− U(−d1 + v)) > 0. In both cases, CBS(κ, v) 6→ 0.
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Chapter 3

The asymptotic smile of a

multiscaling stochastic volatility

model

In this chapter, we focus on a stochastic volatility model for the log-price of a �nancial
asset, recently introduced in [ACDP12], in which the volatility jumps at the jump times
of a Poisson process, which represent shocks in the market. Despite the few parameters,
this model was shown to capture some relevant stylized facts of �nancial series, such as
the change in the log-return distribution from power-law tails (small time) to a Gaussian
behavior (large time), the slow decay in the volatility autocorrelation and the so-called
multiscaling of moments. We point out that this phenomenon can be observed for a general
class of stochastic volatility models, in which the volatility is driven by a Lévy subordinator
under a super-linear mean-reversion, cf. [DP14].

In this chapter, we look at this model from the viewpoint of pricing. Applying the results
of Chapter 2, we obtain sharp asymptotic formulas for option prices and implied volatility,
that are valid both in the limit of small maturity (with arbitrary strike) and of large strike
(with bounded maturity). Remarkably, despite the price having continuous paths, the out-
of-the-money implied volatility for this model is shown to diverge in the small-maturity
limit, with an explicit limiting shape displaying a very pronounced smile.

Our approach is based on estimates on the tail decay of the log-return distribution.
Even though the moment generating function admits no explicit formula, we can extract
asymptotic estimates that are sharp enough to apply large deviations techniques, notably
the Gärtner-Ellis theorem.

3.1 The model

We recall the de�nition of the model (Yt)t≥0 introduced in [ACDP12] for the detrended
log-price under the historical measure, after which we look at the risk-neutral measure.

3.1.1 The historical measure

We have two independent sources of randomness:

39
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(a) Time change (b) Spot volatility

Figure 3.1: Paths of the time change and of the spot volatility process

• a standard Brownian motion (Wt)t≥0;

• a Poisson process (Nt)t≥0 of intensity λ ∈ (0,∞), whose jump times are denoted by
0 < τ1 < τ2 < . . ..

For �xed parameters V ∈ (0,∞), τ0 ∈ (−∞, 0) and D ∈ (0, 1
2), we de�ne

Yt := WIt , (3.1.1)

i.e. Y is a time-changed Brownian motion, where the clock process (It)t≥0 is de�ned by

It := c

{
(t− τNt)2D − (−τ0)2D +

Nt∑
k=1

(τk − τk−1)2D

}
, with c :=

V 2λ2D−1

Γ(2D + 1)
, (3.1.2)

where Γ(α) :=
∫∞

0 xα−1e−xdx denotes Euler's gamma function, and with the convention
that the sum in (3.1.2) is zero when Nt = 0. We refer to Figure 3.1 for a sample path of It.

Being a function of (Nt)t≥0, the process (It)t≥0 is independent of the Brownian motion
(Wt)t≥0. The trajectories t 7→ It are continuous, and also di�erentiable at every t ≥ 0 which
is not a jump time τk of the Poisson process, i.e. for t 6= τNt (note that τNt is the last jump
time of the Poisson process before t). The derivative of It is simply given by

I ′t = 2D c (t− τNt)2D−1 , (3.1.3)

where we stress that the exponent 2D − 1 in (3.1.3) is negative, since D < 1
2 .

Observe that in the limiting case D = 1
2 , the model becomes Yt = WV 2t, i.e. Brownian

motion with constant volatility V .

An alternative, equivalent de�nition of the model (Yt)t≥0 is to observe that, by (3.1.1),
it is the solution of the following stochastic di�erential equation:

dYt = σt dBt , with σt :=
√
I ′t , (3.1.4)

where (Bt)t≥0 denotes another Brownian motion, independent of (σt)t≥0 (see [ACDP12]).
In other terms, Yt can be described as a stochastic volatility model, where the volatility is



The asymptotic smile of a multiscaling stochastic volatility model 41

the square root of the time-change process (It)t≥0 and, by (3.1.3), it explodes at each jump
time of the Poisson process, after which it decays as an inverse power (see Figure 3.1).

Remark 3.1.1. The four parameters λ,D, V, τ0 have the following meaning:

• λ ∈ (0,∞) represents the average frequency of shocks;

• D ∈ (0, 1
2 ] tunes the non-linear evolution of the volatility after a shock;

• V ∈ (0,∞) represents the large-time volatility, i.e. V = limt→∞
√

E[σ2
t ];
†

• τ0 ∈ (−∞, 0), which according to (3.1.2) plays the role of the �last jump� before time
0, determines the initial volatility σ0, cf. (3.1.3) and (3.1.4):

σ0 =
λD−

1
2 V√

Γ(2D)
(−τ0)D−

1
2 =

√
(2D)c (−τ0)D−

1
2 . (3.1.5)

Given this correspondence, one can equivalently use σ0 as a parameter instead of τ0.
‡

3.1.2 The risk-neutral measure

Under the natural risk-neutral measure, the price (St)t≥0, say with S0 = 1, evolves according
to the following stochastic di�erential equation:

dSt
St

= σt dBt , (3.1.6)

where σt is the process de�ned in (3.1.4)-(3.1.3), namely

σt :=
λD−

1
2 V√

Γ(2D)
(t− τNt)D−

1
2 .

As we describe in Chapter 4, there is a one-parameter class of equivalent martingale mea-
sures for our model, which allow to modify the value of the parameter λ ∈ (0,∞) freely.
Here we assume to have �xed that parameter, and still call it λ.

The log-price process (Xt)t≥0 is de�ned by Xt := logSt = log St
S0
, since S0 = 1. It follows

by (3.1.6) that dXt = dSt
St
− 1

2
d〈S〉t
S2
t

= σt dBt − 1
2σ

2
t dt, hence by (3.1.4) and (3.1.1) we have

Xt = WIt −
1

2
It , (3.1.7)

where (Wt)t≥0 is a Brownian motion and (It)t≥0 is an independent process, de�ned in (3.1.2)
As a consequence, the price (St)t≥0, which equals

St = eXt = eWIt−
1
2
It , (3.1.8)

is a time-changed geometric Brownian motion, with independent time-change process.
Let us stress that equations (3.1.7) and (3.1.8), together with (3.1.2), can be taken as

the de�nitions of the log-price Xt and price St processes.

†We point out that in [ACDP12] the parameter V was replaced by
√
c, appearing in (3.1.2).

‡In [ACDP12] the parameter −τ0 was chosen randomly, as an Exp(λ) random variable (like τ1, τ2 − τ1,
τ3 − τ2, . . . ) independent of (Nt)t≥0 and (Wt)t≥0. With this choice, the process (t − τNt)t≥0 is stationary
(with Exp(λ) one-time marginal distributions), hence the volatility (σt)t≥0 is a stationary process. In our
context, it is more natural to have a �xed value for the initial volatility.
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3.1.3 Option price and implied volatility

The price of a European call, with log-strike κ ∈ R and maturity t ≥ 0, under our model is

c(κ, t) := E[(St − eκ)+] = E[(eXt − eκ)+] . (3.1.9)

We recall from Chapter 2, �2.3.2, that the Black&Scholes price of a call option, with
volatility σ ∈ (0,∞), is given by CBS(κ, σ

√
t), where

CBS(κ, v) := E[(eWv2− 1
2
v2 − eκ)+] = Φ(d1)− eκΦ(d2) , (3.1.10)

where

Φ(x) :=

∫ x

−∞

e−
1
2
t2

√
2π

dt , d1 := −κ
v

+
v

2
, d2 := −κ

v
− v

2
. (3.1.11)

For t > 0, the implied volatility σimp(κ, t) of our model is de�ned as the unique value of
σ ∈ (0,∞) such that c(κ, t) = CBS(κ, σ

√
t), that is

c(κ, t) = CBS(κ, σimp(κ, t)
√
t) . (3.1.12)

Our goal is to determine sharp asymptotic estimates on σimp(κ, t).

It follows by (3.1.9) and (3.1.8), since (It)t≥0 is independent of (Wt)t≥0, that the fol-
lowing Hull-White [HW87] formula holds:

c(κ, t) = E
[
CBS(κ, v)

∣∣
v=
√
It

]
, (3.1.13)

that is the price of a call under our model is obtained by averaging the Black&Scholes price
CBS(κ, v) with a random total volatility v =

√
It. In Chapter 4 we obtain a generalized

version of this formula, which holds also when there are correlations between the time-
change process and the Brownian motion.

By (3.1.10)-(3.1.11) and Φ(−x) = 1− Φ(x), the Black&Scholes call price satis�es

CBS(−κ, v) = 1− e−κ + e−κCBS(κ, v) .

Then it follows by (3.1.13) that an analogous relation holds for our model:

c(−κ, t) = 1− e−κ + e−κc(κ, t) .

Looking at (3.1.12), it follows that the implied volatility of our model is symmetric in κ:

σimp(−κ, t) = σimp(κ, t) .

Note that this property holds for any stochastic volatility model in which the volatility
process is independent of the price, as �rst observed in [RT96].

As a consequence, in the sequel we focus on the regime κ ≥ 0.
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3.2 Main results (I): implied volatility

In this section we present our main asymptotic results concerning the implied volatility of
our model, that hold in the general regime when

either t→ 0 with arbitrary κ ≥ 0 , or t→ t̄ ∈ (0,∞) and κ→∞ . (3.2.1)

These results descend from Theorems 2.1.5 and 2.1.6 and are linked to the asymptotic
behavior of the call price and tail probability, that will be stated in the next Section 3.3.

Let us de�ne a continuous, increasing function f : [0,∞)→ [1,∞) by†

f(a) := min
m≥1

fm(a) := min
m≥1

(
m+

a2

2cm1−2D

)
, (3.2.2)

where c is the constant de�ned in (3.1.2). Note that f(0) = 1. As a→∞, optimizing over

m shows that the minimum in (3.2.2) is attained for m ' ( (1−2D)a2

2c )1/(2−2D), hence

f(a) ∼ C̃ a
1

1−D , where C̃ :=
2(1−D)

(2c)
1

2(1−D) (1− 2D)
1−2D

2(1−D)

. (3.2.3)

We also de�ne the two functions

κ1(t) :=
√
t

√
log

1

t
, κ2(t) := tD

√
log

1

t
, (3.2.4)

which, as we will see in a moment, act as boundaries for κ, separating di�erent asymptotic
regimes for σimp(κ, t) as t→ 0. (Note that κ1(t) < κ2(t), since D < 1

2 .)

We are ready to state our �rst main result, proved in Section 3.5 (see Figure 3.2 for a
plot). We recall that f ∼ g means f/g → 1, while f � g means f/g → 0.

Theorem 3.2.1 (Implied volatility). Consider a family of values of (κ, t) with κ ≥ 0, t > 0.
If t→ t̄ ∈ (0,∞) and κ→∞, the following relation holds:

σimp(κ, t) ∼

{
1√
2C̄

}(
κ
t√

log κ
t

) 1−2D
2−2D

, (3.2.5)

for an explicit constant C̄ given by

C̄ :=
2(1−D)

1
2(1−D)

(2c)
1

2(1−D) (1− 2D)
1−2D

2(1−D)

. (3.2.6)

If t→ 0, we distinguish various regimes. Recall that σ0 is the constant de�ned in (3.1.5),
while the functions f(·) and κ1(·), κ2(·) are de�ned in (3.2.2), (3.2.4).

• If 0 ≤ κ ≤
√

2D + 1σ0 κ1(t),
σimp(κ, t) ∼ σ0 ; (3.2.7)

†The function f(·) is continuous because for any a ∈ [0,∞) one can restrict the minimum in (3.2.2) over
the �nite set m ∈ {1, . . . , bf1(a)c}, since fi(a) ≥ i for all i ≥ 1.
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• if
√

2D + 1σ0 κ1(t) ≤ κ� κ2(t)

σimp(κ, t) ∼

{
1√

2
(
D + 1− log κ

log t

)
}

κ

κ1(t)
, (3.2.8)

and note that the quantity inside the brackets is of order 1, because log κ
log t varies smoothly

between 1
2 and D, for κ in the range under consideration;

• if κ ∼ aκ2(t), for some a ∈ (0,∞),

σimp(κ, t) ∼
{

1√
2f(a)

}
κ

κ1(t)
; (3.2.9)

• �nally, if κ� κ2(t), the asymptotic relation (3.2.5) holds.

If we �x t > 0 small and increase κ, Theorem 3.2.1 shows that the implied volatility
σimp(κ, t) of our model is roughly equal to the constant value σ0 from κ = 0 until κ ≈
κ1(t) ≈

√
t, cf. (3.2.7), then it starts growing linearly until κ ≈ κ2(t) ≈ tD, cf. (3.2.8), after

which it grows sublinearly as ≈ (κ/t)γ , cf. (3.2.5), where the exponent γ = 1−2D
2−2D can take

any value in (0, 1
2), depending on D. See Figure 3.2 for a graphical representation.

Remark 3.2.2. For �xed κ > 0, the implied volatility diverges as t ↓ 0, by (3.2.5). This
phenomenon, which is typical for models with jumps [AL12], also happens in our model,
despite the fact that it has continuous paths, and is linked to the fact that the distribution of
the time-change process It displays approximate polynomial tails as t ↓ 0. Incidentally, this
is the same mechanism that produces the multiscaling of moments [ACDP12]. We point out
that these features are absent in most stochastic volatility models, where the distribution
of the stochastic volatility has thin tails as t ↓ 0, such as the Heston model [FJL12].

Remark 3.2.3. The four relations (3.2.7), (3.2.8), (3.2.9) and (3.2.5) match perfectly at
the boundaries of the respective intervals of applicability:

• relations (3.2.7) and (3.2.8) coincide for κ = (σ0

√
2D + 1)κ1(t);

• since f(a)→ 1, letting a ↓ 0 in (3.2.9) yields relation (3.2.8) with κ ≈ κ2(t) ≈ tD;

• recalling (3.2.3) and noting that C̄ := (1 − D)
2D−1
2−2D C̃, if we let a ↑ ∞ in (3.2.9) we

obtain relation (3.2.5) (note that log κ
t ∼ (1−D) log 1

t in (3.2.5) when κ ≈ κ2(t)).

Remark 3.2.4. In the limiting case D = 1
2 one has

σ0 = V , c = V 2 , κ1(t) = κ2(t) , f(a) =
a2

2c
,

cf. (3.1.5), (3.1.2) and (3.2.4) and (3.2.2) (where the min should range over m ≥ 0, but
m = 0 is automatically ruled out when D < 1

2). Consequently, relations (3.2.7), (3.2.9) and
(3.2.5) reduce to σimp(κ, t) ∼ V , in perfect agreement with the fact that for D = 1

2 our
model becomes Black&Scholes model with constant volatility V .†

†Note that relation (3.2.8) does not apply for D = 1
2
, because in this case κ1(t) = κ2(t) and consequently

there is no κ for which (σ0

√
2D + 1)κ1(t) ≤ κ� κ2(t).
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Figure 3.2: Smile asymptotics for D = 0.3

3.3 Main results (II): tail probability and option price

We now present explicit estimates for the tail probability F t(κ) = P(Xt > κ) of our model,
together with estimates on the option price c(κ, t), based on Theorems 2.1.5 and 2.1.11
in Chapter 2. These results yield the sharp asymptotic behavior of the implied volatility,
described in Theorem 3.2.1.

We �rst observe that as t ↓ 0 we have the convergence in law

Xt√
t

d→ σ0W1 , (3.3.1)

where σ0 is the constant in (3.1.5). To prove this fact, note that for any t ≥ 0, by (3.1.7),

Xt
d
=
√
ItW1 −

1

2
It .

Since It = I0 + I ′0t + o(t) = σ2
0t + o(t), cf. (3.1.4)-(3.1.5), one has It/t → σ2

0 a.s. as t ↓ 0,
hence It/

√
t→ 0, and (3.3.1) follows.

Relation (3.3.1) shows that κ = O(
√
t) is the regime of typical deviations, for which we

can state the following result, proved in Section 3.6 below.

Theorem 3.3.1 (Tail probability and option price: typical deviations). Consider a family
of values of (κ, t) with κ ≥ 0, t > 0 such that

t→ 0 and κ ∼ a
√
t , for some a ∈ [0,∞) .

Then

P(Xt > κ) −−→
t↓0

1− Φ

(
a

σ0

)
, c(κ, t) ∼

t↓0
a
√
tD

(
a

σ0

)
, (3.3.2)

where D(x) := 1
xφ(x) − Φ(−x) is a smooth decreasing bijection from (0,∞) to (0,∞), cf.

(2.1.5), and φ(·) and Φ(·) are the density and distribution function of a standard Gaussian.
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Next we consider the regime of atypical deviations, i.e. families of (κ, t) with κ �
√
t.

The following result gives asymptotics for the tail probability and is proved in �3.7 below.

Theorem 3.3.2 (Tail probability: atypical deviations). Consider a family of values of (κ, t)
with κ ≥ 0, t > 0. If t→ t̄ ∈ (0,∞) and κ→∞, the following asymptotics holds:

log P(Xt > κ) ∼ −C̄
( κ
tD

) 1
1−D

(
log

κ

t

) 1−2D
2−2D

, (3.3.3)

where the constants σ0 and C̄ are de�ned in (3.1.5) and (3.2.6).
If t→ 0 and κ�

√
t, i.e. κ/

√
t→∞, the following asymptotics holds:

log P(Xt > κ) ∼


− 1

2σ2
0

(
κ

κ1(t)

)2

log
1

t
if κ ≤

√
2σ0 κ1(t) ,

− f
(

κ

κ2(t)

)
log

1

t
if κ >

√
2σ0 κ1(t) ,

(3.3.4)

where f(·), κ1(·) and κ2(·) are de�ned in (3.2.2) and (3.2.4). More explicitly:

• if
√
t� κ� κ2(t), since f(0) = 1,

log P(Xt > κ) ∼ −min

{
a2

2σ2
0

, 1

}
log

1

t
, where a :=

κ

κ1(t)
; (3.3.5)

• if κ ∼ aκ2(t), for some a ∈ (0,∞),

log P(Xt > κ) ∼ −f(a) log
1

t
; (3.3.6)

• if κ� κ2(t), the asymptotic relation (3.3.3) holds.

Finally, we give the corresponding asymptotics for the option price. The following The-
orem is proved in Section 3.8 below.

Theorem 3.3.3 (Option price: atypical deviations). Consider a family of values of (κ, t)
with κ ≥ 0, t > 0. If t→ t̄ ∈ (0,∞) and κ→∞, the following asymptotics holds:

log c(κ, t) ∼ log P(Xt > κ) , (3.3.7)

and the right hand side can be read from (3.3.3).
If t→ 0 and

√
t� κ� κ1(t), or κ� κ2(t), the following relation holds:

log
(
c(κ, t)/κ

)
∼ log P(Xt > κ) , (3.3.8)

and the right hand side can be read from (3.3.5) (if κ� κ1(t)) or (3.3.3) (if κ� κ1(t)) .
If t→ 0 and κ ∼ aκ1(t), for some a ∈ (0,∞),

log
(
c(κ, t)/κ

)
∼ −min

{
a2

2σ2
0

, D +
1

2

}
log

1

t
, (3.3.9)

while if κ1(t)� κ ≤M κ2(t), for some M ∈ (0,∞),

log
(
c(κ, t)/κ

)
∼ − log

1

t
− log

κ

tD
. (3.3.10)
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3.4 Preliminary results

We start stating a useful upper bound on It (which, we recall, is de�ned in (3.1.2)).

Lemma 3.4.1. For all t ≥ 0 the following upper bound holds:

It ≤ σ2
0 t + cN1−2D

t t2D , (3.4.1)

where the constants σ0 and c are de�ned in (3.1.5) and (3.1.2).

Proof. Since (a+ b)2D− b2D ≤ 2D b2D−1 a for all a, b > 0 by concavity (recall that D < 1
2),

on the event {Nt = 0} we can write, recalling (3.1.2) and (3.1.5),

It = c
{

(t− τ0)2D − (−τ0)2D
}
≤ c 2D (−τ0)2D−1 t = σ2

0 t , (3.4.2)

proving (3.4.1). Analogously, on the event {Nt ≥ 1} = {0 ≤ τ1 ≤ t} we have

It := c

{
(τ1 − τ0)2D − (−τ0)2D +

Nt∑
k=2

(τk − τk−1)2D + (t− τNt)2D

}

≤ c

{
2D(−τ0)2D−1t+

Nt∑
k=2

(τk − τk−1)2D + (t− τNt)2D

}
.

(3.4.3)

For all ` ∈ N and x1, . . . , x` ∈ R, it follows by Hölder's inequality with p := 1
2D that

∑̀
k=1

x2D
k ≤

(∑̀
k=1

(x2D
k )p

) 1
p
(∑̀
k=1

1

)1− 1
p

=

(∑̀
k=1

xk

)2D

`1−2D . (3.4.4)

Choosing ` = Nt and x1 = τ2 − τ1, xk = (τk+1 − τk) for 2 ≤ k ≤ `− 1 and x` = (t− τ`−1),
since

∑`
k=1 xk = t− τ1 ≤ t, we get from (3.4.3)

It ≤ c
(

2D(−τ0)2D−1t+N1−2D
t t2D

)
= σ2

0 t + cN1−2D
t t2D ,

completing the proof of (3.4.1).

Corollary 3.4.2 (No moment explosion). For every t ∈ [0,∞) and p ∈ R one has

E
[
epXt

]
= E

[
e

1
2
p(p−1)It

]
<∞ . (3.4.5)

Proof. Recalling the de�nition (3.1.7) of Xt, the independence of I and W gives

E
[
epXt

]
= E

[
ep(WIt−

1
2
It)
]

= E
[
ep(
√
ItW1− 1

2
It)
]

= E
[
e

1
2

(p
√
It)2− 1

2
pIt
]

= E
[
e

1
2
p(p−1)It

]
,

which proves the equality in (3.4.5). Applying the upper bound (3.4.1) yields

E
[
e

1
2
p(p−1)It

]
≤ E

[
e

1
2
p(p−1)(σ2

0 t+ cN1−2D
t t2D)

]
= E

[
ec1t+ c2 t2D N

1−2D
t

]
≤ E

[
ec1t+ c2 t2D Nt

]
,

for suitable c1, c2 ∈ (0,∞) depending on p and on the parameters of the model. The right
hand side is �nite because Nt ∼ Pois(λt) has �nite exponential moments of all orders.
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Corollary 3.4.3. There exists a constant C ∈ (0,∞) (depending on the parameters of the
model) such that

E
[
e2Xt

]
≤ 1 + C t , ∀0 ≤ t ≤ 1 .

Proof. By the equality in (3.4.5) and the upper bound (3.4.1), we can write

E[e2Xt ] = E[eIt ] ≤ eσ2
0t E[ect

2DN1−2D
t ] .

Next observe that, by Hölder's inequality,

E[ect
2DN1−2D

t ] = P(Nt = 0) + ect
2D

P(Nt = 1) + E[ect
2DN1−2D

t 1{Nt≥2}]

≤ e−λt + ect
2D
λt+

√
E[e2ct2DN1−2D

t ]P(Nt ≥ 2) .

Note that P(Nt ≥ 2) = 1− e−λt(1 + λt) = 1
2(λt)2 + o(t2) as t ↓ 0. For all 0 ≤ t ≤ 1 we can

write E[e2ct2DN1−2D
t ] ≤ E[e2cN1−2D

1 ] =: c1 <∞, and ect
2D ≤ ec, hence

E[ect
2DN1−2D

t ] ≤ 1 + ecλt+

√
c1λ2

2
(t+ o(t)) ≤ 1 + c2 t ,

for some c2 <∞. Consequently

E[e2Xt ] ≤ eσ2
0t
(
1 + c2 t

)
=
(
1 + σ2

0 t+ o(t)
)(

1 + c2 t
)
≤ 1 + Ct ,

for some C <∞.

3.5 Proof of Theorem 3.2.1

We are going to apply Theorem 2.1.1 in Chapter 2, exploiting the asymptotic behavior of
the call price c(κ, t) of Theorems 3.3.1 and 3.3.3 (which are proved in Sections 3.6 and 3.8).

3.5.1 Proof of (3.2.5)

Consider a family of values of (κ, t) with κ ≥ 0, t > 0. If t → t̄ ∈ (0,∞) and κ → ∞, or
alternatively if t→ 0 and κ→ κ̄ ∈ (0,∞] (so that, in particular, κ� κ2(t)), our goal is to
prove that relation (3.2.5) holds. Applying relation (3.3.7)† and (3.3.3), we get

log c(κ, t) ∼ − log P(Xt > κ) ∼ C̄
( κ
tD

) 1
1−D

(
log

κ

t

) 1−2D
2−2D

, (3.5.1)

Since κ is bounded away from zero in these cases, we can apply relation (2.1.7), which
reduces to (2.1.10) (because | log P(Xt > κ)| � | log κ| by (3.3.3)), that is

σimp(κ, t) ∼ κ√
2t (− log c(κ, t))

.

Plugging in the asymptotic relation (3.5.1), we obtain our goal (3.2.5).

†In case t→ 0 we should apply (3.3.8), i.e. log(c(κ, t)/κ) ∼ − log P(Xt > κ). This however is equivalent
to (3.3.7), because | log P(Xt > κ)| � | log κ|, as it follows by (3.3.3).
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3.5.2 Proof of (3.2.7)

Next we consider a family of values of (κ, t) with t→ 0 and 0 ≤ κ ≤
√

2D + 1σ0 κ1(t), and
our goal is to prove (3.2.7).

First we consider the case of typical deviations, i.e. when κ = O(
√
t), say κ ∼ a

√
t for

some a ∈ [0,∞). Relation (3.3.2) gives

c(κ, t) ∼ a
√
tD

(
a

σ0

)
∼ κD

(
κ

σ0

√
t

)
,

Applying relations (2.1.8), or better its simpli�ed form given by the second line of (2.1.11),
yields σimp(κ, t)→ σ0, i.e. our goal (3.2.7).

Next we consider the case of atypical deviations, i.e. when κ �
√
t. Relations (3.3.8)

and (3.3.9), together with (3.3.5), can be rewritten as

log
(
c(κ, t)/κ

)
∼ − κ2

2σ2
0t
.

Since κ→ 0, we can apply the �rst line of relation (2.1.11), getting

σimp(κ, t) ∼ κ√
2t (− log(c(κ, t)/κ))

∼ σ0 ,

proving our goal (3.2.7) also in this case.

3.5.3 Proof of (3.2.8)

Next we consider a family of values of (κ, t) with t→ 0 and
√

2D + 1σ0 κ1(t) ≤ κ� κ2(t),
and our goal is to prove (3.2.8). In this case relation (3.3.9) becomes

log (c(κ, t)/κ) ∼ −
(
D +

1

2

)
log

1

t
∼ − log

1

t

(
1 +D − log κ

log t

)
and also (3.3.10) can be rewritten as

log (c(κ, t)/κ) ∼ − log
1

t

(
1 +D − log κ

log t

)
.

Since κ→ 0, we can apply the �rst line of relation (2.1.11), getting

σimp(κ, t) ∼ κ√
2t (− log(c(κ, t)/κ))

∼


1√

2
(
D + 1− log κ

log t

)


κ

κ1(t)

proving our goal (3.2.8).
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3.5.4 Proof of (3.2.9)

Next we consider a family of values of (κ, t) with t→ 0 and κ ∼ aκ2(t) for some a ∈ (0,∞),
and our goal is to prove (3.2.9). Relation (3.3.7) together with (3.3.6) can be rewritten as

log
(
c(κ, t)/κ

)
∼ −f(a) log

1

t
.

Since κ→ 0, we can apply the �rst line of relation (2.1.11), getting

σimp(κ, t) ∼

{
1√

2f(a)

}
κ

κ1(t)

proving our goal (3.2.9).

3.6 Proof of Theorem 3.3.1

The �rst relation in (3.3.2) follows immediately from (3.3.1).
For the second relation in (3.3.2), we are going to apply Theorem 2.1.11. Note that

Hypothesis 2.1.10 of Chapter 2 is satis�ed with γ =
√
t and Y = σ0W1, again by (3.3.1),

and assumption (2.1.38) is veri�ed for η = 1 by Corollary 3.4.3 (cf. (2.1.20)). We can then
apply relation (2.1.39) in Theorem 2.1.11, which for κ ∼ a

√
t yields

c(κ, t) ∼
√
t σ0E

[(
W1 −

a

σ0

)+
]

=
√
t σ0

∫ ∞
a
σ0

x
e−

x2

2

√
2π

dx − a

σ0

∫ ∞
a
σ0

e−
x2

2

√
2π

dx


=
√
t σ0

(
e
− a2

2σ2
0

√
2π
− a

σ0

(
1− Φ

(
a

σ0

)))
=
√
t σ0

(
φ

(
a

σ0

)
− a

σ0
Φ

(
− a

σ0

))

= a
√
t

(
φ( a

σ0
)

a
σ0

− Φ

(
− a

σ0

))
= a
√
tD

(
a

σ0

)
,

(3.6.1)

which is precisely the second relation in (3.3.2).

3.7 Proof of Theorem 3.3.2

We split the proof in two parts, focusing �rst on relation (3.3.3) and then on (3.3.4).

3.7.1 Proof of relation (3.3.3)

Recall the de�nition of κ1(t) and κ2(t) in (3.2.4). Let us �x a family of (κ, t) with κ > 0,
t > 0 such that

either t→ t̄ ∈ (0,∞) and k →∞ , or t→ 0 and
κ

κ2(t)
→∞ . (3.7.1)

We are going to prove the following result, which is stronger than (3.3.3).
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Theorem 3.7.1 (Large deviations principle). As (κ, t) run along a family satisfying (3.7.1),
the random variables Xt

κ satisfy the large deviations principle (LDP) with rate αt,κ and good
rate function I(·) given by

αt,κ =
( κ
tD

) 1
1−D

(
log

κ

t

) 1−2D
2−2D

, I(x) = C̄ |x|
1

1−D (3.7.2)

where C̄ is de�ned in (3.2.6). This means that for every Borel set A ⊆ R

− inf
x∈Å

I(x) ≤ lim inf
1

αt,κ
log P

(
Xt

κ
∈ A

)
≤ lim sup

1

αt,κ
log P

(
Xt

κ
∈ A

)
≤ − inf

x∈A
I(x) ,

where Å and A denote respectively the interior part and the closure of A. In particular,
choosing A = (1,∞), relation (3.3.3) in Theorem 3.3.2 holds.

We are going to show that, with αt,κ as in (3.7.2), the following limit exists for β ∈ R:

Λ(β) := lim
1

αt,κ
log E[eβαt,κ

Xt
κ ] , (3.7.3)

where Λ : R → R is everywhere �nite and di�erentiable. By the Gärtner-Ellis Theorem
[DZ98, Theorem 2.3.6], it follows that Xt

κ satis�es a LDP with good rate αt,κ and with rate
function I(·) given by the Fenchel-Legendre transform of Λ(·), i.e.

I(x) = sup
β∈R

{
βx− Λ(β)

}
. (3.7.4)

The proof of Theorem 3.7.1 is thus reduced to computing Λ(β) and then showing that
I(x) coincides with the one given in (3.7.2). By (3.4.5), the determination of Λ(β) in (3.7.3)
is reduced to the asymptotic behaviour of exponential moments of It. This is possible by
the following crucial Proposition, proved below.

Proposition 3.7.2. For any family of values of (b, t) such that

either t→ t̄ ∈ (0,∞) and b→∞ , or t→ 0 and
b

1
t2D

log 1
t

→∞ , (3.7.5)

the following asymptotic relation holds:

log E[ebIt ] ∼ C̃ t b
1

2D (log b)
2D−1

2D , (3.7.6)

where the constant C̃ is given by

C̃ = c
1

2D (2D)
1

2D (1− 2D)
1−2D

2D . (3.7.7)

Proof of Theorem 3.7.1. Let us �x a family of values of (κ, t) satisfying (3.7.1). We want
to apply Proposition 3.7.2 with b given by (recall (3.7.2))

b = bt,κ :=
1

2
β
αt,κ
κ

(
β
αt,κ
κ
− 1
)
∼ 1

2
β2
α2
t,κ

κ2
∼ β2

2

(κ
t

) 2D
1−D

(
log

κ

t

) 1−2D
1−D

, (3.7.8)
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where β ∈ R \ {0} is a �xed parameter. With this choice, we can write

b
1
t2D

log 1
t

∼ β2

2

 κ

tD
√

log 1
t

 2D
1−D (

log κ
t

log 1
t

) 1−2D
1−D

,

which diverges to ∞ under assumption (3.7.1) (note that log κ
t ≥ (1−D) log 1

t , by (3.7.1)).
The assumptions of Proposition 3.7.2 are thus veri�ed. By (3.4.5) and (3.7.8), we get

log E
[
eβαt,κ

Xt
κ
]

= log E[ebt,kIt ] ∼ C̃ t b
1

2D
t,k (log bt,k)

2D−1
2D

∼ C̃ t
(
β2

2

) 1
2D (κ

t

) 1
1−D

(
log

κ

t

) 1−2D
2D(1−D)

(
2D

1−D
log

κ

t

) 2D−1
2D

= c
1

2D D

(
(1− 2D)(1−D)

2

) 1−2D
2D

|β|
1
D αt,κ ,

where in the last step we have used the de�nitions (3.7.2), (3.7.7) of αt,κ and C̃. This shows
that the limit (3.7.3) exists with

Λ(β) = Ĉ |β|
1
D , and Ĉ = c

1
2D D

(
(1− 2D)(1−D)

2

) 1−2D
2D

.

To determine the rate function I(x) in (3.7.4) we have to maximize over β ∈ R the function

h(β) := βx− Λ(β) .

Since h′(β) = x− Λ′(β) = x− 1
D Ĉsign(β)|β|

1
D
−1, the only solution to h′(β̄) = 0 is

β̄ = β̄x = sign(x)

(
D|x|
Ĉ

) D
1−D

and consequently

I(x) = h(β̄x) = β̄x x− Λ(β̄x) = |x|
1

1−D

(
D

Ĉ

) D
1−D

(1−D) = C̄ |x|
1

1−D ,

where C̄ is the constant de�ned in (3.2.6). Having shown that I(x) coincides with the one
given in (3.7.2), the proof of Theorem 3.7.1 is completed.

Proof of Proposition 3.7.2. We set

Bt,b = t b
1

2D (log b)
2D−1

2D . (3.7.9)

To prove (3.7.6) we start by showing that

lim sup
1

Bt,b
log E[ebIt ] ≤ C̃ . (3.7.10)
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The upper bound (3.4.1) on It yields

E
[
ebIt
]

=
∞∑
j=0

E[ebIt |Nt = j] P(Nt = j) ≤ eσ2
0 tb

∞∑
j=0

ect
2Db j1−2D

e−λt
(λt)j

j!
.

Since j! ∼ jje−j
√

2πj as j ↑ ∞, there is c1 ∈ (0,∞) such that j! ≥ 1
c1
jje−j for all j ∈ N0.

Bounding e−λt ≤ 1, we thus obtain

E
[
ebIt
]
≤ c1 e

σ2
0 tb

∞∑
j=0

ect
2Db j1−2D (λt)j

jje−j
= c1 e

σ2
0 tb

∞∑
j=0

ef(j) , (3.7.11)

where for x ∈ [0,∞) we set

f(x) = ft,b(x) := c
(
t2Db

)
x1−2D − x

(
log

x

λt
− 1

)
, (3.7.12)

with the convention 0 log 0 = 0. Note that

f ′(x) = (1− 2D)cb

(
x

t

)−2D

− log

(
x

t

)
+ log λ , (3.7.13)

hence f ′(x) is continuous and strictly decreasing on (0,∞), with limx↓0 f
′(x) = +∞ and

limx↑∞ f
′(x) = −∞. As a consequence, there is a unique x̄ = x̄t,b ∈ (0,∞) with f ′(x̄t,b) = 0

and the function f(x) attains its global maximum on [0,∞) at the point x = x̄t,b.

Heuristically, the leading contribution to the sum in (3.7.11) is given by a single term
ef(j), for j ≈ x̄t,b. To make this rigorous, we need asymptotic estimates on x̄t,b and f(x̄t,b).
Since b→∞ and assumption (3.7.5) holds, for bounded x, say 0 ≤ x ≤M , one has

f ′(x) ≥ (1− 2D)cb

(
M

t

)−2D

− log

(
M

t

)
+ log λ→∞ .

Since x̄t,b is the solution of f ′(x) = 0, and f ′(·) is decreasing, it follows that x̄t,b > M
eventually. Since M ∈ (0,∞) is arbitrary, we have shown that

x̄t,b →∞ , (3.7.14)

and this implies x̄t,b/t → ∞, because t is bounded from above by assumption (3.7.5). In
particular, by (3.7.13) the equation f ′(x̄t,b) = 0 yields

x̄t,b
t

=

(
(1− 2D)cb

log
x̄t,b
t + log λ

) 1
2D

∼

(
(1− 2D)c b

log
x̄t,b
t

) 1
2D

. (3.7.15)

We stress that b→∞ under assumption (3.7.5). Rewriting (3.7.15) as

log
x̄t,b
t

b
∼ (1− 2D)c

t2D

x̄2D
t,b

→ 0 (3.7.16)
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shows that log
x̄t,b
t = o(b). Taking log in (3.7.15), since b→∞ by assumption, yields

log
x̄t,b
t
∼ 1

2D

{
log[(1− 2D)c] + log b− log

(
log

x̄t,b
t )
}
∼ 1

2D
log b ,

which plugged into relation (3.7.15) gives the desired estimate on x̄t,b:

x̄t,b ∼

(
2D(1− 2D)c b

log b

) 1
2D

t . (3.7.17)

The estimate on f(x̄t,b) then follows by (3.7.12), using (3.7.14) and (3.7.16):

f(x̄t,b) ∼ c (t2Db) x̄1−2D
t,b − x̄t,b log

x̄t,b
λt

∼ c (t2Db)x̄1−2D
t,b − x̄t,b

(1− 2D)c (t2Db)

x̄2D
t,b

= 2D c (t2Db) x̄1−2D
t,b

= (2D)
1

2D (1− 2D)
1

2D
−1 c

1
2D

t b
1

2D

(log b)
1

2D
−1

= C̃ Bt,b ,

(3.7.18)

where we recall that Bt,b and C̃ are de�ned in (3.7.9) and (3.7.7).
We can �nally come back to the problem of estimating (3.7.11). Henceforth we set

x̄ := x̄t,b to lighten notation. We can control f(x) for x ≥ 2x̄ using Taylor's formula with
integral remainder: since f ′(·) is strictly decreasing, we get

f(x) = f(2x̄) +

∫ x

2x̄
f ′(s)ds ≤ f(x̄) + f ′(2x̄)(x− 2x̄) ,

because f(x̄) = maxy∈[0,∞) f(y). Observe that f ′(2x̄) < 0, hence

∑
j≥2x̄

ef(j) ≤ ef(x̄)
∑
j≥2x̄

e−|f
′(2x̄)|(j−2x̄) =

ef(x̄)

1− e−|f ′(2x̄)| . (3.7.19)

By (3.7.13), recalling that f ′(x̄) = 0, we can write

f ′(2x̄) = f ′(2x̄)− 2−2Df ′(x̄) = 2−2D log

(
x̄

t

)
− log

(
2x̄

t

)
→ −∞ ,

because x̄/t→∞. In particular, 1− e−|f ′(2x̄)| > 1
2 eventually and (3.7.19) yields∑

j≥2x̄

ef(j) ≤ 2 ef(x̄) . (3.7.20)

The initial part of the sum can be simply bounded by∑
j<2x̄

ef(j) ≤ (2x̄+ 1) ef(x̄) . (3.7.21)

Looking back at (3.7.11), we can �nally write

log E
[
ebIt
]
≤ σ2

0 b t+ f(x̄) + log(2x̄+ 3) . (3.7.22)



The asymptotic smile of a multiscaling stochastic volatility model 55

By (3.7.17) and (3.7.18), one has x̄ = O(f(x̄)/b) = o(f(x̄)), since b → ∞ by assumption,
hence log(2x̄+3) = o(f(x̄)). Again by (3.7.18) we have bt = o(x̄) = o(f(x̄)), because D < 1

2 .

Since f(x̄) ∼ C̃ Bt,b, by relation (3.7.18), we obtain

lim sup
1

Bt,b
log E

[
ebIt
]
≤ C̃ ,

proving the desired upper bound.
It remains to prove the corresponding lower bound. The strategy is suggested by the

proof of the upper bound: Hölder's inequality (3.4.4) becomes an equality when all the
terms xk are equal. We thus introduce the event Am de�ned by

Am :=
m⋂
i=1

{∣∣∣∣τi − (i− 1)
t

m

∣∣∣∣ < ε

m

}
, (3.7.23)

so that (1 − 2ε) tm ≤ τk − τk−1 ≤ (1 + 2ε) tm for all 2 ≤ k ≤ m and (1 − 2ε) tm ≤ t − τm ≤
(1 + 2ε) tm . In particular, recalling the expression (3.1.2) for It, on the event Am we have
the lower bound

It ≥ c
m∑
k=1

(
(1− 2ε) tm

)2D
= (1− 2ε)2D cm1−2Dt2D =: cε cm

1−2Dt2D , (3.7.24)

Since (τk − τk−1)k∈N are i.i.d. Exp(λ) random variables, a direct estimate yields

P(Am) ≥
(
λe−λ(1+2ε) t

m
)m(

2ε tm
)m

= e−λ(1+2ε)t(2ε)m
(λt)m

mm
. (3.7.25)

It follows by (3.7.24) and (3.7.25) that

E
[
ebIt
]
≥ E

[
ebIt1Am

]
≥ e(1−2ε)2Dc (t2Db)m1−2D

P(Am) ≥ ef̃(m) (3.7.26)

where we de�ne f̃(x), for x ≥ 0 by

f̃(x) = f̃t,b,ε(x) := (1− 2ε)2D c (t2Db)x1−2D − x log
x

2ελt
− (1 + 2ε)λt

with the convention 0 log 0 = 0.
Since f̃(x) resembles f(x), de�ned in (3.7.12), and since the leading contribution to the

upper bound was given by ef(x̄), where x̄ = x̄b,t was the maximizer of f(·), cf. (3.7.17), it
is natural to choose m = x̄, or more precisely m = bx̄c, in the lower bound (3.7.26). A
computation completely analogous to (3.7.18), recalling (3.7.17) and (3.7.14), gives

f̃(bx̄c) ∼ f̃(x̄) ∼ (1− 2ε)2D − 1 + 2D

2D
f(x̄) ∼ (1− 2ε)2D − 1 + 2D

2D
C̃ Bt,b ,

which coupled to (3.7.26) yields

lim inf
1

Bt,b
log E

[
ebIt
]
≥ (1− 2ε)2D − 1 + 2D

2D
C̃ .

Letting ε→ 0 we complete the proof.
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3.7.2 Proof of relation (3.3.4)

We focus on family of values of (κ, t) with t → 0 and κ ≥ 0. Recall that we have already
proved that relation (3.3.3) holds for κ� κ2(t). Consequently, in order to prove (3.3.4) it
su�ces to prove relations (3.3.5) and (3.3.6). We start with the former, assuming that

√
t� κ� κ2(t) . (3.7.27)

Since Nt ∼ Pois(λt), for every M ∈ N0

P(Nt ≥M + 1) =
∞∑

k=M+1

e−λt
(λt)k

k!
≤ (λt)M+1 ,

hence as t→ 0 we can write

P(Xt > κ) =
M∑
m=0

P(Xt > κ|Nt = m)e−λt
(λt)m

m!
+O(tM+1) . (3.7.28)

Recall the de�nition (3.1.2) of the time-change process It. On the event {Nt = 0} we have

It = (t− τ0)2D − (−τ0)2D ∼
t↓0

σ2
0 t ,

where σ2
0 is de�ned in (3.1.5). Consequently, by the de�nition (3.1.7) of Xt,

P(Xt > κ|Nt = 0) = P

(
W1 >

κ√
It

+
1

2

√
It

∣∣∣∣Nt = 0

)
= 1− Φ

(
κ

σ0

√
t

(
1 + o(1)

))
= exp

(
− κ2

2σ2
0 t

(
1 + o(1)

))
= exp

(
− 1

2σ2
0

(
κ

κ1(t)

)2

log
1

t

(
1 + o(1)

))
,

(3.7.29)

where Φ(z) = P(W1 ≤ z), we have used the standard estimate log(1 − Φ(z)) ∼ −1
2z

2 as
z →∞ and the de�nition (3.2.4) of κ1(t). If we de�ne, as in (3.3.5),

a :=
κ

κ1(t)
=

κ
√
t
√

log 1
t

, (3.7.30)

we can rewrite (3.7.29) as

P(Xt > κ|Nt = 0) = e
− a2

2σ2
0

log 1
t
(1+o(1))

= t
a2

2σ2
0

+o(1)
. (3.7.31)

Since P(Nt = 0) = 1− e−λt → 1 as t→ 0, relation (3.7.28) for M = 0 gives

P(Xt > κ) = t
a2

2σ2
0

+o(1)
+O(t) .

In case a <
√

2σ0, the O(t) term can be neglected and we have proved (3.3.5).
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Henceforth we assume that a ≥
√

2σ0, cf. (3.7.30), so that by (3.7.31)

P(Xt > κ|Nt = 0) ≤ t1+o(1) . (3.7.32)

Let us look at the other terms in (3.7.28): by (3.4.1), on the event {Nt = m} with m ≥ 1

It ≤ σ2
0 t + cN1−2D

t t2D = σ2
0 t + cm1−2Dt2D ∼

t↓0
cm1−2Dt2D ,

hence, in analogy with (3.7.29), we get the upper bound

P(Xt > κ|Nt = m) ≤ 1− Φ

(
κ

√
ctDm

1
2
−D

(
1 + o(1)

))
= exp

(
− 1

2cm1−2D

(
κ

κ2(t)

)2

log
1

t

(
1 + o(1)

))
,

(3.7.33)

by the de�nition (3.2.4) of κ2(t). Since κ/κ2(t) → 0 under assumption (3.7.27), relation
(3.7.33) for m = 1 yields

P(Xt > κ|Nt = 1) ≤ e−o(1) log 1
t = to(1) .

Since P(Nt = 1) = e−λtλt ∼ λt as t ↓ 0, recalling (3.7.32), relation (3.7.28) for M = 0 gives

P(Xt > κ) ≤ t1+o(1) + λt to(1) +O(t2) = t1+o(1) ,

where the o(1) term changes from side to side. We have proved �half� of relation (3.3.5) for
a ≥
√

2σ0, namely

lim sup
log P(Xt > κ)

log 1
t

≤ −1 . (3.7.34)

To get an analogous lower bound, we argue as we did in the proof of Proposition 3.7.2.
For any �xed ε > 0, on the event Am ⊆ {Nt = m} de�ned in (3.7.23), with m ≥ 1, one has
the lower bound (3.7.24) on It and (3.7.25) on P(Am), hence

P(Xt > κ|Nt = m) ≥ P(Xt > κ|Am)
P(Am)

P(Nt = m)

≥

(
1− Φ

(
κ

√
cε ctDm

1
2
−D

(
1 + o(1)

)))
e−λ(2ε)t(2ε)m

m!

mm

= exp

(
− 1

2cεcm1−2D

(
κ

κ2(t)

)2

log
1

t

(
1 + o(1)

))
e−λ(2ε)t(2ε)m

m!

mm
,

(3.7.35)

with cε := (1− 2ε)2D. In the special case m = 1 this relation yields

P(Xt > κ|Nt = 1) ≥ e−o(1) log 1
t e−λ(2ε)t (2ε) ∼ to(1)(2ε) ,

hence, recalling that P(Nt = 1) ∼ λt,

P(Xt > κ) ≥ P(Xt > κ|Nt = 1)P(Nt = 1) ≥ t1+o(1) ,
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which yields

lim inf
log P(Xt > κ)

log 1
t

≥ −1 .

Together with (3.7.34), this completes the proof of relation (3.3.5) for a ≥
√

2σ0.

It remains to prove relation (3.3.6), hence we assume that

κ ∼ bκ2(t) , for some b ∈ (0,∞) . (3.7.36)

By (3.7.29) we have

P(Xt > κ|Nt = 0) ≤ exp

(
− b2

2σ2
0

1

t1−2D
log

1

t

(
1 + o(1)

))
= o(tM+1) ,

for any �xed M ∈ N. As a consequence, relation (3.7.28) together with the upper bounds
(3.7.32) and (3.7.33) yields, for every �xed M ∈ N,

P(Xt > κ) ≤
M∑
m=1

exp

(
− b2

2cm1−2D
log

1

t

(
1 + o(1)

))
(λt)m +O(tM+1)

≤M max
m∈{1,...,M}

t
b2

2cm1−2D +m+o(1)
+O(tM+1)

≤Mtf(b)+o(1) +O(tM+1) ,

where f(·) is de�ned in (3.2.2). If we �x M large enough, so that M + 1 > f(b), the term
O(tM+1) can be neglected and we obtain

lim sup
log P(Xt > κ)

log 1
t

≤ −f(b) , (3.7.37)

which is �half� of relation (3.3.6).
To prove the corresponding lower bound, let m̄ = m̄b ∈ N be the value ofm ∈ {1, . . . ,M}

for which the minimum in the de�nition (3.2.2) of f(b) is attained, i.e.

f(b) =
b2

2cm̄1−2D
+ m̄ . (3.7.38)

Recalling (3.7.36), the lower bound (3.7.35) for m = m̄ gives

P(Xt > κ|Nt = m̄) ≥ exp

(
− b2

2cεcm̄1−2D
log

1

t

(
1 + o(1)

))
e−λ(2ε)t(2ε)m̄

m̄!

m̄m̄

∼ t
b2

2cεcm̄1−2D +o(1)
(const.)

where (const.) is a constant depending on ε and m̄. Since P(Nt = m̄) ≥ (const.′)tm̄, we get

P(Xt > κ) ≥ P(Xt > κ|Nt = m̄)P(Nt = m̄) = t
b2

2cεcm̄1−2D +m̄+o(1)
,

hence

lim inf
log P(Xt > κ)

log 1
t

≥ −
(

b2

2cεcm̄1−2D
+ m̄

)
.

Since cε := (1 − 2ε)2D and ε > 0 is arbitrary, we can let ε → 0 in this relation, so that
the right hand side becomes −f(b), by (3.7.38). Recalling (3.7.37), we have completed the
proof of relation (3.3.6).
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3.8 Proof of Theorem 3.3.3

We split the proof of various steps.

3.8.1 Proof of (3.3.7)

Let us �x a family of values of (κ, t) with κ ≥ 0 and t > 0, such that t → t̄ ∈ (0,∞) and
κ→∞. Our goal is to prove relation (3.3.7). Let us check the assumptions of Theorem 2.1.5
in Chapter 2. Relation (3.3.3) shows that for all % ≥ 1

I+(%) := lim
log P(Xt > %κ)

log P(Xt > κ)
= %

1
1−D , (3.8.1)

hence Hypothesis 2.1.4 is satis�ed, together with the requirement I+(%) ≥ %, cf. (2.1.21),
since 1

1−D > 1. Relation (3.4.5) shows that the moment condition (2.1.18) holds for all
η, T ∈ (0,∞), hence (2.1.17) is satis�ed. We can thus apply Theorem 2.1.5: observing that
− log P(Xt > κ)/κ→∞, again by (3.3.3) and 1

1−D > 1, relation (2.1.25) gives

log c(κ, t) ∼ log P(Xt > κ) , (3.8.2)

which coincides precisely with (3.3.7).

3.8.2 Proof of (3.3.8)

Next we �x a family of values of (κ, t) with t→ 0 and either
√
t� κ� κ1(t) or κ� κ2(t),

where we recall that κ1(t) and κ2(t) are de�ned in (3.2.4). Our goal is to prove relation
(3.3.8). Again we check the assumptions of Theorem 2.1.5.

• In case κ � κ2(t), relation (3.3.3) still holds, by the last point in Theorem 3.3.2,
hence (3.8.1) applies again.

• In case
√
t� κ� κ1(t), relation (3.3.5) shows that

log P(Xt > κ) ∼ − 1

2σ2
0

(
κ

κ1(t)

)2

log
1

t
,

hence for all % ≥ 1

I+(%) := lim
log P(Xt > %κ)

log P(Xt > κ)
= %2 . (3.8.3)

In both cases, Hypothesis 2.1.4 and relation (2.1.21) are satis�ed.

In case
√
t � κ � κ1(t) one has, of course, κ → 0, while in case κ � κ2(t), by

extracting a subsequence, we may assume that κ → κ̄ ∈ [0,∞]. Let us consider �rst the
subcase κ̄ ∈ (0,∞]. Having already checked the moment condition (2.1.17), we can again
apply Theorem 2.1.5: relation (2.1.25) gives (3.8.2), which can be written equivalently as

log
(
c(κ, t)/κ

)
= log c(κ, t)− log κ ∼ log P(Xt > κ) ,

because | log P(Xt > κ)| � | log κ|, by (3.3.3). This proves (3.3.8) if κ̄ > 0.
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Next we consider the regime κ→ 0, for both cases
√
t� κ� κ1(t) and κ� κ2(t). In

this regime, Theorem 2.1.5 requires to check the moment condition (2.1.19). In the special
case η = 1, this condition reduces to (2.1.20), namely we have to show that

E[e2Xt ] ≤ 1 + Cκ2 ,

for some C < ∞. This, however, follows immediately by Corollary 3.4.3, because in both
cases under consideration κ �

√
t. We can thus apply Theorem 2.1.5, and speci�cally

relation (2.1.27), which coincides precisely with our goal (3.3.8).

3.8.3 Proof of (3.3.9) and (3.3.10)

In this last case we can no longer apply Theorem 2.1.5, because proving relations (3.3.9)
and (3.3.10) means that equation (3.3.8) fails. We proceed by bare hands estimates.

Let us �rst consider a family of values of (κ, t) with κ ≥ 0 and t > 0, such that

t→ 0 and κ ∼ aκ1(t) , for some a ∈ (0,
√

2D + 1σ0) . (3.8.4)

(The case a ≥
√

2D + 1σ0 will be treated later.) Our goal is to prove (3.3.9), which for
a <
√

2D + 1σ0 can be rewritten as

log
(
c(κ, t)/κ

)
∼ − a2

2σ2
0

log
1

t
. (3.8.5)

We prove separately upper and lower bounds for this relation.
Let us set

k′ :=
√

2σ0 κ1(t) , k′′ := B κ2(t) , (3.8.6)

for �xed B ∈ (0,∞), chosen later. Noting that κ < κ′ < κ′′, since D < 1
2 , we can write

c(κ, t) = E
[
(eXt − eκ)1{Xt>κ}

]
= E

[
(eXt − eκ)1{κ<Xt≤κ′}

]
+ E

[
(eXt − eκ)1{κ′<Xt≤κ′′}

]
+ E

[
(eXt − eκ)1{Xt>κ′′}

]
= (1) + (2) + (3) .

(3.8.7)

By Fubini's theorem, for κ ≥ 0 and 0 ≤ a < b,

E
[
(eXt − eκ)1{a<Xt≤b}

]
= E

[∫ ∞
κ

ex 1{x<Xt} dx 1{a<Xt≤b}

]
=

∫ b

κ
ex P(max{a, x} < X ≤ b) dx

≤ (eb − 1) P(Xt > max{a, κ}) ,

(3.8.8)

hence

(1) = E
[
(eXt − eκ)1{κ<Xt≤κ′}

]
≤ (eκ

′ − 1)P(Xt > κ) ∼ κ′ P(Xt > κ) , (3.8.9)

because κ′ → 0. Note that, by (3.3.5),

log P(Xt > κ) ∼ − a2

2σ2
0

log
1

t
, (3.8.10)
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hence recalling (3.8.4) and (3.8.6) it follows that

log
(1)

κ
≤ − a2

2σ2
0

log
1

t

(
1 + o(1)

)
.

In a similar way, always using (3.8.8), since κ < κ′ and κ′′ → 0,

(2) = E
[
(eXt − eκ)1{κ′<Xt≤κ′′}

]
≤ (eκ

′′ − 1)P(Xt > κ′) ∼ κ′′ P(Xt > κ′) . (3.8.11)

Again by (3.8.10) with a =
√

2σ0, noting that κ
κ′′ ∼

a
B (1

t )
D− 1

2 , we can write

log
(2)

κ
≤ −

(
1 + o(1)

)
log

1

t
− log

κ

κ′′
≤ −

(
D +

1

2
+ o(1)

)
log

1

t
.

Finally, by Cauchy-Schwarz inequality

(3) = E
[
(eXt − eκ)1{Xt>κ′′}

]
≤ κ

√√√√E

[(
eXt − eκ

κ

)2
]

P(Xt > κ′′) . (3.8.12)

By Corollary 3.4.3 and E[eXt ] = 1 (recall that (eXt)t≥0 is a martingale) we have

E

[(
eXt − eκ

κ

)2
]

=
E[e2Xt ]− 2eκ + e2κ

κ2
≤ 1 + Ct− 2 + e2κ

κ2
=
Ct

κ2
+
e2κ − 1

κ2
→ 0 ,

because κ → 0 and κ/
√
t → ∞, by (3.8.4) and the de�nition of κ1(t). In particular, for

some constant C ′ <∞ we have

(3) ≤ κ
√
C ′ P(Xt > κ′′) .

Recalling (3.3.6), it follows that

log
(3)

κ
≤ −

(
1 + o(1)

)1

2
f(B) log

1

t
. (3.8.13)

Since log(a+ b+ c) ≤ log 3 + max{log a, log b, log c}, we obtain by (3.8.7)

log
c(κ, t)

κ
≤ −

(
1 + o(1)

)
min

{
a2

2σ2
0

, D +
1

2
,
f(B)

2

}
log

1

t
. (3.8.14)

We now choose B > 0 large enough, so that f(B)
2 > D + 1

2 . Since a <
√

2D + 1σ0 by
assumption, cf. (3.8.4), we have shown that

log
c(κ, t)

κ
≤ −

(
1 + o(1)

) a2

2σ2
0

log
1

t
, (3.8.15)

which is �half� of our goal (3.8.5).
In order to obtain the corresponding lower bound, we observe that for every κ̂ > κ

c(κ, t) = E
[(
eXt − eκ

)
1{Xt>κ}

]
≥ E

[(
eXt − eκ

)
1{Xt>κ̂}

]
≥ (eκ̂ − eκ)P(Xt > κ̂)

≥ (κ̂− κ)P(Xt > κ̂).
(3.8.16)
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Always for κ as in (3.8.4), choosing κ̂ = (1 + ε)κ gives, recalling (3.8.10),

log
c(κ, t)

κ
≥ log ε+ log P(Xt > (1 + ε)κ) = −(1 + ε)2 a

2

2σ2
0

log
1

t

(
1 + o(1)

)
. (3.8.17)

This shows that, along the given family of values of (κ, t),

lim inf
c(κ,t)
κ

log 1
t

≥ −(1 + ε)2 a
2

2σ2
0

.

Since ε > 0 is arbitrary, we have shown that

log
c(κ, t)

κ
≥ −

(
1 + o(1)

) a2

2σ2
0

log
1

t
. (3.8.18)

Together with (3.8.15), this completes the proof of our goal (3.8.5), i.e. of relation (3.3.9)
under the assumption (3.8.4).

Finally, we consider a family of values of (κ, t) with κ ≥ 0 and t > 0, such that

t→ 0 and
√

2D + 1σ0 κ1(t) ≤ κ ≤M κ2(t) , for some M ∈ (0,∞) . (3.8.19)

This includes, in particular, the case when κ ∼ aκ1(t) with a ≥
√

2D + 1σ0, that was left
out from (3.8.4). Our goal is to prove (3.3.10), that is

log
(
c(κ, t)/κ

)
∼ − log

1

t
− log

κ

tD
. (3.8.20)

Note that this relation also includes (3.3.9) for a ≥
√

2D + 1σ0.
Consider �rst the subcase of (3.8.19) given by κ ≤

√
2σ0κ1(t), so assume (without loss

of generality, by extracting a subsequence) that κ ∼ aκ1(t) with a ∈ [
√

2D + 1σ0,
√

2σ0].
Note that all the steps from (3.8.6) until (3.8.14) can be applied verbatim. However, since

a ≥
√

2D + 1σ0, one has
a2

2σ2
0
≥ D + 1

2 , and instead of relation (3.8.15) we get

log
c(κ, t)

κ
≤ −

(
1 + o(1)

)(
D +

1

2

)
log

1

t
. (3.8.21)

Note that the right hand side of (3.8.21) coincides with the right hand side of our goal
(3.8.20) for κ ∼ aκ1(t), since in this case log κ

tD
∼ (D − 1

2) log 1
t .

Next we consider the subcase of (3.8.19) when κ >
√

2σ0κ1(t). De�ning κ′′ := B κ2(t)
as in (3.8.6), we modify (3.8.7) as follows:

c(κ, t) = E
[
(eXt − eκ)1{κ<Xt≤κ′′}

]
+ E

[
(eXt − eκ)1{Xt>κ′′}

]
=: (A) + (B) . (3.8.22)

Applying (3.8.8), we estimate the �rst term as follows, since κ′′ → 0:

(A) = E
[
(eXt − eκ)1{κ<Xt≤κ′′}

]
≤ (eκ

′′ − 1) P(Xt > κ) ∼ κ′′ P(Xt > κ) .

Observe that log P(Xt > κ) ∼ −(1 + o(1)) log 1
t , by (3.3.5) with κ >

√
2σ0κ1(t), and

moreover log(κ′′/κ) ∼ log(tD/κ) by de�nition of κ2(t), hence

log
(A)

κ
≤ log

κ′′

κ
+ log P(Xt > κ) ≤ −

(
1 + o(1)

)(
log

1

t
+ log

κ

tD

)
.
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The term (B) in (3.8.22) coincides with term (3) in (3.8.12), hence by (3.8.13)

log
(B)

κ
≤ −

(
1 + o(1)

)f(B)

2
log

1

t
≤ −

(
1 + o(1)

)f(B)

2

(
log

1

t
+ log

κ

Mκ2(t)

)
∼ −

(
1 + o(1)

)f(B)

2

(
log

1

t
+ log

κ

tD

)
,

where the second inequality holds just because κ ≤ Mκ2(t) by (3.8.19). If we choose B
large enough, so that f(B) > 2, the usual estimate log(a+ b) ≤ log 2 + log max{a, b} yields

log
c(κ, t)

κ
≤ −

(
1 + o(1)

)(
log

1

t
+ log

κ

tD

)
. (3.8.23)

We have thus proved �half� of our goal (3.8.20).
We �nally turn to the lower bound, for which we do not need to distinguish subcases,

but we work in the general regime (3.8.19). We are going to apply (3.8.16) with κ̂ = εκ2(t).
Recalling that log P(Xt > εκ2(t)) ∼ −f(ε) log 1

t by (3.3.6), and moreover

log
κ̂− κ
κ
∼ log

(
εκ2(t)

κ
− 1

)
∼ log

tD

κ
,

relation (3.8.16) gives

log
c(κ, t)

κ
≥ −

(
1 + o(1)

)(
f(ε) log

1

t
+ log

κ

tD

)
. (3.8.24)

Since ε > 0 is arbitrary and limε↓0 f(ε) = f(0) = 1, cf. (3.2.2), we have shown that

log
c(κ, t)

κ
≥ −

(
1 + o(1)

)(
log

1

t
+ log

κ

tD

)
.

Together with (3.8.21) and (3.8.23), this completes the proof of our goal (3.8.20).

3.9 Numerical results

In this section present some graphical results on the asymptotics of implied volatility.
We have simulated the price of european call using the Monte Carlo algorithm pre-

sented in chapter 5 and then compared the implied volatility obtained with the theoretical
asymptotics.
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(a) Comparison of real and asymptotic volatility (b) Percentage error

Figure 3.3: At the money regime when t → 0. Comparison between the implied volatility
obtained via simulations (blue) and the asymptotic value σ0 (red) on the left and percentage
error on the right. The error is lower than 4% (green line) already when t = 0.19, and it
diminishes when t becomes closer to 0 (for t = 0.02 it is 1.32%). The parameters used are
D = 0.2, V = 0.2, λ = 0.2, τ0 = 1.5.

(a) Comparison of real and asymptotic volatility (b) Percentage error

Figure 3.4: Out of the money regime with log-strike �xed κ = 0.5 when t→ 0. Comparison
between the implied volatility obtained via simulations (blue) and the asymptotic value
σ (red) on the left and percentage error on the right. The growth in the error as t → 0
is probably due to the inaccuracy of the Monte Carlo method, anyway it stays under
the 10% (upper green line) and above −2% (bottom green line), in absolute term it is
around 0.07 when the expected implied volatility is σimp = 0.7653. The parameters used
are D = 0.2, V = 0.2, λ = 0.2, τ0 = 1.5.
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(a) Comparison of real and asymptotic volatility (b) Percentage error

Figure 3.5: Out of the money regime with log-strike �xed κ = 0.5 when t→ 0. Comparison
between the implied volatility obtained via simulations (blue) and the asymptotic value σ
(red) on the left and percentage error on the right. The absolute percentage error varies but
is most of the time between −1.5% and 4.5% (green lines). The variation is probably due
to the Monte Carlo simulations, as it is possible to observe from the fact that the implied
volatility from the simulations is not smooth. The parameters used are D = 0.2, V =
0.2, λ = 0.2, τ0 = 1.5.
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Chapter 4

Enriching the model and pricing

In this chapter we investigate a possible way of enriching the model introduced in [ACDP12]
in order to take into account the so-called leverage e�ect, and we prove some of its properties.
We moreover introduce a family of equivalent martingale measures for this enriched model
(and, by extension, also for the original model [ACDP12]) under which the price of a
European call option can be expressed through a generalized Hull & White formula.

4.1 An enriched version of the model

We recall that, given a standard Brownian motion (Wt)t≥0 and an independent Poisson
process (Nt)t≥0 of rate λ, the original model (Yt)t≥0 for the (de-trended) log-price of an
asset is

Yt := WIt , (4.1.1)

where the time-change process (It)t≥0 is de�ned as follows: denoting by 0 < τ1 < τ2 < . . .
the jump times of the Poisson process (Nt)t≥0, and �xing a further parameter τ0 ∈ (−∞, 0),
we set

It := c

{
(t− τNt)2D − (−τ0)2D +

Nt∑
k=1

(τk − τk−1)2D

}
, (4.1.2)

where

c =
V 2λ2D−1

Γ(2D + 1)

with the convention that the sum is zero when Nt = 0.
Being a function of (Nt)t≥0 and of the parameters D,λ, the time-change process (It)t≥0

is independent of the Brownian motion (Wt)t≥0. The trajectories t 7→ It are continuous,
and also di�erentiable at every t ≥ 0 which is not a jump time, i.e. for t 6= τNt , with

I ′t = 2D c (t− τNt)2D−1 . (4.1.3)

It is standard to show, cf. [ACDP12], that (Yt)t≥0 solves the stochastic di�erential equation

dYt = σt dBt , with σt :=
√
I ′t , (4.1.4)

where (Bt)t≥0 is a suitable Brownian motion, independent of (σt)t≥0.

67
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In order to take into account the so-called leverage e�ect (i.e. the asymmetry of the
smile volatility), we enrich the model introducing a jump component in the log-price, using
the same Poisson process (Nt)t≥0 that drives the time change process (It)t≥0, cf. (4.1.2).
The intuitive meaning is that shocks in the market, represented by jumps in the Poisson
process, determine both an increase in the volatility and a jump in the price.

We thus introduce a further parameter % ∈ R, which represent the jump size in the
log-price at shock-times, and de�ne the new (de-trended) log-price (Yt)t≥0 by

Yt := WIt + %(N(t)− λt) , (4.1.5)

which reduces to the original model (4.1.1) for % = 0.

Remark 4.1.1. In Chapter 5 of Gatheral [Gat06] it has been pointed out that jumps are
necessary in a model in order to take account of the steepness of the skew for very short-
dated term structure. We would like to point out the this is not the case for our model:
choosing the right parameter we can obtain any possible skew. We have decided to introduce
(negative-) correlated jumps in the price in order to generate asymmetry in the distribution
(and consequently in the implied volatility).

We now generalize some of the results proved in [ACDP12] for % = 0 to the case % 6= 0
(and also to the case when τ0 is a �xed parameter, that we consider here).

We start with the convergence in distribution of the increments Yt+h − Yt, both when
h ↓ 0 and h ↑ +∞, generalizing Theorem B.2.1 in appendix B. As it is expected, the jumps
in the log price do not in�uence the limiting distribution for small times, since they are rare
events, while they in�uence the limiting distribution for large times.

Theorem 4.1.2 (Di�usive scaling). The following convergences in distribution hold for any
choice of the parameters D,λ, V , % and for every τ0 ∈ (−∞, 0).

• Small-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−→
h↓0

f(x) dx := law of
V√

Γ(2D)
(Sλt,λτ0)D−

1
2 W1 , (4.1.6)

where for a < 0 < b we set Sb,a := (b − a)1{E>b} + E 1{E≤b}, with E ∼ Exp(1),
and where W1 ∼ N (0, 1) is an independent random variable. The density f is thus a
mixture of centered Gaussian densities and, when D < 1

2 , has power-law tails.

• Large-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−−→
h↑∞

e−x
2/(2c2)

√
2πc

dx = N (0, c2) , with c2 = V 2 + %2λ. (4.1.7)

We now look at one of the most interesting features of the original model: themultiscaling
of the moments for small time (see Theorem B.2.3 in appendix B). It tuns out that this
property disappears with the introduction of jumps.

Proposition 4.1.3. Let q > 0, then the quantity mq(h) := E(|Yt+h−Yt|q) is �nite and has
the following asymptotic behavior as h ↓ 0:

mq(h) = hA(q)+o(1) , (4.1.8)
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where the exponent A(q) is given for % 6= 0 by

A(q) =


q

2
if q < 2

1 if q ≥ 2
, (4.1.9)

and for % = 0 by

A(q) =

{
q
2 if q < q∗

Dq + 1 if q > q∗
, where q∗ :=

1

(1
2 −D)

. (4.1.10)

Thus, even if the jumps in the log-price do not a�ect the limit distribution for small h
(note that there is no dependence on % in (4.1.6)), they have a big impact on the moments
E(|Yt+h−Yt|q), as Proposition 4.1.3 shows: the anomalous scaling exponent A(q) = Dq+1
for q > q∗, that is observed when % = 0, disappears as soon as % 6= 0. Intuitively, the reason
for such a dramatic change is that for a small time increment h the e�ect on the moments
E(|Yt+h − Yt|q) given by the jumps always overcomes that of the continuous component,
because the jump size does not vanish as the time increment h ↓ 0.

In order to see a di�erent behavior, one possibility is to send % ↓ 0 together with h ↓ 0:
in this case, we now show that when % = O(

√
h) the same multiscaling (4.1.10) as for % = 0

is observed. This has the following interpretation: if % is small, then E(|Yt+h−Yt|q) exhibits
the non-trivial multiscaling (4.1.10) for h small, but not smaller than %2.

Theorem 4.1.4. For every �xed q > 0, if h ↓ 0 and % ↓ 0 simultaneously with % = O(
√
h),

the quantity mq(h) := E(|Yt+h − Yt|q) scales as (4.1.8), with A(q) given in (4.1.10).

It is also possible to generalize Theorem B.2.5 about the correlation decay to the case
% 6= 0 in the following way

Theorem 4.1.5. The following relation holds as h ↓ 0, for all t > s > 0:

Cov(|Ys+h−Ys|, |Yt+h−Yt|) =
4D

π
c e−λ|t−s|

(
λ1−2Dφs(λ(t−s))+F (t, s)

)
h+o(h) , (4.1.11)

where

φy(x) := Cov
(
SD−1/2 ,

(
S + x

)D−1/2)
(4.1.12)

and S ∼ Exp(1) ∧ y and for every 0 < y < x

F (x, y) = e−λy

{
(y − τ0)D−

1
2

(
(x− τ0)D−

1
2 − E[(λ(x− y) + S)D−

1
2 ]λ

1
2
−D
)

(1− e−λy)

+ γ

(
1

2
+D,λy

)(
E[(λ(x− y) + S)D−

1
2 ]λ1−2D − (x− τ0)D−

1
2λ

1
2
−D
)}

.

(4.1.13)

Remark 4.1.6. The fact that the correlation between the increments of the log-price is the
same in both the cases in which there are or not jumps in it is due to the fact that on each
increment the event jumps occur gives contribution of order h, while that of the event no
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jumps is of order
√
h. The jumps component contribution will became dominant only if we

compute
Cov(|Ys+h − Ys|q, |Yt+h − Yt|q)

for q ≥ 2, exactly for the same reasons that lead to the disappearance of the multiscaling of
the moments.

In conclusion, the addition of jumps to the basic model (4.1.1), leading to the enriched
model (4.1.5), appears to be an e�ective way to account for the so-called leverage e�ect,
introducing a skew in the log-return distribution. However, such addition is not completely
satisfactory, for what concerns the asymptotic properties of the model for small time incre-
ments. Alternative ways of introducing correlations, possibly without jumps, are currently
under investigation.

4.2 Pricing under the enriched model

As said at the beginning of the chapter, the (de-trended) log-price (Yt)t≥0 is de�ned as

Yt := WIt + %(Nt − λt) .

Observe that a compensated Poisson process appears in (4.1.5), so that the (de-trended)
log-price is a martingale.

The price process S0 e
Yt is clearly not a martingale (it is a submartingale, because Yt is

a martingale). We consider a natural class of equivalent measures (P̃
λ̃
)
λ̃∈(0,∞)

, de�ned by

dP̃
λ̃

dP
:= exp

(∫ T

0
φs dBs −

1

2

∫ T

0
φ2
sds+

(
log

λ̃

λ

)
NT − (λ̃− λ)T

)
, (4.2.1)

where T > 0 is a �xed time horizon, and the process (φt)t∈[0,T ] is de�ned by

φt :=
λ

σt
− σt

2
− (e% − 1)λ̃

σt
with σt =

√
I ′t . (4.2.2)

This is really a martingale measure as we prove in the following Theorem.

Theorem 4.2.1. Under P̃
λ̃
the price process (S0 e

Yt)t∈[0,T ] is a martingale, which is dis-
tributed as the following process:

St := S0 e
WIt−

1
2
It e%Nt−(e%−1)λ̃t , (4.2.3)

where (It)t≥0 denotes the time-change process (4.1.2) in which (Nt)t≥0 is a Poisson process

of rate λ̃, and where (Wt)t≥0 is an independent Brownian motion.

4.2.1 A generalized Hull&White formula

For later convenience, we perform a slight change of notation respect the previous chapters
and we set the price of a call option with strike K (instead of log-strike κ = log K

s0
)

C(S0,K, t) := Ẽ
λ̃

[
(St −K)+

]
= Ẽ

λ̃

[
(S0e

Yt −K)+
]

= E
[(
S0e

Xt −K
)+]

(4.2.4)
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where by (4.2.3)

Xt := log
St
S0

= WIt −
1

2
It + %Nt − (e% − 1)λ̃t .

As said in the proof of Theorem 4.2.1 in analogy with (4.1.4), this process solves the SDE

dXt = σt dBt −
1

2
σ2
t dt+ % dNt − (e% − 1)λ̃ dt , with σt :=

√
I ′t , (4.2.5)

where (Bt)t≥0 is a suitable Brownian motion, independent of the Poisson process (Nt)t≥0.
Note that the log-price (Xt)t≥0 in (4.2.5) is a stochastic volatility model with two inde-

pendent driving noises, (Bt)t≥0 and (Nt)t≥0, and with a volatility process (σt)t≥0 correlated
with (Nt)t≥0. Despite this fact, we can give a representation formula for the call price C(x, t)
in the spirit of Hull&White [HW87]. Expressing the Black&Scholes formula in terms of S0

and K:

CσBS(S0,K, t) := E[(S0e
Wσ2t−

1
2
σ2t −K)+] = S0Φ(d1)−KΦ(d2) . (4.2.6)

where Φ is the cumulative distribution function of a normal gaussian random variable and

d1 :=
log S0

K + 1
2σ

2t

σ
√
t

d2 := d1 − σ
√
t .

Theorem 4.2.2 (Generalized Hull&White formula). For all S0,K > 0 and t ≥ 0 the
following formula holds:

C(S0,K, t) = E

[
C σ̃BS(S̃0,K, t)

∣∣∣
σ̃=

√
1
t
It, S̃0=S0 e%Nt−(e%−1)λ̃t

]
. (4.2.7)

In words: the price of a call option in our (enriched) model is obtained by averaging
the Black&Scholes formula with respect to a random volatility and a random spot price.
This allows for a fast Monte Carlo evaluation of option prices. Note in fact that, for a given
maturity t, it su�ces to generate a sample of the Poisson process (Ns)s∈[0,t] in the interval

[0, t] to get a realization of both σ̃ and S̃0; averaging over a su�ciently large number of
samples, one can obtain with a good accuracy the price C(S0,K, t) (and hence the implied
volatility) simultaneously for every K.

This method as been used for implementing a fast and e�ective simulation program
using a strati�cation algorithm that we will discuss in the Chapter 5

Remark 4.2.3. A generalized Hull-White formula like (4.2.7) holds for many correlated
stochastic volatility models. E.g., assume that under the pricing measure{

dSt = −1
2Yt dt+

√
Yt dWt

dYt = f(Yt) dt+ g(Yt) dZt
, (4.2.8)

for some functions f, g, where (Wt)t≥0 and (Zt)t≥0 are (jointly Gaussian) Brownian motions
with Cov(Wt, Zt) = %t. We can write Wt = %Zt +

√
1− %2Bt, where (Bt)t≥0 is a Brownian

motion independent of (Zt)t≥0, getting

St = S0 e
∫ t
0

√
(1−%2)Ys dBs+%

∫ t
0

√
Ys dZs− 1

2

∫ t
0 Ys ds = S̃0 e

∫ t
0

√
(1−%2)Ys dBs− 1

2

∫ t
0 (1−%2)Ys ds ,
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where we set
S̃0 := S0 e

%
∫ t
0

√
Ys dZs− 1

2

∫ t
0 %

2Ys ds . (4.2.9)

If G denotes the σ-algebra generated by (Zt)t≥0, the process (Yt)t≥0 is G-measurable under
standard assumptions (ensuring e.g. strong existence and uniqueness for the SDE in (4.2.8)).
Since the Brownian motion (Bt)t≥0 is independent of G, it follows that conditionally on G the
stochastic integral

∫ t
0

√
(1− %2)Ys dBs is actually a Wiener integral, hence its conditional

law is N (0, σ̃2t) with

σ̃2 :=
1

t

∫ t

0
(1− %2)Ys ds . (4.2.10)

Since S̃0 and σ̃ are G-measurable, it follows that

E
[
(St −K)+

∣∣G] = E
[
(S̃0 e

N (0,σ̃2t)− 1
2
σ̃2t −K)+

∣∣G] = C σ̃BS(S̃0,K, t) .

Taking expectation of both sides, we get the generalized Hull-White formula:

C(S0,K, t) := E[(St −K)+] = E
[
C σ̃BS(S̃0,K, t)

]
,

where the random variables σ̃, S̃0 are de�ned in (4.2.9) and (4.2.10).

4.3 Proof of the properties of the enriched model

4.3.1 Proof of Theorem 4.1.2

By (4.1.5) we can write

Yt+h − Yt = WIt+h −WIt + % (Nt+h −Nt − λh)

d
=
√
It+h − ItW1 + % (Nt+h −Nt − λh) .

(4.3.1)

We know that P(Nt+h −Nt ≥ 1) = 1− e−λh = O(h)→ 0 as h ↓ 0, so we can focus on the
event {Nt+h = Nt}, on which we have (recall (4.1.3))

lim
h↓0

It+h − It
h

= I ′t =
V 2λ2D−1

Γ(2D)
(t− τNt)

2D−1 .

Note that (t− τNt)1{N(t)≥1} is distributed like (λ−1E)1{(λ−1E)≤t}, with E ∼ Exp(1), while
(t− τNt)1{N(t)=0} is distributed like (t− τ0) 1{(λ−1E)>t}. In conclusion,

(t− τNt)1{N(t)≥1}
d
= λ−1Sλt,λτ0 , (4.3.2)

where we set Sb,a := (b− a)1{E>b} + E 1{E≤b}, as in the statement of Theorem 4.1.2.
Concerning the second part of the right term of equation (4.3.1), the probability that

it is di�erent from −λh is O(h) and −λh√
h
→ 0 when h → 0, so when divided by

√
h it

converges in probability to 0. In the end, by (4.3.2) we get

(Xt+h −Xt)√
h

d−−−→
h↓0

V λD−
1
2√

Γ(2D)
(t− τNt)

D− 1
2 W1

d
=

V√
Γ(2D)

(
Sλt,λτ0

)D− 1
2 W1 , (4.3.3)
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where E ∼ Exp(λ) and B ∼ B(1− e−λt).

We now focus on the case h ↑ ∞. We have to study the convergence of

Yt+h − Yt√
h

=
WIt+h −WIt√

h
+ %

N(t+ h)−N(t)− λh√
h

(4.3.4)

when h ↑ ∞. We have

It+h−It = c

(t+ h− τNt+h)2D + (τNt+1 − τNt)2D − (t− τNt)2D +

Nt+h∑
k=Nt+2

(τk − τk−1)2D

 .

The random variables ((τk − τk−1)2D)k≥Nt+2 are independent and identically distributed

with �nite mean, hence by the strong law of large numbers (since
τNt+1−τNt

n → 0,
t−τNt
n →

0and
t+h−τNt+h

n → 0 a.s.)

lim
n→∞

1

n

n∑
k=1

(τk − τk−1)2D = E[(τ1)2D] = λ−2D Γ(2D + 1) a.s. .

Plainly, limh→+∞Nh/h = λ a.s., by the strong law of large numbers applied to the random
variables {τk}k≥1. Recalling (4.1.2), it follows easily that

lim
h↑∞

It+h − It
h

= V 2 a.s. .

Since WIt+h − WIt
d
=
√
It+h − ItW1 we obtain for the �rst term in the right hand side

of (4.3.4) the convergence in distribution

WIt+h −WIt√
h

d−→ V W1 as h ↑ ∞ .

From the central limit theorem for the Poisson Process, we have the convergence in dis-
tribution of the term N(t+h)−N(t)−λh√

h
to
√
λW ′1, where W

′
1 ∼ N (0, 1). Since (Nt)t≥0 is

independent of W1 and since
It+h−It

h converges to the constant V 2 we have that the two
limit random variables W1 and W ′1 are independent. In the end we obtain

Yt+h − Yt√
h

d−→ V W1 + %
√
λW ′1

d
= N (0, V 2 + %2λ) as h ↑ ∞ ,

which coincides with (4.1.7).

4.3.2 Proof of Theorem 4.1.3

We exploit relation (4.3.1) and assume that % 6= 0 (the % = 0 case was considered in
Theorem B.2.3 ). We already know by Theorem B.2.3 that for every q > 0, as h ↓ 0

E
[
|WIt+h −WIt |q

]
= hA(q)+o(1) , (4.3.5)
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with A(q) given by (4.1.10). Note that for c, c′, a, a′ > 0 we have, as h ↓ 0,

cha + c′ha
′

= hmin(a,a′)+o(1) .

Then

E
[
|%|q|N(t+ h)−N(t)− λh|q

]
= |%|qe−λh

∞∑
k=0

|k − λh|q (λh)k

k!

= |%|qe−λh
(
(λh)q + λh+O(h2)

)
= hq+o(1) + h1+o(1) = hmin(q,1)+o(1) ,

(4.3.6)

because the term in the sum for k = 1 equals (1− λh)qλh = λh+O(h2) and

∞∑
k=2

|k − λh|q (λh)k

k!
= (λh)2

∞∑
k=2

|k − λh|q (λh)k−2

k!
≤ (λh)2

∞∑
k=2

kq

k!
= (const.)(λh)2 ,

where the inequality holds for λh ≤ 1.
We consider �rst the case q ≥ 1 (in particular, min(q, 1) = 1 in (4.3.6)). Computing the

q-norm of Yt+h − Yt we obtain

(E [|Yt+h − Yt|q])
1
q =

∥∥∥∥WIt+h −WIt︸ ︷︷ ︸
(1)

+ %(N(t+ h)−N(t)− λh)︸ ︷︷ ︸
(2)

∥∥∥∥
q

= ‖(1) + (2)‖q .

(4.3.7)
Using Minkowski inequality we get

‖Yt+h − Yt‖q ≤ ‖(1)‖q + ‖(2)‖q =
(
hA(q)+o(1)

) 1
q

+
(
h1+o(1)

) 1
q

= h
A(q)
q

+o(1)
+ h

1
q

+o(1)
= h

min(
A(q)
q
, 1
q

)+o(1)
,

hence
E [|Yt+h − Yt|q] =

(
‖Yt+h − Yt‖q

)q ≤ hmin(A(q),1)+o(1) . (4.3.8)

Note that A(q) ≤ q
2 for every q and A(q) ≥ 1 for q ≥ 2, by (4.1.10), hence

min(A(q), 1) =

{
q
2 if q ≤ 2

1 if q ≥ 2
. (4.3.9)

Using the triangle inequality we also get

‖Yt+h − Yt‖q ≥
∣∣∣‖(1)‖q − ‖(2)‖q

∣∣∣ =

∣∣∣∣(hA(q)+o(1)
) 1
q −

(
hmin(q,1)+o(1)

) 1
q

∣∣∣∣ .
Note that, by (4.3.9), we have hA(q)+o(1) � h1+o(1) if q < 2, while h1+o(1) � hA(q)+o(1) if
q > 2. Recalling (4.3.8), we have proved that Theorem 4.1.3 (with % 6= 0) holds, i.e.

E[|Yt+h − Yt|q] = hmin( q2 ,1)+o(1) , (4.3.10)

for q ≥ 1. It remains to consider the case q < 1. Since |a+ b|q ≤ |a|q + |b|q we have

E[|Yt+h − Yt|q] ≤ E[|(1)|q] + E[|(2)|q] = hA(q)+o(1) + hq+o(1) = h
q
2

+o(1) ,
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since A(q) = q
2 for q < 1. In a similar way, writing a = a + b − b we obtain |a + b|q ≥

||a|q − |b|q|, hence

E[|Yt+h − Yt|q] ≥ |E[|(1)|q]− E[|(2)|q]| =
∣∣∣hA(q)+o(1) − hq+o(1)

∣∣∣ = h
q
2

+o(1)

Combining all the estimates obtained in the previous equations we can conclude that
(4.3.10) holds also for q < 1, completing the proof.

4.3.3 Proof of Theorem 4.1.4

We use the notation of equation (4.3.7). Recall that we now assume that % = O(h
1
2 ).

Looking at (4.3.6), we get

E[|(2)|q] = E [%q|N(t+ h)−N(t)− λh|q] = h
q
2

+min(q,1)+o(1) , (4.3.11)

while we recall that by (4.3.5)

E[|(1)|q] = hA(q)+o(1) ,

with A(q) given by (4.1.10), from which it follows that A(q) < q
2 + min(q, 1) for all q > 0.

As a consequence, in this case E[|(2)|q] � E[|(1)|q]. With the same estimates done in the
proof of Proposition 4.1.3, it follows that E[|Yt+h − Yt|]q if of the same order as E[|(1)|q],
completing the proof.

4.3.4 Proof of Theorem 4.1.5

In the proof we suppose without loss of generality that s+h < t (this is possible since s < t
and h ↓ 0).

We indicate with G the σ-algebra generated by the Poisson process.We can write

Cov(|Ys+h − Ys|, |Yt+h −Xt|)
= Cov(E(|Ys+h − Ys|

∣∣G),E
(
|Yt+h − Yt|

∣∣G))
+ E

[
Cov(|Ys+h − Ys|, |Yt+h − Yt|

∣∣G)
] (4.3.12)

We recall that Yt = WIt + %(N(t) − λt), and the process (It)t≥0 is G-measurable and
independent of the process (Wt)t≥0. It follows that conditionally on G the process (Yt)t≥0

has independent increments, hence the second term on the right hand side of (4.3.12)
vanishes because Cov(|Ys+h − Ys|, |Yt+h − Yt|

∣∣G) = 0 a.s.. For �xed h, from the equality in
law

Yt+h−Yt = WIt+h−WIt+%(N(t+h)−N(t)−λh) ∼
√
It+h − ItW1+%(N(t+h)−N(t)−λh)

it follows that E
[
|Yt+h − Yt|

∣∣G] = c1

√
It+h − It+%(N(t+h)−N(t)−λh) where c1 =

√
2/π.

Analogously E
[
|Ys+h − Ys|

∣∣G] = c1

√
Is+h − Is + %(N(s+ h)−N(s)− λh) and so (4.3.12)

reduces to

Cov(|Ys+h − Ys|, |Yt+h − Yt|) =

Cov

(∣∣∣∣∣
√

2

π

√
Is+h − Is + %(Ns+h −Ns − λh)

∣∣∣∣∣ ,
∣∣∣∣∣
√

2

π

√
It+h − It + %(Nt+h −Nt − λh)

∣∣∣∣∣
)

= Cov(Fs,Ft)

(4.3.13)
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In analogy with the proof in the case % = 0 we can replace Ft with Ft1{Nt−Ns+h=0},in fact
if a jump occurs at time t′ between s+ h and t, denoting with GI the σ-algebra generated
by (Nt)t∈I ,Fs would be G(−∞,s+h] measurable whileFt would be G[t′,+∞)-measurable, and
so the would be independent. Therefore we can write

Cov(|Ys+h − Ys|, |Yt+h − Yt|) = Cov(Fs, Ft1{Nt−Ns+h=0}) . (4.3.14)

Now we can decompose the right hand side as follows

Cov(Fs, Ft1{Nt−Ns+h=0}) = E
(
(Fs − E(Fs))Ft1{Nt−Ns+h=0}

)
=

2

π
E
((√

Is+h − Is − E
(√

Is+h − Is
))√

It+h − It1{Nt−Ns+h=0}

)
+

√
2

π
%E
(

(Ns+h −Ns − E(Ns+h −Ns))
√
It+h − It1{Nt−Ns+h=0}

)
+

√
2

π
%E
((√

Is+h − Is − E
(√

Is+h − Is
))

(Nt+h −Nt − λh)1{Nt−Ns+h=0}

)
+ %2E

(
(Ns+h −Ns − E(Ns+h −Ns)) (Nt+h −Nt − λh)1{Nt−Ns+h=0}

)
= (1) + (2) + (3) + (4)

(4.3.15)

The (1) term is exactly what appears in the case % = 0 (see Theorem B.2.5 in appendix B)
in particular is equal to

(1) = 2D c e−λ|t−s|
(
λ1−2Dφs(λ(t− s)) + F (t, s)

)
h+ o(h) , (4.3.16)

where φs and F are de�ned in (4.1.12) and (4.1.13).

We now study separately the other term showing that they are o(h).

We note that E[Ns+h −Ns] = λh and so term (2) becomes√
π

2%2
(2) = E

(
(Ns+h −Ns)

√
It+h − It1{Nt−Ns+h=0}

)
− λhE

(√
It+h − It1{Nt−Ns+h=0}

) (4.3.17)

We already know that the expectation in the second term is of order
√
h when h→ 0 (which

implies that the second term is O(h3/2), so we concentrate on the �rst one which is also
negligible since

E((Nt+h −Nt)
√
It+h − It 1{Nt−Ns+h=0}) =

+∞∑
i=0

E
(
i
√
It+h − It 1{Nt−Ns+h=0}

)
P(Nt+h −Nt = i)

= E
(√

It+h − It 1{Nt−Ns+h=0}

) +∞∑
i=0

iP(Nt+h −Nt = i) = O(h
3
2 ) .
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Term (3) can be treated in the same way of term (2), and so we are left only with term (4)

1

%2
(4) = E

(
(Ns+h −Ns)(Nt+h −Nt) 1{Nt−Ns+h=0}

)
− λhE

(
(Ns+h −Ns) 1{Nt−Ns+h=0}

)
− E ((Ns+h −Ns)) E

(
(Nt+h −Nt) 1{Nt−Ns+h=0}

)
+ λhE ((Ns+h −Ns)) E

(
1{Nt−Ns+h=0}

)
.

(4.3.18)

Now, since E(Nt+h−Nt) = E(Ns+h−Ns) = λh and Nt+h−Nt, Nt−Ns+h and Ns+h−Ns

are mutually independent, it becames

1

%2
(4) = λ2h2e−λ(t−s−h) − λ2h2e−λ(t−s−h) − λ2h2e−λ(t−s−h) + λ2h2e−λ(t−s−h) = 0 .

(4.3.19)

4.4 Proof of the results on the pricing

4.4.1 Proof of Theorem 4.2.1

In analogy with (4.1.4), the process

Yt = WIt + %(Nt − λt)

solves the SDE

dYt = σt dBt + %(dNt − λdt) , with σt :=
√
I ′t , (4.4.1)

and (Bt)t≥0 is a suitable Brownian motion independent of (Nt)t≥0.
Let us denote by G the σ-algebra generated by the Poisson process (Nt)t≥0. Note that

the process φt in (4.2.2) is G-measurable, and it is not di�cult to check that its trajectories
are in L2

loc. Therefore, conditionally on G, Novikov's condition is satis�ed and under P̃
λ̃
the

process

B̃t := Bt −
∫ t

0
φs ds (4.4.2)

is a Brownian motion. Thus the distribution of (B̃t)t∈[0,T ] conditionally on G is always the

same, i.e. the Wiener measure. This implies that (B̃t)t∈[0,T ] is independent of G, i.e. it is
independent of (Nt)t≥0, hence of (It)t≥0 and (σt)t≥0.

Now observe that the process (Nt)t∈[0,T ] under P̃
λ̃
is a Poisson process with rate λ̃, as

it follows by the explicit form of the Radon-Nikodym density (4.2.1).
Summarizing: under P̃

λ̃
the process (B̃t)t∈[0,T ] in (4.4.2) is a standard Brownian motion

and (Nt)t∈[0,T ] is a Poisson process with rate λ̃, and these two processes are independent.
Rewriting (4.4.1) as

dYt = σt dB̃t −
1

2
σ2
t dt+ % dNt − (e% − 1)λ̃dt ,

and recalling (4.1.1) and (4.1.4), it follows that under P̃
λ̃
the price process (S0 e

Yt)t∈[0,T ]

has the same joint distribution as

St := S0 e
WIt−

1
2
It e%Nt−(e%−1)λ̃t , (4.4.3)

where (Wt)t≥0 is a Brownian motion independent of (It)t≥0. This proves (4.2.3).
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4.4.2 Proof of Theorem 4.2.2

The proof follows the arguments described in Remark 4.2.3. By (4.4.3) we can write

St = S̃0 e
Wσ̃2t−

1
2
σ̃2t , where σ̃2 :=

1

t
It , S̃0 := e%Nt−(e%−1)λ̃t .

Denoting by G the σ-algebra generated by the Poisson process (Nt)t≥0, note that the random

variables σ̃ and S̃0 are G-measurable, while (Wt)t≥0 is independent of G. As a consequence,

E
[
(St −K)+

∣∣G] = E
[
(S̃0 e

Wσ̃2t−
1
2
σ̃2t −K)+

∣∣G] = C σ̃BS(S̃0,K, t) , (4.4.4)

where we recall that C σ̃BS(S̃0,K, t) was de�ned in (4.2.6). Taking the expectation of both
sides of (4.4.4) we obtain relation (4.2.7), proving Theorem 4.2.2.



Chapter 5

Simulation and numerics

In this chapter we present a Monte Carlo algorithm for the pricing of the call based on the
Hull&White formula presented in the previous chapter. In order to speed up the calculation,
we use a strati�cation method which enables us to reduce the number of simulations needed
to have a precise price.

5.1 The Monte Carlo methods

Since, for generic models, there are not closed formula for computing European option
prices, Monte-Carlo methods are extensively used in �nance.

Let us describe the principle of the Monte-Carlo methods on an elementary example.
Suppose want to compute

I :=

∫
[0,1]d

f(x)dx

where f(·) is a bounded real valued function, we can represent the integral above as E(f(U)),
where U is a uniformly distributed random variable on [0, 1]d. By the Strong Law of Large
Numbers, if (Ui)i≥1 is a family of uniformly distributed independent random variables on
[0, 1]d then the average

SN =
1

N

N∑
i=1

f(Ui)

converges to E(f(U) almost surely when N tends to in�nity. This suggests a very simple
algorithm to approximate I: call a random generator N times and compute the average
above. In order to e�ciently use the Monte-Carlo method we need to know the rate of
convergence, and if it is more e�cient than the deterministic algorithms. The Central Limit

Theorem shows that the error decays as
σ√
N
, where σ2 is the variance of g(X), which is

rather slow, moreover the approximation error is random and may take large values even if
N is large (however the probability of such an event tends to 0 when N grows).

5.1.1 Strati�cation methods

Since the accuracy of a Monte-Carlo method with N simulations is given by the ration σ/N ,
one always wants to rewrite the quantity to compute as the expectation of a random variable
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which has smaller variance: this is the basic idea of the variance reduction techniques.
One way to reduce the variance are the so called strati�cation methods. Assume that we

want to compute the expectation

I = E(g(X)) =

∫
Rd
g(x)f(x)dx,

where X is a Rd valued random variable with density f(x). Let (Di, 1 ≤ i ≤ m) be a
partition of Rd. I can be expressed as

I =

m∑
i=1

E(1{X∈Di}g(X)) =

m∑
i=1

E(g(X)|X ∈ Di)P(X ∈ Di),

where

E(g(X)|X ∈ Di) =
E(1{X∈Di}g(X))

P(X ∈ Di)
.

Note that E(g(X)|X ∈ Di) can be interpreted as E(g(Xi)), where Xi is a random variable
whose law is the law of X conditioned by X belongs to Di, whose density is

1∫
Di
f(y)dy

1x∈Dif(x)dx.

When the numbers pi = P(X ∈ Di) can be explicitly computed one can use a Monte-Carlo
method to approximate each conditional expectation Ii = E(g(X)|X ∈ Di) by

Ĩi =
1

ni

(
g(Xi

1) + . . .+ g(Xi
ni

)
,

where (Xi
1, . . . , X

i
ni) are independent copies of X

i. An estimator Ĩ of I is then

Ĩ =
m∑
i=1

piĨi.

Of course, since the samples used to compute Ĩi are supposed to be independent, the variance
of Ĩ is

m∑
i=1

p2
i

σ2
i

ni

where σ2
i is the variance of g(Xi).

Fix the total number of simulations
∑m

i=1 ni = N . In order to minimize the variance
above one must choose

ni = N
piσi∑m
i=1 piσi

.

For this value of ni, the variance of Ĩ is given by

1

N

(
m∑
i=1

piσi

)2

.
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Indeed the variance obtained is smaller than the one obtained without strati�cation since

V ar(g(X)) = E(g(X)2)− E(g(X))2

=
m∑
i=1

piE(g(X)2|X ∈ Di)−

(
m∑
i=1

piE(g(X)|X ∈ Di)

)2

=
m∑
i=1

pi V ar(g(X)2|X ∈ Di) +
m∑
i=1

piE(g(X)|X ∈ Di)
2

−

(
m∑
i=1

piE(g(X)|X ∈ Di)

)2

.

Using the convexity inequality for x2 we obtain, since
∑m

i=1 pi = 1,

V ar(g(X)) ≥
m∑
i=1

pi V ar(g(X)2|X ∈ Di) ≥

(
m∑
i=1

piσi

)2

.

Remark 5.1.1. The optimal strati�cation involves the knowledge of the σis which are
seldom explicitly known, so one need to estimate their values by Monte-Carlo simulations.

A common way to bypass this problem is to choose ni = Npi. The corresponding
variance is

1

N

m∑
i=1

piσ
2
i ,

which is always smaller than the original one. This choice is often made when the proba-
bilities pi can be computed.

5.2 The strati�cation method applied to our model

The idea is to apply the strati�cation method to the pricing formula obtained in the chapter
before from the Hull & white formula:

C(S0,K, t) = E

[
C σ̃BS(S̃0,K, t)

∣∣∣
σ̃=

√
1
t
It, S̃0=S0 e%Nt−(e%−1)λ̃t

]
. (5.2.1)

In this case we partition on the number of jumps of the Poisson process Nt driving the time
change

It := c

{
(t− τNt)2D − (−τ0)2D +

Nt∑
k=1

(τk − τk−1)2D

}
, (5.2.2)

and the jumps in the log-price:

Yt := WIt + %(N(t)− λt) .

In fact, once the number of jumps Nt becomes �xed S̃0 = S0 e
%Nt−(e%−1)λ̃t becomes deter-

ministic, and the simulation of It is much faster. In particular, when no jumps occur It is
deterministic and equal to

It = c
[
(t− τ0)2D − (−τ0)2D

]
.
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Since this event when t < 1
λ is the most likely and so the one with the greates ni, the

strati�cation method permits to highly reduce the number of computation, because it is
enough to compute just one time the Nt = 0 layer and then multiply it for its probability
in the �nal average.

Even on the event Nt = n > 0 once that the number of jumps is known the computation
for obtaining the value of It are reduced since the jumps have a uniform distribution of
parameters (n, [0, t]) which is very easy to simulate.

Once we have both Nt and It, computing the price via the Hull & White formula
becomes very easy: for every occurrence of the jumps we compute the single price and then
we just average on the total.

Observe that this method not only reduces the number of computation thanks to the
0-jumps layer but also, thanks to the strati�cation give a more precise result, since the
distribution of the number of jumps is less randomized and optimized.

5.2.1 The algorithm

In this section we present the algorithm on which the pricing program works, the code both
in C and MATLAB R© languages can be found in appendix A.

The core of the code, as already said, is a strati�ed Monte-Carlo method. We use a 4
layers partition: the Poisson process in [0, t] realizes 0 jumps, 1 jump, 2 jumps and 3 or
more jumps. We have two di�erent choices for the number of simulations in each partition,
or we go for the fastest choice, which is just choosing ni = N ∗ pi or we can �sacri�ce�
part of the simulation in order to �nd the optimal σi for the strati�cation and choose
ni = N piσi

p0σ0+p1σ1+p2σ2+p3σ3
∨ 1 †.

The �rst method result much faster than the second, even if the precision obtained is
similar since the number of simulation for the 0-jumps layers is directly reduced from n0 to
1, and so the total number of simulations is strictly lesser than N , and since in general the
�rst layer is the more important one this reduces a lot the number of computations. The
second method, on the other hand, performs N simulation since even if the 0-jumps layer
needs only one simulation, the other N − 1 are distributed on the other layers.

Once the number of simulation for each layer is �xed we can compute the price using
the Hull&white formula given in Theorem 4.2.2: every time we just simulate the value of It
(knowing that i jumps occur), and the we use the Black&Scholes formula, with volatility

σ =
√

It
t and value of the underline at time 0 S̃0 = S0 exp(%i− λt(e% − 1)). Once we have

�nished the simulations we just average obtaining the real price.

The di�erent layers deals in di�erent ways with the simulations of the value It. In the
zero jumps layer we just put the deterministic value It = c[(t− τ0)2D − (−τ0)2D].

In the case of one or two jumps the simulation is based on the fact that, give that there
are i jumps in [0, t], these are uniformly distributed and so can be easily generated.

†The ∨1 is due to the fact that the 0-jumps layer has 0 variance because the price of the call is simply
given by the Black & Scholes formula with

σ =

√
c [(t− τ0)2D − (−τ0)2D]

t
S̃0 = S0 exp(−λt(e% − 1))
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Finally, for the fourth layer, the one with more than 2 jumps, we �rstly simulate the
position of the third jump τ3, we then create the �rst and the second jumps using a 2-
valued uniform distribution in [0, τ3] and then we generate the next jumps using independent
exponential distribution, since τj − τj−1 ∼ Exp(λ), until τj > t, in which case we obtain
exactly j − 1 jumps.

In order to reduce once more the machine-time we observed that if we have multiple
strikes for a single maturity, we can compute at once all the prices since both the C and
MATLAB R© language have a command which permits the computation of a vector of Eu-
ropean call option with the same maturity but di�erent strikes. This reduction is due to
the fact that we do not have to perform N]strikes simulations, but only N .

5.3 Calibration

We used the algorithm above to perform a calibration (still in progress) on implied volatility
obtained from real data from the DAX index (we thank Martino Grasselli for the data).

We have �tted the data with the parameters that minimize the root square error with
the real volatility at di�erent maturities obtaining the following results

Maturity (days) D V λ % τ0 (years)

50 0.4 0.175 0.7 -0.15 -2.0
85 0.45 0.15 0.7 -0.2 -2.0
113 0.45 0.15 0.6 -0.225 -5.0
204 0.3 0.175 0.7 -0.25 -3.0
Total 0.375 0.175 0.8 -0.15 -2.0

Table 5.1: Parameters of the model optimizing the �tting, for the single maturities and for
all of them at the same time.

The preliminary results show good agreement for �xed maturity (see 5.1), by the way
it is not a stable method: when there is more than one maturity the error begins to grow
(see Figure 5.2). We would like to remark that this is not a feature of our model only, for
example Gatheral [Gat06] points out how the Heston model (and more in general stochastic
volatility models) performs poorly for small maturities, underestimating the skew of the
implied volatility.

We observe that the parameters found are very di�erent from the ones found in [ACDP12],
in fact the main weight on the price is given by the jump component, while the time change
gives a smaller contribute (the exponent D is close to 0.5 and so the smile �attens).

This suggests once more that even if the introduction of jumps in the log price allows
to reproduce the leverage e�ect and the asymmetry of the smile, it is possibly not the most
natural way to enrich our model, as also the theoretical results of the disappearance of the
multiscaling of the moments (cf. Theorem 4.1.3) hinted.
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(a) Maturity: 50 days (b) Maturity: 85 days

(c) Maturity: 113 days (d) Maturity: 204 days

Figure 5.1: This �gure contains the plot (in red) of the implied volatility of the European
Call options on the DAX index in date 28/08/2008 with maturities 50, 85, 113 and 204
days, and the plot (in green) of the implied volatility of our model for call options with the
same maturities, where we have used the �tting parameters contained in the �rst four rows
of Table 5.1 (every maturity has its best �tting parameters)
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(a) Maturity: 50 days (b) Maturity: 85 days

(c) Maturity: 113 days (d) Maturity: 204 days

Figure 5.2: This �gure contains the plot (in red) of the implied volatility of the European
Call options on the DAX index in date 28/08/2008 with maturities 50, 85, 113 and 204
days, and the plot (in green) of the implied volatility of our model for call options with the
same maturities, where we have used the �tting parameters contained in the last row of
Table 5.1 (best �tting parameters of all the maturities at the same times)
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Appendix A

The code

In this appendix we present the C and the MATLAB R© codes used for pricing the european
call in the model presented in chapter 4.

For the C code in particular we have used some tools present in the Premia library,
which can be downloaded at https://www.rocq.inria.fr/mathfi/Premia/index.html.

A.1 The C code

We now present separately the main routines for the C code, there will be one for pricing,
two for generating the jumps and one for generating the time change. We will also introduce
a function that permits to �nd the third jump.

A.1.1 The jump makers

We start with the jumps generators: we have two di�erent routines, one when the number
of jumps is �xed (and equal to one or two), and the second when there are more than two
jumps.

The following generates the jumps when their number is �xed. Observe that in principle
this works also when the number of jumps is greater than two but still �xed, which could be
useful if we consider call options with large maturities, in which case we could easily change
the code in order to have a di�erent strati�cation with k+ 1 layers: k with �xed jumps and
one for the case "more than k − 1 jumps". Moreover both this routine and the following
generate a random τ0. This is done because it permits to work also with the original model,
as presented in [ACDP12], where it was not �xed. We put the deterministic value in the
part of the code used for the pricing.

void jumpGenerator(double lambda, double sigma,

double D, double T, int k, PnlVect* Tau){

int i=0;

PnlVect* Valori;

Valori= pnl_vect_create(k+2);

double fattcom;

double prodpar;

for(i=0;i<=k+1;i++){

87
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pnl_vect_set(Valori,i,unif());

}

pnl_vect_set(Tau,0,log(pnl_vect_get(Valori,0))/lambda);

if(k>0){

fattcom=1.0;

prodpar=1.0;

for(i=1;i<=k+1;i++){

fattcom=fattcom*pnl_vect_get(Valori,i);

}

for(i=1;i<=k;i++){

prodpar=prodpar*pnl_vect_get(Valori,i);

pnl_vect_set(Tau,i,T*log(prodpar)/log(fattcom));

}

}

pnl_vect_set(Tau,k+1,T);

pnl_vect_free(&Valori);

}

In order to simulate the k jumps, we simulate k + 1 uniform random variable (using the
function unif()), then we make their product and we obtain the jumps using the logarithm.

In case we have more than two jumps (and we don't know how many) we use the routine
jumpGenerator3. In this routine we �rstly �nd the third jumping time τ3 (conditioning it
is less than t) then we add exponential of parameter λ until we surpass the threshold t; as
before τ1 and τ2 are found using a 2 valued uniform in [0, τ3]. In order to �nd the value τ3

we have to compute P(τ3 < t) = P(Ga < t), where Ga follows a Γ
(
3, 1

λ

)
we then simulate

a uniform random variable u ∼ U([0, 1]) and we solve

P(Ga < x)

P(Ga < t)
= u , (A.1.1)

which we create as the function terzoSalto, using the function pnl_root_brent from the
Premia library.

void jumpGenerator3(double lambda, double sigma,

double D, double T, PnlVect* Tau){

int i=0;

int crazy;

double x;

double tmp[3];

double u;

double t;

double tol;

double fattcom;

double prodpar;

PnlVect* Valori;

Valori= pnl_vect_create(3);
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tol=T/1000;

crazy=pnl_vect_resize (Tau, 1);

x=unif();

pnl_vect_set(Tau, 0, log(x)/lambda);

u=unif();

tmp[0]= lambda;

tmp[1]=T;

tmp[2]=u;

PnlFunc func;

func.function = terzoSalto;

func.params = (void*) tmp;

t = pnl_root_brent(&func, 0.0, T ,&tol);

crazy=pnl_vect_resize(Tau,4);

pnl_vect_set(Tau, 3, t);

for(i=0;i<=2;i++){

pnl_vect_set(Valori,i,unif());

}

fattcom=1.0;

prodpar=1.0;

for(i=0;i<=2;i++){

fattcom=fattcom*pnl_vect_get(Valori,i);

}

for(i=0;i<2;i++){

prodpar=prodpar*pnl_vect_get(Valori,i);

pnl_vect_set(Tau,i+1, t*(log(prodpar)/log(fattcom)));

}

i=4;

do{

x=unif();

t=t-log(x)/lambda;

if(t<T){

crazy=pnl_vect_resize(Tau,i+1);

pnl_vect_set(Tau, i, t);

i=i+1;

}

}while(t<T);

crazy=pnl_vect_resize(Tau,i+1);

pnl_vect_set(Tau, i, T);

pnl_vect_free(&Valori);

}

The equation (A.1.1) is de�ned in the following way, using the object func of the library

static double terzoSalto(double x, void *v)

{

double *vi = (double*)v;
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double p,q;

p=1-(exp(-vi[0]*x)*(1+vi[0]*x+0.5*x*x*vi[0]*vi[0]));

q=1-(exp(-vi[0]*vi[1])*(1+vi[0]*vi[1]+0.5*vi[1]*vi[1]*vi[0]*vi[0]));

return ((p/q)-vi[2]);

}

A.1.2 The clock-time generators

The routine that gives the time change It, taking as an input the jumping time is simply
an application of the formula It:

It := c

{
(t− τNt)2D − (−τ0)2D +

Nt∑
k=1

(τk − τk−1)2D

}
,

obtained in the following way

double changedTimeGeneratorVec(double sigma,double D,

int k, PnlVect* Jumps){

int i;

double finale;

i=0;

finale=-pow(- pnl_vect_get(Jumps,0),2*D);

if(k>0){

for(i=1;i<=k;i++){

finale=finale+pow((pnl_vect_get(Jumps,i)

-pnl_vect_get(Jumps,i-1)),2*D);

}

}

finale=SQR(sigma)*(finale+pow((pnl_vect_get(Jumps,k+1)

-pnl_vect_get(Jumps,k)),2*D));

return finale;

}

We have also a second routine which generates the time-change taking as an input simply
the number of jumps that occurs

double changedTimeGenerator(double lambda, double sigma,

double D, double tau0,double T, int k){

int i=0;

double finale;

PnlVect* Jumps;

Jumps=pnl_vect_create(k+2);

jumpGenerator(lambda,sigma,D,T,k,Jumps);

pnl_vect_set(Jumps,0, tau0);
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finale=-pow(-pnl_vect_get(Jumps,0),2*D);

if(k>0){

for(i=1;i<=k;i++){

finale=finale+pow((pnl_vect_get(Jumps,i)

-pnl_vect_get(Jumps,i-1)),2*D);

}

}

finale=SQR(sigma)*(finale+pow((pnl_vect_get(Jumps,k+1)

-pnl_vect_get(Jumps,k)),2*D));

pnl_vect_free(&Jumps);

return finale;

}

A.1.3 The price maker

The actual pricing is done by the following function, based on the strati�cation algorithm
explained in chapter 5. This permits also to price the put option, thanks to the control
variable isCall which determines which kind of option we are pricing.

For the choice of the number of simulations in each layer we have chosen the fastest
method, that is ni = Npi, because its degree of precision is very similar to the optimal one,
even if it is much faster.

double pnl_cf_ACDP_call_put(int isCall,double lambda,

double v, double D , double T, double strike,

double r, int N, double s0, double tau0,double rho){

if(tau0<0){

printf("error! tau0 must be positive !\n");

return 0;

}

else{

int kMax=3;

double sigma;

int j;

PnlVect* Taun;

double x;

double time;

int k;

double prezzoPar=0.0;

double prezzo;

PnlVect* p;

p= pnl_vect_create(4);

PnlVect* Tenta;
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sigma=v*sqrt(pow(lambda,2*D-1)/pnl_tgamma(2*D+1));

x=0;

for(k=0;k<kMax;k++){

x=pnl_sf_fact(k);

pnl_vect_set(p,k,exp(-lambda*T)*(pow(lambda*T,k))/x);

}

k=3;

pnl_vect_set(p,k,1.0-pnl_vect_get(p,0)-pnl_vect_get(p,1)-pnl_vect_get(p,2));

if(D==0.5){

if(rho==0){

return(pnl_bs_call_put(isCall,s0, strike, T, r,0, sigma));

//if D=0.5 and rho=0 we have the Black & Scholes model

}else{

for(j=1;j<=N;j++){

Taun=pnl_vect_new ();

jumpGenerator3(lambda, sigma, D,T, Taun);

prezzoPar=pnl_bs_call_put(isCall,s0*exp(rho*(Taun->size-2)

-lambda*T*(exp(rho)-1)), strike, T, r,0,sigma);

pnl_vect_free(&Taun);

}

prezzoPar=pnl_vect_get(p,3)*prezzoPar/N;

for(k=0;k<3;k++){

prezzoPar=prezzoPar+(pnl_vect_get(p,k)*pnl_bs_call_put(isCall,

s0*exp(rho*k-lambda*T*(exp(rho)-1)), strike, T, r,0, sigma));

}

return (prezzoPar);

//in case D=0.5 the only element on which we average in the Hull & White

// formula is the initial value s0, which depend only on the number of jumps.

//as a consequence we put all the simulations in the layer more then 2

//jumps because it is the only one with randomness.

}

}

else{

PnlVect* prezzi;

prezzo=0.0;

prezzoPar=0.0;

Tenta= pnl_vect_create(4);

prezzi= pnl_vect_create(4);

for(k=0;k<=kMax;k++){
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pnl_vect_set(Tenta,k,(int)MAX(N*pnl_vect_get(p,k),1));

x=x+pnl_vect_get(Tenta,k);

}

//first layer

k=0;

time=pow(sigma,2)*(pow(T+tau0,2*D)-pow(tau0,2*D));

prezzoPar=pnl_bs_call_put(isCall,s0*exp(rho*k-lambda*T*(exp(rho)-1)),

strike, T, r,0, sqrt(time/T));

pnl_vect_set(prezzi,k,(pnl_vect_get(Tenta,0)*prezzoPar));

//second and third layer

for(k=1; k<kMax ;k++){

if(pnl_vect_get(Tenta,k)!=0){

for(j=1;j<=pnl_vect_get(Tenta,k);j++){

Taun=pnl_vect_create(k+2);

jumpGenerator(lambda,sigma,D,T,k,Taun);

pnl_vect_set(Taun,0,-tau0);

time=changedTimeGeneratorVec(sigma, D, k, Taun);

prezzoPar=pnl_bs_call_put(isCall,s0*exp(rho*k-lambda*T*(exp(rho)-1)),

strike, T, r,0, sqrt(time/T));

pnl_vect_set(prezzi,k,pnl_vect_get(prezzi,k)+prezzoPar);

pnl_vect_free(&Taun);

}

}

}

//fourth layer

k=3;

if(pnl_vect_get(Tenta,k)!=0){

for(j=1;j<=pnl_vect_get(Tenta,k);j++){

Taun=pnl_vect_new ();

jumpGenerator3(lambda, sigma, D,T, Taun);

pnl_vect_set(Taun,0,-tau0);

time=changedTimeGeneratorVec(sigma,D,(Taun->size-2), Taun);

prezzoPar=pnl_bs_call_put(isCall,s0*exp(rho*(Taun->size-2)

-lambda*T*(exp(rho)-1)), strike, T, r,0, sqrt(time/T));

pnl_vect_set(prezzi,k,pnl_vect_get(prezzi,k)+prezzoPar);

pnl_vect_free(&Taun);

}

}

for(k=0;k<=3;k++){

prezzo=pnl_vect_get(prezzi,k)+prezzo;

}

//averaging the price
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prezzo=prezzo/x;

return prezzo;

pnl_vect_free(&Tenta);

pnl_vect_free(&p);

pnl_vect_free(&prezzi);

}

}

}

In the case we have a single maturity but more then one strike we have the following
procedure

void pnl_cf_ACDP_call_put_vect(PnlVectInt* isCall, double lambda,

double v, double D , double T, PnlVect* strike,

double r, int N, double s0, double tau0,double rho,

PnlVect* Prezzi){

int l;

if(tau0<0){

printf("error! tau0 must be positive !\n");

}

else{

double sigma;

sigma=v*sqrt(pow(lambda,2*D-1)/pnl_tgamma(2*D+1));

int kMax=3;

PnlVect* Taun;

int j;

double x;

double time;

int k;

PnlVect* Tenta;

PnlVect* p;

double prezzoPar;

double prezzo;

prezzo=0.0;

prezzoPar=0.0;

Tenta= pnl_vect_create(4);
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p= pnl_vect_create(4);

prezzi= pnl_vect_create(4);

x=0;

for(k=0;k<kMax;k++){

x=pnl_sf_fact(k);

pnl_vect_set(p,k,exp(-lambda*T)*(pow(lambda*T,k))/x);

}

k=3;

pnl_vect_set(p,k,1.0-pnl_vect_get(p,0)-pnl_vect_get(p,1)-pnl_vect_get(p,2));

for(k=0;k<=kMax;k++){

pnl_vect_set(Tenta,k,(int)MAX(N*pnl_vect_get(p,k),1));

x=x+pnl_vect_get(Tenta,k);

}

//first layer

k=0;

time=pow(sigma,2)*(pow(T+tau0,2*D)-pow(tau0,2*D));

for(l=0,l<(strike->size),l++){

prezzoPar=pnl_bs_call_put(GET_INT(isCall,L),

s0*exp(rho*k-lambda*T*(exp(rho)-1),pnl_vect_get(strike,l),

T, r,0, sqrt(time/T));

pnl_vect_set(Prezzi,l,(pnl_vect_get(Tenta,0)*prezzoPar));

}

//second and third layer

for(k=1; k<kMax ;k++){

if(pnl_vect_get(Tenta,k)!=0){

for(j=1;j<=pnl_vect_get(Tenta,k);j++){

Taun=pnl_vect_create(k+2);

jumpGenerator(lambda,sigma,D,T,k,Taun);

pnl_vect_set(Taun,0,-tau0);

time=changedTimeGeneratorVec(sigma, D, k, Taun);

for(l=0,l<(strike->size),l++){

prezzoPar=pnl_bs_call_put(GET_INT(isCall,L),

s0*exp(rho*k-lambda*T*(exp(rho)-1),

pnl_vect_get(strike,l),T, r,0, sqrt(time/T));

pnl_vect_set(Prezzi,l,pnl_vect_get(Prezzi,l)+prezzoPar));

}

pnl_vect_free(&Taun);

}

}

}

//fourth layer
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k=3;

if(pnl_vect_get(Tenta,k)!=0){

for(j=1;j<=pnl_vect_get(Tenta,k);j++){

Taun=pnl_vect_new ();

jumpGenerator3(lambda, sigma, D,T, Taun);

pnl_vect_set(Taun,0,-tau0);

time=changedTimeGeneratorVec(sigma,D,(Taun->size-2), Taun);

for(l=0,l<(strike->size),l++){

prezzoPar=pnl_bs_call_put(GET_INT(isCall,L),

s0*exp(rho*(Taun->size-2)-lambda*T*(exp(rho)-1),

pnl_vect_get(strike,l),T, r,0, sqrt(time/T));

pnl_vect_set(Prezzi,l,pnl_vect_get(Prezzi,l)+prezzoPar));

}

pnl_vect_free(&Taun);

}

}

//averaging the price

for(l=0,l<(strike->size),l++){

Pnl_vect_set(Prezzi,l,pnl_vect_get(Prezzi,l)/x);

}

pnl_vect_free(&Tenta);

pnl_vect_free(&p);

}

}

}

A.2 The MATLAB R© code

The MATLAB R© code is organized in the same way as the C code but, thanks to the higher
level of the language is more compact; the drawback of such a high level language is that
it is less performing, causing a slower pricing.

A.2.1 The time changers and jump generators

In this case, in the spirit of the function changedTimeGenerator above we have group
together the time changers and the jump generators, creating only 2 functions, one for the
case with a �xed number of jumps and one for the case in which we have a random number
of jumps greater or equal than 3.

The function for the �xed number of jumps is the following

function[I]=cambiatempo(k,tau0,T,D, lambda,V)
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tau(1)=-tau0;

x=sort(rand(1,k));

for i=2:k+1

tau(i)=T*x(i-1);

end

tau(k+2)=T;

I=-(tau0)^(2*D);

for i=2:k+2;

I=I+(tau(i)-tau(i-1))^(2*D);

end

I=I*V^2*lambda^(2*D-1)/gamma(2*D+1);

while the one for the random number of jumps is

function[I,i]=cambiatempo3(T,tau0,lambda,V,D)

q=1-(exp(-lambda*T)*(1+lambda*T+0.5*lambda^2*T^2));

u=rand(1);

f=@(x) ((1-(exp(-lambda*x)*(1+lambda*x+0.5*lambda^2*x.^2)))/q)-u;

X=fzero(@(x) f(x), 0.0);

tau(4)=X;

tau(1)=-tau0;

u=sort(rand(1,2));

for i=2:3

tau(i)=X*u(i-1);

end

i=4;

while(tau(i)<T)

i=i+1;

u=rand(1);

tau(i)=tau(i-1)+abs(log(u)/lambda);

end

tau(i)=T;

I=-(tau0)^(2*D);

for j=2:i;

I=I+(tau(j)-tau(j-1))^(2*D);

end

I=I*V^2*lambda^(2*D-1)/gamma(2*D+1);

i=i-2;

A.2.2 The price maker

The function used for getting the price is exactly the same as the one used in the C code,
the di�erence is that in this case we compute at once both the call and the put value, and
also the implied volatility. Moreover, we have given the version of the code which give only
one price at a time, we can use this function also for computing the prices of options with
di�erent strikes at the same time.

function [call,put, impVol]= prezzi(S0, strike, r,
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T,lambda, D, V,rho,tau0,N)

%finding the probability of each layer

proba(1)=exp(-lambda*T);

proba(2)=exp(-lambda*T)*lambda*T;

proba(3)=exp(-lambda*T)*(lambda*T)^2;

proba(4)=1-proba(1)-proba(2)-proba(3);

%number of simulation for layer

tenta(1)=max(N*proba(1),1);

tenta(2)=max(N*proba(2),1);

tenta(3)=max(N*proba(3),1);

tenta(4)=max(N*proba(4),1);

%beginning of the stratification

%first layer (0 jumps)

Volatility=sqrt(V^2*lambda^(2*D-1)/gamma(2*D+1)*

((T+tau0)^(2*D)-(tau0)^(2*D))/T);

Price=S0*exp(-lambda*T*(exp(rho)-1));

[callT, putT]=blsprice(Price, strike, r, T, Volatility);

call=tenta(1)*callT;

put=tenta(1)*putT;

%second layer (1 jump)

for j=1:tenta(2)

IT=cambiotempo(1,tau0,T,D, lambda,V);

Volatility=sqrt(IT/T);

Price=S0*exp(rho-lambda*T*(exp(rho)-1));

[callT, putT]=blsprice(Price, strike, r, T, Volatility);

call=call+callT;

put=put+putT;

end

%third layer (2 jumps)

for j=1:tenta(3)

IT=cambiotempo(2,tau0,T,D, lambda,V);

Volatility=sqrt(IT/T);

Price=S0*exp(2*rho-lambda*T*(exp(rho)-1));

[callT, putT]=blsprice(Price, strike, r, T, Volatility);

call=call+callT;
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put=put+putT;

end

%fourth layer (>2 jumps)

for j=1:tenta(2)

[IT,Nsalti]=cambiatempo3(T,tau0,lambda,V,D);

Volatility=sqrt(IT/T);

Price=S0*exp(Nsalti*rho-lambda*T*(exp(rho)-1));

[callT, putT]=blsprice(Price, strike, r, T, Volatility);

call=call+callT;

put=put+putT;

end

% final average of the prices

call=call/(tenta(1)+tenta(2)+tenta(3)+tenta(4));

put=put/(tenta(1)+tenta(2)+tenta(3)+tenta(4));

% implied volatility

impVol=zeros(taglia);

impVol=blsimpv(S0,strike,r,T,call,[],0,[],{'call'});
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Appendix B

Known properties of the model

In this appendix we recall the proofs of the main properties of the original model, as done
in [ACDP12]. We point out that in the original paper the authors considered −τ0 ∼ Exp(λ)
in order to have a process with stationary increment. We then generalize them to the case
in which τ0 is deterministic.

We recall that the model was de�ned in the following way: given a standard Brownian
motion (Wt)t≥0 and an independent Poisson process (Nt)t≥0 of rate λ, the (de-trended)
log-price (Yt)t≥0 of an asset is

Yt := WIt , (B.0.1)

where the time-change process (It)t≥0 is de�ned as follows: denoting by 0 < τ1 < τ2 < . . .
the jump times of the Poisson process (Nt)t≥0, and for τ0 < 0

It := c

{
(t− τNt)2D − (−τ0)2D +

Nt∑
k=1

(τk − τk−1)2D

}
, (B.0.2)

where

c =
V 2λ2D−1

Γ(2D + 1)

with the convention that the sum is zero when Nt = 0.
The parameter τ0 ∈ (−∞, 0) in the de�nition (B.0.2) of It plays the role of the �last

jump time� before 0. It is clear that τ0 determines the initial volatility σ0:

σ0 =
V λD−

1
2√

Γ(2D)
(−τ0)D−

1
2 . (B.0.3)

In the original model, presented in [ACDP12], the choice was made of taking −τ0 as
an Exp(λ) random variable (just like τ1, τ2 − τ1, τ3 − τ2, . . . ) independent of (Nt)t≥0 and
(Wt)t≥0. Since τ0 ∈ (−∞, 0) is in one-to-one correspondence with σ0, we consider τ0 as a
further parameter, as we have done in chapter 3, 4 and 5, which tunes the initial value σ0

of the volatility process σt (or equivalently, the slope at the origin I ′0 of the time-change
process It).

It is worth stressing that if −τ0 is chosen as an independent Exp(λ) random variable,
as in [ACDP12], the process (t − τNt)t≥0 is stationary (with Exp(λ) one-time marginal
distributions), hence also (I ′t)t≥0 is stationary which means that the time-change process
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(a) Time change (b) Instantaneous volatility

Figure B.1: Trajectories of the time change process and of the instantaneous volatility pro-
cess

(It)t≥0 has stationary increments. This property breaks down when τ0 is chosen as a �xed
parameter, as we do here, but it still holds asymptotically: for any �xed τ0 ∈ (−∞, 0), the
process (IT+t − IT )t≥0 converges in distribution as T → ∞ toward the process (It)t≥0 of
[ACDP12], i.e. in which −τ0 is chosen as an independent Exp(λ) random variable.

B.1 Main properties of the model in the stationary setting

As said in Chapter 1 the main properties of the model are the crossover of distribution, the
multiscaling of the moments, and the clustering of volatility. We will prove each result at
the end of the appendix.

Theorem B.1.1 (Di�usive scaling: crossover of distributions). The following convergences
in distribution hold for any choice of the parameters D,λ, and V .

• Small-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−→
h↓0

f(x) dx := law of
V√

Γ(2D)
SD−

1
2 W1 , (B.1.1)

where S ∼ Exp(1) and W1 ∼ N (0, 1) are independent random variables. The density
f is thus a mixture of centered Gaussian densities and, when D < 1

2 , has power-law
tails,more precisely∫

|x|qf(x) dx < +∞ ⇐⇒ q < q∗ :=
1

(1
2 −D)

. (B.1.2)

.

• Large-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−−→
h↑∞

e−x
2/(2V 2)

√
2πV

dx = N (0, V 2) . (B.1.3)
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We now present the main feature of the model, the multiscaling of the moments

Theorem B.1.2. Let q > 0, then the quantity mq(h) := E(|Yt+h − Yt|q) is �nite and has
the following asymptotic behavior as h ↓ 0:

mq(h) ∼


Cq h

q
2 if q < q∗

Cq h
q
2 log( 1

h) if q = q∗

Cq h
Dq+1 if q > q∗

, where q∗ :=
1

(1
2 −D)

.

The constant Cq ∈ (0,∞) is given by

Cq :=


E(|W1|q) c

q
2 λq/q

∗
(2D)q/2 Γ(1− q/q∗) if q < q∗

E(|W1|q) c
q
2 λ (2D)q/2 if q = q∗

E(|W1|q) c
q
2 λ
[ ∫∞

0 ((1 + x)2D − x2D)
q
2 dx + 1

Dq+1

]
if q > q∗

, (B.1.4)

where Γ(α) :=
∫∞

0 xα−1e−xdx denotes Euler's Gamma function. This implies

A(q) := lim
h↓0

logmq(h)

log h
=


q

2
if q ≤ q∗

Dq + 1 if q ≥ q∗
, where q∗ :=

1

(1
2 −D)

. (B.1.5)

The third property we are interested in is the volatility autocorrelation

Theorem B.1.3 (Volatility autocorrelation). The following relation holds as h ↓ 0, for all
s, t > 0:

Cov(|Ys+h − Ys|, |Yt+h − Yt|) =
4D

π
cλ1−2D e−λ|t−s|

(
φ(λ|t− s|)h + o(h)

)
, (B.1.6)

where
φ(x) := Cov

(
SD−1/2 ,

(
S + x

)D−1/2)
(B.1.7)

and S ∼ Exp(1). Therefore the correlation is given by

lim
h↓0

%(|Ys+h − Ys|, |Yt+h − Yt|)

= %(t− s) :=
2

π V ar( |W1|SD−1/2)
e−λ|t−s| φ(λ|t− s|) ,

(B.1.8)

B.2 Deterministic τ0

In this section we state the corresponding Theorems in the case in which the �last jump
time� is deterministic and not distributed as an exponential random variable. The results
are very similar to the ones of the previous section, but they also depend on the time t
on which we are studying the properties of |WIt+h −WIt |; in particular, when t ↑ +∞ we
obtain exactly the same results as before.

Theorem B.2.1. [Di�usive scaling] The following convergences in distribution hold for
any choice of the parameters D,λ, V , % and for every τ0 ∈ (−∞, 0).
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• Small-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−→
h↓0

f(x) dx := law of
V√

Γ(2D)
(Sλt,λτ0)D−

1
2 W1 , (B.2.1)

where for a < 0 < b we set Sb,a := (b − a)1{E>b} + E 1{E≤b}, with E ∼ Exp(1),
and where W1 ∼ N (0, 1) is an independent random variable. The density f is thus a
mixture of centered Gaussian densities and, when D < 1

2 , has power-law tails.

• Large-time di�usive scaling:

(Yt+h − Yt)√
h

d−−−−→
h↑∞

e−x
2/(2V 2)

√
2πV

dx = N (0, V 2) , (B.2.2)

Remark B.2.2. Note that the choice of a deterministic τ0 in�uences only the small time
di�usive scaling, in particular, if t ↓ 0 we have

(Yt+h − Yt)√
h

d−−−→
h↓0

σ0W1

while when t ↑ ∞ we converge to (B.1.1). On the other hand if we look at the large time
di�usive scaling we obtain exactly the results in (B.1.3).

For the multiscaling of the moments we obtain the same results as before with only a
slight change in the constants but only in the case q < q∗. In fact we have the following

Theorem B.2.3. Let q > 0, then the quantity mq(h) := E(|Yt+h − Yt|q) is �nite and has
the following asymptotic behavior as h ↓ 0:

mq(h) ∼


Cq h

q
2 if q < q∗

Cq h
q
2 log( 1

h) if q = q∗

Cq h
Dq+1 if q > q∗

, where q∗ :=
1

(1
2 −D)

.

The constant Cq ∈ (0,∞) is given by

Cq :=


E(|W1|q) c

q
2 (2D)

q
2

(
e−λt(t− τ0)q(D−

1
2) + λ

q
q∗ γ

(
1− q

q∗ , λt
))

if q < q∗

E(|W1|q) c
q
2 λ (2D)q/2 if q = q∗

E(|W1|q) c
q
2 λ
[ ∫ +∞

0 ((1 + x)2D − x2D)
q
2 dx + 1

Dq+1

]
if q > q∗

,

(B.2.3)
where γ(α, t) :=

∫ t
0 x

α−1e−xdx denotes Euler's lower incomplete Gamma function. This
implies

A(q) := lim
h↓0

logmq(h)

log h
=


q

2
if q ≤ q∗

Dq + 1 if q ≥ q∗
, where q∗ :=

1

(1
2 −D)

. (B.2.4)

Remark B.2.4. We remark that the multiscaling is preserved also in the case in which τ0

is deterministic; such a choice in�uences only the behavior of the multiplicative constants
and not the exponent and only in the case q < q∗.
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Finally we prove the correspondent of Theorem B.1.3, i.e. the clustering of volatility.

Theorem B.2.5 (Clustering of volatility). The following relation holds as h ↓ 0, for all
t > s > 0:

Cov(|Ys+h−Ys|, |Yt+h−Yt|) =
4D

π
c e−λ|t−s|

(
λ1−2Dφλs(λ(t−s))+F (t, s)

)
h+o(h) , (B.2.5)

where
φy(x) := Cov

(
SD−1/2 ,

(
S + x

)D−1/2)
(B.2.6)

and S ∼ Exp(1) ∧ y and for every 0 < y < x

F (x, y) = e−λy

{
(y − τ0)D−

1
2

(
(x− τ0)D−

1
2 − E[(λ(x− y) + S)D−

1
2 ]λ

1
2
−D
)

(1− e−λy)

+ γ

(
1

2
+D,λy

)(
E[(λ(x− y) + S)D−

1
2 ]λ1−2D − (x− τ0)D−

1
2λ

1
2
−D
)}

(B.2.7)

B.3 Proof in the stationary setting

B.3.1 Di�usive scaling: proof of Theorem B.1.1

Since P (Nh ≥ 1) = 1 − e−λhO(h) as h ↓ 0, we may focus on the event {Nh = 0} =
{T ∩ (0, h] = ∅}, on which we have Ih = c((h − τ0)2D − (−τ0)2D), with −τ0 ∼ Exp(λ). In
particular,

lim
h↓0

Ih
h

= I ′(0) = (2D)
V 2λ2D−1

Γ(2D + 1)
(−τ0)2D−1 a.s. .

Since Xt+h −Xt ∼
√
IhW1, the convergence in distribution (B.1.1) follows:

Xt+h −Xt√
h

d−→ V λD−
1
2√

Γ(2D)
(−τ0)D−1/2W1 as h ↓ 0 .

Since tau0 ∼ Exp(λ) we obtain the thesis.
Next we focus on the case h ↑ ∞. Under the assumption E(σ2) < ∞, the random

variables {σ2
k−1(τk − τk−1)2D}k≥1 are independent and identically distributed with �nite

mean, hence by the strong law of large numbers

lim
n→∞

1

n

n∑
k=1

(τk − τk−1)2D = E[(τ1)2D] = λ−2D Γ(2D + 1) a.s. .

Plainly, limh→+∞Nh/h = λ a.s., by the strong law of large numbers applied to the random
variables {τk}k≥1.It follows easily that

lim
h↑∞

I(h)

h
= V 2 a.s. .

Since Xt+h −Xt ∼
√
IhW1, we obtain the convergence in distribution

Xt+h −Xt√
h

d−→ V W1 as h ↑ ∞ ,

which coincides with (B.1.3).
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B.3.2 Multiscaling: proof of Theorem B.1.2

Since we have stationary increments, i.e. Xt+h −Xt ∼
√
IhW1, we can write

E(|Xt+h −Xt|q) = E(|Ih|q/2|W1|q) = E(|W1|q) E(|Ih|q/2) = cq E(|Ih|q/2) , (B.3.1)

where we set cq := E(|W1|q). We therefore focus on E(|Ih|
q
2 ), that we write as the sum of

three terms, that will be analyzed separately:

E(|Ih|
q
2 ) = E(|Ih|

q
2 1{Nh=0}) + E(|Ih|

q
2 1{Nh=1}) + E(|Ih|

q
2 1{Nh≥2}) . (B.3.2)

For the �rst term in the right hand side of (B.3.2), we note that P (Nh = 0) = e−λh → 1
as h ↓ 0 and that Ih = c((h−τ0)2D−(−τ0)2D) on the event {Nh = 0}. Setting −τ0 =: λ−1S
with S ∼ Exp(1), we obtain as h ↓ 0

E(|Ih|
q
2 1{Nh=0}) = c

q
2 λ−Dq E

(
((S + λh)2D − S2D)

q
2
) (

1 + o(1)
)
. (B.3.3)

Recalling that q∗ := (1
2 −D)−1, we have

q T q∗ ⇐⇒ q

2
T Dq + 1 ⇐⇒ −1 T

(
D − 1

2

)
q .

As δ ↓ 0 we have δ−1((S+δ)2D−S2D) ↑ 2DS2D−1 and note that E
(
S(D− 1

2
)q
)

= Γ(1−q/q∗)
is �nite if and only if (D − 1

2)q > −1, that is q < q∗. Therefore the monotone convergence
theorem yields

for q < q∗ : lim
h↓0

E
((

(S + λh)2D − S2D
) q

2
)

λ
q
2 h

q
2

= (2D)q/2 Γ(1− q/q∗) ∈ (0,∞) . (B.3.4)

Next observe that, by the change of variables s = (λh)x, we can write

E
(
((S + λh)2D − S2D)

q
2
)

=

∫ ∞
0

((s+ λh)2D − s2D)
q
2 e−s ds

= (λh)Dq+1

∫ ∞
0

((1 + x)2D − x2D)
q
2 e−λhx dx .

(B.3.5)

Note that ((1 + x)2D − x2D)
q
2 ∼ (2D)

q
2x(D− 1

2
)q as x→ +∞ and that (D− 1

2)q < −1 if and
only if q > q∗. Therefore, again by the monotone convergence theorem, we obtain

for q > q∗ : lim
h↓0

E
(
((S + λh)2D − S2D)

q
2

)
λDq+1 hDq+1

=

∫ ∞
0

((1 + x)2D − x2D)
q
2 dx ∈ (0,∞) .

(B.3.6)
Finally, in the case q = q∗ we have ((1 + x)2D − x2D)q

∗/2 ∼ (2D)q
∗/2 x−1 as x→ +∞ and

we want to study the integral in the second line of (B.3.5). Fix an arbitrary (large) M > 0
and note that, integrating by parts and performing a change of variables, as h ↓ 0 we have∫ ∞
M

e−λhx

x
dx = − logMe−λhM + λh

∫ ∞
M

(log x) e−λhx dx = O(1) +

∫ ∞
λhM

log
( y

λh

)
e−y dy

= O(1) +

∫ ∞
λhM

log
(y
λ

)
e−y dy + log

(
1

h

)∫ ∞
λhM

e−y dy = log

(
1

h

) (
1 + o(1)

)
.
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From this it is easy to see that as h ↓ 0∫ ∞
0

((1 + x)2D − x2D)
q∗
2 e−λhx dx ∼ (2D)

q∗
2 log

(
1

h

)
.

Coming back to (B.3.5), noting that Dq + 1 = q
2 for q = q∗, it follows that

lim
h↓0

E
(
((S + h)2D − S2D)

q∗
2

)
λDq∗+1 h

q∗
2 log( 1

h)
= (2D)

q∗
2 . (B.3.7)

Recalling (B.3.1) and (B.3.3), the relations (B.3.4), (B.3.6) and (B.3.7) show that the �rst
term in the right hand side of (B.3.2) has the same asymptotic behavior as in the statement
of the theorem, except for the regime q > q∗ where the constant does not match (the missing
contribution will be obtained in a moment).

We now focus on the second term in the right hand side of (B.3.2). Note that, condi-
tionally on the event {Nh = 1} = {τ1 ≤ h, τ2 > h}, we have

Ih = c
(
(h− τ1)2D +

(
(τ1 − τ0)2D − (−τ0)2D

))
∼ c

(
(h− hU)2D +

((
hU +

S

λ

)2D

−
(
S

λ

)2D))
,

where S ∼ Exp(1) and U ∼ U(0, 1) (uniformly distributed on the interval (0, 1)) are
independent. Since P(Nh = 1) = λh+ o(h) as h ↓ 0, we obtain

E(|Ih|
q
2 1{Nh=1}) = λhDq+1 cE

[(
(1− U)2D +

((
U +

S

λh

)2D

−
(
S

λh

)2D) q
2
)]

. (B.3.8)

Since (u + x)2D − x2D → 0 as x → ∞, for every u ≥ 0, by the dominated convergence
theorem we have (for every q ∈ (0,∞))

lim
h↓0

E(|Ih|
q
2 1{Nh=1})

hDq+1
= λc

q
2 E
(
(1− U)Dq

)
= λc

q
2

1

Dq + 1
. (B.3.9)

This shows that the second term in the right hand side of (B.3.2) gives a contribution of
the order hDq+1 as h ↓ 0. This is relevant only for q > q∗, because for q ≤ q∗ the �rst
term gives a much bigger contribution of the order hq/2 (see (B.3.4) and (B.3.7)). Recalling
(B.3.1), it follows from (B.3.9) and (B.3.6) that the contribution of the �rst and the second
term in the right hand side of (B.3.2) matches the statement of the theorem (including the
constant).

It only remains to show that the third term in the right hand side of (B.3.2) gives a
negligible contribution. We begin by deriving a simple upper bound for Ih. Since (a+b)2D−
b2D ≤ a2D for all a, b ≥ 0 (we recall that 2D ≤ 1), when Nh ≥ 1, i.e. τ1 ≤ h, we can write

Ih = c

(
(h− τNh)2D +

Nh∑
k=2

(τk − τk−1)2D + (τ1 − τ0)2D − (−τ0)2D

)

≤ c

[
(h− τNh)2D +

Nh∑
k=2

(τk − τk−1)2D + τ2D
1

]
,

(B.3.10)
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where we agree that the sum over k is zero if Nh = 1. Since τk ≤ h for all k ≤ Nh, by the
de�nition (B.0.2) of Nh, relation (B.3.10) yields the bound Ih ≤ h2Dc(Nh + 1), which holds
clearly also when Nh = 0. In conclusion, we have shown that for all h, q > 0

|Ih|q/2 ≤ hDqc
q
2 (Nh + 1)q/2 . (B.3.11)

Consider �rst the case q > 2: we obtain

E
(
|Ih|q/2 1{Nh≥2}

)
≤ hDq c

q
2 E
(
(Nh + 1)q/2 1{Nh≥2}

)
. (B.3.12)

A corresponding inequality for q ≤ 2 is derived from (B.3.11) and the inequality (Nt +
1)q/2 ≤ Nt + 1:

E
(
|Ih|q/2 1{Nh≥2}

)
≤ hDqc

q
2 E
(
(Nh + 1) 1{Nh≥2}

)
. (B.3.13)

For any �xed a > 0, by the Hölder inequality with p = 3 and p′ = 3/2 we can write for
h ≤ 1

E
(
(Nh + 1)a 1{Nh≥2}

)
≤ E

(
(Nh + 1)3a

)1/3
P (Nh ≥ 2)2/3

≤ E
(
(N1 + 1)3a

)1/3
(1− e−λh − e−λhλh)2/3 ≤ (const.)h4/3 ,

(B.3.14)

because E
(
(N1 + 1)3a

)
< ∞ (recall that Nh ∼ Po(λ)) and (1 − e−λh − e−λhλh) ∼ 1

2(λh)2

as h ↓ 0. Then it follows from (B.3.12) and (B.3.13) and (B.3.14) that

E
(
|Ih|q/2 1{Nh≥2}

)
≤ (const.′)hDq+4/3 .

This shows that the contribution of the third term in the right hand side of (B.3.2) is always
negligible with respect to the contribution of the second term (recall (B.3.9)).

B.3.3 Decay of correlation: proof of Theorem B.1.3

Given a Borel set I ⊆ R, we let GI denote the σ-algebra generated by the family of random
variables (τk1{τk∈I})k≥0. Informally, GI may be viewed as the σ-algebra generated by the
variables τk for the values of k such that τk ∈ I. From the basic property of the Poisson
process, it follows that for disjoint Borel sets I, I ′ the σ-algebras GI , GI′ are independent.
We set for short G := GR, which is by de�nition the σ-algebra generated by all the variables
(τk)k≥0, which coincides with the σ-algebra generated by the process (It)t≥0.

We have to prove (B.1.6). Plainly, by translation invariance we can set s = 0 without
loss of generality. We also assume that h < t. We start writing

Cov(|Xh|, |Xt+h −Xt|)
= Cov

(
E
(
|Xh|

∣∣G) , E
(
|Xt+h −Xt|

∣∣G)) + E
(
Cov

(
|Xh|, |Xt+h −Xt|

∣∣G)) . (B.3.15)

We recall that Xt = WIt and the process (It)t≥0 is G-measurable and independent of
the process (Wt)t≥0. It follows that, conditionally on (It)t≥0, the process (Xt)t≥0 has
independent increments, hence the second term in the right hand side of (B.3.15) van-
ishes, because Cov(|Xh|, |Xt+h − Xt||G) = 0 a.s.. For �xed h, from the equality in law
Xh = WIh ∼

√
IhW1 it follows that E(|Xh||G) = c1

√
Ih, where c1 = E(|W1|) =

√
2/π.

Analogously E(|Xt+h −Xt||G) =
√

2/π
√
It+h − It and (B.3.15) reduces to

Cov(|Xh|, |Xt+h −Xt|) =
2

π
Cov

(√
Ih,
√
It+h − It

)
. (B.3.16)
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Recall the de�nition (B.0.2) of the variable It. We now claim that we can replace√
It+h − It by

√
It+h − It 1{T ∩(h,t]=∅} in (B.3.16). In fact we can write

It+h − It = c

(t+ h− τi(t+h))
2D +

i(t+h)∑
k=Nt+1

(τk − τk−1)2D − (t− τNt)2D

 ,

where we agree that the sum in the right hand side is zero if Nt+h = Nt. This shows that
(It+h−It) is a function of the variables τk with indexNt ≤ k ≤ Nt+h. Since {T ∩(h, t] 6= ∅} =
{τNt > h}, this means that

√
It+h − It 1{T ∩(h,t]6=∅} is G(h,t+h]-measurable, hence indepen-

dent of
√
Ih, which is clearly G(−∞,h]-measurable. This shows that Cov(

√
Ih,
√
It+h − It 1{T ∩(h,t]6=∅}) =

0, therefore from (B.3.16) we can write

Cov(|Xh|, |Xt+h −Xt|) =
2

π
Cov

(√
Ih,
√
It+h − It 1{T ∩(h,t]=∅}

)
. (B.3.17)

Now we decompose this last covariance as follows:

Cov
(√

Ih,
√
It+h − It 1{T ∩(h,t]=∅} = E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(h,t]=∅}

]
= E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(0,t+h]=∅}

]
+ E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(h,t]=∅}1{T ∩([0,h]∪(t,t+h]) 6=∅}

]
(B.3.18)

We deal separately with the two terms in the r.h.s. of (B.3.18). The �rst gives the dominant
contribution. To see this, observe that, on {T ∩ (0, t+ h] = ∅}

Ih = c
[
(h− τ0)2D − (−τ0)2D

]
and

It+h − It = c
[
(t+ h− τ0)2D − (t− τ0)2D

]
.

Since both c
[
(h− τ0)2D − (−τ0)2D

]
and c

[
(t+ h− τ0)2D − (t− τ0)2D

]
are independent of

{T ∩ (0, t+ h] = ∅}, we have

E
[(√

Ih − E
(√

Ih
))√

It+h − It 1{T ∩(0,t+h]=∅}

]
= E

[(√
c
√

(h− τ0)2D − (−τ0)2D − E
(√

Ih
))√

c
√

(t+ h− τ0)2D − (t− τ0)2D 1{T ∩(0,t+h]=∅}

]
= ce−λ(t+h)E

[(√
(h− τ0)2D − (−τ0)2D − E

(√
Ih
))√

(t+ h− τ0)2D − (t− τ0)2D

]
= ce−λ(t+h)

{
Cov

(√
(h− τ0)2D − (−τ0)2D,

√
(t+ h− τ0)2D − (t− τ0)2D

)
+

[
E

(√
(h− τ0)2D − (−τ0)2D

)
− E

(√
Ih
)]

E

(√
(t+ h− τ0)2D − (t− τ0)2D

)}
.

(B.3.19)
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Since δ−1((δ + x)2D − x2D) ↑ 2Dx2D−1 as δ ↓ 0, by monotone convergence we obtain

lim
h↓0

1

h
Cov

(√
c
√

(h− τ0)2D − (−τ0)2D,
√
c
√

(t+ h− τ0)2D − (t− τ0)2D

)
= 2DcCov

(
(−τ0)D−1/2, (t− τ0)D−1/2

)
= 2Dλ1−2DcCov

(
SD−1/2, (λt+ S)D−1/2

)
= 2Dλ1−2Dcφ(λt),

(B.3.20)

with S := λ(−τ0) ∼ Exp(1) and φ is de�ned in (B.1.7). Similarly

lim
h↓0

1√
h

E

(√
c
√

(t+ h− τ0)2D − (t− τ0)2D

)
=
√

2DE
(√

c(t− τ0)D−1/2
)
< +∞.

(B.3.21)
Therefore, if we show that

lim
h↓0

E

(√
Ih
h

)
=
√

2DE
(√

c(−τ0)D−1/2
)

(B.3.22)

using (B.3.19), (B.3.20), (B.3.21), we have

lim
h↓0

1

h
E
[(√

Ih − E
√
Ih

)√
It+h − It 1{T ∩(0,t+h] = ∅}

]
= 2Dλ1−2Dφ(λt) (B.3.23)

To complete the proof of (B.3.23), we are left to show (B.3.22). But this is a nearly imme-
diate consequence of Theorem B.1.2: indeed, using the fact that q∗ > 1,

E
√
Ih =

1

E
√
|W1|

E(|Xh|) =
C1

E|W1|
√
h+ o(

√
h) =

√
2DE

(√
c(−τ0)D−1/2

)√
h+ o(

√
h) .

The proof is now completed if we show that the second term in (B.3.18) is negligible,

i.e. it is o(h). By Cauchy-Schwarz inequality and the simple fact that
(√
Ih − E

√
Ih
)2 ≤

Ih + E(Ih)

E
[(√

Ih − E
√
Ih

)√
It+h − It 1{T ∩(h,t]=∅}1{T ∩((0,h]∪(t,t+h])6=∅}

]
≤
(

E

[(√
Ih − E

√
Ih

)2
(It+h − It)

]
P(T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅)

)1/2

≤ ( E [(Ih + E(Ih)) (It+h − It)] P(T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅))1/2

≤
(
2E

[
I2
h

]
P(T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅)

)1/2
=
(
2 E
[
I2
h

])1/2√
2λh .

(B.3.24)

By Theorem B.1.2, E
[
I2
h

]
is of order h2 if 4 < q∗, and of order h4D+1 if 4 > q∗, with a

logarithmic correction for q∗ = 4. In both cases
(
E
[
I2
h

])1/2√
2λh = o(h), and the proof is

completed.

B.4 Proof in the non-stationary setting

B.4.1 Di�usive scaling: proof of Theorem B.2.1

By (B.0.1) we can write

Yt+h − Yt = WIt+h −WIt
d
=
√
It+h − ItW1 (B.4.1)
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We know that P(Nt+h −Nt ≥ 1) = 1− e−λh = O(h)→ 0 as h ↓ 0, so we can focus on the
event {Nt+h = Nt}, on which we have

lim
h↓0

It+h − It
h

= I ′t =
V 2λ2D−1

Γ(2D)
(t− τNt)

2D−1 .

Note that (t− τNt)1{N(t)≥1} is distributed like (λ−1E)1{(λ−1E)≤t}, with E ∼ Exp(1), while
(t− τNt)1{N(t)=0} is distributed like (t− τ0) 1{(λ−1E)>t}. In conclusion,

(t− τNt)1{Nt≥1}
d
= λ−1Sλt,λτ0 , (B.4.2)

where we set Sb,a := (b− a)1{E>b} + E 1{E≤b}, as in the statement of Theorem B.2.1.

We now focus on the case h ↑ ∞. We have to study the convergence of

Yt+h − Yt√
h

=
WIt+h −WIt√

h
(B.4.3)

when h ↑ ∞. We have

It+h−It = c

(t+ h− τNt+h)2D + (τNt+1 − τNt)2D − (t− τNt)2D +

Nt+h∑
k=Nt+2

(τk − τk−1)2D

 .

The random variables ((τk − τk−1)2D)k≥Nt+2 are independent and identically distributed

with �nite mean, hence by the strong law of large numbers (since
τNt+1−τNt

n → 0,
t−τNt
n →

0and
t+h−τNt+h

n → 0 a.s.)

lim
n→∞

1

n

n∑
k=1

(τk − τk−1)2D = E[(τ1)2D] = λ−2D Γ(2D + 1) a.s. .

Plainly, limh→+∞Nh/h = λ a.s., by the strong law of large numbers applied to the random
variables {τk}k≥1. Recalling (B.0.2), it follows easily that

lim
h↑∞

It+h − It
h

= V 2 a.s. .

Since WIt+h −WIt
d
=
√
It+h − ItW1 n

WIt+h −WIt√
h

d−→ V W1 as h ↑ ∞ .

B.4.2 Multiscaling: proof of Theorem B.2.3

As in the proof of the stationary case we can write

E(|Xt+h−Xt|q) = E(|It+h− It|q/2|W1|q) = E(|W1|q) E(|It+h− It|q/2) = cq E(|It+h− It|q/2) ,
(B.4.4)
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where we set cq := E(|W1|q). We therefore focus on E(|It+h − It|
q
2 ), that we write as the

sum of three terms, that will be analyzed separately:

E(|It+h − It|
q
2 ) = E(|It+h − It|

q
2 1{Nt=Nt+h})

+ E(|It+h − It|
q
2 1{Nt+h=Nt+1}) + E(|It+h − It|

q
2 1{Nt+h−Nt≥2}) .

(B.4.5)

The analysis of the second and third term is exactly the same as the one in the stationary
setting, in particular the second term gives contribution 1

Dq+1h
A(q) only when q > q∗ (while

is negligible if q ≤ q∗), and the third is always negligible.
We can focus on the �rst term and we can rewrite it in the following way

E(|It+h−It|
q
2 1{Nt+h=Nt}) = E(|It+h−It|

q
2 1{Nt+h=0})+E(|It+h−It|

q
2 1{Nt+h=Nt≥1}) (B.4.6)

The �rst term is

E(|It+h − It|
q
2 1{Nt+h=0}) = c

q
2
(
(t+ h− τ0)2D − (t− τ0)2D

) q
2 P(Nt+h = 0) (B.4.7)

and so is asymptotic to

E(|It+h − It|
q
2 1{Nt+h=0}) ∼ c

q
2 (t− τ0)q(D−

1
2)(2D)

q
2h

q
2 e−λt , (B.4.8)

independently on the value of q. In particular it will be relevant only if q < q∗.
On the other hand, the second term is, since t− τNt ∼ Exp(λ) ∧ t

E(|It+h−It|
q
2 1{Nt+h=Nt≥1}) = c

q
2 λ−Dq E

(
((S+λh)2D−S2D)

q
2
)
(1−e−λt)

(
1+o(1)

)
. (B.4.9)

where S = Exp(1) ∧ λt (and in particular its distribution function is f(x) = e−x

1−e−λt ).
Observe that if q < q∗ using the same arguments as in the stationary case we obtain

for q < q∗ : lim
h↓0

E
((

(S + λh)2D − S2D
) q

2
)

λ
q
2 h

q
2

= (2D)q/2
1

1− e−λt
γ(1− q/q∗, λt) ∈ (0,∞) .

(B.4.10)
which together with (B.4.6) gives the thesis.

On the other hand observe that, by the change of variables s = (λh)x, we can write

(1− e−λt)E
(
((S + λh)2D − S2D)

q
2
)

=

∫ λt

0
((s+ λh)2D − s2D)

q
2 e−s ds

= (λh)Dq+1

∫ t
h

0
((1 + x)2D − x2D)

q
2 e−λhx dx

= (λh)Dq+1

∫ ∞
0

((1 + x)2D − x2D)
q
2 e−λhx1{x< t

h
} dx .

(B.4.11)

Note that ((1 + x)2D − x2D)
q
2 ∼ (2D)

q
2x(D− 1

2
)q as x→ +∞ and that (D− 1

2)q < −1 if and
only if q > q∗. Therefore, by the monotone convergence theorem, we obtain

for q > q∗ : lim
h↓0

E
(
((S + λh)2D − S2D)

q
2

)
λDq+1 hDq+1

=

∫ ∞
0

((1 + x)2D − x2D)
q
2 dx ∈ (0,∞) .

(B.4.12)
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Finally, in the case q = q∗ we have ((1 + x)2D − x2D)q
∗/2 ∼ (2D)q

∗/2 x−1 as x→ +∞ and
we want to study the integral in the second line of (B.4.11). Fix an arbitrary (large)M > 0
and note that as h ↓ 0 M < t

h , so we can write∫ t
h

M

e−λhx

x
dx =

∫ ∞
M

e−λhx

x
dx −

∫ ∞
t
h

e−λhx

x
dx

Now,integrating by parts and performing a change of variables, as h ↓ 0 the �rst integral
becomes∫ ∞
M

e−λhx

x
dx = − logMe−λhM + λh

∫ ∞
M

(log x) e−λhx dx = O(1) +

∫ ∞
λhM

log
( y

λh

)
e−y dy

= O(1) +

∫ ∞
λhM

log
(y
λ

)
e−y dy + log

(
1

h

)∫ ∞
λhM

e−y dy = log

(
1

h

) (
1 + o(1)

)
.

and in the same way the second becomes∫ ∞
t/h

e−λhx

x
dx = − log

t

h
e−λt + λh

∫ ∞
t/h

(log x) e−λhx dx

=

∫ ∞
λt

log
( y

λh

)
e−y dy − log

1

h
e−λt − log t e−λt

= +

∫ ∞
λt

log
(y
λ

)
e−y dy + log

(
1

h

)∫ ∞
λt

e−y dy log
1

h
e−λt − log t e−λt

= log

(
1

h

)
e−λt +O(1)− log

1

h
eλt +O(1) = O(1).

From this it is easy to see that as h ↓ 0∫ ∞
0

((1 + x)2D − x2D)
q∗
2 e−λhx 1{x< t

h
}dx ∼ (2D)

q∗
2 log

(
1

h

)
.

and so the thesis follows.

B.4.3 Decay of correlations: proof of Theorem B.2.5

The proof of the decay of correlation is also similar to the one in the stationary case: we
can use the same arguments, with just the change Ih  Is+h−Is, T ∩ (h, t] T ∩ (s+h, t],
T ∩ (0, t] T ∩ (s, t] and T ∩ ((0, h]∪ (t, t+h]) T ∩ ((s, s+h]∪ (t, t+h]) until equation
(B.3.18), where again we have two terms, with whom we will deal separately.

Cov
(√

Is+h − Is,
√
It+h − It 1{T ∩(s+h,t]=∅}

= E
[(√

Is+h − Is − E
(√

Ih
))√

It+h − It 1{T ∩(s+h,t]=∅}

]
= E

[(√
Is+h − Is − E

(√
Is+h − Is

))√
It+h − It 1{T ∩(s,t+h]=∅}

]
+ E

[(√
Is+h − Is − E

(√
Is+h − Is

))√
It+h − It 1{T ∩(s+h,t]=∅}1{T ∩((s,h]∪(t,t+h]) 6=∅}

]
(B.4.13)
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Again, using the same arguments as in the original proof, we can prove that the second term
in the r.h.s of (B.4.13) is negligible. On the other hand we observe that on {T ∩(s+h, t] = ∅}

Is+h − Is = c[(s+ h− τNs)2D − (s− τNs)2D] =Fs

and

It+h − It = c[(t+ h− τNs)2D − (t− τNs)2D] =Ft

and since both Fs and Ft are independent of {T ∩ (s+ h, t] = ∅}, we have

E
[
(
√
Fs − E(

√
Is+h − Is)

√
Ft1{T ∩(s+h,t]=∅}

]
= e−λ(t+h−s)E

[
(
√
Fs − E(

√
Is+h − Is)

√
Ft

]
= e−λ(t+h−s)E

[
(
√
Fs − E(

√
Is+h − Is)

√
Ft(1Ns=0 + 1Ns>0)

] (B.4.14)

We study the two cases separately: if Nt = 0 we have

E
[
(
√
Fs − E(

√
Is+h − Is)

√
Ft1Ns=0

]
= e−λsc

[√
(s+ h− τ0)2D − (s− τ0)2D

√
(t+ h− τ0)2D − (t− τ0)2D

]
−
√
c(t+ h− τ0)2D − (t− τ0)2DE[

√
Is+h − Is] .

(B.4.15)

Since δ−1((δ + x)2D − x2D) ↑ 2Dx2D−1 as δ ↓ 0, by monotone convergence and using the
results in (B.2.3) we obtain

lim
h→0

1

h
(B.4.15) = hc 2De−λs(t− τ0)D−

1
2

(
(1− e−λs)(s− τ0)D−

1
2 − λ

1
2
−Dγ

(
1

2
+D,λs,

))
(B.4.16)

where as before γ denotes the lower incomplete Gamma function.

On the other hand if Ns > 0 we have

E
[
(
√
Fs − E(

√
Is+h − Is)

√
Ft1Ns>0

]
= (1− e−λs)

[
Cov

(√
Fs,

√
Ft

)
+ E

[√
Fs − E(

√
Is+h − Is)

]
E(
√
Ft)

] (B.4.17)

where in this chase s − τNs ∼ Exp(λ) ∧ s. Using the usual asymptotics (δ + x)2D − x2D ↑
2Dx2D−1 as δ ↓ 0, we obtain

cE

[√
(s+ h− τNs)2D − (s− τNs)2D

]
E(
√

(t+ h− τNs)2D − (t− τNs)2D)

∼ c (2D)hE[(s− τNs)D−
1
2 ]E[(t− τNs)D−

1
2 ]

= c (2D)hE[(S)D−
1
2 ]E[(λ(t− s) + S)D−

1
2 ]λ1−2D

(B.4.18)
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where S ∼ Exp(1)∧ λs (and so in particular E[(S)D−
1
2 ] = 1

1−e−λsγ
(

1
2 +D,λs

)
). Moreover

we have

E(
√
Is+h − Is)E(

√
c((t+ h− τNs)2D − (t− τNs)2D))

∼ c(2D)hE[(λ(t− s) + S)D−
1
2 ]λ

1
2
−D
(
e−λs(s− τ0)D−

1
2 + λ

1
2
−Dγ

(
1

2
+D,λs

))
,

(B.4.19)

which combined with (B.4.18) gives

E

[√
c((s+ h− τNs)2D − (s− τNs)2D)− E(

√
Is+h − Is)

]
E(
√

c((t+ h− τNs)2D − (t− τNs)2D))

∼ c 2DhE[(λ(t− s) + S)D−
1
2 ]λ1−2De−λs

(
1

1− e−λs
γ

(
1

2
+D,λs

)
− (s− τ0)D−

1
2λD−

1
2

)
.

(B.4.20)

Finally the covariance term gives

lim
h↓0

1

h
Cov

(√
c
√

(s+ h− τNs)2D − (s− τNs)2D,
√
c
√

(t+ h− τNs)2D − (t− τNs)2D

)
= c 2DCov

(
(s− τNs)D−1/2, (t− τNs)D−1/2

)
= c 2Dλ1−2DCov

(
SD−1/2, (λ(t− s) + S)D−1/2

)
(B.4.21)

where, as usual S ∼ Exp(1) ∧ λs.
If now we combine everything together we obtain

(B.4.14) ∼ h e−λ(t−s) 2D c

{
e−λs(t− τo)D−

1
2 (s− τ0)D−

1
2 ()1− e−λs

− e−λs(t− τ0)D−
1
2λ

1
2
−Dγ

(
1

2
+D,λs

)
− e−λsE[(λ(t− s) + S)D−

1
2 ]λ

1
2
−D(s− τ0)D−

1
2

+ e−λsλ1−2D E[(λ(t− s) + S)D−
1
2 ]γ

(
1

2
+D,λs

)
+ (1− e−λs)λ1−2DCov

(
SD−1/2, (λ(t− s) + S)D−1/2

)}

= h e−λ(t−s)2D c e−λs

{
(s− τ0)D−

1
2

(
(t− τ0)D−

1
2 − E[(λ(t− s) + S)D−

1
2 ]λ

1
2
−D
)

(1− e−λs)

+γ

(
1

2
+D,λs

)(
E[(λ(t− s) + S)D−

1
2 ]λ1−2D − (t− τ0)D−

1
2λ

1
2
−D
)}

+h e−λ(t−s) 2D cλ1−2D Cov
(
SD−1/2, (λ(t− s) + S)D−1/2

)
(1− e−λs)

= h e−λ(t−s)2D c e−λs {(1) + (2)}+ h e−λ(t−s) 2D c (3)

(B.4.22)
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Observe that
e−λs {(1+)(2)} = F (t, s)

and
(3) = φλs(λ(t− s)

where φ and F were de�ned respectively in (B.2.6) and (B.2.7).
The only di�erence between (B.4.22) and (B.2.5) is a 2

π factor which is due to the fact
that

Cov(|Ys+h − Ys|, |Yt+h − Yt|) =
2

π
Cov(

√
Is+h − Is,

√
It+h − It) ,

which concludes the proof.

Remark B.4.1. From equation (B.4.22) we notice two facts:

• if s ↓ 0 then (B.4.22)
h → 0, since (1) and (3) go to 0 because appears a (1−e−λs) factor

in both of them, while (2) goes also to 0 because γ(α, δ)→ 0 when δ ↓ 0;

• if s ↑ ∞ we get the same result as in the stationary case: in fact F vanishes thanks to
the e−λs factor, while the random variable S ∼ Exp(1)∧λt converges to S′ ∼ Exp(1)
and, by dominate convergence

Cov(SD−
1
2 , (λ(t− s) + S)D−

1
2 )→ Cov((S′)D−

1
2 , (λ(t− s) + S′)D−

1
2 )
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