O
gy]
D
-
9]
—
G
I

©3 UNIVERSITA
== ONVTIN 1d

Evolutionary Inference of
Biological Systems Accelerated on
Graphics Processing Units

Marco S. Nobile

Ph.D. Program in Computer Science — XXVII Cycle

Dipartimento di Informatica, Sistemistica e Comunicazione

Universita degli Studi di Milano—Bicocca

Advisor: Prof. Giancarlo Mauri

October 2014

Abstract

In silico analysis of biological systems represents a valuable alternative and comple-
mentary approach to experimental research. Computational methodologies, indeed,
allow to mimic some conditions of cellular processes that might be difficult to dis-
sect by exploiting traditional laboratory techniques, therefore potentially achieving
a thorough comprehension of the molecular mechanisms that rule the functioning of
cells and organisms. In spite of the benefits that it can bring about in biology, the
computational approach still has two main limitations: first, there is often a lack of
adequate knowledge on the biological system of interest, which prevents the creation
of a proper mathematical model able to produce faithful and quantitative predictions;
second, the analysis of the model can require a massive number of simulations and
calculations, which are computationally burdensome. The goal of the present thesis
is to develop novel computational methodologies to efficiently tackle these two issues,
at multiple scales of biological complexity (from single molecular structures to net-
works of biochemical reactions). The inference of the missing data — related to the
three-dimensional structures of proteins, the number and type of chemical species
and their mutual interactions, the kinetic parameters — is performed by means of
novel methods based on Evolutionary Computation and Swarm Intelligence techniques.
General purpose GPU computing has been adopted to reduce the computational time,
achieving a relevant speedup with respect to the sequential execution of the same algo-
rithms. The results presented in this thesis show that these novel evolutionary-based
and GPU-accelerated methodologies are indeed feasible and advantageous from both

the points of view of inference quality and computational performances.

Acknowledgements

Tons of “thank you” go to Viola, for her love, support, and unwavering patience
during the last three (four?) years. I would like to express deep gratitude to Professor
Giancarlo Mauri, who has always been a caring and supportive supervisor. A huge
thank to Daniela Besozzi, for plenty of reasons: for her friendship, for the privilege of
her severe mentorship, for shaping me as a scientist, for changing me forever. Many
thanks go to Paolo Cazzaniga, for his strength, for the constant help and support,
for being the best co-worker I have ever had. Of course, two big thanks go to both
Professors Hitoshi Iba and Thomas LaBean, for allowing me to spend amazing days in
their research groups at the Tokyo University and North Carolina State University.
Many thanks to all the wonderful colleagues who helped me in those days: Alexandria,
Annica, Hasegawa-sensei, Jacob, Nicole, Peng, Shonosuke-san, and, last but not least,
Yuki-san (I owe you so much). T also want to send a huge “thank you” to Chie-san, JB,
Kei-san, Lydia, Oliver, and Rafaela, who turned my days in Tokyo into an unforgettable
experience. Many thanks to the people at DISCo, University of Milano-Bicocca, who
shared with me ideas, beers and nice talks during these 1000 days spent together. It is
a pleasure to take this occasion to thank all my co-authors and the scientists I have
met and been in contact with, especially at Vanderbilt University. I also want to thank
Professors Gabriella Pasi, Fabio Stella, Domenico Sorrenti and Giuseppe Vizzari for
their support, helpful suggestions and, in some occasions, that glimpse of additional
enthusiasm. Thanks to Davide and Simone for their friendly and precious support
during the last months. Thanks to my parents, for always supporting me and for not
freaking out when I decided to quit my job to pursue this crazy idea. Thanks to Mara
and Lorenzo, too, for their constant help and comprehension. Pixellated thanks go to
the 8-bit weirdos of Lack of Bits, Gabriele and Michele: those nights spent playing
together definitely helped me through this all. A huge thank to all my close friends,
for always being there, and to my beloved Alan and Melody.

A final thank to John Carpenter, for composing the outstanding soundtracks which

provided me with the energies to complete this final effort of my doctorate.

Table of contents

List of figures xi
List of tables XV
1 Introduction 1
I Theoretical Background 13
2 Modeling and simulation of biochemical systems 15
2.1 Modeling approaches L 15
2.2 Mechanistic modeling 18
2.2.1 Reaction-based modelso 18

2.2.2 Chemical Master Equation 20

2.2.3 Differential equations 20

224 S-systems 22

225 Petrinets 23

2.2.6 Other mechanistic modeling methods 26

2.3 Simulation methods 28
2.3.1 Deterministic simulation00 28

2.3.2 Stochastic simulation oL 31

2.3.3 Multi-scale modeling and simulation 36

3 Evolutionary Computation and Swarm Intelligence 39
3.1 Traditional optimization techniques 39
3.1.1 Simplex Method 39

3.1.2 Gradient Descent 41

3.1.3 Simulated Annealing 42

3.2 Evolutionary Computation 43

Table of contents

3.2.1 Genetic Algorithms 44

3.2.2 Evolution Strategy oL 47

3.2.3 Genetic Programming L0 49

3.2.4 Cartesian Genetic Programming 51

3.3 Swarm Intelligence 53
3.3.1 Hymenoptera-based SI techniques 53

3.3.2 Particle Swarm Optimization 54

3.4 Memetic approaches and open issues 56

4 General-purpose GPU computing 59
4.1 Nvidia CUDA 60
4.2 Random numbers generation in CUDA 64
4.3 Computational Biology and general-purpose GPU computing 65

II Novel Work 67
5 GPU-accelerated biochemical simulation 69
5.1 Deterministic biochemical simulation: cupSODA 70
5.1.1 GPU implementation of cupSODA 70

5.1.2 Results. 73

5.1.3 Discussion 76

D.2 7
521 The BCCmodel. 7

5.2.2 GPU implementation of coagSODA 80

52.3 Results. 82

5.3 Stochastic biochemical simulation: cuTaulLeaping 95
5.3.1 GPU implementation of cuTauleaping 95

532 Results. 105

5.3.3 Discussion 119

6 Parameter Estimation of biological systems 127
6.1 PE in stochastic models of cellular systems 130
6.1.1 Experimental data and simulated dynamics 130

6.1.2 The fitness function L 133

6.1.3 A multi-swarm structure for the PE problem 135

6.1.4 GPU implementation of cuPEPSO 136

6.2 Results. 137

Table of contents

6.2.1 Stochasticmodelso 137
6.2.2 PE methodology analysis 138
6.2.3 Computational results 149
6.3 Discussion 151
7 Reverse Engineering of biochemical systems 155
7.1 RE by means of CGP and PSO 157
7.1.1 Results. 163
7.1.2 Discussion Lo 168
7.2 RE by means of Evolutionary Petri Nets 170
7.2.1 Genetic operators 172

7.2.2 Toward the application of EPNs for the RE of reaction-based
models 178
8 Evolutionary Design of synthetic networks 183
8.1 RBMs of gene regulation oo 185
8.2 ED of GRMs by means of CGP and PSO 188
83 Results. 195
8.3.1 ED of synthetic circuits with two genes 195
8.3.2 ED of synthetic circuits with three genes 198
8.3.3 Computational results 202
8.4 Discussion 202
8.5 Future perspectiveso 204
9 Protein structure inference 207
9.1 The Molecular Distance Geometry Problem 208
9.2 Structure inference using a hybrid memetic algorithm 210
9.2.1 A Memetic Hybrid Methodology for MDGP: MemHPG 211
9.2.2 GPU implementation 217
9.23 Results. 219
10 Discussion 225
10.1 A critical discussion of the proposed methods 225
10.2 Automatization of inference and simulation methods 230
10.3 The issue of indistinguishability 232
11 Conclusions 235

X

Table of contents

Bibliography 241
IIT Appendix 275
A Reaction-based models of biological systems 277
A.1 Michaelis-Menten kinetics 277
A.2 Prokaryotic auto-regulatory gene networko 278
A.3 The Schlogl system 279
A.4 Blood Coagulation Cascade model 280
A5 Ras/cAMP/PKA pathway 287
B List of abbreviations 291
C List of symbols 295

List of figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
2.5
5.6
5.7

0.8

2.9

Thesis topics overview

Schematic overview of the main modeling approaches
Example of bistability
Example of Petrinet
Comparison of Fuler’s Method and RK4

Example of execution of the Simplex Method
Example of objective function with a local and a global minimum
Examples of multivariate bi-dimensional normal distributions

Trend of search terms about global optimization

Architecture of CUDA’s threads and memories hierarchies
Schematization of CUDA’s automatic scalability
Schematic description of the memory hierarchies in Fermi and Kepler

architectures

Example of ODEs encoding in cupSODA
Pseudocode of cupSODA’s parsing algorithm
Comparison between the running time of cupSODA and COPASI
Graphical representation of the Blood Coagulation Cascade model . . .
Dynamics of thrombin in physiological condition
Dynamics of fibrinogen in physiological condition
Plot of the clotting time according to PSA-1D over constant kyy of the
Blood Coagulation Cascade model
Plot of the clotting time according to PSA-1D over constant ko7 of the
Blood Coagulation Cascade model
Plot of the clotting time according to PSA-1D over constant ksg of the
Blood Coagulation Cascade model

X1

List of figures

5.10 Plot of the clotting time at different initial concentrations of factor VIII
of the Blood Coagulation Cascade model
5.11 Plot of the clotting time at different initial concentrations of factor IX
of the Blood Coagulation Cascade model
5.12 Plot of the clotting time at different initial concentrations of thrombin
of the Blood Coagulation Cascade model
5.13 Plot of the clotting time according to PSA-2D over reaction constants
ko7 and ksg of the Blood Coagulation Cascade model
5.14 Plot of the clotting time at different initial concentrations of Tissue
Factor and factor VIII of the Blood Coagulation Cascade model
5.15 Plot of the clotting time at different initial concentrations of Tissue
Factor and factor IX of the Blood Coagulation Cascade model
5.16 Comparison between the running time of coagSODA and COPASI . . .
5.17 Schematization of cuTauleaping workflow
5.18 Host-side pseudocode of cuTauleaping
5.19 Device-side pseudocode of kernel P1-P2 in cuTaulLeaping
5.20 Device-side pseudocode of kernel P3 in cuTauleaping
5.21 Device-side pseudocode of kernel P4 in cuTauLeaping
5.22 Schematization of the flattened representation of the stoichiometric
information in cuTauleaping
5.23 Comparison between the running time of cuTaulLeaping and COPASI
when executing different batches of stochastic simulations
5.24 Comparison of frequency distributions obtained with the XORWOW
and MRG32K3A random numbers generators
5.25 Plot of the frequency distribution of the molecular amount of molecular
species in the Schlogl model 0oL
5.26 Plot of a PSA-1D on the Schlégl model
5.27 Plot of a PSA-3D on the Schlégl model
5.28 Plot of a PSA-2D on the Ras/cAMP/PKA model
5.29 Comparison between the running times of cuTaulLeaping and COPASI,
when executing a PSA-1D of the Ras/cAMP/PKA model

6.1 Discrete-time target series exploited by cuPEPSO
6.2 Example of smoothed fitness landscape based on the MM model
6.3 Average best fitness of the best particles in cuPEPSO using different

values of the swarm size n on the Michaelis-Menten model

Xii

List of figures

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.1
7.2
7.3

7.4

7.5
7.6
7.7

8.1
8.2

8.3

Average best fitness of the best particles in cuPEPSO using different
values of the number of parallel stochastic simulations G on the Michaelis-
Menten modelo 142
Heatmaps of the impact of C,, and C,. on the estimation performances
on the Michaelis-Menten and prokaryotic gene network models 143
Average best fitness of the best particles in cuPEPSO, using different
values of the maximum velocity v;,., on the Michaelis-Menten model . 144

Positions of the 4* solutions in multiple runs of cuPEPSO, executed on

the MM model, using different values for v, - . - 145
Comparison of DTTS with the simulated dynamics of v* of the MM
model 147

Average best fitness of the best particles in cuPEPSO, using different
values of the swarm size n on the prokaryotic gene network model . . . 148
Average best fitness of the best particles in cuPEPSO, using different val-
ues of the number of parallel stochastic simulations G' on the prokaryotic
gene network modelo 149
Average best fitness of the best particles in cuPEPSO, using different

values of the maximum velocity v,,,, on the prokaryotic gene network

model 150
Comparison of DTTS with the simulated dynamics of 4* of the PGN

model 151
Pseudocode of cuREo 159
Comparison of a target network and the RBM produced by cuRE . . . 165

Comparison of the target time-courses of a target RBM and the simulated
dynamics of the RBN produced by cuRE 166

Fitness values of best solutions obtained by varying the dimensions of

the grid of functional nodes 167
Fitness values of best solutions obtained by varying the settings for p . 168
Example of crossover between two Resizable Petri Nets 174
Example of crossover breaking up one Resizable Petri Net 175
Pseudocode of cuGENEDo 192
Fitness value of the best solution of the ED process obtained by varying

the settings for n, in CGP oL 196
Fitness value of the best solution of the ED process obtained by varying

the settings for pin CGPo 197

List of figures

8.4 Comparison of the target dynamics with the simulated dynamics of the

GRM inferred by cuGENEDo 198
8.5 Interaction diagram of the best GRM 17, inferred by cuGENED 199
8.6 Comparison of the target dynamics with the simulated dynamics of the

GRM inferred by ctuGENED 200
8.7 Interaction diagram of the best GRM 73, inferred by cuGENED 201
9.1 Schematization of MemHPG’s two-layer hybrid methodology 211
9.2 Example of the attraction/repulsion mechanism of the modified PSO in

MemHPG 213

9.3 Example of calculation of the aggregate attractor in a 3-atoms system . 214

9.4 Example of two proteins characterized by the same atom-atom distances

but different chirality 216
9.5 Schematization of MemHPG GPU implementation. 218
9.6 Average smallest error computed over 30 runs of MemHPG varying the

coefficient ¥ 220

9.7 Average smallest error computed over 30 runs of MemHPG varying the
adaptive velocity factoraoo 221
9.8 Average smallest error of solutions to the 3-peptide molecule obtained
in different optimization processes with incomplete information of inter-
atomic distances Lo 222
9.9 Examples of the structural alignment between structures available in
the PDB database and protein structures reconstructed by MemHPG . 224

11.1 A schematization of some future developments of this thesis 237

Xiv

List of tables

4.1

5.1
5.2
5.3

5.4

9.5
0.6

7.1
7.2

9.1

Al
A2
A3
A4
A5
A6
AT

A8
A9

Relevant functionalities introduced by different CUDA architectures . .

Comparison of computational time of COPASI and coagSODA
Comparison of computational time of COPASI and cuTaulLeaping . . .
Running times of cuTauLeaping for the simulation of randomly generated

synthetic models
Kolmogorov-Smirnov statistics of the frequency distribution of species

X in the Schlogl modelo o
Computational performance of cuTauLeaping using different RNGs

cuTaulLeaping data structures residing in high-performance memories

Biochemical reaction networks tested for RE

Effect of the mutation operator on a Resizable Petrinet.
Results of the reconstruction of protein structures with MemHPG . . .

Michaelis-Menten model
Initial molecular amounts of the Michaelis-Menten model
Prokaryotic auto-regulatory gene network model
The Schlégl modelo
Initial molecular amounts of the Schloégl model
Blood Coagulation Cascade model
Initial concentrations of molecular species of the Blood Coagulation

Cascade model
Mechanistic model of the Ras/cAMP/PKA pathway
Initial molecular amounts of the Ras/cAMP/PKA model

XV

61

107

110

112

. 113
. 122

164
177

222

Chapter 1

Introduction

In Silico Biology (ISB) pursues the investigation of biological systems by means of
mathematical modeling and computational analysis methods, providing an alternative
approach for a thorough comprehension of living organisms, that could be unfeasible
by means of classic laboratory experiments only [24, 59]. ISB represents a conceptual
container for a variety of disciplines, having different goals and working on biological
systems of different granularity. The subjects of this thesis belong to three specific
areas: Systems Biology (SYSB), Synthetic Biology (SB) and Computational Structural
Biology (CSB).

SYSB mainly focuses on the investigation of cellular systems, trying to characterize
their emergent properties, considering a holistic point of view based on the interactions
among their fundamental components [8]. One of the foremost goals of SYSB is to
provide a computational way to understand the subtle mechanisms of biochemical
pathways, which are difficult to dissect by means of experimental research. The main
concept behind SYSB is the definition of rigorous mathematical representations of
complex dynamical non-linear systems, described at a desired level of detail, laying the
foundations for the development of simulators and computational analysis methods.
Once that a model has been validated through ad hoc laboratory experiments, that is,
its simulated dynamics is reliable and characterized by predictive power, it can be used
to investigate and analyze the behavior of the system in different conditions, which
might be hard to analyze with laboratory experiments. This allows to understand
its functioning and its response to environmental or structural perturbations [144],
paving the way to novel methodologies for the control of the system, with possible
breakthroughs in bio-medical or bio-engineering applications. In addition, SYSB can
aid to formulate new hypotheses, leading to novel laboratory experiments and to further

research directions [162], in an iterative cycle of model refinements [59].

1

Introduction

SB exploits an approach similar to SYSB to the final goal of designing and con-
structing novel, modified and improved biological circuits or synthetic organisms, which
are able to perform a specific task [23]. The idea of a circuit-like connectivity between
biological parts was postulated for the first time nearly 50 years ago [217]. The proof
of concept that a computing-like behavior could be applied to biological systems was
the design of the first synthetic gene networks, realized by using engineering-based
methodologies in the first years of the XXI century [84, 94]. Following this strategy, in
many cases SB works by purposely modifying the genome of existing organisms [127],

to obtain a new dynamic behavior from an altered gene regulatory network (GRN).

The goal of CSB is the determination and characterization of the structural aspects
of biomolecules by means of computational methodologies [179]. This approach paves
the way to the development of novel methods, able to exploit structural information
to determine the affinity between molecules, ultimately leading to the comprehension
of the functional relationships of proteins [240]. This knowledge can be exploited, for
instance, to establish their involvement in biological processes, making them attractive

targets for drug design [329].

The research activity in these three strongly interdisciplinary fields — SYSB,
SB and CSB — requires the synergistic effort of multiple areas including biology,
bioinformatics, biotechnology, chemistry, mathematics, medicine, physics, probability,
statistics and, of course, computer science. The outcome of these joint efforts is a
model of the system under investigation, defined at the proper level of detail. For
instance, a network of interacting biomolecules in the case of SYSB; a GRN to be
engineered in the case of SB; a protein described as a collection of atoms and their
spatial positions in the case of CSB. In this context, Figure 1.1 provides an overview
of the topics discussed in the present thesis (graphically represented as hexagons)
and their conceptual interconnections. Specifically, light blue hexagons represent the
main biological disciplines involved in this work: the ISB macro-area, SYSB, SB, and
CSB. Four methodologies are here presented to create, extend, simulate and analyze

mathematical models in all these areas.

For the specific case of SYSB and SB, this thesis relies on the conceptual framework
of mechanistic modeling, whose aim is to give a detailed description of the molecular
mechanisms that rule the interactions between the components of biological systems
[24, 50]. Mechanistic models are assumed to represent the most likely candidates
to achieve a detailed comprehension of biological systems, since they can lead to
quantitative predictions of cellular dynamics. In particular, in this thesis, all the tools
developed in the context of SYSB and SB are based on reaction-based models (RBMs),

2

Mathematical
optimization

Computational Distance
Parameter
structural geometry R
. estimation
biology problem

Gene

Differential
equations

Automatic

design regulatory

networks

Reverse
engineering

Stochastic
processes

Synthetic
biology

Petri nets

53;‘:)2’:‘5 GPGPU perfsrlﬁwhance Systems In silico
i i biolo
generation computing computing i ey

Figure 1.1: Overview of the topics discussed in this thesis and their conceptual intercon-
nections. Different colors represent the main methodologies that are exploited: green for
the modeling approaches of biochemical systems (Chapter 2) and blue for their simulation
methods (Chapter 5); purple for Evolutionary Computation and Red for Swarm Intelligence
(Chapter 3), which are the basis for the estimation and optimization methods; yellow for
general-purpose GPU computing (Chapter 4), the high-performance parallel architecture
used to accelerate the proposed methodologies. This thesis presents methods for parameter
estimation of stochastic systems (Chapter 6), reverse engineering of biochemical pathways
(Chapter 7), the automatic design of gene regulatory networks (Chapter 8) and the inference
of the tertiary structure of proteins according to partial Nuclear Magnetic Resonance data
(Chapter 9). The goal of this work is to provide fast and reliable computational tools to
achieve the aforementioned tasks, by integrating all these disciplines in the context of in
silico biological investigation (light blue).

one of the possible formalisms used to define mechanistic models. The reasons behind

this design choice are numerous:

o RBMs are immediately readable and comprehensible. This is particularly relevant
when the modeling and inference tools are used by experimental biologists, who are
usually not familiar with alternative and more complex mathematical formalisms,

like differential equations;

Introduction

o RBMs can be easily modified or extended during further model refinements (e.g.,
after the experimental validation), in order to modify either the set of chemical

species or the set of reactions defined in the initial formalization;

o the same RBM can be exploited to carry out both stochastic and deterministic
simulations of the system dynamics, by exploiting the definition of propensity
functions, or the conversion of the set of reactions into the corresponding system

of differential equations, according to the mass-action kinetics [59, 101].

In order to perform such simulations and analyses, though, the mechanistic model
must be entirely and properly specified. Namely, the model needs to contain all the
information about the chemical reactions, the kinetic parameters, the chemical species
and the initial conditions (e.g., molecular amounts) of the system. All these information
should be as precise as possible, since biochemical models can be characterized by a high
sensitivity to the change of even a single kinetic parameter, or the initial state of the
system. Thus, high quality kinetic parameters are mandatory to produce quantitative
simulations of biochemical systems, turning models into powerful predictive tools.

Unfortunately, kinetic parameters are often missing in literature because it is
generally difficult, expensive or even impossible to measure them directly, a circumstance
that leads to the definition of the Parameter Estimation problem (PE) [211]. A naive,
yet very diffused, approach to tackle this problem is to manually tune the parameters
in the model [344]: an error-prone and time-consuming procedure. An alternative
approach consists in exploiting some automatic methodology, which identifies a model
parameterization able to reproduce the system dynamics. This problem is challenging,
especially when some chemical species are present in low amounts, a condition that
leads to the emergence of stochasticity and noisy behavior. A further challenge of
the PE problem consists in a proper use of data that are typically measured during
laboratory experiments. In biochemical assays, for instance, a small set of sparsely
sampled discrete time-series of the chemical species involved in the system is derived,
usually executed in different initial conditions (e.g., different nutrients, temperature,
etc.) and replicated a certain number of times.

The PE problem assumes that the model of the biochemical process is known,
which is not always the case for biological systems that are still lacking an in-depth
characterization at the molecular level [16, 74]. When the domain knowledge is
insufficient to build a complete model of the biochemical system of interest, a Reverse
Engineering (RE) methodology can be employed to infer the missing reactions. Simple

interaction networks can be inferred by means of correlation-based methods [16, 43] in

4

which some perturbations of the system (e.g., variation of the concentrations) can be
used to calculate correlation coefficients and entropy-based mutual information values,
which are exploited to build a putative interaction network. Then, the network is
simplified and pruned by identifying and removing indirect interactions. Unfortunately,
even though these methodologies can be applied to large-scale systems, interaction
networks have limited applicability in SYSB since they do not allow quantitative
simulations. As a matter of fact, the only information provided by these networks
concerns the chemical species involved in the system and their mutual interactions,
without any information about stoichiometry or kinetic parameters. Thus, the RE
of mechanistic models is a complex task which, to some extent, “contains” the PE

problem.

Seen from a different perspective, the goal of SB is complementary to the RE
problem: instead of reverse engineering the behavior of an observable biochemical
system, it deals with the development of a novel synthetic system characterized by
an arbitrarily chosen dynamics [239]. Differently from RE, though, the synthetic
system, able to perform a specific task, is the target of the design and does not exist in
nature yet. For this reason, the problem is further complicated by the implicit lack of
knowledge about the chemical species (i.e., species not observable in laboratory, hence
not belonging to the potential set of targets species, like the intermediate molecular
complexes) that are necessary to build a network able to produce the expected dynamics.
This thesis describes an automatic method — able to create models of GRNs performing
a specific task — not requiring any assumption about the number and type of these

unknown chemical species, which represents an absolute novelty in the field.

The inference of the tertiary structure of proteins (i.e., their three-dimensional
shape) is a particularly complex topic. These structures can be inferred with multiple
approaches, exploiting a variety of input data [73]. In this thesis, this problem is faced
by relying on the available information about inter-atomic distances only. This is called
the Molecular Distance Geometry Problem (MDGP) [65]. MDGP becomes particularly
challenging in the case of incomplete inter-atomic distances, which is typical of data
obtained by means of Nuclear Magnetic Resonance (NMR) experiments [360]. In this
case, the problem is NP-hard! as demonstrated by Saxe et al. [299] by reducing a
1-dimensional version of the MDGP to the SUBSETSUM problem [219].

A common trait of all the aforementioned problems is that the inference of the

missing knowledge can be reduced to an optimization problem. In such strategy, a

!That is, at least as hard as problems solvable in polynomial time on a non-deterministic Turing
machine.

Introduction

search space of the feasible solutions is defined according to the characteristics and the
constraints of the problem. The search space is then algorithmically explored, looking
for the optimal solution which best fits the target data and minimizes the “difference”
between the simulation outcomes and the experimental data. Unfortunately, the search
spaces of biological problems are generally huge, multi-modal, noisy and non-linear
[59], so that traditional optimization techniques like the Simplex Method or Gradient

Descent cannot be employed.

In general, all the optimization problems discussed in this thesis are known to have
a relevant difficulty [211, 299], potentially belonging to the NP-hard class. To tackle
such complexity, the optimization strategies in this thesis rely on a set of bio-inspired
meta-heuristics®. Specifically, the methods employed in this work are inspired by
Darwinian evolution (i.e., Evolutionary Computation [69], EC) and by the emergent

intelligence of groups of organisms (i.e., Swarm Intelligence [158], SI).

Both approaches rely on the possibility of quantifying the “goodness” of each
candidate solution of the optimization problem, by means of a fitness function. In the
case of EC methods, a population of candidate solutions adapts as a consequence of an
evolutionary process, which exploits mechanisms for selection, mutation and crossover.
By iteratively applying these genetic operators, the population converges to an optimal
solution with respect to the defined fitness function. Differently from EC, SI relies on
the intelligence emerging from the collective effort of simple agents, able to explore the
search space and share the information inside the group, thus providing an effective

means for the optimization.

EC and SI techniques have different characteristics and are suitable for specific
problems. Specifically, some evolutionary techniques like Genetic Algorithms and
Genetic Programming are generally used to optimize problems whose solutions can be
encoded with discrete representations, while SI techniques like Bee Colony Optimization
or Particle Swarm Optimization are generally used for real-valued problems. Some
problems, though, can be represented by means of a combination of these elements.
For instance, BRMs are composed of chemical reactions with discrete stoichiometric
coefficients and real-valued kinetic parameters; protein structures can be defined as
discrete vectors of atoms, all characterized by real-valued (relative) positions. Even
though evolutionary algorithms can be extended to perform the co-evolution of discrete
and real-valued elements (e.g., by using the so-called ephemeral constants [289]), in

this work it is shown that EC and SI can be combined, in order to create hybrid

2Meta-heuristics are methodologies for the solution of a computational problem (e.g., optimization)
which make no assumptions about it, so that they can be applied to any problem.

6

“super-algorithms” tackling multiple problems at once and taking the best of these two
worlds.

Both EC and SI approaches rely on a randomly created population of candidate-
solutions, exploring the search space driven by the fitness function. Since this function
is generally based on the simulation outcome of the candidate solution, these ap-
proaches are computationally burdensome. Nevertheless, all the fitness evaluations are
independent, so that a parallel architecture can be employed to reduce the running
time. Among the possible alternatives, all the methods presented in this thesis were
designed to exploit the general-purpose GPU (GPGPU) computing. The GPGPU
computing is a novel paradigm which provides a low-cost, energy-efficient means to
access tera-scale performances on common workstations (and peta-scale performances®
on GPU-equipped supercomputers [72]), obtained by leveraging the powerful parallel
capabilities of modern video cards.

In this thesis, GPU-powered biochemical simulators (both deterministic and stochas-
tic) were designed to accelerate the computational methodologies developed for PE,
RE and design of synthetic circuits. These simulators represent valuable tools for
the investigation of biochemical systems, and they are vital for the feasibility of the
optimization algorithms, since they strongly reduce the computational effort due to the
fitness evaluations. As a matter of fact, the reduction of the simulation time allowed
by the GPU acceleration permits a deeper investigation of cellular systems, not only
for the solution of PE, RE and ED problems. Indeed, to gain novel insights into the
functioning of a biological system under physiological or perturbed conditions, the
application of many computational methods requires the execution of a large number
of simulations. Examples of time consuming tasks, relying on a massive number of
simulations, are parameter sweep analysis [235] or sensitivity analysis [49]. Thanks
to the GPU implementations presented in this thesis, researchers can perform this
large amount of simulations on a local workstation, without the need for traditionally
large, expensive and dedicate high-performance computing infrastructures (e.g., CPUs
clusters, GRID).

3Tera- and peta-scale refer to computing systems whose peak performances reaches one teraflop
and petaflop, respectively. They correspond to 10'? and 10'® floating point operations per second.

Introduction

This Ph.D. thesis consists of two parts: Part I, which provides the necessary theoretical
background; Part II, which introduces the novel work developed during the three years
of my doctorate program.

Part I starts with Chapter 2, where the rationale behind the use of mechanistic
modeling as the foundation for the whole work is explained in details. Chapter 3
provides a summary of the most widespread optimization methodologies, focusing on
EC and SI techniques. Chapter 4 introduces the GPGPU computing and, specifically,
the CUDA architecture exploited throughout the whole work.

Part II begins with Chapter 5, which introduces three GPU-powered biochemical
simulators exploited by the inference methodologies. Specifically, Section 5.1 deals
with the development of a deterministic biochemical parallel simulator based on mass-
action kinetics named cupSODA; Section 5.2 presents an extended version of the
previous simulator, which allows to consider a different type of kinetics (namely, Hill
kinetics), to massively simulate a model of the blood coagulation cascade; finally,
Section 5.3 describes the development of cuTauleaping, a stochastic simulator of
biochemical systems based on the tau-leaping algorithm. cuTauleaping represents
the basis for cuPEPSO, a PE methodology based on SI, described in Chapter 6.
Chapter 7 introduces cuRE, a PE methodology relying on cupSODA and combining
EC and SI. An automatic methodology for the design of synthetic biological circuits,
named cuGENED, is discussed in Chapter 8. Chapter 9 introduces MemHPG,
a hybrid memetic algorithm combining EC and SI, able to tackle the MDGP with
incomplete information. As a conclusion of the work, Chapter 10 discusses the
strenghts, drawbacks and potential improvements of the methodologies presented in
this thesis, while Chapter 11 concludes with a final overview and future developments.

This thesis also contains three Appendices. Appendix A presents different RBMs
of biochemical systems, used throughout the whole thesis to test the proposed method-
ologies. Appendix B reports a comprehensive list of all the acronyms used in the
thesis, while Appendix C provides the reader with a complete list of the symbols

used in the formalizations, with a brief explanation of their semantics.

Scientific production

Journal papers

« Nobile M.S., Cazzaniga P., Besozzi D., Cipolla D., Mauri G.
Parameter Estimation on Graphics Processing Units: a Multi-swarm
Approach for Stochastic Cellular Systems
Submitted to IEEE Transactions on Evolutionary Computation, 2014

o Cazzaniga P., Damiani C., Besozzi D., Colombo R., Nobile M.S., Gaglio D.,
Pescini D., Molinari S., Mauri G., Alberghina L., Vanoni M.
Computational Strategies for a System-level Understanding of Metabolism
Accepted to Metabolites, 2014 (under revision)

o Nobile M.S., Cazzaniga P., Besozzi D., Pescini D., Mauri G.
cuTauLeaping: a GPU-powered Tau-leaping Stochastic Simulator for
Massive Parallel Analyses of Biological Systems
PLOS ONE, Volume 9, Issue 3: €91963, 2014

« Cazzaniga P., Nobile M.S., Besozzi D., Bellini M., Mauri G.
Massive Exploration of Perturbed Conditions of the Blood Coagula-
tion Cascade through GPU Parallelization
BioMed Research International, Volume 2014: Article ID 863298, 2014

« Nobile M.S., Cazzaniga P., Besozzi D., Mauri G.
GPU-accelerated Simulations of Mass-action Kinetics Models with
cupSODA
The Journal of Supercomputing, Volume 69, Issue 1: pp. 17-24, 2014

o Bellini M., Besozzi D., Cazzaniga P., Mauri G., Nobile M.S.
Modeling and Simulation and Analysis of the Blood Coagulation Cas-
cade Accelerated on GPU
Egyptian Computer Science Journal, Volume 37, Issue 7: pp. 10-23, 2014

Conference proceedings

« Nobile M.S., Citrolo A.G., Cazzaniga P., Besozzi D., Mauri G.
A Memetic Hybrid Method for the Molecular Distance Geometry

Problem with Incomplete Information

9

Introduction

Proceedings of the 2014 TEEE Congress on Evolutionary Computation
(CEC2014), Beijing (China), published by IEEE, pp. 1014—1021, 2014

« Nobile M.S.
Evolutionary Inference of Biochemical Interaction Networks Acceler-
ated on Graphics Processing Units
Proceedings of the 11th International Conference on High Performance Comput-
ing & Simulation 2013 (HPCS 2013), Helsinki (Finland), published by IEEE, pp.
668-670, 2013

« Nobile M.S., Besozzi D., Cazzaniga P., Mauri G.
The Foundation of Evolutionary Petri Nets
Proceedings of the 4th International Workshop on Biological Processes & Petri
Nets (BioPPN 2013), a satellite event of PETRI NETS 2013 (G. Balbo and M.
Heiner, eds.), CEUR Workshop Proceedings, Volume 988, pp. 60-74, 2013

o Nobile M.S., Besozzi D., Cazzaniga P., Mauri G., Pescini D.
Reverse Engineering of Kinetic Reaction Networks by Means of Carte-
sian Genetic Programming and Particle Swarm Optimization
Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC2013),
Cancun (Mexico), published by IEEE, Volume 1, pp. 1594-1601, 2013

« Nobile M.S., Besozzi D., Cazzaniga P., Mauri G., Pescini D.
cupSODA: a CUDA-Powered Simulator of Mass-action Kinetics
Proceedings of the 12th International Conference on Parallel Computing Tech-
nologies (PaCT), Saint Petersburg (Russia). V. Malyshkin (Ed.). Lecture Notes
in Computer Science. Vol. 7979, pp. 344-357, 2013

o Nobile M.S., Besozzi D., Cazzaniga P., Mauri G., Pescini D.
A GPU-Based Multi-Swarm PSO Method for Parameter Estimation in
Stochastic Biological Systems Exploiting Discrete-Time Target Series
In 10th European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Computational Biology, EvoBIO 2012, Malaga (Spain),
Proceedings. M. Giacobini, L. Vanneschi, and W. Bush (Eds.). Lecture Notes in
Computer Science. Volume 7264, pp. 74-85, 2012

10

Book chapters

« Nobile M.S., Cipolla D., Cazzaniga P., Besozzi D.
GPU-powered Evolutionary Design of Mass-action Based Models of
Gene Regulation

In Evolutionary Algorithms in Gene Regulatory Network Research, H. Iba, N.
Noman (Eds.), John Wiley & Sons, (2014, in press)

Posters and abstracts

o Besozzi D., Nobile M.S., Cazzaniga P., Cipolla D., Mauri G.
From the Inference of Molecular Structures to the Analysis of Emer-
gent Cellular Dynamics: Accelerating the Computational Study of
Biological Systems with GPUs
Proceedings of the NETTAB 2014 Workshop: from Structural Bioinformatics to
Integrative Systems Biology, Torino (Italy), October 15-17, pp. 88-90, 2014

o Bellini M., Besozzi D., Cazzaniga P., Mauri G., Nobile M.S.
Simulation and Analysis of the Blood Coagulation Cascade Acceler-
ated on GPU
Proceedings of 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP 2014), Torino (Italy), published by IEEE,
pp. 590-593, 2014

o Caravagna G., Cazzaniga P., Nobile M.S., Pescini D., Re A.
Enhancing Simulation of Chemical Reactions at Mesoscales
BITS 2014 - 11th Annual Meeting of the Bioinformatics Italian Society, Rome
(Italy), February 26-28, 2014

o Besozzi D., Caravagna G., Cazzaniga P., Nobile M.S., Pescini D., Re A.
GPU-powered Simulation Methodologies for Biological Systems
In A. Graudenzi, G. Caravagna, G. Mauri, M. Antoniotti (Eds.): Wivace 2013
Italian Workshop on Artificial Life and Evolutionary Computation, Electronic

Proceedings in Theoretical Computer Science, pp. 93-97, 2013

e Besozzi D., Cazzaniga P., Colombo R., Mauri G., Nobile M. S., Pescini D.
Accelerating the Computational Analysis of Biological Systems by

Means of Graphics Processing Units

11

Introduction

ICSB 2013 - 14th International Conference on Systems Biology, Copenhagen
(Denmark), 2013

e Besozzi D., Colombo R., Cazzaniga P., Nobile M. S., Pescini D., Mauri G.
A GPU-powered Computational Analysis of PCNA Ubiquitylation
Processes Involved in UV-induced DNA Lesions Bypass
ICSB 2013 - 14th International Conference on Systems Biology, Copenhagen
(Denmark), 2013

o Cazzaniga P., Colombo R., Nobile M.S., Pescini D., Mauri G., Besozzi D.
GPU-powered Sensitivity Analysis and Parameter Estimation of a
Reaction-based Model of the Post Replication Repair Pathway in Yeast

Proceedings of the 10th International Workshop on Computational Systems Biol-
ogy (WCSB 2013), Tampere (Finland), p. 109, 2013

o Nobile M.S., Besozzi D., Cazzaniga P., Mauri G., Pescini D.
Estimating Reaction Constants in Stochastic Biological Systems with
a Multi-swarm PSO Running on GPUs
Proceedings of the 14th International Conference on Genetic and Evolutionary
Computation Conference Companion. ACM New York, NY, USA, GECCO
Companion 12, pp. 1421-1422, (2012)

12

Part 1

Theoretical Background

13

Chapter 2

Modeling and simulation of

biochemical systems

According to the system-level perpective of Systems Biology [8], in order to have a
general outlook of the phenomenon of interest it is useful to represent the biological
system by means of a proper mathematical formulation, able to integrate the differ-
ent kinds of data obtained from laboratory experiments. An essential advantage of
mathematical models is that they can help to formulate in vivo-testable hypotheses.
Therefore, there is the need for models allowing the analysis of regulatory features,

giving predictive power to post-genomic data.

2.1 Modeling approaches

Biochemical systems can be described at different levels of detail, and their properties
can be simulated and analyzed using a variety of computational techniques according
to the purpose of the study, starting from the identification of a specific biological
problem that requires — or might benefit from — a complementary analysis based on
experimental investigations, mathematical modeling and computational methods. The
scientific question that motivates the development of a model represents the essential
key in designing the most appropriate modeling and computational workflow. The

choice of the proper modeling technique depends on the following factors:

o the purpose of the model and the information that we expect to collect from in

silico analyses;

« the availability and quality of data about the components of the biochemical

system and their interactions.

15

Modeling and simulation of biochemical systems

These factors implicitly determine the proper level of abstraction for the model
to be defined. In particular, they will bring to the definition of coarse-grained (e.g.,

interaction-based or constraint-based) or fine-grained (e.g., mechanism-based) models.

Interaction-based and constraint-based models can facilitate the identification of
pivotal components or modules of the system under investigation, although they neglect
most of the quantitative and kinetic properties of its components and interactions (e.g.,
biochemical reactions). The mechanism-based modeling, on the other hand, has the
greatest predictive capability concerning the functioning of the system at molecular
level, but has limited applicability since it requires detailed kinetic information about
the interaction between the components of the system. A schematic overview of the
main modeling approaches (interaction-based, constraint-based, mechanism-based) and

their respective features is given in Figure 2.1.

The interaction-based approach relies on the definition of an interaction graph in
which the nodes represent the chemical species and the edges connect two nodes that
are known to have some kind of interaction. Such methodology allows a large-scale
modeling of a biochemical systems (e.g., genome-wide) thanks to the development of
high-throughput technologies able to generate an unprecedented wealth of quantitative
data about living systems [317]. Despite this remarkable extension and complexity,
the analysis of interaction graphs is generally limited to topological characteristics like
degree distribution, clustering coefficient, shortest paths or network motifs. This type
of analysis allows to determine the main features of the structural organization of the
network at the large-scale level, to understand the underlying processes at the basis of
the evolution of the structure itself [184] and can provide insights about the sources of

robustness and redundancy in the biochemical network [21].

A further class of modeling techniques, conceptually close to interaction-based
models, is represented by Bayesian Networks (BANs) [251]. BANs are directed acyclic
graphs, whose vertexes represent random variables and arcs represent conditional
dependencies. Altough BANs are powerful means to represent probabilistic relationships
between actors of a biochemical system (e.g., genes and their mutual regulations),
their applicability is limited because they do not allow to model loops and feedback

mechanisms [35].

By including additional information to the bare network structure it is possible to
build constraint-based models, which permit the exploration of a the set of allowable flux
distributions (i.e., flows of metabolites [248]). Stoichiometry is the easiest information
that can be added (see Section 2.2.1 for further information), although by itself may not

be enough to fully determine the feasible states of the system. Further constraints used

16

2.1 Modeling approaches

Computational demand
Quantitative models

Network size
Qualitative models

INTERACTION-BASED CONSTRAINT-BASED MECHANISM-BASED

S|apow 3409

Genome-wide

Large-scale Large-scale Small-scale
Top-down Top-down Bottom-up
Static Steady-state Dynamic
Qualitative Quantitative Quantitative
No time No time Continuous/discrete time
No stoichiometry Stoichiometry Stoichiometry
No parameters No parameters Fully parameterized
No compartments Compartmental Compartmental
No diffusion No diffusion Well-stirred/diffusion

Figure 2.1: Schematic overview of the main modeling approaches for biological systems,
together with their principal characteristics and differences. Moving from the coarse-grained
(interaction-based, constraint-based) to the fine-grained (mechanism-based) approach, models
vary with respect to: (i) the size of the system, defined in terms of the number of components
and respective interactions included in the model, which decrease from genome-wide to core
models; (i7) the computational costs required for the analysis of the model, which increase from
the analysis of the topological properties of the network typical of interaction-based models,
to the study of flux distributions typical of constraint-based models, to the investigation of the
system dynamics typical of mechanism-based models; (iii) the nature of the computational
results together with the predictive capability, which changes from qualitative to quantitative
while moving from interaction-based models (characterized by a high level of abstraction) to
mechanism-based models (fully parameterized and describing the system at the level of the
functional chemical interactions). Figure adapted from [50].

to limit the space of solutions may include thermodynamic constraints (e.g., regarding
the reversibility of a reaction) or transcriptomic and enzyme capacity constraints.
Various techniques allow to investigate the feasible flux distributions at steady-state
within a network, including Extreme Pathway Analysis [267, 301], Elementary Mode
Analysis [335], Flux Balance Analysis [248]. Since the constraints on fluxes are generally
linear equations, the problem of identifying the most feasible or optimal state can be
formulated as a Linear Programming problem and solved using one of the available

computational approaches, like the Simplex Method described in Chapter 3.

Finally, mechanism-based models describe the system at the level of functional
biochemical interactions, thus they have a higher predictive capability with respect to

the other modeling approaches. For this reason, mechanistic modeling is considered

17

Modeling and simulation of biochemical systems

the most likely candidate to achieve a detailed comprehension of biological systems
[50], since it can lead to quantitative predictions of cellular dynamics, thanks to its
capability to reproduce the temporal evolution of all molecular species occurring in
the model. Nonetheless, the computational complexity of the simulation and analysis
of such models increases with the size (in terms of components and interactions) of the
systems, limiting the feasibility of this approach. Moreover the usual lack of quantitative
parameters (e.g., kinetic constants, initial molecular concentrations of the species)
and the partial lack of knowledge about the molecular mechanisms, sometimes due to
the difficulty or impossibility to perform ad hoc experiments, represent further limits
to a wide applicability of this modeling approach. All these problems — simulation
performances, parameter estimation, and reverse engineering — are among the subjects

of the present thesis work.

A mechanistic model of a biochemical system can be defined by using various
mathematical formalisms, for instance reaction-based models, differential equations,
S-systems, and Petri nets. All these formalisms, and the relative simulation techniques,

will be described in detail in the following sections.

2.2 Mechanistic modeling

In this thesis, given a biological system denoted by 2, its biochemical reactions are
assumed to obey the mass-action kinetics (MAK) [59], except where stated otherwise.
MAK is a fundamental and empirical law governing biochemical reaction rates: it
states that, in a diluted solution, the rate of an elementary reaction (i.e., a reaction
with a single mechanistic step) is proportional to the product of the concentration of its
reactants raised to the power of the corresponding stoichiometric coefficient [59, 226].
MAK is the most general framework for the description of biochemical kinetics, and
it represents the basis of the modeling, simulation and inference tools presented in
this thesis. In addition, since no diffusion processes will be considered in what follows,
the biochemical systems are assumed to be well-stirred, at thermal equilibrium and

characterized by a fixed volume.

2.2.1 Reaction-based models

Given a biochemical system €2, a mechanistic reaction-based model (RBM) is defined

by specifying a set of N chemical species S = (Si,...,Sy), involved in a set of M

18

2.2 Mechanistic modeling

chemical reactions R = (Ry,..., Ry) of the form:
k;
Rj3&j1'51+...+a]’N'SN—>B]’1‘Sl+...+6jN'SN, (21)

where ai;, 5;; € N are the stoichiometric coefficients of R;, and k; € RT is the kinetic
constant associated to R;. The species occurring on the left-hand (right-hand) side of
R; are called reagents (products, respectively). This formalization defines a network 7
of interacting chemical species.

Reactions Ry, ..., Ry implicitly define two matrices, MA, MB € N**¥ having
aj; and fj; as elements, respectively. z;(t) € N denotes the number of molecules of
species S; present in at time ¢, so that x = x(t) = (z1(t),...,zn(t)) represents the
state of the system at time t. M'V denotes the state change matrix associated to system,
defined as MV = MB — MA. Each row of this matrix, MV; = v, = (vj1,...,Vjn),
is a state change vector that consists of elements v;; = 3;; — a;i, vj; € Z, representing
the stoichiometric change of species S; due to reaction R;.

Besides MV, it is possible to define a supplementary state change matrix MV,
where vj; = 0 for each S; € F, for a given F C & that is composed by the molecular
species whose amounts do not change over time; the subset F can be used to model a
continuous “feed” of molecules into the system. This condition is useful to mimic, for
instance, the non-limiting availability of some chemical resources, or the execution of in
vitro buffering experiments, in which an adequate supply of some species is introduced
in © in order to keep their quantity constant [58].

If aj; =0 forall i = 1,..., N, then R; is called a source reaction (denoted as
() — products); on the contrary, if 8;; = 0 for all i« = 1,..., N, then R; is called a
sink or degradation reaction (denoted as reagents — ()). Obviously, reactions in the
form a;; = 0 and f;; =0 for all i = 1,..., N (that is, reactions equivalent to 0 — 0)
are not considered. Reactions of the form R; : a;S; — ,5;, for any «o; and f;, are
considered meaningless, since they correspond to unfeasible biochemical processes
where «; molecules of species S; are converted into 3; molecules of the same species.

The amount of chemicals occurring in a RBM can be given either as numbers
of molecules or as concentrations. RBMs are generally exploited for the stochastic
modeling of biological systems and, in such a case, the state of the system is represented
by a vector of integer values corresponding to the exact molecular amount of chemical
species. In these models, the value k; in Equation 2.1 is generally denoted by c;
and represents the stochastic constant associated to the reaction, that is, a real
valued parameter encompassing the physical and chemical properties of R; [100]. The

fundamental hypothesis of the stochastic formulation of chemical kinetics states that

19

Modeling and simulation of biochemical systems

the average probability of reaction R; to occur in the interval (¢,¢ + dt) is exactly
c;dt. The probabilities of all reactions can be exploited to calculate a trajectory of the
system, using one of the stochastic simulation algorithms described in Section 2.3.2.

Appendix A contains examples of biochemical models formalized by means of RBMs.

2.2.2 Chemical Master Equation

If the biochemical system (2 is investigated by means of a stochastic approach, it can be
modeled with the Chemical Master Equation (CME), which describes the probability
distribution function associated to 2 [339].

Specifically, the probability P(x,t|xq, %), i.e., the probability that the system will
be in state x at time ¢ starting from state x, at time ¢y, can be calculated by means of
the following Master Equation:

P M
W = 3 [a;(x — 1) P(x — vj, t|x0, to) — a;(x) P(x, tx0, to)],

7=1

where v; is the state change vector of reaction R; formalized in the previous section.
Even though the CME allows an exact derivation of the probability P(x,t) for

an arbitrary couple of initial state and time ¢, its analytical solution is generally

untractable (see Section 2.3.2).

2.2.3 Differential equations

The traditional mechanistic modeling and simulation approach consists in defining a
system of coupled Ordinary Differential Equations (ODEs), which describe the rate
of change of each chemical species involved in the system. For instance, the following

reversible reaction, which involves three chemical species S7, S; and S3
kg
S1+ Sy ‘k:\ Sg (22)

can be modeled, by assuming MAK, as the following system of coupled ODEs:

AL = —ky[S1][Se] + ki [Ss)
ol = g [S1][Se] + ki [S]
d[Ss]

= ky[S1][Sa] — kx[Ss]
where [-] denotes the concentration of the chemical species.

20

2.2 Mechanistic modeling

ODE models in the form described above can be generalized by means of Reaction
Rate Equations (RREs) [14]. Let S;(t) denote the concentration of the i-th species at

time t. If we assume M reactions involving N chemical species, then

dsS;
dt

M
= ZVjiaj(S,kj), for i =]., e ,N,
j=1

where a; is the propensity of reaction R;, a function of reactants concentrations
(contained in the state vector S) and the kinetic parameters of the reaction itself.
For instance, in the case of Equation 2.2, the propensity of the forward reaction
according to the MAK is equal to —k[S1][S2], since it involves S} and S, as reactants.
It is worth noting that ODE-based models are not limited to MAK, but can exploit
different kinetics like Hill functions, Michaelis-Menten kinetic [226], or any arbitrary

mathematical function describing a plausible kinetic behavior.

Even though ODEs provide a sound mathematical framework, they represent
an approximation of the system, since their simulation (performed using numerical
integration algorithms) does not consider the stochasticity that usually characterizes
biochemical systems [355]. Indeed, a fundamental aspect that should be considered in
the definition of mathematical models of biological systems concerns the experimental
evidences that cellular regulation networks — in particular those characterized by low
quantities of some molecular species — are often affected by noise [85]. The randomness
at the molecular scale can induce stochastic phenomena at the macromolecular scale,
leading to non deterministic behaviors. The classical approaches relying on ODEs are
not suitable to capture the effects of stochastic processes; in this context, a typical
example regards the bistability phenomenon (one example is provided in Figure 2.2),

that can be effectively investigated by means of stochastic approaches [115].

Stochastic Differential Equations (SDEs), like the Chemical Langevin Equations
(CLEs) [103], allow to explicitly extend the rate equations with noise terms, in order
to produce simulated dynamics of the system that are more adherent to the biological

reality.

CLEs themselves represent an approximation of the dynamics of the system that
is feasible for situations where the concentration of chemical species, given a specific
reaction volume, roughly corresponds to a large number of molecules. In such a case,

the time evolution of the system is modeled as
M
x(t+7) =x(t) + > _viN(a;(x(t))7, a;(x(t))7),
j=1

21

Modeling and simulation of biochemical systems

800 T T T T

700

600

500

400

X [molecules]

300 Iy

200

100

0 5 10 15 20 25
time [a.u.]

Figure 2.2: Example of the non-suitability of ODE-based simulation in the case of systems
characterized by bistability. The figure compares the outcome of a deterministic simulation
(black line) and the dynamics of stochastic simulations (colored dotted lines) of the Schlogl
model (see Appendix A). This simple biochemical system is characterized by bistability, that
is, it has two equilibrium states which can be reached from the same initial condition. Whilst
stochastic simulation correctly reproduces this phenomenon, ODEs can only collapse into
one of the two states, starting from the chosen initial condition..

where x(t) denotes the state of the system at time ¢ (e.g., the vector of species
concentrations) and N (u, o) corresponds to a normally distributed random variable
with mean p and variance o?.

When the number of reactions occurring in a time interval 7 is small, or the amount
of molecules is in the order of hundreds or less, CLEs are no longer meaningful and
reliable. Different approaches should be preferred, like the RBMs described in Section
2.2.1.

2.2.4 S-systems

S-systems represent an approximate ODE-based modeling formalism which exploits

power-law functions, so that a biochemical system is represented a system of coupled

22

2.2 Mechanistic modeling

non-linear differential equations [297] in the form:

ds; > Gij Al hij
j=1 7=1

where N is the number of components and .5; is the amount of the i-th chemical species
or component of the biological system; ®; and W, are the rate constants. Terms g;;
(hi;) are the kinetic orders representing the strength of the influences that increase
(decrease) the amount of S;, respectively.

These models can provide a good compromise between accuracy and mathematical
flexibility: despite the simplifications, S-systems are still rich enough to capture the
dynamics and the mechanisms of biochemical systems [239]. They are largely exploited
for the modeling and investigation of gene expression [239, 347]: in such models, S;
denotes the expression level of gene ¢, while strengths represent the regulation exerted

by the rest of the gene network on gene 1.

2.2.5 Petri nets

Petri Net (PN) is a modeling formalism introduced by Petri [256] for the modeling of
distributed, asynchronous and concurrent systems [223]. A PN is defined as a weighted,
directed, bipartite graph consisting of two kinds of nodes: the nodes representing the
state (or conditions) of the system, called places and denoted by circles, and the nodes

representing transitions (or events) between places, denoted by rectangles. Nodes are

Figure 2.3: A Petri Net composed of four places (p1,p2,ps, p4) and two transitions (¢1,t2).
The weights on the arcs from places to transitions represent the minimum number of tokens
required for the transition to be enabled. Since place p; contains 2 tokens while ps contains 1
token, only transition ¢ is enabled and available for firing. On the contrary, the pre-condition
for transition to is not verified, because at least 2 tokens are needed in place ps. The weight
on the arcs from a transition (place) to a place (transition) represent the number of tokens
that will be added to (subtracted from) that place as a consequence of the firing of the
transition.

23

Modeling and simulation of biochemical systems

interconnected by directed arcs; an arc can only connect a place to a transition and
vice versa, i.e., arcs cannot connect two places or two transitions. In standard place-
transition PNs, each place can contain a discrete and positive number of marks, which
are called tokens. Figure 2.3 shows an example of a PN with four places (p1, p2, p3, p1)
and two transitions (t1,). Places p; and p3 have two and one tokens, respectively.

PNs are extensively exploited for the simulation and analysis of the structural and
behavioral properties of complex systems. Basic notions and notations of PNs can be
found in [191]. Formally, a PN is a 5-tuple (P, T, F, W, M) where:

o P={p1,....pm} is a finite set of places;

T ={ty,...,t,} is a finite set of transitions, such that PNT = {);

F C(PxT)U(T x P) is the set of arcs;

e W :F — Nis a weight function, which associates a non-negative integer value

to each arc;

e My : P — N is the initial state of the net, called the initial marking.

The marking M € N™ of a PN represents its state and M, is the number of tokens in
place p; € P,i=1,...,m. A place p € P is said input of a transition ¢ € T if there is
an arc from p to t, that is, (p,t) € F; p € P is said output of t € T if there is an arc
from ¢ to p, that is, (¢,p) € F.

The preset (postset) of a transition ¢ is the set of its input places and is denoted as
t ={p € P|(p,t) € F'} (respectively, t = {p € P|(t,p) € F}). Presets and postsets
are similarly defined for places: *p = {t € T|(t,p) € F'} and p* = {t € T'|(p,t) € F}.
When PNs are used to model real systems, transitions represent possible events that
involve the connected places. In this sense, places represent conditions for the firing
of transitions and, in particular, the input places are called pre-conditions, whilst the
output places are called post-conditions.

A transition ¢t € T is enabled if its pre- and post-conditions are verified. The
pre-condition for ¢ is verified if, for each input place p € *t, M, > w(p,t), where w(p,t)
is the weight of the arc from p to t. Symmetrically, the post-condition for ¢ is verified
if, for each output place p € t*, M, +w(t,p) < K(p), where K (p) is called the capacity
of place p. A PN in which there are no post-conditions is referred to as an infinite
capacity net [223].

When a transition is enabled, it can fire. When a transition is fired, it changes the
amount of tokens inside both input and output places according to the transition rule:

w(p,t) tokens are removed from each p € *¢, while w(t, p’) tokens are added to each

24

2.2 Mechanistic modeling

p' € t*. The marking M of a PN changes in time as a consequence of the firing of
transitions, which happens in a complete non-deterministic fashion: any of the enabled
transitions can fire in any moment, stated that each firing is a completely atomic event.

Because of their bipartite graph structure, PNs offer an ideal conceptual framework
for the modeling of biochemical networks [53] defined as a set of reactions in the form
of Equation 2.1. To this aim, a transformation of a network 7 into a corresponding
PN (and vice versa) needs to be defined. Briefly, a mapping ¢¥s : S — P can be
used to associate the species to the places of a PN, where the transitions represent
the chemical reactions (i.e., ¥, : R — T') and where the weights correspond to the
stoichiometry of the reagents and products of each reaction (i.e., Yreqe : aji = Wi(pi, t;),
Yprod © Bji = W(tj,p;)). According to these mappings, it is straightforward to show
that the PN on the left in Figure 2.3 represents the following set of reactions:

. R1151—>52;

. R212SQ+53—>S4.

Extensions and Properties of PNs

PNs can be easily extended to support continuous places [10], stochastic behavior [152]
and functional transitions [206]. Thus, they represent a versatile approach for the
modeling of a wide spectrum of biochemical systems, allowing both qualitative and
quantitative analysis [194]. In addition, it is possible to exploit traditional PN analysis
methods to determine properties of a PN with a specific biological interpretation [53].

Examples of such properties are:

o boundedness: independently from the assignment of My, the number of tokens in
one place p is limited to a maximum value: in a metabolic network this means

that metabolite p cannot accumulate;

o liveness: a transition t is [ive if it can always fire, meaning that the associated
reaction can always occur in the system. A PN is said [ive if all transitions are

live;

o deadlock freeness: a PN has no deadlocks if in any reachable marking M at least

one transition can fire;

» reachability of a marking M: there exists a time evolution of the system from M,
to M. This means that a specific state of the biochemical system can be reached

from the initial conditions;

25

Modeling and simulation of biochemical systems

e P-invariants are sets of places whose weighted sum of tokens remains constant
throughout the evolution of the net. These sets can be interpreted as conservation

relations;

o T-invariant: a firing sequence that does not change the marking. They correspond

to cyclic behaviors of the system.

Both liveness and deadlock-freeness are structural properties, even though they depend
on the initial marking M,. One example is the glycolytic pathway, in which two ATP
molecules that are involved in the upstream reactions of the metabolic cascade are
responsible for the production of four ATP molecules downstream the whole pathway.
Such biochemical system is deadlock-free as long as in the initial marking there are at
least two tokens in the place associated to ATP [366]. In general, the same consideration
applies to any auto-catalytic reaction, which cannot be enabled without any initial

tokens.

2.2.6 Other mechanistic modeling methods

For the sake of completeness, additional mechanism-based modeling approaches are
reviewed in this section, although not employed in this thesis.

A first extension of RBMs is the rule-based modeling, which can be exploited to
overcome the combinatorial complexity due to multiple protein-protein interactions,
which can cause an explosion of the number of intermediate complexes and chemical
reactions [134]. In the rule-based approach, molecules are represented by objects
with extended characteristics, so that reactions can be defined as rules on patterns
of objects instead of specific chemical species, reducing the complexity of the model
[135]. Rule-based models can be simulated by re-expanding the system by means of an
explicit enumeration of all the chemical species and reactions [207], which can be huge
and difficult to simulate. Alternatively, they can be simulated by using “network-free”
Monte Carlo methods [362] which explicitly represent every molecule that is present in
the system. Of course, the latter approach is not feasible for systems characterized by
a large number of molecules, because of its prohibitive spatial complexity. A possible
solution to this problem is the use of “hybrid” particle-counters approach, in which
the chemical species that exist in large numbers are represented by normal variables
instead of particles [60].

A further extension of the approaches described so far is the spatial modeling, which
no longer considers the system as well-stirred but explicitly models reaction-diffusion

mechanisms happening inside the reaction volume. Spatial models can be realized

26

2.2 Mechanistic modeling

by means of differential equations. More specifically, Partial Differential Equations
(PDEs) are exploited to model the diffusion of molecules into a finite number of
subvolumes, which collectively represent the reaction space of the biochemical system
Q. It is important to underline that the smaller the subvolumes, the more realistic
but computationally expensive the simulation. PDEs are strictly deterministic, thus
they do not allow to consider the intrinsic stochasticity of cellular systems, which has
deep implications when then the amount of molecules is very small (e.g., transcription

factors in the nucleus).

In spatial stochastic modeling, the state of the system is defined by the copy number
of each chemical species in each subvolume, and the state change considers both the
chemical reactions (transforming the species) and the diffusion reactions between
neighboring volumes. Simulation of spatial stochastic models can be performed by
algorithms like the Next Subvolume Method (NSM) [83].

Reaction-diffusion systems can also be modeled by means of Cellular Automata
(CA) [350]. In this discrete-time/discrete-space formalism, reactions and diffusion
mechanisms are modeled as sets of probabilistic update rules, which describe the
update of the state of each automaton (e.g., a vector of molecules amounts) according
to its current state and the state of its neighbors. Although CA have been used
to perform quantitative investigations [356], lattice size and neighborhood geometry
(e.g., square, hexagonal, trigonal) can have a relevant impact to the outcome of the

simulation [310] and make this approach difficult to validate.

Another approach for the formalization of spatial systems is Agent-Based modeling
(ABM). In such methodology, each molecule in the system is explicitly represented by
an agent, which is characterized by a well determined spatial positioning. According
to a set of rules, agents move in the space; the proximity to other agents causes their
interaction and the change of state of the system. ABM can be unsuitable for the
simulation of large-scale biochemical systems, since the computational complexity
largely increases with the number of molecules. Moreover, since ABM is based on
hypothetical rules of interaction, they may not represent the best option to investigate

patterns and analyze emergent properties [12].

Modeling by means of w-calculus is an alternative mechanistic non-spatial method-
ology, based on Process Algebra [215], a formal language originally developed to model
concurrent computational systems exchanging messages (e.g., mobile telephones). In
this formulation, processes represent molecules and communication defines chemical

interactions. Regev et al. showed that m-calculus is a suitable methodology for mod-

27

Modeling and simulation of biochemical systems

eling various biochemical mechanisms [275] (e.g., transcriptional mechanisms, signal
transduction, metabolic pathways).

A completely different modeling approach — which neglects both the spatiality
and the dynamics of the system — is represented by Boolean Networks (BONs). This
formalism, introduced by Kauffman for the modeling of gene expression networks [154],
relies on a discrete and finite set of boolean variables (e.g., a gene and its activation
state), each of which has a boolean activation function taking as input the state of a
subset of the other variables (e.g., the activation states of other genes). This description
defines the topology of a graph, in which nodes are the variables and arcs describe the
input connections. The massively parallel and synchronous update of the variables,
according to the respective activation functions and input states, allows to simulate the
system. Even though the possibility to set a gene’s state to false allows to perform in
silico knock-out experiments, the outcome of the simulation of BONs is not quantitative.
Moreover, given a BON characterized by N nodes, the space of the possible states
is 2V, so that the dynamics of the simulation is necessarily periodic. Nevertheless,
BONSs allow the large-scale investigation of biochemical systems [4] from the points of
view of both graph and dynamic systems theories (e.g., attractors, basins of attraction,

reachability).

2.3 Simulation methods

Once a biochemical system is modeled using one of the aforementioned mechanistic
approaches, its dynamic behavior can be investigated by using a simulation methodology
that is associated to the chosen modeling formalism.

It is worth outlining here that, in order to perform the simulation of a mechanistic
model, it is not sufficient to describe the system as a simple interaction network. The
simulation techniques (both deterministic and stochastic) described in the following
sections assume that a proper kinetic parameterization and the initial state of

the system are known, and specified as part of the model.

2.3.1 Deterministic simulation

The simulation of biochemical systems modeled by systems of ODEs can be performed
by means of an ODE solver. By providing an initial state of the system, along with a
set of kinetic constants for the ODEs, it is possible to describe the temporal evolution

of the system by using any of the existent ODEs numerical integration algorithms.

28

2.3 Simulation methods

The most straightforward numerical algorithm for solving ODE systems is Euler’s
method (EM), an iterative algorithm defined by mathematician Euler in 1768 [41]. In
EM, the differential equation is seen as a formula to calculate the slope of the tangent
line to the unknown curve defined by the set of ODEs. More precisely, considering
y'(t) = f(t,y(t)), given the initial point y(¢y) and a step size A, we can exploit the

ODE to calculate the slope of the curve in each point starting from the previous point:

Yn+1 = Yn + Af(tna yn)a

where y, = y(t,). Euler’s method can be derived from the Taylor expansion of a

function y around a point ty, ignoring the quadratic and higher-order terms:
1
y(to + A) = y(to) + Ay'(to) + §A2y"(to) +0(A%).

Thus, EM is a first-order approximation method, whose error at a given time ¢ is O(A?)
(Figure 2.4).

180

e—e EMA=2
—e EMA=1
o—e RK4 A=2
- - Target function

160f

1401

120f

100}

801

601

401

201

Figure 2.4: Visualization of the error of EM and RK4 methods due to the approximation,
when solving y' = 32/2, (0) = 0. The two curves of EM were calculated with A = 2
(red line) and A = 1 (green line); RK4 uses A = 2 (blue line). In the EM, the error is
O(A?), so that the approximation improves as the time step gets smaller and smaller, with
a computational complexity scaling proportionally with A. In the case of RK4, even with
A = 2, the error is smaller than EM, representing a better approximation of the target curve.

29

Modeling and simulation of biochemical systems

Runge-Kutta methods

In order to mitigate the error of EM, at the beginning of 1900 mathematicians Runge
and Kutta introduced a family of methods extending the idea at the basis of EM [41].

One example is the midpoint method, which performs a two-stage calculation:

1 1
Pt =+ AF (a4 38, g0+ 50 1)) (23)

In Equation 2.3, the slope is calculated twice: the first time to determine the slope of
the curve from t,, to t, + A; the second time, this value is exploited to calculate the
slope at the midpoint ¢, + %A, which is finally used to determine the value of point
Yn+1- This modified EM gives a final error of order O(A?).

The most popular Runge-Kutta algorithm is called RK4. RK4 is an extension of

the midpoint method and it is based on the calculation of the following quantities:

hl = f(tnayn)

hy = f(tn+%ayn+%h1)
hy = f(tn + %7 Yn + %h@)
ha = f(ta+ A yn + Ahg).

Then, the new point vy, is calculated as the weighted average of quantities hq, hs, b3
and hy:

A
Ynt1 = Yn + E(hl + 2hy + 2h3 + hy).

RK4 is a fourth-order method whose final error is O(A*), which produces an improved

approximation of the unknown curve with respect to EM (Figure 2.4).

LSODA

Despite the remarkable quality of the derived solutions and its implementation sim-
plicity, RK4 may be unfit for the simulation of some classes of biochemical systems.
Specifically, it is not efficient for models characterized by stiffness, that is, two well-
separated dynamical modes, determined by fast and by slow reactions, the fastest of
which is stable [105].

To date, one of the most efficient algorithms to integrate a system of ODEs is the
Livermore Solver of Ordinary Differential Equations (LSODA) [257], a solver able to
automatically recognize stiff and non-stiff systems, and to dynamically switch between

the most appropriate integration procedure: Adams’ method in the absence of stiffness,

30

2.3 Simulation methods

and the Backward Differentiation Formulae (BDF) otherwise. In particular, LSODA
initially assumes a non-stiff problem and dynamically monitors data in order to switch
to BDF. Since the BDF exploits the Jacobian matrix of the ODE system, LSODA
requires the user to calculate it and encode the matrix as a function, using LSODA’s
implementation in one available programming language (e.g., FORTRAN or C).
LSODA’s implementation programming interface allows to provide to the algorithm
several functioning settings, in order to control the performance and quality of ODEs
integration. In particular, it is possible to set the absolute and relative error tolerance
values (in this thesis denoted by AET and RET, respectively) and the maximum

number of internal iterations allowed for a single integration step.

2.3.2 Stochastic simulation

A biochemical system should be modeled with stochastic approaches when some of
its chemical species have a low concentration, so that the timing of reactions becomes
random and the simulated trajectory diverges from the one predicted by a deterministic
simulation. This allows the investigation of the emergent effects due to the intrinsic
noise (e.g., bistability), allowing a deeper knowledge of the system’s behavior. As a
matter of fact, in a stochastic simulation only one of the possible trajectories actually
occurs, according to a specific probability distribution. In particular, one may be
interested into knowing the probability that the system will be in state x at time ¢
given that it started in condition xq at time ¢, that is, P(x, t|Xo, o). This information
can be obtained by calculating every possible outcome of the system, or by simulating
multiple trajectories and analyzing the distribution of the states of the system. In
both cases, the state of the system x is assumed to be discrete, i.e., it is a vector
of integer-valued numbers corresponding to the exact amount of molecules for each

chemical species.

Solving the CME

The traditional way to calculate the stochastic temporal evolution of a biochemical
system € consists in solving the CME (Section 2.2.2), which describes the probability
distribution function associated to €2 [339]. Unfortunately, the number of possible
states of the biochemical system increases exponentially with the number of chemical
species, since there is a specific differential equation for each possible state than can
be reached as a consequence of reactions firing [145]. This characteristics leads to the

so-called curse of dimensionality and prevents CME to be directly solved in practical

31

Modeling and simulation of biochemical systems

applications. Nevertheless, numerical solution algorithms for the CME exist and they
are usually based on matrix descriptions of the discrete-state Markov process [322];
anyway, because of the aforementioned problem of dimensionality, these methods are
computationally expensive and not always feasible, especially for systems consisting
of many molecular species, for which the number of reachable states is huge or even

(countably) infinite.

Several analytical solution algorithms for the CME exist, for instance those based
on uniformization methods [128, 312, 368], finite state projection algorithms [40, 222]
or the sliding window method [357]; other methods were also introduced for special
reaction systems characterized by particular initial conditions (see, e.g., [145] and

references therein).

A different strategy to solve the CME consists in generating trajectories of the
underlying Markov process, by means of stochastic simulation algorithms. They will

be described in the next sections.

Gillespie’s Stochastic Simulation Algorithm

A method for generating exact realizations of the CME is the Stochastic Simulation
Algorithm (SSA), introduced by Gillespie in 1976 [100, 101], which provides trajectories
of the associated continuous time, discrete state space jump Markov process x of a
biochemical system €2, whose initially conditioned density function is determined by
the CME itself [102].

Briefly, starting from the system state x, SSA determines which reaction will be
executed during the next time interval [t, ¢ + 7), by calculating the probability of each
reaction R; to occur in the next infinitesimal time step [t + 7, + 7 + dt), i.e., the
joint probability P(j, 7|x,t). Gillespie proved that this probability is proportional to
aj(x)dt, being

aj(x) = ¢; - d;j(x) (2.4)
the propensity function of reaction R;, where d;(x) is the number of distinct com-
binations of the reactant molecules occurring in R; and c; is a stochastic constant

encompassing the physical and chemical properties of R; [100]. The time 7 before a

reaction takes place is chosen according to the following equation:

0" (o)
= n
g ao(x) rnd; /)’

32

2.3 Simulation methods

where rnd; is a random value sampled in (0,1) with a uniform probability, and
ag(x) = ij‘il a;(x). The index j of the reaction to be executed is the smallest integer
in the set {1,..., M} such that

J

Z aj(x) > rnds - ap(x),

J'=1

where rnds is a second random value sampled in (0, 1) with a uniform probability.

The algorithm described above is the traditional formulation of SSA, named Direct
Method (DM). Gillespie also introduced a variant of this method, named First Reaction
Method (FRM), which works by calculating a putative time 7; for each reaction R,
and by applying the reaction having the smallest 7;. Even though DM and FRM look
conceptually different, they are provably equivalent [100].

In both algorithms, propensities are re-calculated after each simulation step, even
when only a subset of propensities need to be actually updated. More specifically, only
the propensities functions of reactions whose reactants were affected by a reaction fired
in the previous simulation step must be updated. This is the rationale of the optimized
SSA version proposed by Gibson and Bruck [99], based on FRM and called Next
Reaction Method (NRM). NRM exploits a dependency graph which allows to update
only the necessary propensity functions at each simulation step. The algorithm also
improves the computational performances by reusing the putative times, avoiding the
(computationally expensive) generation of random numbers. It also exploits optimized
priority queues to store both propensities and putative times, so that updates are

performed very efficiently.

Despite the improvement of performances provided by the NRM, SSA remains
a computationally intensive algorithm, especially in the case of biochemical systems
characterized by many reactions and chemical species. In [104], Gillespie introduced
an approximate but faster version of SSA, called tau-leaping, designed to reduce the
computational burden typical of SSA. SSA and tau-leaping share the characteristic
that, even starting from the same initial state of the system, repeated executions of
the algorithms will produce (usually quantitative, but potentially also qualitative)
different temporal dynamics, thus reflecting the inherent noise of the system. These
two algorithms, anyway, differ with respect to the way reactions are applied at each
step: in SSA; only one reaction is applied, while with tau-leaping several reactions can

be applied.

33

Modeling and simulation of biochemical systems

Tau-leaping

Given a state x of the system €, let K;(7,x,t) denote the exact number of times
that a reaction R; would be fired in the time interval [¢,¢ + 7); K(7, x,) denotes the

probability distribution vector having K;(7,x,t) as elements.

For arbitrary values of 7, the computation of the values K;(7,x,t) can be as difficult
as solving the corresponding CME. On the contrary, if 7 is small enough so that the
change in the state x during [t,t + 7) is so slight that no propensity function will
suffer an appreciable change in its value (this is called the leap condition), then it is
possible to evaluate a good approximation of K;(7,x,t) by using the Poisson random
variables with mean and variance a;(x)7. So doing, the stochastic temporal evolution
of the system is no longer exact (as in the case of SSA); however, the accuracy of
tau-leaping can be fixed a priori by means of an error control parameter e € (0, 1],
which is involved in the computation of the changes in the propensity functions and of

the time increment 7.

The propensity functions change as a consequence of the modification in the
molecular amounts of the reactant species, therefore the leap condition must be
verified after each state update. This is achieved by evaluating an additional quantity
gi = gi(x;(t)) for each species S;, which is related to the highest order H (i) of the
reactions in which S; is involved as a reactant (see [46] for details). This information,
along with the number of molecules of S; involved in all highest-order reactions (given

by the system state x), is then used to bound the relative change of z;(t).

Starting from the state x and choosing a 7 value that satisfies the leap condition,

the state of the system at time ¢t + 7 is updated according to

x(t+71)=x+ ZMVij(CLj(X),T), (2.5)

J=1

where P;(a;(x),) denotes an independent sample of the Poisson random variable with

mean and variance equal to a;(x)7.

Note that the execution of many reactions per step could lead to negative amounts
of the molecular species in €2 [104]. To be more precise, if the reactions executed during
a step consume a number of reactant molecules greater than those occurring in the
system, then negative species amounts would be generated; therefore, the simulation
step cannot be executed. To avoid these situations, Cao et al. proposed a strategy
that considers some reactions as critical: a reaction R; is marked as critical if there

are not sufficient reactant molecules to fire it at least 6. times in the next time interval

34

2.3 Simulation methods

[46]. A common threshold for critical reactions is 6, = 10, as suggested in [46]. At
each iteration of tau-leaping, all reactions are partitioned into the sets of non-critical
reactions (R,.) and critical reactions (R.). Only a single reaction belonging to R, —
selected following the SSA procedure — is allowed to fire during [t,t + 7).

The length of the step 7 satisfying the leap condition is calculated as

g {0001} (sl 0, 1})2} | 20

1E€Snc 2

() 77 (x)

where S,,. is the set of indices of reactant species not involved in critical reactions, and

the values y;(x) and o?(x) are computed as follows:

wi(x) = Y viai(x), of(x)= Y viaj(x), foreachi=1,... N. (2.7)
J€Rne J€Rne
If the execution of a tau-leaping step would lead to negative amounts of some
species, then the 7 value is halved and the number of reactions to execute is sampled ex
novo. The problem of the negative species was also tackled by Tian and Burrage [332]
and by Chatterjee et al. [55], using a different approach relying on binomial random
variable to approximate Kj(7,x,t). Binomial random variables have two parameters:
the expected value and the upper limit, here denoted by L;. In both approaches,
L; values are chosen in such a way that K;(7,x,t) is not allowed to consume more
reactants molecules than are currently available, which would lead to negative values.
Unfortunately, both methods are not robust and produce biased simulations, since
multiple reactions can share common reactants and different reactions can have different
stoichiometric values for the same reactant [45], so that the determination of L; is far
from trivial.
Finally, in Cao’s tau-leaping algorithm [46], if 7 is smaller than a multiple of 1/ag(x)
— which corresponds to the average time increment of SSA — then a certain number of
SSA steps is executed because, given the actual state of the system, this will be more

accurate and efficient than a tau-leaping step.

Stochastic differential equations

As described in Section 2.2.3, a biochemical system can be modeled by means of
Chemical Langevin Equations, which are a special kind of SDEs. These equations
cannot be solved (i.e., simulated) by means of common numeric integration algorithms,

like those described in Section 2.3.1. Indeed, numeric solvers for SDEs must be

35

Modeling and simulation of biochemical systems

employed, like the Fuler-Maruyama Method [164, 318] which generalizes the EM by
introducing a stochastic component.
Since N (i1, 0%) = pu + oN(0,1), Equation 2.2.3 can be rewritten as:

M M
dx =Y wvja;(x)dt + > vj/a;(x)dW; (2.8)
j=1 j=1
which is the Ito form of the stochastic differential equation [318], where W (t) is the
stochastic component. More specifically, W (t) is a standard Wiener process (also named
Brownian motion), that is, a random variable continuously depending on t € [0, 7]

that satisfies the following three conditions:
1. W(0)=0;

2. for 0 < s <t < T, the random variable given by W(t) — W(s) is normally

distributed with p = 0 and 02 = t — s, i.e., with standard deviation equal to

Vt — s, so that W(t) — W(s) =Vt —s- N(0,1);

3. for 0 < s1 <1 < 89 <ty < T the increments W (t;) — Wi(s1) and W (ty) — W(sa)

are independent.

Considering a discretized Brownian motion (i.e., a set of D values for ¢, at intervals
A= %), from the three conditions follows that W (t;) = W (t;—1)+dW;, j =1,2,...,D,
where each dW; denotes an independent random variable of the form VA -N(0,1).

Hence, the single step of integration becomes
Ynt+1 = Yn + f(X)A + g(X)AWna

where f and g are the terms in the Ito form shown in Equation 2.8:

M M
f(x) = vja;(x), g(x) =Y _vjy/a;(x).
=1 j=1
aj‘l'
VT
2.8 can be neglected and the formula degenerates to the continuous-deterministic case

of ODEs [103].

Gillespie pointed out that, when the ratio is high, the noise term of Equation

2.3.3 Multi-scale modeling and simulation

Theoretically, the simulation of mechanistic-stochastic models represents the most
accurate way to investigate a biochemical system: all processes are explicitly considered,

no approximations (e.g., mean field dynamics, reaction lumping) are made and reaction

36

2.3 Simulation methods

kinetics have a sound biophysical background [102], so that any emergent behavior
due to complex interactions should emerge. Unfortunately, exact stochastic simulation
algorithms have a huge computational cost, since they proceed by simulating a single

reactions at a time.

The computational problem gets even worse when some reactions have a large
stochastic constant or some of the chemical species are present in large amounts (e.g.,
metabolites). Both conditions have an impact on the propensity function by affecting
the first and second term of Equation 2.4, respectively. Since the time step of the
simulation 7 is inversely proportional to ay(x), i.e., the sum of all propensity functions
(see Equation 2.3.2), the simulation is slowed down by these fast reactions. Whilst this
problem is partially mitigated by approximate methods like tau-leaping — in which
multiple fast reactions are “compacted” into longer simulation jumps (see Equation 2.6)
— for medium-large system this approach still suffers from the computation expense
due to Poisson random numbers generation. Moreover, when a reaction involves a
chemical species whose concentration is extremely high (e.g., ATP [226]), the role
of noise can be neglected and a deterministic simulation would be as accurate as a

stochastic simulation, allowing a huge computational speedup.

To the aim of simulating systems characterized by multiples scales (both in terms
of reactions speed and molecular amounts), hybrid deterministic/stochastic modeling
and simulation techniques have been introduced. These algorithms usually exploit a
partitioning of the model into slow and fast reactions, or according to the molecular
concentrations (see, for instance, [291]). Then, on the one hand, stochastic algorithms
are employed to account for the stochasticity within the system to preserve the accuracy
of the simulated dynamics concerning slow reactions and/or low molecular amounts.
On the other hand, to the aim of speeding up the simulation, deterministic approaches
are employed for the simulation of fast reactions and/or high molecular amounts
(i.e., concerning the partition of the system in which the accurate description of the

stochastic fluctuations of molecular species is not fundamental).

Existing hybrid algorithms generally partition the system and perform the simulation
by using CLE and SSA, exploiting time-dependent probability densities, resulting in
improved performances with respect to the tau-leaping algorithm. In the hybrid
method proposed by Haseltine and Rawlings [125], a reaction belongs to the set of
fast reactions if its propensity is greater than a propensity threshold, and the amount
of all its reactants is greater than a population threshold. Fast reactions and slow
reactions are simulated by means of CLE and SSA, respectively. Kiehl et al. [160]

proposed a further optimization by partitioning the system and simulating the set

37

Modeling and simulation of biochemical systems

of fast reactions by means of ODEs, reducing the computational effort due to the
generation of normally distributed random deviates for high rate events. Salis et al.
[292] proposed a modified approach in which the system is dynamically partitioned
according to the characteristics of the reactions, i.e., whether they occur frequently
in a small time interval, or they affect only small amounts of reactants or products.
According to this strategy, it is possible to partition the system in such a way that
the effects of slow reactions do not affect fast reactions, which can be simulated by
means of ODE or SDE integrators. Harris and Clancy [122] proposed a “partitioned
leaping” approach to tackle multi-scale modeling and simulation, which is based on a
classification of reactions into four different partitions according to the propensities

functions:

a;7 S 1 — exact stochastic (SSA);

a;7 > 1 but % 1 — Poisson (tau-leaping);

a;7 > 1 but /a;7 % 1 — Langevin (SDE);
e /@7 % 1 — deterministic (ODE).

It is worth noting that the dynamic partitioning of the system adds a relevant
computational overhead to the simulation, potentially reducing the improvement of
performance of the hybrid algorithm. Nevertheless, this approach avoids the need for
domain knowledge and manual configuration of the simulator, which may be tedious
for large size models. Moreover, dynamic partitioning allows to handle multistable
and oscillatory systems, in which the amount of chemical species and the propensity
of reactions vary in such a way that the initial partitioning is no longer convenient.
Thresholds for reactions partitioning must be carefully selected, though, and no

theoretical frameworks have been developed, yet.

38

Chapter 3

Evolutionary Computation and

Swarm Intelligence

An optimization problem is the problem of finding the optimal solution in a N-
dimensional search space of possible/feasible solutions (e.g., with respect to the a set of
given constraints), exploiting mathematic and computational methodologies. Examples
of optimization problems are minimization (or maximization) problems, whose goal
is to identify the solution x € R" that minimizes (or maximizes) a given objective
function F : RV — R. In what follows, the formalization of optimization problems will
be related to the minimization goal, if not stated otherwise!, that is, identifying the
solution x such that F(x) < F(x') for any x’ # x.

In principle, a strategy for the exploration of the search space would be to enumerate
all the feasible solutions, ranking them according to the value of the objective function.
This is clearly an impracticable strategy because the search space may be too large
or even infinite. For this reason, several algorithms have been proposed for a “smart”

exploration of the search space.

3.1 Traditional optimization techniques

3.1.1 Simplex Method

The Simplex Method (SM) [67] allows to solve optimization problems belonging to
the class of Linear Programming, i.e., problems in which a linear objective function is

subject to linear (in)equality constraints. SM is an exact algorithm which represents

Tt is worth noting that any maximization problem can be converted into a minimization problem
by inverting the sign of the objective function.

39

Evolutionary Computation and Swarm Intelligence

the space of feasible solutions as a N-polytope, a convex space determined by the linear
constraints (see Figure 3.1).

The SM works iteratively: given a initial vertex x* € R™ of the N-polytope, it
evaluates the objective function on all the vertexes that are connected to x* by an
edge. A denotes the set of all these vertexes. The best vertex in A with respect to the
objective function (i.e., a vertex x € A such that F(x) < F(x*) and F(x) < F(x'),
for any x’ € A, x # x') is selected as the new x* and the process is repeated.
The algorithm stops when no adjacent vertexes improve the objective function (i.e.,
Vx € A: F(x) > F(x*)): in such case, the last visited vertex x* is guaranteed to be

the optimal solution. One example of SM execution is depicted in Figure 3.1.

100~— T T T T
S< L = - Constraint on variable 1
s = - Constraint on variable 2
Sso - = = Contraint on variables 1 and 2
8ol S - Feasible region
T~a @89 Points visited by simplex
~
~
~o 1
__ Fmmm -
60L N]
Ss 1
N oy 1
K} — = 1
8 e
5 40} S~
> .o
20t
0 T
1
1
0

20 40 60 80 100
Variable 1

Figure 3.1: Example of execution of the Simplex Method. The 2-polytope defined by five
constraints on the variables is represented by orange lines. The constraints are 5, consisting of
3 disequations (represented by the red, brown and blue dashed lines) and the non-negativity
of the two variables. The feasible region defined by the constraints is represented by the
yellow polygon. The algorithm starts by picking an initial vertex, that is, the initial candidate
solution x* of the problem. In the example, x* = (0,0). Then, by following the edges of
the polytope, the SM moves across vertexes (green dots), according to the direction that
improves the objective function (green arrows). The algorithm stops when no improving
directions can be found: the last visited vertex is the global optimum.

Klee and Minty showed that, for some classes of optimization problems, the SM
degenerates to an exponential worst case complexity [163]. Moreover, the standard SM

requires a convex feasible region, linear constraints and a linear objective function. This

40

3.1 Traditional optimization techniques

represents a limitation, since many real case problems (e.g., the dynamical behavior of
biological systems) are strongly non-linear. However, SM is still applied with success in
Systems and Synthetic Biology, as it represents the foundation of Flux Balance Analysis
[248]. In this methodology, the goal is to optimize the vector x of reaction fluxes
in a biochemical system. In this case, the constraints are given by some biophysical
limits (e.g., mass balance, energy balance, fluxes limitations) and the objective function
generally consists in the maximization of some products of the system (e.g., biomass
(38], ATP [272]). FBA can rely on SM thanks to a steady-state assumption on the
concentration of chemical species, which allows to formalize the optimization of fluxes

as a linear programming problem.

3.1.2 Gradient Descent

In the case of non-convex search spaces or non-linear objective functions, a different
type of algorithm can be exploited: the Gradient Descent (GD) [92]. GD starts by
choosing an initial guess x for the optimal solution and exploits the slope of the
objective function. The initial solution x can be chosen either on a random basis,
exploiting some a priori distribution, or using the available domain knowledge. Then,
the gradient of the objective function is calculated in x and a new guess for the optimal

solution is determined according to gradient’s direction:
x =x—A-VF(x) (3.1)

where A € R is the step size. The algorithm stops when it reaches a stationary
point (i.e., where V f(x) = 0), meaning that there is not an improving direction to
follow. The Levenberg-Marquardt [199] algorithm adapts the step size A in Equation
3.1 during the optimization phase, so that the algorithm can converge to the optimal
solution with increasing precision.

The main limitation of GD methods is that they converge to the global optimum
only if the initial guess is chosen properly. Figure 3.2 shows a multi-modal objective
function characterized by a local minimum x;, in position (2,2), and a global minimum
X3, in position (0,0), which is the goal of the optimization. Since GD methods are
strictly deterministic, if the initial guess is close to (2,2) there is no way for the algorithm
to converge to x,. Because of this problem, GD is considered a local optimization
methodology.

A first way to overcome this limitation is the Multi-Start strategy: a set of initial

points is generated and they are used as starting points for the optimization. Even

41

Evolutionary Computation and Swarm Intelligence

B o e e L L 7 L

2ol f |I L e]_

0.5

Figure 3.2: Example of an objective function with a local minimum x; (2,2) and a global
minimum x3 (0,0). A gradient descent method cannot converge to the optimum unless the
initial guess is close to the basin of attraction of the global minimum (0, 0).

though this methodology increases the probability of converging to the global optimum,
it is not helpful in the case of large, noisy, multi-modal or high-dimensional search
spaces, not to mention the case in which the objective function is not differentiable.

A second strategy is to introduce the stochasticity into the optimization process.
One example is the Simulated Annealing, an optimization methodology that allows
also the possibility of following a direction that decreases the quality of the candidate
solution [161].

3.1.3 Simulated Annealing

Simulated Annealing (SA) is a probabilistic meta-heuristic, inspired by the annealing in
metallurgy. It represents an adaptation of the Metropolis-Hastings algorithm [212], that
is commonly used to generate sequences of random samples from complex multivariate
distributions. The physical metaphor inspiring SA consists in the melting of metal and
its successive slow cooling, to revert its crystalline form into a more ordered state. The
current state of the system x can, in probabilistic terms, change to a neighbor state
x’ or remain in the same state, while the material cools down, looking for the lowest
energy configuration. The concept of state corresponds here to a candidate solution of
the optimization problem.

The neighborhood of a solution depends on the way solutions are structured: for
instance, it could be a set of random points contained in a hypersphere centered in
x. Thus, in contrast to GD, SA does not require the function to be differentiable to

explore the search space.

42

3.2 Evolutionary Computation

Each solution x has a different energy (i.e., a value of the objective function)
denoted by E(x). A probabilistic state switch leads the system to move towards states
(i.e., solutions) of lower energy. The probability of accepting a new solution of higher

energy is calculated using the following acceptance function:

P(accept X'|E(x), E(x")) = ! if Bx) > B(x), (3.2)

exp(w) otherwise,

where T is the current temperature of the system, which generally starts from 1 and
tends to 0 during the iterations of the algorithm. Thanks to this strategy, SA avoids
the entrapment into local minima and it was proven to asymptotically converge to
the global optimum [161]. Hence, differently from the GD methods, it is considered a
global optimization method.

A well known extension of SA is the Tabu Search [108]. In this algorithm, optimiza-
tion is aided by a routine that marks the recently visited states, which are automatically
excluded from the neighbors set of the current state.

In general, SA represents an improvement with respect to traditional local search
techniques because it introduces the capability of exploring the search space, instead of
just exploiting a promising neighborhood. More advanced optimization techniques are
designed to have a good balancing between exploration and exploitation capabilities,
that is generally controlled by some specific functioning settings, like the temperature
of SA (the value T" in Equation 3.2).

All the methodologies described so far exploit a single solution x, which is iteratively
improved until convergence. A completely different approach, based on a population
of individuals, is the basis of Evolutionary Computation (EC) and Swarm Intelligence

(SI) techniques, described in Sections 3.2 and 3.3 respectively.

3.2 Evolutionary Computation

EC exploits the Darwinian evolution theory to solve complex problems [69]. Many
bio-inspired EC methods have been proposed (e.g., Genetic Algorithms (GA) [137],
Evolution Strategy (ES) [29], Differential Evolution (DE) [324]), all sharing the following

common traits:

 they exploit a population P of randomly generated individuals, i.e., the candidate

solutions;

43

Evolutionary Computation and Swarm Intelligence

o P evolves, generation after generation, thanks to an iterative process that employs

random modifications of the individuals;

o the individuals able to solve the problem better than the others, have a higher

probability of being conserved and promoted during the evolutionary process;

 to discriminate the best solutions in P, a fitness function quantifies the “quality”

of each individual,

o the process is executed iteratively until a termination criterion is met (e.g.,
an optimal solution is found, the algorithm has performed a fixed number of

generations or has reached a maximum execution time).

The fitness function has the same meaning of the objective function, it assesses the
“goodness” of the individuals with respect to the optimization problem, and ultimately
drives the evolution of the whole population. The hyper-surface described by the fitness
function over the set of feasible solutions (see, e.g., Figure 3.2 or 6.2) takes the name
of fitness landscape.

Another common feature of the existing EC methodologies is that they require the
fine tuning of some functioning settings to obtain the best performances. A notable
exception to this issue is represented by settings-free algorithms (e.g., parameter-free

GAs [298], Tribes [61]), which trade convergence speed for easiness of use.

3.2.1 Genetic Algorithms

GAs were introduced by Holland in 1975 [137] as a global search methodology inspired
by the mechanisms of natural selection. GAs exploit a population P composed of
@ randomly created individuals that are usually defined as fixed-length strings over
a finite alphabet, representing solutions of the problem under investigation. This
characteristic makes GAs particularly suited for combinatorial optimization.

The individuals of the population undergo an iterative process whereby three genetic
operators (selection, crossover, mutation) are applied, according to a given fitness
function, to simulate the evolution process which results in a new population of possibly
improved solutions.

During the selection process, individuals from P are chosen and inserted into a new
temporary population P’ using some fitness-dependent sampling procedure [19]. There

exist multiple selection strategies, most notably:

44

3.2 Evolutionary Computation

Roulette wheel The probability of selecting an individual is directly proportional to
its fitness value. Denoting by JF; the fitness value of the i-th individual, the probability

of the i-th individual of being selected and inserted in population P’ is then equal to:

]:i

q:

(3.3)
Ranking Individuals are ranked according to their fitness values, and the probability
of selecting an individual is proportional to its position in the ranking. This methodology
mitigates potential problems when the fitness values of candidate solutions differ too
much, so that the individuals with worse fitness have a very low probability of being
selected, causing a loss of diversity in the population. Unfortunately, this strategy can
slow down the convergence if similar selection probabilities are assigned both to the
best and worst individuals. A comparison of the probability distributions determined

by the roulette wheel and the ranking selection mechanisms is shown in Example 3.2.1.

Tournament A subset of ¢ individuals, 2 < ¢ < @, is randomly chosen from P.
Then, the candidate solution having the best fitness is deterministically identified and
copied into P’. The value ¢ is chosen by the user and represents the selection pressure

that is applied to the population.

Example 3.2.1 Comparison of the selection probability distributions deter-
mined by roulette wheel and ranking selection mechanisms. In this example,
the individuals have the following fitness values: F1 = 10, Fo =5, F3 =3,
Fq = 1. The selection probability calculated according to Equation 3.3 assigns
to solution 4 a very low probability (figure on the left), which is doubled in

the ranking mechanism (figure on the right).

Roulette wheel Ranking

m Solution 1 H Solution 1

W Solution 2 m Solution 2
Solution 3 Solution 3

m Solution 4 m Solution 4

Once exactly @) individuals have been selected and inserted in population P’, the
crossover operator is used to combine the structure of two promising parents into new

and improved offspring, which are collected into a third population P”.

45

Evolutionary Computation and Swarm Intelligence

In what follows, [i : j] denotes the substring from i-th to j-th symbol of a
candidate solution k, while e denotes the concatenation operator between two strings.
By assuming candidate solutions of length £, the most common crossover techniques

between two parents pi, po € P’ can be described as follows:

One-point crossover A single index 1 < x, < £ in selected. The new offspring are

created as [1: Xalp, ® [Xa +1: L], and [1: Xalp, ® [Xa +1: L],

Two-point crossover Two indexes 1 < x, < xp < £ are selected. The new offspring
are created as [1: Xalp, ® [Xa +1: Xolp ® [Xo+ 1 : £],, and [1: Xalp, ® [xa +1:
Xb]pl o [Xb +1: £]p2;

Uniform crossover Differently from one- and two-point crossovers, the uniform
crossover does not exchange substrings but it exploits a mixing ratio which

recombines smaller pieces of the parents.

A comparison of these three crossover techniques is provided in Example 3.2.2. The
crossover between two individuals is performed with a probability p.. If two individuals

are not selected for crossover, they are copied identically into P”.

Example 3.2.2 Comparison of one-point, two-point and uniform crossover
mechanisms. Assume the two following binary-valued GA individuals:

p1 =10,1,1,0,1], po = [1,0,0,0,0].

Considering one-point crossover, with x = 3, the following substrings (denoted
by bold characters) will be exchanged: py = [0,1,1,0,1], po = [1,0,0,0,0].
This yields the following offspring individuals: p; = [1,0,0,0,1], p) =
[0,1,1,0,0].

In the case of two-point crossover, with xo = 2 and xp = 4, the fol-

lowing substrings (denoted by bold characters) will be exchanged: py =
[0,1,1,0,1], po = [1,0,0,0,0]. This yields the following offspring indi-
viduals: pj =[1,0,1,0,0], ph =[0,1,0,0,1].

Finally, assuming that a uniform crossover with a mizing ratio equal to 2/5
selects the indexes 1 and 5 (denoted in bold), it means that the symbols that
will be swapped are p; = [0,1,1,0,1], p2 = [1,0,0,0,0]. This yields the
following offspring individuals: pj = [1,1,1,0,0], ph = [0,0,0,0, 1].

Finally, the mutation operator is used to perturb the encoding of individuals in P,
allowing a further exploration of the search space. Mutation alters a symbol of the
individual, which is substituted by a random symbol from the alphabet, with a fixed
probability p,,.

46

3.2 Evolutionary Computation

After the application of genetic operators, individuals in P" replace those in P
and the process iterates until a halting criterion is met, e.g., after a fixed number of
generations.

GAs can be extended to support the optimization of real-valued problems: Real-
Coded GAs (RCGAs) [131] exploit a different representation of individuals based on
strings of floating point numbers, instead of symbols from a finite alphabet. Of course,
both mutation and crossover operators are adapted to the new case. The former is
usually based on a random perturbation of the values; the latter is more complicated,
since it is generally implemented as a weighted interpolation of the parents. A review
of the crossover operators for RCGAs is available in Herrera et al. [130].

GAs are characterized by a well-known convergence theorem named schema theorem,
proved by Holland [137]. The theorem ensures that the presence in P of a schema
H (a template of solutions), having a good impact on the fitness value, increases

exponentially generation after generation.

3.2.2 Evolution Strategy

ES is an EC technique introduced during the 60s and further developed by I. Rechemberg
[274] for the optimization of problems in continuous search spaces. In ES, the @
individuals of the population P represent positions in the RY domain. Traditionally, in
ES the population size is denoted by . Differently from GAs, ES exploits a selection

procedure at the end of the recombination phase, according to the following mechanism:

 aset of individuals from population P is picked up and new offspring are generated

by duplication and/or recombination of the parents;
o the new offspring undergo a mutation phase and are inserted in population P;
« a mechanism of selection reduces the population size down to p.

In ES, the population size is traditionally denoted by u (i.e., 4 = Q). The number
of individuals exploited for recombination is denoted by p, with 2 < p < u. This
is different from GAs, since the latter generally exploit exactly two parents for the
crossover mechanism [81]. The number of new offspring created during a generation is
denoted by A (generally, 1 < \).

The recombination of the p parents can be based on a discrete combination of the
components of the real-numbered vectors encoding the individuals, or on a weighted

average of the p parents. Since recombination is not exploited in this thesis, it will not

47

Evolutionary Computation and Swarm Intelligence

be described any further. A more detailed explanation can be found in Hansen et al.
[118].

The mutation operator is generally implemented as the perturbation of the coor-
dinates of the individual. This perturbation is generally drawn from a multivariate
normal distribution N'(0, C) with zero mean and covariance matrix C € RV*Y [304].
The covariance matrix C can be controlled to generate isotropic, axis-aligned or com-
pletely general perturbations, and can evolve with the solutions in order to possibly
exploit any correlation between the components in solutions. Figure 3.3 shows these

three multivariate distributions. The self-adaptation of the covariance matrix to the

6 (a) (b) (c)
4 L]
s
2 o Tl .f"i“.‘ .
oPse EE. * . & 1;:‘4‘
e \d 1
0 "o‘%.o £ ,)
oy o*’.f,.oi o ® "/
-2 L] . o‘s s . .;‘:)q d
0 ° °%° o
o N°
—4 e
_6—6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 —6 -4 -2 0 2 4 6

Figure 3.3: Three examples of multivariate bi-dimensional normal distributions
(NM(0,Cq),N(0,C2) and N(0,C3)), used for individuals mutation in ES. (a) Isotropic
(C1 =1); (b) axis-aligned (Cs is a diagonal matrix); (c) completely general (Cs has the same
eigenvalues as Cy, but it results in a differently rotated ellipsoid). The distribution produced
by Cs allows to exploit possible correlations between the components of the solutions.

problem under investigation is the foundation of Covariance Matriz Adaptation Evo-
lution Strategy (CMA-ES) [119], considered among the state-of-the-art optimization

algorithms.

The selection operator traditionally applies a truncation selection in which the
best p individuals — with respect to their fitness values — survive in the next
generation. ES can exploit two specific methods for the selection and creation of a
new population, namely plus (4) and comma (,) selections. In plus-selection, the best
p of 4+ A individuals are chosen. In comma-selection, all parents die and the best
p of X individuals survive to the next generation. The (1 + A)-ES is a specific case
of plus-selection in which only the best individual (including the parents) survives,

generation after generation, and it is exploited to generate new offspring. The (1 + \)

48

3.2 Evolutionary Computation

ES is exploited in this thesis for the evolution on candidate biochemical networks in
Chapters 7 and 8.

A global convergence theorem for any version of ES, similar to Holland’s schema
theorem, is still missing. Since SA can be seen as a (1 + 1)-ES with a time-dependent
selection pressure [30] with a fixed mutation strength, a proof of convergence based on
the same concept was proposed by Born [32]. For the case of (u + A)-ES, no theorem
has been presented yet, while it seems unlikely to prove the convergence of (u, A)-ES,

since all parents are discarded after each generation.

3.2.3 Genetic Programming

GAs are particularly efficient in solving a specific instance of a complex problem, but
they are not suitable for solving classes of problems. One way to encompass whole
classes of problems is to embed variables in the encoding of the candidate solutions.
Genetic Programming (GP), introduced by Koza in 1992, is an EC technique similar to
GAs except that it evolves populations of computer programs [168], which can obviously
contain variables.

Since the syntax of traditional programming languages is extremely complex, the
definition of genetic operators (e.g., crossover) for the GP could be a complex task. For
this reason, individuals are generally represented by recursive algebraic structures like
derivation trees or LISP S-expressions. In the former case, the search space consists in

all the trees that can be constructed using elements from two sets:
e a set of functional nodes (inner nodes);
e a set of terminal nodes (the leaves, consisting in constants and variables).

The proper choice of these two sets is vital for the correct functioning of GP, because

they must satisfy two important conditions: closure and sufficiency.

Closure property
It is satisfied when derivation trees are always well defined and consistent, also
after the execution of a genetic operator. In particular, functions implemented in
functional nodes must satisfy two sub-properties: type consistency and evaluation
safety [262].

o Type consistency depends on the fact that crossover can mix arbitrary
subtrees, so that functions must be able to handle any kind of subtree as an

argument. All type conversions that may be needed must be considered and

49

Evolutionary Computation and Swarm Intelligence

implemented. For instance, an IF statement expects a boolean predicate as
first argument, but an object of a different type (e.g., a floating point number,
a string) could instead be present because of the evolutionary process: any

unexpected value must be correctly converted into the expected type.

« Evaluation safety means that the execution of functions must be robust
with respect to run-time failures and exceptions (e.g., a logarithm of a
negative number, a division by zero). This problem can be mitigated by
using protected versions of the operators, which test the input before actually
performing the computation. Another approach consists in considering a
penalty score in the fitness function for those individuals throwing exceptions

during the execution.

Sufficiency
It states that nodes in the functional and terminal sets must be sufficient to build
the optimal tree. Since the optimal tree is also the goal of the optimization, which
is unknown in advance, the property of sufficiency is far from straightforward
to be achieved. Nevertheless, if the functional set is insufficient, GP can only

converge to approximate solutions instead of the optimal program.

Genetic operators in GP are similar to those described for GAs: selection, crossover,
and mutation. Selection, in particular, is identical to GAs. Crossover is defined as the
exchange of random subtrees between two individuals. Mutation consists in replacing
a random node with a randomly generated tree.

Differently from GAs, whose individuals generally have a fixed size [109], GP’s
genetic operators can change the size of candidate solutions (e.g., the height of the
derivation trees or, equivalently, the depth of nested S-expressions). For this reason,
GP is prone to the issue of bloating, that is, the uncontrolled growth of individuals,
generation after generation. Bloating should be avoided, because smaller programs
have better generalization capabilities and require less time to run [142, 367]. The
issue of bloating is particularly delicate, since the structure of the optimal solution
is unknown and any a priori limitation of the maximum height of individuals may
prevent the derivation of the optimal tree. On the other hand, a penalization term
in the fitness function, proportional to the complexity of the tree, may push the GP
towards local optima instead of converging to the optimal solution.

A schema theorem, equivalent to the GA counterpart and proving the asymptotic

convergence of GP, was presented by Poli and Langdon in 1998 [261].

20

3.2 Evolutionary Computation

3.2.4 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is an EC method based on GP whose individ-
uals are described by means of indexed graphs, rather than derivation trees, having
(sequentially numbered) nodes arranged in a Cartesian coordinates grid [214]. The
genotype of each individual is therefore represented by a sequence of node connections
and functions in the grid, and can be formally mapped onto a fixed-length vector of
integers, which is called Cartesian Program (CP).

Formally, a CP is a 9-tuple {G, n;, n,, §, F'N, n,, ne, n,, l} where:

G is the genotype, encoded as a vector of integer numbers that represent the

connections from the input nodes to the output nodes of the grid;
e n;,n, € N are the number of input and output nodes, respectively;

« § is a finite set of functions (for instance, elementary arithmetic operations as

{+’ B *7/});

o F'N is a grid of functional nodes, sequentially indexed by rows and columns, each

one containing a function from F;

e n,,n. € N are the number of functional nodes appearing in each row and in each

column of the grid, respectively, so that |FN| = n,n,;
e n, € N is the number of input connections in each functional node;

e« | € N is the so-called “levels back” parameter, a measure of the CP inter-
connectivity which determines how many preceding columns (in the grid of
functional nodes) can have their output connected to the functional nodes

appearing in any given column of the grid.

The connections of a CP start from the input nodes and pass through the functional
nodes, each one having a fixed number n,, of input connections. The length of the
genotype G is equal to n,n.(n, + 1) + n,, that is, an integer number is assigned to
each input connection and to the output connection of every functional node, as well
as to each output node of the grid. The inter-connectivity of nodes generally exploited
in CGP, and specifically considered in this thesis, is strictly feed-forward, meaning that
nodes belonging to the same column of the grid cannot be connected to each other.
In addition, any node can be either connected or disconnected; disconnected nodes
represent non-coding genes in the genotype and are ignored in the phenotype. The

phenotype of a given CP is the actual graph that the CP represents. In this thesis,

o1

Evolutionary Computation and Swarm Intelligence

the semantics of the phenotype corresponds to a set of biochemical reactions derived
from the graph, that will evolve in the Reverse Engineering and Evolutionary Design
processes described in Chapters 7 and 8, respectively.

In a CGP population, the fitness function of each CP is evaluated and the best
candidate solutions are selected to generate the offspring by means of a mutation
operator. During the iterative process, CGP evolves a population of individuals
characterized by a set of expressions that are formed by the composition of input
nodes and functional nodes. The total number of possible expressions represented by
a given CP is upper bounded by the number n, of output nodes. If an output node
is linked to a disconnected functional node, some internal nodes will not be part of
any path connecting an input node to that output node, a circumstance that leads to
the possible existence of different genotypes mapping to the same phenotype. These

non-coding regions are however important in CGP for three reasons:
1. they reduce the size of the phenotype, as stated above;

2. they reduce the effect of mutations, since a mutation acting on a disconnected

functional node will not contribute to the variation of the phenotype;

3. even if they are unused in the current CP, a mutation could suddenly connect
some disconnected node to the rest of the graph, thus resulting in a relevant
change in the phenotype.

To the best of my knowledge, at the moment of writing no schema nor convergence
theorems for CGP have been proposed. Nevertheless, this EC method has been applied
to a large number of problems in multiple disciplines (e.g., medicine [15], economy
[363], image processing [120]).

In this thesis, candidate solutions evolve by using a (1+\)-ES [29], as described
in [214]: all the individuals are evaluated and the best one is selected as a parent for
the next generation. Then, A offspring are produced by means of random mutations,
that is, random modifications of the integers which constitute the genotype of the
parent individual. The proportion of genes that are mutated is determined by the
mutation rate parameter p € (0,1). The ES methodology does not exploit any crossover
mechanism.

In Chapter 7 it is shown a methodology to exploit CGP for the reverse engineering
of biochemical reaction models; Chapter 8 contains the definition of a method to evolve

novel biochemical reaction models, modeling gene regulation circuits.

52

3.3 Swarm Intelligence

3.3 Swarm Intelligence

Differently from EC techniques, SI takes its inspiration from the emergent collective
behavior of groups of living organisms. According to sociobiological investigations, some
animals and social insects, like those belonging to the Hymenoptera order (e.g., ants,
bees) [138], have behavioral patterns that, collectively, allow groups to self-organize,
share information and perform complex tasks that a single individual would not be
able to carry out [305]. SI techniques are inspired by such behaviors, and are exploited
to design nature-inspired holistic optimization techniques.

In the next sections, a brief review of SI methods and a detailed description of

Particle Swarm Optimization, arguably the most known SI technique, are provided.

3.3.1 Hymenoptera-based SI techniques

One of the most exploited SI techniques is Ant Colony Optimization (ACO) [77], a
method based on the mechanism of stigmergy, the indirect communication between
agents typical of pheromone-based ants signaling [331]. Foraging ants, indeed, tend to
deposit a pheromone trail along a route leading to food. When other ants meet the
pheromone trail, they tend to follow that route to reach food, reinforcing the signal.
Eventually, the optimal route emerges from the collective movement of the colony,
while sub-optimal trails slowly evaporate. In ACO, simulated pheromone trails are
used to stochastically generate and iteratively improve a set of candidate solutions.
Convergence theorems were proposed for this powerful combinatorial optimization
algorithm [116] and was proven to be effective in tackling problems belonging to the NP
complexity class, like the traveling salesman (TSP) [325] or the maximum independent
set [183].

Like ACO, also Artificial Bee Colony (ABC) exploits the emergent behavior of a
population of virtual insects, taking inspiration from the collective behavior of foraging
honey bees. This optimization method exploits virtual worker, onlooker and scout bees
[150] which cooperate in identifying the best food resources (i.e., solutions with the
best fitness). In particular, scouts are responsible for the exploration of the search
space and become workers when they identify a promising food source (i.e., a region
with good fitness). During the iterative process, onlookers are subdivided into groups
which randomly exploit every food source assigned to a worker bee. ABC is a global
optimization method, designed to explore real-valued search spaces, which was shown

to be competitive with respect to other SI and EC techniques [149]. Combinatorial

23

Evolutionary Computation and Swarm Intelligence

modifications were applied to the TSP [151] and other problems of the NP class, even
exploiting the memetic approaches [270] that will be described in Section 3.4.

3.3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm-intelligence population-based optimiza-
tion meta-heuristic, inspired by the social behavior of bird flocking or fish schooling,
introduced by Kennedy et al. [157]. In PSO, a population (the swarm) of n candidate
solutions (the particles) moves in a M-dimensional search space and cooperates to
identify an optimal solution. Each particle i (i = 1,...,n), is characterized by a
position v, € RM and by a velocity v; € R™ that is used to update its position.

The PSO concept consists in changing, at each iteration, the velocity of each particle
towards some attractor, typically its best position b; € RM found so far, and the global
best position g € RM found by the swarm. The update procedure continues until some
termination criterion is met; in this thesis, the optimization process is halted when a
maximum number of iterations Ty is reached.

The behavior of the swarm is influenced by two parameters: the social attraction
Csoc € RT and the cognitive attraction C,,, € RT. These parameters control the
global exploration and local exploitation of the search space, and they are weighted
by two vectors ry,ry € RM of random numbers sampled with uniform probability in
[0,1] to prevent particles from prematurely converging to local minima. The velocity
of particles is also limited to a maximum magnitude vy € R, and weighted by an
inertia factor w € R* to avoid chaotic behaviors of the swarm. This leads to the

following definition of the velocity update function for a generic i-th particle:

Vi =W - V; + C1500 ‘10 (71 - g) + Ccog T O (71 - bz)) (34)

where o denotes the component-wise multiplication operator. Then, the positions of

the particle is updated by calculating
X; = X; +V; (35)

foralle=1,...,n.

The value of w may be kept constant throughout the optimization process, or
change according to some update function. Several works analyzed the performances of
the PSO with different settings, since they have a relevant impact on the optimization
performances. For instance, some works focused on the optimal choice of parameters
Csoc, Ceog [17, 42, 337] and w [54]. These settings might also self-adapt during the

o4

3.3 Swarm Intelligence

M particle swarm optimization [l ant colony optimization artificial bee colony [l genetic algorithms

S A s T o i ey e A e

Figure 3.4: Trend of search terms about global optimization used on Google, between 2007
and 2014. The most known Swarm Intelligence methods (PSO, ACO, ABC) are compared
to GAs, which are among the most exploited global search methods. The result shows that
interest about GAs decreases, while about SI methods increases. In particular, PSO is well
established as the most attractive SI method, while researchers started considering ABC only
in the recent years.

optimization phase, for instance by exploiting fuzzy rules [1, 309]. The choice of the
best functioning settings is generally driven by the problem under investigation and, in
particular, by the characteristics of the fitness landscape. In Section 6.2.2, an analysis
of the influence on the parameter estimation problem of some PSO settings is presented

and discussed.

In PSO, the search space is bounded to prevent particles from diverging towards
infinity: as soon as a particle moves outside the search space, some strategy is applied
to keep it inside the valid region, for instance by placing the particle back on the space
boundary or by making it change its direction. Examples of boundary conditions are the
absorbing, reflecting and damping strategies [361], which relocate the particles inside the
allowable solution space, so that the fitness function can always be evaluated, obtaining
valid solutions to the optimization problem. In the case of absorbing condition, when
a particle exits the allowable solution space along one dimension, it is relocated at the
boundary of the solution space in that dimension and the relative velocity component
is set to zero. The reflection condition is similar to the absorbing, but the velocity is
reversed instead of being set to zero. Finally, in the damping condition, the velocity
is reversed as in the reflecting condition, but it is also modulated by a random value
sampled from [0, 1] with uniform distribution. In this work, B}m" and 7"** denote the

lower and higher boundaries on the j-th dimension of the search space, respectively.

Despite the lack of a proper convergence theorem, PSO was successfully applied
to a plethora of problems [260] in many different disciplines. Its implementation
simplicity and impressive optimization performances make it an attractive and popular

methodology to solve complex problems (Figure 3.4).

25

Evolutionary Computation and Swarm Intelligence

3.4 Memetic approaches and open issues

Local search techniques like GD are very efficient in the case of unimodal fitness
landscapes, in terms of performances and quality of solutions. As described in Section
3.2, for more complex problems, they get easily stuck in local minima, so that only a
multi-start methodology that exploits a large number of starting points can increase
the probability of converging to the global optimum [253].

On the other hand, stochastic global optimization algorithms (e.g., PSO) might
be unable to perfectly exploit the neighborhood of a promising solution, because the
structure of an individual might be perturbed in a direction that does not lead to a
better region of the search space.

For this reason, in the latter years, part of the research about optimization algorithms
focused on the hybridization of global and local search strategies. In particular, the
so-called Memetic Algorithms (MAs) rely on global optimization methods embedding
local search improvements. The idea is to combine the exploration capabilities of EC
with the fine exploitation of neighborhoods performed by local search [169].

Despite this improvement, according to the no free lunch (NFL) theorem [359],
there is no such a thing like the “perfect” optimization method. It can be proven that
any couple of optimization algorithms a; and as are equivalent when their performances
are averaged across all possible problems. Formally, if P(d,,) denotes the probability

of observing a specific fitness d,,, in m iterations then

Z P(dy|o,m,ay) = Z P(d|0,m, as)

00 00
where O is the space of all possible optimization problems. From the NFL theorem
follows that each optimization algorithm performs better than the others on a specific
subset of problems, while it performs worse (even than a random search) on the rest of
the problems. The difficulty therefore consists in the selection of the proper algorithm
for the specific problem under investigation.

Another difficulty of population-based approaches is the underlying computational
complexity. As a matter of fact, hard optimization problems generally require a very
expensive fitness evaluation, which is generally more computationally burdensome
than the EC technique itself. The problem is further complicated by the fact that
the computational complexity is proportional to the size of the population, which can
be extremely large. Nevertheless, since all individuals are independent, the fitness
evaluation can be straightforwardly accelerated by means of a parallel architecture. In

the context of the problems tackled in this thesis, there are some notable examples of

26

3.4 Memetic approaches and open issues

large parallel infrastructures used for this purpose. For instance, the cluster exploited
by Koza et al. for the reverse engineering of a biochemical system (see Chapter 7)
was equipped with 1000 processing nodes, used to distribute the fitness evaluations of
100000 GP individuals [167].

Among the existing parallel architectures, there exists a power-efficient, performant
and cheap alternative: the General-Purpose GPU computing, subject of the next
chapter.

o7

Chapter 4
General-purpose GPU computing

The emerging field of General-Purpose GPU (GPGPU) computing allows developers to
exploit the great computational power of modern multi-core Graphics Processing Units
(GPU), by giving access to the underlying parallel architecture that was conceived for
speeding up real-time three-dimensional computer graphics [227]. Modern GPUs are,
indeed, multi-core coprocessors designed to process a massive number of geometric
primitives, mainly triangles (ordered triples of vertexes), characterized by multiple
attributes, in a multi-threaded and pipelined fashion.

Initially designed to have a fixed functionality for vertex transform and lighting
(T&L) — which could be exploited by means of libraries like OpenGL and Microsoft
Direct3D — GPUs were later equipped with programmable vertex and fragment
processors, following the requests of video-games developers and 3D artists. A program
for custom T&L takes the name of shader, following the naming convention introduced
by Pixar in 1988 [259]. New languages were proposed to simplify the development of
shaders, since the introduction in 2001 of the Nvidia GeForce 3, the first programmable
GPU. Nvidia defined its own shading language named CG, inspired by the C language,
in 2003 [198]. The same year, Microsoft added HLSL (High-Level Shading Language)
to the DirectX libraries [112]. The Khronos Group consortium, which controls the
specification of the OpenGL API, proposed in 2004 the shading language GLSL
(OpenGL Shading Language).

It was only a matter of time before the purpose of shaders changed into general
computation instead of graphics-oriented geometric transformations. This approach,
which gave birth to the GPGPU computing, was initially tricky since the input and
the output of the computation were graphics objects (3D meshes, textures, pixels) and
the computation itself was performed using a graphics API. The problem was solved

with the introduction of APIs for the general-purpose computation, most notably

29

General-purpose GPU computing

CUDA (created by Nvidia), OpenCL (proposed by the Khronos Group) and Microsoft
DirectCompute.

Thanks to these new libraries, GPGPU computing nowadays represents an alter-
native to the traditional high-performance computing infrastructures (e.g., clusters
of machines), characterized by low-costs and a reduced energy consumption, allowing
the access to the tera-scale computing on common workstations of mid-range price.
Nevertheless, a direct porting of sequential code on the GPU is most of the times
unfeasible, due to the innovative architecture and the intrinsic limitations of this
technology. As a consequence, the full exploitation of GPU’s computational power and

massive parallelism is challenging [89].

4.1 Nvidia CUDA

In order to simplify the development of GPU-bound general-purpose programs, Nvidia
introduced in 2006 the GeForce 8800, the first unified GPU architecture for both
graphics and computing [188]. For this GPU, Nvidia developed a new parallel computing
platform and programming model named CUDA (Compute Unified Device Architecture)
fully programmable in C, characterized by new multi-core Streaming Multiprocessors
(SMXs) able to indifferently execute computing threads along with vertex, fragment,
geometry and pixel shaders. CUDA is a mature architecture, providing developers
with several additional libraries which make GPGPU computing easier. One of these
libraries, CURAND, is described in details in Section 4.2.

The CUDA library is cross-platform and its programming model combines the
Single Instruction Multiple Data (SIMD) architecture with multi-threading. CUDA
automatically handles the control flow divergence, that is, threads can take different
execution paths in a transparent way for the programmer. Nevertheless, because of the
underlying architecture, conditional branches should be avoided as much as possible
since they cause a reduction of performances, due to the serialization of the execution
until re-convergence. For this reason, existing algorithms require a major redesign in
order to reduce the need for conditional branches.

Following the naming conventions used in CUDA, a C/C++ function, called kernel,
is loaded from the host (the CPU) to the devices (one or more GPUs) and replicated in
many copies named threads. Threads can be organized in three-dimensional structures
named blocks which, in turn, are contained in three-dimensional grids (as schematized
in Figure 4.1, left side). Whenever the host computer runs a kernel function, the GPU

creates the corresponding grid and automatically schedules each block of threads on

60

4.1 Nvidia CUDA

an available SMX, allowing a transparent scaling of performances on different devices
(see Figure 4.2).

In general, different devices are characterized by different architectures. Each
architecture, named after a famous physicist, supports up to a specific CUDA version
(with complete retro-compatibility), giving access to specific functionalities (named
compute capabilities) (CC) and imposing different limitations. An brief overview of the
compute capabilities and their corresponding functionalities is reported in Table 4.1.
For the sake of brevity, the table summarizes only the novelties that are relevant for
the present thesis. Additional information can be found in the latest (at the time of
writing) CUDA programming guide [247].

Table 4.1: Overview of the new functionalities introduced by different CUDA compute
capabilities and architectures.

Compute | CUDA architecture | Functionalities introduced by the compute capability
capability
1.0 Tesla 2D grid blocks, up to 2° threads per block and 216 — 1
blocks per grid, up to 16 KB of shared memory per
SMX, up to 8 simultaneous blocks per SMX, up to 63
registers per thread.

1.1 Atomic functions in global memory.

1.2 Atomic functions in shared memory and warp voting.
1.3 Double precision floating point numbers.

2.0 Fermi 3D grid blocks, up to 2! threads per block, up to 48

KB of shared memory per SMX, L2 cache on global
memory, custom balancing of L1 cache and shared
memory (48416 KB vs 16+48 KB).

2.1 Advanced synchronization functions.

3.0 Kepler Unified memory programming, up to 23! — 1 blocks
per grid, up to 16 simultaneous blocks per SMX, up
to 255 registers per thread, balanced L1 cache/shared
memory configuration (32432 KB).

3.5 Dynamic parallelism.

5.0 Maxwell Up to 64 KB of shared memory per SMX, up to 32
blocks per SMX.

5.2 Up to 96 KB of shared memory per SMX.

Table 4.1 shows how CUDA poses limitations on the number of threads a block
may contain: since the introduction of the Fermi architecture, up to 1024 threads can
be distributed in the three dimensions, given that z- and y-dimension must not exceed
1024 threads, while z-dimension cannot exceed 64 threads. However, the number of

simultaneous threads is further limited by the available resources on the SMX (e.g,

61

General-purpose GPU computing

registers, high performance memories). In standard CUDA, each block contains the
same number of threads; however, this limitation was removed since CC 3.5, with the
introduction of Dynamic Parallelism which allows threads to launch new grids [243].

When a SMX is given one or more blocks to execute, it partitions them into groups
of 32 threads named warps which execute one common instruction at a time. The full
efficiency is achieved when threads belonging to the same warp agree on their execution
path, and when the number of threads can be divided by 32.

Host Device Grid
Grid 1 Block (0, 0) Block (1, 0)
Kernel 1 | 3 Block Block Block
‘ I (0,0) (1,0) (2,0)
Block .* Block | Block .
(0,1)° (T D)
L end2)/] Thread (0,0) Thread (1,0) Thread (0,0) Thread (1,0)
‘ Kernel 2 I ’ - ‘ _',"’ ‘ ' “.' 1\1“ Y Y { vy n1kn
i | | |
~ Block (1, 1)

Figure 4.1: Architecture of CUDA’s threads and memories hierarchies. Left side. Threads
organization: a kernel is invoked from the CPU (the host) and is executed in multiple threads
on the GPU (the device). Threads are organized in three-dimensional structures named
blocks which are, in turn, organized in three-dimensional grids. The programmer must decide
the dimensions of blocks and grids before the kernel launch. Right side. Memory hierarchy:
threads can access data from multiple kind of memories, all with different scopes and
characteristics: registers and local memories are private for each thread; shared memory let
threads belonging to the same block communicate, and has low access latency; all threads can
access the global memory, which suffers high latencies, but it is cached since the introduction
of the Fermi architecture; texture and constant memory can be read from any thread and are
equipped with a cache as well. Figures are taken from Nvidia’s CUDA programming guide
[244].

GPUs are equipped with different types of memory. As described in Figure 4.1,

right side, the GPU memory hierarchy consists in the global memory (accessible from

62

4.1 Nvidia CUDA

Multithreaded (UDA Program

25Ms GPU with 45Ms

SM1 SMD SM1 SM2 SM2

EERE :,
EEEE

Figure 4.2: CUDA automatic scalability: blocks are automatically scheduled on the available
streaming multiprocessors (SM), in a transparent way for the programmer. Figure taken
from [244].

all threads), the shared memory (accessible from threads of the same block), the
local memory (registers and arrays, accessible from owner thread), and the constant
memory (cached and not modifiable). The best performances in the execution of
CUDA code can be achieved by exploiting the shared memory as much as possible.
Unfortunately, the shared memory is a very limited resource (i.e., 49152 bytes for
each multi-processor, since the introduction of the Fermi architecture) that introduces
restrictions on the blocks’ size. On the contrary, the global memory is very large
(thousands of MBs) but suffers of high latencies. In order to mitigate this drawback,
the global memory has been equipped with a L2 cache (see Figure 4.3), starting from
the Fermi architecture. Moreover, with this architecture the programmer can balance
64 KB of fast on-chip memory between the shared memory and L1 cache, specifying
two different configurations: 48 KB for the shared memory and 16 KB for L1 cache,
or 16 KB for the shared memory and 48 for .1 cache. In addition, using the Kepler
architecture, a third and perfectly balanced configuration can be specified by assigning

the same amount of memory (32 KB) both to the shared memory and L1 cache.

63

General-purpose GPU computing

Since blocks are asynchronously scheduled on different SMXs, there exist no com-
munication nor synchronization primitives between blocks. Intra-block communication
and synchronization are performed by means of the shared memory and the family of
__synchthreads () kernel functions, respectively. A special version of this function,
namely __synchthreads_count (int p), evaluates simultaneously the predicate p for
all threads of a block and returns, to all threads in that block, the number of threads
for which the predicate p is different from zero.

An implicit synchronization of blocks can be achieved by launching two consecutive
kernels, which are queued for execution (see Figure 4.1, left side). Block-level concur-
rency can be performed by means of CUDA streams. Since they go beyond the scope
of the present thesis they will not be discussed any further.

Thread

Figure 4.3: Schematic description of the memory hierarchies in Fermi and Kepler architectures.
GPUs based on these architectures are equipped with a two level data cache and a read-only
data cache. The shared memory and the L1 cache share the same on-chip 64 KB memory
banks; the amount of memory can be reconfigured by the user, according to the specific needs
of the application. Figure taken from Nvidia’s Kepler GK110 whitepaper [245].

4.2 Random numbers generation in CUDA

Stochastic simulation and optimization algorithms largely rely on random numbers

generators (RNGs). Nvidia’s software development kit [244] contains several libraries

64

4.3 Computational Biology and general-purpose GPU computing

and utilities that help developers in the process of creating software for this architecture.
CURAND is a RNG library which allows the GPU-based generation of random deviates
that can be used both by the host (via memory copy) or directly by the device.

The latest version of the CURAND library, at the time of writing, is available
in the CUDA toolkit v6.0 [246] and gives access to many different RNGs that can
produce both pseudo- and quasi-random sequences. Since quasi-random sequences are
not exploited in any of the tools described in this thesis, they will not be discussed.

The pseudo-random sequences implemented in CURAND are the following: XOR-
WOW [200], MRG32K3A [177], PHILOX4-32 [196], and two versions of Mersenne
Twister (MT) [204]. Among these RNGs, MT yields the longest pseudo-random se-
quences thanks to its 21213 period; PHILOX4-32 generates sequences with a period
equal to 2'%2; XORWOW and MRG32K3A generate sequences of pseudo-random
numbers with a period around 2'%° and 2!, respectively. MT was not used for the
implementation of the methodologies of this thesis because it has three drawbacks:
(i) at most 256 threads per block can operate simultaneously [242], (i7) the memory
footprint is larger than the other generators [225], (é77) it is much slower than the other
algorithms.

XORWOW is faster than MRG32K3A, but it is known to present statistical flaws
[133] and it is rejected by 3 of the 106 tests of the BigCrush statistical test suite
[176]. PHILOX4-32 has the smallest period, even though it allows to produce up to
four 32-bit random numbers at once. Since MRG32K3A represents the best trade-off
between performances, period length and does not have the aforementioned drawbacks
of MT, it has been exploited in all implementations of thesis.

CURAND exploits these RNGs to generate random deviates with uniform, standard
normal and log-normal distributions; since the introduction of the CUDA toolkit v5.0,
CURAND libraries also offer the possibility to generate the Poisson-distributed random
deviates, which are required by the tau-leaping algorithm described in Sections 2.3.2
and 5.3.

4.3 Computational Biology and general-purpose

GPU computing

The in silico analysis of biological systems can be hard because, in general, it is
extremely computationally expensive. For instance, in the case of the biochemical
systems described in Chapter 2, the running time of simulations can be prohibitive,

even in the case of small size systems. This does not represent a problem in itself,

65

General-purpose GPU computing

but can become a relevant issue because some analysis methodology (e.g., parameter
sweep analysis [51], parameter identifiability [273], parameter estimation [216], reverse
engineering [167], sensitivity analysis [293]) requires a large number of simulations to
determine the result.

Since simulations are mutually independent, they can be straightforwardly acceler-
ated by means of dedicated parallel architectures [20] (e.g., GRID computing, clusters
of computers) which come with a cost in energy, money and maintenance. On the con-
trary, GPUs are cheap, power-efficient and widespread in common desktop computers,
so that they are becoming attractive alternatives for the implementation of tools for
systems biology [71], bioinformatics [313, 365], computational biology [123, 300, 323]
and chemistry (e.g., molecular dynamics [124] and quantum chemistry [111]).

Focusing on the biochemical simulation, for instance, Ackermann et al. developed
a tool for the automatic conversion of SBML! files into CUDA executables [3], able
to simulate multiple instances of a system by means of ODE by means of ODEs
numerical integrators (Section 2.3.1). Li and Petzold implemented the SSA algorithm
(Section 2.3.2) on GPUs, showing a relevant speedup with respect to the sequential
execution [182]. In this context, this thesis will provide two examples of GPU-powered
deterministic [230] and stochastic simulators [235], described in detail in Chapter 5.

The parallelization of multiple simulations (coarse-grain acceleration) is not the
only way to leverage the power of GPUs. For instance, Komarov et al. proposed a fine-
grain implementation of the tau-leaping algorithm (Section 2.3.2) [165], in which each
thread is assigned to a specific reaction. Unfortunately, coarse grain implementations
generally suffer from communication and synchronization between all threads, which
are necessary to calculate some intermediate values (e.g., the putative time step 7 in
stochastic simulations).

GPUs were also exploited for spatial simulation (Section 2.2.6), for instance by
extending existing agent-based simulators to support GPUs [79, 279, 280], or by
distributing calculations of subvolumes-based methods [250] or lattice-based methods
[281].

!The Systems Biology Markup Language is a standard XML-based exchange format for biochemical
models [141].

66

Part 11

Novel Work

67

Chapter 5

GPU-accelerated biochemical

simulation

Many tasks that are typical of Systems and Synthetic Biology require a massive number
of simulations of the system under investigation. In particular, the evolutionary
methodologies for parameter estimation, reverse engineering and automatic design
described in this thesis (Chapters 6, 7 and 8, respectively) require a large number of
simulations to assess the fitness values of candidate solutions (see Chapter 3 for further
details). Simulations have a huge impact on the execution time of these methodologies
but, since they are mutually independent, they can be straightforwardly accelerated by
means of a parallel architecture, for instance the GPGPU computing described and
motivated in Chapter 4. Thus, the first step of this thesis concerned the development

of efficient GPU-powered simulators.

In this chapter, three different coarse-grain GPU-accelerated simulators of RBMs
are described: a deterministic simulator exploiting the law of mass-action (cupSODA,
Section 5.1); a deterministic simulator, extending cupSODA and tailored for the
simulation of a model of the blood coagulation cascade (coagSODA, Section 5.2);
a stochastic simulator based on tau-leaping (cuTaulLeaping, Section 5.3). Besides
their use for fitness evaluations, the main goal of these simulators is the analysis of
biochemical models, to predict the way the system behaves in normal or perturbed
condition. As a matter of fact, the intensive exploration of high-dimensional parameter
spaces, corresponding to different system conditions, allows to devise the different

emergent behaviors that the system can present [9, 59, 355].
The main contents of this chapter are published in journal papers [51, 230, 235]

and conference proceedings [22, 233].

69

GPU-accelerated biochemical simulation

5.1 Deterministic biochemical simulation:
cupSODA

cupSODA is a GPU-powered simulator for biological systems that allows to efficiently
execute a large number of parallel deterministic simulations at a considerable reduced
computational cost with respect to CPUs. In particular, cupSODA exploits the massive
parallelism of CUDA architecture to execute independent deterministic simulations in
each thread.

In the case of deterministic models, a system of ODEs is used to describe how the
concentration of each chemical species varies in time, as described in Section 2.3.1;
according to the law of mass action [226], these equations can be derived from a given
mechanistic RBM of the biological system under investigation (see Section 2.2.3).

cupSODA was conceived as a “black-box” simulator for models based on MAK,
whose peculiarity is that it automatically derives the system of ODEs — and perform
their numerical integration using the LSODA algorithm [257] — simply starting from
a set of biochemical reactions which describe the molecular interactions between all
the species occurring in the system. This way, any user — having or not either GPU
programming skills or mathematical modeling expertise — is able to run parallel
deterministic simulations at reduced computational costs. Indeed, when a large number
of mutually independent simulations has to be performed, LSODA turns out to be
very time consuming if the simulations are run in a sequential manner on the CPU.
In what follows it is shown how a GPU implementation of LSODA turns out to be

extremely advantageous.

5.1.1 GPU implementation of cupSODA

cupSODA relies on a C version of the LSODA ODE solver [257] (see Section 2.3.1),
ported and adapted to the CUDA architecture in order to be run on the GPU. cupSODA
was designed to be a cross-platform implementation, so that it can be run on Microsoft
Windows, Linux, and Apple OSX based operating systems. Nevertheless, to exploit
CUDA’s massive parallelism for the execution of different and independent simulations
in each thread, a Nvidia GPU is required; therefore, cupSODA itself requires a Nvidia
video card to be executed.

In [257], LSODA was designed to solve differential systems in the canonical form,
whereby the user is supposed to specify the system of ODEs, that must be implemented

as a custom C function that is then passed to the algorithm. In order to speed up the

70

5.1 Deterministic biochemical simulation: cupSODA

computation when dealing with stiff systems, the Jacobian matrix must be implemented
as a custom C function as well.

cupSODA, on the contrary, was designed to the purpose of being a black-box
simulator, that can be easily used without any programming skills. In particular,
cupSODA consists in a tool that automatically converts the RBM of a biological
system — which can be indifferently given according to a deterministic or a stochastic
formulation! — into the corresponding system of ODEs, in conformity with the MAK
[358], and then it encodes the ODEs and the corresponding Jacobian matrix as arrays.

These two arrays are loaded into the GPU, then parsed and interpreted as custom
functions on the device side. In order to encode each term of each equation into a linear

data structure, without any loss of information, both arrays contain the following data:
 a signed multiplicative factor of the term;
o the index of the kinetic constant associated to the term;

e the number of the chemical species involved in the term and their corresponding

indices (see an example in Figure 5.1).

Encoding | =2 5 2 4 7

Decoding =2 - k5- [34] . [87]
e

Figure 5.1: Example of the encoding methodology in cupSODA, showing the internal
representation of a single term of an ODE, used for the parsing device-side. From the left to
the right, the values of the array have the following semantics: the multiplicative factor of
the term (red); the index of the kinetic constant associated to the term (brown); the number
of species involved in this term (green) and the indices of these species (blue and violet). All
the terms of all the ODEs are then linked together in a single one-dimensional array.

The terms of all ODEs are linked together in these arrays. To efficiently parse
the arrays inside the GPU, cupSODA uses two additional arrays storing the offsets of
each equation (i.e., the indices of each term of each equation); the parsing algorithm
consists in the function given in Figure 5.2. A similar function is defined to parse the

Jacobian matrix.

LeupSODA automatically executes the conversion from the stochastic to the deterministic formula-
tion of both reaction constants and initial molecular amounts, given that the volume of the modeled
biological system is specified.

71

GPU-accelerated biochemical simulation

function decode_ODEs (encoded ODE, ODE offset):
X = [0, ..., 0]
position = 0
for i = 0 to ODE_offset.length do:
ode_value = 0
while(position<ODE_offset[i]) do:
term = encoded ODE[position]
term *= k[encoded_ODE[position+1]]
species = encoded_ODE[position+2]
for s = 0 to species do:
term *= X[encoded_ODE[position+3+s]]
end for
position += (3+species)
ode_value += term
end while
dX[i] = ode_value
end for
return dX
end function

Figure 5.2: Pseudocode of the parsing algorithm, exploited device-side by cupSODA for the
decoding of ODEs. A similar code is used for the decoding of the Jacobian matrix.

cupSODA is able to launch multiple threads which run independent parallel simu-
lations of the same model, with each thread exploiting its own parameterization and
initial conditions. So doing, large numbers of simulations in perturbed conditions can
be executed with reduced running times. To this aim, parameters and initial conditions
are contained in coalesced arrays, a strategy that allows a faster fetching of data from

the global memory.

Besides the global memory (accessible from all threads), cupSODA also exploits
the shared memory (accessible from threads belonging to the same block), the local
memory (registers and arrays, accessible from owner thread), and the constant memory
(cached and not modifiable). In particular, being the data transfer between host and
device very time consuming, all temporary results are allocated on the memories of the
GPU, and they are read back as soon as the simulations are over. To obtain a further
reduction of the memory latencies, the current state and time of each simulation are
stored into the shared memory, while all the constants values (e.g., number of reactions
and chemical species in the model, length of ODEs and Jacobian arrays) and LSODA

settings are stored into the constant memory.

Since the amount of shared memory is limited on each SMX — and poses a limitation

on the blocks’ size — cupSODA automatically calculates the number of threads per

72

5.1 Deterministic biochemical simulation: cupSODA

block and blocks per grid. Double precision floating point values are exploited to
allocate the states of the system and the current time, so that the consumption of shared
memory of each thread is SH = 8 x (/N + 1) bytes of shared memory during the ODEs
integration, where N is the number of chemical species in the system. It is possible
to determine the threads-per-block value as T}, = {%J, where M AX ared 1S
the shared memory available on the GPU, so that the number of resulting blocks is
By, = {TLPJ, where U is the total number of threads requested by the user.

LSODA requires additional parameters for its functioning, the most relevant being
the absolute and relative error tolerance values and the maximum number of internal
steps for each integration interval. AET and RET values can be either scalar values or
specific vectors for each ODE: cupSODA accepts all combinations. Moreover, these
values can be specified for each individual thread, allowing the user to simulate the
same system with different tolerances and compare their outcomes.

cupSODA can also be easily employed to compare the outcome of simulations
with any available experimental data (e.g., the concentration of some chemical species
measured at sampling instants tg,...,t,), for instance to validate the model under
investigation or to perform a parameter estimation. To this aim, cupSODA invokes the
LSODA kernel ¢ — 1 times: each time the kernel is run over a (simulated) time interval
of length A =t¢; —t;,_1,7=1,...,t, and the concentration values of the output species
are stored at the end of each A. Once the concentrations are stored, cupSODA provides
a set of metrics (e.g., root mean square, relative distance) that the user can exploit to

evaluate the distance between each simulation outcome and the target dynamics.

5.1.2 Results

To show cupSODA’s effectiveness, its performances were compared against the COm-
plex PAthways SImulator (COPASI [140]), which is considered here as the reference
sequential simulator. To show the suitability of cupSODA, different batches of in-
dependent deterministic simulations were performed, using three biological models

characterized by an increasing complexity, described in Appendix A:
o the Michaelis-Menten (MM) enzymatic kinetics [226];
« a simple model of gene expression in prokaryotic organisms (PGN) [349];

o the signaling pathway Ras/cAMP/PKA in the yeast S. cerevisiae [27].

73

GPU-accelerated biochemical simulation

During each test, the dynamics of all chemical species were stored, each dynamic
consisting of 100 time instants — uniformly sampled over the whole simulation time —

keeping track of the overall running time.

The GPU used for the tests is a Nvidia GeForce GTX 590, a video card with
Fermi architecture equipped with 2 x 16 streaming multiprocessors for a total of
1024 cores. The performances of this GPU were compared with a quad-core CPU
Intel Core i7-2600 with a clock rate of 3.4 GHz. A direct comparison of GPUs and
CPUs is a hard task, because of their architectural differences (e.g., the multiple
cache levels of CPUs). Moreover, nominal peak capabilities of GPUs (2.48 TFlops
in single precision, in the case of GTX 590) can be achieved only by implementing
kernels completely adhering to the underlying SIMD architecture (e.g., by avoiding
any conditional branch in the code). In addition, the occupancy of GPUs is affected
by the usage of registers and shared memory, which are both limited resources on
each streaming multiprocessor. cupSODA suffers from a high register pressure, which
poses a limitation on the number of simultaneous blocks that can be executed by each
multi-core processor: currently, cupSODA’s implementation is limited to 2 blocks on
Fermi GPUs and 4 on Kepler GPUs. Hence, the theoretical computational power peak
is hard to be reached; nonetheless, the performances of these two hardware devices are
compared here, since they are well representative of hardware components typically

found in personal computers. All tests were run on a system running the O.S. Microsoft
Windows 7, CUDA version 5.0, COPASI 4.8 (build 35).

Figure 5.3 shows a comparison of the overall running times of COPASI and cup-
SODA, obtained by performing an increasing number of simulations with LSODA
for the three test models. The results show that cupSODA largely outperforms the
LSODA algorithm implemented in COPASI and, in the case of 10° simulations (i.e.,
parallel threads) for the MM model (Figure 5.3, top), the computational cost on the
GPU is nearly two orders of magnitude smaller than the CPU, namely, 3.358 sec vs.
289.335 sec, which corresponds to a 86x speedup. In the case of the PGN model
(Figure 5.3, middle), the execution of 10* simulations takes 43.821 sec on the CPU,
while it takes just 0.391 sec on the GPU, resulting in a 112x speedup. Vice versa, a
small number of simulations does not yield better performances, since the running time
for 10 simulations of this model is similar on the two architectures: 0.047 sec (CPU)
vs. 0.046 sec (GPU). The execution of 10° simulations of the Ras/cAMP/PKA model
(Figure 5.3, bottom) takes 6133.3 sec on the CPU and just 268.58 sec on the GPU,
resulting in a 23x speedup. This result clearly states that cupSODA is convenient

74

5.1 Deterministic biochemical simulation: cupSODA

1000 .
100]
-]
£ 10 .
[®)]
o]
c 1 —
C i
35
(n'd i
0.1]
0.01 |
1000 r .
100]
-]
£ 10]
=]
o]
= 1 ~
C i
=)
[h'd |
0.1]
0.01 |
10000]
— 1000 i
lﬂl 4
o]
£ 100 .
8’) i
z 10]
< ;
=}
id]

0.1
102 103 104 10°

-
o
N

parallel simulations

Figure 5.3: Comparison between the computational time of cupSODA (green histograms)
and COPASI (red histograms) for simulating the MM model (top), the PGN model (middle),
and the Ras/cAMP/PKA model (bottom). The y-axis are in logarithmic scale; RET= 10719,
AET= 10710 for MM and PGN models, RET= 10710, AET= 10~ for the Ras/cAMP/PKA
model. For all tests, the maximum number of internal steps allowed during each call of
LSODA was set to 10000.

5

GPU-accelerated biochemical simulation

when more than 10 simulations are to be executed, since the computational cost for a
small number of simulations can be lower on the CPU.

The impact of the use of different memories on cupSODA was also investigated, by
executing 10° simulations of the Ras/cAMP/PKA model exploiting either the shared
memory or the global memory to store the current state and time of the simulations.
The running times were, respectively, 27.501 sec and 54.93 sec: cupSODA is twice as
fast as the naive porting of LSODA when the low latency memories are intensively

exploited; in addition, it is worth noting that these running times are always lower

than the CPU (651.741 sec).

5.1.3 Discussion

cupSODA was not the first attempt in porting LSODA to the CUDA architecture. A
previous GPU implementation of LSODA algorithm was proposed in the cuda-sim
library [370], a Python package providing GPU-accelerated biochemical simulations.
Nevertheless, the aim and design of cuda-sim are very different from cupSODA, as the
latter allows to perform a massive number of simulations without writing any source
code. cuda-sim also relies on a just-in-time technique, whereby the code for LSODA
that will be executed on the GPU is automatically created and compiled at run-time:
this is indeed a flexible and elegant solution, but adds a relatively long compilation
time and requires the availability of a CUDA compiler and the CUDA toolkit on the
running machine.

During the development of cupSODA it was chosen the encoding of ODEs and
the Jacobian matrix into linear arrays which are processed device-side, without the
need for any intermediate recourse to the CUDA driver API or any meta-programming
techniques. Hence, with cupSODA it is possible to immediately simulate any biological
system modeled according the MAK, a characteristics that is particularly appealing
when the model itself is repeatedly modified, for instance when it undergoes a reverse
engineering process [59, 167, 234], for example when running cuRE (Chapter 7): in
such a case, cupSODA only needs to update the GPU representation of the ODEs and
the Jacobian matrix, in order to be ready to run a massive number of simulations of
the new model.

cupSODA becomes more convenient than the CPU counterpart when a relevant
number of parallel simulations has to be run, with a break-even that depends on the
complexity of the system under investigation. Indeed, when performing demanding
computational analysis (e.g., parameter sweep, parameter estimation or sensitivity

analysis) the outstanding advantage of novel softwares as cupSODA clearly comes to

76

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

light. Moreover, cupSODA’s fitness evaluation functions allow a direct integration into
the PE, RE and ED methodologies described in the following chapters.

5.2 Deterministic simulation of the Blood Coagu-
lation Cascade: coagSODA

cupSODA relies on models based on MAK, which is the most general framework
for the description of biochemical kinetics. This choice has sound chemical-physical
justification, but sometimes alternative kinetic functions are considered to describe
specific biochemical phenomena. For instance, Hill kinetics is largely exploited to
model the cooperative binding of ligands to macromolecules, which is enhanced by the
presence of other ligands on the molecule [226], as in the case of oxygen’s binding to
haemoglobin [132].

In this section it is presented coagSODA, a simulator based on cupSODA specifically
designed for the analysis of a model of the Blood Coagulation Cascade (BCC), which
integrates MAK and Hill kinetics. As it is shown hereby, coagSODA allows to efficiently
execute a large number of parallel deterministic simulations at a considerable reduced

computational cost with respect to CPUs [51].

5.2.1 The BCC model

Blood is an essential component in human life, whose primary functions are to feed
cells by delivering a multitude of nutrients, including oxygen, that is necessary for
cellular respiration, and to carry away the cellular wastes, such as carbon dioxide.
Specialized cells and fluids in blood perform many physiological functions, and can
be isolated and analyzed through specific laboratory tests, giving the opportunity
to settle a person’s health condition. Thanks to its key role in making diagnosis of
numerous diseases, blood is the subject of an intense scientific research [283]. All blood
components are kept within appropriate concentration ranges by means of fine-tuned
regulatory mechanisms, ruled by several feedback controls; the constancy of blood
composition is maintained thanks to the circulation through an intricate network of
vessels. In particular, humans have evolved a complex hemostatic system that, under
physiologic conditions, is able to maintain blood in a fluid state; however, in response to
any vascular injury, this system can rapidly react and seal the defects in the vessels wall

in order to stop the blood leakage [62]. Indeed, the circulatory system is self-sealing,

7

GPU-accelerated biochemical simulation

otherwise a continuous blood flow from even the smallest wound would become a

threaten for the individual’s life.

These regulation processes are governed by means of the BCC, a complex network
of cellular reactions which, under physiological conditions in vivo, are inhibited by the
presence of intact endothelium [213]. In order to allow blood coagulation, in humans
there exist 13 blood clotting proteins, called coagulation factors, which are usually
designated by Roman numerals I through XIII. Following a vascular injury, platelets
become active and the tissue factor (TF, or factor III) is exposed in the subendothelial
tissue, starting the BCC. The ultimate goal of BCC is to convert prothrombin (factor II)
into thrombin (factor Ila - that is, the activated factor II), the enzyme that catalyzes
the formation of a clot. Traditionally, the BCC is divided into the eztrinsic and
intrinsic pathways, both of which lead to the activation of factor X [343]. The last part
of the cascade, downstream of this factor, is called the common pathway and leads to
the formation of fibrin monomers, whose polymers finally constitute the backbone of
the clot.

Excluding thrombin, all the enzymes involved in blood clotting are characterized by
a low activity, which increases upon binding to a specific protein cofactor (e.g., factors
V and VIII) or to appropriate phospholipid surfaces (e.g., the plasma membranes of
active platelets) [343]. In BCC pathways, there exist also inhibitory factors, which
limit the activity of the various active proteases and, therefore, allow to regulate the
whole reactions cascade. When the hemostatic system is unregulated, thrombosis (i.e.,
the formation of a blood clot obstructing the blood flow in vessels) may occur due to
an impairment in the inhibitory pathway, or because the functioning of the natural

anticoagulant processes is overwhelmed by the strength of the hemostatic stimulus [62].

In order to investigate the individuals’ variations in blood coagulation components,
and the corresponding response to perturbed conditions, it is necessary to define a
mathematical model of the BCC. The model presented in [56], built upon a previous
model [136], describes the intrinsic, extrinsic and common pathways and, more impor-
tantly, it accounts for the platelet activation, as well as the presence of several inhibitors
(e.g., the tissue factor pathway inhibitor (TFPI), antithrombin III and Cl-inhibitor).
This approach allows, for instance, to study the alterations (prolongation or reduction)

of the time necessary to form the clot (i.e., the clotting time).

The BCC model used as a basis for coagSODA is a slightly reduced version of the
deterministic model given in [56], where a small set of reactions downstream of the
clot formation were excluded since they do not have any effect on the clotting time.

A graphical sketch of the BCC model, which overall consists in 96 reactions among

78

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

ﬁ.

Crrr, B
B rep

fVilla,-L

fiXa-fVilia

(Fbn2),

(Fbn1),

FPA

Figure 5.4: Graphical representation of the BCC model considered in this work. Legenda.
Blue box: coagulation factor; red box: inhibitor and related complexes. Black arrow: complex
formation; green arrow: catalytical activation; violet arrow: activation; red arrow: inhibition.
The reaction is reversible if the arrow tail consists in a dot.

79

GPU-accelerated biochemical simulation

71 molecular species, is given in Figure 5.4. The RBM and the initial state of this
system are reported in Appendix A.4. The system of ODEs, needed to carry out the
simulations and the parameter sweep analysis (PSA) presented in what follows, is
based on MAK, except for 14 reactions that are influenced by a specifically defined Hill
function. The rationale behind the use of Hill functions in the BCC model relies on the
necessity of modeling the physiological levels of thrombin concentration as a function
of platelet activation, as thoroughly described in [56]. Namely, the platelet activity
is mimicked by modulating the rate of the dissociation of the complexes formed on
a platelet’s surface by means of a specific factor ¢, which is calculated with a special

equation during the integration steps (see Section 5.2.2).

coagSODA circumvents the need of manually defining the system of ODEs that
describe the BCC network. More precisely, coagSODA is able to automatically derive
the system of (MAK and Hill function-based) ODEs — and then to perform their
numerical integration by means of the LSODA algorithm (Section 2.3.1) — starting
from the given set of 96 biochemical reactions, which fully describe the molecular

interactions between all the species involved in the BCC.

5.2.2 GPU implementation of coagSODA

coagSODA realizes the run-time calculation of the e value required to correctly simulate
the activity of platelets; the variable € depends on a Hill function that was fit against
experimental data, which quantify the platelet activation status (see details in [56]).
The value of € influences the formation of some complexes within the BCC, occurring on
the platelets’ surface; namely, € intervenes on their dissociation constants by modifying

the activity of reactions of the form
k1
A+ B = AB,
ko

so that the corresponding standard ODEs are changed to yield new equations of the

form:

d[AB]
Pk L[Al - [B] - A
T (4 (B -
The set of 14 reactions of the BCC model influenced by ¢ is given in given in Appendix
A4

(5.1)

The value of € in Equation 5.1 depends on the following Hill function §, which

quantifies the state of platelets activation according to the thrombin concentration

80

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

(denoted as [I1a]), that is, the factor catalyzing the formation of the fibrin clot:

[IICL* (t)]1'6123

f([11a™(t)]) = [ITa*(t)]1-6123 + (2.4279 - 10-9)16123”

where [I1a*(t)] = maxycpg{[[Ia(t')]}, for a chosen time interval [0,¢] of simulation.

The value [/]a*(t)] represents the maximum transient thrombin concentration, it is
needed to simulate the fact that in physiological conditions the thrombin concentration
starts decreasing after monotonically rising to a peak (Figure 5.5). So doing, [[Ta*(t)]
never decreases once it reaches its maximum magnitude: [ITa*(t)] is equivalent to
[[1a(t)] until the concentration of factor Ila reaches the peak, while thereafter it
remains constant at that value, which is the maximum in the considered time interval
[0,t]. Function f allows to simulate the physiological condition whereby platelets remain

active also when the thrombin concentration decreases.

For a given concentration of factor Ila, the maximum platelet activation state &,,4.

is defined as:
Emaz = Emazy + (1 = Emaay) - F([LLa"(t)]), (5.2)

where €,,,45, defines the basal activation state of the platelet at simulation time ¢ = 0.
The value €,,4,, is initially set to 0.01, assuming a basal 1% binding strength of
coagulation factors to the resting platelet surface. When the full activation of platelets

is reached, €,,4, is equal to 1 and the complex dissociation constants are minimized
[56].

coagSODA calculates at each time instant the platelet activation state € by solving

the following differential equation:

de
a = k(gmax - 5)7

where the constant £ is inversely proportional to the time scale of platelets activation
and is set to 0.005. This is consistent with the fact that platelets do not instantly
achieve their maximum attainable activation state (g,4:), but they reach it on a

physiologically relevant timescale.

In dealing with the 14 reactions of the BCC model that are influenced by the
Hill function, the value of [Ila*(t)] must be stored in the GPU because, during
each integration step, coagSODA recalculates Equation 5.2, which exploits the value

[[1a*(t)] to determine a new ¢ value. Since the CUDA architecture does not offer static

81

GPU-accelerated biochemical simulation

9e-07 T T T T T T
8e-07 b
7e-07 b
6e-07 b
5e-07 b
4e-07 h

3e-07 | R

ITa concentration [mol]

2e-07 R

1e-07 J .
0 I I I 1 1 I

0 100 200 300 400 500 600 700

Time [s]

Figure 5.5: Dynamics of thrombin in physiological condition.

variables?, the information for each thread has to be memorized in the global memory.
The accesses to the global memory and the computational costs due to the additional
calculations slow down the integration process, with respect to the integration of ODEs
performed according to a strictly MAK (as in the case of cupSODA). Nevertheless,
in Section 5.2.3 it is shown how this parallel implementation largely outperforms a
sequential counterpart.

5.2.3 Results

In this section the results of the PSA carried out on the BCC model are discussed.
This analysis is useful to investigate either the prolongation or the reduction of the
clotting time in response to perturbed values of some reaction constants and of the
initial concentration of some molecular species, chosen according to their meaning
within the whole pathway. PSA was performed by generating a set of different initial
conditions — corresponding to different parameterizations of the model — and then
automatically executing the deterministic simulations with coagSODA. The use of
GPU technology is fundamental in this type of analysis, especially for large biological

systems as in the case of BCC, because it drastically reduces the computational time.

2In traditional CPU-bound C programming, static variables have a lifetime that extends across the
entire run of the program, but they have a scope that is limited to the function they were declared in.

82

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

The sweep analysis for single parameters (PSA-1D) was performed considering
a logarithmic sampling of numerical values of each parameter under investigation
(reaction constant or initial molecular concentration) within a specified range with
respect to its physiological reference value. The sweep analysis over pairs of parameters
(PSA-2D) was performed by simultaneously varying the values of two parameters
within a specified range, considering a logarithmic sampling on the resulting lattice.
The logarithmic sampling allows to uniformly span different orders of magnitude of the
parameters value using a reduced and fine-grained set of samples, therefore efficiently
analyzing the response of the system in a broad range of conditions.

To determine the response of the BCC to perturbed conditions, we chose the
clotting time (CT) as output of the PSA. The CT is defined as the time necessary to
convert the 70% of the fibrinogen into fibrin (see Figure 5.6), conventionally assumed
to correspond to the time required to form the clot [87], and it is generally used in
laboratory tests for monitoring the therapy with anticoagulant drugs. According to
the model defined in [56], the reference value of CT is around 300 sec in physiological
conditions. The response of the BCC was investigated by PSA by evaluating the CT in
various conditions, corresponding to different values of the reaction constants, varied
over six orders of magnitude with respect to their physiological values (that is, three
below and three above the reference values, if not otherwise specified), as well as to
different values of the initial molecular concentrations, varied over twelve orders of
magnitude with respect to their physiological values (that is, six below and six above
the reference values, if not otherwise specified).

The total number of parallel simulations executed to carry out these analyses were
100 for PSA-1D over reaction constants, 200 for PSA-1D over initial concentrations
and 1600 for PSA-2D.

PSA-1D of the BCC model

Reaction Ry4. The first PSA was performed to determine the value of the kinetic
constant for the autoactivation of factor XII (reaction R4 in Table A.6), which
corresponds to an upstream process in the intrinsic pathway. This analysis was
motivated by two considerations. Firstly, by using the full parameterization given in
[56], the action of the intrinsic pathway turns out to be fundamental for the BCC in
vivo, which is in contrast to experimental observations which indicate that the extrinsic
pathway is the main responsible of clot formation. Secondly, in [56] all constants values
have a reference to experimental measurements, except for the constant of this reaction
(which corresponds to entry 29 in Table 1 in [56]).

83

GPU-accelerated biochemical simulation

9e-6 T T . . .
8e-6 ﬁ\ .
Te-6 .
6e-6 .
Se-6 .
4e-6 .

3e-6 - 30% of fibrinogen .

Fibrinogen concentration [M]

2e-6 R

le-6 .

O 1 1 1 H | | L
0 100 200 300 400 500 600 700

Time [s]

Figure 5.6: Dynamics of fibrinogen in physiological condition. The clotting time is defined as
the time necessary to convert the 70% of the fibrinogen into fibrin.

Figure 5.7 shows the results of this PSA-1D, where k44 was varied over six orders of
magnitude, considering the value given in [56] as the upper limit of the sweep interval.
We can observe that, by decreasing the value of k44 with respect to the value considered
in [56], the CT increases with respect to its reference value; however, for values of
this constant lower than 1-107% M~!'s~! the CT remains unaltered, and this can be
intuitively explained by the fact that in this situation the fibrinogen is mainly activated
by the extrinsic pathway.

Consequently, the value 7 - 1076 s7!

was assigned to the reaction constant kg,
achieving a CT that is comparable to the experimental observations of the BCC in

vivo. This new value was used in all PSA discussed in what follows.

Reactions Rs7 and Rss. The next PSA was carried out to investigate the effect of
the perturbation of the kinetics of two pivotal reactions of the BCC model. Reaction
Ry7, which describes the catalytical activation of factor V by factor Ila, was chosen
because it represents the main positive feedback within the common pathway; reaction
Rsg, which is involved in the activation of factor XI by binding to factor Ila, was chosen
because it represents the main positive feedback in the intrinsic pathway. Moreover,
preliminary PSA over all reaction constants of the BCC model given in Table A.6

84

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

340 T T T T T T T T T T T T T T T T T T

338
336 | |
334]
332 | i

330 | o

Clotting time [s]

328 | -
326 T

le-8

le-7 le-6 le-5
Ky, M7

le-4 le-3

324 e
le-10 1e-9

Figure 5.7: Clotting time according to PSA-1D over constant k44 of reaction Ryy: fXII —
fXITa. The reference value of kyy used in [56] is 5:107* s71, the sweep range is [5-10719,
5-1074].

evidenced that these two reactions are among the most relevant steps of the coagulation

network.

The PSA-1D over ko7 (Figure 5.8) shows that the CT is very sensitive to the
perturbation of the rate of this reaction, when the reference value of its constant (i.e.,
kor = 2-107 M~1s71) is either increased or decreased; in particular, when ky; is very
low, a plateau in CT is reached since the strength of the positive feedback exerted by
factor Ila is largely reduced, a condition where the contribution of the amplification
of the hemostatic stimulus (due by the common pathway) to the formation of the
clot is basically not effective. On the other side, the PSA-1D over ksg (Figure 5.9)
shows that, while a decrease of the constant with respect to its reference value (i.e.,
kss = 1-10% M~!s71) does not have any substantial effect, an increase of its value leads
to a progressive increase in the C'T. This increase is due to the fact that factor Ila is
sequestered in the formation of a complex with factor XI, and hence it is no longer
available as a free component in blood to participate in other reactions, especially
those reactions of the extrinsic pathway which principally lead to the clot formation in

vivo. This behavior highlights that the intrinsic pathway has a secondary role in blood

85

GPU-accelerated biochemical simulation

coagulation in vivo, compared with the extrinsic pathway, as also evidenced by various

experimental observations [278].

400 T T T T T T T T T T T T T T T T T T
380 L e, |
— 360 | .
‘;‘ .
E .
w340 + .]
£
© 320t .
300 1
280 : A X Lol . Lol . Lol . el X "..“.'1""-.- .
led le5 le6 1le7 1e8 1e9 1el0 lell

kyy [M's7]

Figure 5.8: Clotting time according to PSA-1D over constant ko7 of reaction Roy: flla + fV
— flla + fVa. The reference value is 2-107 M~!s~!, the sweep range is [2-10%, 2-1019].

Factors VIII, IX and II. The next set of PSA-1D was realized by varying the
initial concentrations of factors VIII, IX and II. These factors were selected since
both an excess or a deficiency of their concentrations lead to diseases related to blood
clotting.

The PSA-1D over factor VIII (Figure 5.10) shows that increasing the initial con-
centration of this factor results in decreasing the CT, suggesting the possible presence
of hypercoagulable states in these perturbed conditions. As a matter of fact, high
levels of factor VIII cause an increased risk of deep vein thrombosis and pulmonary
embolism [146]. On the other hand, individuals with less than 1% of the average
concentration of factor VIII show a severe haemophilia A, characterized by higher CT
(Figure 5.10), and require infusions of plasma containing the deficient factor, otherwise
frequent spontaneous bleeding would occur [346]. When the concentration of this factor
is between 5% and 30% of the average concentration, individuals still risk bleeding in

case of trauma [346].

86

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

370 T T T T T T T T T T
360 S
r? 350 B ..‘ -
< .
E s
w340 | - i
R= .
g)
© 330 i
320 F .
310 " " M| " " M| " " M| " " M| " " M| " " "
le5 le6 le7 1e8 1e9 1el10 lell

Figure 5.9: Clotting time according to PSA-1D over constant ksg of reaction Rsg: flla + fXI
— fIla-fXI. The reference value is 1-10® M~!s~!, the sweep range is [1-10°, 2-101].

The PSA-1D over factor IX (Figure 5.11) shows only a slight decrease of the CT
as the initial concentration of fIX increases; this is in contrast to recent studies that
demonstrated how the excess of factor IX leads to an increased risk of deep vein
thrombosis [338]. This result can be explained by considering that: (i) a high concen-
tration of factor IX is not sufficient to bring about coagulation problems, though, when
the concentration of other factors is above the average value (yet not at pathological
levels), prothrombotic states can be observed; (i) in this model the average values are
considered as initial concentrations of factors, however, individuals are characterized
by different (balanced) combinations of procoagulant and anticoagulant factor levels
that altogether contribute to define a unique coagulation phenotype that reflects the
developmental, environmental, genetic, nutritional and pharmacological influences of
each individual [36]. On the contrary, the lack of factor IX cause haemophilia B,
characterized by higher CT with respect to the reference value (Figure 5.11).

Furthermore, by comparing the PSA-1D of factors VIII and IX (Figures 5.10 and
5.11) it is clear that haemophilia A is more serious than haemophilia B, since the CT
achieved in conditions of factor VIII deficiency is higher than the CT obtained in the

case of factor IX deficiency.

87

GPU-accelerated biochemical simulation

400

380

360

340

320

300

Clotting time [s]

280

260

240

220 : :
le-16 le-14 le-12 le-10 le-8 le-6 le-4 le-2

Factor VIII [M]

Figure 5.10: Clotting time at different initial concentrations of factor VIII. The reference
value is 7-107% M (dashed black line), the sweep range is [7-10716, 7.107%]. The blue area
indicates a condition in which factor VIII concentration is less than 1% of its physiological
concentration, corresponding to a situation of severe haemophilia; the red area indicates
a condition in which factor VIII concentration is between 1% and 30% of its physiological
concentration, corresponding to a situation of mild haemophilia; the green area indicates
a condition in which factor VIII concentration is greater than 130% of its physiological
concentration, corresponding to a situation of hypercoagulability.

In both PSA-1D over factors VIII and IX, after the initial decrease of the CT an
unexpected increase of the CT was observed, as the factor concentration increases.
This counterintuitive behavior arises at very high concentrations of these factors (with
respect to the average physiological levels); it would be interesting to verify, by means
of ad hoc laboratory experiments, if the model correctly describes the behavior of the
BCC even in these conditions or, on the contrary, it is not predictive in these extreme

situations.

The PSA-1D over factor II (Figure 5.12) shows a dramatic decrease of the CT as the
initial concentration of this factor increases (with respect to the average physiological
level). This behavior resembles the effects of hypercoagulability (or thrombophilia), a
disease caused by mutation G20210A in the prothrombin gene [306], that causes an
increase of the prothrombin level (factor IT) in the blood flow, resulting in an excessive

formation of the active form of this factor, thus heightening venous thrombosis risks

88

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

700
650 | .
600 : .
550 | -. .
500 | : .

450 . -

Clotting time [s]

400 | . -

BT ——\’\ _
300 | .

250 " 1 " 1 " 1 " 1 " 1 " 1 "
le-14 le-12 le-10 le-8 le-6 le-4 le-2 1e0

Factor IX [M]

Figure 5.11: Clotting time at different initial concentrations of factor IX. The reference value
is 9-1078 M, the sweep range is [9-10714, 9.1072].

[201]. Hypercoagulability is usually treated with warfarin therapy, or with other
anticoagulants with a similar effect. These drugs decrease the capacity of coagulation

factors to become active, preventing the formation of unwanted thrombies.

On the other hand, when the initial concentration of factor II is low, the analysis
results mimicked the effects of prothrombin deficiency, a rare autosomal recessive
disease that causes a tendency to severe bleeding [37, 62]. As shown in Figure 5.12, a
concentration equal to 10% of the physiological value of factor II (i.e., 1.4 - 1075 M)

leads to clotting effects similar to severe haemophilia A.

PSA-2D of the BCC model

Reactions Ro7 and Rsg. Figure 5.13 shows the effect of the simultaneous variation
of constant ko7 and ksg (over the same sweep ranges previously considered in the two
PSA-1D). This result remarks that reaction Ra7, involved in the common pathway,
has a stronger influence on the BCC, and that there is a synergic interplay between
these two reactions. In particular, when the value of ko7 is low and the value of ksg

is high, the CT is higher than the values achieved when only a single constant is

89

GPU-accelerated biochemical simulation

700 : —
600 |]
500 F i
400 F i

300 | ' .

Clotting time [s]

200 | .

100 | .

O " 1 " 1 " 1 " 1 " 1 " 1 "
le-12 le-10 le-8 le-6 le-4 le-2 1e0 le2

Factor II [M]

Figure 5.12: Clotting time at different initial concentrations of thrombin. The reference value
is 1.40-107% M, the sweep range is [1.40-10'2, 1.40-10°].
changed, because in this condition both the intrinsic and the common pathways are

simultaneously inhibited.

Factor VIII, factor IX and Tissue Factor. In the last two PSA-2D the variation
concerned the initial concentration of factor VIII and Tissue Factor, and the initial
concentration of factor IX and Tissue Factor, respectively.

The initial concentrations of factors VIII and IX were varied over four orders of
magnitude, using their physiological values as upper limit for the sweep ranges; the
concentration of Tissue Factor was varied over four orders of magnitude, two above
and two below its reference value (see Table A.7). The rationale behind this choice
is to observe how the BCC model, in conditions corresponding to different states
of haemophilia (obtained by decreasing the concentrations of factors VIII and IX),
behaves with different initial concentrations of the Tissue Factor, which is the upstream
factor of the extrinsic pathway, i.e., the most important element of the BCC.

The results of these PSA-2D show that, with respect to the condition of haemophilia
B, in the case of haemophilia A the amount of Tissue Factor (below its reference value)
has a negligible influence on the CT, as indicated by the presence of a plateau in Figure

5.14; on the contrary, concerning haemophilia B, a deficiency of Tissue Factor leads

90

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

440

420

440 400

420 380

o 400 - 360

g 3’0 r 340

S 360 | 320

g Mor 300
S 30 f

© 300 b 280
280 |

lell
lel0

led 1e5 le8

le6 le7 1e7

1e8

le6

1e9 lel0

-1 -1
kg [M s
Ky M5 lell le5 sgl]

Figure 5.13: Clotting time according to PSA-2D over reaction constants ko7 and ksg. The
sweep ranges are [2:10%, 2-10'°] and [1-10%, 2-10!!], respectively.

to an increase of the CT, especially when factor IX is present in low concentrations
(Figure 5.15).

The different results achieved in the two PSA-2D is due to the presence, in the
BCC model, of a direct interaction between Tissue Factor and factor IX by means of
the TF-fVIla complex (see reactions Rys, ..., Ry5 in Table A.6). Indeed, the lack of
Tissue Factor directly affects the concentration of active factor IX, which results in a

strong alteration of the C'T with respect to physiological conditions.

CPU vs GPU performance comparison

In order to show the relevant speedup achieved by coagSODA, the comparison of the
computational effort required by GPU and CPU for the simulation of the BCC model
is presented here. The performances of coagSODA were compared with those obtained
using the LSODA algorithm implemented in the software COPASI (version 4.8, build
35) [140], executing on the CPU the same set of simulations that were run on the GPU.

In all simulations, executed both on GPU and CPU, 100 samples were stored —
uniformly distributed in the time interval considered for each simulation, i.e., [0, 700]

sec — of the dynamics of all chemical species involved in the BCC model. The settings

91

GPU-accelerated biochemical simulation

450
400
450 350
) 400 300
o 350
£ 300 250
'%n 250 200
g 200 150
© 150 100
100
le-9
le-10
le-14
le-13
le-12
le-11
Tissuc Factor [M] le-10 oo le-14 Factor VIII [M]

Figure 5.14: Clotting time at different initial concentrations of Tissue Factor and factor VIII.
The sweep ranges are [5-10714, 510719 and [7-10714 | 5.107'9], respectively.
for the LSODA algorithm were the following: RET 1-10~7, AET 1- 107!, maximum

number of internal steps set to 20000.

Benchmark details The GPU used for the simulations is a Nvidia Tesla K20c,
equipped with 2496 cores organized in 13 SMXs, GPU clock 706 MHz and 5 GB of
DDR5 RAM. In all tests, coagSODA was compiled and executed with version 5.5 of
CUDA libraries. Even though this GPU has compute capability 3.5 and is based on
the GK110 Kepler architecture, currently coagSODA does not exploit any of the new
features (e.g., Dynamic Parallelism, see Section 4.1) with the exception of the new ISA
encoding, which allows threads to exploit an increased number of registers (255 instead
of 63), reducing register spilling into global memory and increasing performances [245].
Moreover, as described in Section 4.1, the Kepler architecture offers the possibility to
reconfigure the 64KB on-chip cache, balancing between L1 cache and shared memory.
Since coagSODA exploits the shared memory to reduce the latencies during the access
to the concentration values of the BCC model, the following configuration was chosen:
48 KB for the shared memory, 16 KB for the L1 cache.

92

5.2 Simulation of the Blood Coagulation Cascade: coagSODA

700
600
700 500
= 600 400
o 500 300
£ 400
Eﬂ 300 200
B 200 100
© 100 0
0
le-7
le-14
le-13
le-12
le-11
le-10 Factor IX [M]

Tissue Factor [M] le-9 le-12

Figure 5.15: Clotting time at different initial concentrations of Tissue Factor and factor IX.
The sweep ranges are [5-10714, 5.10719] and [9-10712, 9-10~8], respectively.

The performance of the GPU was compared against a personal computer equipped
with a dual-core CPU Intel Core i5, frequency 2.3 GHz, 4 GB of DDR3 RAM, running
the operating system Mac OS X Lion 10.7.5.

Benchmark results Figure 5.16 shows the comparison of the running times required
to run several batches of simulations, executed to carry out the PSA-1D over the
reaction constant kg7. The choice of comparing the performances of the GPU and
CPU implementations by executing batches of simulations that are related to a PSA
— instead of running n independent but identical simulations (i.e., all characterized
by the same parameterization of the model) — is due to the fact that these results
represent a more realistic scenario in the computational analysis of biological systems,
whereby it is useful to investigate large search spaces of parameters, corresponding to
different perturbed conditions of the model [235]. Moreover, for the evaluation of the
running time, the execution of a batch of n identical deterministic simulations would
be futile. The figure clearly shows that coagSODA always performs better than the
CPU counterpart. In particular, while the CPU performance increases linearly with the
number of simulations, the running times are strongly reduced on the GPU: in this case,

the overall running time roughly corresponds to the time required for the execution

93

GPU-accelerated biochemical simulation

le7
| CPU

le6 |

le5 -
le4 -
le3 - II II
S
5 10 50 100 500

1000 5000 10000

Number of simulations

Running time [s]

Figure 5.16: Comparison of the computational time required to execute an increasing number
of simulations of the BCC model on CPU (Intel Core i5, 2.3 GHz) and GPU (Nvidia Tesla
K20c, GPU clock 706 MHz). The computational time is expressed in sec. The time value
related to 1000, 5000 and 10000 simulations on the CPU were estimated by regression (see
also Table 5.1).

of the slowest simulations. This is due to the fact that different parameterizations
may require different time steps for LSODA to converge, and the execution of a block
terminates as long as all the threads it contains terminate. In turn, the execution of a
kernel terminates when all blocks terminate: for this reason, a single simulation, whose

dynamics requires more steps than the others, may affect the overall running time.

Table 5.1 reports the running times of all batches of simulations, along with the
speedup achieved on the GPU. In particular, these results highlight that the advantage
of exploiting the GPUs for the simulation of the BCC model becomes more evident as
the number of simulations increases, with a 181x speedup when a PSA with 10000
different parameterizations is executed. Therefore, the GPU accelerated analysis of
the BCC model with coagSODA represents a novel, relevant computational mean to
investigate the behavior of this complex biological system under non-physiological
conditions, and could be exploited to efficiently determine the response of the BCC to

different therapeutical drugs.

94

5.3 Stochastic biochemical simulation: cuTauLeaping

Table 5.1: CPU vs GPU performance comparison.

Number of simulations | CPU time (sec) | GPU time (sec) | Speedup
) 380.8 127.8 | 2.98 x

10 1060.4 2329 | 4.56 x

50 5170.4 805.8 | 6.42 X

100 11652.8 1097.7 | 10.61 x

500 53605.8 1739.4 | 30.81 x

1000 107358.2* 1998.2 | 53.73 X

5000 536350.7* 3096.0 | 173.2 x

10000 1072497.5* 5895.1 | 181.9 x

* Values estimated by regression
5.3 Stochastic biochemical simulation:

cuTauLeaping

This section presents the development of a GPU-powered stochastic simulator of
biochemical systems based on the tau-leaping algorithm, named cuTauleaping, and
its application to perform parallel stochastic simulations in a massively parallel way,
by running multiple independent simulations as parallel CUDA threads. The peculiar
GPU-oriented design of cuTaulLeaping and its data structures, memory allocation
strategies and advanced functions exploited on the Fermi architecture, are presented in
detail.

5.3.1 GPU implementation of cuTauLeaping

In cuTauLeaping, the workflow of the traditional tau-leaping algorithm — described
in Section 2.3.2 — is partitioned in different phases, which altogether allow a better
exploitation of the parallel architecture of the GPU than a monolithic implementation.
The rationale behind this choice is that the resources on each SMX are limited, thus
they would be quickly consumed by the data structures employed by tau-leaping,
causing a low occupancy of the GPU that would then result in worse performances.

Moreover, since tau-leaping embeds the potential execution of SSA simulation steps,

95

GPU-accelerated biochemical simulation

a “fat” kernel responsible for both simulation algorithms would not be convenient,

because of the following issues:

e when the largest permissible time step 7 for non-critical reactions is very low, it
is faster to forgo tau-leaping and to execute an arbitrary number of SSA steps

(see Step 3 in the modified Poisson tau-leaping algorithm presented in [46]);

e SSA is simpler and requires fewer resources than tau-leaping (the only thing the

two algorithms share is the vector of propensity functions).

Therefore, the partitioning of tau-leaping workflow in different phases allows a faster
execution of the simulations, thanks to the reduced memory footprint, which yields a
higher level of parallelism.

The four phases that constitute cuTauleaping, schematized in Figure 5.17, are:

o phase P1: each thread i, where i = 1,...,U, and U € N is specified by the user,
determines a tentative value for the length of the time step 7 for the non-critical

reactions, by using Equation 2.6;

10
ao(x)

o phase P2: all threads where the length of the time step is such that 7 >

execute a tau-leaping step;

« phase P3: the remaining threads execute a fixed number of SSA steps (100 is
the default setting);

e phase P4: check the termination criterion of the simulation in all threads

(cuTauLeaping termination).

Each thread proceeds by applying tau-leaping or SSA steps, which are mutually
exclusive, according to the value of a vector Q € {—1,0,1}Y, where for eachi =1,...U
the element ¢; € Q is set to 0 if the -th thread must execute SSA, 1 if the i-th thread
must execute tau-leaping, while the value —1 corresponds to the signal of terminated
simulation.

In cuTauLeaping the first two phases are implemented in a single kernel, so that the
tau-leaping step can be executed right after the calculation of the 7 value, without the
need for a global memory write (e.g., to update Q) or a recalculation of the propensity
functions and 7 (that could be required, in such a case), which would reduce the
performances. In particular, during the first two phases, after the computation of the
putative 7 value for non-critical reactions, a second putative time step value related to

critical reactions is calculated, and the smallest one is used in the current tau-leaping

96

5.3 Stochastic biochemical simulation: cuTauLeaping

| Threads |

Phase P1: I Large t value
decision I Small T value

XX

tau-leaping

Figure 5.17: Simplified scheme of cuTauLeaping workflow: in phase P1 each thread calculates
the value 7 for the simulation step; in phase P2, the threads whose 7 is “large” perform
a tau-leaping step (by executing a set of non-critical reactions and (possibly) one critical
reaction); the remaining threads perform a fixed number of SSA steps (where one reaction

is executed at each step) during phase P3. The phases are iterated until all threads have
reached tyyx, a termination criterion verified during phase P4.

Q

Phase P2:

N

<
<&
<

R
R4
5

X
Q@

step. If the first putative 7 value is used, then only non-critical reactions sampled from
the Poisson distributions are applied; otherwise, besides non-critical reactions, also one

critical reaction is selected and applied (as described in [46]).

The four phases are implemented in the following kernels, which are executed in a

sequential manner by each thread i:

e kernel P1-P2: if ¢; = —1, then terminate the kernel; otherwise, calculate the 7
value for non—critical reactions.

Ifr< then ¢; < 0 and terminate the kernel; else ¢; < 1 and execute a

()?
tau—leaplng step updating the system state x (according to Equation 2.5, by
executing a set of non-critical reactions and, possibly, one critical reaction) and
the global simulation time (by setting ¢ «— ¢ + 7). If ¢ > tyx, then ¢; + —1 and

terminate the kernel;

97

GPU-accelerated biochemical simulation

o kernel P3: if ¢; # 0, then terminate the kernel; otherwise, perform the SSA steps
(by executing a single reaction at each step), and update the system state x
(according to Equation 2.5) and the global simulation time ¢ (by setting, at each
SSA step, t < t+ 7). If t > tyx set ¢; < —1 and terminate the kernel;

o kernel P4: if ¢; = —1 (for all threads), then terminate cuTauLeaping; else go back
to kernel P1-P2.

Figure 5.18 shows the pseudocode of the host side procedure devoted to invoke the
CUDA kernels; Figures 5.19, 5.20, 5.21, present the pseudocodes of kernels P1-P2, P3,
P4, respectively.

Algorithm 1 Host-side pseudocode of cuTauLeaping.

procedure CUTAULEAPING(MAT [|, MBI][|,xo[][,c[][,I[|, E[],U)
: AV, VTV, H, Heype + CalculateDataStructures(MA, MB, xq, ¢)

1:
2
3 LoadDataOnGPU(A, V, V™, V. H, Hiype, X0, €)
4: AllocateDataOnGPU(t,x,0,E, Q)
5 gridSize, blockSize < DistributeWorkload(U)
6 repeat

7 Kernelp;_py <<<gridSize,blockSize>>>

8 (A, V, VI, V. H Hiype,x,¢,1,E 0,Q,t)

9: Kernelps <<<gridSize,blockSize>>>

10: (A, V,;x,¢, LE O0,Q,t)

11: TerminSimulations + Kernelps <<<gridSize,blockSize>>>(Q)
12: until TerminSimulations = U

13: end procedure

Figure 5.18: Host-side pseudocode of cuTauLeaping. As a first step, the stoichiometric
information of the reactions is exploited to pre-calculate the data structures needed by the
algorithm; all matrices are flattened during this process. Then, once the support memory
areas are allocated (e.g., the chunk of global memory where the system dynamics will be
stored), the four phases of cuTauLeaping begin and are repeated until all simulations are
completed.

Kernels are iteratively repeated until ¢ > tyx for all threads. This termination crite-
rion is efficiently verified by kernel P4 that exploits two advanced CUDA functionalities
introduced with the Fermi architecture: synchronizations with predicate evaluation
and atomic functions. Synchronization functions are generally used to coordinate
the communication between threads, but CUDA allows to exploit these functions to
evaluate a predicate for all threads in a block; atomic functions allow to perform
read-modify-write operations without any interference from any other thread, therefore
avoiding the race condition. A combination of these functionalities allows to determine
whether all threads have terminated their execution (i.e., the predicate is ¢; = —1,

foralli=1,...,U). In addition, since both functionalities are hardware-accelerated,

98

5.3 Stochastic biochemical simulation: cuTauLeaping

Algorithm 2 Phases P1,P2 of cuTauLeaping: subdivision of threads according
to the 7 value and execution of the tau-leaping steps.
1: procedure KERNELp; py(A[], V[], VT[], V[],global x[][],global_c[][],
I[],H[],Heypel |, E[],O[][], QL] t[])

2: tid < getGloballd() > Global-level thread identifier
3: sid + getLocalld() > Block-level memory identifier
4: x|[sid] + global x[tid]

5: c[sid] + global _cltid]

6: if Q[tid] = —1 then return > Signal of terminated simulation
vé: end if

8: a + UpdatePropensities(x[sid], c[tid])

9: agp <Sum(a)

10: if ag =0 then

11: for i < F[tid].... do

12: OJtid|[i] + GetSpecies(x|[sid|, E)

13: end for

14: Q[tid] + —1

15: return > No reactions can be applied
16: end if

17: X ¢ DetermineCriticalReactions(A, x[sid])

18: u, 0 < CalculateMuSigma(x[sid], H, Heype, a[sid], x[sid])

19: 71 + CalculateTau(u, o)

20: if 71 <10./ap then

21: Q[tid) - 0

22: return > SSA steps are more efficient
23: else

24: Q[tid] + 1 > tau-leaping will be performed
25: end if

26: K<+ [],a0, <0

27 for all j in x do

28: ap, < ap, + alj] > Sum of the propensities of critical reactions
29: end for

30: if ap, > 0 then 7 + (1./ap,) *In(1./p1)

31: end if

32: T < min{7y, 72}

33: if 71 > 79 then

34: Jj < SingleCriticalReaction(x|[tid], a[tid])

35: K[j] + 1

36: end if

37: repeat

38: for all j not in x do

39: K|j] «+ Poisson(7,a[sid][j])

40: end for

41: x' < TentativeUpdatedState(x[sid], K[sid], V)

42: if ValidState(x’) then break

43: end if

44: T+ 7/2 > Negative species detected
45: until False

46: t[tid] « t[tid] + T

47: while t[tid] > I[F[tid]] do

48: SavelnterpolatedDynamics(x, x’, O[tid], F[tid])

49: Fltid] + +

50: if Fltid] = ¢ then

51: Qltid] + —1 > No more samples: simulation over
52: end if

53: end while

54: global _x «+ x’

55: end procedure

Figure 5.19: Device-side pseudocode of kernel P1-P2; implementing the subdivision of threads
according to the 7 value and the execution of a tau-leaping step.

99

GPU-accelerated biochemical simulation

Algorithm 3 Phase P3 of cuTauLeaping: potential execution of the SSA steps.
1: procedure KERNELp3(A[], V]],global x[][],global c[][],1I[],
E[],0[](1,Q[],t])
2 tid + getGloballd() > Global-level thread identifier
3 sid «+ getLocalld() > Block-level memory identifier
4: if Q[tid] # 0 then return > SSA steps not needed
55 end if
6
7
8

x[sid] < global _x[tid]
c[sid] < global _ cltid]
: for 7in 0...100 do
9: a[sid] + UpdatePropensities(x[sid], ¢[sid])

10: ag +Sum(a[sid])

11: if ap =0 then

12: for i + E[tid].... do

13: O[tid|[¢] + x[tid]

14: end for

15: Qltid] + —1

16: return > No reactions can be applied
17: end if

18: T < (1/(1,())*1n(1/p1)

19: j « SingleCriticalReaction(x|[sid], a[sid])
20: Ttid] < T[tid] + T

21: if T[tid] > I[F[tid]] then

22: SaveDynamics(x[sid], O[tid], E[tid])

23: Fltid] + +

24: if Ftid] = . then

25: Qltid] + —1 > No more samples: simulation over
26: end if

27: end if

28: x + UpdateState(x,7)

29: end for

30: global_x + x

31: end procedure

Figure 5.20: Device-side pseudocode of kernel P3 in cuTauLeaping, implementing the execution
of the SSA steps. The kernel starts by loading the vectors global x and global_c¢ — which
correspond to the current state of the system and to the values of stochastic constants,
respectively — from the global memory areas that contain these data for all threads. Since
these information are frequently accessed, they are immediately copied into the faster shared
memory as vectors x and c, respectively. Then, it performs a fixed number of SSA steps (100
in the default setting), where a single reaction is executed at each step.

the resulting computational complexity is O(#blocks), making them more efficient

than other equivalent methodologies, e.g., parallel reduction [352], whose complexity is
O(logU) (note that, in general, #blocks < log U).

In order to further improve the performance of the simulation execution, it is better
not to code the stoichiometric information by means of matrices. In cuTauLeaping,
stoichiometric matrices MA, MV, MVT and MV of the RBM (see Section 2.2.1) —
which are typically sparse matrices — are flattened by packing their non-zero elements
into arrays of CUDA vector types, named uchar4, whose components are accessed by

means of variable.x, .y, .z, and .w; the vectors corresponding to these matrices are

100

5.3 Stochastic biochemical simulation: cuTauLeaping

Algorithm 4 Phase P4 of cuTauLeaping: count of terminated simulations.

1: procedure KERNELps(Q[|, Termination)

2 tid + getGloballd() > Global-level thread identifier
3 sid «+ getLocalld() > Block-level memory identifier
4: if tid = 0 then

5: Termination < 0

6 end if

7 SynchronizeThreads()

8: BlockResult < CountTerminated Threads(Q)

9: if gid = 0 then

10: AtomicAdd(Block Result, Termination)

11: end if

12: end procedure

Figure 5.21: Device-side pseudocode of kernel P4 in cuTauleaping, implementing the verifica-
tion of the termination of all simulations. The verification is performed by means of CUDA’s
hardware accelerated synchronization and counting features, which allow to count the threads
of a block which satisfy a specific predicate. By exploiting CUDA’s atomic functions, the
total number of threads which satisfy the predicate ¢; = —1 is accumulated: if it is equal to
the number of threads, the execution of all parallel simulations is completed.

named A,V, VT V, respectively. Since both VT and V vectors can assume negative
numbers, an offset is used to store their .z values as unsigned chars and re-calculate
the correct negative values on the GPU. An example of this implementation strategy
is shown in Figure 5.22 which schematizes, for the MM model (see Appendix A), the

conversion of the matrix M A into the corresponding flattened representation A.

By using this strategy, the complexity of the calculations needed for both SSA and
tau-leaping decreases from O(M - N) to ©(Z), where M is the number of reactions,
N is the number of species and Z = |[{a;; € MA | aj # 0}] is the number of
non-zero entries in MA. For each non-zero entry, the .x and .y components store
the corresponding row and column indices of MA| respectively; the .z component is
used to store the stoichiometric value. Note that, even though the .w component is
left unused, it is more efficient to employ the uchar4 vector type rather than uchar3,
because the former is 4-aligned and takes a single instruction to fetch the whole entry,
while the latter is 1-aligned, and would require three memory operations to read each
entry of the flattened vector. It is worth noting that the use of an unsigned char data
type implies that cuTauLeaping could deal with models with up to 256 reactions and
molecular species; for larger systems, data types with greater size must be exploited.
Anyway, the maximum size of a model is also limited by the shared memory available

on the GPU; a detailed analysis of this issue is provided in the Section 5.3.3.

cuTaulLeaping is also optimized for what concerns the calculation of p;(x) and

o?(x) values (Equation 2.7). These values are related to each species S;, and represent

101

GPU-accelerated biochemical simulation

Left (reactants) matrix Non-zero entries:

for the MM model L In (row 0, column 0, value 1
[_>() C

1100 (row 0, column 1, value 1)
0010 (row 1, column 2, value 1)
0010 (row 2, column 2, value 1)

Flattened representation of the left matrix for the MM model

x=0 | y=0 | z=1 | w=0 ||| x=0 | y=1 | z=1 | w=0 ||| x=1 | y=2 | z=1 | w=0 ||| x=2 | y=2 | z=1 | w=0

Figure 5.22: Schematization of the flattened representation of the stoichiometric information
in cuTaulLeaping. Each stoichiometric matrix can be pre-processed to identify its non-zero
values and discard the remaining ones, thus reducing the number of reading operations
required by the stochastic algorithms. A strategy to reduce the size of these matrices consists
in flattening each matrix as a vector of triples (r,¢,v), where r is the row index, ¢ is the
column index and v is the non-zero value in (r,c¢). Both r and ¢ indices are 0-based and
triples are stored using vectors of CUDA’s uchar4 data types, that have the advantage of
requiring a single instruction to fetch an entry. The top part of this figure shows the values
appearing in the 3 x 4 stoichiometric matrix of reactant species of the MM model, which
consists of 3 reactions over 4 molecular species (see Appendix A). The bottom part of the
figure shows the corresponding uchar4 vector.

an estimate of the change of the propensity functions, based on all possible reactions
in which the species 5; is involved. For this reason, the flattened representation of the
matrix MV cannot be exploited; therefore, to obtain an efficient calculation of these

values, a flattened transposed stoichiometric matrix V7 is introduced.

In order to further increase the performances of cuTaulLeaping, the CUDA code
was optimized to better exploit the GPU architecture. The first optimization consists
in keeping the register pressure low, in order to avoid the register spilling into global
memory and to increase the occupancy of the GPU. This is achieved by partitioning
the tau-leaping algorithm into multiple kernels, allowing a strong reduction of the
consumption of hardware resources (i.e., the register pressure). This CUDA optimiza-
tion technique, known as branch splitting, was shown to achieve a relevant gain of

performances [48].

Another typical optimization of CUDA is to ensure coalesced access to data, i.e.,
an aligned and sequential organization of the memory, for all data structures that are
updated by each thread. In this implementation coalescence is granted to all data
structures that are private to each thread, that is, the system state x, the stochastic
constants c, and so on. However, there is some shared information that is not inherently

coalesced:

102

5.3 Stochastic biochemical simulation: cuTauLeaping

« the stoichiometric flattened vectors A and V (used by kernel P1-P2 and kernel
P3), VT and V (used by kernel P1-P2);

o the vector H € NV (used by kernel P1-P2), containing the highest order of all

reactions in which each molecular species appears as a reactant;

o the vector Hiype € NV (used by kernel P1-P2), containing the information
about the maximum number of reactant molecules involved in the highest-order

reactions.

The data structures used to store the stoichiometric information (A, V, VT, V) are not
modified during the simulation and are common to all threads, and can be conveniently
loaded into the constant memory. This peculiar CUDA memory is immutable and
cached, so that the uncoalesced access pattern does not have any impact on the
performances.

Note that, in contrast to other GPU implementations of tau-leaping [165], cu-
TauLeaping exploits the vector A to correctly evaluate the propensity functions of
the reactions whose reactant species appear also as products in the same reaction: in
cases like this, the net balance of the consumed and produced chemicals that is stored
in vector V would not carry sufficient information to distinguish between reactants
and products. For instance, given MV; = (—1,—1,1), it is impossible to establish
whether this state change vector corresponds to a reaction of the form S; + S; — S3
or 251 + 25 — S1 + S5 + S3; on the contrary, the information stored in A allows to
discriminate between the two cases.

H and Hyype vectors are necessary to evaluate the length of the step 7 (Equation
2.6), which is determined at each step according to the current state of the system;
7 is then exploited to update the simulation time of each thread, denoted by t € RY.
Both H and Hgype vectors, anyway, can be calculated offline by preprocessing the
stoichiometric matrices MA and MB while they are loaded.

In addition, both kernels P1-P2 and P3 exploit the following three vectors:

o x € NV is the current state of the system;

« a € RM contains the values of the propensity functions of the reactions;
e ¢ € RM contains the values of the stochastic constants.

Kernel P1-P2 exploits four additional vectors:

« x' € Z" is the putative state of the system (note that the elements of this vector

might assume negative values);

103

GPU-accelerated biochemical simulation

e x € {0,1}™ contains the information about critical reactions, stored as 1s, and

non-critical reactions, stored as 0s;

e G € R” contains the auxiliary values used to calculate the length of the time
step satisfying the leap condition, which are computed by using the vectors x, H
and Hyype (see details in [46]);

« K € N¥ contains the samples of the Poisson distributions corresponding to the

number of times each reaction will be fired in the current step.

These vectors are coalesced, but frequently exploited by tau-leaping and SSA. In
order to minimize the latencies due to the frequent access to the global memory, for
each thread the vectors x, X', a, ¢, x and K are allocated into the shared memory.
Being an on-chip memory, latencies of the shared memory are about two orders of
magnitude lower than that of the global memory; the use of shared memory allows
a reduction of the global bandwidth usage [290] and provides a relevant performance
boost. In contrast, G is memorized into the global memory, since its values are used
only twice during the simulation step to determine the 7 value. Since cuTauLeaping
was specifically designed to be embedded into other applications — in particular, the
computational tools for PE and RE described in this thesis which rely on the execution
of a large number of simulations — the stochastic constants are also copied into the
shared memory vector c.

To obtain a more efficient implementation, an additional strategy consisted in
restructuring the tau-leaping algorithm in order to avoid the conditional branches as
much as possible. In cuTauLeaping, branches were removed by unrolling loops and by
allowing redundant calculations in favor of a uniform control flow.

There are two more relevant facets of cuTauleaping implementation: the storage
of the simulated dynamics and the “feed” of molecular species amounts. The storage
of the entire temporal evolution of all species, associated to each thread in the GPU,
cannot be realized, since it is impossible to determine a priori how many steps each
simulation will take. Indeed, whenever a kernel is launched, the required amount of
memory must be statically pre-allocated from the host; it is therefore fundamental
to set the number of time instants in which the dynamics is sampled, before each
simulation starts. Moreover, the naive storage of all molecular species, even in the case
of a few sampled time instants, may be unfeasible. For instance, in the case of the RBM
model of the Ras/cAMP/PKA pathway (see Appendix A), storing the dynamics of 2'2
simulations, considering 1000 samples stored as single-precision floating point values,
would require 4(bytes)x1000(samples)x 33(species) x 2'?(simulations) ~ 0.5GB, which

104

5.3 Stochastic biochemical simulation: cuTauLeaping

is very close to the memory amount of an average GPU. Therefore, cuTauleaping

makes use of four additional global memory vectors:

I € R* contains the ¢ € N time instants in which the temporal evolution of the

system is stored;

o E € N” contains the indices of the x € N molecular species whose amounts are

stored (for some xk < N);

e O € N****¥U contains the U simulated dynamics of the molecular species in E,

sampled during the time instants in I;

« F c NV stores, for each thread, the pointer to the next time instant in O, i.e.,
when the u-th simulation reaches the i-th sampling time instant, F, is set to
v+ 1.

Finally, in order to fully exploit the cache, also the values of ¢, K, M, N, 0., €, tux
and the size of the flattened vectors A, V, VT and V, are stored as constants into the

constant memory of the GPU.

5.3.2 Results

The computational performances of cuTauleaping were compared with the CPU
implementation of tau-leaping provided in the software COPASI [140]. To this aim,
four stochastic RBMs of biological systems were used as a benchmark, namely, the
three models already mentioned in Section 5.1.2 and the Schlogl model [342, 354].
The definition of each model, as well as the values of the initial molecular amounts
and of the stochastic constants used to run simulations, are given in Appendix A. In
addition, to analyze the influence of the size of the model (i.e., number of reactions and
molecular species) on the performances of cuTauLeaping, several tests were executed
on randomly generated synthetic models characterized by different size and various
parameterizations.

The advantages of using cuTauleaping to investigate the effects of systematic
perturbations on the system dynamics are also shown. To this aim, different PSA on
the Schlogl and Ras/cAMP/PKA models were performed, in which one (PSA-1D),
two (PSA-2D) or three (PSA-3D) parameters were simultaneously varied within given
sweep intervals (chosen with respect to a fixed reference value for each parameter).
Within these ranges, the numerical values of each varied parameter were determined

with a linear sampling for the amounts of molecular species; a logarithmic sampling

105

GPU-accelerated biochemical simulation

was instead considered for stochastic constants (if not stated otherwise), in order to
uniformly span over many orders of magnitude. All PSA were performed by generating
a set of different initial conditions — corresponding to different parameterizations
of the model under investigation — and then automatically executing the parallel

stochastic simulations with cuTauLeaping.

Computational results

To analyze the performances of cuTauLeaping, the same simulations executed on the
GPU were carried out on a CPU architecture by exploiting the tau-leaping algorithm
implemented in the software COPASI (version 4.8 Build 35, running on Windows 7
64-bit) [140]. COPASI has been recently integrated with a server-side tool, named
Condor [159], that handles COPASI jobs, automatically splits them in sub-jobs and
distributes the calculations on a cluster of heterogeneous machines; in this thesis this
possibility is not used, as COPASI represents as a single-node CPU-bound reference
implementation, which is currently single-threaded and does not exploit the physical
and logical cores of the CPU.

The GPU used for the tests is a Nvidia GeForce GTX 590, a dual-GPU video card
equipped with 2 x 16 streaming multiprocessors for a total of 1024 cores (cuTauLeaping
automatically distributes the workload on the available SMXs); the performances were
compared with a quad-core CPU Intel Core i7-2600 with a clock rate of 3.4 GHz.

In all simulations, the total simulation time tyx for MM, PGN and Schlégl models
was set to 5, 50 and 10 a.u., respectively, while for the Ras/cAMP/PKA model it was
set to 150 a.u.; for each simulation, 100 samples were stored of all the molecular species
occurring in the system. The value of the error control parameter of tau-leaping was
set to € = 0.03, as suggested in [46].

The results of the comparison between cuTauLeaping and COPASI CPU tau-leaping
are summarized in Table 5.2, which reports the running time (in sec) obtained by
executing different batches of simulations of each model; these results were obtained
using the RNG MRG32K3A in cuTauLeaping (see Section 4.2). Table 5.2 clearly shows
the advantage of cuTaulLeaping as the number of simulations increases. Interestingly,
because of the architectural differences and the different clock rates, a single run of
cuTaulLeaping may be slower than the CPU counterpart, and it becomes fully profitable
only by running multiple simulations. For instance, in the case of the Ras/cAMP/PKA
model (Figure 5.23d), the break-even is reached around 27 simulations.

Thus, when less than ~ 100 simulations of this specific pathway are needed, the use

of a CPU implementation may be more convenient. Nonetheless, statistical analyses of

106

5.3 Stochastic biochemical simulation: cuTauLeaping

Table 5.2: Comparison of computational time of COPASI CPU tau-leaping and cuTauleaping.

Model Simulations | CPU time | GPU time* | Speedup
Michaelis-Menten 26 0.047 0.038 1.23 x
28 0.219 0.046 4.75 x

210 0.905 0.047 19.25 x

212 4.087 0.051 80.14 x

214 19.001 0.073 260.29 x

216 76.691 0.172 445.87 x

218 309.241 0.530 583.47 x

Prokaryotic gene network 20 0.468 0.120 3.90 x
28 1.997 0.121 16.50 x

210 8.112 0.124 65.42 x

212 32.807 0.128 256.30 x

214 130.885 0.175 747.91 x

216 526.535 0.591 890.92 x

218 2095.48 2.18 961.23 x

Schlogl 26 0.202 0.723 0.28 x

28 0.811 0.875 0.92 x

210 3.603 0.979 3.68 x

212 13.993 1.156 12.10 x

214 56.254 1.578 35.64 x

216 224.454 3.534 63.51 x

218 905.664 10.163 89.11 x

Ras/cAMP/PKA 26 118.873 320.1 0.37 x
28 445.632 322.4 1.38 x

210 1769.58 372.4 4.75 X

212 8828.05 551.4 16.01 x

214 35027.9 1530.1 22.89 x

216 133733 5482 24.39 x

218 534932%* 21470 24.92 x

*Exploiting the MRG32K3A random numbers generator
**Estimated value

stochastic temporal evolutions of biological systems require large batches of simulations
(usually > 100) to derive statistically significant measures of the analyzed system
dynamics. Note that, in general, the analytical determination of the break-even for an
arbitrary model is a hard task, because it depends on its size (the number of reactions
and molecular species) as well as on its parameterization, that might lead to stiffness

phenomena, able to affect the running time of the used simulation algorithm. Moreover,

107

GPU-accelerated biochemical simulation

(a)

CPU mmmm
GPU (XORWOW)
le2 LGPU (MRG32K3A) mummm

Running time [s]

26 28 210 212 214 216 218

led

CPU
GPU (XORWOW) s 1
le3 FGPU (MRG32K3A) mmmmm 4

Running time [s]

le3 CPU

GPU (XORWOW) mmmm
GPU (MRG32K3A) mmmmm

Running time [s]

26 28 210 212 214 216 218

le6

CPU mmmm
GPU (XORWOW) mmm
GPU (MRG32K3A)

Running time [s]

26 28 210 212 2l4 216 218

Number of simulations

Figure 5.23: Comparison between the computational time taken by cuTauleaping and
COPASI CPU tau-leaping to execute different batches of stochastic simulations of the MM
model (a), the PGN model (b), the Schlégl model (c), and the Ras/cAMP/PKA pathway
(d) (see Appendix A). For each model, cuTauLeaping becomes more profitable than the
CPU counterpart when a certain number of parallel simulations is run, with a break-even
that depends on the complexity of the system. Considering the speedup, the best results
achieved with cuTaulLeaping — with respect to COPASI — are around 583x for the MM
model, 961 x for the PGN model, 90x for the Schlégl model, and 25x for the model of the
Ras/cAMP /PKA pathway (see also Table 5.2).

108

5.3 Stochastic biochemical simulation: cuTauLeaping

if a biological system is characterized by multistability or by very large fluctuations
in the dynamics of some molecular species (e.g., those occurring in low amounts),
simulations running in different threads can be characterized by a high divergence of
the execution flow, thus resulting in reduced parallelism and, consequently, in worse
performances. For instance, if two threads simulating the same system reach very
different system states, they can take different branches within the code (e.g., due to a
rejection of an invalid putative state x” of the system), an event that can greatly affect
the performance of the GPU.

For the sake of completeness, Figure 5.23 shows the running times of cuTaul.eaping
obtained by using the two RNGs implemented in cuTaulLeaping, XORWOW and
MRG32K3A, and compares these results with the running time of COPASI CPU tau-
leaping. As described in Section 4.2, XORWOW presents statistical flaws and therefore
should not be exploited to carry out Monte Carlo simulations. Thus, MRG32K3A
is used as default RNG for cuTauleaping. A more detailed comparison of these two
RNGs — from both the points of view of quality and performances — is provided later

in this section.

Finally, in order to investigate the influence of the size of the simulated system on
cuTauLeaping performances, several tests on randomly generated synthetic models
(RGSM) were executed. In particular, six distinct parameterizations of 100 different
RGSM, each one consisting of 35 reactions and 33 species, were analyzed. The rationale
behind the choice of this model size and various initial conditions was to compare the
computational costs of cuTauLeaping for the simulation of RGSM on the one side, and
the Ras/cAMP/PKA model on the other side. RGSM were generated according to the
methodology proposed by Komarov et al. [165], and following two different strategies
for the selection of the values of the stochastic constants. The results of these tests are
given in Table 5.3 where, for each synthetic model, the average running times (given in
sec) were evaluated by executing 2'° parallel simulations with tyy = 150 a.u., to allow

a direct comparison with the results listed in Table 5.2.

In tests 1 and 2, the values of stochastic constants of the RGSM were randomly
selected with a uniform probability in [0, 1]; the initial molecular amounts were set to
103 (test 1) and 10* (test 2) for all species appearing in the systems. Both tests show
that, on average, the computational time required for 2'° parallel simulations of RGSM
is much lower than the time needed for the same number of parallel simulations of the
Ras/cAMP/PKA model. In addition, it is clear that the initial molecular amounts
considered in the parameterizations actually influence the results; in general, higher

quantities lead to higher average running times.

109

GPU-accelerated biochemical simulation

Table 5.3: Running times of cuTauLeaping for the simulation of randomly generated synthetic
models.

Test n. | Model size | Initial molecular | Stochastic constants | Average running time
amounts interval (standard deviation)
1 35 x 33 x = (10%,...,10%) [0,1] 1.906 (1.396)
2 35 x 33 x = (10%,...,10%) [0,1] 8.149 (7.866)
3 35x33 | x=(10%,...,10%) (1075, 10]* 1.436 (0.7)
4 35 x 33 x = (10%,...,10%) [107¢,10]* 8.263 (6.053)
5 35x33 | x=(103,...,10%) (1072, 10%)* 1.247 (0.543)
6 35x33 | x=(104,...,10%) (109, 104]* 18.509 (91.976)
7 80 x 80 | x = (10%,...,10%) (1075, 10]* 13.242 (10.623)
8 80 x 80 x = (10%,...,10%) [1079, 10%]* 96.133 (302.05)

*Logarithmic sampling

In tests 3 to 6 a modified strategy was exploited to select the values of stochastic
constants, which were logarithmically sampled in the given range in order to uniformly
span over different orders of magnitude. To obtain more realistic parameterizations,
in tests 3 and 4 this range was defined according to the smallest and to the highest
values of stochastic constants appearing in the Ras/cAMP/PKA model (see Table A.8
in Appendix A); in tests 5 and 6, the range was widened to six orders of magnitude
larger than the values used in tests 3 and 4. Also in these cases, the average running
time required for the simulation of the RGSM is lower than the time needed to execute
the same number of parallel simulations of the Ras/cAMP/PKA model. Moreover, the
running time is mainly influenced by the initial molecular amounts rather than the

values of the stochastic constants used in the different parameterizations.

In addition, in test 7 and 8, 2!° parallel stochastic simulations of RGSM, whose sizes
are approximately 4x bigger than the Ras/cAMP/PKA model, were performed. Even
considering the worst result (test 8), the average running time required to simulate
these larger synthetic models is still low, suggesting that the system size has not a
direct impact on the performances of cuTauLeaping, while the complexity of the system

— such as the presence of positive or negative feedbacks possibly leading to oscillatory
dynamics (as in the Ras/cAMP/PKA model), or reactions that lead to stiffness (as in

the Schlogl model) — is much more relevant.

110

5.3 Stochastic biochemical simulation: cuTauLeaping

Comparison of quality and performances using RNGs XORWOW
and MRG32K3A

The XORWOW algorithm [200] is known to present statistical flaws [133] and therefore
should not be exploited to perform Monte Carlo simulations. Nevertheless, it is more
performant than the other RNGs available in CURAND and, as such, it might be used
when a strong reduction of the computational costs is fundamental.

The aim of the tests presented in this section was to compare the outcomes of
stochastic simulations when using XORWOW instead of MRG32K3A [177]. This
comparison was carried out on the Schlogl model by executing 210, 22,24 216 parallel
simulations and calculating the frequency distributions of the chemical species X at

time ¢ = 10 a.u.. The results of these four tests are shown in Figure 5.24.

E MRG
I XOR |1

100 T T T T T T T

Il MRG

Frequency

300 400 500 600 700

1600 T T T T T T T 700

1400- 6000}

1200-
50001

1000-
4000

8001
30001

Frequency

6001

20001
4001

1000f

Molecules Molecules

Figure 5.24: Comparison of the frequency distribution of the chemical species X of the Schlogl
model at time ¢ = 10, using the MRG32K3A (blue) and the XORWOW (red) RNGs. Top-left:

210 simulations; top-right: 2'2 simulations; bottom-left: 2'4 simulations; bottom-right: 216

simulations.

In order to verify whether the samples corresponding to XORWOW and MRG32K3A

were drawn from the same distribution, the Kolmogorov-Smirnov (K-S) [96] statistics

111

GPU-accelerated biochemical simulation

was exploited. When the K-S statistic is small or the p-value is high, the hypothesis
that the distributions of the two samples are the same cannot be rejected. Results in
Table 5.4 confirm that, despite XORWOW presents statistical flaws, according to the
K-S test the frequency distributions of X obtained with XORWOW and MRG32K3A
can be considered completely equivalent. This is also shown in Figure 5.24, where it

can observed that the distributions are perfectly overlapped.

Table 5.4: Kolmogorov-Smirnov statistics of the frequency distribution of species X in the
Schlogl model.

Number of parallel simulations | K-S test ‘ p-value ‘

210 0.05 0.9994
212 0.04 0.9999
214 0.04 0.9999
216 0.05 0.9994

Table 5.5 reports the comparison of the overall running time (expressed in sec)
of different batches of simulations for the four models described in Appendix A,
executed using either XORWOW or MRG32K3A. These results show that XORWOW
outperforms MRG32K3A in all cases.

Altogether, these results show that, despite XORWOW presents statistical flaws
and therefore should not be safely exploited to carry out Monte Carlo simulations,
the frequency distributions of X obtained with XORWOW and MRG32K3A can be
considered equivalent; in addition, XORWOW allows to achieve a higher speedup with
respect to MRG32K3A. Nevertheless, in order to have high quality simulated dynamics
and reasonable performances, MRG32K3A is used as default RNG for this thesis.

Analysis of bistability in the Schlégl model

Bistability is a capacity exhibited by many biological systems, consisting in the
possibility of switching between two different stable steady states in response to some
chemical signaling (see, e.g., [64, 263, 353] and references therein). The Schlogl model
is one of the simplest prototypes of chemical systems presenting a bistable dynamic
behavior [342, 354]. This system is characterized by the fact that, starting from the
same initial conditions, its dynamics can reach either the low or the high steady state;
switches between the two steady states can also occur due to stochastic fluctuations.

cuTaulLeaping can be efficiently exploited for the execution of a massive number of
simulations of the Schlogl model, with the same initial parameterization, in order to

produce a frequency distribution of the molecular species that exhibits the bistable

112

5.3 Stochastic biochemical simulation: cuTauLeaping

ONeA POYRUIIISH,,

X 76V X GT'8¢T 0LV1C PO06T | %GE6FES o1C
X 6EVT X 0€°LT z8S 868% eeLeeT o1C
X 68°CC X GP'GT T°08GT G9LET 6°L20G€ 1
X 10°9T X gT'LT 716G LGS ¢0°'8T8Y 21C
X QLY X O0F'C 7L 7'L2E 8G69LT 1@
X 8¢'T X 67T ads 9G°66¢ TE9 STV <C
X €0 X 60 T°02€ G'€0¢ €L8'8TT o0 | Lemuyed yyd/dINVO/sed
X T1°68 X 97091 €oT'01 779°C 799°¢06 o1C
X 1G€9 X 23 90T pege e1T'e VST FET 01T
X $9°GE X 9pTY 8LGT G9T'T ¥62 96 1T
X 012l X 9¢°CT 98T’ T zeT'T €66°CT 210
X 89°¢ X 20V 6L6°0 968°0 €09°'¢ 01
X 260 X 0T 180 06.°0 1180 <C
X 820 X 130 €zL0 GzL0 z0z'0 o0 [opout [3Q[YPS
X €2'196 X 2'2201 817 G0'C 8¥°'G60¢ o1C
X 76068 X 1€ LG6 1660 ey Gee'9zs o1C
X 16°LFL X 9609 GLT'0 zLT0 G88°0€T p1C
X 0£'9GT X $GSTT 8210 zeT0 L08'TE 21C
X Z'G9 X G6'G9 7210 AN zIT's 1@
X 0G°9T X L0°LT 1210 LTIT°0 L66'T oC
X 06°€ X 007 021°0 LTIT°0 8970 o0 | 1omyou ouag oroLrexorg
X L7686 X 8919/, 0£5°0 9070 T3 60€ o1C
X L8'GT¥ X T16°€7G zLT'0 W10 169°9. o1C
X 62092 X 68°96 €L0°0 790°0 T00°6T p1C
X FT1°08 X T7'€8 160°0 6700 LSO e
X GT6T X 96°07 L¥0°0 770°0 5060 01C
X GLY X GL'G 9700 8€0°0 61270 oG
X €31 X peT 8€0°0 Ge0°0 L70°0 o0 | [opOU USIUSIN-SIERYDIN
(Vesteenygm) | (MoMYOX) | (Vereendm) | (MOMHOX)
dnpaadg dnpaadg owyl 1dH owyy 1dH | 2wy N | suonvnuiLg 12PN

"SIOJRIQULDS SIDQUINU WOPURL JUSIPIP sulsn surdesrneno jo soururioprod [euoreinduwo)) G G 9[qR],

113

GPU-accelerated biochemical simulation

behavior. Generally speaking, this kind of investigation allows the implicit identification
of attractors and multiple steady states of a system, and helps to (empirically) determine
the probability of reaching a particular state during the dynamical evolution of the

system itself.

To this aim, a total of 2!® simulations of the Schlégl model were performed, keeping
track of the molecular amount of species X in each simulation, sampled in 100 time
instants uniformly distributed over the simulation time. In particular, to detect the
initial jump either to the low or to the high steady states, that takes place in the
first time instants of the simulations, 2!7 simulations with tyx = 3 a.u. were initially
performed; then, for a deeper investigation of the bistable switching behavior of the
system, the other simulations were executed considering ty,x = 150 a.u.. The results of
simulations were used to calculate the histograms of the molecular amount of X, that
were then exploited to realize a heatmap showing the frequency distribution of this
species between the two stable steady states. Figure 5.25a shows the initial transient
of the dynamics, where a slightly higher probability to reach the low steady state can
be observed, starting from the initial configuration of the Schlégl system (described
in Appendix A, Tables A.4 and A.5). Figure 5.25b shows the frequency distribution
of reaching either the low or the high steady state (around 100 and 600 molecules
of species X, respectively), highlighting a larger variance concerning the high steady

state.

In Figure 5.26 it is shown the frequency distribution of molecular amounts of
X in perturbed conditions of the Schlogl model, evaluated by exploiting a PSA-1D
in which the value of the stochastic constant cs is uniformly varied in the interval
[6.9-107* 1.4 - 1073]. The frequency distribution was calculated according to 2'®
simulations, where the dynamics was sampled at the single time instant ¢ = 10 a.u.,
according to ten different values of the stochastic constant c3 in the chosen sweep range.
The total running time to execute this PSA-1D was 34.92 sec with cuTauLeaping, and
1013.51 sec with COPASI, thus achieving a 116x speedup. Figure 5.26 shows that
increasing values of ¢3 induce a decrease (increment, respectively) in the frequency
distribution of X concerning the low (high, respectively) steady state, whereas for

intermediate values of c3 the system is characterized by an effective bistable behavior.

Finally, Figure 5.27 shows the results of a PSA-3D performed by simultaneously
varying the values of the stochastic constants ¢, ¢o and c3 in the ranges [2.9-1077,3.1-
1077, [8.0-107°,1.1 - 107%] and [6.0 - 1074, 1.2 - 1073], respectively. For each stochastic
constant, taken independently from the others, the chosen range corresponds to a

condition of effective bistability of the Schlégl model. The values of the three stochastic

114

5.3 Stochastic biochemical simulation: cuTauLeaping

(a)
700
80000
600 70000
2 500 60000
3
o >
= 50000 2
()
5400 2
= ()
3 40000 ¢
2 300
= 30000
200 20000
100 10000
0
0.5 1.0 1.5 2.0 2.5
Time [a.u.]
(b)

w
o
o

300

Molecular amount
N
o
o

N
o
o

=
o
o

20 40 60 80 100 120 140
Time [a.u.]

Figure 5.25: Frequency distribution of the molecular amount of molecular species X in the
Schlégl model, calculated using a total of 2'® parallel simulations executed by cuTauLeaping.
(a) Plot of the frequency distribution of X considering typx = 3 a.u., to detect the bistable
switching behavior that takes place in the first time instants of the dynamics; a slightly higher
probability to reach the low steady state can be observed, starting from the initial state of
the Schlogl system. (b) Plot of the frequency distribution of X considering twax = 150 a.u.,
to investigate the stability of the two steady states of the system; the heatmap highlights the
two stable states (around 100 and 600 molecules of species X), and shows larger stochastic
fluctuations around the high steady state.

115

GPU-accelerated biochemical simulation

40000

35000

30000

25000

20000

Frequency

15000

10000

5000

1.44e-03
1.33e-03
1.22e-03
1.13e-03
1.04e-03
9.60e-04 0‘&(4‘“
8.86e-04 \\}e,

)
817e-04 =\
7.54e-04
6.95e-04

100
200
300
400
500

M
ofecu;a - 660
Ot’nt J00

Figure 5.26: Results of a PSA-1D on the Schlégl model, in which the value of the stochastic
constant cg is varied in the interval [6.9 - 1074,1.4- 10_3] (the set of reactions and the values
of all other parameters are given in Appendix A, Tables A.4 and A.5). Each frequency
distribution is calculated according to 2'® simulations executed by cuTauLeaping, measuring
the amount of the molecular species X at the time instant ¢ = 10 a.u., considering ten
different values of the stochastic constant cg within the sweep interval. The figure shows
that increasing values of ¢3 induce a decrease (increment) in the frequency distribution of X
concerning the low (high) steady state, with intermediate values of c¢3 characterized by an

effective bistable behavior.

116

5.3 Stochastic biochemical simulation: cuTauLeaping

constants were uniformly sampled in a 16 x 16 x 16 three-dimensional lattice; for each
sample, 256 simulations are executed (for a total of 22° simulations) and the frequency
distribution of the amount of species X at the time instant ¢t = 10 a.u. is evaluated.
This set of values was then partitioned according to the reached (low or high) stable
steady state; in Figure 5.27, the red (blue, respectively) region corresponds to the
parameterizations of the model which yield the high (low, respectively) steady state
most frequently. The green region represents a set of conditions whereby both steady

states are equally reached.

PSA of the Ras/cAMP/PKA model

In this section the results of a PSA carried out on the stochastic model of the Ras/-
cAMP/PKA pathway [27, 255] are reported. In [27], it was shown that intrinsic noise
within the Ras/cAMP/PKA pathway can enhance the robustness of the system in
response to different perturbations of the model parameters, ensuring the presence of
stable oscillatory regimes, as previously investigated for other biological systems (see
[321] and references therein). Indeed, stochastic simulations of the functioning of this
pathway showed that yeast cells might be able to respond appropriately to an alteration
of some basic components — such as the intracellular amount of pivotal proteins, that
can be related to the stress level [210, 348] — fostering the maintenance of stable
oscillations during the signal propagation. This behavior might suggest a stronger
adaptation capability of yeast cells to various environmental stimuli or endogenous

variations.

In [27, 255], in particular, it was shown that the intracellular pool of guanine
nucleotides (GTP, GDP), as well as the molecular amounts of protein Cdc25 — that
positively regulates the activation of Ras protein, and that is negatively regulated by
PKA — are both able to govern the establishment of oscillatory regimes in the dynamics
of the second messengers cAMP and of protein PKA. In turn, this behavior can influence
the dynamics of downstream targets of PKA, such as the periodic nucleocytoplasmic
shuttling of the transcription factor Msn2 [95, 210]. In addition, in [27, 255] it was
highlighted that stochastic and deterministic simulations of the Ras/cAMP/PKA
pathway can yield qualitatively different outcomes: in some conditions, characterized
by very low amounts of pivotal proteins in this pathway (e.g., Cdc25), the stochastic
approach provides stable oscillatory regimes of cAMP, while the deterministic approach
shows damped oscillations. Therefore, these results remark the role played by noise in

the Ras/cAMP/PKA pathway and the usefulness of executing stochastic simulations.

117

GPU-accelerated biochemical simulation

gap oo 080

0.90

s
Lar]
<
2
=
oy
2
—
(=]
E
=

2

Figure 5.27: Results of a PSA-3D on the Schlégl model, performed by varying the stochastic
constants c¢1, ¢ and c3 in the intervals [2.9 - 1077,3.1 - 1077, [8.0 - 107°,1.1 - 10~%] and
[6.0-107%,1.2 - 1073], respectively. The values of the stochastic constants were uniformly

sampled in a 16 x 16 x 16 three-dimensional lattice; for each sample, 256 simulations were
executed with cuTauLeaping (for a total of 220

simulations) and evaluated the frequency
distribution of the amount of the molecular species X at the time instant ¢ = 10 a.u. was
evaluated. This set of values was then partitioned according to the reached (low or high)
stable steady state; in the plot, the red (blue) region corresponds to the parameterizations

of the model which yield the high (low) steady state most frequently. The green region
represents a set of conditions whereby both steady states are equally reached.

118

5.3 Stochastic biochemical simulation: cuTauLeaping

To deeply investigate the role played by guanine nucleotides and Cdc25, in this work
it is further analyzed the extended version of the Ras/cAMP/PKA model presented in
27, 255], where the reactions responsible for the occurrence of oscillatory behaviors
were included. To this aim, a PSA-2D was performed to simulate the system dynamics
in perturbed conditions, where it was simultaneously varied the amount of GTP in the
interval [1.9 - 10%,5.0 - 10°] molecules (corresponding to a reduced nutrient availability,
up to a normal growth condition) and the amount of Cdc25 in the interval [0, 600]
molecules (ranging from the deletion to a 2-fold overexpression of these regulatory
proteins). A total of 2'6 different initial parameterizations were uniformly distributed
over this bidimensional parameter space. In Figure 5.28a the amplitude of cAMP
oscillations is shown in each of these initial conditions, where an amplitude value equal
to zero corresponds to a non oscillating dynamics; the amplitude values of cAMP
oscillations were calculated as described in [255].

This figure shows that oscillatory regimes are established for basically any value
of GTP when the amount of Cdc25 is at normal condition or slightly lower, while if
the amount of Cdc25 increases, no oscillations of cAMP occur when GTP is high, but
oscillatory regimes are still present if GTP is low. In order to compare the advantage
of using cuTaul.eaping to perform this stochastic analysis with respect to a CPU
implementation, in Figure 5.28b it is shown a previous analysis performed on the CPU
[27], which was obtained with a comparable computational time, albeit in the case of
the CPU-based analysis only 2% parameterizations of the Ras/cAMP/PKA pathway
(corresponding to 2% independent simulations) could be analyzed.

These computational results can suggest possible interesting behaviors of the
biological system under investigation. In this case, for instance, the establishment of
oscillatory regimes in the above mentioned conditions can be due to the fact that Ras
proteins are more frequently in their inactive state (that is, loaded with GDP instead
of GTP) when the ratio GTP/GDP decreases. Since in normal growth conditions
the concentration of GTP is 3 to 5 times higher than GDP, the decreased activity of
Ras proteins in the considered perturbed conditions — which are characterized by a
favored unproductive binding/unbinding with GDP — can induce the establishment of

an oscillatory regime (see also [27] for more details).

5.3.3 Discussion

To reduce the computational costs related to the analyses of mathematical models of
real biological systems, two conceptually simple ways can be considered to parallelize

stochastic simulations. The easiest solution consists in generating multiple threads on

119

GPU-accelerated biochemical simulation

(a)

4.5e04
4.0e04
3.5e04
3.0e04
2.5e04
2.0e04
1.5e04
1.0e04
5.0e03
0.0e00

40000
30000
20000
10000

cAMP oscillations amplitude

4.0e04
3.5e04
3.0e04
2.5e04
2.0e04
1.5e04
1.0e04
5.0e03
0.0e00

30000

20000

10000

CcAMP oscillations amplitude

Figure 5.28: Results of a PSA-2D on the Ras/cAMP/PKA model by varying the amount of
GTP in the interval [1.9-10%, 5.0 - 105] molecules (ranging from a reduced nutrient availability
to a normal growth condition), and the amount of Cdc25 in the interval [0, 600] molecules
(ranging from the deletion to a 2-fold overexpression of this GEF proteins). The figure shows
the amplitude of cAMP oscillations, evaluated as described in [255]; an amplitude value equal
to zero corresponds to a non oscillating dynamics. (a) Plot of the results obtained by running
216 parallel simulations with cuTauLeaping; (b) plot of the results obtained by running 28
sequential simulations, performed on the CPU. The two batches of parallel and sequential
simulations were executed with a comparable computational time.

120

5.3 Stochastic biochemical simulation: cuTauLeaping

multi-core workstations, but it immediately turns out to be undersized, since the number
of cores on high-end machines can be far lower than the number of simulations required
for computational analysis as PE, PSA, sensitivity analysis, RE and ED. The other way
consists in distributing the stochastic simulations on a cluster of machines, which may
as well result inadequate for several problems. First of all, it is economically expensive
and very power-demanding; secondly, it takes a dedicated software infrastructure to
handle workload balancing, network communication and the possible errors due to
nodes downtime or server-node communication issues; thirdly, if the nodes of the cluster
are heterogeneous, the slowest machines may represent a bottleneck for the whole
task. In addition, a cluster implementation may not always scale well because of two
problems: on the one hand, the speedup is approximately proportional to the number
of independent simulations that run on a dedicated node (i.e., a million nodes for
common tasks like PE and SA); on the other hand, the running time of each simulation

can be larger than the overhead requested for server-node communication.

An alternative methodology to perform multiple and massively parallel simulations
consists in exploiting the GPGPU architecture. The modern GPU of mid-range price
contains thousands of cores that — as long as the computational task can be subdivided
and optimized for a SIMD architecture — allow an impressive peak of computational
power, and also a higher energetic efficiency with respect to an equivalent CPU-based

solution.

cuTauLeaping was developed taking into account all these aspects, and it represents
an implementation of tau-leaping algorithm as a set of strongly optimized CUDA
kernels, able to simultaneously execute multiple independent simulations on a single
machine. The specific design of cuTauLeaping presents some additional advantages: it
avoids any memory transfer to and from the host, thus reducing the overall running
time, and it can be embedded into the GPU-based software framework described in
this thesis, that was developed for PE [231, 232], RE [234] and ED [236]. As a matter
of fact, the modularity of the implementation and the mutual independence of the
multiple simulations allows to easily wrap cuTauLeaping with any other methodology

that needs or can benefit from these massive parallel executions.

To achieve even better performances, the tau-leaping algorithm was redesigned to
(7) avoid the conditional branches, thus exploiting the underlying SIMD architecture
as much as possible, and (i7) capitalize on the CUDA’s memory hierarchy, by pre-
calculating some of the needed data structures and by allocating the most used ones
into the fastest, yet smallest, memories. Indeed, one the biggest limiting factor for a

good occupancy of the CUDA resources is a large use of the shared memory, which can

121

GPU-accelerated biochemical simulation

improve the overall performances at the cost of reducing the theoretical occupancy of
the SMX. Table 5.6 lists the data type and size of the vectors used by cuTaul.eaping.
For performances reasons, these vectors are stored into the high-performance memories:
vectors containing information that change during the simulation are allocated into
the shared memory, while the other information are stored into the constant memory.
The dimensions of these vectors are proportional to the number of threads forming a
block (7°), the number of reactions (M), the number of molecular species present in the
system (V) and the number of non-zero entries (Z) of the corresponding non-flattened

stoichiometric matrix.

Table 5.6: tau-leaping data structures residing in CUDA high-performance memories.

Array name Data type ‘ Array size Memory type
X unsigned int (4 bytes) | N xT shared memory
x/ int (4 bytes) NxT shared memory
a float (4 bytes) M xT shared memory
c float (4 bytes) MxT shared memory
K unsigned int (4 bytes) | M x T shared memory
X char (1 byte) M xT shared memory
A uchar4 (4 bytes) 0(2) constant memory
\% uchar4 (4 bytes) O(Z2) constant memory
\'A uchar4 (4 bytes) O(2) constant memory
\Y% uchar4 (4 bytes) O(2) constant memory

Specifically, according to the memory structures described in Table 5.6, in cu-
TauLeaping the exact shared memory consumption per SMX for a model consisting
of N molecular species and M chemical reactions, simulated by T" threads per block,
is equal to T' x [13(bytes) x M(reactions) + 8(bytes) x N (species)]. Since the shared
memory is a limited resource on the GPU, it follows that the maximum size of a block

is proportional to the size of the system, leading to the upper bound

< VWAXWJ (5.3)

13M + 8N

where M AX pareq corresponds to the amount of shared memory available on each
SMX for the specific architecture. According to Equation 5.3, on a GPU based on
the Fermi architecture, the maximum size of a block for the MM, PGN, Schlogl and
Ras/cAMP /PKA models corresponds to 692, 381, 646 and 63 threads, respectively.
More generally, considering a theoretical, very large stochastic model composed by

100 reactions and 100 species, the maximum value for 7" would be 23; multiple blocks

122

5.3 Stochastic biochemical simulation: cuTauLeaping

can be launched and run on different SMXs, if these are available on the GPU, thus
allowing a further level of parallelism. For instance, the GeForce GTX 590 used in the
tests is equipped with 32 SMXs and could therefore execute 23 x 32 = 736 simultaneous
threads for this theoretical model. Since the shared memory represents a limiting
factor for the parallelism, a subset of the data structures listed in Table 5.6 might be
moved from the shared memory to the slower global memory, thus increasing the T’
value at the cost of higher latencies in the access to data and of higher computational
costs. Being this a relevant aspect of the implementation, the optimization of these
data structures is in progress, to the purpose of increasing the level of parallelism and

further reducing the computational time.

In order to analyze the boost of performances, cuTauLeaping was compared with
a standard CPU implementation (using the software COPASI [140] as reference), by
running several identical simulations of four biological models of increasing size and
complexity. Results showed that tau-leaping running on GPU yields much better results
and becomes particularly profitable when a large number of simulations have to be
performed. Interestingly, when the number of simulations is limited (ranging from a few
units to around one hundred, for the four test models), the CPU version may result more
efficient than the GPU, being the break-even between the two implementations directly
dependent on the complexity of the system and on its emergent dynamics. It is worth
noting that, although the computational speedup achieved with cuTaulLeaping might be
improved by exploiting a faster RNG, such as XORWOW, the results obtained by using
the more reliable RNG MRG32K3A still show a relevant reduction of running times
with respect to COPASI CPU tau-leaping (see Table 5.5). Therefore, cuTauLeaping
represents an advantageous tool to carry out thorough computational analyses of

stochastic biological systems that usually require a huge number of simulations.

In addition, different tests were performed on RGSM, suggesting that the inherent
complexity of the system and the chosen parameterization are more important than the
model size, and they can greatly affect the performances of the simulation algorithm.
The variation of the initial parameterization, which is indispensable to carry out a per-
turbation analysis, usually induces quantitatively and qualitatively distinct dynamical
behaviors. Even more important is the fact that different parameterizations generally
result in different running times, leading to potentially huge and surely unfeasible
computational costs, especially when standard CPU executions of stochastic simulation
algorithms are performed. As an example to explain this important matter, the running
time of cuTaulLeaping and of COPASI CPU tau-leaping were compared when varying
a single parameter in the Ras/cAMP/PKA model over 5 orders of magnitude (namely,

123

GPU-accelerated biochemical simulation

210 simulations were executed varying the value of the stochastic constant cs in the
sweep interval [1.5- 1073 1.5 - 10]). Figure 5.29 shows that, in this situation, the
computational cost of tau-leaping running on CPU rapidly increases; this behavior

could become prohibitive if several independent simulations need to be executed.

12000

CPU mmm

GPU
10000 -

8000 [~

6000 - -
4000 - .
2000 I

o m -

1.5e-3 1.5e-2 1.5e-1 1.5e0 1.5e1

Running time [s]

Value of constant c3

Figure 5.29: Running times of cuTauLeaping and COPASI CPU tau-leaping to execute a
PSA-1D of the Ras/cAMP/PKA model, where the stochastic constant ¢ was varied in the
interval [1.5-1073,1.5 - 10] and a total of 2!° simulations were executed. The plot shows how
the computational cost of tau-leaping running on CPU rapidly increases; this behavior can
become prohibitive if several independent simulations need to be executed. On the contrary,
cuTauLeaping shows a very moderate increase in the running times and outperforms the
CPU implementation of tau-leaping.

On the contrary, cuTauLeaping shows a very moderate increase in the running times,
although following the same growth trend of the CPU counterpart, and outperforms
the CPU implementation. An explanation for this behavior is that, being the CPU
sequential, a simulation can start as long as the previous one terminated, whilst in the
case of GPU the overall running time roughly corresponds to the running time of the
slowest simulation. This is particularly relevant in the case of parameterizations leading
to high running times on the CPU (e.g., when ¢3 = 1.5 - 10 in Figure 5.29), where the
speedup granted by the use of cuTauLeaping is 25x, compared to the 4.75x speedup
(see Table 5.2) achieved with the reference parameterization of the Ras/cAMP/PKA
model (Appendix A, Table A.8).

124

5.3 Stochastic biochemical simulation: cuTauLeaping

A fine-grain GPU parallelization of tau-leaping was previously proposed in [165],
to the aim of accelerating the execution of single runs of tau-leaping. In that work, the
computational performances were discussed in relation to very large systems of molecular
interactions (with better gains achieved for 10° reaction channels), and tested over a
synthetically generated network consisting of M = N = 1000 reactions and species.
Taking into account the above mentioned issues related to the model parameterization,
there is a remarkable aspect that should not be left out when assessing the effective
performances of fine-grain implementations of this type. Namely, the synthetic network
used in [165] was characterized by a homogeneous initial parameterization (i.e., the
values of all stochastic constants were randomly selected with a uniform distribution in
[0, 1]), therefore largely limiting the biochemical meaning of the distinct reaction rates
that very different molecular interactions — transcription rates, post-translational
modification rates, diffusion rates, catalyzed processes, etc. — do actually present in
real cellular systems [189, 249]. An arbitrary modification of these values, that are
of pivotal importance in the definition and in the analysis of validated models of real
biological systems, might possibly result in different computational performances of
such fine-grain GPU accelerations whenever tested on other well assessed mathematical
models of biological systems [180]. This is corroborated by the results that were
obtained from the analyses of RGSMs, which altogether highlight the impact of
the model parameterization on the computational performances: in particular, in
cuTauLeaping the highest running times with large standard deviation values were
obtained in tests 6 and 8 presented in Table 5.3, which are characterized by the largest
intervals for the choice of stochastic constants and by the highest initial molecular

amounts.

As a matter of fact, stochastic modeling and simulation methods are usually assumed
to be suitable for relatively small systems (such as signaling pathways), consisting
of a few tens of reactions and species, defined according to a bottom-up modeling
approach whereby a mechanistic description of the most relevant molecular interactions
is provided [320, 355]. The rationale behind this is that a good initial parameterization
for models of this type cannot be usually settled by using either literature data or
experimental measurements — especially for reaction constants, which are always
difficult or even impossible to measure in living cells — and thus a large batch of
simulations are generally required not only to analyze the dynamical behavior of the
system, but also to corroborate the choice of the initial parameters. Therefore, despite
the noticeable boost that a fine-grain GPU-based parallelization of stochastic algorithms

can have in terms of single simulations, most of the times the effective requirements

125

GPU-accelerated biochemical simulation

for the analysis of real models naturally rely upon coarse-grain and massively parallel
executions of a large number of simulations, as proposed in this work.

Despite all these possible optimizations, stochastic simulations of complex biological
systems still remain a computationally intensive task, especially when some molecular
species occur in very low amounts and other in very large amounts — or also when
the values of reaction constants span over different orders of magnitude — possibly
inducing a slowdown of running time because of stiffness and multi-scale problems.
Therefore, future efforts will be focused on the implementation of GPU-based hybrid

simulation algorithms (see Section 2.3.3): this topic is discussed in Chapter 11.

126

Chapter 6

Parameter Estimation of biological

systems

One of the foremost goals of Systems Biology consists in the development of computa-
tional methods to analyze the functioning of cellular systems, whose behavior emerges
as a system-level property from the complex interactions of many molecular components
and cannot be easily clarified by experimental research only. As described in Chapters
1 and 2, mathematical modeling, simulation techniques and analysis methods represent
indispensable tools to describe and better understand the molecular mechanisms of
cellular processes.

Nevertheless, the lack of knowledge of physical parameters related to the biochem-
istry of cellular systems (e.g., reaction rates) poses a limit to the effectiveness of
mathematical modeling and in silico simulations. These parameters are generally hard
or even impossible to measure directly, especially in vivo, a significant problem leading
to the definition of parameter estimation (PE) problem [59, 276].

The goal of PE is the inference of these unknown values, that is carried out by
exploiting the available experimental data related to some biochemical entities (e.g.,
the intracellular level of some molecular species), which can be measured more easily
by standard laboratory protocols. Many methodologies for PE of stochastic systems
have been proposed, most of them relying either on some approximation strategy
[185, 276, 288], probabilistic methods [224, 264, 349], global optimization [26, 78, 216],
or a combination of these approaches [316]. In general, traditional methods based on

Gradient Descent are unsuitable for PE because of two factors:

1. the fitness landscape is generally multi-modal, so that the probability of converging

to local minima is high, even by exploiting a multi-start strategy [211];

127

Parameter Estimation of biological systems

2. in the case of stochastic biological systems, the fitness landscape is rugged,
because of stochastic fluctuations, a condition that generates a plethora of local

minima which mislead the optimization process.

This chapter follows the line of research of global optimization for PE, and proposes
a methodology, called cuPEPSO, characterized by the following features:

e it is based on PSO, the Swarm Intelligence meta-heuristic described in Section
3.3.2;

o it considers as target for the optimization a set of discrete-time measurements,
obtained in different experimental conditions and replicated a certain number of

times. For this reason, cuPEPSO exploits a multi-swarm version of PSO;

e it considers stochastic models of cellular systems, and relies on an efficient stochas-
tic simulation algorithm (tau-leaping, described in Section 2.3.2) to generate the

temporal evolution of the system under investigation [46];

o it exploits GPUs to reduce the computational costs (see Chapter 4 and Section
5.3).

The rationale behind each of these features is explained hereby.

First, in PSO a swarm of candidate solutions (the particles) is randomly generated
and undergoes an iterative improvement process that is driven by a fitness function. In
cuPEPSO, each particle corresponds to a candidate model parameterization. Through
the collective movement of its particles, the swarm is expected to converge to a (global)
optimal solution. Albeit PSO does not feature a true convergence theorem like other
evolutionary techniques — for instance, the schema theorem proposed in [137] for GAs

— it empirically showed a remarkable ability in the optimization of real-valued problems.
In particular, PSO was proven to be more suitable for the estimation of parameters of
biochemical systems with respect to other methods, as GAs [26, 232], or Covariance
Matrix Adaptation Evolution Strategy and Differential Evolution [78].

Second, cuPEPSO was developed with the specific purpose of determining the
values of kinetic constants in stochastic RBMs of cellular systems. The framework
of cuPEPSO is inspired by the quite common scenario of biology laboratories, where
multiple experiments are carried out in different initial conditions (e.g., nutrients,
temperature), in order to collect a wide spectrum of information about the functioning
of the investigated cellular system in both physiological and perturbed states. This

background suggested a multi-swarm version of PSO, where each swarm is assigned to a

128

different experimental condition, and all swarms cooperate to estimate the kinetic values
that allows to generate the expected dynamics of the cellular system. The underlying
biochemical assumption is that there exists a common set of model parameters that
can simultaneously fit all experimental data in the various conditions. This holds if the
functioning of the cellular system is not altered by the different experimental settings
— that is, it does not rely on other biochemical processes that are not included in the
model under investigation and that might be necessary to explain the target data —

as it is presumed in the formulation of the problem.

Third, cuPEPSO enables to take into account two relevant factors in the analysis of
cellular systems: the role of biological noise and the shortage of experimental sampling.
On the one hand, it allows to tame the error due to the stochastic fluctuations that
are intrinsic in most cellular pathways, since it relies on the analysis of a large set of
simulated dynamics for each candidate model parameterization. The motivation for
considering stochastic models of cellular processes comes from several experimental
investigations (see, e.g., [31, 85, 90]), which evidenced the role of biological noise in
living cells. Similar works highlighted the inadequacy of the deterministic modeling
approach — based on ODEs — to describe phenomena such as signaling pathways,
especially when small populations of reactant species are involved, therefore supporting
the need for stochastic modeling approaches [27, 193, 307, 355]. On the other hand,
cuPEPSO deals with sparsely (discrete-time) sampled data consisting in temporal
series of molecular species amounts; usually, these measurements are carried out in
about ten time instants. Besides, it is considered the case in which the laboratory
measurement corresponding to each experimental condition is replicated: usually, this
is done up to three times, in order to account for any possible experimental error as
well as for the variability of the system behavior. These factors are here taken into
account through the definition of a proper fitness function, which is defined as the
relative point-to-point distance between the set of available measurements and the
simulated dynamics of the corresponding molecular species in the stochastic model.
In particular, the average of a number of stochastic simulations is evaluated, run by
using the set of parameters encoded by each particle in each swarm and considering
the initial condition assigned to the swarm as target. In addition, to let the swarms
cooperate in the determination of a model parameterization that fits all experimental
conditions, the global best particle of each swarm migrates toward another swarm at
regular intervals of iterations, thus sharing the estimates of parameters values of each

swarm among all swarms.

129

Parameter Estimation of biological systems

Fourth, since cuPEPSO requires a large number of fitness evaluations, which
are based on the execution of several stochastic simulations, the whole method was
developed for GPUs to reduce the computational costs. This implementation is
favored by the fact that all stochastic simulations are mutually independent and
can thus be executed in parallel. More specifically, cuPEPSO exploits this parallel
model of computation by launching a massive number of GPU threads, so that the
stochastic simulations — executed by means of cuTauLeaping [235], the GPU-based
implementation of tau-leaping [46] described in Section 5.3 — and the fitness evaluations
can be performed concurrently, at each iteration of cuPEPSO.

The main novelty of cuPEPSO consists in the comprehensive integration of these
four features that, in previous works, were exploited one at a time for PE or similar
tasks. For instance, the whole methodology is based on PSO, since it was shown
to be among the most effective optimization techniques [78] and avoids the need for
extremely large numbers of simulations that are typical of probabilistic approaches
[224, 264]. In contrast to [167], that exploits a fitness function based on multiple target
data to discriminate among models with similar behavior, ctPEPSO’s multi-swarm
methodology takes advantage of a different cooperative approach, under the reasonable
assumption that the underlying chemical-physical processes do not change across the
different experiments. Finally, no current PE methods rely on tau-leaping to achieve
fast simulations of stochastic models, nor exploit a GPU parallelization to speed up
the inference process.

Some contents of this chapter are published in [231, 232]. A paper describing
the cuPEPSO algorithm presented in this thesis has been submitted to the IEEE

Transanctions on Evolutionary Computation [238].

6.1 PE in stochastic models of cellular systems

In this section it is first provided a formalization of the target data exploited by the PE
method, which is necessary to describe the fitness function and cuPEPSO’s peculiar
multi-swarm methodology. Then, the GPU implementation of cuPEPSO is described

in detail.

6.1.1 Experimental data and simulated dynamics

As target data for the PE, cuPEPSO takes into account a typical scenario of biological

laboratory research, where few replicates of an experiment are usually carried out

130

6.1 PE in stochastic models of cellular systems

starting from a set of different initial conditions, each one corresponding to some
genetic, chemical or environmental perturbation of the cellular system 2. Therefore, it

is assumed the availability of the following experimental target data:

o A set of measurements corresponding to D different initial conditions, with D > 1,
that we assume to be characterized by distinct initial amounts of some molecular

species appearing in 2.

o For each initial condition, the experimental measurements are replicated E times,
for some £ > 1 (usually, £ < 3 in real laboratory experiments). Repetitions
allow to account for the errors occurring during the measurement procedures, as
well as for the variability of the system’s response due to the intrinsic biological

noise.

o For each initial condition and for each replicate, it is considered the measurement
of the molecular amounts of a subset of species S, ..., Sk, K < N(where N is
the total number of chemical species in), determined by means of standard
laboratory technologies. It is assumed hereby that these values correspond
to integer numbers of molecules, but this choice is not restrictive, since it is
straightforward to transform any real-valued intracellular concentration into the

corresponding copy number of molecules, and vice versa [101].

o For each initial condition, for each replicate and for each measured species, the
experimental data are assumed to be taken at some time points ¢, ..., %z, not
necessarily sampled at regular intervals along the time course of the experiment.
It is assumed that the number of sampled time instants might be different from

one initial condition to another.

In what follows, ¥;%(t;) denotes the amount of species Sy, measured at time t;, in
the replicate e of initial condition d, with k =1,... . K, h=1,...,Ty,e=1,...,FE,
d=1,...,D, and this set of measures is named a discrete-time target series (DTTS).
An example of DTTS for species S; in the experimental condition d, corresponding to
three replicates eq, e5, e3, can be seen in Figure 6.1, left graphic.

In order to estimate the values of the reaction constants in R, the DTTS of all
measured species must be compared with in silico simulations of the dynamics of species
in 2, which are generated by relying on the stochastic model of €2 and exploiting the
tau-leaping algorithm (Section 2.3.2).

Namely, given the state of the system {2 at some time instant — specified by

the molecular amounts of all the species in & — and a vector v = (v,...,7y) of

131

Parameter Estimation of biological systems

v ® ¢
.o
m e X (v 4+ =
. O ’
* ° .
[Y,
° ° o . X()
* .
. X+ o
| | | |
| | | | t i i i t
t t t tr T t Tis

Figure 6.1: (Top) Discrete-time target series for species Sy in the experimental condition d,
corresponding to three replicates e, ea, e3 of the same experiment. (Bottom) Identification of
the interpolated value X,Z’d(th), exploiting a single execution of tau-leaping with parameters
Y-

stochastic constants associated to the reactions in R, tau-leaping is used to generate
the temporal evolution of €. This is achieved by computing, during each iteration, the
time interval 7 required for the execution of a certain number of reactions sampled from
Poisson distributions [46]. By abuse of notation, in what follows 7 denotes both the
time interval and the left endpoint of the interval itself. The execution of tau-leaping
determines a set of consecutive time instants 7, ..., Tyee — Where 75 and 7,,,, are the
fixed initial and last instants of the simulation — such that at the end of each step of
length 7, with 79 < 7 < 7,40, the state of the system is instantly updated by removing
(adding) the molecules that appear as reagents (products) in the set of tossed reactions.
The length of each time interval 7, as well as the set of tossed reactions, are calculated

by exploiting the propensity functions of the reactions (see Equation 2.4).

X;"() denotes the molecular amount of the target species S at time 7 in the
initial condition d, with £k = 1,... . K, 79 < 7 < Tjee and d = 1,..., D, obtained
by running tau-leaping with some values vy, ...,y of the stochastic constants, as
specified in an arbitrary vector . In order to compare the simulated amount of species
S) obtained by tau-leaping, and the measured amount of the same species as given in
the DTTS, it is necessary to determine the amount of Si taken in correspondence to
each experimentally sampled time point t;, h = 1,..., Ty, hereby denoted by X,Z’d(th).
This can be done, for each sampled instant ¢, by choosing the two consecutive time
instants 7;, ;41 € [T0, Tmaz] I0 a tau-leaping simulation, such that 7; <t < 7,41 and
there exist no other 7/, 7" with 7; < 7/ <t;, < 7" < 7;,1. Then, by linear interpolation
between the values X7**(7;) and X7%(7;11), the value X%(t;) is computed (see Figure

6.1, right graphic).

132

6.1 PE in stochastic models of cellular systems

6.1.2 The fitness function

In cuPEPSO, the fitness function of each candidate parameters vector v = (v1,...,7n)
is evaluated by comparing the measured DTTS with the outcome of a number of
stochastic simulations, each one performed by using the values of the putative reaction
constants specified in ~.

Specifically, given an initial condition d, for each vector v a number G of independent
simulations is executed, which are run in parallel by using the GPU-powered simulator
cuTauLeaping [235] described in Section 5.3. Then, for each target species Sy it is
determined how much its average simulated molecular amount at time instant ¢, —
denoted as (X3)G%(ty) and calculated according to the outcome X;"%(t),) of the G
parallel simulations — differs from the experimental measures Y;(t;) of the DTTS at
the corresponding time instant and in the same experimental condition d. To this aim,
the point-to-point distance between (X;)&"(t,) and Y;*“(t),) is measured, averaging
over all E replicates carried out in condition d and over all numbers T, of sampled
time instants.

Thus, the fitness function is defined as

| Ta K_E
Fav) = 57 D00 D SO (tn)s (X (), (6.1)

d h=1k=1e=1

where:
e if Y*(t),) > 0, then

Vi (tn) — (Xi) " (t)]

FOE (), (X) & (1) = Y (1) ,

that is, the normalized point-to-point distance between the average simulated

amount of S, and the corresponding DTTS is calculated;

e if V*(t,) = 0, then

FOGE (), (X) & () = (Xi) 3 (tn),

that is, if the experimentally measured value of Sy is zero, only the average

simulated amount of S} is taken into account.

The motivation for averaging over the number of sampled time instants, T}, is that

different experimental conditions might be characterized by a different set of samples.

133

Parameter Estimation of biological systems

160
140
120
100
80
60
40
20

160
140
120
100
80
60
40
20

0.0 0.0

Figure 6.2: Comparison of the fitness landscape of the MM model projected on the 2D-space
corresponding to parameters ¢y and c2, using G = 1 (left) and G = 30 (right) stochastic
simulations. The averaging of the dynamics smooths the landscape, that indeed appears
more rugged if G = 1 because of the effect of stochastic fluctuations in the molecular species
amounts.

The average reduces any bias in the choice of the best candidate parameters vectors in
the multi-swarm version of PSO, as described in Section 6.1.3.

The rationale behind the use of the average of G tau-leaping executions is that
stochastic fluctuations are usually present in the simulated dynamics of molecular
species, especially when the number of molecules in the cellular system is in the order
of a few units or tens. Since each stochastic simulation — performed with tau-leaping
algorithm using the same parameterization v — determines a different realization of
the probability distribution of reactions propensity functions, thanks to the calculation
of an average dynamics the effect of stochastic fluctuations is mitigated and a more
precise fitness function value can be computed. As a consequence, smoothing down the
roughness of the fitness landscape can improve the effectiveness of the PE method. An
example of this issue is shown in Figure 6.2, where the fitness landscape of a simple
enzymatic kinetics, the MM model (see Appendix A.1 for a formal definition), is plotted
for G =1 (left graphic) and G = 30 (right graphic).

The fitness function given in Equation 6.1 has two characteristics:

» Since the goal is to identify a model parameterization v whose simulated dynamics
overlaps the DTTS, the PE problem in cuPEPSO can be stated as a minimization
problem. Anyway, since cuPEPSO exploits a stochastic algorithm to generate
the temporal evolution of the molecular species, it is generally unlike to reach the
(ideal) value of zero for the fitness calculation, due to the intrinsic stochasticity

of the system.

134

6.1 PE in stochastic models of cellular systems

» The value F,(7y) determines the quality of an arbitrary parameters vector v with
respect to the DTTS measured in the experimental setting d, independently from
the other initial conditions. In Section 6.1.3, it is shown how to exploit a multi-
swarm PSO to estimate a common set of parameters ~ that can simultaneously
fit all available DTTS in all initial conditions. Stated otherwise, in cuPEPSO it is
considered a multi-swarm architecture of PSO to deal with multiple fitness-cases

— distributing one case per swarm — and particles migration is exploited to

achieve a unique result for all these cases.

6.1.3 A multi-swarm structure for the PE problem

The multi-swarm topology of PSO is structured as follows. For each initial condition
d=1,...,D it is considered a swarm o4, consisting of n particles v, = (Y41, .-, Vam),
whose components correspond to the values of the stochastic constants of reactions in
R, with v, € RT, p=1,..., M. As described in Section 6.1.2, each vector -, is used
to execute G simulations with tau-leaping in order to generate, for all target species
S, the sets of molecular amounts (X;)5%(t,) associated to particle v,4. The fitness
of particle =y, is then evaluated according to Equation 6.1, using the experimental
data ka’e(th) corresponding to the experimental condition d. So doing, each swarm
performs the estimation of stochastic constants independently from the other swarms
and determines, for each iteration IT, its global best particle 4%, which is the
parameters vector that matches all replicates of the DTTS in condition d in the best
possible way.

Afterwards, in order to estimate a set of stochastic constants that is common to all
swarms, and that is able to reproduce the expected system dynamics in all experimental
conditions, particles are allowed to migrate among swarms. The migration takes
place at regular intervals, every kIT,,, iterations, with 1 < k < |[ITyy/IT,,] and
1 < IThig < ITwax, where 1Ty is the maximum number of iterations of the PSO. To
better explain migration, the topology of the multi-swarm PSO can be formalized as
a directed graph G = (V| A), where V' = {0y,...,0p} is the set of D vertices (the
swarms) and A = {(o4,04) | particles can migrate from swarm oy to swarm oz} is
the set of edges. It is also assumed that, considering any edge in A, exactly one particle
migrates from oy to o4/, in order to assure that the size n of each swarm is not altered
by migration.

Different interconnection topologies among the swarms can be defined, for instance
the one proposed in [232] or [284]. Here, a dynamic topology (DT) is considered, since
it was shown in [232] to lead to better results with respect to a static topology (ST).

135

Parameter Estimation of biological systems

The DT is characterized by a set of edges Agyn C A, with |Agy,| = D, that is generated
with a random permutation on the ordering of the swarms and updated at each step of
migration. Note that, so doing, also an edge (04, 04) can belong to Agy,, which means
that swarm oy is isolated and will neither receive nor send particles to other swarms
at that step of migration. Then, the migration acts as follows: for each edge (o4, 04)
in Agy, (including the case o4» = o4), at the IT,,,-th iteration the worst particle of
swarm og is deleted and replaced by the global best particle 4% of swarm oy .

A similar notion of DT for migration was introduced in [187] for parallel GAs,
although in that work the migration topology was dynamically updated according to
some properties of the population. Ferndndez et al. also analyzed ST and DT (named,
respectively, ring and random topologies) in the case of multi-island Distributed Genetic
Programming, showing that no specific topology is always better than the others, even
though DT is computationally more efficient and more effective in the case of small
populations [91].

The multi-swarm PSO exploited in this chapter resembles the island-model of EC
described in [328, 333], where a population of candidate solutions is partitioned into a
set of disjoint sub-populations, which evolve independently but interact by means of
periodic migrations. In PSO terms, each sub-population corresponds to a swarm and
the migration process is represented by the movement of particles from one swarm to

another, a formulation that is similar to the multi-swarm PSO described in [341].

6.1.4 GPU implementation of culPEPSO

In order to complete the PE process, cuPEPSO has to evaluate the fitness function Fy
given in Equation 6.1 for all swarms d = 1,..., D. This corresponds to the execution
of D x G x n x ITyy simulations for each optimization run, which can be in the order
of millions, and therefore would result computationally expensive. However, since
PSO is an inherently parallel algorithm, the fitness of each particle can be evaluated
independently from the other particles. Among the existing parallel architectures,
cuPEPSO was developed to exploit the GPGPU platform. Specifically, cuPEPSO is
implemented to exploit Nvidia’s CUDA (see Chapter 4.1 for further information).
For each initial condition d = 1,..., D, exactly G blocks (corresponding to the GG
parallel tau-leaping simulations) are created, thus launching a total of D x G blocks;
every block is composed of n threads. B, denotes a block belonging to the d-th
swarm, associated to the d-th initial condition, whose threads are performing the
g-th parallel simulation. 7;,4, denotes the i-th thread belonging to block By, i.e.,
the thread associated to the i-th particle in the d-th swarm that performs the g-th

136

6.2 Results

parallel simulation (with ¢ = 1,...,n, d =1,...,D, g = 1,...,G). Each thread
Ti a4 executes a parallel tau-leaping simulation using the vector of parameters v of
the i-th particle of swarm o4 and exploiting cuTauLeaping [235], the GPU-accelerated
version of tau-leaping presented in Section 5.3. So doing, 7; 44 generates the molecular
amounts X,Z’d(th), for t, = 1,...,Ty, for the g-th parallel repetition. The G parallel
repetitions are collected and used to calculate the average dynamics (Xkyé’d(th), for
th, =1,...,Ty, exploited by the fitness function shown in Equation 6.1. The average
dynamics, and the fitness evaluations, are again performed in parallel by D x n threads,
distributed in D blocks.

As cuPEPSO relies on a synchronous implementation of PSO, the process of
optimization starts as soon as cuTauLeaping’s execution is completed. Each simulation
halts as it reaches the last sampled time instant 7j. Finally, every IT,,;, iterations of

the PSO the migration of particles occurs, as described in Section 6.1.3.

6.2 Results

This section presents some results of the PE performed by cuPEPSO on two different
stochastic models. For each model, the tests were performed with two steps: first, the
best settings of cuPEPSO with the specific model are identified, by analyzing their
impact on the estimation performances; second, the PE is performed using the identified
best settings. Finally, this section provides a brief comment about the computational

performances of cuPEPSO.

6.2.1 Stochastic models

Two stochastic RBMs were considered to test the effectiveness of cuPEPSO, the MM
model and the PGN model. The set of chemical reactions corresponding to MM and the
values of their associated stochastic constants are given in Appendix A.1. All species of
the MM model (S, E, P, and ES) were considered as target to perform the estimation
of the stochastic constants. In the PE process D = 4 distinct experimental conditions
were assumed, and F = 3 replicates for each condition, which are characterized by the

following initial amounts of substrate and enzyme species:
e S =1000, E = 750 molecules, associated to swarm oy;
e S =2000, E = 750 molecules, associated to swarm os;

e S =500, F = 750 molecules, associated to swarm o3s;

137

Parameter Estimation of biological systems

e S =1000, F = 500 molecules, associated to swarm oy.

The initial amounts of the remaining species are zero.

The set of chemical reactions corresponding to PGN and the values of their as-
sociated stochastic constants are given in Appendix A.2. All species of the PGN
model (DNA, P, P, DNA:P;, and mRN A) were considered as target to perform
the estimation of the stochastic constants. In the PE process D = 4 distinct experi-
mental conditions were assumed, and E = 3 replicates for each condition, which are

characterized by the following initial amounts of DN A:

DN A = 50 molecules, associated to swarm o7;

e DNA =100 molecules, associated to swarm o;

DN A = 250 molecules, associated to swarm os;

DN A = 500 molecules, associated to swarm oy.

The initial amounts of the remaining species are zero.

For both models, the target DTTS were generated in silico by averaging the
molecular amounts of target species over 1000 stochastic simulations, and then sampling
the outcome at T; = 10 time instants for each initial condition and each replicate.
These stochastic simulations were executed by using the values of stochastic constants
given in Tables A.1 and A.3.

6.2.2 PE methodology analysis

To analyze the performances and to investigate the effectiveness of the PE methodology
presented in this thesis, it is assumed that a good solution is identifiable by relying only
on its fitness value. Indeed, the values of stochastic constants in the vector «y,. cannot
be used to establish the goodness of a candidate model parameterization because of
two reasons. First, the values of stochastic constants are usually not available. Second,
there can be several sets of stochastic constants values (different from ~,) that can
equally fit the DTTS. Therefore, the best solution will correspond to the particle
characterized by the lowest fitness value among all swarms, found by cuPEPSO at the
last PSO iteration.

Let 4% (IT) be the best particle of swarm o4 found at the IT-th iteration of
the optimization process, for some IT < ITyx. The multi-swarm best particle at
the IT-th iteration, denoted by v# (IT), is defined as the best particle found at the

138

6.2 Results

I'T-th iteration that is characterized by the minimum fitness value across all swarms.
Formally,
Y*(IT) =~ (IT)

such that Fy(~vbst(IT)) = d_nllinD{Fd('yZeSt(IT))}.
Then, the best model para}n’eterization of the whole PE process, denoted by ~*, is

defined as the multi-swarm best particle found at the last iteration, that is,
v =" (ITux).

Particle vv* contains the values of the stochastic constants that will be used to generate
the simulated dynamics of the model and to do the comparison with the available
DTTS, in all initial conditions.

Several preliminary tests were executed, to determine the influence of the settings
of cuPEPSO on the PE process. To this aim, an appropriate measure had to be
defined to compare the convergence speed and the quality of the multi-swarm best
particles determined in each tested cuPEPSO setting. To this aim, the Average Best
Fitness (ABF) at each iteration IT is defined as the mean of the fitness value of
the multi-swarm best particles found at iteration I'T, evaluated over a number o of
cuPEPSO runs. Formally,

ABF = 13" Ryt (),

j=1

where 'yf(l T) denotes the multi-swarm best particle found at the j-th run of cu-
PEPSO (the indication of the I7T-th iteration is omitted from the notation of ABF for
succinctness).

To determine the best setting for PE, cuPEPSO was applied on the MM and PGN
models by varying a single ctPEPSO parameter at a time (if not otherwise specified),
trying to determine its optimal value for each biological model. These tests are also
useful to investigate whether the optimal cuPEPSO settings change according to the
characteristics of model, or else some general configuration can be determined. Besides

the parameter being modified, all tests share the following common cuPEPSO setting:
o swarms size n = 64 particles;
o logarithmic sampling of particles initial position in [1- 1074, 1-10'];
« inertia weight w linearly decrementing from 0.9 to 0.4;

139

Parameter Estimation of biological systems

« cognitive factor Ceoq = 1.9;
« social factor Cy,. = 1.9;

« maximum velocity of particles vy, = 1/5, that is, |v;| < 1/5- (8" — ﬁl’fm), for
w=1 ..., M,

e damping boundary conditions;

o DT for particle migration;

« migration interval IT,;, = 20;

o number of iterations ITyy = 100;

o (G = 10 parallel stochastic simulations for each particle;
e 0 =30 runs of PE for each test.

In cuPEPSO, particles are initialized using a logarithmic sampling in order to

uniformly span over the different orders of magnitude of the search space.

cuPEPSO test on MM model

In the first test, different PE were performed varying the number of particles in each
swarm (n = 16,32,48,64), to determine how the size of the populations affects the
estimation performances. Figure 6.3 shows that, for this model, more than 48 particles
does not help the convergence, considering both the convergence speed and the ABF of
the multi-swarm best particles. Nevertheless, as described in Section 6.1.4, the highest
parallelism of the SMXs on the GPU is achieved by exploiting a number of threads per
block (i.e., particles per swarm) that is proportional to a full warp (i.e., 32 threads).
Thus, even though 48 particles would be a enough for a good optimization of biological
models of this complexity, n = 64 is considered as the optimal choice for the swarms
size.

The second test consisted in evaluating different values of the number of parallel
simulations (G' = 1, 10, 20, 30,40), which are used to compute the average amount of
molecular species for the fitness calculation (Equation 6.1). Figure 6.4 shows that
the best option is G > 30. This result can be confirmed by a visual comparison of
the fitness landscapes of the MM model using G = 1 (Figure 6.2, left) and G = 30
(Figure 6.2, right). These figures show the fitness values on a 2D-space projection of

the fitness landscape, evaluated by varying the stochastic constant of the first reaction

140

6.2 Results

Average Best Fitness

Iterations

Figure 6.3: ABF of the best particles in the multi-swarm PSO, using different values of the
swarm size n to estimate the stochastic constants of the MM model. Results show that
n = 48 achieves both fast convergence and good estimation.

(the formation of the substrate-enzyme complex) and of the third reaction (the release
of the enzyme and synthesis of the final product). The ruggedness of the landscape —
corresponding to local minima in the fitness function, which mislead particles and slow

down the convergence — is smoothed by high values of G.

In the third test different migration intervals (/7,,;; = 1,5, 10, 20) were analyzed for
the dynamic topology. According to the obtained results, no specific interval yields a
result that could be considered better than the others. Therefore, the value 17}, = 20
was chosen for the optimal cuPEPSO setting.

The fourth test was focused on the two most relevant parameters for the proper
functioning of PSO, namely, the cognitive and social factors C.,y and Cs,e, which
regulate the exploitation and exploration capabilities of the algorithm. In particular,
the scope of the test was to characterize the synergistic effect of the variation of both
factors together. To this aim, the value of both C,,, and C,. were varied in the interval
[1,3]. The heatmap in Figure 6.5 (top) shows the ABF for the MM model, according

to multiple combinations of values for C,,, (z-axis) and Cj,. (y-axis). Darker (lighter)

141

Parameter Estimation of biological systems

Average Best Fitness

0 20 40 60 80 100
Iterations

Figure 6.4: ABF of the best particles in the multi-swarm PSO, using different values of the
number of parallel stochastic simulations G to estimate the stochastic constants of the MM
model. Results show that for G = 30 both fast convergence and good estimation are achieved.

colors indicate a lower (higher) ABF, which corresponds to a better (worse) match
between the DTTS and the simulated dynamics (generated using v*). Even though
the heatmap seems to highlight regions with a better convergence than others (e.g., for
the couple Crpy = 2, Cyoc = 1), it must be noted that the ABF spans in a very reduced
interval of values (from 0.215 to 0.245). As a matter of fact, in the case of the MM
model, all the tested values of C,y and Cj, allow to converge to an optimal solution.
Thus, for extremely simple models as MM, any choice of these factors seems to lead to

good solutions.

In the last test, different values for the maximum velocity were considered (namely,
Umaz = 1/1000,1/100,1/10,1/4,1/2). According to the obtained results, for the MM
model v,,4, = 1/2 is the best option, allowing both faster convergence and better ABF
(Figure 6.6). For this model, v, values lower than 1/2 are not helpful to converge
to better results and, in the case of vy, = 1/1000, the multi-swarm does not even
converge to any optimal result before the halting criterion is met. Interestingly, higher

values of v,,4, seem to yield a more pronounced scattering of the best solutions in the

142

6.2 Results

0.245

0.24

0.235

0.23

CSOC

0.225

0.22

0.215
0.33

0.325

0.32

0.315

0.31

CSOC

0.305

0.295

0.29

0.285

Figure 6.5: Heatmap of the impact of the social and cognitive factors on the estimation
performances for the MM model (fop) and the PGN model (bottom). The figure shows the
ABF of the best particle at iteration I7Tyay, by using different values for Cy (z-axis) and
Csoc (y-axis) chosen in the interval [1,3]. Darker colors indicate a lower ABF value, which
corresponds to a better match between the DTTS and the simulated dynamics. In the case
of the MM model, the different values of Cyy and Cj,. do not seem to have a real impact on
the convergence, since the ABF spans in a very small range of values. On the contrary, in
the case of the PGN model, the best solutions are found using the combination Ceoq = 2.5
and Cyoc = 2.1, while the worst results are obtained using a low values of the social factor
and a high value of the cognitive factor, corresponding to a local exploitation of particles
around the initial random positions.

143

Parameter Estimation of biological systems

search space. Figure 6.7 shows the position at iteration ITyyx of the best particle found
by each swarm, during each of the o runs of the PE on the MM model. In the case
of low values of Va0, (€.8., Vmaz = 0.001), particles are clustered around the global
optimum; as the value of v,,,, increases (e.g., Vyq, = 0.5), particles are more and more
distributed along the axis of the less sensitive parameter for the MM model (i.e., ¢;).
This phenomenon can be explained by considering that high values of the maximum
velocity allow a larger exploration of the variation interval of constant ¢;. Being the
less sensitive parameter of the MM model, any choice of the ¢; value yields a reduced

impact on the simulated dynamics and, consequently, on the evaluation of the fitness

values.
100 T T T T
» A v,,,=0.001

Vppaz =0.01

3 vmaw:O'l

u ’UTILH"E:O‘QE)

2 * wv,,.=05
5}
=)
=
[
~
wn
5]
aal
)
50
S
—
2
<

Iterations

Figure 6.6: ABF of the best particles in the multi-swarm PSO, using different values of the
maximum velocity vmq, to estimate the stochastic constants of the MM model. Results show
that vmee = 1/2 allows both fast convergence and good estimation, whilst the convergence of
cuPEPSO is slowed down using very low values (e.g., Upq: = 1/1000).

These preliminary tests allowed the definition of the following optimal cuPEPSO
settings for the MM model:

o swarms size n = 64 particles;

144

6.2 Results

s . Vi = 0.001
55 .‘.."
) ..‘
c3 5+ %' ®ee ® .
. o .

0.002
0.0025

0.003 1 o
0.0035 f
¢ 0.004
6 _
Vi = 0.01
55 F .
L) .) L]
5 h 4".“ oS 82, % ° °
e . .
45 ¢ "{ " °°

0.002
0.0025
0.003

< 0.004°

c3 5

0.002
0.0025
0.003

< 0.004°

¢35

0.002
0.0025
0.003
0.0035 0
€1 0.004

Figure 6.7: Positions of the best particles of each swarm at iteration ITyyx during each run
of the PE executed on the MM model, using different values for v;,4,. For higher values of
the maximum velocity, the position of the best particles are more scattered in the search
space, suggesting worse PE performances.

145

Parameter Estimation of biological systems

logarithmic sampling of particles initial position in [1- 1074, 1-10!].

e inertia weight w linearly decrementing from 0.9 to 0.4;
« cognitive factor Cpoy = 1.9;

 social factor C,. = 1.9;

« maximum velocity of particles v, = 1/2;

e damping boundary conditions;

o dynamic topology for particle migration;

« migration interval IT,,;, = 20;

o G = 30 parallel stochastic simulations for each particle.

Figure 6.8 shows that the simulated dynamics of the MM model, generated with
the stochastic constants of particle v* = (0.0026, 0.6562, 5.2432), estimated using the
optimal settings of cuPEPSO (with ITy,x = 100), perfectly fits the DTTS. It is worth
noting that the multi-swarm best particle is able to fit all the DTTS of target species

in all initial conditions.

cuPEPSO test on PGN model

All tests performed on the MM model were repeated on a the PGN model, in order to
investigate whether different models might require different settings of cuPEPSO. The
best settings identified for the swarm size n (Figure 6.9) and the migration interval
IT,,;, (data not shown) for the PGN model, are equivalent to the MM model.
Differently from the MM model, the analysis of cognitive and social factors high-
lighted a more peculiar behavior, shown in the heatmap of Figure 6.5 (bottom).
According to results, for the PGN model the best solutions are found using the combi-
nation of values Cgyy = 2.5 and Cy,. = 2.1, which are close to similar results previously
obtained for the PE problem [78]. The worst results were obtained when the social
factor is low and the cognitive factor is high, which correspond to a local exploitation
of particles around the initial random positions. This may be explained by the fact
that, due to a low attraction towards the global best of each swarm, the exploration
capabilities are strongly reduced, therefore also decreasing the quality of the final

solution.

146

6.2 Results

1000 W 2000 \!/e/l(/r/-ﬂ*—‘r’_f T
' 1500 |- .
)
=)
8 1000 .
)
=
500 .
O 1 1
0 0.5 1 1.5 2

800 T T T 1000 T T T

700 .

600 L | 800 .
LESOO N g 1 600 F _
8400 g . —
< 300 - 4 400 | . T

200 . 1 200 L a i

100 : . .

0 1 1 1 () 1 1 Lo N N
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time [a.u.] Time [a.u.]

Figure 6.8: Comparison of DTTS (dots) with the simulated dynamics (solid lines) of species
S (blue), E (green), ES (black) and P (red) of the MM model. The dynamics were
generated with tau-leaping using the stochastic constants of the multi-swarm best particle,
and considering the different initial conditions characterizing each swarm. From top to
bottom, left to right, the results in swarm o1, o9, 03, 04 are shown.

Interestingly, for this model, an average of G = 10 simulations is enough to smooth
the dynamics and ensure a good convergence (Figure 6.10). Figure 6.11 shows that the
best choice for the maximum velocity is v,,4, = 1/100, which is completely different
from the case of the MM model. Arguably, the choice of G’ and v,,,, should be selected
according to the characteristics of the biological model under investigation, especially
for what concerns the ruggedness of the fitness landscape caused by an high variance
in the simulated dynamics.

These tests allowed the definition of the following optimal cuPEPSO settings for
the PGN model, that were used to perform the PE:

e swarms size n = 64 particles;
o logarithmic sampling of particles initial position in [1- 1074, 1-10!].
« inertia weight w linearly decrementing from 0.9 to 0.4;

147

Parameter Estimation of biological systems

10' : : : x .
I n=16 -

n=32 |
n=48 1
n=64]

Average Best Fitness

10-1 | | | |
0 20 40 60 80 100

Iterations

Figure 6.9: ABF of the best particles in the multi-swarm PSO, using different values of the
swarm size n to estimate the stochastic constants of the PGN model. Similarly to the case of
the MM model, results show that n = 48 allows both fast convergence and good estimation.

« cognitive factor Cey = 2.5;

« social factor C,. = 2.1;

o maximum velocity of particles vy,q, = 1/100;
o damping boundary conditions;

o dynamic topology for particle migration;

« migration interval IT,,;, = 20;

G = 10 parallel stochastic simulations for each particle.

Figure 6.12 shows that the simulated dynamics of the PGN model, generated with
the stochastic constants of particle v* = (0.1344,0.9706, 0.3646, 0.3236, 0.0910, 0.7448,
0.1947,0.0647), estimated using the optimal settings of cuPEPSO (with [Ty = 100).
It is worth noting the multi-swarm best particle is able to perfectly fit all the DTTS

of target species in all initial conditions.

148

6.2 Results

10! x x ; x
A (G=1
* G=10
¢ G=20
G =30
B G=40

Average Best Fitness

10-1 | | | |
0 20 40 60 80 100

Iterations

Figure 6.10: ABF of the best particles in the multi-swarm PSO, using different values of the
number of parallel stochastic simulations GG to estimate the stochastic constants of the PGN
model. Results show that, for this model, a choice of G = 10 parallel simulations is enough
to mitigate the stochastic fluctuations of molecular species amounts, smoothing down the
fitness landscape and helping the convergence.

6.2.3 Computational results

cuPEPSO has a relevant computational complexity, both in space and time: the multi-
swarm model — in which every particle performs multiple simulations to calculate the
average dynamic behavior of a set of species — requires a large amount of memory!
and a number of computation steps proportional to O(D x G x n x ITyy) for each PE
process. For instance, in the case of the best setting of the MM model, the number of
simulations is equal to 64 x 4 x 30 x 100 = 768000.

Thanks to the GPU acceleration of cuTauleaping [235], anyway, both n and G
can be set to relatively high values without any impact on the overall running time:
all simulations are spread across multiple threads and run in parallel on the available

SMXs. Hence, fitness evaluations take roughly as much time as a single simulation

!The amount of memory is Q(Zizl D x G xnx K xTy), because of the allocation of the multiple
simulated dynamics.

149

Parameter Estimation of biological systems

101 ' T : T T 4
: A vmaz:O’OO]' :
* v, =001
14 Umaav:()'l
vmaz:0.25
% (] vma$:0.5
Q
=
=
S
+
w2
£ 100 ‘-\ i
I % A
o %
= S
= %
2 s
iy
< **************
10! y | l l
L L m 50 30 100

Iterations

Figure 6.11: ABF of the best particles in the multi-swarm PSO, using different values
of the maximum velocity vp,q: to estimate the stochastic constants of the PGN model.
Differently from the MM model, these results show that a lower value of the maximum
velocity, vmaz = 1/100, allows both fast convergence and good estimation.

on the CPU. However, since the SMXs are finite resources, an excessive value G may

saturate the GPU and cause a reduction of computational performances, which is not

counterbalanced by any improvement in the optimization quality.

For instance, considering the case of the MM model, the execution of a single
iteration using the best cuPEPSO settings requires 64 x 30 x 4 = 7680 simulations
to calculate the fitness values. Using the stochastic constants given in Table A.1 and
the initial conditions of swarm o, this batch of simulation takes 0.014 sec on a GPU
Nvidia GeForce GTX 590 equipped with 1024 cores, while it takes 3.68 sec on a CPU
Intel Core i7-2600 with a clock rate of 3.4 GHz. This corresponds to a 250x speedup,
which represents a huge increment in performances, even with a desktop consumer
video card. Using high-end machines (e.g., Nvidia Tesla GPUs), the speedup can be
further increased. As the technology improves, larger numbers of parallel simulations

can be instantiated without any impact on the overall running time.

150

6.3 Discussion

60 T T T T T T T l 20 T T T T T T T

194
S
T
al

1

100 | o .

Molecules
W A
S o

N
S

250

200

150

Molecules

0 2 4 6 8 10 12 14 16 0o 2 4 6 8 10 12 14 16

Time [a.u.] Time [a.u.]

Figure 6.12: Comparison of DTTS (dots) with the simulated dynamics (solid lines) of species
DN A (green), P; (blue), DNA:P, (pink), mRNA (black) and P (red) of the PGN model.
The dynamics were generated with tau-leaping using the stochastic constants of the multi-
swarm best particle, and considering the different initial conditions characterizing each swarm.
From top to bottom, left to right, the results in swarm o1, o9, 03, 04 are shown.

6.3 Discussion

In this chapter it was proposed an efficient method for the estimation of reaction
constants in stochastic models of cellular systems, accelerated both algorithmically and
architecturally by means of tau-leaping algorithm and GPGPU computing. cuPEPSO
can handle experimental DTTS measured in different initial conditions, not requiring a
uniform time sampling of target species, nor the observation of every biochemical species
occurring in the system. The result of the estimation process carried out by cuPEPSO
is a single parameters vector, that is able to simultaneously fit all measurements in all
conditions. cuPEPSO is based on a multi-swarm version of PSO, where the populations
can converge to a common solution thanks to a periodical exchange of their best
particles.

The best solutions for the PE problem are identified by considering the lowest

value of the fitness function. Other PE methods rely instead on the evaluation of the

151

Parameter Estimation of biological systems

error between the inferred model parameterization and the expected (reference) set of
parameters [349]. Anyway, this strategy implies that a reference parameterization is
always known, or already available, which does not usually happens for real biological
systems. In addition, any reference parameterization cannot always be considered as
the most plausible solution, since there can be different model parameterizations —
corresponding to different biological states of the systems — that can equally fit the

target experimental data.

The estimation performances of cuPEPSO depend on the choice of its settings, for
instance the number of particles in the swarms and the interval of migration. Since a
good choice for these and other factors is crucial for the effectiveness of the methodology,
a series of tests was performed to identify the optimal settings for ctPEPSO. A PE
performed with the optimal settings yielded better results — in terms of fitting with
the DTTS — than the one performed with the default settings, proving the usefulness
of the meta-optimization process. Results showed that a subset of the settings cannot
be considered effective as a rule, but should be fine tuned for different biological models.
More precisely, the performances of cuPEPSO improve when the maximum velocity
and the number of simulations used to determine the average dynamics are chosen
according to the characteristics of the fitness landscape. Arguably, this is due to the
variance of the stochastic dynamics, which is then reflected in the ruggedness of the
fitness landscape. A procedure for the automatic choice of these settings, based on a
global SA of the fitness function in the search space, is currently under investigation
[49].

The problem of choosing the optimal settings for cuPEPSO, and in particular
for PSO [308], might be solved by substituting the PSO with some parameters-free
optimization algorithm. A variant of PSO, named TRIBES [61], avoids the manual
tuning of its settings, by letting particles adapt their inner functioning strategy
according to their performances. Since the performances of TRIBES were proven
competitive with traditional PSO [78], an integration of this algorithm in cuPEPSO
could be implemented, in order to achieve a black-box parameter estimator not requiring

any manual setting.

With respect to the PE method previously presented in [26], ctPEPSO considers a
more realistic experimental target to perform the optimization, as well as a simplified
definition of the fitness function which yields better estimation results. This work
also represents a major improvement of the PE method introduced in [232], and it
relies on some interesting refinements of the whole method: cuPEPSO exploits the

efficiency of tau-leaping instead of SSA; it considers a “normalized” fitness function,

152

6.3 Discussion

whereby all measured molecular species equally contribute to the estimation process; it
averages the outcomes of the stochastic simulations, in order to reduce the noise of the

dynamics.

To tackle its relevant computational complexity, cuPEPSO was conceived around the
GPGPU computing architecture, to exploit the intrinsic parallelism of PSO on a single
GPU-equipped workstation, instead of a typical distributed and parallel architectures.
By spawning multiple threads per particle, the method achieves a significant boost
with respect to a strictly sequential implementation. In particular, tau-leaping itself
allows a relevant increment of performances, since it is usually faster than SSA. Being
responsible for the largest part of the computational effort of cuPEPSO, the optimized
GPU-oriented version of tau-leaping, cuTauLeaping, was exploited. An empirical
comparison — carried out by running 512 parallel simulations of the MM model —
evidenced that the GPGPU implementation of multiple parallel tau-leaping simulations
is about 4 times faster than the SSA-based method introduced in [232].

In spite of the speedup achievable with tau-leaping, stochastic simulation is computa-
tionally demanding, since it requires the generation of an amount of Poisson-distributed
random deviates proportional to the number of reactions of the model, that are needed
to determine the reactions firing in each time step [46]. This problem can be mitigated
by using normal distributions instead of Poisson distributions (e.g., the CLE) [103].
Anyway, this approximation is feasible for systems characterized by high concentrations
of the molecular species. Nevertheless, it is worth noting that cuPEPSO is completely
independent from the stochastic simulation methodology, thanks to a strict decoupling
from the multi-swarm PSO, so that any GPU-powered biochemical simulator can be
easily embedded into the methodology. For instance, the simulation of the dynamics of

reaction-based models could be carried out using cupSODA [230] (see Section 5.1).
cuPEPSO is currently being extended by considering novel definitions for the

fitness function, in order to properly take into account complex emergent behaviors
of biological systems, such as oscillations or bistability. For instance, new fitness
functions based on frequency-domain analysis or on the distance between empirical and
target distributions are under development (e.g., by means of the Kolmogorov-Smirnov
statistic [202]). Anyway, these fitness functions would require the generation of a huge
set of experimental data, which is currently unlikely due to technical limitations of

laboratory methods.

The multi-swarm, GPU-based method implemented in cuPEPSO indeed represents
a novel methodology in the context of PE, and a useful tool for the computational

analysis of biological systems. In this chapter the performance and effectiveness of this

153

Parameter Estimation of biological systems

method were tested on two stochastic models of basic cellular processes, as a first step
towards its application to larger biological systems, consisting of many reactions and

many species, which are already under investigations in our research group [11, 27, 255].

154

Chapter 7

Reverse Engineering of biochemical

systems

In the field of Systems Biology, the reverse engineering (RE) problem consists in the
identification of the network of interactions among the basic components of a biological
system. A number of computational methods for the automatic solution of RE have been
developed to date, mainly oriented to the reconstruction of gene regulatory networks,
which exploit experimental measurements obtained using genome-wide high-throughput
techniques [18, 86].

If “simple” interaction networks are to be inferred (see Chapter 2), not requiring
the estimation of kinetic parameters, then correlation-based RE methods [43], relying
only on steady-state data, can be successfully applied. In such methodologies, some
perturbations of the system (e.g., variation of metabolites concentration) can be used
to calculate correlation coefficients and entropy-based mutual information values, which
are exploited to build a putative interaction network (i.e., two metabolites are connected
by an edge in the graph describing the network if their correlation is high). Then, the
network is simplified and pruned by identifying and removing indirect interactions.

Arkin et al. proposed a modified approach of correlation-based RE relying on time-
series data, which are used to calculate time-lagged correlations between metabolites
[16]; the final network topology is obtained by applying an arbitrary threshold which
removes the edges with lower correlation. Time-lagged correlation was exploited also
in [66], coupled with probabilistic model calibration automatically identify and remove
false positive edges. The latter are determined by calculating those reactions which have
an unlikely, or null, kinetic constant. They also provide examples of more sophisticated
alternative approaches relying on transfer entropy [303], calculated between couples of

time-series of the chemical species.

155

Reverse Engineering of biochemical systems

In the specific context of metabolic systems, a way to detect indirect interactions
and to perform the RE of a pathway whose edges in the interaction network have a
specific directionality consists in analyzing the concentration profile of metabolites [340].
This method works by increasing the concentration of a metabolite and analyzing its

impact on the time-series of the rest of metabolites.

These large interaction networks of metabolic pathways or gene regulation, anyway;,
are not suitable to fully characterize and comprehend the actual mechanisms that
govern the functioning of biological systems. To this purpose, mechanistic models
(Section 2.2) should be preferred, since they are based on the identification of the actual
biochemical reactions that describe the physical interactions among all the chemical
species occurring in the system (genes, proteins, metabolites, etc.). In contrast to large
but simple interaction networks, these models require a proper parameterization to
the aim of simulating the dynamics of the system and analyzing its behavior under
different conditions [9, 355].

Mechanistic models are usually defined thanks to human expertise, by relying on pre-
existing knowledge and available experimental data of molecular interactions. However,
most of the times there is a general lack of knowledge concerning the exact molecular
mechanisms occurring in living cells, therefore impelling the development of automatic
RE methodologies, in order to devise a plausible network of biochemical reactions
able to reproduce the experimental observations. In addition, even when adequate
information on the network structure is known, the kinetic parameters required to
reliably derive the system dynamics are usually either unavailable or uncertain, a fact
that leads to the problem of PE [59], discussed in Chapter 6.

In this context, a novel methodology to automatically reconstruct the parameterized
kinetic reaction network of a target biological system is presented in this chapter. The
method, named cuRE, takes advantage of a small set of time-course measurements
of the chemical species as the only target information and exploits the integration of
two EC methods: CGP [214] to solve the RE problem, and PSO [157] to solve the PE

problem (see Section 3.2 for a detailed explanation of these optimization techniques).

Solving RE and PE by means of two EC methods can favor the preservation of
the best structures found throughout the evolutionary process: PSO can identify the
best parameterization for each candidate network, so that a potentially good topology
found by CGP is not discarded, a circumstance that could instead arise in the case of
parameters co-evolution realized by the CGP itself. This “two-level separation” used
for the reconstruction of parameterized reaction networks was previously shown to

improve the final fitness and to prevent the premature structural convergence [178].

156

7.1 RE by means of CGP and PSO

Up to now, EC has been successfully applied to tackle the PE problem [216]; for
instance, Drager et al. [78] have recently shown that the most efficient algorithm for
PE is PSO [157], as also previously supported in [26] in comparison with GA, and
exploited in [232, 238] with the multi-swarm topology described in Chapter 6.

Concerning the RE problem, also GP (see Section 3.2.3) has been exploited for the
inference of biochemical reaction networks [13, 166, 178, 197, 285, 326] and of S-systems
[57], which are generally modeled as systems of ODEs [143]. GP is a modification
of GA in which individuals are programs, instead of being specific solutions to a
problem [168]; these programs are generally described by recursive data structures,
e.g., derivation trees or LISP s-expressions. The rationale is that such kind of data
structures allow an intuitive definition of crossover operators as the exchange of two
random subtrees; moreover, this representation can be directly interpreted without the
need of a further decoding step. GP allows a higher level of problem solving, since
programs can contain variables and, as such, they represent solutions to whole classes
of problems. Nonetheless, one limitation of traditional GP is that it was not designed
to deal with programs that are naturally represented by graphs.

To overcome this limit, CGP exploits individuals encoded as fixed-length vectors of
integer numbers, which are mapped to directed graphs rather than derivation trees
[214]. In this chapter CGP is exploited instead of GP for the RE problem since a graph
is conceptually close to a network, and this mapping also allows a direct decoding
of the solution into a human-comprehensible set of reactions. Moreover, the fixed
length of the individuals of CGP does not need any explicit mechanism to contain the
bloat, that is, the pathological and uncontrolled growth of the size of individuals in the
population, that usually occurs in GP. It is important to point out that, even though
the individuals of CGP have a fixed length, the graphs that they represent can have
different size.

The main contents of this chapter are published in conference proceedings [228,
229, 234].

7.1 RE by means of CGP and PSO

In this section the cuRE methodology is fully described, considering the integration of
CGP (Section 3.2.4) for the reconstruction of the network and PSO for the estimation
of its parameters (see Sections 3.3.2 and 6.1.3).

CGP is used here to reconstruct the network of biochemical reactions using as target

a set of experimental measurements, whose temporal evolution is fitted by executing

157

Reverse Engineering of biochemical systems

PSO to solve the associated PE problem — that is, PSO automatically determines
the kinetic parameters of the network identified by CGP. Since, in general, routine
laboratory experiments sparsely sample the chemical species and only a few repetitions
of the experiment are carried out (see, also, Section 6.1.1), cuRE was developed to
match these specifications. To the best of my knowledge, this is the first time that
CGP is exploited in the context of the RE of biochemical networks, and that CGP
and PSO are successfully integrated to solve the RE and PE problems simultaneously;
in particular, these two evolutionary methods are applied from scratch, that is, no
previous information on the system is considered, besides the measured concentrations
of its chemicals.

In what follows, the notation for CGP, introduced in 3.2.4, is used. To solve
the RE problem, CGP was implemented using n,, = 2 functional nodes and setting
§ = {+, —}. The set of input nodes is determined by the augmented set of chemical
species S = S U {0} (i.e., n; = |S]), where () denotes the null species used to model
sink and source reactions (see also Section 2.2.1). By composing input and functional
nodes, CGP encodes complex expressions that can be converted, by means of symbolic
calculation, into simple arithmetical equations, as described below.

In CGP, the number of output nodes n, is fixed. Since the actual number of
reactions of the target system is unknown, a proper choice for n, is fundamental
because it represents the upper bound to the number of reactions that a candidate
network can contain. As a heuristic, n, is set equal to the number of all possible
bimolecular reactions that can occur in the system (also considering the empty species),
ie,n, = ("j‘). Furthermore, in the work presented in this chapter it is assumed [= n,.,
that is, the output nodes can be connected to any functional or input node, and each
functional node belonging to column j can be connected to any other node between
column 7 — 1 and the input nodes.

The pseudocode of cuRE methodology based on CGP is reported in Figure 7.1. The
process starts with the creation of a population of I = 1 + A random CPs (lines 1-3).
Then, the population undergoes the ES process (lines 4-29) which can be decomposed

in three main steps:

e in Step 1 each CP is converted into a network of chemical reactions, then the
PSO estimates its parameters and calculates the fitness value of the parameterized

candidate network (lines 5-8);

o in Step 2 the CPs are ranked according to their fitness values, in order to identify
the best CP (line 9);

158

7.1 RE by means of CGP and PSO

1: for 1 toIdo

2. CGP_ population.add(create CP(S, n, 1y, ne))
3: end for

4: for CGP_ generation <— 1 to 100 do

5: for all CP in CGP_ population do

6: network <— CP.convertToNetwork()

7: CP fitness, CP.parameters <— PSO(network)
8: end for

9: best_CP « find_best_ individual(CGP__population)
10: CGP_ population < ||

11: CGP__population.add(best_ CP)

12 for 1 to I-1 do

13: repeat

14: repeat

15: candidate_ CP <« best_ CP.mutation(p)
16: until candidate_CP.connected()

17: until candidate CP not in CGP_ population
18: for all reaction in candidate CP do

19: if not consistent(reaction) then

20: candidate CP.remove(reaction)

21: end if

22: end for

23: CGP_ population.add(candidate CP)

24: end for

25: if fitness(eliteCP) < fitness(best_ CP) then
26: elite. CP < best_CP

27: end if

28: CGP_ population.add(elite CP)

29: end for

30: return bestCP

Figure 7.1: Pseudocode of cuRE.

159

Reverse Engineering of biochemical systems

« in Step 3 a new population is formed, whose individuals are the best CP (lines
10-11) and the I — 1 offspring created by randomly mutating the best CP (lines
12-24).

The mechanism for the conversion of a CP into a RBM (Step 1) is schematized in
Example 7.1.1. First, the connectivity of the nodes is determined: for each output node,
its connections are followed backwards by recursively passing through the functional
nodes, constructing a derivation tree. Then, the derivation tree is translated into an
arithmetical equation in which the positive terms (respectively, negative) are considered
as reactants (products), yielding a candidate chemical reaction for the network. In this
process, it is assumed that the null species () does not contribute to the derived reaction,
that is, Sy =0 = Sy and) — S, = —S, for any S, € S. By repeating the process for all
output nodes, a candidate RBM 7 is obtained. This particular encoding — in which
the functional nodes operate only on input nodes corresponding to chemical species or
some other functional nodes — ensures that the type consistency property (Section
3.2.3) is always satisfied. Moreover, since this representation allows to encode any type
of reaction (according to MAK), the set § also ensures the sufficiency property.

In the work presented in this chapter, the fitness function is based on the comparison
of the target series against a simulated dynamics, which is generated in silico according
to the candidate network, by exploiting the LSODA algorithm. Since the reaction
network derived with CGP is not complete until a proper kinetic parameterization is
also given, the fitness evaluation of each candidate solution embeds a PE phase, which
is performed by means of PSO. Let X,(¢.) be the experimental concentration at time ¢,
of the chemical species s € S, and let Y(t.) be its simulated concentration, obtained
with cupSODA using a putative parameterization - for the model n, sampled at time

t.. The fitness function of PSO for a particle « is based on the least squares:

c IS
Fly) =32 (V7 (t) = Xi(t)*, (7.1)
e=1s=1
where C' € N is the total number of samples in the target time-series. The fitness values
of CGP’s candidate solutions are calculated at the end of the PE process, performed
by means of PSO: when the PSO termination criterion is met — in this case, after 300
iterations — the value of F(g), that is, the fitness of the best solution g = (k1, ..., k)
determined by PSO for the PE problem, is taken as the fitness of the network 7. In
other words, it represents the fitness of the candidate solution of the RE problem
solved by CGP. Therefore, with abuse of notation, it is set F(n) := F(g). So doing,
the ranking of the CPs is used to identify the best solution (Step 2).

160

7.1 RE by means of CGP and PSO

Example 7.1.1 FEzxample of the conversion of a CP into the final RBM.
The connectivity of each node in the graph relies on the genotype of the CP.
Functions + and — in the grid are represented by 0 and 1 in the genotype,
respectively (first number of the four triplets). The genotype is generated by
randomly drawing values related to the chemical species (0,1,2) and to the
output of each functional node (3, ..., 6), and then assigning these values
to the input of the functional nodes and to the output nodes (numerical
values with asterisk). Note that, in the construction of the genotype, given a
functional node only the values of previous nodes (both input and functional)
can be randomly selected and assigned to its input connections. The graph is
parsed backwards, from the n, = 2 output nodes R1, Rs to the n; = 3 input
nodes (), S1,Sa. The resulting equations are converted to an equivalent set of
biochemical reactions, whose kinetic constants will be estimated by PSO. The
green functional nodes are involved in the equations, because a path from
the input nodes to the output nodes exists here; the white functional nodes,
instead, are not connected and do not participate to any equation in this

CP. Thus, their corresponding genes (gray numbers) are non-coding sequences.

CP Genotype 21 32 36
Ir _________________ 1
Input o I : Output
nodes j———— o 5 : o—i 5 : nodes
o e— : JF oo o f-—e—e R
0 ! _1 1 3" 1
| 1T @ | [
I 1 I
S ._.____:__' : - R2
1 1 : | 16"
. - , 3 l
S,e—e---4 4 6 |
2 | o . - o -----
| 2
1 - |___ -
| I
| o e e e e e e e e e e e - 1
Derived R1 . S1 + 82 Corresponding R1: S 1t Sz—> %) n
equations Rz: 81 + Sz_ 32 reactions Rz: 81 + 82_, 82

The generation of new CPs is accomplished by using the best solution and applying
a mutation operator. Once a new individual 7 is created, cuRE verifies whether the
network of reactions is constituted by a single connected component or not (line 16);
stated otherwise, 1 has to contain at least one reaction whose reactants or products do

not participate in any other reaction of 7. If a network contains more than a single

161

Reverse Engineering of biochemical systems

connected component, then the dynamics of a subset of its chemical species turns out to
be independent from the other species. To avoid this, a CP encoding a non-connected
network is reverted and mutated again, until this condition is satisfied. The network n
is then compared to the rest of the population: if it is identical to some other CP, it is
mutated again in order to maintain diversity, and the process is repeated (line 17).
When a new population is generated, the consistency of the reactions of each
candidate solution 7 are checked (lines 19-22). Thus, each reaction R appearing in 7

must obey the following conditions:

e it is not allowed that a; = 0 and b; = 0 for all i = 1,..., N (that is, reactions of
the form () — () are invalid);

e reactions of the form R, : a;S; — b;5;, for any a; and b; are excluded, since they
correspond to unfeasible biochemical processes where a; molecules of species .S;

are converted into b; molecules of the same species;

 at most second-order reactions (that is, reactions that have no more than two
reactant molecules) are allowed, since third-order reactions have a probability to
occur almost equal to zero, as they would require the simultaneous collision of

three reactant molecules!.

These conditions, together with the condition that no identical reactions appear in 7,
allow to strongly reduce the search space. In particular, the condition related to the
maximum order of reactions allowed in the network 7 permits to control the maximum
length of the CP expressions, which is realized by setting n. < 3. In general, if a
reaction R is not consistent, it is removed from the network, so that n = n \ {R}.
This robust decoding process ensures that the evaluation safety property, described in
Section 3.2.3, is always satisfied.

Finally, when a new consistent CP is produced, it is added to the new population
(line 23). At the end of Step 3, to the aim of increasing the convergence speed, elitist
selection is applied, that is, a non-mutated copy of the best candidate network found so
far is added as the (I 4 1)-th individual of the population (lines 25-28). This iterative
process is repeated for 100 generations and, at the end, the CP with the best fitness,
along with its parameterization, is the result of the RE problem.

For what concerns the PE, the CGP presented here embeds the PSO with the
following settings: 30 particles, Cyoc = Cppy = 2.05, as suggested in [78]; inertia linearly

! This choice does not pose a limitation to the practical applicability of cuRE, since any third-order
reaction can be decomposed into a cascade of consecutive reactions of lower order.

162

7.1 RE by means of CGP and PSO

decremented from w = 0.9 to w = 0.4; search space bounded between 1 - 107! and
1-10* — for each kinetic parameter — with damping boundary conditions, as suggested
in [361]. The settings for the upper bound of the search space for the kinetic constants
of chemical reactions is fundamental for the entire optimization process, since a limited
range of variation might exclude the global optimum of the problem under investigation.
However, in the case of chemical systems composed of a small set of reactions that
involve low molecular concentrations (as in the case of the systems listed in Table
7.1), limiting the search space of kinetic constants could facilitate the optimization
process. This is motivated by the fact that high values of kinetic constants can lead to
meaningless dynamics where the species are entirely consumed within the first instants
of the simulation; nevertheless, it is important to note that narrowing the search space

might exclude the optimal solution.

7.1.1 Results

cuRE was applied for the RE of a set of RBMs, taken from [68]. These network
models, listed in Table 7.1, are representative of reactions modules that usually occur in
biochemical systems: the conversion of a chemical species into another species (IV7), a
cascade of conversions (Ny), a feedback mechanism (N3), the dissociation of a complex
(Ny), two different branched pathways (N5, Ng), and a closed branch (N7). Network
Ng was instead taken from [166], it represents a real chemical system consisting of
three reactions involved in the synthesis and degradation of ketone bodies [282]%.

Table 7.1 reports the set of reactions involved in each network and the initial
concentration of the chemical species. For what concerns the kinetic constants, all
values were arbitrarily set to 1 (being a different choice of kinetic constants not able
to impair the PE process for such small networks), except for Ng where reactions
constants have the following values: ky = 1.56, ko = 0.85, k3 = 0.7 (according to [166]).

The CGP settings used during the application of cuRE are: n, =5,n. =2, I =10
individuals, 100 generations, mutation rate p = 0.20. The target series were produced
by sampling 20 points from ODE simulations of length ¢t = 5 [a.u.].

cuRE correctly inferred the structure of networks Ny, ..., N;, showing as well a
good approximation of their reference parameterizations. For each network, the values
of the estimated kinetic constants are: Ni: k; = 0.951; No: ky = 0.949, ks = 0.954;
N3: k1 = 0.968, ks = 0.973, k3 = 0.969; Ny: k; = 0.998; N5: ky = 0.986, ko = 0.964;
Ng: ky = 1,ky = 1.001, k3 = 1; N7: by = 1.001, ks = 0.999, k3 = 1.008. The quality of

2The chemical species Si, ..., Sy correspond to Acetoacetyl-CoA, Acetyl-CoA, an intermediate
complex (INT-1) and Acetoacetate, respectively.

163

Reverse Engineering of biochemical systems

Table 7.1: Biochemical reaction networks tested for RE.

Network List of reactions Initial state
et 1 . 1 —4
N;: Conversion S — Sy [S1] (e
[Sy] =5-107°
Ny: Cascade S; — Sy — S5 [51] 074, [S2]=0,
[55]=0
Si] =1-107%, [Sy]=0
N3: Feedback Sy — Sy — 55,85 — Sy [51] , [S2]=0,
[S3]=0
S1] =1-1071, [Sy]=0
Ny: Dissociation S — Sy +5s [51] , [S2]=0,
[Sg]:()
S1] =1-107%, [Sy]=0
Ns: Branch 1 S; — S5, 5, — S [51] , [S2]=0,
[55]=0
S1]=1-107%, [Sy]=0
Ng: Branch 2 S; 2 55,5, — S [51] , [S2]=0,
[55]=0
S — 1 . 10_4 S :0
Ny: Closed branch || S; — Sy — S3,51 — S3 [51] , [S2]=0,
[S5]=0
. S1— 52,51+ S3 — Sy, | [S1]=1" 1074, [S4]=0,
Ng: Ketogenesis
Si— 5+ 5 [S5) = 1-107%, [Sy] =1-107°

these estimated parameterizations, and of the RE problem in general, was assessed for
networks Ny, ..., N; by comparing the simulated dynamics of each network — carried
out using LSODA algorithm with these values — with the target time-series, generated

using the reference parameterizations previously given.

Concerning network Ng, Figure 7.2 shows the comparison of the target network
(left side) and the one produced by cuRE (right side). The dashed arrows indicate the
interactions between chemical species that were not properly reconstructed. Notwith-
standing the difference in the network structure, in Figure 7.3 it is shown that the
simulated dynamics of the reconstructed network perfectly fit the target time-series of
all four chemical species. This is due to the fact that the lack of the arc colored in red
and the presence of the arc colored in green in the right (reconstructed) network, was
compensated during the RE process by the addition of the reaction colored in blue.
Moreover, the dynamics of the two networks perfectly match also thanks to the precise

estimation of the kinetic constants of reactions R; and R,.

164

7.1 RE by means of CGP and PSO

1! 1
R, R,
1 k,=1.56 Y k,=1.514
1 1i
@ 1 @ 1
h J Y
R, 1 1 Ry R, 1 A Ry |
k,=0.85 k,=0.7 k,=0.024 k,=0.732
) p A
1 1 R,

Figure 7.2: Comparison of the target network Ng (left) and the RBM produced by cuRE
(right). The dashed arrows indicate the interactions between chemical species that are not
correctly reconstructed.

To understand the impact on the RE performance of the setting of n, and n.,
that is, the dimensions of the CPG grid, a series of tests were executed. Figure 7.4
shows the convergence of cuRE according to different values of n, and n., whose best
choice ultimately depends on the dimensions of the network to be inferred. It is worth
noting that a too small grid (e.g., 5 X 2) can impair the RE performance, since the
CGP has less freedom of movement inside the search space. A larger grid (e.g., 8 x 3)
does not help the convergence either, since it is more likely to generate long equations
which could be discarded from 7 as non consistent, that is, equations corresponding to
reactions that do not satisfy the constraints described in Section 7.1.

Figure 7.4 is interesting because it shows another relevant characteristic of cuRE,
connected to the fitness evaluation. The fitness value for a candidate network n is
calculated as the fitness of a PSO optimization. Being the latter a stochastic algorithm,
two different PE executions on the same network n have a high probability of yielding
two different parameterizations which, in turn, are likely to have two different fitness
values: this is the explanation of the large fluctuations in Figure 7.4 (top graphic).

To better understand the impact on the performances of different settings of the

grid dimension, these fluctuations are reduced by calculating the best fitness value for

165

Reverse Engineering of biochemical systems

L6E4 . . . 1
! - = i
415 e o0 oo 000]
L4E4 P2 o ®

1.2E-4

1.0E-4

8.0E-5

6.0E-5

Concentration [mol/L]

4.0E-5

2.0E-5

0.0E0 &
0 1 2 3 4 5

Time [a.u.]

Figure 7.3: Comparison of the target time-courses of network Ng (points) and the simulated
dynamics of the RBN produced by cuRE (lines). Even though the two networks are different,
their dynamics perfectly overlap.

the z-th generation (z € N) of CGP as:
f(nz)best - IZIllyzlf(rr]z’)7 (72)

where 7, denotes the best CP individual found during the z-th generation. Figure
7.4 (bottom graphic) represents the results according to Equation 7.2: it is now more
evident how the choice of the grid dimension can negatively affect the convergence
of the algorithm, as for cases (5 x 2) and (8 x 3). On the contrary, there exist grid
configurations that seem to facilitate the RE and PE problems, as for cases (6 x 2)
and (7 x 3). It is worth noting that the effectiveness of this result can be stated only
for the kind of small networks considered in this section; a more general test should be
performed on larger biochemical reaction systems, by increasing the size of the network
while increasing as well the number of rows in the CGP grid. Stated otherwise, larger
values of n, in the CGP grid should be also investigated with biochemical networks

having a higher number of reactions.

A further test was also carried out to further investigate the performances of cuRE,
by considering the impact of the p setting, that is, the mutation rate. Results in Figure

7.5 show that the best choice is p = 0.20, which allows a good exploration of the search

166

7.1 RE by means of CGP and PSO

1E-6 F I B
F n=5n=2 —— A
r n=5n=3 —]
F n=6n.=2 —— -
1E-7 & n=6n=3 —— 4
n,~=7 n;=2]
n~=7n=3 1
°]
= n=8n=2 —— |
g n=8n.=3 ——
2 1E-8 T ¢ -
[} 7
g 7
=]
1E-9 &
1E-10 | | | |
0 20 40 60 80 100
1E-6 F I E
E n=5n=2 —— 1
r n=5n=3 —]
- n=6 n=2 ——
1E-7 £ Ilr=6 HC:3 * .
n~=7 n.;=2]
n~=7n.=3 1
°]
= n=8n.=2 —— |
g n=8n.=3 ——
v 1E-8 T c -
[} - 7
8 E]
23 ’&]
IE9 bl e . A g
1E-10 | | | |
0 20 40 60 80 100

Generation

Figure 7.4: Fitness value of the best solution (top) and best fitness values (bottom), obtained
by varying the settings for n. and n, (i.e., the dimensions of the grid of functional nodes).
The fitness value on the y-axis is on a logarithmic scale. The top graphic highlights the
presence of fluctuations, which are the consequence of the stochasticity of PSO. The bottom
graphic shows how a proper choice for the grid is fundamental for the convergence of the
algorithm.

167

Reverse Engineering of biochemical systems

1E-6 T 3
p=0.1 —— 7
p=0.2
p=03 —— -
p=04 —— |
p=0.5
p=0.6

1E-7 &

1E-8

Fitness value

1E-9 SR -

1E-10 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Generation

Figure 7.5: Fitness value of the best solutions found during the RE of network Ng, varying
the settings for p (i.e., the proportion of a parent’s genotype that is mutated during the
offspring creation). The fitness value on the y-axis is on a logarithmic scale. This result
shows that p = 0.20 is the best choice for this application.

space and achieves the best fitness values. This is in agreement with published results
on CGP [214], where it is shown that the best performance is usually obtained by
setting p in the range 0.15 — 0.25. According to these results, low mutation rates seem
to lead to a better convergence speed, even though, when the mutation rate is too
small, the CGP cannot explore the search space properly: for instance, in the case of
p = 0.10, the best individual stops improving at the 47-th generation out of 100. Vice
versa, higher mutation rates allow to avoid the premature convergence, but can easily

generate offspring with higher fitness values.

7.1.2 Discussion

From a computational point of view, cuRE methodology requires fewer fitness eval-
uations than most of the existing algorithms, because ES-based CGP can exploit a
very small population. Being the fitness evaluation the most computationally intensive
task, cuRE strongly reduces the required running time. Moreover, in order to further

reduce the computational effort, the fitness evaluations (i.e., simulations and compar-

168

7.1 RE by means of CGP and PSO

isons against target data) are performed on the GPU, by exploiting the ODEs solver
cupSODA described in Section 5.1.

When some of the target chemical species involved in the reaction network have a
very low molecular amount, in the order of a hundred molecules or less, a stochastic sim-
ulation methodology may be preferable to correctly reproduce the emergent phenomena
due to stochasticity. It is worth noting that cuRE can be straightforwardly extended
to infer biochemical systems characterized by stochasticity, by simply replacing the
deterministic simulator with a stochastic simulator. As a matter of fact, since the RE
method evolves RBMs, the simulation method is completely independent from the rest
of the evolutionary process and can exploit a GPU-accelerated stochastic simulator

like cuTauLeaping (Section 5.3).

Most of the times, to solve the RE problem no a priori information on the topology
of the system is known; therefore, the optimization process relies only only on the
dynamics of the chemical species. This information is sufficient to properly reconstruct
the target time-series but, usually, it is not enough to discriminate between different
network topologies [327]. As a matter of fact, the fitness of the reconstructed network is
often comparable to the fitness of the target system. It is currently under investigation
a methodology to convey new knowledge domain constraints, in order to better drive

the RE process.

cuRE is also prone to phenomenological modification of the network topology, which
represent local minima of the RE problem. This kind of situation must be better
characterized, in order to implement some automatic correction algorithm. Some
previous works tackled the problem of redundant reactions by embedding the Akaike
Information Criterion into the fitness function [5], in order to exploit some parsimony
considerations. Unfortunately, this strategy failed to achieve its goal, leading to a
premature convergence to small networks which poorly fit to target data [178]. Thus,

a different approach to the simplification of evolved networks needs to be proposed.

In general, the issue of the indistinguishability of equivalent networks is known
[327], thus a good practice should be the multiple execution of the RE process, followed
by an analysis of the obtained solutions to asses their biological plausibility. This a
posteriori analysis could then help in the identification of a single network, or could
lead to plan new biological experiments with the aim of better understanding the real

functioning of the system. This issue will be extensively discussed in Section 10.3.

169

Reverse Engineering of biochemical systems

7.2 RE by means of Evolutionary Petri Nets

To the aim of developing an evolutionary methodology for the RE problem whose
candidate solutions are based on PNs, it is hereby proposed an extension of the
conventional PN formalism (Section 2.2.5), called Fvolutionary Petri Net (EPN) [229].
EPNs provide a conceptual framework for the representation of RBMs, and embed
robust and consistent genetic operators.

Before presenting the EPN formalism, some necessary elements have to introduced.
A Resizable Petri Net (RPN) is defined as a 9-tuple £ = (P, P", T, T", F, W, My, Ope, Opost)

where:
e P={p1,...,pm} is a finite set of places;
o P is the set of hidden places, such that P N P" = {);
o T ={ty,...,t,} is a finite set of transitions;

« T" is the set of hidden transitions, such that 7NT" = () and
(PUPMHN(TUT") =0,

« FC ((PUPh) X (TUTh)> U ((TUTh) X (PUPh)) is the set of arcs;

« W :F — Nis a weight function, which associates a non-negative integer value

to each arc;

e My : P — N is the initial marking of non-hidden places of the net (all hidden

places have zero tokens, initially);

e Ope € N is the maximum pre-order allowed in the RPN, that is, for each
te(TuTh)
> W(p,t) < Ope; (7.3)

pE®t
pe(PUPM)
e Opost € N is the maximum post-order allowed in the RPN, that is, for each
te(TuTh)
Z W<tap> S Opost- (74)

pEt®
pe(PUPM)

Differently from a traditional PN, a RPN is composed of a fixed number of places
(|P] = m) and transitions (|T'| = n), together with a variable number of hidden places

and transitions in the sets P" and T", respectively, whose cardinalities can change

170

7.2 RE by means of Evolutionary Petri Nets

during the evolutionary process because of the application of the genetic operators.
Two examples of RPN are depicted in Figure 7.6a. Unlike other similar works on
dynamically reconfigurable PNs [191], or on virtual PNs [218], RPNs are modified by
“exogenous” mutations that can arbitrarily introduce new hidden places and new hidden
transitions, where hidden transitions can represent events involving both elements from
P and P". In RPNs the sets P and T are explicitly separated the from the hidden
(modifiable) sets P" and T" in order to make use of the available, consolidated domain
knowledge of the system under investigation in the form of static (i.e., non modifiable)
places and transitions. In the case of zero-knowledge on the interaction of the elements
of the net, the set P is populated with those elements that are known to be part of
the system and whose data can be exploited by the fitness function, while 7" = ().

Conversely, hidden places and transitions are exploited by the genetic operators of
EPN in order to explore alternative and more complex topologies of the net. Since
hidden (i.e., modifiable) sets are dynamically modified and evaluated by the EC
algorithm, EPNs allow the optimization of an existent PN according to some given
constraints; moreover, they allow the automatic discovery of simplified or more efficient
alternative models. These tasks can be accomplished by initializing the system of
interest as a “fully-hidden” RPN (that is, P = T = (), and letting the evolutionary
algorithm explore the space of alternative models.

The RPN formalism includes the pre- and post-order conditions (Equations 7.3 and
7.4) for the following reasons. First, they help to reduce the bloating phenomenon of
GP by limiting the number of arcs. Secondly, they avoid the possibility of a convergence
to degenerate or overfitting solutions, represented by completely connected PNs, by
limiting the weights of in- and out-going arcs of transitions. This can also be used to
limit the search space, by excluding a priori unfeasible topologies. However, both pre-
and post-order conditions are optional and can be excluded from the RPN by setting
Opre = Upost = 0.

Two classic genetic operators, crossover and mutation, are exploited by the evolu-
tionary algorithm to modify RPNs. Given the space = of all possible RPN topologies,
an Evolutionary Petri Net (EPN) can be defined as a triple E' = (&, x, 1) where:

s £ET;

e x:(ExZ)— (E xE) is the crossover operator which modifies two RPNs ¢ and
¢, where ¢ and € are such that Py = P

o 1 ZUAPin,t, ot} — Z is the mutation operator, where {p;,,t,poui} is a

triple consisting of two places p;, and p,; and a transition ¢, namely p;,, Pouwr €

171

Reverse Engineering of biochemical systems

(PUPMyUP>and t € (TUT")UT>®, where P* and T are infinite sets of
places and transitions, such that P> N (P U P") =0 and T N (T UT") = (.

The functioning of y and p is described in the next sections, where the RPN at the
g-th generation of the evolutionary process it is denoted by &(g), g € N.

7.2.1 Genetic operators

In this section, the two main genetic operators of EPNs — crossover and mutation —
are described in detail. The selection operator, which is used to control the evolutionary
process by deciding which RPNs will propagate their genetic material in the next
generation, can be chosen among any of those described in Section 3.2.1 and, thus, it

is not explicitly discussed in this chapter.

The crossover operator

The crossover mechanism implements the exchange of genetic material between two
RPN, in order to generate new offspring which inherit the best substructures of the
parents. Various crossover mechanisms specifically designed for graphs were proposed
in literature [172, 252], in particular to tackle the complex case of two networks with
a different number of nodes [153] but, to the best of my knowledge, no specific work
exists about the crossover between bipartite graphs or, more specifically, PNs. Indeed,
the crossover between two PNs is supposed to identify some substructures in each
graph, “detach” them from one parent graph and “attach” them into the other, and

vice versa, while keeping the consistency of both graphs. The difficulties arise in:
e how to characterize a substructure;
e how to “detach” it from a graph;

o how to “attach” it to a new graph, considering that there is not a direct corre-

spondence between the elements belonging to different sets of hidden places.

The last issue is extremely relevant, because it determines the ability of EPNs to

transferring a precise functionality from a RPN to its offspring.

A possible crossover mechanism of two RPNs £(g),£(g) € =, named sticky crossover

(SC), could work on hidden transitions as follows: a transition t, € T" (¢, € T",

respectively) is randomly selected in the RPN ¢ (£) (the red nodes in Figure 7.6b),

and the substructures consisting of the preset and postset of ¢, (¢,) (dotted lines) are
exchanged between & and £. P+ = (*t, U ty)nph (P*, respectively) denotes the set of

172

7.2 RE by means of Evolutionary Petri Nets

hidden places contained in the substructure connected to t, (%), that is added to &
(&); F* = {(t\,p), (p,t,) € F | p€ P*} (F*) denotes the set of arcs belonging to this

substructure.

To determine the attachment points for the exchanged substructures, SC randomly
selects two input places p, € *t, and p, € *t,, and two output places p, € t,* and
De € fx‘ (Figure 7.6¢); py, pe, Db, and p, will be used as “attachment” points for the
incoming substructure, that is, the substructure identified by transition ¢, is attached
to ¢, in such a way that p, is replaced by pp, pe is replaced by p., and vice versa (see
Figure 7.6d).

Formally, the crossover mechanism acts on the sets of places, transitions and arcs
of the RPN as follows:

P =P"U P*\ {Ps, Pe};
P" =P" U P\ {py, pe};
" =T U{t 3\ {t};
T =T"U {Ex} \ {tx}Q
F=FUF"\ FtU{(t,p)|t € *pp} U{(pe,0)|t € p2} U
U{(po, D[t € py'} UL(E,pe) [t € *pe \ {(£,Do)IT € *Po} \
\ A @e, D)t € DI\ Ao, D)t € B} \ {(E: Pe) [t € *De}
F=FUFT™\ FtU{(t,py)|t € *ps} U {(Pe,)|t € pc"} U
UL o,)|t € py} U{(E,e)[t € *pe} \ {(E. po)|t € *po}\
\ {(pe,)t € P} \ {(po,)]t € "} \ {(L,pe) [t € *pe}-

The weights of the arcs exchanged during the crossover process are not modified. Only
hidden places are moved between RPNs during the crossover process, because each RPN
contains an identical set of fixed places, so that there is a biunivocal correspondence
between the elements in P and P". For this reason, for each place p € (*t, Ut?) N P,
where t, is the transition selected for crossover, we let F' = FU{(p,t,)} U{(t,,p)} and
vice versa. It is important to clarify that the elements in P* and 7" are “anonymous”,
that is, they do not share any semantics between different RPNs: if a hidden element
is transferred from a RPN to another RPN during a crossover, it is considered a new

unknown element with respect to the already existing elements.

If the SC involves p € P" and p € P as the selected “attachment” places of the

crossover then, in the exchange of the substructure from & to &, place p € P in &

173

Reverse Engineering of biochemical systems

[2 [h3 | [nte

(a) Parents RPNs (b) Step #1: selection of the transi-
tions ¢, and ¢,

ht4 ht7
(c) Step #2: random selection of pp, (d) Step #3: exchange of substruc-
De, Db and p. nodes tures

Figure 7.6: Example of SC between two RPNs. (a) From each parent RPN (b) a hidden
transition is randomly selected (red nodes hty and hig), identifying the substructures that
will be exchanged between the RPNs (dotted gray line). (¢) One random place from the
preset and one from the postset of hty and htg are selected (the blue nodes hpi, hpa2, hps and
hps that correspond to py, pe, Pp and pe, respectively). (d) The substructures are exchanged
between the RPNs and attached by replacing the respective blue nodes, thus yielding the
two offspring. For the sake of compactness, the weights of arcs are not reported when they

are equal to 1.

174

7.2 RE by means of Evolutionary Petri Nets

(a) Parents RPNs (b) RPNs after crossover

Figure 7.7: Example of SC breaking up one RPN, thus creating a separate component (the
hidden transition htg in Subfigure (b), and its pre- and postsets).

remains unchanged, while in the exchange from ¢ to &, place p € P" in ¢ is replaced by
p. So doing, ¢ will result in a consistent RPN, since P = P.

SC is a convenient crossover operator for three reasons:

o it allows the crossover between two arbitrary RPNs, regardless the cardinality of

the sets P", P* which can vary during the genetic evolution;

o the pre- and post-order of the transitions of the offspring (as defined in Equations

7.3 and 7.4) are automatically conserved,;

o the “directionality” of transitions is preserved, since SC swaps substructures

whose presets are still presets, and elements of postsets are still postsets.
Nevertheless, the SC has two drawbacks:

« considering a substructure identified by a transition ¢, if £ # ¢, is connected to a
place p € (*t, Ut?),p & {Pe, po}, then the SC breaks the RPN leaving a separate
component (see Figure 7.7);

o the SC allows the exchange of a single transition between two RPNs, which could

have only marginal impact on large networks.

The second issue can be solved with two strategies: the first is to exploit some graph
visiting algorithm (i.e., breadth- or depth-first) and extend the substructure accordingly;
the second strategy is to determine a value n, € N such that 1 < n, < min{|T"|,|T"|},

175

Reverse Engineering of biochemical systems

and to repeat the crossover on n, different transitions, that is, to randomly create
two vectors of indexes iy,...,4, and ji,...,J,, (With iy, €N, k=1,...,ny), and
then apply the crossover operator on each couple (;,,t;,). The first strategy allows to
exchange multiple transitions that were causally connected according to the chosen
graph visiting algorithm, whilst the second one allows to exchange multiple independent
transitions.

In the implementation of EPNs for real case applications, the computational
complexity of applying the crossover operator is, in the worst case, O(|F|? - | P]).
However, the use of a hash function might yield a reduction of the computational cost,

in the average case, to O(|P]).

The mutation operator

The mutation operator modifies the structure of a RPN £(g) in =, or the properties of
its places and arcs (i.e., capacity and weight), by acting on a single, randomly chosen
hidden transition ¢+ € T". In particular, the mutation operator associates £(g) to a new
consistent RPN £(g + 1), according to a specified triple {pin,t, pout }- The rationale
behind this triple is to provide new genetic material, that is, to modify the topology
of the RPN; the functioning of the mutation operator for all the possible cases of
{Pin, t, Dour} is summarized in Table 7.2. After the application of any mutation case
(except #8), F' = F U (pin,t) U (t, pour) and W (piy,t) = W(t, pour) = 1. Cases #7 and
#8 are particular and deserve a detailed explanation.

Case #7 introduces a brand new transition which is “disconnected” from the rest
of the network, since it exploits new places that are not used by any other transition.
So doing, the dynamics of these places, that is, the succession of their markings as a
consequence of the firings, is independent from the rest of the RPN. In other words,
Case #7 is a “silent” modification of the topology of the RPN, that will not have a
direct impact on its behavior. Nevertheless, a further application of a genetic operator
to the mutated RPN may connect this latent transition to the main net component,
thus conditioning the behavior of the whole RPN.

Case #8 does not introduce any new genetic material. This operator is used to
change the capacities K (p) of randomly selected places p € P, i.e. K(p) = rnd, where
rnd is a random number sampled from the uniform distribution (0, Kyy] (where Ky
is the maximum capacity for the places in the RPN). Alternatively, the mutation can
modify the weight of an arc; for instance, given the arc weight W (p, t), its value can be
updated as W(p,t) = W(p,t) £ 1. Tt is worth noting that also Case #8 can lead to a

modification in the structure of the RPN, whenever an arc weight is set to zero (i.e., the

176

7.2 RE by means of Evolutionary Petri Nets

Table 7.2: Effect of the mutation operator on a RPN £(g).

l No. [Condition [E(g+1) [Semantics of the mutation
1. pin &€ P U 2 Pt =phy {pin} A new hidden place p;, is created and added
teTh P> = P\ {pin} to P"; transition t is extended to have a new

h input place pin
Pout € PUP

2. pin € PU P P = PPy {pout} A new hidden place poyt is created and added
teTh P = P\ {pous} to P™"; transition ¢ is extended to have a new
N output place pout
Pout Q P U P
3. pin € PU PP " =TM U {t} A new hidden transition t is created and added
tgTuUTh T =T\ {t} to Th; transition ¢ is connected to the existing
, input and output places p;, and pout, respec-
Pout € P U P tively
4. DPin € PU ph P =phy {pin} A new hidden transition t is created and added
h, hidden place p;, is created and
teTuTh h _ h to T"; a new hi P Din
¢ N T "ot} added to P"; transition ¢ is connected to new
Pout € PUP P = P\ {pin} input place p;, and to an existing output place
T =T \ {t} Pout
5. pin € PU PP " =Tr U {t} A new hidden transition ¢ is created and added
h, hidden place is created and
tdTuTh h _ ph to T"; a new hi P Pout
¢) P P U {pout} added to P™; transition ¢ is connected to an
3 joe] o0
Pout € PUP P = P\ {pout} existing input place p;, and to the new output
T =T\ {t} place pout
6. pin & PU P PP = PP U{pin, Pout } Two new hidden places p;,, and poyt are cre-

h. s .
teTh P> = P\ {pin, Pout } ated and a(‘ided to P"; transition ¢ is connected
to pin as input place and to poyt as output

Pout & PUP" place
7. pin & PU P Pt =phy {Pin,Pout } A nev}sl/ hidden transition ¢ is created and added
T"; two new hidden places p;n and
teg T U Th h _ ph to ’ p Pin Pout
¢ n T T udt} are created and added to P"; transition ¢t is
joe] o0
Pout € PUP P = P\ {pin,Pout } connected to the new input place p;, and to
T =T\ {t} the new output place pout

8. pin € PU PP ph = ph No new genetic material is introduced. Either
teTh Th — h Pin O Pout is randomly chosen; then, its ca-
n pacity or the weight of the arc connecting it to

Pout € PUP P =P, T =T t is modified

arc is removed). As a consequence, isolated hidden places or hidden transitions, which
represent sources or sinks, can be introduced in the RPN after Case #8 is applied and
must be removed. Therefore, after the application of this operator, the consistency
of the RPN must be verified, regarding each place p and transition ¢ involved in the

mutation:
o ifpe Phand A{(p,t),(t,p)} Vt € TUT" then P" = P"\ {p};
o ifteT"and B {(t,p),(p,t)} ¥p € PUP" then T" = T"\ {t}.

As a final step of the evolution process, pre- and post-order conditions of the offspring
need to be verified, since the described mutations might produce a putative RPN whose
topology does not satisfy Equations 7.3 and 7.4. In such a case, a further modification
of the weights of the ingoing and/or outgoing arcs of a transition ¢ is required. In
particular, a randomly selected input (output, respectively) place of transition ¢ is
modified so that W (p,t) = W(p,t) — 1 (and/or W (t,p) = W (t,p) — 1), where p € *t

177

Reverse Engineering of biochemical systems

(p € t*, respectively). Tt is clear that if W (x,y) = 0, then the corresponding arc (z,y)
is removed from F'. This operation is repeated until the RPN respects all the pre- and
post-order conditions.

It is worth noting that these two mechanisms implicitly allow mutation to delete
places, thus reducing the size of the RPN.

The computational complexity of the mutation operator is, for the worst case,
O(|P|). However, as in the case of crossover, the use of a hash function allows a
reduction of the computational cost of this operator, in the average case, to O(C)

(where, in general, C' < |P|).

7.2.2 Toward the application of EPNs for the RE of reaction-

based models

In this section, the theoretical basis of a potential application of EPNs in the context
of Systems Biology are sketched, in particular for the RE of biochemical interaction
networks. As described at the beginning of this chapter, the RE problem consists in
the identification of the network of reactions that describe the physical interactions
among the chemical species occurring in the system. These networks can be defined
thanks to human expertise, by relying on some pre-existing knowledge. However, most
of the times the exact molecular mechanisms occurring in living cells are not known
and cannot be fully understood by means of laboratory experiments only. This problem
therefore demands the development of novel RE methods, so that a plausible network
of biochemical reactions — able to reproduce some given experimental observations —
can be determined in faster and inexpensive ways.

Here, it is briefly summarized the modeling of biochemical systems by means of
PNs, and it is presented a possible strategy based on EPNs for solving the RE problem,
which shows the feasibility of this methodology.

A biochemical network 7 can be modeled by means of the RBM formalism described
in Section 2.2.1. Because of their bipartite graph structure, PNs offer an alternative
and ideal conceptual framework for the modeling of such biochemical networks [53].
To this aim, the transformation of a network 7 into a corresponding PN (and vice
versa) described in Section 2.2.5 can be exploited. According to those mappings, it is
straightforward to show that the PN on the left in Figure 7.6a represents the following

set of reactions:
o R? 251 — S{L,
o Rb.Sh— SI

178

7.2 RE by means of Evolutionary Petri Nets

o Rh:.SIM— SP
o RZSQL%SQ

The number of tokens (given as discrete or continuous value) in each place represents
the molecular amount (given as number of molecules or concentration, respectively)
of the corresponding chemical species, so that M, represents the initial state of the
biochemical system.

The PN representation of a biochemical reaction network allows the investigation of
its structural features by means of theoretical approaches [53, 345], like those described
in Section 2.2.5. In addition, PNs can be easily extended with timed delays [181], or
to incorporate quantitative information (e.g., reaction rates, concentration levels) to
the aim of investigating the dynamic evolution of biochemical systems [110]. Kinetic
parameters can also be associated to the reactions, in order to derive the probability
of each reaction to occur [105], or to convert the system into a set of ODEs; in the
latter case, places contain continuous values corresponding to the concentration of the
chemical species associated to each place.

Once that a model of a biochemical network is defined in terms of a fully parameter-
ized extended PN, according to the available domain knowledge, its dynamic behavior
can be investigated. Anyway, when the domain knowledge is incomplete, uncertain or
completely missing, a (fully parameterized) PN model of a biochemical system cannot
be constructed. In such a case, it is necessary to perform the RE of the biochemical
reaction network, investigating the unknown reactions and chemical species that are
responsible for the observed phenomena.

As described in this chapter, many works perform the RE of biochemical systems
by means of evolutionary techniques [44, 57, 143, 167, 178, 234, 241, 326, 336]. One
limitation of many of these techniques is that the individuals are modeled by means of
data structures that are not ideal to describe reaction networks; in addition, constraints
and consistency controls (like in the case of cuRE) should be employed to control the
quality and validity of the inferred network.

The strongest limitation of all these methods is that the cardinality of S, that is,
the number of chemical species that are present in the system, is assumed to be known
and kept fixed during the optimization. This is generally a strong assumption, that
may be justified only if the biochemical system is very well known (but, in such a
case, the network should be known as well) or when laboratory experiments can yield
this information with a certain precision. As a matter of fact, in most cases the exact

number and nature of the chemical species involved in the system — including the

179

Reverse Engineering of biochemical systems

intermediate complexes formed by the chemical bonds among various molecules — is
unknown. Anyway, this is a fundamental information to properly carry out the RE of

the system.
Thanks to the flexibility of hidden places and transitions, the use of RPNs to

represent the candidate solutions gives to EPN the possibility to explore much more
possibilities than the traditional RE approaches that exploit a fixed number of chemical
species, thus leading to the formulation of new hypotheses for the structure of the
biochemical network that should then be validated with ad hoc laboratory experiments.
In this context, hidden places in the RPN can be exploited to represent some molecular
species or complexes which are necessary to reproduce the expected behavior of the
biochemical system, but that have not been yet identified with experimental techniques.
Similar considerations hold for hidden transitions, which can represent molecular
interactions that are not known from a biochemical point of view, but that might yield
a better system functioning (in terms of the specified fitness function, and according
to the available experimental data). A first attempt in this direction, which is based
on CGP, is proposed in the next chapter for the automatic design of gene regulation

networks.

The application of an EPN-based methodology for the RE of biochemical systems is
similar to GP (Section 3.2.3). At first, a population P of RPNs is generated according
to the available domain knowledge: when the information comes from established
biological knowledge, the reactions are modeled using the sets P and T'; on the contrary,
when the information is uncertain, the network is modeled by means of hidden places
and transitions. At generation g = 0, since the individuals are all identical, they
undergo a preliminary mutation. During each generation, the best individuals are
selected according to a specified fitness function, and the EPN genetic operators are
applied to yield new offspring. The fitness function can be defined as in Equation 7.1,

given that the hidden chemical species cannot represent a target.

To facilitate the evolutionary process and help the generation of biologically mean-
ingful candidate solutions, in the use of EPNs for the RE problem it is possible to set
Opre = 2 to force the evolution of at most second-order reactions. This choice helps the
EPN functioning, since it strongly reduces the search space =, but at the same time it
does not pose any limitation to the practical applicability of the RE methodology, as
higher-order reactions can be mimicked through a cascade of consecutive reactions of
lower order. During the evolutionary process, the EPN explores this search space, and
eventually a best individual Z € P emerges, representing a consistent RPN that fits
with all the observed phenomena: 7 is finally returned as the result of the RE.

180

7.2 RE by means of Evolutionary Petri Nets

In what follows, the action of crossover operator for networks of biochemical
reactions is sketched for the sake of clarity. Consider, for instance, the individuals
¢ (left) and ¢ (right) shown in Figure 7.6a: the crossover swaps the reactions RY in
¢ and Rl in &, so that the chemical reaction R!, renamed R} after the crossover,
has an additional product (i.e., S, left side of Figure 7.6d). On the contrary, the
reaction R (renamed R} after the crossover) in & loses a product and becomes a simple
transformation from one species to another. The consequence of these modifications is
that the new reaction network might have a completely different dynamic behavior,
and hence a different (hopefully, better) fitness value.

The proposed fitness evaluation relies on the simulation of the candidate solutions,
which is possible only if a proper parameterization of the candidate network in available.
Hence, the RE problem is further complicated by the need of a PE methodology for
the inference of the missing kinetic parameters [216, 232]: to this aim, an integrated
EPN-based methodology embedding the PE process in each generation of the RE is
under development.

A further difficulty of the RE process is due to the fact that different networks
can lead to the same dynamic behavior; the problem of indistinguishability [327) —
already mentioned in this chapter and discussed in Section 10.3 — cannot be solved
without additional knowledge. EPNs do not directly mitigate this drawback, even
though pre- and post-order conditions allow the reduction of the possible topologies,
thus permitting the derivation of meaningful networks that can be then discriminated
by domain expertise. Moreover, fixed places and transitions allow to easily introduce
non-modifiable domain knowledge into the candidate solutions. Finally, the initial
marking of the hidden places was set to zero: a further extension of EPN, in which
the initial marking (i.e., state of the system) co-evolves with the topology, is under

investigation.

181

Chapter 8

Evolutionary Design of synthetic

networks

The goal of Synthetic Biology (SB) is the design and the construction of novel biological
circuits — in particular, gene regulatory networks (GRNs) — able to reproduce a
desired behavior. This task is similar to the RE problem [59] described in the previous
chapter, whose purpose is to identify the network of interactions among the components
of a real biological system, that fit an experimentally observed dynamics. In this
context, mathematical models and computational analysis of GRNs can facilitate the
experimental research and to provide useful insights for the control of gene interactions.
The main difference between RE and the design of a synthetic circuit is that, in RE,
the target dynamics is not a specifically chosen behavior, but it usually consists in
laboratory measurements of some chemical species.

GRNs are traditionally modeled by means of high-level formalisms, in which the
interaction of genes is expressed in terms of promotion and inhibition mechanisms. An
example is represented by S-systems [297], namely, systems of non-linear Ordinary
Differential Equations (ODEs) in which gene expression is modeled by power-law
functions (see Section 2.2.4). S-systems models of GRNs are able to capture the
intrinsic non-linearity of gene expression, providing a good description of the behavior
of the corresponding artificial gene regulation system [239]. In the context of SB,
the inference of S-systems was tackled by means of Evolutionary Computation (EC)
[13, 57, 143, 239], where a population of candidate solutions iteratively evolves under
the pressure of a fitness function. The EC technique traditionally applied to this
problem is Genetic Programming (GP) [168], in which candidate GRNs are encoded by
complex recursive data structures like derivation trees or LISP s-expressions. Another

EC methodology that was exploited for the inference of S-systems is Differential

183

Evolutionary Design of synthetic networks

Evolution [324]; however, this method suffers from the additional problem related to
overfitting solutions, that must be tackled during the evolution of the typical sparse
structure of GRNs.

S-systems provide a valuable formalism for the modeling of GRNs, but they are
not powerful enough to describe the actual mechanisms allowing a GRN to express a
certain dynamics, so that these models have a low predictive capability. In order to
provide biologists with additional information regarding gene regulation mechanisms,
GRNSs can be modeled as mechanistic reaction-based models (RBM), which describe in
detail the molecular interactions among the chemical species. An advantage of using
RBMs is that they can be easily exploited to analyze and predict emerging dynamics of
GRNs in different conditions, thanks to several existing simulation tools [140, 233, 235].

In this chapter, it is called Fvolutionary Design (ED) the problem of automatically
deriving a RBM able to reproduce a desired behavior, by exploiting EC methods only.
The ED of RBMs can be more complicated than the ED of S-systems, because RBMs
also require a proper description of the stoichiometry of reagents and products in
each biochemical reaction. Furthermore, as in the case of S-systems, a correct kinetic
parameterization of all reactions is needed, in order to produce a reliable simulation of
the system dynamics. As described in Section 6.1, the PE problem can be tackled by

means of EC as well and, in particular, using PSO (introduced in Section 3.3.2).

In this chapter, it is presented a computational strategy to infer a RBM that
specifically represents a Gene Regulation Model (GRM) characterized by a predefined
behavior. In particular, the ED methodology, named cuGENED, integrates two EC
algorithms: CGP [214] and PSO [157], described in detail in Section 3.2. CGP exploits
individuals encoded as fixed-length vectors of integer numbers which, in contrast to

standard GP, are mapped onto directed graphs rather than derivation trees [214].
As in the case of the cuRE algorithm (Chapter 7), the choice of the CGP for the

ED process is motivated by the fact that graphs are suitable for the representation
of a network, and the mapping between a CGP individual and the corresponding
GRM allows a direct translation of the individual into a human-comprehensible set
of chemical reactions. Moreover, since CGP exploits fixed-length individuals, it does
not need any explicit strategy to avoid bloating, that is, the uncontrolled growth of
the size of solutions that usually occurs in GP. Moreover, ctGENED inherits all the

closure and sufficiency properties characterizing cuRE.

cuGENED exploits CGP to derive the network of biochemical reactions which
describe the genetic regulation mechanisms in a GRM. Then, PSO is exploited to

estimate the kinetic parameters of the GRMs. The target of the overall evolutionary

184

8.1 RBMs of gene regulation

process is represented by some representative dynamics of a predefined number of
genes that participate in the GRN. Eventually, the effective behavior of the inferred
model has to be validated after the synthetic engineering of the genetic circuit. Such
validation might be done by measuring, e.g., the transcription levels of the genetic
components of the circuit.

It is worth noting that, for the ED of synthetic GRNs, it is not possible to consider
any network structure as target of the optimization process, so that the quality of a
candidate GRM can be only evaluated by comparing its simulated dynamics against
the desired target behavior. Indeed, an absolute novelty of cutGENED with respect
to the state-of-the-art, is that it allows O-knowledge inference, since the number of
intermediate chemical species occurring in the GRM is usually unknown a priori.

In cuGENED, every generation of CGP requires the execution of PSO, that realizes
the PE for each individual. Since PSO is a population-based algorithm as well, the
whole methodology is computationally expensive. Nevertheless, all fitness evaluations
in each iteration of the PSO are independent and can be accelerated by means of
a parallel architecture. To this purpose, cuGENED exploits cupSODA [233], the
GPU-powered deterministic simulator of biochemical systems modeled by means of
RBMs introduced in Section 5.1. cupSODA, exploited during the PE phase, is fully
integrated in cuGENED and allows a strong reduction of the overall running time.

The main contents of this chapter will appear in the forthcoming book FEvolutionary
Algorithms in Gene Regulatory Network Research, edited by H. Iba and N. Noman and
published by John Wiley & Sons [236].

8.1 RBMs of gene regulation

Given a biochemical system 7 consisting of some molecular species (e.g., genes, proteins,
metabolites) and their mutual interactions, a mechanistic reaction-based model (RBM)
of n can be formally defined as described in Section 2.2. In this chapter, at most
second-order reactions — that is, reactions that have no more than two reactant
molecules — are considered in RBMs, since third-order (or any higher order) reactions
have a probability to occur almost equal to zero, as they would require the simultaneous
collision of three (or more) reactant molecules.

This chapter focuses on reaction-based gene regulation models (GRMs), which
formally describe the biochemical reactions involved in gene transcription and trans-
lation. To properly define these reactions, it is assumed that the set S of molecular

species is given by the union of two disjoint sets of species, which are denoted by

185

Evolutionary Design of synthetic networks

I'={v,...,78} and ¥ = {0y, ...,0ny}, for some Np, Ny € N. It is assumed that
IT'| < |3], where | - | represents the cardinality of the set.

The set I' represents the genes that are available for the synthetic engineering of
gene regulation circuits. Each element ~; in I is strictly associated to a messenger RNA
(mRNA), the product of gene transcription, whose expression can be experimentally
evaluated through cutting edge technologies (e.g., microarray [98], qRT-PCR [170]).
Thus, the cardinality of I' is equivalent to the number of target time-series used in
cuGENED. By abuse of notation, ~; will identify either the “gene” or its “transcription

product”, according to the context.

The set Y represents a set of generic species, as well as their mutual chemical
complexes, that are related to the processes of gene expression. These species are the
actual effectors of gene regulation, and need to be included in any GRM to evaluate
their influence on the emerging behavior of the circuit. An element o; € X might
represent any kind of gene product (e.g., protein) related to 7;, or the molecular
complex formed by the interaction of the gene product (acting as promoting/inhibiting

transcription factor) with another gene v; € I'.

To better clarify the meaning of the sets I' and X, some types of reactions that
formally describe the processes of gene regulation, and that might be present in a

GRM, are illustrated along with other generic reactions mentioned above.

Reactions that represent gene expression (transcription/translation) can be written
in the form ~; — 7; + ;. Given a gene 7; € I', its regulation by means of gene 7; can
be described either as 7; +v; — oy, or as o; + ; — o, with ¢ not necessarily distinct
from j. Here, the species o} might represent two different elements: 1) the product of
the regulation of 7; (e.g., the protein encoded by +;), in this case we can simply say
that oy, is equal to o;; 2) the chemical complex between gene 7; and its own regulator,
in this case o0y is a compact formalization for the species v;y; or o;7;. The inverse
reactions of the type o, — 0; + 7, can then be used to describe the dissociation of
the regulator o; from gene ;. The effective expression of a regulated gene v; — that
takes place after the occurrence of some reactions of type o; +v; — o, — can be
synthetically written in the form o, — o;. This reaction states that species o, related
to gene 7;, is derived from species o, which represents an intermediate molecular
complex having v; as element (e.g., oy = 7;y; or o, = 0;7;, as mentioned above).
Finally, reactions of the form o, — o0, can also be used to represent the degradation,
or any other generic transformation reaction (e.g., post-translational modification of a

protein) of the species occurring in 3.

186

8.1 RBMs of gene regulation

As it was shown in the previous chapter, the RE process of a given biological
system consists in the automatic identification of the network of interactions among the
molecular components of that system. In this task, a set of experimental time-series
measurements of some species occurring in the system can be exploited as target to
drive the evolutionary inference of the network [234]. On the contrary, in this chapter
it is assumed that only an expected dynamical behavior of the network is given as
target. Quite obviously, it is also assumed that no specific laboratory measurements
of the temporal evolution of chemicals that will constitute the circuit can be given
before the circuit itself has been engineered. For this reason, in what follows it is not
formally specified the type and the unit measurements of the amount of chemicals,
but the general term of “level” is used. The level can indicate either the number of
molecules or the concentration values that might then be actually measured by ad
hoc laboratory methodologies after the construction of the circuit. For instance, if
qRT-PCR is exploited to validate the functioning of the synthetically engineered circuit,
then the level of the species in I' represents the concentrations of the corresponding
mRNA, measured by relative quantification with respect to the amount of some control
housekeeping gene [192].

According to the law of mass-action, given a set of biochemical reactions R —
each one characterized by its own kinetic constant k;' — for each molecular species
appearing either as reagent or product in some reaction in R, it is possible to derive
a rate equation that describes the variation in time of its concentration. In other
words, any given RBM or GRM can be formalized as an equivalent system of coupled
(non-linear) first-order ODEs [358]. This formalization can be exploited to determine
the temporal evolution of the network (that is, its dynamics) by means of different
numerical integration methods [41]. These algorithms require as input the set of
ODEs, along with the set of kinetic constants and the initial concentrations of the
chemical species. To this aim, in this chapter it is exploited cupSODA [230, 233], which
automatically derives a set of ODEs from RBMs defined according to MAK, and then
exploits the numerical integration algorithm LSODA [257] to perform the deterministic
simulation of the system dynamics. In Section 8.2 it is shown how to exploit CGP
to carry out the ED of a GRM, which is then automatically converted to an ODEs
system and simulated by means of cupSODA, considering the kinetic constants that
are inferred by PSO.

!The unit of measurement of k;, that I omit for simplicity, depends on the order of each reaction:
it is equal to (mol/L)!~"(time) ! for reactions of order n, n > 1, and equal to (time)~! if n = 0.

187

Evolutionary Design of synthetic networks

In this chapter, candidate solutions of CGP evolve by using a (14+A) ES (see Section
3.2.2), as described in [214]: all individuals are evaluated and the best one is selected as
a parent for the next generation. Then, \ offspring are produced by means of random
mutations, that is, random modifications of the integers which constitute the genotype
of the parent individual. The proportion of genes that are mutated is determined by
the mutation rate parameter p € (0,1). The ES methodology does not exploit any
crossover mechanism.

In Section 8.2 it is shown how to exploit CGP to perform the ED of GRMs. In
order to evaluate the GRM that each CP represents, a proper fitness function must be
defined. As target of the optimization process, it is exploited a set of artificial temporal
data that represent the desired behavior of the synthetic gene regulation circuit. These
artificial data informally correspond to the concentrations of the molecular species
that might be experimentally measured after the construction of the circuit itself.
Therefore, the fitness function is based on the comparison of the target series against a
simulated dynamics of the model, which is generated by exploiting the cupSODA tool
[230, 233]. Since the GRM derived with CGP is not complete until a proper kinetic
parameterization is given, the fitness evaluation of each candidate solution embeds a
PE phase, which is performed by means of PSO.

In this chapter, a particle corresponds to a candidate kinetic parameterization of
each GRM determined by CGP. Therefore, M is equal to the number of connected
outputs in the CP, i.e., the total number of reactions in the GRM.

8.2 ED of GRMs by means of CGP and PSO

In this section, the ED methodology is presented. cuGENED is based on the integration
of 1) CGP for the design of the synthetic circuit, 2) PSO for the estimation of the kinetic
parameters of the corresponding GRM, and 3) cupSODA for the GPU-accelerated
fitness evaluation.

To the best of my knowledge, this is the first time that the ED is performed by
means of a hybrid approach based on CGP and PSO. The choice of PSO to perform
the PE task is motivated by empirical studies in the field, highlighting its better
performances with respect to other popular global optimization techniques like GAs,
Differential Evolution and Evolution Strategy [26, 78].

CGP phase. In cuGENED, CGP is implemented using § = {+, —} as the set of

functions. The composition of input nodes and functional nodes allows CGP to encode

188

8.2 ED of GRMs by means of CGP and PSO

complex expressions for each genotype G. The expressions can be then converted, by

means of symbolic manipulation, into arithmetical equations as described hereafter.

In the context of ED of GRMs, the set of input nodes is determined by the species
occurring in I and X, so that n; = |I'| 4+ |X|. Since the exact regulatory interactions
necessary to reproduce the desired behavior of the synthetic circuit are to be determined,
it follows that the number of chemical species belonging to the set > is unknown as
well. Therefore, also the cardinality of ¥ must be inferred by means of some heuristics.
As a matter of fact, the value |X| has a relevant impact on the ED process, since it
determines the space of the possible GRMs that CGP can explore. If |X| is too small,
then the circuit able to achieve a perfect fit of the desired dynamics might be impossible
to be designed. On the contrary, if |X] is too large, then the evolutionary algorithm can
take a longer time to converge to an optimal solution, or might suffer from over-fitting.
Nevertheless, in the second case, CGP is able to automatically exclude the unnecessary
chemical species from the set of candidate solutions if they have no impact on the
fitness value. In this work, it is always used the value |X| = 4 - |I'| as heuristic, because
it is assumed that, for each target species in I', four intermediates are enough to model

gene regulation mechanisms.

The number of input connections for each functional node is n,, = 2, because
only addition and subtraction are exploited as functions for the construction of the
expressions. The set of output nodes corresponds to the biochemical reactions that
will be part of the inferred GRM. In these reactions, the species corresponding to the
input nodes appear either as reactants, if a functional node containing function + is
crossed, or as products, if a functional node containing function — is crossed. So doing,

each expression encodes a single reaction of the GRM.

Generally, in CGP the number of output nodes n, is fixed. In the context of
GRMs, this implicitly means that the actual number of reactions should be known
before the optimization takes place, which is clearly unreasonable. Since the GRM
itself is the goal of the optimization, in this chapter the value n, represents an upper
bound to the number of reactions that will appear in the model. Hence, a proper
choice for n, is fundamental: it should be large enough to include all the necessary
regulatory mechanisms, and small enough to avoid bloating and over-fitting. As
heuristic for the selection of n,, its value could be fixed equal to the number of all
possible reactions that can involve the set of genes and the set of generic chemical
species, i.e., n, = |I'| - |[X| 4+ |['| + |2|. Furthermore, in this implementation the value
of [is set to m., meaning that output nodes can be connected to any functional or

input node, and each functional node belonging to column j can be connected only to

189

Evolutionary Design of synthetic networks

nodes between column j — 1 and the input nodes. An example of CP related to the
ED problem of GRMs is described in Example 8.2.1.

Example 8.2.1 There exists a strict correspondence between the genotype
of the CP and the connectivity of each node in the Cartesian coordinate grid.
Functions + and — in the grid are represented by 0 and 1 in the genotype,
respectively (the first number in each of the four triplets). Since + and — are
binary operators, n, = 2 input connections are used to each functional node.
The grid of functional nodes consists in |FN| = n,n. = 4 nodes, since the
grid is composed of two rows and two columns. The genotype is generated
by randomly drawing values related to the chemical species (0 for ~, 1
for oo, 2 for o1) and to the output of each functional node (3, ..., 6).
Then, these values are assigned to the input of the functional nodes and
to the output nodes (numerical values with asterisk). Note that, in the
construction of the genotype, given a functional node only the values of
previous input and functional nodes can be randomly selected and assigned
to its input connections, since | = n.. The grid is parsed backwards, from
the n, = 2 output nodes Ry, Ry to the n; = 3 input nodes vy, 00,01. The
resulting equations are then automatically converted into an equivalent set
of biochemical reactions. The green functional nodes are involved in the
equations, since a path from the input nodes to the output nodes exists here.
The white functional nodes, instead, are not connected in the grid and do not
participate in any equation in this CP. Thus, their corresponding genes (gray

numbers) are non-coding sequences.

CP Genotype 20 3 2 3 6
L e e e bl
1 I
Input nodes 2" : : Output nodes
|——--- o—] 1 o] 1
| + _2 1 5 1
Yo YT o ’ - TR
1 t-- 1
! 1
G, —e ! : --+—e R,
1 : 1 16"
| L3 |
G oe—e-——4] . T 6 :
2 ' o . - e -----
| __ _2
! 1
! 1
e e e e e e e e e e e e e e e]
Derived R13 Y0+ S, Corresponding Rl Yo + 6, 0 } n
equations . — reactions .
R, (y,t o)~ 0 R,:y,t0, >0

190

8.2 ED of GRMs by means of CGP and PSO

The pseudocode of the ED methodology based on CGP and PSO is reported in
Algorithm 7.1. The evolutionary process begins with the creation of a population of
I =1+ X random CPs (lines 2-7). The population evolves by means of an ES process

which can be decomposed in three main steps:

1. in Step 1, the representation of each CP is converted into a GRM. Then, PSO
is used to estimate the values of the kinetic constants and to assess the fitness

value of the parameterized candidate network (lines 10-14);

2. in Step 2, the CPs are ranked according to the fitness values, to identify the
best CP in the population (line 15);

3. in Step 3, a brand new population is formed by considering the best CP, together
with the I — 1 offspring created by applying the mutation operator on the best
CP (lines 16-30).

The figure in Example 8.2.1 schematizes the conversion of a CP into the correspond-
ing GRM (Step 1). The connections of each output node are followed backwards by
recursively passing through the functional nodes. This process yields a derivation tree
that is translated into an arithmetical equation, where positive terms (respectively,
negative) are considered as reactants (products). Each equation produces a single
candidate chemical reaction for the network. A candidate GRM n for the synthetic
circuit is then obtained by repeating the algorithm for all output nodes.

The fitness values of all candidate solutions are calculated at the end of the PE
process by means of PSO, so that a ranking of the CPs can be assessed and the best
solution (bestcp) in the CGP population is identified (Step 2).

During each generation of the CGP, the new offspring solutions are obtained by
applying a mutation operator to bestcp. The GRM 7 is compared to the rest of the
population: if it is identical to some other CP, then it is mutated again in order to
achieve a heterogeneous population, and the process is repeated. In this methodology
it is not verified that 7 consists of a single connected component, since not all chemical
species in Y necessarily need to be present in the GRM. The rationale behind this
choice is that, in the ED methodology presented here, it is not specified a priori the
exact number of chemical species that should occur in the system (it is only provided an
upper bound). Therefore, in this methodology also the number of chemical species in
Y. undergoes the optimization process. This approach is different from typical methods
used for the RE problem. In particular, it differs from the RE method based on CGP

and PSO previously proposed in [234]: in that case, the number of chemical species

191

Evolutionary Design of synthetic networks

1: CGP_population < create_empty__population()
2: for 1 to I do

3: CP = create_ CP(S, ng,n,,n.)

4. CGP__population.add(CP)

5: end for

6: for 1 to CGP__generations do

7. for all CP in CGP_population do

8: network < C'P.convert__to_ network()

9: CP.fitness, C P.parameters <— PSO(network)
10: end for

11: bestop < find_best_individual(CGP__population)
12: CGP_population < create__empty_population()
13: CGP_population.add(bestcp)

14: forltol—1do

15: repeat

16: candidatecp < bestcp.mutation(p)

17: until candidatecp not in CGP__population
18: for all reaction in candidatecp do

19: if not consistent(reaction) then

20: candidatecp.remove(reaction)

21: end if

22: end for

23: CGP_population.add(candidatecp)

24: end for

25: if fitness(elitecp) < fitness(bestcp) then

26: elitecp < bestap

27: end if

28: CGP_population.add(elitecp)

29: end for

30: return bestC' P

Figure 8.1: Pseudocode of the GRM design algorithm

192

8.2 ED of GRMs by means of CGP and PSO

participating in the system was known a priori, therefore it was mandatory for the
candidate solutions to consist in a single connected component.

When a new population of CGP is generated, for each candidate solution a con-
sistency check is performed (lines 24-28 in Algorithm 7.1). Specifically, it is verified
that each reaction in the GRM 7 obeys the conditions described in Section 2.2.1,
together with the additional condition that no identical reactions should appear in
1. In particular, since at most second-order reactions are considered, the length of
CP expressions can be limited to reduce the bloating by setting n. < 3. In general, if
a reaction R is not consistent, it is removed from the network, so that n = n\ {R}.
Eventually, when a new consistent CP is produced, the individual is inserted into the
new population.

To improve the convergence speed, at the end of Step 3 the elitist selection is
applied by adding a non-mutated copy of the best candidate network found so far. This
solution becomes the (I 4 1)-th individual of the population (lines 31-33 in Algorithm
7.1). When the new population is formed, the fitness value of each individual is
calculated by executing a PE by means of PSO, as described hereby. This iterative
process is repeated for GE Ny generations. For the tests presented in this chapter,
G E Nyyx = 100. Finally, the GRM with the best fitness, along with its parameterization,
is chosen as the result of the ED problem.

PSO phase. For the execution of the PE task, each particle in the PSO corresponds
to a candidate kinetic parameterization of a GRM inferred by CGP. Namely, for each
candidate GRM, a whole swarm of particles is exploited to determine the reaction
constants that best fit the desired target behavior for that GRM. To this aim, the PSO
adopts the following settings: n = 64 particles, randomly generated using a logarithmic
distribution to better distribute the values of kinetic constants over different orders of
magnitude; Cyo. = Cpy = 2.05, as suggested in [78]; inertia linearly decremented from
w = 0.9 to w = 0.4; velocity vector automatically clamped to a maximum intensity,
equal to 10% of the maximum point-to-point distance in the search space; search space
bounded between 107> and 10? (for each kinetic parameter) with damping boundary
conditions [361].

The choice of the upper bound of the search space for the kinetic constants is
fundamental for the entire optimization process, since a limited range of variation
might exclude the global optimum. However, to perform PE of biochemical systems
consisting in a small set of reactions, and characterized by molecular species with

low concentrations, limiting the search space of parameters is a good practice for

193

Evolutionary Design of synthetic networks

the following reason. Very high values of kinetic constants could lead to undesired
dynamics in which chemical species are entirely consumed in the first time instants of

the simulation.

The movement of the swarm during the PE phase is determined according to the
fitness function. In this chapter, for each particle ¢;, i = 1,...,n, which encodes the
kinetic parameterization of a GRM 7, the fitness is defined as the normalized distance
between the values of the simulated dynamics of gene expression levels in n and the
desired target dynamics. Formally, given the set I' of genes that are available for the
synthetic engineering of the gene regulation circuit and the set R of reactions of the
GRM inferred by CGP, X},(t.) denotes the expected measurement at time ¢t. of the
h-th chemical species in I', where Yh@(tc) denotes its simulated value sampled at time
t.. The value Y;*(t.) is obtained by means of cupSODA, using the kinetic constants

contained in particle ¢;. The fitness function F of particle ¢; is therefore given by:

C Nr ¢z

where C' € N corresponds to the number of time instants that are arbitrarily sampled
in the target dynamics of the GRM.

In the tests presented in this chapter, the PSO algorithm is halted after I'Tyyx =
300 iterations. Then, for each GRM 7, the value F(g,) — that is, the fitness of
the best solution g = (ki,...,ky) determined within the swarm of all candidate
parameterizations of n — is taken as the fitness of the inferred GRM 7. The GRM
characterized by the minimum fitness value among all GRMs inferred by CGP, is

eventually chosen as the best solution of the whole ED problem.

GPU implementation. Fitness evaluations are computationally expensive, since
multiple simulations (one for each particle) must be performed during all iterations
of the PE on each candidate network inferred by CGP. More precisely, it takes
O(GENwyx - I'Twx - I - n) fitness evaluations to perform a whole ED process. Anyway,
all simulations during each PE phase are mutually independent and can be straightfor-
wardly accelerated by means of a parallel architecture. In order to take advantage of
the parallelism of modern GPUs, the GPU-accelerated simulator cupSODA [230, 233]
is exploited to launch n threads, which perform the simulations and calculate the
fitness functions defined in Equation 8.1. This way, the impact of fitness evaluations

on the overall running time decreases to O(GENyyx - [Twx - I).

194

8.3 Results

The rest of the methodology (CGP and PSO) is implemented using the Python
language (version 2.7) and is executed in a strictly sequential fashion. PSO invokes

cupSODA to assess the fitness values by means of synchronous subprocess calls.

8.3 Results

To test the feasibility and the effectiveness of cuGENED, the ED of synthetic circuits
composed by two and three genes is performed, using as target of the optimization
process a desired temporal dynamics of a small set of (in silico generated) mRNA
levels. The target time-series were created from scratch to be complex enough to
require the ED of GRMs possibly characterized by multiple regulation mechanisms
and intermediate species.

As previously mentioned, the results of the ED process can be only evaluated by
considering the desired dynamics. No target GRM can be exploited to assess the
quality of the inferred network, since the goal of the ED process is to determine a
synthetic circuit that still has to be constructed in laboratory. Therefore, to prove the
effectiveness of cuGENED, only comparisons between the expected and the simulated
dynamics of the inferred GRM are presented hereby.

The following tests were performed on a workstation with a CPU Intel Core i7-2600,
clock frequency of 3.4 GHz, and with a GPU Nvidia GeForce GTX 590, running OS
Windows 7 64 bit. The settings of the LSODA integrator used for the simulation of
the dynamics of the candidate solutions are: relative error equal to 1-107!°, absolute

error equal to 1 - 107!, maximum number of integration steps equal to 10000.

8.3.1 ED of synthetic circuits with two genes

For the ED of synthetic circuits consisting of two genes, |I'| and |X| were set to 2
and 8, respectively, so that the inferred GRM can contain at most n; = 10 chemical
species and n, = 26 reactions (according to the heuristics described in Section 8.2).
The desired target dynamics of the species in I" are described by two sigmoidal curves,
characterized by different slopes. This behavior corresponds to a down-regulation of
both genes, whose constitutive expression decreases in time by the action of some
mutual regulatory mechanism, that has to be inferred by cuGENED.

Some preliminary tests were executed to analyze the influence of cuGENED settings
on the ED process. In the first test, the impact of the parameter n, — that is,

the number of rows in the grid of functional nodes — on the convergence speed

195

Evolutionary Design of synthetic networks

was investigated (Figure 8.2). According to results for the two-genes system under
investigation, too small (n, = 8) or too large (n, = 14) values of n, yield a worse
convergence of cuGENED), while the best results are achieved with n, = 10. Moreover,
by analyzing the early phases of the CGP process, one can observe that the higher
the n, value the faster the convergence. Nevertheless, it is the intermediate value
n, = 10 that achieves the best convergence speed, confirming a similar result presented
in [234]. In addition, Figure 8.2 highlights a feature that is typical of methodologies
embedding PSO into CGP, as previously discussed in [234]: due to the stochasticity of
PSO, two different PE executions on the same network usually lead to two different
kinetic parameterizations which, in turn, are likely to have two different fitness values,

explaining the large fluctuations in the convergence speed plots.

18 T T T T T T T T T
nl'=8 —
n:lO —_—
16 1 n=12 v]
! \‘ nr: .

12

10

Fitness value

Generation

Figure 8.2: Fitness value of the best solution of the ED process obtained by varying the
settings for n, in CGP. The best setting for the two-genes system under investigation is
n, = 10, while smaller and larger values yield worse results. The plot highlights the presence
of fluctuations due to the stochasticity of PSO, emphasizing how a proper choice for the grid
size is fundamental for the convergence of cuGENED.

As a second test, it was analyzed the impact of the parameter p, which determines
how many elements of a CP genotype are mutated during the offspring generation.
Figure 8.3 shows the convergence of cuGENED with different values of p, highlighting
that the best choice is p = 0.2. This setting represents the best trade-off between
exploration and exploitation of the search space. Indeed, if the value of p is too small,
CGP is not able to properly explore the search space and cannot converge to individuals

characterized by a good fitness value. On the contrary, if the value of p is too large,

196

8.3 Results

Fitness value

Generation

Figure 8.3: Fitness value of the best solution of the ED process obtained by varying the
settings for p in CGP. The best setting for the two-genes system under investigation is p = 0.2,
that is, about 20% of the genome must be modified when producing new offspring during
each generation of the CGP.

the mutation easily disrupts the structure of the best individual, yielding random
individuals with a large fitness value and reducing the advantage of an evolution-guided

exploration of the search space.

The best setting identified for cuGENED (i.e., n, = 10 and p = 0.2) was then
exploited to derive the GRM 15, that achieves the best fit with the expected behavior
of the two-genes system. Figure 8.4 shows the comparison between the desired target
dynamics (dots) and the simulated dynamics (lines) of 7,,. This network is represented

in Figure 8.5 and consists of the following reactions:

27.535

Ry v+ 03— 09,
2.390
Ry © v+ — o0,
13.753
Rg . 09+ 04 —— o3,
19.131
Ry @ 09 —— 03,
7.697
Ry : 09 —— 0y,
10.014
R : y1 —— o9 +01+ 7,
2.303
R7 09+ Yo — 04,
15.420

Rg 03+ Y —— 04,

197

Evolutionary Design of synthetic networks

where the numerical values above the arrows correspond to the best kinetic parameter-
ization determined by PSO.

Targe't Yo .
09 Target ¥, i
Yo
0.8 |) i
07
06
©
2 05°F
>
04 r
03
02
0.1 b
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Time [a.u.]

Figure 8.4: Comparison of the target dynamics (dots) with the simulated dynamics of the
GRM inferred by cuGENED (lines). The GRM 1), achieves a perfect fitting of the desired
behavior.

All the reactions in 7, are biologically consistent and well contribute to the
definition of a network of plausible genetic interactions, which could be implemented
by means of Synthetic Biology techniques. For instance, in 1,, we can observe the
presence of a multi-product reaction (Rg) [80] and of alternative splicing reactions (R,
and Rs) [203]. Furthermore, 1, is characterized by a low fitness value, which indicates
a consistent similarity with the expected target dynamics obtained by using the kinetic
constants (ki, ..., ks) inferred by PSO (Figure 8.4). Finally, it is worth noting that
this optimal solution does not exploit all the chemical species in the set 3: the CGP
avoided the bloating and evolved a well fitting GRM that only contains 4 out of the 8

possible species in Y.

8.3.2 ED of synthetic circuits with three genes

As a further test, the ED was performed on a system consisting of three genes, using
the best settings of cuGENED identified during the preliminary tests (Section 8.3.1).
For the ED of this synthetic circuit the settings were |I'| = 3 and |X| = 12, so that

198

8.3 Results

Rg
e
R] el R2
R3 R4 —’ R’,‘ ——
A
R5 < 03

Figure 8.5: The interaction diagram shows the best GRM 7y, inferred by cuGENED to
reproduce the desired behavior shown in Figure 8.4. Circular nodes represent the chemical
species involved in the network, while rectangular nodes represent the reactions. The gray
nodes denote the chemical species (i.e., mRNA) whose dynamics is considered as target.

the inferred GRM can contain at most n; = 15 chemical species and n, = 51 reactions

(according to the heuristics described in Section 8.2).

The desired target dynamics of the species in I' are described by two sigmoidal
curves, characterized by different slopes, and a monotonically increasing curve (Figure
8.6, dots). This behavior corresponds to a down-regulation of two genes and an up-
regulation of a third gene, whose underlying regulatory interplay is to be inferred by
means of cuGENED.

The best GRM 73, inferred by cuGENED is represented in Figure 8.7 and consists

in the following reactions:

199

Evolutionary Design of synthetic

networks

Ry
Ry
Rs
Ry
Rs
R
Ry

where the numerical values above the arrows correspond to the best kinetic parameter-

4.679
Y0 + Oy — 03,
20.491
Yo + 010 — Yo,
8.416
Y1+ 04 — 03+ 019,
4.654
010 — 0o,
21.831
Y1+ 02 —— 71 + 0y,
10.321
010 — 011,

14.681
0¢ + 010 — 011,

ization determined by PSO.

The result in Figure 8.6 shows that the simulation of 73, almost perfectly fits the
desired dynamics. In particular, the target and simulated dynamics for 79 and v, are
perfectly overlapped, while the curve of v, slightly diverges from the expected behavior.
Nevertheless, the simulated behavior of 7, is qualitatively and quantitatively similar to

the target behavior,

fully achieved.

Figure 8.6: Comparison of the target dynamics (dots) with the simulated dynamics of the
GRM inferred by caGENED (lines). The GRM 3, achieves an almost perfect fitting of the

1.8

which means that, from a biological standpoint, the ED goal is

Target ¥, e
Target ¥,

L6 r Target y,

14

a

1.2

a
ad
a
a
a
a
ad
a

ylevel

0.8

rery
AAAA
2a
N
s
a
24
%

a
aas
A A
S

0.6
0.4
0.2
0 1 1 1 1
0 0.2 0.4 0.6 0.8
Time [a.u.]

desired behavior.

200

8.3 Results

Figure 8.7: The interaction diagram shows the best GRM 73, inferred by cuGENED to
reproduce the desired behavior shown in Figure 8.6. Circular nodes represent the chemical
species involved in the network, while rectangular nodes represent the reactions. The gray
nodes denote the chemical species (i.e., mRNA) whose dynamics is considered as target for
the ED. Dashed lines highlight reactions and chemical species that have no effective role in
the system dynamics.

The interaction network in Figure 8.7 has two important characteristics, highlighted
by the red dashed lines, which represent side effects of cuGENED:

 the chemical species oy, which is a product of reaction Rjs, is not involved in the
rest of the network. Hence, this species can be removed from 73, without any
impact on the system dynamics. It is worth noting that the role of the chemical
species o3 is different from o9, because it is fundamental for the degradation of

7o as a consequence of reaction Ry;

 the reactants of reaction R; are species 0g and o1g: whilst the latter is produced

by reaction Rj, the former is not produced by any other reaction, so that the

201

Evolutionary Design of synthetic networks

level of og remains fixed to 0 during the simulations. The consequence is that
reaction 27 will never take place and hence it can be removed from 73,, along
with og. On the contrary, species o171, the product of reaction R7, cannot be

removed from the network, being involved also in reaction Rg.

8.3.3 Computational results

Using a GPU Nvidia GeForce GTX 590 equipped with 1024 cores, the ED of 1,
required 70136 sec (about 19 hours), while 73, required 72645 sec (about 20 hours).
Thus, the running time of cuGENED presumably scales less than linearly with the
number of genes, making it feasible for the ED of systems characterized by a large
number of genes. The increased running time is probably due to the different size of
the candidate networks: the GRMs for the three-genes system are indeed characterized
by a larger number of species and reactions, a circumstance that inevitably slows down
the simulations. However, thanks to the use of the cupSODA deterministic simulator
[230], the fitness evaluations are computed in parallel, so that the running time is not

affected by the number of particles used in the PSO phase.
In order to compare the performances of cuGENED using CPU and GPU im-

plementations of LSODA, 640 simulations are run — corresponding to 64 random
parameterizations of 10 random GRMs, each one determined by a CP — which are
equivalent to a single CGP iteration. As a reference CPU implementation it was
used Scipy’s odeint integrator [148], based on LSODA from the FORTRAN library
odepack. The running time to perform the simulations was 1.5 sec on the CPU, and
0.061 sec on the GPU by using cupSODA, corresponding to a 24.5x speedup achieved
by cuGENED.

8.4 Discussion

cuGENED consists in the integration of two evolutionary algorithms which work at two
different levels: CGP to infer the structure of a GRN, and PSO to estimate the kinetic
parameters of the reactions involved in the network. To the best of my knowledge,
cuGENED represents the first attempt to tackle the ED of GRMs by means of CGP
combined with PSO. This methodology is also the first attempt to automatically model
a GRN assuming 0-knowledge on the set of molecular species. In this context, there

are some issues that are worth considering.

202

8.4 Discussion

In cuGENED, the ED problem is formalized without any a priori information on
the structure of the system, defined in terms of molecular interactions, except for a
desired target dynamics of a small subset of species. On the one hand, this information
is sufficient to properly reconstruct a network whose dynamics fits the target data (see,
for instance, Figure 8.4). On the other hand, this information alone is usually not
enough to discriminate between possibly different network topologies [63], which could
all be able to reproduce the same behavior used as target of the optimization. This
well known issue in ED and RE is named indistinguishability of equivalent networks
[327] (see also Section 10.3). To lessen this computational difficulty, a good practice
consists in the multiple execution of the ED process, followed by an analysis of the
obtained solutions to assess their laboratory feasibility. This analysis could as well
be performed by means of automatic algorithms, which exploit a knowledge base of

feasible reactions specifically defined by synthetic biologists.

With respect to other existing methodologies for the inference of GRNs, an ad-
vantage of cuGENED is that, thanks to the use of CGP, it allows to exploit a simple
representation of the candidate GRMs. The genotype of CGP, indeed, is a fixed-length
vector of integer values, whose corresponding phenotype is a set of human-readable
chemical reactions. Moreover, ctGENED requires the estimation of only M kinetic
parameters associated to the reactions where, in general, M < (N? +1)/2. On the
contrary, other existing GP methodologies generally necessitate complex parameteriza-
tions. For instance, S-tree based methods require the estimation of 2N (N + 1) kinetic
parameters [57], thus making this method hardly exploitable for systems involving
many genes. Moreover, thanks to the explicit limitation to second-order reactions in
GRMs, cuGENED does not generate families of candidate solutions having an identical
structure but a different stoichiometry, which still represents an open issue in GP-based
methodologies [197].

Another relevant strength of cuGENED is the ED of synthetic circuits formally
defined as GRMs which, in contrast to most existing approaches [44], are not based
on arbitrary kinetics functions. The GRNs evolved by CGP and PSO consist in
mass-action reaction-based models, which describe the biological processes in terms
of simple molecular interactions, and not as reaction rate approximations based on
some kind of chemical assumption. As a matter of fact, Hill functions were shown not
to represent physically realistic reaction schemes [351], especially for gene expression
processes [295], while the equilibrium or quasi steady-state assumptions at the basis of

Michaelis-Menten constants are valid only in specific conditions [226].

203

Evolutionary Design of synthetic networks

A current drawback of cuGENED is that the choice of its initial setting is relevant
to converge to an optimal solution, since both CGP and PSO are not settings-free
algorithms. Common literature settings were exploited for the PSO, whilst the impact
of different parameters values on the performances of CGP (i.e., the mutation rate p
and the number of rows n,) were analyzed. As a future improvement of cuGENED, it
will be investigated the relationship between these two values, the number of genes
and the complexity of the desired target dynamics, in order to derive a heuristic for
the automatic selection of the most appropriate settings.

cuGENED relies on the nested execution of two evolutionary algorithms. As a
consequence, its overall computational cost can be relevant, being proportional to
the number of generations of CGP, to the number of iterations of PSO, to their
population size, to the number of reactions involved in the candidate networks, and to
the time length of the simulations. The largest part of the running time is due to the
simulation of the dynamics of the candidate solutions, which is a fundamental step
for the fitness computation. However, the computational cost can be strongly reduced
by exploiting the GPU-powered cupSODA simulator [233]. So doing, it was achieved
a parallel execution of the simulations and the fitness calculations of all candidate
solutions, achieving a 24.5x speedup with respect to a strictly sequential execution
of the same tasks. It is worth noting that the computational time could be further
reduced by executing parallel ED instances. To the best of my knowledge, cuGENED
also represents the first attempt ever in exploiting GPUs to perform an accelerated
ED of GRMs.

8.5 Future perspectives

The idea of a circuit-like connectivity between biological parts was postulated for the
first time in the 60s [217]. This intuition lead to several attempts to properly formalize
biological regulation systems through mathematical models [106, 107, 155, 296] and
to analyze the cellular pathways under investigation by exploiting electrical circuit
analogies [208, 209]. This research field was favored by the progression of molecular
biology and genomics, which provided several methods and the necessary knowledge
to physically assemble biomolecular components. As a matter of fact, it is nowadays
possible to properly evaluate the interaction among different genes through expression
data coming from high-throughput techniques like microarrays [98] and real-time
PCR [170]. Tt is also possible to engineer in wvitro or in vivo customized signaling

circuits [186]. The proof of concept that a computing-like behavior could be applied

204

8.5 Future perspectives

to biological systems was the design of the first synthetic gene networks, realized by
using engineering-based methodologies [84, 94]. Lately, several network models were
proposed, all of them integrating biochemical pathway information and expression data
[6, 33, 195, 254].

In this context, ctGENED was developed: a computational methodology for the
automatic design of GRNs characterized by a predefined dynamical behavior. In
particular, cuGENED allows the derivation of mechanistic models of gene regulation
system, modeled as a parameterized set of biochemical reactions. The reactions describe
the processes related to gene expression, and they involve a set of molecular species
(e.g., genes, mRNA) whose dynamics represent the target behavior of the optimization.

It is often the case that a gene can regulate either itself (autoregulation) or a single
other gene. This is due to the fact that a generic regulatory species might be able to
interact with a single component of the gene network through a unique DNA sequence.
This means that all species could be extremely selective for their molecular target (i.e.,
each species can bind to a unique DNA sequence), so that no unknown interactions can
occur between the regulators and their corresponding molecular targets [93]. Therefore,
the molecular target of a regulator could be either the gene itself or another gene, for
example in a very selective feedback system. Thus, as future developments of this

work, the plan is to improve the ED methodology as follows:

o cuGENED will include the verification of the requirements about selective regula-
tion to narrow the search space of candidate solutions, possibly obtaining GRMs

that could be easier to implement with laboratory techniques;

o cuGENED will be modified to exploit the massive parallelism provided by GPUs
to perform many parallel ED processes, in order to collect a set of optimal GRMs.
This set can then be analyzed to identify the GRMs that show a better selective
regulation (i.e., the GRMs that better fulfill the requirements stated above).

cuGENEND will also include an automatic mechanism to detect the unessential species
(e.g., products that have no impact on the system dynamics), as well as the reactions
that cannot take place (i.e., reactions whose reactants have zero concentration, like
those highlighted in Figure 8.7). In addition, the future implementation will consider
the fact that the inference process might converge to a GRM whose simulation perfectly
fits the desired behavior, though some reactions appearing in the GRM might not be
biologically plausible. As mentioned in Section 8.4, a solution to this problem might
come from the inclusion of some knowledge domain constraints in the ED, in order to

automatically remove such reactions from the candidate GRMs.

205

Evolutionary Design of synthetic networks

Finally, in cuGENED the biological noise that is typical of gene expression [82] is
not considered. Actually, some species involved in GRNs can have very low intracellular
amounts (in the order of tens or a few hundreds of molecules), so that a stochastic
simulation methodology could be preferable with respect to deterministic simulations
to correctly reproduce any noise-induced emergent phenomena. cuGENED can be
straightforwardly extended to support also stochastic simulation algorithms for the
simulation of the temporal dynamics of candidate solutions [105, 235, 291]. Indeed,
as a further development, it will be investigated the possibility of the automatic
reconstruction of networks in presence of intrinsic noise, oscillations or multi-stability

phenomena.

206

Chapter 9

Protein structure inference

The determination of molecular structures is of great interest both in chemistry and
biology, since the three-dimensional (3D) shape of a molecule is the main determinant
of its function. In many contexts, such as drug discovery, metabolic engineering and
catalysis, structural information is essential to understand and control the behavior of
a molecular system. The great majority of structural data available today arise from
two experimental techniques: X-ray crystallography and Nuclear Magnetic Resonance
(NMR) [360].

NMR exploits the magnetic properties of the nucleus of isotopes (as 'H, 1*C and
31P) to identify spatial neighborhood relationships between chemical groups, which are
generally given in the form of a matrix of inter-atomic distances. When this technique
is applied to molecules of significant size and with a complex 3D shape, the resulting
distance matrix is both sparse and noisy due to technical limitations of NMR.

This is exactly the case of proteins, an ubiquitous class of biological molecules
characterized by a great variability in shape and size. The Molecular Distance Geometry
Problem (MDGP) consists in reconstructing the 3D structure of a molecule starting
from its (sparse) distance matrix. The MDGP problem is a special case of the Distance
Geometry Problem (DGP) [114] in which the distance matrix is obtained from NMR
experiments. The peculiarity of the MDGP relies on the availability of additional
constraints on the inter-atomic distances in the 3D structure, which can be defined
according to the chemical and physical properties of the class of molecules under
investigation.

In the case of incomplete information in the distance matrix, the MDGP was
shown to be NP-hard [299] by reducing a 1-dimensional MDGP to the SUBSETSUM
problem [219]. Several different approaches to solve the MDGP have been proposed in

recent years, but they all suffer from limitations (see Section 9.1). For instance, the

207

Protein structure inference

geometric buildup [76] is unable to find a solution to the problem for some cases of
sparse distance matrices; the branch and prune algorithm [173, 174] has an exponential
complexity; ABBIE [129], EMBED [65] and DGSOL [220] algorithms allow to obtain
only approximate solutions to the MDGP.

In order to overcome some limitations of the existing methodologies for the MDGP,
and considering that some problems of the NP class can be efficiently tackled by means
of soft-computing and population-based algorithms, this chapter proposes a memetic
algorithm (MA, see Section 3.4 for details) combining Swarm Intelligence (Section 3.3)
and Evolutionary Computation (Section 3.2), together with a local search algorithm
(GD, Section 3). In particular, the idea is to combine the swarm-based optimization of
PSO with the crossover capabilities typical of GAs. SI is used to move atoms belonging
to a candidate solution (i.e., a 3D molecular structure) within the search space. Each
solution is characterized by a different position of atoms, whereby even solutions with
the same fitness value can have atoms with a completely different position due to
roto-translations of the whole structure. A crossover operator, typically employed in
GAs, is used to exchange substructures between candidate solutions; in this context,
a local optimization method is exploited to find the optimal roto-translation of the
exchanged substructure within the offspring solution.

Besides the inter-atomic distance matrix, the MA makes use of additional con-

straints:

1. the size of the search space where particles move is bounded according to the

number of amino-acids of the proteins;

2. molecular chirality — a property of asymmetry that is imposed to protein

structures — is considered during the optimization process.

The main contents of this chapter are published in the proceedings of the 2014
IEEE Congress on Evolutionary Computation [237].

9.1 The Molecular Distance Geometry Problem

The MDGP can be formulated as follows. Let 91 be the number of atoms in a protein
7, and let d;; € RT be the given distance between atoms ¢ and j, with 4,5 =1,...,9
and ¢ # 7, measured according to some computational or experimental methodology
(e.g., NMR). These distances can be arranged into a real-valued 9t x 9 matrix d, such

that d;; is the value in the i-th row and j-th column in d.

208

9.1 The Molecular Distance Geometry Problem

If we denote by a; the 3D coordinate vector of atom ¢ in the Euclidean space,
ie., a; = (z;,yi,2) € R® for each ¢ = 1,...,91, then the value d;; will formally

correspond to the Euclidean norm between the two atoms, i.e., d;; = ||a; — a;|| =

\/(:c2 —)%+ (y; — y;)? + (2 — z;)?; note that, anyway, these coordinate vectors are

unknown.

The MDGP consists in finding the set of coordinate vectors ay,...,ay of all atoms
in m, such that the Euclidean norm D;; = ||a; — a;|| between any pair of atoms ¢ and j
— evaluated according to these coordinates — is equal to the measured distance d;;.
Formally, the MDGP is solved if D;; = d;; for all 4,5 =1,..., 0N, 7 # j.

Several approaches to MDGP have been proposed in recent years. Dong and Wu
introduced a linear time algorithm, called “geometric buildup”, to solve the 3D-DGP
when the exact value of distances between all pairs of atoms are given [76]; recently, this
approach has been extended in order to obtain an approximate solution for the MDGP
with noisy distance values and sparse matrices [314, 315]. The main limitation of the
geometric buildup strategy is that in the case of sparse matrices and, in particular,
when some atoms are characterized by less than four distance constraints, this method
is unable to find any solution. However, to overcome this limitation, it is possible to
consider additional distance constraints arising from structural features of proteins, or
using optimization algorithms [88], to reconstruct the complete molecular structure

from a partial substructure obtained with the geometric buildup algorithm.

A branch and prune algorithm was proposed in [173, 174]: by exploiting additional
constraints about the protein structures, this method considers a discrete search space
in which the amino-acids can be placed only in two different positions with respect to
their precursor in the protein structure. This algorithm has an exponential complexity,
however it is able to efficiently find solutions for some instances that satisfy particular

structural properties.

There exist two approaches based on graph embedding [277] in 3D Euclidean space,
able to deal with both noisy data and sparse matrices. The first one, called ABBIE
algorithm [129], exploits a divide and conquer strategy and structural rigidity [286];
this method first identifies subproblems (i.e., subsets of nodes) that can be solved with
an exact algorithm, then it applies a global optimization algorithm to combine partial
solutions. The second one, called EMBED algorithm [65], uses the measured distances
to derive a set of lower and upper bounds for all other distances; this requires the
identification of the shortest path between each couple of nodes in a particular graph
in order to derive triangle inequality limits [126]. A local optimization strategy is then

applied to refine the solution obtained from the complete bounds set.

209

Protein structure inference

Finally, the DGSOL algorithm [220] combines a methodology to select good starting
points for the optimization process with the Gaussian smoothing and continuation
strategy [258], a technique used to reshape the objective function. So doing, a gradient
minimization can be applied to the obtained smooth function in order to optimize the
protein structure. The main limitation of DGSOL is that it provides only approximate

solutions in presence of noisy information and sparse matrices.

9.2 Structure inference using a hybrid memetic

algorithm

A candidate solution of the MDGP can be encoded as a vector Il = (ay,...,ayn) of
3D coordinates, representing the positions of all atoms of protein 7 in the Euclidean
space. This representation can be exploited by a traditional evolutionary methodology
as GAs, with genetic operators specifically designed to work on candidate solutions
encoding real values (see Section 3.2.1 for further details on real-coded GAs). Even
though GAs might be a feasible methodology for MDGP, SI techniques like PSO are
generally more suitable than GAs, since they natively optimize real-valued problems
[157]. Nevertheless, the crossover operator of GAs — which exchanges the genetic
material of two promising individuals to create an improved offspring generation —
is an elegant and powerful means to obtain a recombination of individuals and a
better exploration of the search space. Thus, in this chapter, a hybrid methodology
combining swarm-based optimization of PSO with crossover capabilities of GAs is
proposed. Crossover, in this case, implements the exchange of a subset of atoms
between individuals, i.e., substructures of the candidate solutions. A substructure is
defined as 0 = (iy, ..., ix), K <M, i.e., the vector of indexes corresponding to a subset
of atoms positions (a;,, ..., a;.) of solution II.

During the PSO optimization phase, the atoms belonging to each candidate solution
move inside the search space and can be placed in completely different positions, so
that even if two individuals are characterized by the same fitness value they might be
rotated or translated with respect to each other in the 3D space. As a consequence, the
crossover operator might move a substructure from an individual into another in such
a position that the new (offspring) molecule will have a worse fitness value, because
of an uncontrolled scattering of atoms. To reduce this potentially deleterious impact
of crossover, a local optimization by means of a GD algorithm (see Section 3)is also
performed to optimize the roto-translation that must be applied to the substructure.

As described in Section 3.4, global optimization methods coupled to local search are

210

9.2 Structure inference using a hybrid memetic algorithm

called MAs [169], thus the methodology described in this Chapter is defined as a
Memetic Hybrid PSO plus GAs (MemHPG).

9.2.1 A Memetic Hybrid Methodology for MDGP:
MemHPG

The MemHPG algorithm combines the emergent, self-organizing behavior of swarms
with the strength of crossover-based recombination. Self-organization is performed
by a modified version of PSO which is used to arrange the atoms in the search space
of a candidate structure; the crossover, on the other side, is applied to a population
of independent candidate structures, to exchange their optimal substructures. As a
matter of fact, the hybrid algorithm works on two layers: the inner layer of atoms
(hereby called the PSO-layer) and the outer layer of molecule structures (the GA-layer).

Figure 9.1 reports a schematization of the two layers.

f Outer layer: genetic algorithm population \

o L e 3

b4 J o
.3 b4 ‘.' . [

"
——————

Inner layers: atoms self-organization by means of PSO

Figure 9.1: Schematization of the two-layer hybrid methodology. In the outer layer, a
population of candidate solutions exchange promising substructures exploiting GAs crossover,
while each candidate solution evolves in the inner layer by means of PSO.

PSO-layer. In this modified version of PSO, a single particle for each atom is
used, so that the position x; of the i-th particle here corresponds to the 3D Euclidean
coordinate vector a; of the i-th atom of protein m. Therefore, in this particular
formulation, particles do not represent a solution to the MDGP problem; instead, they
represent a solution for the sub-problem of identifying the optimal spatial positioning
of atoms. The size of the search space for particle positioning was defined according
to the number A of amino-acids in protein 7 (which is known a priori), considering
the notion of radius of gyration of proteins [139] (whose upper bound was identified as
A3/5). In MemHPG, the best setting for the search space was empirically found to be
4 - A35A for each dimension in the 3D Euclidean space.

211

Protein structure inference

The initial position of particles is randomly generated within the search space,
except for the particle corresponding to the first atom in @ which is placed in position
(0,0,0) and kept fixed during the optimization. The rationale behind this choice is
that, by keeping one particle fixed, the rest of the swarm is constrained to self-organize

around it, thus reducing the chaoticity of the overall movements.

Once particles are distributed in the search space, an error ¢ is calculated to
estimate the precision of the corresponding candidate solution, considering only the

given distance constraints d,;, without any additional knowledge about the original

structure: o o
D=1 Zj:l 61’]’
£=——"— 9.1
1 Gi &)
where
0 if d;; is not given
i = P IE (9.2)
|D;;j — d;;| otherwise,

and the value G; denotes the number of atoms j # 7 in 7 for which a distance value
d;; is given. Since Equation 9.1 allows to discriminate the quality of solutions, it is

exploited as the fitness function.

At each step of the PSO procedure in MemHPG, each particle considers a novel
kind of attractor, named the aggregate attractor and denoted by h;(t) € R3, which is
calculated by comparing the distance between the coordinate vectors of all other atoms
in the candidate solution (D;;) against the distance measured with NMR experiments
(dij): 5

hi(t) = > 5-(a;(t) —ai(?), (9.3)

j#i

where 6;; = D;; — d;; is used to weight the attraction between atoms, so that the
contribution to the aggregate attractor of atoms whose distance D;; is close to the
measured distance d;; will be reduced. It is worth noting that the aggregate attractor
h; can be seen as a linear combination of 91 — 1 “global” attractors of particle a;, each

one with a different social factor equal to d;;.

When two atoms are farther than expected, they act as mutual attractors; on the
contrary, when the atoms are closer than expected, they behave as repulsers. Figure
9.2 provides two examples of this mechanism, represented in the x-y projection plane
for the sake of simplicity. According to Equation 9.3, the aggregate attractor for atom
i is calculated as the sum of all attractive/repulsive contributions of all other atoms
J # i; Figure 9.3 shows an example which considers the aggregation of the contributes

due to two atoms.

212

9.2 Structure inference using a hybrid memetic algorithm

A A
Y 32 Y
D Attraction strength a Repulsion strength
12 2
o [
NMR distance d,, 12 NMR distance d,,
a a
1 1
X X

(a) (b)

Figure 9.2: Example of the attraction/repulsion mechanism of the modified PSO. For the
sake of clarity, only the vectors for particle a; are shown. (a) When the distance between
two atoms (the red arrow between a; and as) is larger than the one measured by NMR (pink
arrow), the atoms attract each other (dashed yellow arrow). (b) When the distance between
the two atoms is smaller than the distance measured by NMR, the atoms act as repulsers.
In order to consider only this new attractor in the modified version of PSO, Equation

3.4 is modified as follows:
vi(t+1) =w-v;(t) +roht), (9.4)

where r is a vector of random numbers uniformly sampled in [0,1].

Once the putative velocity v;(t + 1) is calculated, its velocity is clamped, i.e., if
||Vz(t + 1)|| > UmMax then

* Umax
)

and the position a;(t + 1) is updated according to Equation 3.5. During the last
generations of MemHPG, the finer positioning of atoms in the candidate structures
requires smaller and more controlled movements with respect to the initial phases. For

this reason, the methodology self-adapts the vyx(t) value as follows:

(t) - UMAX(t - 1) if €*<t) > €*<t -].)
U =
. vuax(t — 1) otherwise,

where £*(t) € RT represents the smallest error value among all particles at generation
t and a € (0,1) is the velocity adaptation factor. The iterative update of velocity
vectors, calculated according to the aggregate attractor, allows the set of atoms to
self-organize in a single optimal position. The inertia weight and the randomness due

to r allow particles to avoid a chaotic behavior and local optima.

213

Protein structure inference

@ Candidate solution distance D,

@ Candidate solution distance D,
NMR distance d,,
NMR distance d,;

i Aggregate vector

Figure 9.3: Example of calculation of the aggregate attractor for particle aj, in a 3-atoms
system. The length of the red arrows represents the distance between particles a; and ao
according to the candidate solution (dark red) and to NMR data (light red): since the latter
is shorter than the former, as acts as an attractor for a;. The length of the green arrows
represents the distance between particles a; and a3 according to the candidate solution (dark
green) and to NMR data (light green): since the latter is longer than the former, ag acts as a
repulser for a;. The resulting aggregate attractor h; is represented by the blue vector. The
same process is applied to particles ag and a3 (not shown here).

GA-layer. To help the convergence to an optimal solution, MemHPG introduces
a second layer by instantiating) multiple independent candidate solutions, which
constitute the population P of a GA. MemHPG does not exploit a mutation operator,
which is conceptually realized by PSO: the GA performs tournament selection and
crossover only. These operators are applied every I, iterations, and work together to
generate the offspring population.

The functioning of the GA-layer is summarized in the following steps:

e a subset Prgyr C P of ¢ individuals, 1 < ¢ < @, is sampled using a uniform

distribution;

214

9.2 Structure inference using a hybrid memetic algorithm

o the best individual Psgsr € Proyr is deterministically identified (according to the

fitness values) and copied into the new population P’;

o for each atom 7, such that a; € Pgsr, a substructure o; is identified as explained

below and inserted in a set S;

e one element ¢ € & — that is, a protein substructure — is chosen with a

probability proportional to its length (i.e., the number of atoms in o);

o one individual Byyp is randomly chosen from Proyg \ Peest with a uniform proba-
bility;

o the atoms in the substructure o are positioned into individual FPgyp according to
the best roto-translation (as explained below), thus replacing the corresponding

atoms and generating a new individual Pgyp;

o finally, Py, is inserted into population P’ and the velocities of its particles are

set to zero.

This procedure is repeated until |P’| = @Q; then, P’ replaces P.
The substructures in & are chosen as follows. For each atom 7 in Pgggr, a substructure

0; is determined according to the following greedy algorithm:
e atom ¢ is inserted in o;;

 find atom j, j # ¢, such that |0;;] = min{[dx| | k¥ = 1,..., Mk # ¢}. If
01;] < @uin, for each | € o; and [# j, then add atom j to o;; otherwise stop, as

the substructure cannot be extended.

The value g, is defined as ¢pi, = min{y; | i = 1,...,7}, where ¢; = % i |04
The procedure is iterated until no more atoms can be inserted in o; or its length reaches
a given value sizeyyx, that corresponds to a fixed percentage of the total number of
atoms in .

Since the chosen substructure ¢ can be oriented and translated in space in any
possible way, its positioning in Fgyp is optimized: the crossover embeds a local search
optimization to identify the best roto-translation of o with respect to its surrounding
atoms in Pryp. More precisely, this is done by first calculating the centroid of o and of
the corresponding subset of atoms that will be replaced in FPgyp, and then exploiting a
GD method to identify an optimal translation vector ¥ = (t,,t,,t,) and an optimal
rotation vector 6 = (6,,6,,6,) with respect to these centroids which minimize the

impact to the aggregate attractor. After the crossover process, the PSO starts again.

215

Protein structure inference

In addition, every 50 iterations of MemHPG, the chirality of candidate solutions
is verified, since the information contained in the distance matrix is not sufficient to
discriminate between a correct reconstructed molecule and molecules with a different
chirality. Chirality is a property related to a lack of symmetry that regards organic
molecules such as amino-acids (see Figure 9.4); chirality is observed when a carbon
atom is bound to four different chemical groups (these carbon atoms are called chiral
carbons) [121]. For each protein substructure composed of one chiral carbon and the
atoms bound to it, two different but isometric conformations are possible, named
enantiomers; therefore, one must apply a geometric transformation to adjust the right
positioning of atoms in order to impose the specific conformation of these groups, that
is typical of protein molecules [343]. The subset of atoms that can lead to a wrong
reconstruction can be identified a priori by analyzing carbon atoms and their bound

chemical groups.

Figure 9.4: Example of two proteins characterized by the same atom-atom distances but
different chirality. The two enantiomers (red and blue) have identical structure, except they
are symmetrical and cannot be superimposed.

The procedure for chirality correction can be summarized as follows. For each
candidate solution, the substructures whose chirality is not correct are identified
and modified by means of geometric operations like rotations and reflections in the
Euclidean space, according to the tetrahedral geometry of the chemical bonds of the
chiral carbons. More specifically, the following steps are performed to identify and fix

the chirality of a substructure:

216

9.2 Structure inference using a hybrid memetic algorithm

1. the whole protein is roto-translated, in order to position the chiral carbon of the

substructure in the origin of axis;

2. the protein is then rotated in order to align the hydrogen atom of the substructure

to the x axis (with y and z components equal to 0);

3. at this point, it is possible to discriminate the chirality of the substructure by

observing the position of the rest of the substructure, with respect to the y axis;

4. if the detected chirality is different from what is expected, the substructure is

mirrored by changing the signs of the y components;

5. the whole protein is finally roto-translated in the original position, by applying

the inverse transformation with respect to step 1.

This procedure is performed after each crossover process; when the chirality verification
is completed, the PSO starts again.

MemHPG stops when a user-defined termination criterion is met, i.e., after a fixed
number of iterations ITyyx.

The computational complexity of MemHPG is relevant. For instance, the update
of the positions of 91 atoms for a population of () individuals has a computational
complexity of O(Q - NM?) per generation.

Each individual in the GA-layer is independent, so that the whole population can
evolve in parallel. Moreover, for each individual, the atoms moving as a consequence of
the PSO-layer are independent, so that this process can be parallelized as well. Thus,
the complexity of the methodology can be strongly reduced by adopting a parallel

architecture, as described in the next section.

9.2.2 GPU implementation

Among the available choices, the parallel version of method was implemented by using
Nvidia’s CUDA, to leverageGPU’s horsepower (Section 4.1).

In order to have a logical mapping between MemHPG’s entities and the CUDA
execution hierarchy, a block was assigned to each GA individual; each thread of the
block is responsible for the update of a specific atom of that individual, performing
the calculations of the PSO-layer (see schematization in Figure 9.5). Following this
execution model, a CUDA kernel was implemented to perform a single iteration of
the evolutionary process, in which all atoms of all individuals are updated in parallel,

reducing the computational complexity for the single protein update to O(%).

217

Protein structure inference

Block 1 Block2 - ~. Block Q
(individual 1) (individugLQ’) (individual Q)

s
s ’, ~ ~

Thread 1 Thread 2 Thread N
(atom 1) (atom 2) (atom N)

Figure 9.5: Schematization of MemHPG GPU implementation. Each individual of the
GA-layer is assigned to a CUDA block; each atom/particle of the PSO-layer is assigned to a
specific thread of the block.

A second kernel is responsible for the parallel calculation of the finess function
(Equation 9.1), which is performed by means of a parallel reduction algorithm. This
strategy reduces the computational complexity from O(9) down to O(log,MN). The
computational effort is also reduced by exploiting the shared memory, which can be
used to accumulate the partial results of the reduction algorithm, avoiding the high

latencies due to the accesses to the global memory.

By iteratively repeating the kernels described above, the population of candidate
proteins evolves. Moreover, the crossover operator is applied every I, generations.
A parallel version of the operator is still under development, so that it is currently
performed sequentially on the CPU, even though it exploits the partial calculations
executed on the GPU during the atoms” update to accelerate the determination of the

best substructures.

The implementation described above represents an elegant and performant alterna-
tive to a serial counterpart. Nevertheless, as described in Section 4.1, CUDA limits the
number of threads in a block to 1024, so that MemHPG is currently limited to proteins
characterized by at most 2'° atoms. This does not represent a relevant limitation, since
NMR data can hardly produce meaningful distances of proitens larger than a thousand
atoms. Nevertheless, an improved and “block unaligned” version of the algorithm, free
from any protein size limitation, is currently under development. This topic is further

discussed in Chapter 10.

218

9.2 Structure inference using a hybrid memetic algorithm

9.2.3 Results

This section summarizes the results obtained by MemHPG for the reconstruction of
the 3D structure of different proteins. As a first step, several tests were performed to
determine the influence of the values of PSO and GA parameters on the reconstruction
process, in order to find the best settings of MemHPG that were then exploited in all
experiments. These tests consisted in the variation of a single parameter at a time in
the optimization process of an in silico generated 3-peptide molecule with a length of
I = 56 atoms. For each parameter, each test was repeated 30 times, and the average
smallest error achieved with the different MemHPG parameterizations was used to
evaluate the influence of that parameter. In all preliminary tests, ITyyx = 2000 unless
otherwise specified.

In the first test the impact of the population size () was analyzed, by considering
the following values: 32, 64, 128, 256 individuals. As expected, the average smallest
error achieved decreases as the population size increases; however, for () > 32, the
improvement of the solutions quality is so slight that it does not justify the larger
use of computational resources that it would require. Therefore, the value used in all
consecutive tests was set to () = 32.

In the second test, the impact of different values for the coefficient 9, used to clamp
particles’ initial maximum velocity, was analyzed. Multiple values for vy = Dyuax /Y,
where Dyuy is equal to the diagonal length of the search space, were tested. As shown
in Figure 9.6, the best results were achieved when ¢ = 10, while smaller values (e.g.,
¥ = 1) and higher values (e.g., ¥ > 500) lead to worse results.

The third test consisted in varying the adaptive velocity factor a. Figure 9.7 shows
the average smallest error obtained with 30 runs of MemHPG with several values
of factor ae. In this test, where ITyyx = 4000, the best results were obtained with
a = 0.999, even if smaller values of this factor allowed a faster convergence.

A further test concerned the influence of the inertia weight on the particles velocity;
in particular, the w value was varied in the range [0, 1] and the best result was achieved
with w = 0.4. Similarly to the case of uyx, both higher and smaller values of the inertia
weight lead to higher values of the average smallest error.

The last three tests aimed at finding the best setting for the tournament size, the
crossover frequency and the maximum length allowed for a substructure involved in
the crossover operation. The best tournament size value was identified around 10%
of the population size @), in order to have a high selection pressure able to maintain
the population diversity throughout the generations. The crossover frequency was set

to I, = 50, meaning that every 50 generations the individuals undergo this operator.

219

Protein structure inference

10! : :

= Vyax=Dyax/1

= Uyax=Dyax/5

O O wvyax=Dyx/10
Upax =Dyrax/50
Uppax =Dhrax/100
Uprax =Dirax/500
Vyrax =Dirax/1000
Upax =D)rax/5000
Bp A S =a =@ v,y =D),4x/10000

= o
-~
-

Dp
A
AAAAAAAAAAAA

-1 CQUU
10 [6YeYe) \ ,
OOOCOOOOO

QOO
TP UOU00000600

Average Smallest Error [A]
>
[
>

1072

0 250 500 750 1000 1250 1500 1750 2000
Generation

Figure 9.6: Average smallest error computed over 30 runs of MemHPG varying the coefficient
¥ in vypx = Dmax/Y. The best results were achieved with ¢ = 10; note that both high and
small values for the maximum velocity of particles lead to higher values of the average smallest
€error.

Despite the crossover improves the average quality of the candidate solutions, increasing
its application frequency worsen the fitness of individuals. Finally, the maximum length
allowed for a substructure involved in the crossover operation was set to sizewax = 15%
of the total number of atoms in 7 (for higher values better results can be achieved, but
the improvement of the fitness is not enough to justify the larger use of computational
resources that it would require).

The results of these preliminary tests led to the following best parameter settings
for MemHPG:

« population size @) = 32 individuals;

o initial vy = Dyax/10;

« adaptive velocity factor o = 0.999;

e inertia weight w = 0.4;

e tournament size ¢ = 4 individuals;
 crossover interval I, = 50 generations;

220

9.2 Structure inference using a hybrid memetic algorithm

10?

T 1
- «=0.9
a=0.99
0-0 a=0.999
a=0.9999
] e «=0.99999
A=A =0.999999

10° 1

Average Smallest Error [A]

1072

0 500 1000 1500 2000 2500 3000 3500 4000
Generation

Figure 9.7: Average smallest error computed over 30 runs of MemHPG varying the adaptive
velocity factor a. Even though for o equal to 0.9 or 0.99 a faster convergence was obtained,
the value a = 0.999 allowed to achieve the best results.

o sizemx = 15%.

To test the validity of this setting of MemHPG, a 3-peptide molecule was recon-
structed by using incomplete information. This was realized by removing from matrix
d the distance values d;; that are above a given cutoff. As shown in Figure 9.8, the
average smallest error of the structures reconstructed by MemHPG is below 107%A,
also in the case of a matrix d where d;; < 6A for alli,j =1,..., 0.

To show the effectiveness of the methodology, Table 9.1 shows the results obtained
from the reconstruction of the structure of 9 proteins of increasing length — taken from
the PDB database [88, 269] — using only inter-atomic distances d;; < 6A or d;; < 7A.
In particular, for each protein, Table 9.1 reports the error ¢ (defined in Section 9.2.1)
and the Root Mean Square Deviation (RMSD) [39] of the best structures found by
MemHPG after ITy,y = 20000 iterations. These results highlight the robustness of the
methodology since the € value is low in all cases and, in addition, the RMSD is always
lower than 3.5A, a value that is considered to be indicative of a good reconstruction of
protein structures [302].

In Figure 9.9, it is shown the structural alignment, realized with PyMOL [221], of
the protein structures obtained with MemHPG (using inter-atomic distances below
the 6A cutoff) with the structures available in the PDB database. In the case of

221

Protein structure inference

3 - <11A

<10A
0-0 <9A
<8A
<7A
<6A

g

Average Smallest Error [A]

10°

0 250 500 750 1000 1250 1500 1750 2000
Generation

Figure 9.8: Average smallest error of solutions to the 3-peptide molecule obtained in different
optimization processes with incomplete information of inter-atomic distances. Note that, by
exploiting only distances d;; < 6A, MemHPG was able to reconstruct the 3D structure with
an error lower than 10~*A with respect to the original structure.

Table 9.1: Results of the reconstruction of protein structures with MemHPG using only
distances d;; < 6A or dij < 7A.

di; < 6A dij < TA
PDB ID M| e[A] RMSD [A] | e [A] RMSD [A]
1PTQ 402 | 0.152 1.23 0.019 0.08
1CTF 487 | 0.180 1.46 0.037 0.18
1RGD 548 | 0.149 1.24 0.014 0.04
1HOE 558 | 0.172 1.63 0.130 1.7
1LFB 641 | 0.206 2.21 0.254 2.08
1F39 767 | 0.278 3.25 0.090 0.93
1PHT 814 | 0.291 2.02 0.123 1.86
1POA 914 | 0.056 0.99 0.074 1.26
1AXS8 1003 | 0.092 2.27 0.075 1.59

222

9.2 Structure inference using a hybrid memetic algorithm

proteins 1AX8, THOE and 1CTF a perfect structural alignment was obtained; however,
concerning protein 1F39, there is a slight discrepancy between the correct structure
and the one obtained with MemHPG, probably due to an error in the reconstruction
of a small portion of the protein (as better explained in the caption of Figure 9.9),
while the overall structure is preserved also in the unaligned region.

These results are remarkable, since MemHPG only relies on (incomplete) distance
matrices and general features of protein structures, while the other methods require
additional a priori assumptions about proteins to achieve good results. Moreover, two
additional advantages of this method reside in its intrinsic stochasticity and extensibility:
on the one hand, the various reconstructed structures (with low error values) that can
be obtained in each run of MemHPG are useful to represent the structural variability
observed in biological molecules, which is a source of noise in NMR data; on the other
hand, MemHPG can be easily improved by including a molecular force field in the
scoring function during the final stages of the optimization process, in order to select
structural models that are more realistic from a physical point of view.

Even though the parallel architecture accelerates the execution of MemHPG, an
efficient non-sequential implementation of the crossover mechanism is far from trivial
and currently under investigation. Since MemHPG relies on incomplete distance infor-
mation, multiple runs of the method may yield a set of different optimal conformations:
the GPU acceleration would allow to collect statistical information about the potential
structures of the analyzed protein.

Further work is currently in progress to overcome the limitation of 1024 atoms per
candidate protein, due to the mapping between protein atoms and CUDA blocks. This
modification requires a deep restructuring of the code, since the indexing of atoms
would be unaligned with respect to CUDA execution hierarchy. A secondary effect
of this modification is that the efficient parallel reduction, used to assess the fitness
value, could no longer be exploited, since threads belonging to different blocks cannot
communicate and synchronize.

Finally, both the crossover operator and the chirality correction function are
currently performed on the CPU. Distributed and more efficient algorithms are under

investigation, in order to further reduce the computational complexity of MemHPG.

223

Protein structure inference

Figure 9.9: Examples of the structural alignment between the structures available in the
PDB database (cyan) and protein structures reconstructed by MemHPG, using distance
matrices d with d;; < 6A (green). The alignments are correct, even though, in the case
of protein 1F39, there is a slight discrepancy between the correct structure and the one
obtained with MemHPG, probably due to an error in the reconstruction of a small portion of
the protein connecting two major structural motifs, while the overall structure is preserved
also in the unaligned region. This kind of errors can arise in portions of the proteins with
extended structure, when a very low number of inter-atomic distances are available. Images
and alignment obtained with PyMOL [221].

224

Chapter 10

Discussion

The goal of this thesis was to prove the feasibility of Evolutionary Computation
and Swarm Intelligence to solve complex biological problems. To this aim, different
methods were developed and successfully applied for parameter estimation of stochastic
constants (cuPEPSO, Chapter 6), the reverse engineering of reaction-based models
(cuRE, Chapter 7), the automatic design of gene regulation networks (cuGENED,
Chapter 8) and the inference of protein structures (MemHPG, Chapter 9).

One of the main difficulties related to these problems and, in particular, to the
corresponding computational methods, is the necessity of executing a large number
of simulations or, in the case of protein inference, the simultaneous update of a large
number of atoms positions. In order to reduce the relevant running time, all methods
proposed in this thesis were accelerated using GPUs: the problems of PE, RE and
ED rely on the parallel execution of the algorithm used to generate the systems
dynamics (by means of cupSODA and cuTauLeaping, Chapter 5), while MemHPG was
developed directly on the GPU (Chapter 9). Because of the GPU acceleration and the
distributed approach of calculations, it is hard to compare the computational effort of

the methodologies presented in this thesis with respect to the state-of-the-art methods.

10.1 A critical discussion of the proposed methods

In the case of PE, at the time of writing, cuPEPSO represents the only method
which allows to consider target data collected in multiple laboratory experiments, and
performed under different initial conditions. An advantage of this approach is that it
yields a more robust estimation of the missing parameters, which avoids the over-fitting
to a single experimental condition. cuPEPSO relies on a multi-swarm version of PSO

(Section 3.3.2), in which each sub-population exploits the target data corresponding to

225

Discussion

a specific initial condition. The swarms periodically exchange the best particles and
cooperate in identifying a common parameterization, able to fit the target data related
to all initial conditions. The target data, used for the fitness evaluations, consists
in a few samples of the chemical species, measured in multiple repetitions during
each experiment, a scenario that represents the common experimental workflow used
in biology laboratories for the analysis of cellular processes. The fitness evaluations
are based on the comparison between the target data and the simulation outcome of
the biochemical system, executed using the model parameterization encoded by each
particle. Specifically, in cuPEPSO the simulation is performed by means of the tau-
leaping stochastic simulation algorithm, in order to consider the intrinsic stochasticity
of biochemical systems. Because of this peculiar structure, it is hard to compare the
quality of the parameters optimization achieved by cuPEPSO with respect to other PE
methods. Moreover, since no competing PE methodology exploits GPUs and almost no
published works discuss the computational complexity of the proposed methods, it is
also hard to carry out a direct comparison of the computational efficiency. Nevertheless,
it can be claimed that cuPEPSO represents a more favorable methodology, at least with
respect to alternative approaches for PE — especially those exploiting a probabilistic

framework [205] — which require a huge computational effort.

Even in the case of efficient probabilistic non-parametric methodologies for PE
like Particle Filtering (PF) [75], a large number of samples of the search space is
required: Liu and Niranjan, for instance, showed that thousands particles combined
with extremely dense time-series are necessary to converge to an optimal estimate
[190], even in the case of a small set of unknown parameters. It is worth noting that
both cupSODA and cuTauLeaping (Chapter 5) might be easily integrated into these
alternative methodologies for the calculation of the likelihood of putative parameters.
Besides the need for a large number of simulations, PF and similar techniques also
have the drawback that a poor choice of the prior distribution prevents the algorithm
from converging to an optimal estimation, an issue not affecting population-based

algorithms.

The RE methodology proposed in this thesis, named cuRE, relies on a “two-level”
approach, in which the network is inferred with CGP (Section 3.2.4) and kinetic
parameters are estimated with PSO. Similarly to cuPEPSO, this RE methodology
exploits sparsely sampled time-series, so that it can be used with common laboratory
target data, where only a small number of time samples are usually measured. In
Chapter 7, the effectiveness of cuRE was demonstrated, as it is able to infer a network
of reactions that perfectly fits the target data. Thanks to the use of CGP, the

226

10.1 A critical discussion of the proposed methods

output of cuRE is a RBM, based on mass-action kinetics, composed of a set of
human-comprehensible parameterized chemical reactions. This is completely different
from many alternative methods, in which the model is generally based on differential
equations using arbitrary kinetics [326] or on approximate models like S-systems [59].
CGP also provides a means to control the bloating of the candidate solutions, without

the need for parsimony terms in the fitness function (as instead used in, e.g., [241, 326]).

cuRE was tested on a model describing the synthesis and degradation of keton
bodies, previously exploited to show the feasibility of an alternative methodology based
on GP [166]. Although the RBM reverse engineered by cuRE was able to perfectly
reproduce the target dynamics, it is structurally different from the target network: this
issue is due to the indistinguishability of networks [327], an interesting topic that is

further discussed in Section 10.3.

The computational effort required by alternative RE methods is usually not specified
in literature, with the notable exception of the work presented in [167], where a cluster
of 1000 machines was used to evolve a GP population of 100000 candidate solutions.
cuRE, instead, exploits the GPU-powered simulator cupSODA [230], which is used
to parallelize the fitness evaluations of the PE phase (Chapter 7). At the time of
writing, cupSODA cannot handle the parallel simulations of more than one RBM at
a time, because of the scarcity of high-performance memories (see Section 4.1), and
thus it cannot currently simulate multiple CGP individuals. As a consequence, the
computational complexity of cuRE scales linearly with the number of PSO particles that
are used to determine the parameterization of the current CGP individual. To the aim
of further reducing this complexity, a modified version of cupSODA, able to simulate
multiple RBMs, is currently under development. In order to reduce the serialization
due to conditional branches (see Section 4.1), caused by the different RBMs to be
simulated, the multiple models will be organized in specific warps, that is, each warp
will execute threads concerning a single model. Using this strategy, the complexity of
the RE methodology could be reduced to O(GE Ny - ITwyx), achieving a result similar
to the MIMD (Multiple Instruction Multiple Data) architecture that is usually adopted
to distribute the calculations of single-population evolutionary algorithms [7]. Tt is
worth noting that the complexity O(GE Ny - [Tiux) cannot be further reduced: each

iteration of an EC or SI method, indeed, requires the results of the previous iteration.

Considering the ED problem, to the best of my knowledge no existing method for
the automatic design of gene regulation networks defines the system at the level of
detail of biochemical interactions, which is cuGENED’s main novelty. Therefore, a

direct comparison with other methods cannot be assessed; moreover, no competing ED

227

Discussion

method exploits any GPU acceleration. The outcome of cuGENED is a fully detailed
mechanism of gene regulation, which cannot be clearly described by other formalisms
as S-systems (Section 2.2.4), which work at a higher level of abstraction. Similarly
to cuRE, cuGENED is able to infer gene regulatory networks fitting with the target
data, even though the proposed models might then be hard to realize with the current
laboratory techniques. Thus, a further process of refinement and simplification would
be necessary, not to mention the issue of indistinguishability that affects also this
“forward engineering” problem. Nevertheless, since cutGENED produces mechanistic
descriptions of gene regulation, the role of genes and intermediate products is much
more immediately understandable by synthetic biologists, than any mathematical

model of gene regulatory networks inferred by other approaches.

Both cuRE and cuGENED rely on CGP, whereby biochemical networks are repre-
sented as fixed-length vectors of integer numbers. This representation is then mapped
onto algebraic expressions which are ultimately interpreted as chemical reactions. This
approach is robust and ensures the closure and sufficiency properties described in
Section 3.2.3. Nevertheless, duplicate and not realistic chemical reactions could be
inferred: although they can be consistent and formally correct, these reactions need to
be identified and removed from the network. This process is computationally expensive,
so that an alternative and more efficient approach should be employed. To this aim,
in Section 7.2 a novel evolutionary methodology based on the Petri net formalism
[53] was proposed: the Evolutionary Petri Net [229]. Although the EPNs framework
is absolutely general and not tailored on the RE/ED problems, it allows to directly

evolve a population of well-formed and realistic models of biochemical systems.

Concerning the MDGP problem for the inference of protein structures (Section
9.1), the proposed memetic/hybrid methodology (MemHPQG) is absolutely competitive.
MemHPG relies on partial inter-atomic distances data measured with NMR experiments,
which are exploited by a hybrid memetic algorithm. The algorithm is hybrid in the
sense that it combines PSO, a SI technique, with the crossover mechanism typical
of GAs (see Section 3.2.1), so that the best protein substructure can be exchanged
between two individuals. It is memetic (see Section 3.4) because, after each crossover,
a gradient-based local search algorithm is exploited to identify the best roto-translation
of the exchanged substructure, therefore minimizing the impact on the fitness function.
After the memetic step, a chirality correction is finally applied to identify and fix the

potential wrong symmetries of chiral atoms.

MemHPG is a heterogeneous algorithm, that is, it exploits more than one type of

architecturally different computing units [34], in this case CPUs and GPUs. Specifically,

228

10.1 A critical discussion of the proposed methods

the crossover mechanism, the chirality correction and the local search are performed on
the CPU; the PSO-layer and the fitness evaluations are performed on the GPU. This
heterogeneous implementation represents the current bottleneck of MemHPG and is
responsible for the largest part of the overall running time: a new version, completely

GPU-bound, is currently under development.

Differently from other methods for protein reconstruction, MemHPG does not
require any a priori assumption about the molecule under analysis [129], it yields
good results in the case of incomplete information [76] and it does not apply any
simplification (e.g., discretization) to the problem [220]. In addition, differently from
the large consumption of memory that is typical of branch and prune methods [173],
MemHPG has a constant and extremely small memory footprint. MemHPG is a
fast algorithm, reaching a high level of parallelism, since a thread is assigned to each
atom of each candidate protein structure (see a schematization in Figure 9.5). In
principle, MemHPG can be applied to any target protein; nevertheless, the current
GPU implementation has a drawback with respect to other algorithms. As a matter
of fact, CUDA limits the maximum size (in terms of atoms) of target proteins: since
each candidate structure is assigned to a specific CUDA block, the maximum number
of atoms is bounded to 1024 on the current CUDA architectures (see Table 4.1 for
additional details). This limitation will be removed in the forthcoming implementation
of MemHPG, which relies on a multi-block PSO-layer (i.e., more than 1024 threads can
be assigned to the same candidate structure) and implicit synchronization mechanisms

between blocks.

Fabry-Asztalos et al. proposed an alternative GPU-powered method for the MDGP
with incomplete information [88], which is based on geometric build-up followed by a
SA-based optimization. Even though the SA step is the only part that is accelerated
on the GPU, the overall running time of the method is small. Unfortunately, because
of MemHPG’s limitation to 1024 atoms per candidate solution, a direct comparison
of the two implementations is currently impossible. As a final remark, I underline
here the importance of MemHPG in the whole workflow of in silico investigation of
biochemical systems, since the inference of the structures performed can be a means to
improve the PE performances. As a matter of fact, Molecular Dynamics methods are
used to determine their affinity with ligands or enzymes. This information can be then
considered either to directly estimate the kinetic parameters [70, 268, 319] or, at least,
to restrict the search space of possible kinetic rates, providing an a priori distribution

that can be exploited during the initialization of PSO particles.

229

Discussion

Considering the GPU-powered simulation, cupSODA, coagSODA and cuTauLeaping
outperform any existing sequential implementation of numerical integration methods
and stochastic simulation algorithms when a large number of simulations needs to be
executed. This is mainly due to the clock frequency of the SMXs, which is lower than
the CPU. The slowness of the single core is counterbalanced by the large number of
cores a SMX contains, and by the presence of multiple SMXs in a single GPU. Hence,
a single algorithm run is faster on the CPU but, as the number of parallel threads
increases, GPUs allow better performances.

The performances of cupSODA and cuTauLeaping depend on the availability of the
high-performances memories (e.g., the shared memory and constant memory, see Section
4.1). Specifically, low-latency memory banks are used to store frequently accessed data
(e.g., the states of the simulations), whereas cache-equipped memory banks are used
to store the non-mutable data structures (e.g., the model). Unfortunately, the shared
memory is a very limited resource: at the time of writing, up to 96 KB for each SMX
can be used on the most advanced CUDA architectures (see Table 4.1). Therefore, the
larger the system (in terms of bytes required to store the state of the simulation), the
higher the shared memory footprint and the lower the number of simultaneous threads.
By altering the memory indexing and pointers, the shared memory can be replaced by
the global memory for the storage of all the states of the simulations, making registers
the only limiting factor for GPU’s usage. Although this strategy would significantly
affect performances, it currently represents a feasible way for the analysis of large-scale
systems, potentially avoiding the need of using alternative methods to reduce the

number of simulations [311].

10.2 Towards a further automatization of inference

and simulation methods

All the inference methodologies presented in this thesis share a common trait: they
require the user to choose some functioning settings, which have a relevant impact to
the performances. For instance, ctGENED (Section 8.2) requires the choice of the

following values:
e population size I;
o number of particles n;
« mutation rate p;

230

10.2 Automatization of inference and simulation methods

o grid size (i.e., n, and n.);

« number of unknown intermediate complexes (i.e., |X|);
o number of output reactions n,;

o maximum velocity of particles vgay;

 social factor Cl,;

o cognitive factor Ceog;

e inertia weight w.

Since the methods proposed in this thesis are supposed to be used by modelers and
computational biologists who might have poor or no knowledge about optimization
algorithms, it is necessary to strongly reduce the number of free settings. Heuristics
and default settings can be helpful to reduce this complexity, as discussed in Chapter 8,
but they might not always represent the best choice leading to optimal performances.
An alternative solution would be the use of self-adapting or settings-free algorithms,
which completely remove the need for any functioning settings. All the methodologies
described so far would benefit from the definition of a novel strategy for the automatic
adaptation of the settings during the optimization phase. One example of such approach
was proposed by Tomassini et al. in the context of GP [334]. This method dynamically
changes the size of the population, according to the behavior of the population itself.
Specifically, the population is decreased when the fitness of the best individual is
improving, while new individuals are added when the GP enters a stagnation phase. It
is worth noting that, in order to reduce bloating, the individuals with larger size are
given a higher probability of being removed. This adaptive method — which could be
used to automatically set the number of CPs in the CGP for both RE and ED — has
two relevant advantages: first, it reduces the number of individuals and, consequently,
the overall computational effort; second, it limits the size of the candidate solutions
which, in the case of biochemical systems, implies a smaller set of reactions, which
leads to faster simulations and a further reduced computational effort.

All the biochemical methodologies described in this thesis, including the simulation
tools, are designed to exploit reaction-based modeling and MAK, which is the most
general approach for the description of a chemical system. This design choice allows a
great flexibility, thanks to the full decoupling between the simulation and the inference
algorithms: any kind of simulator, indeed, can be used by the evolutionary algorithms

and can be chosen according to the characteristics of the system under investigation

231

Discussion

(e.g., presence of biological noise). Again, to create completely automatic inference
tools, it is necessary to avoid the need for the selection of a specific simulation algorithm.
To this aim, a GPU-powered hybrid multi-scale simulator — similar to those described
in Section 2.3.3 and based on a dynamic partitioning of reactions according to the

molecular amounts and the propensity values — is currently under development [25].

MAK have a sound justification but, sometimes, alternative kinetics can be employed
to describe a biochemical phenomenon. For instance, Hill kinetics is largely exploited
to model the cooperative binding of ligands to macromolecules, which can be enhanced
by the presence of other ligands on the molecule [226], as in the case of oxygen’s
binding to haemoglobin [132]. An extended version of cupSODA’s parsing system (see
Section 5.1), able to consider a general set of kinetics, is currently under development.
In this context, for instance, the coagSODA simulator (described in Section 5.2) was
developed for the specific purpose of investigating a model of the Blood Coagulation
Cascade, defined in terms of both MAK and Hill functions.

Even though a general extension of cupSODA to integrate additional kinetics can
be straightforwardly repeated for any kind of non-MAK models, the long-term goal is
to create a “black-box” general-purpose GPU-powered biochemical simulator able to

simulate any model specified by means of RBMs or ODEs.

10.3 The issue of indistinguishability

The indistinguishability of different networks (see, e.g., Sections 7.1.2 and 8.4) is an
interesting topic in the context of the analysis of biochemical systems. Caused by an
intrinsic problem affecting both RE and ED [63], it can be analyzed from multiple
points of view. Conceptually, it means that a phenomenon can be explained by multiple
alternative biochemical mechanisms. Thus, the RE problem cannot be solved without
additional domain knowledge — collected either from existing databases or with novel
experiments — or by relying on some mechanism for the automatic identification of

the most likely reactions, possibly determined by means of logic inference.

Mathematically, indistinguishability can be explained by the simple example pro-
vided by Craciun and Pantea [63]. Consider the following two different sets of parame-

terized reactions:

232

10.3 The issue of indistinguishability

2/9 5/9

R1 : 50%514—52 R1 : 50%514‘53
1/6 1/9

R2 : S(] — 251 R2 : S(] — 252
11/18 1/3

Rg : SO — 253 Rg : SO — 283

By assuming MAK, the biochemical networks are equivalent to the following two

systems of coupled ODEs:

5 adas (sl
d 2
i@ = o

for the first system and

% - oo da-tne-(eleds-s
d

for the second system. It is clear that the two systems correspond to the same differential
equations, so that the dynamics they generate are completely identical. Craciun and
Pantea also proved that different systems characterized by the same dynamic behavior
— named confoundable — are a consequence of the nonempty intersection of the convex
cones generated by the state change vectors of the biochemical systems [63].

Epistemologically, the indistinguishability of networks has interesting implications.
According to philosopher Popper, all equivalent theoretical models should be falsified in
order to identify the correct explanation [266]. Falsification exploits the modus tollens
of deductive logic so that, given a theory p and its consequence ¢, it follows:

pP—=aqa g
-p

This conceptual framework is more adequate than verification, since the inductive

approach cannot help in discriminating between models having an identical behavior.

233

Discussion

The Occam’s razor — often used to discriminate between equivalent theories and
implemented algorithmically by imposing a parsimony term on the fitness functions
[241, 326] — is not adequate either, since nature does not necessarily evolve towards
“simple” biochemical networks. As a matter of fact, it was shown that evolution generally
produces complex systems characterized by increased robustness and error-tolerance
[147].

The filschungsmaoglichkeit criterion [265] — that Popper proposed to distinguish
between theories that “simply” confirm the observed phenomena from completely
general explanations — is not always satisfiable by means of algorithmic approaches
only. That is, the falsification of some proposition ¢ can require the design of additional
laboratory experiments. Unfortunately, in general, it is not trivial to design an ad hoc
biochemical experiment to sustain the falsifiability of a hypothetic model.

For instance, the cuGENED algorithm (Chapter 8) not only derives a set of
biochemical reactions able to produce a desired behavior, but also makes the inference
of the number of unknown intermediate complexes produced by reactions. A possible
way to falsify a solution proposed by cuGENED could be to investigate the exact number
of different chemical species involved in the system, possibly analyzing the spectra
coming from NMR data [113]. Vice versa, in the case of competing models characterized
by the same number of chemical species, the falsification of the chemical reactions can
be more tricky and potentially unfeasible because of experimental limitations.

Despite the plethora of problems caused to the RE methods by the possibility of
reconstructing equivalent networks, indistinguishability has a philosophical relevance:
which is the reason why biochemical systems evolved towards one specific network,
among the multiple possible and equivalent possibilities? Arguably, they evolved from
ancestor biochemical systems, with new reactions and functional modules gradually
added up through the ages. These new features appeared because of random genetic
mutations which introduced brand new or modified biomolecules. One example of such
mechanisms is the patchwork evolution [175], which postulates that biomolecules (e.g.,
enzymes) initially having broad substrate specificity evolved a specialization through
gene duplication, eventually producing two similar molecules that accept different
substrates. This new genetic material managed to survive in the next generations
because of some beneficial effect for the population, for instance the possibility to
survive a depletion of one substrate. Thus, the evolutionary process which led to actual
biochemical networks seems to be a sort of sub-optimal greedy process, constantly

reusing vestigial biochemical material.

234

Chapter 11
Conclusions

This thesis presented four methods based on EC and SI to solve complex biological

problems at different levels of granularity:

 the inference of protein structures, performed with a hybrid memetic algorithm
named MemHPG, which combines GAs, PSO and a local search based on Gradient

Descent;

« the PE of stochastic biochemical systems, performed with a multi-swarm PSO
algorithm named cuPEPSO;

o the RE of biochemical systems, performed with a hybrid algorithm named cuRE,
combining CGP and PSO;

o the ED of GRMs, performed with a hybrid algorithm named cuGENED, combin-
ing CGP and PSO.

The positive results shown in this thesis demonstrate the feasibility of EC and SI
to solve of complex tasks in Systems Biology, Synthetic Biology and Computational
Structural Biology.

Since all methods are population-based, they require a massive number of calcula-
tions for the fitness evaluations. In order to reduce their running times, all methodologies
were implemented on GPUs, exploiting the CUDA architecture. Specifically, the PE,
RE and ED methods embed two GPU-powered biochemical simulators developed for
this purpose: cupSODA, a deterministic ODE solver based on the LSODA algorithm,
and cuTauLeaping, a stochastic simulator based on the tau-leaping algorithm. Both
simulators allow a strong acceleration with respect to the sequential counterpart and
the performance gap between the CPUs and GPUs is expected to increase as more

powerful GPUs are developed over the years.

235

Conclusions

These simulators are relevant not only to speed up the fitness evaluations, but
they also represent valuable tools for the investigation of biochemical systems. Indeed,
a strong reduction of the simulation time allows a deeper investigation of biological
systems, for instance in the case of time consuming tasks relying on a massive number
of simulations, like parameter sweep analysis [235] or sensitivity analysis [49]. A clear
example of this advantage is the analysis of cAMP oscillations in the Ras/cAMP/PKA
pathway: as it was shown in Figure 5.28, given a fixed amount of time, GPU paralleliza-
tion allows to carry out a larger number of simulations with respect to the traditional
CPU execution. Another example discussed in this thesis is represented by coagSODA
(Section 5.2), the GPU-powered simulator specifically developed to investigate the
blood coagulation cascade model, which allows a relevant 53x speedup with respect
to the sequential execution of simulations, therefore allowing an in-depth analysis of
perturbed conditions of this system [51].

Thanks to their reduced energy consumption, GPUs also allow to leverage the peta-
scale performances of the most recent supercomputers: in October 2014, the second
most powerful computer on the planet — Cray’s Titan at the Oak Ridge National
Laboratory [72] — is equipped with 18688 Nvidia Tesla K20X GPUs. Moreover, the
first 15 entries of the Green500 list of the most power-efficient supercomputers' are
accelerated by means of Nvidia Tesla K20 GPUs. The source code of cupSODA,
coagSODA and cuTauLeaping is completely portable: it is ready to be compiled and
scheduled for execution on these machines. As a matter of fact, at the time of writing,
the coagSODA simulator is running on CINECA’s EURORA GPU cluster?, to carry
out a thorough sensitivity analysis of the blood coagulation cascade model, requiring a
total of 610560 simulations, which are distributed over 64 Tesla K20 GPUs.

As discussed in the previous chapters, all the simulation and inference methodologies
will now undergo a further process of extension and optimization. Orthogonally to these
improvements, there is a need for a unified Graphic User Interface (GUI). A future goal
is to develop a comprehensive and user-friendly toolkit encompassing all the methods
described in this thesis [28], which is supposed to provide computational biologists
with the necessary tools for the definition of mathematical models, the inference of any
missing information and the efficient execution of advanced analyses.

Besides these aspects, there is room for additional future developments, which are
graphically schematized by the white hexagons in Figure 11.1 and described in what
follows.

WVisit http://www.green500.org for further information.
2Visit http://www.cineca.it/en/content/eurora for further information.

236

TN TN PN P
— ~ — ~ _— g _— S
. PE for systems . 3
Protein wi{h ‘ o}:n plex Mathematical Settings-free
folding dynamics optimization optimization

Computational Distance
P Parameter DNA-based
structural geometry R
. estimation nanotechnology
biology problem

Gene

Hybrid Differential . Automatic
simulation equations Modeling design regulatory
networks

Reverse
engineering

Synthetic
biology

Stochastic
processes

Petri nets

:Srr::)oer:s GPGPU perfgrlihance Evolutionary Systems In silico
i i i biolo
generation computing computing Petri nets sgilry 8Y

Figure 11.1: Schematization of some future developments of this thesis. The topics and
achievements of the thesis are represented by the colored hexagons, while the white hexagons
represent ongoing or future work. Hybrid approaches similar to MemHPG (Chapter 9) can
be exploited for the problems of protein folding and structure prediction, according to a
given amino-acids sequence. The PE method described in Chapter 6 — which represents
the core of the RE and ED tools — can be extended to analyze systems characterized by
complex dynamics. Settings-free versions of the EC and SI methodologies, which require
no choices from the user, are under investigation. EC and SI can be exploited to create an
automatic methodology for the development of DNA-based artifacts. A hybrid simulation
algorithm is currently under development, to the aim of creating a multi-scale, “black-box”
simulator accelerated with GPUs. Finally, EPNs (Chapter 7) will be applied to the RE and
ED of biochemical systems. Eventually, all this methods will be integrated into a unified
comprehensive toolkit.

Protein folding
As described in Chapter 10, the structure of macromolecules can be useful to
estimate the kinetic parameters: this represents a bridge between Computational
Structural Biology and Systems Biology, as the shapes of molecules become a

means to determine the dynamic properties of the system they are involved in. A

237

Conclusions

further bridge can be established between Bioinformatics and Structural Biology
concerning the problem of protein folding, that is, the prediction of the protein’s
tertiary structure according to its primary structure. An extended version of
MemHPG, which considers new constraints calculated according to amino-acids

sequences, is under investigation.

PE for systems with complex dynamics
Biochemical systems can present complex dynamic behaviors (e.g., multi-stability
[271], state-switching [2], oscillations [27]). For such systems, the “classic” fitness
functions based on the comparison between the experimental time-series and the

simulated dynamics cannot be employed in a straightforward way.

A different approach, able to consider most of these complex cases, could rely on
the calculation of the fitness function defined as the distance between sampled and
simulated distributions of the chemical species amounts. In the peculiar case of
oscillatory systems, for instance, a fitness function based on the frequency-domain

comparison could be conjectured.

Settings-free optimization
Some examples of settings-free optimization algorithms already exist, for instance
TRIBES [61]. The strategies used in literature could represent a starting point
for the conversion of the methodologies described in this thesis into completely
automatic tools, so that the final user would not require any expertise nor the
selection of any functioning settings. Thanks to this strategy, all methods would
determine, or dynamically fine-tune, their best functioning settings, becoming
totally automatic optimization tools able to perform the inference task by just

entering the available target data.

DNA-based nanotechnology
DNA molecules have many interesting characteristics: the double-helical structure
has a predictable geometry and the Watson-Crick pairing of bases allows a
spontaneous self-assembly of complementary single-stranded sequences. Thus,
by purposely designing the nucleotide sequences, DNA molecules have been
exploited for the development of nano-scale artifacts with a variety of techniques
[156, 171, 287]. In this context, EC can be applied to solve many complex
problems, ranging from the optimal design of sequences [369], to the identification

of the minimal set of “building blocks” [330] able to produce an arbitrary shape.

238

Hybrid simulation
The existing hybrid deterministic/stochastic multi-scale simulators, summarized
in Section 2.3.3, could be improved to overcome some critical drawbacks [47]. For
instance, the frequent re-partitioning into fast and slow reactions sets increases
the quality of the simulation, but it is computationally expensive and usually
causes a drop of performances. Moreover, to the best of my knowledge, there
were no attempts to implement a GPU-powered version of any of the existing
hybrid algorithms. This is probably due to the GPU’s peculiar architecture: a
challenging massive redesign of the algorithms would be necessary in order to

fully leverage their computational power.

Evolutionary Petri nets
The EPNs described in Section 7.2 are supposed to provide both a better repre-
sentation of putative biochemical interaction networks and more robust genetic
operators for their evolution, with respect to traditional methods based on classic
GP and CGP. This should improve the RE and ED methods from both the
points of view of inference performances and computational efficiency, since EPNs
allow the direct evolution of networks that are consistent with respect to the
given assumptions. Moreover, EPNs allow to convey domain knowledge into the
individuals and, by means of the set of hidden places, they allow to formulate
new hypotheses about the complexes and the unknown species that are present

in the system.

Even though EPNs were developed with RE and ED of biochemical systems
in mind, they can be used to model, evolve and optimize any type of complex,
distributed, asynchronous and concurrent system. As a matter of fact, Petri
nets have been applied in a plethora of applications and disciplines [223]. In all
these contexts — provided the definition of suitable fitness functions — EPNs
can assist or completely replace the human intervention during the design and

optimization of the systems.

Of course, the unified toolkit under development will embed all these methodologies.

239

Conclusions

The conjunction of high-throughput methodologies, providing a huge amount of
quantitative data, and the availability of an unprecedented computational power is
creating the context for the development and the analysis of detailed mechanisms-based
models of biological systems, allowing novel and exciting in silico investigations. The
predictive power of this approach will permit new breakthroughs and paradigm shifts
in Systems Biology, Synthetic Biology and Computational Structural Biology. This
Ph.D. thesis represented an effort in providing scientists with novel methodologies
in the aforementioned fields — able to fully leverage the cutting-edge technology —
allowing the efficient execution of simulations and the possibility of automatically
inferring missing information in the domain knowledge, in order to create increasingly
complex models, towards the final goal of comprehending cellular complexity through

whole cell simulation.

240

Bibliography

1]

[7]

8]

A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch. Fuzzy PSO: a generalization
of particle swarm optimization. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks, volume 2, pages 1086-1091. IEEE, 2005.

M. Acar, J. T. Mettetal, and A. van Oudenaarden. Stochastic switching as a
survival strategy in fluctuating environments. Nature Genetics, 40(4):471-475,
2008.

J. Ackermann, P. Baecher, T. Franzel, M. Goesele, and K. Hamacher. Massively-
parallel simulation of biochemical systems. In Proceedings of Massively Parallel
Computational Biology on GPUs, Jahrestagung der Gesellschaft fiir Informatik
e.V, pages 739-750, 2009.

T. Aho, H. Almusa, J. Matilainen, A. Larjo, P. Ruusuvuori, K.-L. Aho, T. Wil-
helm, H. Lahdesmaéki, A. Beyer, M. Harju, S. Chowdhury, K. Leinonen, C. Roos,
and O. Yli-Harja. Reconstruction and validation of RefRec: a global model for
the yeast molecular interaction network. PLoS ONE, 5(5):¢10662, 2010.

H. Akaike. Likelihood of a model and information criteria. Journal of Economet-
rics, 16(1):3-14, 1981.

T. Akutsu, S. Miyano, and S. Kuhara. Identification of genetic networks from a
small number of gene expression patterns under the Boolean network model. In

Pacific Symposium on Biocomputing, volume 4, pages 17-28, 1999.

E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. [EEFE
Transactions on Evolutionary Computation, 6(5):443-462, 2002.

L. Alberghina and H. V. Westerhoff. Systems biology: Definitions and perspectives,
volume 13 of Topics in Current Genetics. Springer-Verlag, 2005.

241

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

B. B. Aldridge, J. M. Burke, D. A. Lauffenburger, and P. K. Sorger. Physico-
chemical modelling of cell signalling pathways. Nature Cell Biology, 8:1195-1203,
2006.

H. Alla and R. David. Continuous and hybrid Petri nets. Journal of Circuits,
Systems, and Computers, 8(1):159-188, 1998.

F. Amara, R. Colombo, P. Cazzaniga, D. Pescini, A. Csikdsz-Nagy, M. Muzi
Falconi, D. Besozzi, and P. Plevani. In vivo and in silico analysis of PCNA
ubiquitylation in the activation of the Post Replication Repair pathway in S.
cerevisiae. BMC' Systems Biology, 7(1):24, 2013.

G. An, Q. Mi, J. Dutta-Moscato, and Y. Vodovotz. Agent-based models in
translational systems biology. Wiley Interdisciplinary Reviews: Systems Biology
and Medicine, 1(2):159-171, 20009.

S. Ando, E. Sakamoto, and H. Iba. Evolutionary modeling and inference of gene
network. Information Sciences, 145(3):237-259, 2002.

S. S. Andrews, T. Dinh, and A. P. Arkin. Stochastic models of biological
processes. In Encyclopedia of Complexity and Systems Science, pages 8730-8749.
Springer-Verlag, 2009.

M. A. Arbab, G. M. Khan, and A. M. Sahibzada. Cardiac arrhythmia classi-
fication using cartesian genetic programming evolved artificial neural network.
Ezperimental & Clinical Cardiology, 20(9):5334-5348, 2014.

A. Arkin and J. Ross. Statistical construction of chemical reaction mechanisms
from measured time-series. Journal of Physical Chemistry, 99(3):970-979, 1995.

M. S. Arumugam and M. V. C. Rao. On the improved performances of the
particle swarm optimization algorithms with adaptive parameters, cross-over
operators and root mean square (RMS) variants for computing optimal control
of a class of hybrid systems. Journal of Applied Soft Computing, 8(1):324-336,
2008.

J. Ashworth, E. J. Wurtmann, and N. S. Baliga. Reverse engineering systems
models of regulation: discovery, prediction and mechanisms. Current Opinion in
Biotechnology, 23(4):598-603, 2012.

242

Bibliography

[19]

[20]

[21]

[22]

[25]

[20]

T. Béck. Selective pressure in evolutionary algorithms: A characterization of se-
lection mechanisms. In Proceedings of the First IEEE Conference on Evolutionary
Computation, volume 1, pages 57-62. IEEE, 1994.

P. Ballarini, R. Guido, T. Mazza, and D. Prandi. Taming the complexity of
biological pathways through parallel computing. Briefings in Bioinformatics,
10(3):278-288, 20009.

A.-L. Barabasi and Z. N. Oltvai. Network biology: understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2):101-113, 2004.

M. Bellini, D. Besozzi, P. Cazzaniga, G. Mauri, and Nobile M. S. Simulation and
analysis of the blood coagulation cascade accelerated on GPU. In Proceedings of
22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP 2014), Turin, Italy, pages 590-593. IEEE Computer
Society Conference Publishing Services (CPS), 2014.

S. A. Benner and A. M. Sismour. Synthetic biology. Nature Reviews Genetics,
6(7):533-543, 2005.

D. Besozzi. Computational methods in systems biology: Case studies and
biological insights. In I. Petre, editor, Proceedings of the 4th International
Workshop on Computational Models for Cell Processes, volume 116 of Electronic

Proceedings in Theoretical Computer Science, pages 3—10, 2013.

D. Besozzi, G. Caravagna, P. Cazzaniga, M. S. Nobile, D. Pescini, and A. Re.
GPU-powered simulation methodologies for biological systems. In A. Graudenzi,
G. Caravagna, G. Mauri, and M. Antoniotti, editors, Proceedings of Wivace 2013
- Italian Workshop on Artificial Life and FEvolutionary Computation, volume 130
of Electronic Proceedings in Theoretical Computer Science, pages 87-91, 2013.

D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, and L. Vanneschi. A comparison
of genetic algorithms and particle swarm optimization for parameter estimation
in stochastic biochemical systems. In C. Pizzuti, M. D. Ritchie, and M. Giacobini,
editors, Fvolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics. 7th Furopean Conference, EvoBIO 2009 Tibingen, Germany, April
15-17, 2009 Proceedings, Lecture Notes in Computer Science, pages 116-127.
Springer-Verlag, 2009.

243

Bibliography

[27]

28]

[29]

[30]

[31]

[32]

[35]

[36]

[38]

D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo, and E. Martegani.
The role of feedback control mechanisms on the establishment of oscillatory
regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP Journal on
Bioinformatics and Systems Biology, 1(10), 2012.

D. Besozzi, M. S. Nobile, P. Cazzaniga, D. Cipolla, and G. Mauri. From the
inference of molecular structures to the analysis of emergent cellular dynamics:
accelerating the computational study of biological systems with GPUs. In
Proceedings of the NETTAB 2014 Workshop: from Structural Bioinformatics to
Integrative Systems Biology, pages 88-90, 2014.

H. Beyer and H. Schwefel. Evolution strategies - a comprehensive introduction.
Natural Computing, 1(1):3-52, 2002.

H.-G. Beyer. The Theory of Evolution Strategies. Springer-Verlag, 2001.

W. J. Blake, M. Kaern, C. R. Cantor, and J. J. Collins. Noise in eukaryotic gene
expression. Nature, 422(6932):633-637, April 2003.

J. Born. FEwolutionsstrategien zur numerischen Losung von Adaptationsaufgaben.
PhD thesis, Humboldt—Universitat, Berlin, 1978.

J. M. Bower and H. Bolouri. Computational Modeling of Genetic and Biochemical
Networks. MIT Press, 2001.

A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli.
State-of-the-art in heterogeneous computing. Scientific Programming, 18(1):1-33,
2010.

F. J. Bruggeman and H. V. Westerhoff. The nature of systems biology. Trends
in Microbiology, 15(1):45-50, 2007.

K. Brummel-Ziedins. Models for thrombin generation and risk of disease. Journal
of Thrombosis and Haemostasis, 11(s1):212-223, 2013.

K. E. Brummel-Ziedins, S. J. Everse, K. G. Mann, and T. Orfeo. Modeling
thrombin generation: plasma composition based approach. Journal of Thrombosis
and Thrombolysis, 37(1):32-44, 2014.

A. P. Burgard and C. D. Maranas. Probing the performance limits of the Fs-
cherichia coli metabolic network subject to gene additions or deletions. Biotech-
nology and Bioengineering, 74(5):364-375, 2001.

244

Bibliography

[39]

[40]

[43]

[45]

[47]

F. J. Burkowski. Structural Bioinformatics: An Algorithmic Approach. Chapman
& Hall/CRC, 2008.

K. Burrage, M. Hegland, F. MacNamara, and B. Sidje. A Krylov-based finite
state projection algorithm for solving the Chemical Master Equation arising in
the discrete modelling of biological systems. In A.N. Langville and W.J. Stewart,
editors, Proceedings of the Markov 150th Anniversary Conference, pages 21-38,
2006.

J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons, 2003.

S. Cagnoni, L. Vanneschi, A. Azzini, and A. G. B. Tettamanzi. A critical
assessment of some variants of particle swarm optimization. In M. Giacobini
et al., editor, Applications of Evolutionary Computing. EvoWorkshops 2008:
FEvoCOMNET, EvoFIN, EvoHOT, EvolASP, EvoMUSART, EvoNUM, EvoSTOC,
and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings, Lecture Notes
in Computer Science, pages 565-574. Springer-Verlag, 2008.

T. Cakir, M. M. Hendriks, J. A. Westerhuis, and A. K. Smilde. Metabolic
network discovery through reverse engineering of metabolome data. Metabolomics,
5(3):318-329, 2009.

H. Cao, L. Kang, Y. Chen, and J. Yu. Evolutionary modeling of systems of
ordinary differential equations with genetic programming. Genetic Programming
and Fvolvable Machines, 1:309-337, 2000.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Avoiding negative populations in
explicit Poisson tau-leaping. The Journal of Chemical Physics, 123(5):054104,
2005.

Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the
tau-leaping simulation method. The Journal of Chemical Physics, 124(4):044109,
2006.

G. Caravagna, P. Cazzaniga, M. S. Nobile, D. Pescini, and A. Re. Enhancing
simulations of chemical reactions at mesoscales. In BITS 2014 - 11th Annual
Meeting of the Bioinformatics Italian Society, 2014.

245

Bibliography

[48]

[49]

[50]

[51]

[53]

[54]

[55]

[56]

S. Carrillo, J. Siegel, and X. Li. A control-structure splitting optimization for
GPGPU. In Proceedings of the 6th ACM conference on Computing frontiers, CF
‘09, pages 147-150. ACM, 2009.

P. Cazzaniga, R. Colombo, M. S. Nobile, D. Pescini, G. Mauri, and D. Besozzi.
GPU-powered sensitivity analysis and parameter estimation of a reaction-based
model of the Post Replication Repair pathway in yeast. In R. Autio, I. Shmulevich,
K. Strimmer, C. Wiuf, S. Sarbu, and O. Yli-Harja, editors, Proceedings of the 10th
International Workshop on Computational Systems Biology (WCSB), volume 63,
pages 109-110, 2013.

P. Cazzaniga, C. Damiani, D. Besozzi, R. Colombo, M. S. Nobile, D. Gaglio,
D. Pescini, S. Molinari, G. Mauri, L. Alberghina, and M. Vanoni. Computational
strategies for a system-level understanding of metabolism. Metabolites, 2014,

under revision.

P. Cazzaniga, M. S. Nobile, D. Besozzi, M. Bellini, and G. Mauri. Massive
exploration of perturbed conditions of the blood coagulation cascade through
GPU parallelization. BioMed Research International, 2014, 2014. Article ID
863298.

P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, S. Colombo, and E. Martegani.
Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast
Saccharomyces cerevisiae evidences a key regulatory function for intracellular
guanine nucleotides pools. Journal of Biotechnology, 133(3):377-385, 2008.

C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinfor-
matics, 8(4):210-219, 2007.

A. Chatterjee and P. Siarry. Nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization. Computers & Operations Research,

33(3):859-871, 2006.

A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis. Binomial distribution based
tau-leap accelerated stochastic simulation. The Journal of Chemical Physics,
122(2):024112, 2005.

M. S. Chatterjee, W. S. Denney, H. Jing, and S. L. Diamond. Systems biology of
coagulation initiation: Kinetics of thrombin generation in resting and activated
human blood. PLoS Computational Biology, 6(9):¢1000950, 2010.

246

Bibliography

[57]

[58]

[59]

[60]

[61]

[62]

[65]

[66]

D. Cho, K. Cho, and B. Zhang. Identification of biochemical networks by S-tree
based genetic programming. Bioinformatics, 22(13):1631-1640, 2006.

Y. J. Cho, N. Ramakrishnan, and Y. Cao. Reconstructing chemical reaction
networks: data mining meets system identification. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 142-150, 2008.

I. C. Chou and E. O. Voit. Recent developments in parameter estimation
and structure identification of biochemical and genomic systems. Mathematical
Biosciences, 219(2):57-83, 2009.

L. A. Chylek, L. A. Harris, C.-S. Tung, J. R. Faeder, C. F. Lopez, and W. S.
Hlavacek. Rule-based modeling: a computational approach for studying biomolec-
ular site dynamics in cell signaling systems. Wiley Interdisciplinary Reviews:
Systems Biology and Medicine, 6(1):13-36, 2014.

M. Clerc. Particle Swarm Optimization. ISTE. Wiley, 2010.

R. W. Colman, J. Hirsh, V. J. Marder, A. W. Clowes, and J. N. George, editors.
Hemostasis and thrombosis: basic principles and clinical practice. Lippincott
Williams & Wilkins, Philadelphia, USA, 5th edition, 2006.

G. Craciun and C. Pantea. Identifiability of chemical reaction networks. Journal
of Mathematical Chemistry, 44(1):244-259, 2008.

G. Craciun, Y. Tang, and M. Feinberg. Understanding bistability in complex
enzyme-driven reaction networks. Proceedings of the National Academy of Sci-
ences, 103(23):8697-8702, 2006.

G. M. Crippen and T. F. Havel. Distance geometry and molecular conformation.
Journal of Computational Chemistry, 11(2):265-266, 1990.

C. Damiani and P. Lecca. Model identification using correlation-based inference
and transfer entropy estimation. In UKSim Fifth Furopean Symposium on
Computer Modeling and Sitmulation, pages 129-134. IEEE, 2011.

G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction, volume 1.
Springer-Verlag, 1997.

A. C. Deckard, F. T. Bergmann, and H. M. Sauro. Enumeration and online

library of mass-action reaction networks. ArXiv e-prints, 2009.

247

Bibliography

[69]

[70]

[71]

[72]

[73]

[74]

[76]

[79]

K. A. DeJong. Evolutionary Computation: A Unified Approach. The MIT Press,
2006.

D. Dell’Orco. Fast predictions of thermodynamics and kinetics of protein—protein
recognition from structures: from molecular design to systems biology. Molecular
BioSystems, 5(4):323-334, 2009.

L. Dematte and D. Prandi. GPU computing for systems biology. Briefings in
Bioinformatics, 11(3):323-33, 2010.

T. Diede, C. F. Hagenmaier, G. S. Miranker, J. J. Rubinstein, and W. S. Worley Jr.
The Titan graphics supercomputer architecture. Computer, 21(9):13-30, 1988.

K. A Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl. The protein folding problem.
Annual Review of Biophysics, 37:289-316, 2008.

L. Dipasquale, G. d’Ippolito, and A. Fontana. Capnophilic lactic fermentation
and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation

from the dark fermentation model. International Journal of Hydrogen Energy,
39(10):4857-4862, 2014.

P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo,
and J. Miguez. Particle filtering. Signal Processing Magazine, IEEE, 20(5):19-38,
2003.

Q. Dong and Z. Wu. A linear-time algorithm for solving the molecular dis-
tance geometry problem with exact inter-atomic distances. Journal of Global
Optimization, 22(1-4):365-375, 2002.

M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(8):851-871, 2000.

A. Drager, M. Kronfeld, M. J. Ziller, J. Supper, H. Planatscher, and J. B. Magnus.
Modeling metabolic networks in C. glutamicum: a comparison of rate laws in
combination with various parameter optimization strategies. BMC' Systems
Biology, 3(5), 2009.

R. M. D’Souza, M. Lysenko, and K. Rahmani. Sugarscape on steroids: simulating
over a million agents at interactive rates. In Proceedings of the Agent 2007

Conference on Complex Interaction and Social Emergence, page 7, 2007.

248

Bibliography

[80]

[81]

[82]

[83]

[85]

[36]

X. Du, J. Wang, H. Zhu, L. Rinaldo, K. Lamar, A. C. Palmenberg, C. Hansel,
and C. M. Gomez. Second cistron in CACNA1A gene encodes a transcription
factor mediating cerebellar development and SCA6. Cell, 154(1):118-133, 2013.

A. Eiben, C. van Kemenade, and J. Kok. Orgy in the computer: Multi-parent
reproduction in genetic algorithms. In F. Moran, A. Moreno, J. J. Merelo, and
P. Chacon, editors, Advances in Artificial Life, Third European Conference on
Artificial Life, Granada, Spain, June 4-6, 1995, Proceedings, volume 929 of
Lecture Notes in Artificial Intelligence, pages 934-945. Springer-Verlag, 1995.

A. Eldar and M. B. Elowitz. Functional roles for noise in genetic circuits. Nature,
467(7312):167-173, 2010.

J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical systems

into spatial domains of opposite phases. Systems Biology, 1(2):230-236, 2004.

M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403(6767):335-338, 2000.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene
expression in a single cell. Science, 297(5584):1183-1186, 2002.

F. Emmert-Streib, G. V. Glazko, G. Altay, and R. de Matos Simoes. Statistical
inference and reverse engineering of gene regulatory networks from observational

expression data. Frontiers in Genetics, 3(8):1-15, 2012.

B. H. Esteridge, A. P. Reynolds, and N. J. Walters. Basic Medical Laboratory
Techniques. Cengage Learning, 4th edition, 2000.

L. Fabry-Asztalos, I. Lorentz, and R. Andonie. Molecular distance geometry
optimization using geometric build-up and evolutionary techniques on GPU. In
2012 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pages 321-328, 2012.

R. M. Farber. Topical perspective on massive threading and parallelism. Journal
of Molecular Graphics and Modelling, 30:82-89, 2011.

N. Fedoroff and W. Fontana. Small numbers of big molecules. Science,
297(5584):1129-1131, 2002.

249

Bibliography

[91]

[98]

[99]

[100]

[101]

[102]

F. Ferndndez, M. Tomassini, and L. Vanneschi. Studying the influence of
communication topology and migration on distributed genetic programming. In
J. Miller et al., editor, Genetic Programming. 4th Furopean Conference, FuroGP
2001 Lake Como, Italy, April 18-20, 2001 Proceedings, Lecture Notes in Computer
Science, pages 51-63. Springer-Verlag, 2001.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2013.

N. C. Garbett and J. B. Chaires. Binding: a polemic and rough guide. Methods
in Cell Biology, 84:1-23, 2008.

T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle
switch in Fscherichia coli. Nature, 403(6767):339-342, 2000.

C. Garmendia-Torres, A. Goldbeter, and M. Jacquet. Nucleocytoplasmic os-
cillations of the yeast transcription factor Msn2: Evidence for periodic PKA
activation. Current Biology, 17(12):1044-9, 2007.

J. E. Gentle. Random Number Generation and Monte Carlo Methods. Statistics
and Computing. Springer-Verlag, 2nd edition, 2003.

S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure,
E. K. O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast.
Nature, 425(6959):671-672, 2003.

G. Gibson. Microarray analysis. PLoS Biology, 1(1):el5, 2003.

M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. The Journal of Physical Chemistry
A, 104(9):1876-1889, 2000.

D. T. Gillespie. A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403-434, 1976.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Computational Physics, 81:2340-2361, 1977.

D. T. Gillespie. A rigorous derivation of the chemical master equation. Physica
A, 188(1):404-425, 1992.

250

Bibliography

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

D. T. Gillespie. The chemical Langevin equation. The Journal of Chemical
Physics, 113(1):297-306, 2000.

D. T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. The Journal of Chemical Physics, 115(4):1716-1733, 2001.

D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of
Physical Chemistry, 58:35-55, 2007.

L. Glass. Classification of biological networks by their qualitative dynamics.
Journal of Theoretical Biology, 54(1):85-107, 1975.

L. Glass and S. A. Kauffman. The logical analysis of continuous, non-linear
biochemical control networks. Journal of Theoretical Biology, 39(1):103-129,
1973.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation,
analysis, and first results. Complex Systems, 3(5):493-530, 1989.

P. J. E. Goss and J. Peccoud. Quantitative modeling of stochastic systems in
molecular biology by using stochastic Petri nets. Proceedings of the National
Academy of Sciences, 95(12):6750-6755, 1998.

A. W. Gotz, T. Wolfle, and R. C. Walker. Quantum chemistry on graphics
processing units. Annual Reports in Computational Chemistry, 6:21-35, 2010.

K. Gray. Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft Press,
2003.

J. L. Griffin. Metabonomics: NMR spectroscopy and pattern recognition analysis
of body fluids and tissues for characterisation of xenobiotic toxicity and disease
diagnosis. Current Opinion in Chemical Biology, 7(5):648-654, 2003.

A. Grosso, M. Locatelli, and F. Schoen. Solving molecular distance geometry
problems by global optimization algorithms. Computational Optimization and
Applications, 43(1):23-37, 2009.

R. Gunawan, Y. Cao, L. Petzold, and F. J. Doyle. Sensitivity analysis of discrete
stochastic systems. Biophysical Journal, 88:2530-2540, 2005.

251

Bibliography

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

W. J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, 82(3):145-153, 2002.

A. C. Guyton and J. E. Hall. Teztbook of Medical Physiology. Saunders, 2010.

N. Hansen, D. V. Arnold, and A. Auger. Evolution strategies. In J. Kacprzyk and
W. Pedrycz, editors, Handbook of Computational Intelligence. Springer-Verlag,

in press.

N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Proceedings of 1996
IEEE International Conference on Evolutionary Computation, pages 312-317.
IEEE, 1996.

S. Harding, J. Leitner, and J. Schmidhuber. Cartesian genetic programming
for image processing. In R. Riolo, E. Vladislavleva, M. D. Ritchie, and J. H.
Moore, editors, Genetic Programming Theory and Practice X, pages 31-44.
Springer-Verlag, 2013.

A. B. Harris, R. D. Kamien, and T. C. Lubensky. Molecular chirality and chiral
parameters. Reviews of Modern Physics, 71(5):1745-1757, 1999.

L. A. Harris and P. Clancy. A “partitioned leaping” approach for multiscale
modeling of chemical reaction dynamics. The Journal of Chemical Physics,
125(14):144107, 2006.

M. J. Harvey and G. De Fabritiis. A survey of computational molecular science
using graphics processing units. Wiley Interdisciplinary Reviews: Computational
Molecular Science, 2(5):734-742, 2012.

M. J. Harvey, G. Giupponi, and G. De Fabritiis. ACEMD: accelerating biomolec-
ular dynamics in the microsecond time scale. Journal of Chemical Theory and
Computation, 5(6):1632-1639, 2009.

E. L. Haseltine and J. B. Rawlings. Approximate simulation of coupled fast and
slow reactions for stochastic chemical kinetics. The Journal of Chemical Physics,
117(15):6959-6969, 2002.

T. F. Havel. Distance geometry: Theory, algorithms and chemical applications.
In Encyclopedia of Computational Chemistry, pages 723-742. John Wiley & Sons,
1998.

252

Bibliography

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

M. Heinemann and S. Panke. Synthetic biology—putting engineering into biology.
Bioinformatics, 22(22):2790-2799, 2006.

A. Hellander. Efficient computation of transient solutions of the Chemical Master
Equation based on uniformization and quasi-Monte Carlo. The Journal of
Chemical Physics, 128(15):154109, 2008.

B. Hendrickson. The molecule problem exploiting structure in global optimization.
SIAM Journal on Optimization, 5(4):835-857, 1995.

F. Herrera, M. Lozano, and A. M. Sanchez. A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study. International Journal
of Intelligent Systems, 18(3):309-338, 2003.

F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algorithms:
Operators and tools for behavioural analysis. Artificial Intelligence Review,
12(4):265-319, 1998.

A. V. Hill. The combinations of haemoglobin with oxygen and with carbon
monoxide. I. Biochemical Journal, 7(5):471, 1913.

D. R. C. Hill, C. Mazel, J. Passerat-Palmbach, and M. K. Traore. Distribution
of random streams for simulation practitioners. Concurrency and Computation:
Practice and Experience, 25(10):1427-1442, 2013.

W. S. Hlavacek, J. R. Faeder, M. L. Blinov, A. S. Perelson, and B. Goldstein. The
complexity of complexes in signal transduction. Biotechnology and Bioengineering,

84(7):783-794, 2003,

W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, and
W. Fontana. Rules for modeling signal-transduction systems. Science Signaling,
2006(344):re6, 2006.

M. F. Hockin, K. C. Jones, S. J. Everse, and K. G. Mann. A model for the
stoichiometric regulation of blood coagulation. Journal of Biological Chemistry,
277(21):18322-18333, 2002.

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan, USA, 1975.

B. Holldobler and E. O. Wilson. The Superorganism: The Beauty, Elegance, and
Strangeness of Insect Societies. WW Norton & Company, 2008.

253

Bibliography

[139]

[140]

[141]

142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

L. Hong and J. Lei. Scaling law for the radius of gyration of proteins and its
dependence on hydrophobicity. Journal of Polymer Science Part B: Polymer
Physics, 47(2):207-214, 20009.

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu,
P. Mendes, and U. Kummer. COPASI - a COmplex PAthway SImulator. Bioin-
formatics, 22:3067-3074, 2006.

M. Hucka et al. The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics,
19(4):524-531, 2003.

H. Iba. Bagging, boosting, and bloating in genetic programming. In W. Banzhaf
et al., editor, Proceedings of the Genetic and Evolutionary Computation Confer-

ence, volume 2, pages 1053-1060. Morgan Kaufmann, 1999.

H. Iba. Inference of differential equation models by genetic programming. Infor-
mation Sciences, 178(23):4453-4468, 2008.

T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems
biology. Annual Review of Genomics and Human Genetics, 2:343-372, 2001.

T. Jahnke and W. Huisinga. Solving the Chemical Master Equation for
monomolecular reaction systems analytically. Journal of Mathematical Biol-
ogyl, 54(1):1-26, 2007.

P. V. Jenkins, O. Rawley, O. P. Smith, and J. S. O’Donnell. Elevated factor VIII
levels and risk of venous thrombosis. British Journal of Hematology, 157(6):653—
663, 2012.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi. The large-scale
organization of metabolic networks. Nature, 407(6804):651-654, 2000.

E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for
Python, 2001-.

D. Karaboga and B. Akay. A comparative study of artificial bee colony algorithm.
Applied Mathematics and Computation, 214(1):108-132, 2009.

D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization, 39(3):459-471, 2007.

254

Bibliography

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

161]

162]

[163]

D. Karaboga and B. Gorkemli. A combinatorial artificial bee colony algorithm
for traveling salesman problem. In Innovations in Intelligent Systems and
Applications (INISTA), 2011 International Symposium on, pages 50-53. IEEE,
2011.

D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., 1994.

H. Katagiri, K. Hirasawa, J. Hu, and J. Murata. Comparing some graph crossover
in genetic network programming. In Proceedings of the 41st SICE Annual
Conference, volume 2, pages 1263-1268. IEEE, 2002.

S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437-467, 1969.

S. A. Kauffman. The large scale structure and dynamics of gene control circuits:
An ensemble approach. Journal of Theoretical Biology, 44(1):167-190, 1974.

Y. Ke, L. L. Ong, W. M. Shih, and P. Yin. Three-dimensional structures
self-assembled from DNA bricks. Science, 338(6111):1177-1183, 2012.

J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. In Proceedings
of the IEEE International Conference on Neural Networks, volume 4, pages
1942-1948, 1995.

J. Kennedy, J. F. Kennedy, and R. C. Eberhart. Swarm Intelligence. Morgan
Kaufmann, 2001.

E. Kent, S. Hoops, and P. Mendes. Condor-COPASI: high-throughput computing
for biochemical networks. BMC' Systems Biology, 6(1):91, 2012.

T. R. Kiehl, R. M. Mattheyses, and M. K. Simmons. Hybrid simulation of cellular
behavior. Bioinformatics, 20(3):316-322, 2004.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

H. Kitano. Systems Biology: a brief overview. Science, 295(5560):1662-1664,
2002.

V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha,
editor, Inequalities I1I, pages 159-175. Academic Press, 1972.

255

Bibliography

[164]

165

[166]

167]

[168]

[169)]

[170]

[171]

[172]

[173]

P. E. Kloeden and E. Platen. Numerical solution of stochastic differential
equations, volume 23 of Stochastic Modelling and Applied Probability. Springer-
Verlag, 1992.

I. Komarov, R. M. D’Souza, and J. Tapia. Accelerating the Gillespie 7-leaping
method using Graphics Processing Units. PLoS ONE, 7:e37370, 2012.

J. R. Koza, W. Mydlowec, G. Lanza, J. Yu, and M. A. Keane. Reverse engineering
of metabolic pathways from observed data using genetic programming. In
R. B. Altman et al., editor, Pacific Symposium on Biocomputing, volume 6, pages
434-445, 2001.

J. R. Koza, W. Mydlowec, G. Lanza, J. Yu, and M. A. Keane. Automatic
computational discovery of chemical reaction networks using genetic programming.
Computational Discovery, 4660:205-227, 2007.

J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, 1992.

N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEFE Transactions on Evolutionary Computation,
9(5):474-488, 2005.

M. Kubista, J. M. Andrade, M. Bengtsson, A. Forootan, J. Jonak, K. Lind,
R. Sindelka, R. Sjoback, B. Sjogreen, L. Strombom, A. Stahlberg, and N. Zoric.
The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27(2—
3):95-125, 2006.

T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. See-
man. Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. Journal of the American Chemical Society, 122(9):1848-1860, 2000.

P. Larranaga, C. M. H. Kujipers, R. H. Murga, I. Inza, and S. Dizdarevic. Genetic
algorithms for the travelling salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13(2):129-170, 1999.

C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecu-
lar distance geometry problem. Computational Optimization and Applications,
52(1):115-146, 2011.

256

Bibliography

[174]

[175]

[176]

[177]

78]

[179]

[180]

[181]

[182]

[183)]

C. Lavor, L. Liberti, A. Mucherino, and N. Maculan. On a discretizable subclass
of instances of the molecular distance geometry problem. In D. Shin, editor,
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC '09, pages
804-805. ACM, 20009.

A. Lazcano and S. L. Miller. The origin and early evolution of life: Prebiotic
chemistry, the pre-RNA world, and time. Cell, 85(6):793 —798, 1996.

P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software, 33(4), 2007.

P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented
random-number package with many long streams and substreams. Operations
Research, 50(6):1073-1075, 2002.

T. Lenser, T. Hinze, B. Ibrahim, and P. Dittrich. Towards evolutionary network
reconstruction tools for Systems Biology. In E. Marchiori, J. H. Moore, and J. C.
Rajapakse, editors, Proceedings EvoBIO 2007, volume 4447 of Lecture Notes in
Computer Science, pages 132-142. Springer-Verlag, 2007.

M. Levitt. The birth of computational structural biology. Nature Structural &
Molecular Biology, 8(5):392-393, 2001.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li,
E. He, A. Henry, M. I. Stefan, J. L. Snoep, M. Hucka, N. Le Novere, and C. Laibe.
BioModels Database: An enhanced, curated and annotated resource for published
quantitative kinetic models. BMC Systems Biology, 4:92, 2010.

C. Li, Q. Ge, M. Nakata, H. Matsuno, and S. Miyano. Modelling and simulation
of signal transduction in an apoptosis pathway by using timed Petri nets. Journal
of Biosciences, 32(1):113-127, 2006.

H. Li and L. R. Petzold. Efficient parallelization of the stochastic simulation
algorithm for chemically reacting systems on the Graphics Processing Unit.

International Journal of High Performance Computing Applications, 24:107-116,
2010.

Y. Li and Z. Xul. An ant colony optimization heuristic for solving maximum
independent set problems. In Proceedings of the Fifth International Conference
on Computational Intelligence and Multimedia Applications (ICCIMA’03), pages
206-211. IEEE, 2003.

257

Bibliography

[184]

[185)]

[186]

[187]

[188]

[189)]

[190]

[191]

[192]

193]

[194]

[195]

S. Light, P. Kraulis, and A. Elofsson. Preferential attachment in the evolution of
metabolic networks. BMC Genomics, 6(1):159, 2005.

G. Lillacci and M. Khammash. Parameter estimation and model selection in
computational biology. PLoS Computational Biology, 6(3):€1000696, 2010.

W. A. Lim. Designing customized cell signalling circuits. Nature Reviews
Molecular Cell Biology, 11(6):393-403, 2010.

S. C. Lin, W. F. Punch III, and E. D. Goodman. Coarse-grain parallel genetic
algorithms: Categorization and new approach. In Proceedings of Sixth IEEFE
Symposium on Parallel and Distributed Processing, pages 28-37. IEEE Computer
Society Press, 1994.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39-55, 2008.

K. Lipkow, S. S. Andrews, and D. Bray. Simulated diffusion of phosphorylated
CheY through the cytoplasm of Escherichia coli. Journal of Bacteriology, 187:45—
53, 2005.

X. Liu and M. Niranjan. State and parameter estimation of the heat shock
response system using Kalman and particle filters. Bioinformatics, 28(11):1501—
1507, 2012.

M. Llorens and J. Oliver. Structural and dynamic changes in concurrent systems:
Reconfigurable Petri nets. IEEE Transactions on Computers, 53(9):1147-1158,
2004.

J. Logan, K. Edwards, and N. Saunders, editors. Real-Time PCR: Current
Technology and Applications. Caister Academic Press, 2009.

H. Maamar, A. Raj, and D. Dubnau. Noise in gene expression determines cell
fate in Bacillus subtilis. Science, 317(5837):526-529, 2007.

D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, and I. Rocha.
Modeling formalisms in systems biology. AMB Ezpress, 1(1):1-14, 2011.

Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi. Development
of a system for the inference of large scale genetic networks. In R. B. Altman
et al., editor, Pacific Symposium on Biocomputing, volume 6, pages 446—458,
2001.

258

Bibliography

[196]

197]

198

[199]

200]

[201]

[202]

203]

204]

[205]

206]

M. Manssen, M. Weigel, and A. K. Hartmann. Random number generators for
massively parallel simulations on GPU. The Furopean Physical Journal-Special
Topics, 210(1):53-71, 2012.

D. Marco, C. Shankland, and D. Cairns. Evolving Bio-PEPA algebra models
using Genetic Programming. In T. Soule, editor, Proceedings of the 1/th Annual
Conference on Genetic and Fvolutionary Computation, pages 177-183. ACM,
2012.

W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. CG: A system for
programming graphics hardware in a C-like language. ACM Transactions on
Graphics, 22(3):896-907, 2003.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the Society for Industrial and Applied Mathematics, 11(2):pp.
431-441, 1963.

G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1-6, 2003.

[. Martinelli, P. Bucciarelli, and P. Mannucci. Thrombotic risk factors: basic
pathophysiology. Critical Care Medicine, 38:53-S9, 2010.

F. J. Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of
the American Statistical Association, 46(253):68-78, 1951.

A. J. Matlin, F. Clark, and C. W. J. Smith. Understanding alternative splicing:
towards a cellular code. Nature Reviews Molecular Cell Biology, 6(5):386-398,
2005.

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8:3-30, 1998.

H. Matsuno. A new regulatory interactions suggested by simulations for circa-

dian genetic control mechanism in mammals. Journal of Bioinformatics and
Computational Biology, 4(1):139-153, 2005.

H. Matsuno, Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano. Biopath-
ways representation and simulation on hybrid functional Petri net. In Silico
Biology, 3(3):389-404, 2003.

259

Bibliography

207]

208

209

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217)

C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of
cell biological systems. BMC Systems Biology, 5:166, 2011.

H. H. McAdams and A. Arkin. Gene regulation: Towards a circuit engineering
discipline. Current Biology, 10(8):318-320, 2000.

H. H. McAdams and L. Shapiro. Circuit simulation of genetic networks. Science,
269(5224):650-656, 1995.

O. Medvedik, D. W. Lamming, K. D. Kim, and D. A. Sinclair. MSN2 and
MSN4 link calorie restriction and TOR to Sirtuin-mediated lifespan extension in
Saccharomyces cerevisiae. PLoS Biology, 5:2330-2341, 2007.

P. Mendes and D. B. Kell. Non-linear optimization of biochemical pathways:
applications to metabolic engineering and parameter estimation. Bioinformatics,
14:869-883, 1998.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087-1092, 1953.

A. D. Michelson. Platelets. Elsevier, 2nd edition, 2007.

J. Miller and P. Thomson. Cartesian genetic programming. In R. Poli et al., editor,
Proceedings of the Third European Conference on Genetic Programming, volume
1802 of Lecture Notes in Computer Science, pages 121-132. Springer-Verlag,
2000.

R. Milner. Communicating and Mobile Systems: The w-Calculus. Cambridge
University Press, 1999.

C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical

pathways: a comparison of global optimization methods. Genome Research,
13(11):2467-2474, 2003.

J. Monod and F. Jacob. General conclusions: teleonomic mechanisms in cellular
metabolism, growth, and differentiation. In Cold Spring Harbor Symposia on
Quantitative Biology, volume 26, pages 389-401. Cold Spring Harbor Laboratory
Press, 1961.

260

Bibliography

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

O. Morandin and E. Kato. Virtual Petri nets as a modular modeling method for
planning and control tasks of FMS. International Journal of Computer Integrated
Manufacturing, 18(2-3):100-106, 2005.

J. J. Moré and Z. Wu. Global continuation for distance geometry problems.
SIAM Journal on Optimization, 7(3):814-836, 1997.

J. J. Moré and Z. Wu. Distance geometry optimization for protein structures.
Journal of Global Optimization, 15(3):219-234, 1999.

The PyMOL Web Page. http://www.pymol.org.

B. Munsky and M. Khammash. The finite state projection algorithm for the
solution of the Chemical Master Equation. The Journal of Chemical Physics,
124:044104, 2006.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

K. Nakamura, R. Yoshida, M. Nagasaki, S. Miyano, and T. Higuchi. Parameter
estimation of in silico biological pathways with particle filtering towards a
petascale computing. In Pacific Symposium on Biocomputing, volume 14, pages
227-238, 2009.

N. Nandapalan, R. P. Brent, L. M Murray, and A. P. Rendell. High-
performance pseudo-random number generation on Graphics Processing Units.
In R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, editors,

Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science,
pages 609-618. Springer-Verlag, 2012.

D. L. Nelson and M. M. Cox. Lehninger Principles of Biochemistry. W. H.
Freeman & Company, 4th edition, 2004.

J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro, 30(2):56-69,
2010.

M. S. Nobile. Evolutionary inference of biochemical interaction networks accel-
erated on graphics processing units. In Proceedings of the 11th International
Conference on High Performance Computing €& Simulation 2013 (HPCS 2013),
pages 668670, 2013.

261

Bibliography

[229]

230]

[231]

[232]

233

[234]

235

236]

M. S. Nobile, D. Besozzi, P. Cazzaniga, and G. Mauri. The foundation of
evolutionary Petri nets. In G. Balbo and M. Heiner, editors, Proceedings of the
4th International Workshop on Biological Processes & Petri Nets (BioPPN 2013),
volume 988, pages 60-74. CEUR Workshop Proceedings, 2013.

M. S. Nobile, D. Besozzi, P. Cazzaniga, and G. Mauri. GPU-accelerated simula-
tions of mass-action kinetics models with cupSODA. The Journal of Supercom-
puting, 69(1):17-24, 2014.

M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini. Estimating
reaction constants in stochastic biological systems with a multi-swarm PSO
running on GPUs. In T. Soule, editor, Proceedings of the fourteenth International

Conference on Genetic and Fvolutionary Computation Conference Companion,
GECCO Companion ’12, pages 1421-1422. ACM, 2012.

M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini. A GPU-
based multi-swarm PSO method for parameter estimation in stochastic biological
systems exploiting discrete-time target series. In M. Giacobini, L. Vanneschi,
and W. Bush, editors, Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics. 10th European Conference, FvoBIO 2012. Proceedings,
volume 7246 of Lecture Notes in Computer Science, pages 74-85. Springer-Verlag,
2012.

M. S. Nobile, D. Besozzi, P. Cazzaniga, G. Mauri, and D. Pescini. cupSODA:
a CUDA-powered simulator of mass-action kinetics. In V. Malyshkin, editor,
Proceedings of 12th International Conference on Parallel Computing Technologies
(PaCT 2013), volume 7979 of Lecture Notes in Computer Science, pages 344-357.
Springer-Verlag, 2013.

M. S. Nobile, D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Reverse engi-
neering of kinetic reaction networks by means of Cartesian Genetic Programming
and Particle Swarm Optimization. In 2013 IEEE Congress on FEvolutionary
Computation, volume 1, pages 1594-1601. IEEE, 2013.

M. S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini, and G. Mauri. cuTauleaping:
A GPU-powered tau-leaping stochastic simulator for massive parallel analyses of
biological systems. PLoS ONE, 9(3):€91963, 2014.

M. S. Nobile, D. Cipolla, P. Cazzaniga, and D. Besozzi. GPU-powered evo-

lutionary design of mass-action based models of gene regulation. In H. Iba

262

Bibliography

237]

[238]

[239]

[240]

[241]

[242]
[243]
[244]

[245]

246
[247]

[248]

[249]

and N. Noman, editors, Fvolutionary Algorithms in Gene Regulatory Network
Research. John Wiley & Sons, 2014. In press.

M. S. Nobile, A. G. Citrolo, P. Cazzaniga, D. Besozzi, and G. Mauri. A memetic
hybrid method for the molecular distance geometry problem with incomplete infor-

mation. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation
(CEC2014), pages 1014-1021, 2014.

M.S. Nobile, P. Cazzaniga, D. Besozzi, D. Cipolla, and G. Mauri. Parameter
estimation on graphics processing units: a multi-swarm approach for stochas-
tic cellular systems. IEEE Transactions on Evolutionary Computation, 2014.
Submitted.

N. Noman and H. Iba. Inference of gene regulatory networks using S-system
and differential evolution. In Proceedings of the 2005 Conference on Genetic and
FEvolutionary Computation, pages 439-446. ACM, 2005.

J. Norberg and L. Nilsson. Advances in biomolecular simulations: methodology
and recent applications. Quarterly Reviews of Biophysics, 36(03):257-306, 2003.

J. Nummela and J. A. Bryant. Evolving Petri nets to represent metabolic
pathways. In Proceedings of the 2005 Conference on Genetic and Evolutionary
Computation, pages 2133-2139. ACM, 2005.

Nvidia. CUDA Toolkit 5.0 CURAND Guide, March 2012.
Nvidia. Dynamic parallelism in CUDA, 2012.
Nvidia. Nvidia CUDA C Programming Guide, 2012.

Nvidia. Nvidia’s Next Generation CUDA Compute Architecture: Kepler GK110,
2012.

Nvidia. CUDA Toolkit 6.0 CURAND Guide, February 2014.
Nvidia. Nvidia CUDA C Programming Guide v6.5, 2014.

J. D. Orth, I. Thiele, and B. . Palsson. What is flux balance analysis? Nature
Biotechnology, 28(3):245-8, 2010.

J. A. Papin, T. Hunter, B. @. Palsson, and S. Subramaniam. Reconstruction

of cellular signalling networks and analysis of their properties. Nature Reviews
Molecular Cell Biology, 9(2):99-111, 2005.

263

Bibliography

[250]

[251]

[252]

253

[254]

[255]

[256]

257]

[258]

[259]

G. Pasquale, C. Maj, A. Clematis, E. Mosca, L. Milanesi, I. Merelli, and
D. D’Agostino. A CUDA implementation of the Spatial TAU-leaping in Crowded
Compartments (STAUCC) simulator. In Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on, pages
609-616. IEEE, 2014.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1st edition, 1988.

F. Pereira, P. Machado, E. Costa, and A. Cardoso. Graph based crossover - a case
study with the busy beaver problem. In W. Banzhaf et al., editor, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 1999), volume 2,
pages 1149-1155. Morgan Kaufmann, 1999.

D. Peri and F. Tinti. A multistart gradient-based algorithm with surrogate model
for global optimization. Communications in Applied and Industrial Mathematics,
3(1):1-22, 2012.

B. E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche
Buc. Gene networks inference using dynamic bayesian networks. Bioinformatics,
19(2):138-148, 2003.

D. Pescini, P. Cazzaniga, D. Besozzi, G. Mauri, L. Amigoni, S. Colombo, and
E. Martegani. Simulation of the Ras/cAMP/PKA pathway in budding yeast
highlights the establishment of stable oscillatory states. Biotechnology Advances,
30:99-107, 2012.

C. A. Petri. Kommunikation mit automata. PhD thesis, Ph.D. thesis, University
of Bonn, Bonn, Germany, 1962.

L. Petzold. Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM Journal of Scientific and Statistical
Computing, 4:136-148, 1983.

L. Piela, J. Kostrowicki, and H. A. Scheraga. On the multiple-minima problem in
the conformational analysis of molecules: deformation of the potential energy hy-
persurface by the diffusion equation method. The Journal of Physical Chemistry,
93(8):3339-3346, 1989.

Pixar, Inc. RenderMan Interface Specification, Version 3.0, 1988.

264

Bibliography

260]

[261]

262]

263

[264]

[265]

266]

267]

268

269

[270]

271]

R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm
Intelligence, 1(1):33-57, 2007.

R. Poli and W. B. Langdon. Schema theory for genetic programming with one-
point crossover and point mutation. Evolutionary Computation, 6(3):231-252,
1998.

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. A Field Guide to Genetic
Programming. Lulu Enterprises, UK, 2008.

J. R. Pomerening. Uncovering mechanisms of bistability in biological systems.
Current Opinion in Biotechnology, 19(4):381-388, 2008.

S. K. Poovathingal and R. Gunawan. Global parameter estimation methods for
stochastic biochemical systems. BMC' Bioinformatics, 11(414), 2010.

K. R. Popper. Logik der Forschung, volume 4. JCB Mohr (Paul Siebeck), 1982.

K. R. Popper. Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge, 2014.

N. D. Price, J. A. Papin, and B. (. Palsson. Determination of redundancy
and systems properties of the metabolic network of Helicobacter pylori using

genome-scale extreme pathway analysis. Genome Research, 12(5):760-769, 2002.

S. Pricl, M. Ferrone, M. Fermeglia, F. Amato, C. Cosentino, M. M.-C. Cheng,
R. Walczak, and M. Ferrari. Multiscale modeling of protein transport in sili-
con membrane nanochannels. Part 1. Derivation of molecular parameters from
computer simulations. Biomedical Microdevices, 8(4):277-290, 2006.

RCSB Protein Data Bank. www.rcsb.org.

S. Pulikanti and A. Singh. An artificial bee colony algorithm for the quadratic
knapsack problem. In C.-S. Leung, M. Lee, and J. H. Chan, editors, 16th
International Conference on Neural Information Processing, volume 5864 of

Lecture Notes on Computer Science, pages 196-205. Springer-Verlag, 2009.

A. Raj and A. van Oudenaarden. Nature, nurture, or chance: stochastic gene
expression and its consequences. Cell, 135(2):216-226, 2008.

265

Bibliography

272]

273]

[274]

[275]

[276]

[277]

278

[279]

[280]

[281]

R. Ramakrishna, J. S. Edwards, A. McCulloch, and B. @. Palsson. Flux-balance
analysis of mitochondrial energy metabolism: consequences of systemic stoichio-

metric constraints. American Journal of Physiology-Requlatory, Integrative and
Comparative Physiology, 280(3):R695-R704, 2001.

A. Raue, V. Becker, U. Klingmiiller, and J. Timmer. Identifiability and observ-
ability analysis for experimental design in nonlinear dynamical models. Chaos,
20(4):045105, 2010.

I. Rechenberg. Ewvolution Strategy: Optimization of Technical systems by means

of biological evolution. Fromman-Holzboog, 1973.

A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of
biochemical processes using the m-calculus process algebra. In R. B. Altman
et al., editor, Pacific Symposium on Biocomputing, volume 6, pages 459-470,
2001.

S. Reinker, R. M. Altman, and J. Timmer. Parameter estimation in stochastic
biochemical reactions. IEFE Proceedings - Systems Biology, 153:168-178, 2006.

J. Reiterman, V. Rodl, and E. Sinajova. Geometrical embeddings of graphs.
Discrete Mathematics, 74(3):291-319, 1989.

T. Renné, A. H. Schmaier, K. F. Nickel, M. Blombéck, and C. Maas. In vivo
roles of factor XII. Blood, 120(22):4296-4303, 2012.

P. Richmond, S. Coakley, and D. M. Romano. A high performance agent based
modelling framework on graphics card hardware with CUDA. In K. S. Decker,
J. S. Sichman, and C. Castelfranchi, editors, Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, volume 2, pages
1125-1126. International Foundation for Autonomous Agents and Multiagent
Systems, 2009.

P. Richmond, D. Walker, S. Coakley, and D. Romano. High performance cel-
lular level agent-based simulation with FLAME for the GPU. Briefings in
Bioinformatics, 11(3):334-347, 2010.

E. Roberts, J. E. Stone, L. Septilveda, W.-M. W. Hwu, and Z. Luthey-Schulten.
Long time-scale simulations of in vivo diffusion using GPU hardware. In 25rd
IEEFE International Parallel & Distributed Processing Symposium, pages 1-8.
IEEE, 20009.

266

Bibliography

[282]

[283)]

[284]

[285)

[286]

[287]

[288]

[289]

290]

[291]

292]

A. M. Robinson and D. H. Williamson. Physiological roles of ketone bodies as
substrates and signals in mammalian tissues. Physiological Reviews, 60(1):143—
187, 1980.

K. Rogers. Blood: Physiology and Circulation. The Human Body. Britannica
Educational Publishing, 2010.

J. Romero and C. Cotta. Optimization by island-structured decentralized par-
ticle swarms. In B. Reusch, editor, Computational Intelligence, Theory and
Applications, volume 33 of Advances in Soft Computing, pages 25-33. Springer,
2005.

B. J. Ross. The evolution of higher-level biochemical reaction models. Genetic
Programming and Evolvable Machines, 13(1):3-31, 2012.

L. Roth and B. Asimow. The rigidity of graphs. Transactions of the American
Mathematical Society, 245:279-289, 1978.

P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440(7082):297-302, 2006.

P. Rumschinski, S. Borchers, S. Bosio, R.Weismantel, and R. Findeisen. Set-base
dynamical parameter estimation and model invalidation for biochemical reaction
networks. BMC' Systems Biology, 4(69), 2010.

C. Ryan and M. Keijzer. An analysis of diversity of constants of genetic pro-
gramming. In C. Ryan et al., editor, Genetic Programming, pages 404—413.
Springer-Verlag, 2003.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W.
Hwu. Optimization principles and application performance evaluation of a
multithreaded GPU using CUDA. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP 08,
pages 73-82. ACM, 2008.

H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a system
of coupled chemical or biochemical reactions. The Journal of Chemical Physics,
122(5):054103, 2005.

H. Salis, V. Sotiropoulos, and Y. N. Kaznessis. Multiscale Hy3S: Hybrid stochastic
simulation for supercomputers. BMC' Bioinformatics, 7(1):93, 2006.

267

Bibliography

293]

[294]

295

296]

297]

298]

[299]

300]

301]

302]

303]

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola. Global Sensitivity Analysis: The Primer. Wiley-

Interscience, 2008.

G. M. Santangelo. Glucose signaling in Saccharomyces cerevisiae. Microbiology
and Molecular Biology Reviews, 70(1):253-282, 2006.

M. Santillan. On the use of the Hill functions in mathematical models of gene
regulatory networks. Mathematical Modelling of Natural Phenomena, 3(2):85-97,
2008.

M. A. Savageau. Comparison of classical and autogenous systems of regulation
in inducible operons. Nature, 252:546-549, 1974.

M. A. Savageau. Biochemical Systems Analysis. A Study of Function and Design
in Molecular Biology. Addison-Wesley, Reading, Massachusetts, USA, 1976.

H. Sawai and S. Kizu. Parameter-free genetic algorithm inspired by “disparity
theory of evolution™ In Proceedings of the 5th International Conference on

Parallel Problem Solving from Nature, pages 702-711. Springer-Verlag, 1998.

J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In
Proc. of 17th Allerton Conference in Communications, Control and Computing,
pages 480-489, 1979.

M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney. High-throughput
sequence alignment using Graphics Processing Units. BMC' bioinformatics,
8(1):474, 2007.

C. H. Schilling, D. Letscher, and B. (. Palsson. Theory for the systemic definition
of metabolic pathways and their use in interpreting metabolic function from a
pathway-oriented perspective. Journal of Theoretical Biology, 203(3):229-248,
2000.

T. Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide,
volume 21 of Interdisciplinary Applied Mathematics. Springer-Verlag, 2nd edition,
2010.

T. Schreiber. Measuring information transfer. Physical Review Letters, 85(2):461,
2000.

268

Bibliography

304]

305]

306]

307]

308

[309]

[310]

311]

[312]

313]

314]

H.-P. P. Schwefel. Evolution and Optimum Seeking: The Sizth Generation. John
Wiley & Sons, 1993.

T. D. Seeley. The honey bee colony as a superorganism. American Scientist,

77(6):546-553, 1989.

U. Seligsohn and A. Lubetsky. Genetic susceptibility to venous thrombosis. The
New England Journal of Medicine, 344(16):1222-1231, 2001.

V. Shahrezaei and P. S. Swain. The stochastic nature of biochemical networks.
Current Opinion in Biotechnology, 19(4):369-374, 2008.

Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization.
In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors, Evolutionary
Programming VII, volume 1447 of Lecture Notes in Computer Science, pages
591-600. Springer-Verlag, 1998.

Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization. In
Proceedings of the 2001 Congress on Fvolutionary Computation, volume 1, pages
101-106, Seoul, South Korea, May 2001. IEEE.

T. S. Shimizu, S. V. Aksenov, and D. Bray. A spatially extended stochastic model
of the bacterial chemotaxis signalling pathway. Journal of Molecular Biology,
329(2):291-309, 2003.

E. Shockley and C. F. Lopez. Towards understanding cellular proliferation and
death signal processing in cancer. In Proceedings of the Fighth @Q-bio Conference,
2014.

R. Sidje, K. Burrage, and S. MacNamara. Inexact uniformization method for
computing transient distributions of Markov chains. SIAM Journal on Scientific
Computing, 29:2562-2580, 2007.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and I. Birol.
ABySS: a parallel assembler for short read sequence data. Genome Research,
19(6):1117-1123, 2009.

A. Sit and Z. Wu. Solving a generalized distance geometry problem for protein
structure determination. Bulletin of Mathematical Biology, 73(12):2809-2836,
2011.

269

Bibliography

315

316

[317]

[318]

319]

[320]

[321]

322]

323

324]

325

A. Sit, Z. Wu, and Y. Yuan. A geometric buildup algorithm for the solution of
the distance geometry problem using least-squares approximation. Bulletin of
Mathematical Biology, 71(8):1914-33, 2009.

W. Situ and P. Tsang. A parameter estimation method for biological systems mod-
eled by ODEs/DDEs models using spline approximation and differential evolution
algorithm. IEEE Transactions on Computational Biology and Bioinformatics,
99, 2014. PrePrints.

W. W. Soon, M. Hariharan, and M. P. Snyder. High-throughput sequencing for
biology and medicine. Molecular systems biology, 9(640), 2013.

T. T. Soong. Random Differential Equations in Science and Engineering. Aca-
demic Press, 1973.

M. Stein, R. R. Gabdoulline, and R. C. Wade. Bridging from molecular simulation
to biochemical networks. Current Opinion in Structural Biology, 17(2):166-172,
2007.

J. Stelling. Mathematical models in microbial systems biology. Current Opinion
in Microbiology, 7(5):513-518, 2004.

R. Steuer, C. Zhou, and J. Kurths. Constructive effects of fluctuations in genetic
and biochemical regulatory systems. BioSystems, 72(3):241-251, 2003.

W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press, 2010.

J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated
molecular modeling coming of age. Journal of Molecular Graphics and Modelling,
29(2):116-125, 2010.

R. Storn and K. Price. Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization,
11(4):341-359, 1997.

T. Stiitzle and M. Dorigo. ACO algorithms for the traveling salesman problem.
In K. Miettinen, P. Neittaanmaki, M. M. Makela, and J. Periaux, editors,
FEvolutionary Algorithms in Engineering and Computer Science, pages 163-183.
Wiley, 1999.

270

Bibliography

326

327]

328

329]

[330]

331]

332]

333]

334]

335

M. Sugimoto, S. Kikuchi, and M. Tomita. Reverse engineering of biochemical

equations from time-course data by means of genetic programming. BioSystems,
80(2):155-164, 2005.

G. Szederkenyi, J. R. Banga, and A. A. Alonso. Inference of complex biological
networks: distinguishability issues and optimization-based solutions. BMC
Systems Biology, 5(1):177, 2011.

R. Tanese. Distributed genetic algorithms. In J. D. Schaffer, editor, Proceedings
of the Third International Conference on Genetic Algorithms, pages 434-439.
Morgan Kaufmann, 1989.

D. C. Teller, T. Okada, C. A. Behnke, K. Palczewski, and R. E. Stenkamp.
Advances in determination of a high-resolution three-dimensional structure of
rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry,
40(26):7761-7772, 2001.

G. Terrazas, M. Gheorghe, G. Kendall, and N. Krasnogor. Evolving tiles for
automated self-assembly design. In Fvolutionary Computation, 2007. CEC 2007.
IEEFE Congress on, pages 2001-2008. IEEE, 2007.

G. Theraulaz and E. Bonabeau. A brief history of stigmergy. Artificial Life,
5(2):97-116, 1999.

T. Tian and K. Burrage. Binomial leap methods for simulating stochastic chemical
kinetics. The Journal of Chemical Physics, 121(21):10356-10364, 2004.

M. Tomassini. Parallel and distributed evolutionary algorithms: a review. In
K. Miettinen, M. Makela, P. Neittanmaki, and J. Periaux, editors, Evolutionary
Algorithms in Engineering and Computer Science, pages 113-133. J. Wiley, New
York, 1999.

M. Tomassini, L. Vanneschi, J. Cuendet, and F. Fernandez. A new technique for

dynamic size populations in genetic programming. In Evolutionary Computation,
2004. CEC2004. Congress on, volume 1, pages 486-493. IEEE, 2004.

C. T. Trinh, A. Wlaschin, and F. Srienc. Elementary mode analysis: a useful
metabolic pathway analysis tool for characterizing cellular metabolism. Applied
Microbiology and Biotechnology, 81(5):813-826, 2009.

271

Bibliography

[336]

[337]

338

[339]

[340]

[341]

342]

[343]

[344]

[345]

[346]

[347]

K.-Y. Tsai and F.-S. Wang. Evolutionary optimization with data collocation

for reverse engineering of biological networks. Bioinformatics, 21(7):1180-1188,
2005.

Y. Del Valle, G.K. Venayagamoorthy, S. Mohagheghi, J.C. Hernandez, and R.G.
Harley. Particle swarm optimization: Basic concepts, variants and applications in
power systems. I[EEE Transactions on Evolutionary Computation, 12(2):171-195,
2008.

V. A. van Hylckama, I. K. van der Linden, R. M. Bertina, and F. R. Rosendaal.
High levels of factor IX increase the risk of venous thrombosis. Blood, 95:3678—
3682, 2000.

N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier,
Amsterdam, The Netherlands, 3rd edition, 2001.

W. Vance, A. Arkin, and J. Ross. Determination of causal connectivities of

species in reaction networks. Proceedings of the National Academy of Sciences,
99(9):5816-5821, 2002.

L. Vanneschi, D. Codecasa, and G. Mauri. A comparative study of four parallel
and distributed PSO methods. New Generation Computing, 29(2):129-161, 2011.

M. Vellela and H. Qian. Stochastic dynamics and non-equilibrium thermody-
namics of a bistable chemical system: the Schlogl model revisited. Journal of the
Royal Society Interface, 6(39):925-940, 2009.

D. Voet and J. G. Voet. Biochemistry. John Wiley & Sons, 4th edition, 2011.

E. O. Voit. Computational Analysis of Biochemical Systems. Cambridge University
Press, Cambridge, UK, 2000.

K. Voss, M. Heiner, and 1. Koch. Steady state analysis of metabolic pathways
using Petri nets. In Silico Biology, 3(3):367-387, 2003.

C. E. Walsh and K. M. Batt. Hemophilia clinical gene therapy: brief review.
Translational Research, 161:307-312, 2013.

H. Wang, L. Qian, and E. Dougherty. Inference of gene regulatory networks
using S-system: a unified approach. IET Systems Biology, 4(2):145-156, 2010.

272

Bibliography

[348]

[349]

[350]

351]

352]

353]

354]

[355]

356

357]

358

[359]

360]

L. Wang, G. Renault, H. Garreau, and M. Jacquet. Stress induces depletion
of Cdc25p and decreases the cAMP producing capability in Saccharomyces
cerevisiae. Microbiology, 150(10):3383-91, 2004.

Y. Wang, S. Christley, E. Mjolsness, and X. Xie. Parameter inference for
discretely observed stochastic kinetic models using stochastic gradient descent.
BMC Systems Biology, 4(1):99, 2010.

J. R. Weimar and J.-P. Boon. Class of cellular automata for reaction-diffusion
systems. Physical Review E, 49(2):1749, 1994.

J. N. Weiss. The Hill equation revisited: uses and misuses. The FASEB Journal,
11(11):835-841, 1997.

W. H. Wen-mei. GPU Computing Gems Jade Edition. Morgan Kaufmann, 2011.

S. Widder, J. Macia, and R. Solé. Monomeric bistability and the role of autoloops
in gene regulation. PLoS ONE, 4(4):e5399, 2009.

T. Wilhelm. The smallest chemical reaction system with bistability. BMC
Systems Biology, 3(1):90, 2009.

D. Wilkinson. Stochastic modelling for quantitative description of heterogeneous
biological systems. Nature Reviews Genetics, 10(2):122-133, 2009.

D. S. Wishart, R. Yang, D. Arndt, P. Tang, and J. Cruz. Dynamic cellular
automata: an alternative approach to cellular simulation. In Silico Biology,
5(2):139-161, 2005.

V. Wolf, R. Goel, M. Mateescu, and T. A. Henzinger. Solving the Chemical
Master Equation using sliding windows. BMC' Systems Biology, 4(1):42, 2010.

O. Wolkenhauer, M. Ullah, W. Kolch, and C. Kwang-Hyun. Modeling and
simulation of intracellular dynamics: choosing an appropriate framework. IEEFE
Transactions on Nanobiosciences, 3(3):200-7, 2004.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67-82, 1997.

K. Wiithrich. NMR studies of structure and function of biological macromolecules
(Nobel lecture). Angewandte Chemie International Edition, 42(29):3340-63, 2003.

273

Bibliography

361]

362]

363]

[364]

[365]

[366]

367]

368

369

[370]

S. Xu and Y. Rahmat-Samii. Boundary conditions in Particle Swarm Optimization
revisited. IEEE Transactions on Antennas and Propagation, 55(3):760-765, 2007.

J. Yang, M. I. Monine, J. R. Faeder, and W. S. Hlavacek. Kinetic Monte Carlo
method for rule-based modeling of biochemical networks. Physical Review E,
78(3):031910, 2008.

F. Zafari, G. M. Khan, M. Rehman, and S. Ali Mahmud. Evolving recurrent
neural network using cartesian genetic programming to predict the trend in
foreign currency exchange rates. Applied Artificial Intelligence, 28(6):597-628,
2014.

S. Zaman, S. I. Lippman, L. Schneper, N. Slonim, and J. R. Broach. Glucose reg-
ulates transcription in yeast through a network of signaling pathways. Molecular
Systems Biology, 5(1):1-14, 2009.

D. R. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821-829, 2008.

I. Zevedei-Oancea and S. Schuster. Topological analysis of metabolic networks
based on Petri net theory. In Silico Biology, 3(3):0029, 2003.

B.-T. Zhang and H. Miihlenbein. Balancing accuracy and parsimony in genetic

programming. Evolutionary Computation, 3(1):17-38, 1995.

J. Zhang, L. T. Watson, and Y. Cao. A modified uniformization method for
the solution of the Chemical Master Equation. Technical Report TR-07-31,
Computer Science, Virginia Tech, 2007.

K. Zhang, J. Yi, J. Liu, and W. Hu. Multiobjective genetic algorithm for optimized
DNA sequences for DNA self-assembly. In L. Pan, G. Paun, M. J. Pérez-Jiménez,
and T. Song, editors, Bio-Inspired Computing — Theories and Applications. 9th
International Conference, BIC-TA 2014, Wuhan, China, October 16-19, 2014.
Proceedings, pages 591-597. Springer-Verlag, 2014.

Y. Zhou, J. Liepe, X. Sheng, M. P. H. Stumpf, and C. Barnes. GPU accelerated
biochemical network simulation. Bioinformatics, 27(6):874-876, 2011.

274

Part 111

Appendix

275

Appendix A

Reaction-based models of biological

systems

A.1 Michaelis-Menten kinetics

The Michaelis-Menten (MM) model is a simple example of enzyme kinetics consisting
in 3 reactions, which describe the catalytic transformation of a substrate S into a
product P mediated by the activitity of an enzyme F, passing through the reversible
formation of an enzyme-substrate intermediate complex ES [226]. This enzymatic
kinetic is the basis of most biochemical processes occurring in living cells [226]. These
reactions, together with the values of the associated stochastic constants, are given
in Table A.1. The initial molecular amounts used as default in this work, given as
number of molecules, are listed in Table A.2.

Table A.1: Michaelis-Menten model.

’ No. ‘ Reactants | Products | Stochastic constant

Ry S+ FE ES 0.0025
Ry ES S+ E 0.1
R ES E+P 5.0

Table A.2: Initial molecular amounts of the Michaelis-Menten model.

Molecular species | Initial amount

S 1000

E 750
ES 0

P 0

277

Reaction-based models of biological systems

A.2 Prokaryotic auto-regulatory gene network

The prokaryotic gene network (PGN) [349] describes an auto-regulation mechanism of
gene expression, whereby a gene (DN A) that codes for a protein (P) is inhibited by
binding to a dimer of the protein itself (DN A:P;). Gene expression is a good example
of stochasticity in biological systems: the transcriptional regulators are present in
a few copies, so that the binding and release of the regulators can be expressed in
probabilistic terms.

The reactions describing the molecular interactions occurring in PGN, together
with the values of the associated stochastic constants, are given in Table A.3. The
default initial molecular amount used in this thesis is DN A=200 molecules; all other

molecular species are generated in the system as long as reactions are applied.

Table A.3: Prokaryotic auto-regulatory gene network model.

’ No. ‘ Reactants Products Stochastic constant
R, | DNA+ P, DNA:P, 0.1
R, DNA:P, DNA+ P, 0.7
Rs DNA DNA+mRNA 0.35
Ry mRNA 0 0.3
Rs 2P P 0.1
Rg P 2P 0.9
R; mRN A mRNA+ P 0.2
Rg P 0 0.1

Remark: () denotes the degradation of the reactant

278

A.3 The Schlogl system

A.3 The Schlogl system

The Schlogl system [342, 354] is one of the simplest prototypes of chemical systems
presenting a bistable dynamical behavior, i.e., the capacity of switching between two
different stable steady states in response to some chemical signaling (see, e.g.,[64, 263,
353] and references therein). The Schlégl model consists of 4 chemical reactions and
3 molecular species, listed in Table A.4. The initial molecular amounts used in this
thesis are given in Table A.5.

Table A.4: The Schlégl model.

’ No. ‘ Reactants | Products | Stochastic constant

R | A+2X 3X 3.1077
Ry 3X A+2X 1-10~*
Rs B X 1-1073
R, X B 3.5

Table A.5: Initial molecular amounts of the Schlogl model.

Molecular species | Initial amount

A *1-10°
B *2- 105
X 250

*The amounts of species A, B are kept constant during the execution of simulations. All
molecular amounts are expressed as number of molecules.

279

Reaction-based models of biological systems

A.4 Blood Coagulation Cascade model

The BCC model considered by the coagSODA simulator (Section 5.2) is a slightly
reduced version of the “Platelet-Plasma” deterministic model defined in [56], built upon
a previous model [136], which describes all parts of blood coagulation: the platelets
activation and aggregation; the extrinsic, intrinsic and common pathways (with the
exception of factor XIII); the action of several inhibitory molecules (Tissue Factor
Pathway Inhibitor, antithrombin III, Cl-inhibitor, al-antitrypsin and «2-antiplasmin).

Since the aim of coagSODA is the investigation of blood coagulation in vivo, a small
set of reactions given in [56] that have no effect on the clotting time was excluded. To be
more precise, the model presented here does not consider the reactions occurring in vitro
(namely, entries 28 and 35 in Table 1 in [56]), as well as the reactions downstream the
fibrinogen conversion, that is, the interactions between the fibrin polymers, thrombin
and antithrombin III (namely, entries 55, 56 and 57 in Table 1 in [56]).

For the sake of completeness, Table A.6 describes the BCC model considered by
coagSODA, overall consisting in 96 reactions among 71 molecular species.

The model can be partitioned into four functional modules:
1. The first module corresponds to the extrinsic pathway, which consists in:
« the formation of a complex between Tissue Factor and factor VII (modeled
by reactions Ry, ..., Ry);

 the activation of factor VII by the complex between Tissue Factor and factor
VIla (reaction Rs);

« the activation of factor IX by the complex between Tissue Factor and factor
VIla (reactions Ris, Ry4, R15), and by factor VIla (reactions Ryg, Rrg, Rso);

« the activation of factor X by the complex between Tissue Factor and factor
VIla (Rs, ..., Ri2), and by factor VIla (Rg;, Rsa, Rs3).
2. The second module corresponds to the intrinsic pathway, which consists in:
« the formation of a complex between factor VIIIa and factor IXa (modeled
by reactions Rjg and Ryo);

« the activation of factor X by the complex between factor VIIIa and factor
[Xa (reactions Rgg, Ra1, Rao), and by factor IXa (reactions Rre, Rrs, R74);

« the activation of factor XII by factor XII itself (reaction Ry4), by factor
XIla (reactions Rys, Rys, Ra7) and by kallikrein (reactions Rsy, Rsa, Rs3);

280

A.4 Blood Coagulation Cascade model

o the activation of prekallikrein by factor XIla (reactions Rys, Rag, Rso) and
by kallikrein (reaction Rjy);

« the activation of factor XI by factor XIla (reactions Rg1, Rg2, Rg3) and by

factor Xla (reaction Rgy);

o the activation of factor IX by factor Xla (reactions Rgg, R70, R71);

« the dissociation of free factor VIIla (reactions Ry3 and Ray);

o the dissociation of factor VIIla in complex with other factors (reactions Ros
and Rag).

3. The third module corresponds to the common pathway, which consists in:

« the activation of factor II by factor Xa (modeled by reaction R;g) and by
the complex between factor Xa and factor Va, through the formation of the

intermediate meizothrombin (reactions Rao, ..., Rs3);

« the activation of factor VII by factor Xa (reaction Rs) and by factor Ila

(reaction Ry);

« the activation of factor VIII by factor Xa (reactions Rrs, Rzs, Rr7) and by

factor Ila (reaction Ri7);

o the formation of a complex between factor Xa and factor Va (reactions Rog
and Rgg);

« the activation of fibrinogen by factor Ila (reactions Rsa, ..., Rog);
« the activation of factor V by factor Ila (reaction Rar);
o the activation of factor XI by factor Ila (reactions Rss, Rs9, Reo)-
4. The fourth module describes the inhibition of coagulation, carried out through the
main inhibitors of the BCC (antrithrombin, Tissue Factor Pathway Inhibitor, C1-
inihibitor, al-antitrypsin and a2-antiplasmin). These are tight binding inhibitors

belonging to the serpin superfamily, which form irreversible complexes. This

module consists in:

« the inhibition of factor Xa by Tissue Factor Pathway Inhibitor (modeled by

reactions Rgyq and Rss);

o the inhibition of the complex between Tissue Factor, factor VIla and factor
Xa by Tissue Factor Pathway Inhibitor (reactions Rsg, Rs7, Ras);

o the inhibition of factor Ila by antithrombin (reactions Ry and Rys);

281

Reaction-based models of biological systems

the inhibition of factor Xa by antithrombin (reaction Rag);
o the inhibition of factor IXa by antithrombin (reaction Ry;);
o the inhibition of factor XIa by antithrombin (reaction Rgs) and by Cl-

inhibitor (reaction Rgg);

« the inhibition of factor XIla by Cl-inhibitor (reaction Rsg), by antithrombin
(reaction Rjs7), by al-antitrypsin (reaction Rgr) and by a2-antiplasmin

(reaction Rgg);

o the inhibition of the complex between Tissue Factor and factor VIIa by

antithrombin (reaction Ry3);

« the inhibition of kallikrein (reaction Rjs).

The values of the initial concentrations of the molecular species occurring in the
BCC model are given in Table A.7. According to [56], the concentration of complexes
and active factors were set to 0, except for the active factor VII, which is physiologically
present in the blood circulation, even in the absence of a damage, in a concentration
that is approximately equal to 1% of the corresponding inactive factor [117].

The system of ODEs, needed to carry out the simulations and the PSA presented
in Section 5.2.3, was derived from the reactions given in Table A.6 according to

the mass-action law, with the exception of 14 reactions belonging to the set S. =

{R197 R217 R23a R297 R317 R35a R467 R497 R52a R627 R707 R73a R767 R82}-

282

A.4 Blood Coagulation Cascade model

No.‘ Reactants Products Constant (k) ‘
Ry | TF + {VII TF-fVII 3.20-1050 ~1s~1
Ry | TF-fVII TF + fVII 3.10-1072s71

Rs | TF + fVIla TF-fVIla 2.30-10"M 157!
R, | TF-fVIIa TF + fVIla 3.10-10 551

Rs | TF-fVIla + fVII TF-fVIIa + fVIla 4.40-10°M 151
Re | fXa + fVII fXa + fVIIa 1.30-10" M 151
R7 | fIla + fVII fITa + fVIIa 2.30-10* M ~1s1
Rg | TF-fVIla + fX TF-fVIla-fX 2.50-10"M 151
Ry | TP-fVITa-fX TF-fVIla + X 1.05 102571
Ry1g| TF-fVIIa-fX TF-fVIla-fXa 6.00 s !

Ri1| TF-fVIla-fXa TF-fVIla + fXa 19.00 s~ !

Ris| TF-fVIla + fXa TF-fVIla-fXa 2.20-10"M~1s1
Ri3| TF-fVIla + fIX TF-fVIIa-{IX 1.00-10"M~1s~1
R14| TF-fVIIa-fIX TF-fVIIa + {IX 2.40 s7!

Ry5| TF-fVIIa-fIX TF-fVIla + fIXa 1.80 571

Rig| fII + fXa fIla + Xa 7.50-103M 11
Rq7| flla + fVIII fITa + fVIIIa 2.00-10"M 151
Rig| fVIIIa + fIXa fIXa-fVIIIa 1.00-10"M~1s~1
Rig| fIXa-fVIIIa fVIIIa + fIXa 1.00-10~ 45!
Ryg| fIXa-fVIIIa + fX fIXa-fVIIIa-fX 1.00-108 M ~1s—1
Ry | fIXa-fVIIIa-fX fIXa-fVIIla + X 1.00-107°s7¢
Ryo| fIXa-fVIIIa-fX fIXa-fVIIIa + fXa 8.20 s~ !

Ro3| tVIIIa fVIIIa,-L 4 fVIIIasy 6.00-1075s71
Roy| fVIIIay-L + fVIIIay fVIIIa 2.20-10*M st
Ros| fIXa-fVIITa-fX fVITTa,-L + fVITTag + fX + fIXa | 1.00-10 35~
Rog| fIXa-fVIIIa fVIIIa,-L + fVIIIa; + fIXa 1.00-1073s71
Ro7| flla + fV flla + fVa 2.00-10"M 11
Rog| fXa + fVa fXa-fVa 4.00-108 M ~1s 1
Rog| fXa-fVa fXa + fVa 0.2 s71

Rso| fXa-fVa + fII fXa-fVa-fIl 1.00-108 M —1s—1
R3] fXa-fVa-fIl fXa-fVa + fII 103.00 s1

R3o| fXa-fVa-fIl fXa-fVa + fmlla 63.50 st

R33| fXa-fVa + fmlla fXa-fVa + flla 1.50-107 M~ 1s~1
R34| fXa + TFPI fXa-TFPI 9.00-10°M ~ts~1
Rss5| fXa-TFPI fXa + TFPI 3.60-107 4571
Rss| TF-fVIIa-fXa + TFPI TPF-fVIla-fXa-TFPI 3.20-108M 151
R37| TF-fVIla-fXa-TFPI TF-fVIla-fXa + TFPI 1.10-107257!
Rsg| TF-fVIla + fXa-TFPI TF-fVIla-fXa-TFPI 5.00-107M 1571

283

Reaction-based models of biological systems

Rig
Rao
Ry
Ryo
Ras
Ruyq
Rys
Rye
R4z
Rus
Ry
Rso
R51

fXa + ATIII
fmlIla + ATIII
fIXa + ATIII
fIla + ATIII

TF-fVIla + ATIII

fXII

fXIla + fXII
fXITa~fXI1
fXITa~fXI1
fXIla + PKal
fXIIa-PKal
fXIIa-PKal
fXII + Kal
fXII-Kal
fXII-Kal
PKal + Kal
Kal

fXIIa + Clinh
fXIIa + ATIII
XTI + flla
fXI-fI1a
fXI-fI1a
fXIla + fXI
fXITa-fX1
fXITa-fX1
fXIa + fXI
fXIa + ATIII
fXIa + Clinh
fXIa + AIAT
fXIa + A2AP
fXIa + fIX
fXTa~fIX
fXTa-fIX

fIXa + X
fIXa-fX
fIXa-fX

fXa + fVIII
fXa-fVIII
fXa-fVIII
fVIla + fIX

fXa-ATIII
fiITa-ATTII
fIXa-ATIIL
fIla-ATIIT
TF-fVIIa-ATIII
fXIla
fXITa-fXII
fXITa + fXII
fXIla + fXIIa
fXITa-PKal
fXIla + PKal
fXITa + Kal
fXII-Kal
fXII + Kal
fXIIa + Kal
Kal + Kal
Kal;
fXITa-Clinh
fXITa-ATIII
fXI-fITa

XTI + fIla
fXIa + flla
fXITa-fXI
fXITa + fXI
fXIla + fXIa
fXIa + fXIa
fXTa-ATIII
fXIa-Clinh
fXIa-A1AT
fXIa-A2AP
fXTa~fIX
fXIa + fIX
fXTa + fIXa
fIXa-fX

fIXa 4+ X
fIXa + fXa
fXa-fVIII
fXa + fVIII
fXa + fVIIIa
fVIIa-fIX

284

1.50-103 M ~1s~1
7.10-103M 157!
4.90-102M 151
7.10-103M 151
2.30-102M 157!
5.00-107 4571
1.00-108 M 15!
750.00 st
3.30-1072s71
1.00-103 M ~1s~1
3.60-103571
40.00 s~1
1.00-103 M 1571
45.30 571

5.70 s—1
2.70-10*M 1571
1.10-107251
3.60-103M 157!
21.60 M~1s7!
1.00-108 M —1s~1
5.00 s~ !

1.30 -1074s7!
1.00-108M 15!
200 st

5.70 -10~4s71
3.19-106M 1571
3.20-102M ~1s~!
1.80-103M 157t
1.00-102M 151
4.3-103M st
1.00-108M 15!
41.00 s~1

7.70 571
1.00-108M 15—t
0.64 s7!
7.00-1074s7!
1.00-103 M —1s~1
2.10 57!

0.023 57!
1.00-108 M 157t

A.4 Blood Coagulation Cascade model

Rrg| fVIIa-fIX fVIla + fIX 0.90 s~ 1

Rgp| fVIIa-fIX fVIla + fIXa 3.60-107 5571
Rg1| fVIIa + X fVITa-fX 1.00-108M ~ts™t
Rgo| fVIIa-fX fVIla + X 210.00 s—1

Rgs3| fVIIa-fX fVIIa + fXa 1.60-10 651
Rg4| Fbg + flla Fbg-fIla 1.00-108M 151
Rg5| Fbg-flla Fbg + flla 636.00 s—1

Rgs| Fbg-flla Fbnl + fIla + FPA 84.00 s~1

Rg7| Fbnl + fIIa Fbnl-fIla 1.00-108M 151
Rgg| Fbnl-fIla Fbnl + fIIa 742.60 s~!

Rgg| Fbnl-fIla Fbn2 + flla + FPB 7.40 s71

Rgo| Fbnl + Fbnl (Fbnl)sy 1.00-108M 151
Rg1| (Fbnl), 2Fbnl 6.40-1072s71
Rgs| (Fbnl)s + fIla (Fbnl)s-Ila 1.00-108 M~ 151
Ros| (Fbnl)s-fIla (Fbnl)s + {Ila 701.00 st

Ro4| (Fbnl)o-fIla (Fbn2), + {Ila + FPB 49.00 s71

Rg5| Fbn2 + fIla Fbn2-fIla 1.00-108M 151
Rgg| Fbn2-fIla Fbn2 + fIla 1.00-103s~1

Table A.6: Reaction-based model of the blood coagulation cascade (reduced version of the
“Platelet-Plasma” model described in [56]). The model consists in 96 reactions among 71
molecular species. With the exception of reaction R4y, the values of all reaction constants
were taken from [56].

285

Reaction-based models of biological systems

Species Symbol Concentration (M) ‘
al-antitrypsin A1AT 4.50-1075
«a2-antiplasmin A2AP 1.00-10~6
Antithrombin IIT ATIII 3.40-1076
Cl-inhibitor Clinh 2.50-1076
Fibrinogen Fbg 9.00-1076
Factor II fIT 1.40-1076
Factor V fv 2.00-1078
Factor VII fVII 1.00-10~8
Active factor VII fVIIa 1.00-10~10
Factor VIII fVIII 7.00-10710
Factor IX fIX 9.00-1078
Factor X X 1.6-1077
Factor XI X1 3.10-10~8
Factor XII fXTII 3.40-10~7
Prekallikrein Pkal 4.50-10~7
Tissue Factor TF 5.00-10~12
Tissue Factor Pathway Inhibitor TFPI 2.50-107°

Table A.7: Initial concentrations of molecular species of the blood coagulation cascade model
(values taken from [56]).

286

A.5 Ras/cAMP /PKA pathway

A.5 Ras/cAMP/PKA pathway

In the yeast Saccharomyces cerevisiae, the Ras/cAMP /PKA pathway plays a major role
in the regulation of metabolism, stress resistance and cell cycle progression [294, 364].
This pathway controls more than 90% of all genes that are regulated by glucose
through the activation of the protein kinase A (PKA), that is able to phosphorylate
a plethora of downstream proteins. PKA is activated by the binding of the second
messenger cycliccAMP (cAMP), which is synthesized by the adenylate cyclase Cyrl.
The activity of Cyrl is controlled by the monomeric GTPases Rasl and Ras2, which
cycle between a GTP-bound active state and a GDP-bound inactive state. In turn, Ras
proteins are positively regulated by protein Cdc25, a Ras-GEF (Guanine Nucleotide
Exchange Factor) that stimulates the GDP to GTP exchange, and negatively regulated
by proteins Iral and Ira2, two Ras-GAP (GTPase Activating Proteins) that stimulate
the GTPase activity of Ras proteins. The degradation of cAMP is governed by two
phosphodiesterases, Pdel and Pde2. These two enzymes constitute a major negative
feedback in this pathway: the low-affinity phosphodiesterase Pdel is active under the
positive regulation of PKA, while the high-affinity phosphodiesterase Pde2 is active in
the basal level regulation of cAMP.

The reactions describing the interactions occurring in the Ras/cAMP /PKA pathway,
together with the values of the associated stochastic constants, are given in Table A.8
(see also [27, 52, 255] for further details). In particular:

reactions Ry, ..., Ry describe the switch cycle of Ras2 protein between its inactive
state (Ras2-GDP) and active state (Ras2-GTP), regulated by the activity of the
GEF Cdc25 and of the GAP Ira2;

o reactions Rii, Ri2, R13 describe the synthesis of cAMP through the activation of
the adenylate cyclase Cyrl, mediated by Ras2-GTP;

o reactions Ry, ..., Ro5 describe the activation of PKA, mediated by the reversible
binding of cAMP to its two regulatory subunits, and the subsequent dissociation

of the PKA tetramer, which releases the two catalytic subunits;

o reactions Rag, ..., R33 describe the activity of the two phosphodiesterases Pdel
and Pde2, that carry out the degradation of cAMP. The activation of Pdel is
regulated by the catalytic subunits of PKA, and it represents one of the main
negative feedback control exerted by PKA within this pathway;

287

Reaction-based models of biological systems

e reactions Rsy, R35 describe the negative feedback exerted by PKA on Cdc25,

whose effect is modeled as a partial inactivation of the GEF activity and a
reduction of the active state level of Ras2-GTP.

The initial molecular amounts used in this thesis are summarized in Table A.9.

The SBML version of this model is available at the BioModels database [180]
under submission identifier MODEL1309060000, and can be downloaded at the address
http://www.ebi.ac.uk/compneur-srv/biomodels-main/BIOMD0000000478.

288

A.5 Ras/cAMP /PKA pathway

Table A.8: Mechanistic model of the Ras/cAMP /PKA pathway.

No. ‘ Reagents

Products

Stoch. constant

R, | Ras2-GDP + Cde25 Ras2-GDP-Cdce25 1.0
Ry | Ras2-GDP-Cdce25 Ras2-GDP + Cdc25 1.0
Rs | Ras2-GDP-Cde25 Ras2-Cdc25 + GDP 1.5
R,y | Ras2-Cdc25 + GDP Ras2-GDP-Cdc25 1.0
Rs | Ras2-Cdc25 + GTP Ras2-GTP-Cdc25 1.0
R¢ | Ras2-GTP-Cdc25 Ras2-Cdc25 + GTP 1.0
R; | Ras2-GTP-Cdc25 Ras2-GTP + Cdc25 1.0
Rs | Ras2-GTP + Cdc25 Ras2-GTP-Cdc25 1.0
Ry | Ras2-GTP + Ira2 Ras2-GTP-Ira2 3.0-1072
Rip | Ras2-GTP-Ira2 Ras2-GDP + Ira2 7.0-107!
Ry | Ras2-GTP + Cyrl Ras2-GTP-Cyrl 1.0-1073
Ris | Ras2-GTP-Cyrl + ATP | Ras2-GTP-Cyrl + cAMP 2.1-107¢
Ry3 | Ras2-GTP-Cyrl + Ira2 | Ras2-GDP + Cyrl + Ira2 1.0-1073
R4 | cAMP + PKA cAMP-PKA 1.0-107°
Ry5 | cAMP + cAMP-PKA (2cAMP)-PKA 1.0-107°
Ri | cAMP + (2cAMP)-PKA | (3cAMP)-PKA 1.0-107°
Ry7 | cAMP + (3cAMP)-PKA | (4cAMP)-PKA 1.0-107°
Ris | (4cAMP)-PKA cAMP + (3cAMP)-PKA 1.0-107¢
Ryg | (3cAMP)-PKA cAMP + (2cAMP)-PKA 1.0-107¢
Ry | (2cAMP)-PKA cAMP + cAMP-PKA 1.0-107¢
Rsy1 | cAMP-PKA cAMP + PKA 1.0-107¢
Ry | (4cAMP)-PKA C + C + R-2cAMP + R-2cAMP 1.0
Ro3 | R-2cAMP R + cAMP + cAMP 1.0
Roy | R+ C R-C 7.5-1071
Ros | R-C + R-C PKA 1.0
Ros | C + Pdel C + Pdelp 1.0-1076
Ro7 | cAMP + Pdelp cAMP-Pdelp 1.0-1071
Rsg | cAMP-Pdelp cAMP + Pdelp 1.0-1071
Rog | cAMP-Pdelp AMP + Pdelp 7.5
Rs3q | Pdelp + PPA2 Pdel + PPA2 1.0-107%
R31 | cAMP + Pde2 cAMP-Pde2 1.0-10~*
R35 | cAMP-Pde2 cAMP + Pde2 1.0
Rz | cAMP-Pde2 AMP + Pde2 1.7
R3y | C 4+ Cdce25 C + Cde25p 1.0
Rss | Cde2bp + PPA2 Cdc25 + PPA2 1.0-1072

289

Reaction-based models of biological systems

Table A.9: Initial molecular amounts of the Ras/cAMP/PKA model.

Molecular species | Initial amount ‘

Cyrl 200

Cdc25 300
Ira2 200
Pdel 1400
PKA 2500
PPA2 4000
Pde2 6500

Ras2-GDP 20000

GDP *1.5-108
GTP *5.0-10°
ATP *2.4-107

*The amounts of GDP, GTP and ATP are kept constant during the execution of simulations.
All molecular amounts are expressed as number of molecules per cell, derived according to

data presented in [97], as described in [27, 52].

290

Appendix B

List of abbreviations

Abbreviation

Definition

ABF
AET
ABM
API
BAN
BCC
BON
BDF
CA
CC
CGP
CLE
CMA-ES
CME
CP
CPU
CSB
CT
CUDA
DE
DM

Average Best Fitness

Absolute Error Tolerance in LSODA
Agent-Based Modeling

Application Programming Interface
Bayesian Network

Blood Coagulation Cascade
Boolean Network

Backward Differentiation Formulae
Cellular Automata

Compute Capability

Cartesian Genetic Programming

Chemical Langevin Equation

Covariance Matrix Adaptation Evolution Strategy

Chemical Master Equation
Cartesian Program

Central Processing Unit
Computational Structural Biology
Clotting Time

Compute Unified Device Architecture
Differential Evolution
Direct Method (of SSA)

291

List of abbreviations

DTTS
EC

ED

EM

ES
EPN
FRM
GA
GD

GP
GPGPU
GPU
GRM
GUI
ISB
LSODA
MA
MAK
MD
MDGP
MemHPG
MIMD
MM
MT
NFL
NMR
NRM
NSM
ODE
PDE
PGN
PE

PF

Discrete Time Target Series
Evolutionary Computation
Evolutionary Design

Euler’s Method

Evolution Strategy

Evolutionary Petri Net

First Reaction Method

Genetic Algorithm

Gradient Descent

Genetic Programming
General-purpose Graphics Processing Units
Graphics Processing Units

Gene Regulation Model

Graphic User Interface

In Silico Biology

Livermore Solver for Ordinary Differential Equations
Memetic Algorithm

Mass-action kinetics

Molecular Dynamics

Molecular Distance Geometry Problem
Memetic Hybrid Particle Swarm Optimization and Genetic Algorithm
Multiple Instruction, Multiple Data
Michaelis-Menten Model

Mersenne Twister

No Free Lunch

Nuclear Magnetic Resonance

Next Reaction Method

Next Subvolume Method

Ordinary Differential Equation

Partial Differential Equation
Prokaryote Gene Network

Parameter Estimation

Particle Filtering

292

PN | Petri Net
PSO | Particle Swarm Optimization
RAM | Random Access Memory
RBM | Reaction-based Model
RCGA | Real-Coded Genetic Algorithm
RE | Reverse Engineering
RET | Relative Error Tolerance in LSODA
RGSM | Randomly Generated Synthetic Model
RK4 | Runge-Kutta 4
RMSD | Root Mean Square Deviation
RNG | Random Numbers Generator
RPN | Resizable Petri Net
SA | Simulated Annealing
SB | Synthetic Biology
SBML | Systems Biology Markup Language
SYSB | Systems Biology
SDE | Stochastic Differential Equation
SI | Swarm Intelligence
SIMD | Single Instruction Multiple Data
SM | Simplex Method
SMX | Streaming Multiprocessor
T&L | Transform and Lighting
TSP | Traveling Salesman Problem

293

Appendix C

List of symbols

This appendix provides a list of all the symbols used for the formalization throughout

the whole thesis. Each symbol maintains a unique and uniform semantics in all chapters,

except where it is explicitly stated otherwise.

Greek and special letters

Symbol | Definition
e | Concatenation operator
o | Component-wise multiplication operator
a | Adaptive velocity factor in MemHPG
a; | Value in the stoichiometric matrix of reactants, corresponding to the i-th
reactant of the j-th chemical reaction
Bji | Value in the stoichiometric matrix of reactants, corresponding to the i-th
product of the j-th chemical reaction
v; | ©-th gene available for synthetic engineering in cuGENED
~ | Candidate solution in cuPEPSO
~* | Best solution found by cuPEPSO
~#(IT) | Best particle at the I'T-th iteration of cuPEPSO
I' | Set of genes available for synthetic engineering in cuGENED
d;; | Difference between measured and current distances of atoms ¢ and j in
MemHPG
A | Step size in deterministic simulation
A | Step size in GD (notation used exclusively in Section 3.1.2)

295

List of symbols

UZ

T =T >

A generic biochemical interaction network
Best CP individual during z-th generation of CGP
Tau-leaping error control parameter

Variable associated to platelet activation status in coagSODA (notation

used exclusively in Section 5.2)

Error/fitness value in MemHPG

Smallest error value among all particles at generation ¢t in MemHPG
Basal activation state of platelets

Number of sampling instants in cupSODA and cuTauLeaping
Migration interval in cuPEPSO

Number of chemical species to be sampled in cuTaulLeaping (notation

used exclusively in Section 5.3.1)

Number of offsprings of ES

EPN’s mutation operator (notation used exclusively in Section 7.2)
Population size in ES (notation used exclusively in Section 3.2.2)
Quantity used by tau-leaping to determine the 7 value

State change vector of reaction R;

Stoichiometric change of species .S; due to reaction R;

Target protein for the MDGP problem

Average error of atom ¢ in MemHPG

Threshold of atom’s error for the insertion into a substructure in MemHPG
Candidate solution in MemHPG

Mutation rate in CGP

Number of runs used to calculate ABF in cuPEPSO

Optimal substructure of a candidate solution in MemHPG

d-th PSO swarm in cuPEPSO (notation used exclusively in Chapter 6)

i-th unknown chemical species in cuGENED (notation used exclusively
in Chapter 8)

Quantity used by tau-leaping to determine the 7 value
Set of generic (unknown) species in cuGENED
Optimal rotation in MemHPG

Threshold for critical reactions in tau-leaping

Big theta complexity

296

¥ | Velocity clamp factor in MemHPG
7 | Time step of stochastic simulation
¢ | Putative kinetic parameterization of a candidate GRM in cuGENED
® | S-systems’ rate constant of expression processes
s | Species-to-place mapping function in PNs
Y, | Reaction-to-place mapping function in PNs
Ureae | Reactants stoichiometry-to-PN weight mapping function in PNs
Yprod | Products stoichiometry-to-PN weight mapping function in PNs
U | S-systems’ rate constant of inhibitory processes
Y | Optimal translation vector in MemHPG
X | EPN’s crossover operator
X | Vector of critical reactions in cuTaulLeaping
Xa | Crossover point index in GAs
Biochemical system

Q
Q) | Big Omega Complexity (used exclusively in the footnote on page 149)
¢ | EPN topology

Space of possible RPN topologies

Roman letters

Symbol | Definition

a | Vector of propensity functions in cuTauLeaping
a; | Position of i-th atom in protein II in MemHPG
a; | Propensity function of reaction R;
ao | Cumulative propensity
A | Number of aminoacids in a protein
A | Flattened stoichiometric matrix of reactants in cuTaulLeaping
Agin | Set of edges for migration in cuPEPSO
A | Set of all vertexes connected to the current x* vertex in SM
b; | Best position of i-th particle in PSO
B,, | CUDA blocks per grid
Big | CUDA block in position x =d,y = g

c | Vector of stochastic constants in cuTaul.eaping

297

List of symbols

&
X

Mo - M

EFN

i
Gij

Q @

G E Nypx
Gi

Stochastic constant associated to reaction R,

Social factor of PSO

Cognitive factor of PSO

Total number of samples in cuRE

Distance between atoms ¢ and j in a protein

Distinct combinations of reactants in reaction R; according to state x
Experimental conditions of target time-series in cuPEPSO

Distance between atoms ¢ and j in a candidate solution in MemHPG
Diagonal length of search space in MemHPG

Number of discrete time steps in EM

Experimental replicates of target time-series in cuPEPSO

Vector of indexes of the molecular species to be sampled in cuTaulLeaping
Energy of solution x in SA

Set of arcs in a PN

Set of molecular species with constant amount in tau-leaping (notation

used exclusively in Section 2.2.1)

Objective function / Fitness function (according to the context)
Hill function quantifying the state of platelets activation in coagSODA
Set of functions in CGP

Vector of pointers to the next time instant in cuTaulLeaping
Grid of functional nodes in CGP

Global best of PSO

Tau-leaping additional quantity

Kinetic order in S-systems

EPN’s g-th generation

Genotype in CGP

Number of parallel simulations used to calculate the average dynamics in

cuPEPSO (notation used exclusively in Chapter 6)
Vector of auxiliary values for the calculation of 7 in cuTaulLeaping
Max number of generations in an EA

Number of atoms for which a NMR distance from atom i is given in
MemHPG

MemHPG aggregate attractor

298

=R ad e

Mo
MA
MB
MV
MV

Mpi
MAXparea

n

n

Kinetic order in S-systems

Highest order of reactions in which the chemical species S; is involved
Vector containing the highest order of reactions in cuTauleaping
Vector containing the type of highest order reactions in cuTauLeaping
Vector of sampling time instants in cuTaulLeaping

Interval between two migrations in cuPEPSO

Maximum number of iterations in PSO and MemHPG

Crossover frequency in MemHPG

Constant inversely proportional to the time scale of platelets activation,
exploited by coagSODA

Kinetic constant associated to reaction R;

Length of individuals in GAs

Number of firings of reaction R; in binomial tau-leaping
Dimension of a substructure ¢ in a protein IT

Number of target species in PE

Vector of samples of Poisson distributions in cuTauleaping
Probability distribution vector of reactions firings
Number of times reaction R; will be fired in time interval [¢,¢ + 7)
Maximum capacity for places in RPNs

Maximum capacity of the p-th place in a PN

Levels back parameter of CGP

Number of places in a PN

Marking of a PN

Initial marking of a PN

Stoichiometric matrix of reactants

Stoichiometric matrix of products

State change matrix

Supplementary state change matrix

Marking of i-th place in a PN

CUDA shared memory available on the GPU

Number of particles of a PSO swarm

Number of transitions in a PN (notation used exclusively in Sections 2.2.5
and 7.2)

299

List of symbols

Numer of columns in CGP

Number of input nodes in CGP

Number of input connections to each functional node in CGP
Number of output nodes in CGP

Numer of rows in CGP

Repetitions of crossover in EPNs

Number of chemical species in the system

Number of genes available for synthetic engineering in cuGENED
Cardinality of the set of unknown species in cuGENED
Normal distribution

Number of atoms in MDGP

Big O notation

Set of all possible optimization problems

Data structure storing all simulations in cuTaulLeaping
Preset of a place in PNs

Postset of a place in PNs

1-th place in a PN

Mutation probability in GAs

Set of places in PNs

Hidden places in RPNs

Set of fixed places in an EPN

Population of EA

Poisson random sample with mean and variance equal to a;(x)7
Halt variable in i-th thread of cuTauLeaping

Population size in GAs and MemHPG

Execution flow flag in cuTaulLeaping

Set of reactions marked as critical in tau-leaping

Set of reactions marked as non-critical in tau-leaping

j-th reaction in a biochemical system

Set of reactions in a biochemical system

i-th chemical species or component of the biological system
Set of chemical species in a biochemical system

Set of optimal substructures in MemHPG

300

ST1Z€euax

Maximum size of substructure (in atoms) in MemHPG
Augmented set of chemical species

CUDA shared memory consumption

Current time of the simulation

Preset of a transition in PNs

Postset of a transition in PNs

Set of transitions in PNs

Set of hidden transitions in RPNs

“Temperature” parameter in SA (notation used exclusively in Section
3.1.3)

1-th transition in a PN

Maximum time of simulation in cuTauLeaping

Last time instant in condition D in cuPEPSO

CUDA threads per block

Total CUDA threads requested by user

i-th CUDA thread in block By,

Number of threads in cupSODA and cuTaulLeaping

Velocity vector of i-th particle in PSO

Maximum velocity of PSO particles

Flattened state change stoichiometric matrix in cuTauLeaping
Flattened supplementary state change stoichiometric matrix in cuTauLeap-
ing

Inertia factor for PSO

Weight of arc from p to ¢ in a PN

Weight function of PNs

State of the system at time ¢ in biochemical simulation
Putative state in cuTauLeaping

Initial state of a biochemical system

Candidate solution in an optimization problem (notation used exclusively
in Chapter 3)

Position of a candidate solution in a real valued search space
Currently visited vertex in SM

Standard Wiener process depending on ¢

301

List of symbols

X7(ty) | Amount of species S, produced by a simulation using parameterization
v, calculated considering experimental condition d, at time ¢,
(Xkﬂ;’d(th) Average amount of species S, calculated by performing G simulations,
using parameterization v, considering experimental condition d, at time
th

ka’e(th) Amount of species S;, in DTTS, at time ¢, during the e-th repetition in
experimental condition d

Z | Number of non-zero entries in stoichiometric matrices

302

	Table of contents
	List of figures
	List of tables
	1 Introduction
	I Theoretical Background
	2 Modeling and simulation of biochemical systems
	2.1 Modeling approaches
	2.2 Mechanistic modeling
	2.2.1 Reaction-based models
	2.2.2 Chemical Master Equation
	2.2.3 Differential equations
	2.2.4 S-systems
	2.2.5 Petri nets
	2.2.6 Other mechanistic modeling methods

	2.3 Simulation methods
	2.3.1 Deterministic simulation
	2.3.2 Stochastic simulation
	2.3.3 Multi-scale modeling and simulation

	3 Evolutionary Computation and Swarm Intelligence
	3.1 Traditional optimization techniques
	3.1.1 Simplex Method
	3.1.2 Gradient Descent
	3.1.3 Simulated Annealing

	3.2 Evolutionary Computation
	3.2.1 Genetic Algorithms
	3.2.2 Evolution Strategy
	3.2.3 Genetic Programming
	3.2.4 Cartesian Genetic Programming

	3.3 Swarm Intelligence
	3.3.1 Hymenoptera-based SI techniques
	3.3.2 Particle Swarm Optimization

	3.4 Memetic approaches and open issues

	4 General-purpose GPU computing
	4.1 Nvidia CUDA
	4.2 Random numbers generation in CUDA
	4.3 Computational Biology and general-purpose GPU computing

	II Novel Work
	5 GPU-accelerated biochemical simulation
	5.1 Deterministic biochemical simulation: cupSODA
	5.1.1 GPU implementation of cupSODA
	5.1.2 Results
	5.1.3 Discussion

	5.2
	5.2.1 The BCC model
	5.2.2 GPU implementation of coagSODA
	5.2.3 Results

	5.3 Stochastic biochemical simulation: cuTauLeaping
	5.3.1 GPU implementation of cuTauLeaping
	5.3.2 Results
	5.3.3 Discussion

	6 Parameter Estimation of biological systems
	6.1 PE in stochastic models of cellular systems
	6.1.1 Experimental data and simulated dynamics
	6.1.2 The fitness function
	6.1.3 A multi-swarm structure for the PE problem
	6.1.4 GPU implementation of cuPEPSO

	6.2 Results
	6.2.1 Stochastic models
	6.2.2 PE methodology analysis
	6.2.3 Computational results

	6.3 Discussion

	7 Reverse Engineering of biochemical systems
	7.1 RE by means of CGP and PSO
	7.1.1 Results
	7.1.2 Discussion

	7.2 RE by means of Evolutionary Petri Nets
	7.2.1 Genetic operators
	7.2.2 Toward the application of EPNs for the RE of reaction-based models

	8 Evolutionary Design of synthetic networks
	8.1 RBMs of gene regulation
	8.2 ED of GRMs by means of CGP and PSO
	8.3 Results
	8.3.1 ED of synthetic circuits with two genes
	8.3.2 ED of synthetic circuits with three genes
	8.3.3 Computational results

	8.4 Discussion
	8.5 Future perspectives

	9 Protein structure inference
	9.1 The Molecular Distance Geometry Problem
	9.2 Structure inference using a hybrid memetic algorithm
	9.2.1 A Memetic Hybrid Methodology for MDGP: MemHPG
	9.2.2 GPU implementation
	9.2.3 Results

	10 Discussion
	10.1 A critical discussion of the proposed methods
	10.2 Automatization of inference and simulation methods
	10.3 The issue of indistinguishability

	11 Conclusions
	Bibliography

	III Appendix
	A Reaction-based models of biological systems
	A.1 Michaelis-Menten kinetics
	A.2 Prokaryotic auto-regulatory gene network
	A.3 The Schlögl system
	A.4 Blood Coagulation Cascade model
	A.5 Ras/cAMP/PKA pathway

	B List of abbreviations
	C List of symbols

