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ABSTRACT 
Rapid advancement in the field of Artificial Intelligence, to be more specific in 
Machine Learning and Nanotechnology, strengthens hopes to better understand 
human mind. Ubiquitous Computing helped in the creation of intelligent 
environments pervaded by these visible and invisible devices, which are affecting 
and improving all aspects of human life. So, as a consequence, smart environments 
work on the behalf of humans for ease of comfort. The ultimate goal is to monitor 
humans without any awareness by them of computer interaction. The 
understanding of how humans will interact and make use of such systems is 
however largely unresolved and often not addressed collectively from both 
scientific and medical aspects in current research. A key to understanding such 
systems and their use is the observation that humans implicitly interact with their 
environment. The task of making this context information available to components 
in computer systems has become a prerequisite to move forward in human-
computer interaction. Context awareness or more specifically how to create 
applications that are context aware is a central issue to Ubiquitous Computing 
research. Such research raises questions on context acquisition, context 
representation, distribution and abstraction, as well as programming paradigms, 
development support, and implications on human-computer interaction in general. 

The aim of this thesis is to develop part of a ubiquitous care system to monitor 
elderly basic daily life activities; stand, sit, walk, lay and transitional activities. This 
thesis investigates the use of a wearable sensor (tri-axial accelerometer) to 
develop and evaluate the activity classification scheme with reliable accuracy in 
the real-world situations. The recognition of these activities is challenging because 
activities with similar posture are hard to discriminate (e.g. stand and sit). 
Moreover, this high similarity among activities is not uniform throughout the 
whole dataset which raises the question of how much training data would be 
required. Furthermore, the activity classification schemes proposed in literature 
are typically subject-independent; however there is lack of evidence that such 
subject-independent schemes have been successfully validated with elderly in 
uncontrolled situations. 

Firstly, a detailed accelerometer sensor’s data analysis was conducted using 
different literature highlighted features. The analysis indicated that each physical 
activity may exhibit inter-subject variability, depending upon subjects’ physical 
characteristics, weight, height, health status etc., and intra-subject variability due 
to change in physical conditions, environment, and situations which is a major 
drawback. Therefore, by applying different threshold-based activity recognition 
techniques and clustering algorithms we end up with different accuracy results (as 
mentioned in literature). In order to address the data variability within any 
activity, a simple mathematical model using statistical parameters was 
implemented. The proposed model not only confirms the classified activity with 
95% confidence but is also capable of calibrating the statistical parameter, in case 
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of activity behaviour change. Unlike threshold-based techniques, the proposed 
activity recognition system employs a better mathematical model which is robust 
and classifies activities with consistent accuracy in real-time. The need of labelled 
activity data becomes crucial in long-term activity monitoring situations which is 
often impractical or impossible. In case of unlabelled data, usually traditional 
clustering algorithms were used in literature, which require careful data analysis 
as activity data is unlabelled. A semi-supervised clustering model is presented 
which, unlike traditional clustering algorithms, require less labelled data to train 
the classifier. Moreover, the feature extraction and computation was done in real-
time. The core model for the clustering approach is a physical activity transition 
model which imitates different states of postures and transitions of human activity. 
A simple classifier based on k-Means was implemented to associate new observed 
activity data to the prior activity information as a result of the statistical model. 

In order to validate the presented activity recognition system, two independent 
studies, one in a controlled laboratory environment and other in an uncontrolled 
real-world situation, was conducted with healthy and elderly participants 
respectively. The aim was to validate the recognition system accuracy in both 
environments. The accuracy achieved in the controlled environment with 7 healthy 
subjects was 93.8% and the accuracy achieved in uncontrolled environment with 
30 elderly subjects was 90.8%. The indicated classification accuracy results reflect 
the correct recognition of stand, sit, walk and lay activities, where the transitions 
among these activities were considered as unclassified.  
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1 INTRODUCTION 

1.1 Motivation 
Advancements in computing and communication systems combined with the 
development of micro-electromechanical systems (MEMS) are changing the way 
the physical world is understood. During the past decade, there has been an 
exceptional development of microelectronics and computer systems, enabling 
sensors and mobile devices with unprecedented capabilities. Their high 
computational power, small size, and low cost allow people to interact with the 
devices as part of their daily living. That was the genesis of Ubiquitous Sensing, an 
active research area with the main purpose of extracting knowledge from the data 
acquired by pervasive sensors (Perez et al. 2010). The task of making context 
information available to computer systems has become a prerequisite to move 
forward in the direction of human-computer interaction. Context awareness or 
more specifically how to create applications that are context aware is a central 
issue to Ubiquitous Computing research. Such research raises questions on context 
acquisition, context representation, distribution and abstraction, as well as 
programming paradigms, development support, and implications on human-
computer interaction in general. 

Recent and current research is moving towards recognition of human activity 
behaviour patterns, metaphors and higher level understanding which is useful to 
create an efficient system which can interact with humans as humans do. 

The motivation behind the presented work is rapid ageing population in the world. 
According to (PACITA 2014), the proportion of the world’s population over 60 
years will double from about 11% to 22% between 2000 and 2050. The rapid 
ageing of population rises the following key points of interest; 

1. Share of older people rise, 

2. Economic consequences, 
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3. Expanded life expectancy, 

4. Increasing demand for care services. 

Technology and service innovations are expected to help responding to the 
demand for sustainable healthcare systems. The introduction of Information and 
Communication Technology (ICT) and Telemedicine is estimated to improve 
efficiency of health care by 20%, improving at the same time the quality of life of 
patients [EU, 2013 (page 6)]. 

Research to support senior citizens with technologies like tele-care, telemedicine, 
welfare technology, robotics, healthcare and AAL will play a key role. These 
technologies have the potential to enable seniors to live longer independently and 
securely at home, reduce hospitalization, socialize more easily/participate in 
society and live better in care and nursing settings. 

1.2 Literature	Review 
In the context of independent living, the inference of user’s current activity has 
been a very active research topic since 1990s. Moreover, activity recognition has 
become a multidisciplinary research area which connects its roots to multiple 
fields of study such as artificial intelligence, machine learning, human-computer 
interaction, ubiquitous computing and as well as neuroscience, physiotherapy, 
psychology etc. In my knowledge, the very first work of Caspersen et al., 1985, 
which describes the concept of activity, was published by Public Health Reports. 
The authors defined the common and professional uses of the terms “physical 
activity”, “exercise” and “physical fitness”. However, they are often confused with 
one another, and the terms are sometimes used interchangeably (Caspersen et al. 
1985). 

A physical activity (PA) is regarded as any bodily movement which results in 
energy expenditure (Caspersen et al. 1985). PAs have been studied in 
epidemiological research for investigating human movements and its relationship 
to health status, especially in the area of muscle weakness, mobility, cardiovascular 
diseases (Lyons et al. 2005), diabetes mellitus, gait balance and control (Lord et al. 
2013)(Z. Rubenstein 2006)(Pappas et al. 2001), geriatrics training and stroke 
patients during rehabilitation (Chiang et al. 2013), fitness, obesity and health (Blair 
& Church 2004). A declining PA level represents a major factor in multiple illnesses 
and symptoms related to functional impairments (Blair & Church 2004). Thus, an 
automatic PA recognition system can help to understand physical health trends 
(Aziz et al. 2007) and design tailored interventions to improve physical activity. 

The approach, I followed, towards making an effective and reliable PA recognition 
system started from detailed study of the published literature. At broad level, 
research is evolving in two separate communities, which are the medical 
community and the scientific community. The medical community published 
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research describes their understanding about human activities and associated 
movements’ importance in one’s life.  On the other side, the scientific community 
published research oriented towards measuring human activities and associated 
movements using technology. The assessment of medical work is not the scope of 
the presented work, thus I will focus on the well cited scientific work only. An 
overview of the literatures study with selected papers is described below to 
highlight some important observations. 

In early 1990s, research started to observe walking patterns in elderly people or 
patients recovering from some specific symptoms mentioned above. In (Nicholson 
1996), the author presented a case-study using a monitoring system and dynamic 
belief networks with computed threshold parameters. The author claimed that the 
system was effective in not only detecting falls but also irregular walking patterns, 
stumbles and near falls and early warnings of falls as well. In (Uiterwaal et al. 
1998), the authors presented a validation study of ambulatory monitoring of 
physical activity in two working situations. The market product for ADL 
monitoring, DynaPort, was used to monitor basic activities; locomotion, standing, 
sitting, lying with one patient. Moreover, the patient’s activity was videotaped 
during the experiment for validation purposes. In (Aminian et al. 1999), the 
researchers presented the feasibility study of Physilog, an ambulatory PA recorder 
based on accelerometer measurement, for monitoring activities. The activities 
were also recorded using video camera for activity labelling. In addition to the PA 
recording, the researchers developed an algorithm based on the thresholds 
analysis of the average and the deviation of the acceleration signal which classified 
the activities in four categories, i.e. lying, sitting, standing, and locomotion. 

In (Wu 2000), the author proposed a methodology for extracting velocity-related 
features using video cameras. These velocity related features were used to 
distinguish fall related activities; tripping, forward and backward falls from 
standing, from normal activities; walking, rising from chair and sitting down, 
descending stairs, lying down etc. In (Noury et al. 2000), a self-developed device, 
named as Actimeter, was proposed for remotely monitoring human behaviour 
during daily life. The system was capable of recognizing two activities; standing 
and lying, and had the potential capability of detecting falls (if occurred during 
standing to lying). The activities were monitored through an infra-red sensor and a 
magnetic switch. 

Until early 2000, the published research was showing trends in two directions: 
either towards monitoring physical activities or towards identifying scenarios of 
fall within physical activities, regardless if studies were evaluated in 
controlled/uncontrolled way with healthy/elderly subjects. In the meantime, 
sensing technology was also flourishing to produce electronic devices such as 
inertial sensors with remarkable advancements in micro-electromechanical 
(MEMS) technology. Especially accelerometer sensors became available on the 
market at low cost. These advancements made a positive impact in the healthcare 



 

16 

field with new and innovative methods. As a consequence, the research trend 
drastically shifted towards identifying different physical activities using 
single/multiple accelerometer sensors and large numbers of papers were 
published after 2000. Some of the examples are the following. 

The researchers (Mathie et al. 2001) described a novel system for monitoring 
physical activities: standing, sitting, lying, walking and transitions, in an home 
environment. An accelerometer sensor was worn at subject’s waist. The system 
trial was conducted on patients with chronic diseases in an uncontrolled 
environment using pre-calculated threshold features extracted from accelerometer 
sensor data. In (Noury et al. 2003), the authors proposed a methodology to detect 
falls in real-time for elderly using a single body-worn accelerometer sensor. The 
sensor was attached to the subject’s trunk. The proposed system was based on a 
threshold-based technique. Healthy subjects participated to the evaluation of the 
system in the controlled environment. The limitation of the proposed system is 
that each fall was simulated and authors considered a specific scenario of fall 
occurrence which is from standing to a laying position. In (Mathie & Celler 2004) 
the authors developed a generic framework for the automated classification of 
physical activities; standing, sitting, lying, walking and transitional activities; 
stand-sit, sit-stand, sit-lie and lie-sit with fall detection. A single accelerometer 
sensor was attached to the subject’s waist using a belt. A total of 26 subjects 
participated in the data collection and framework evaluation experimental study 
done under laboratory conditions. The high performance of the developed 
framework based on threshold-based technique was reported with 97.0% 
sensitivity and 98.9% specificity. However in the discussion section, the authors 
reported that the system was able to accurately distinguish between activity 
(which include all reported activities) and rest in a free living environment. The 
system was unable to distinguish between standing and sitting which makes the 
reported results questionable. To measure performance of a binary classification 
test, sensitivity and specificity are the statistical measures used. Sensitivity (true 
positive rate) measures the amount of actual positives which are correctly 
identified. Specificity (true negative rates) measures the complementary to the 
false positive rate. In (Lyons et al. 2005) the authors proposed a threshold-based 
technique using simple features; mean and standard deviation, extracted from 2 
accelerometer sensors attached to the subject’s trunk and thigh. The activities; 
standing, sitting, lying and walking, were examined from one elderly subject in 
uncontrolled way in the hospital environment. 

Machine learning algorithms played an important role in the last couple of 
decades. In data mining problems, machine learning provides classification 
techniques as well as clustering methods to find better solutions in many areas. In 
(Pirttikangas et al. 2006), a controlled study with 13 healthy subjects was 
reported. The dataset was collected using 4 accelerometers attached to wrists, 
thigh and neck. Activity classification was evaluated using two classifiers; 
multilayer perceptron (achieved accuracy  89.7% ) and kNN (achieved 
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accuracy 92.89%) for activities; stand, sit and relax, sit and watch TV, lie, walk, 
stairs climb/descend, read newspaper, drink, vacuum, typing, elevator up/down, 
run. An effective learning algorithm for constructing neural networks using 
acceleration measurements for activity recognition was presented in (Yang et al. 
2008). The dataset for activities; standing, sitting, walking, vacuuming, brushing 
teeth and running, was collection using a single accelerometer worn at subject’s 
wrist. The healthy 7 subjects participated for controlled experimental settings. The 
authors claimed of achieving 95 ± 3.76% using the proposed neural network 
against 87 ± 7.37% of kNN classifier. In (Gjoreski et al. 2011), an approach to fall 
detection with accelerometers that exploits posture recognition to identify 
postures that may be the result of fall was presented. The dataset for activities; 
standing, sitting, lying and transitional activities was collected using 4 
accelerometer sensors placed at chest, waist, ankle and thigh. The random forest 
classifier was chosen for activity classification and achieved accuracy was in the 
range from 75% − 99%. 

Between 2000 till 2012, many researchers presented their work in order to 
classify physical activities using either their own proposed threshold-based 
methodologies or already developed machine learning algorithms technique such 
as supervised; rule-based detection algorithms, kNN (Nearest Neighbourhood), 
Decision Trees (DT), Ensemble, Naïve Bayes (NB), Support Vector Machine (SVM), 
Artificial Neural Networks (ANN) etc., unsupervised; Hierarchical Modelling (HM), 
k-Means, DBSCAN, Expected Minimization, Gaussian Mixture Models (GMM) etc., 
and semi-supervised; Heuristic Models (HM). The wearable and non-wearable 
sensors were attached to different locations of the subject such as ear, neck, 
hip/waist, thigh, leg, foot etc. for activity classification comparison. Moreover, 
some researchers proposed techniques with the combination of activity 
monitoring and fall detection. In (Bagalà et al. 2012), the authors presented their 
findings with low specificity and sensitivity when accelerometer-related fall based 
detection algorithms (already published) were evaluated with real-world fall data. 
Another issue, I found, is to select right users/subjects for data evaluation with the 
proper understanding of the context where the system should be tested. In my 
literature review, most of the presented work was declared to be focused for the 
elderly in the context of independent living, assisted living, patients with gait 
problems, patients under rehabilitation etc. but, however evaluated under 
controlled laboratory conditions. 

Furthermore, in (Mannini et al. 2013) the authors claimed to classify a wide range 
of activities; lying, sitting, internet search, reading, typing, writing, sorting files on 
paperwork, and standing still, indoor and outdoor cycling, natural walking, 
treadmill walking, carrying a box, and stairs up/down, sweeping with broom and 
painting with roller or brush. However, the authors present their findings with 
four compact activity classes; sedentary, cycling, ambulation and other activities 
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which generate a question mark to the work against their claim of recognizing 
many activities. 

The detailed analysis of the state of the art will be described in the next chapter. 
However in conclusion, there are many issues that motivate the development of 
new techniques to improve the accuracy under natural conditions. Some of these 
challenges are (1) the selection of appropriate users for whom system will be 
designed, (2) the construction of a portable, unobtrusive, and inexpensive data 
acquisition system with respect to desired subjects context, (3) with respect to 
context, selection of activities to be monitored, (4) the design of simple feature 
extraction and inference methods with less computational processing power, (5) 
the collection of data under realistic conditions, and (6) the flexibility to support 
new users with minimum system training. 

1.3 Activity	Recognition	System	(In	my	perspective) 
In my understanding, at abstract level any activity recognition system is composed 
of four entities as shown in Figure 1; user, context, activity and sensor/s. All 
components are strongly interrelated to each other and influence the final result of 
the recognition system. 

 

Figure 1 Activity Recognition Model Components 

Physical activity in older people is usually performed as part of daily life activities, 
and thus activity monitoring should be continuously monitored with basic physical 
activities; such as standing, sitting, walking, and lying. Thus an effective 
recognition of these physical activities of older patients, over the long-term, is 
important in rehabilitation medicine not only to maintain physical and mental 
health but also for evaluating how activity is related to mobility and quality of life.  
Moreover, the short-term transitional activities between regular physical activities 
are also important in case of any unwanted events which are not limited to falls 
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only. The presented work is focused on the elderly basic activities of daily life in 
the context described above. 

In order to acquire user’s contextual information, we require the availability of 
sensors which can provide necessary information. There are, however, kinds of 
information which can’t be measured directly with one sensor. In this case, 
information has to be inferred from combination of sensors. At macro level, there 
are two approaches that have been employed for activity recognition: using 
wearable sensor/s; such as accelerometers, gyroscopes, magnetometers, pressure 
sensors, heart rate sensors etc. and using non-wearable sensor/s; such as infra-red 
sensors, magnetic switches, video cameras etc.. It is also important to consider the 
subject’s acceptance towards these sensors and how many sensors subject is 
willing to wear.  

A qualitative study (Boström et al. 2013) was conducted to identify and describe 
how older persons perceive monitoring technology in terms of personal privacy. 
The study identified uncertainty in terms of independence vs security and privacy 
vs intrusion. Older persons generally have positive feelings and attitudes toward 
technology and strive to maintain a sense of self confidence as long as possible, by 
having control. It is generally observed that with the passage of time the elderly 
prefer to continue to spend more time in their homes. Smart environments 
equipped with sensors and/or wearable body worn sensors to monitor activities 
may contribute to increased safety and independent living, according to one of the 
systematic review (Hawley-Hague et al. 2014). 

In a home environment there are two prominent approaches that have already 
been employed for activity recognition: camera-based (non-wearable sensor) and 
accelerometer-based (wearable sensor) monitoring of activity. In a camera-based 
approach, a video camera/s is placed in room/home for subject’s movements and 
classification of activities. This approach often work with good accuracy under 
laboratory conditions, however it is unable to provide the same accuracy under 
real conditions due to clutter, variable lightening and highly varied activities that 
take place in natural environment (Tapia et al. 2004). These devices are generally 
thought of as recording devices which also generate concerns of subject’s privacy 
and invasiveness. Furthermore, the high installation and maintenance cost make 
this approach less feasible in real deployment of the system. On the other side, 
accelerometers are considered as less intrusive, low cost, small size and more 
reliable as compared to camera-based systems.  

In the presented research work, the physical activity recognition system is 
developed for the recognition of basic daily life activities; standing, sitting, walking, 
lying and transitions, using a single accelerometer sensor for the elderly. 
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1.4 Problem	Statement 
The aim of this research is to design and develop an algorithm, for PA recognition 
system using single accelerometer sensor, which; 

 Is extendible and can distinguish basic activities of daily life, 

 Is robust, reliable and non-obtrusive, 

 Requires less subject’s data for classifier training, 

 Gathers and process data in real-time. 

The investigated research questions are the following: 

Research questions: 

RQ: How to design, develop and evaluate the classification algorithm for PA 
recognition using a single accelerometer sensor? 

RQ 1.1: What is the optimal location of a single accelerometer sensor to detect the 
selected range of activities from sensor’s data? 

RQ 1.2: Which issues, related to activities selection and user’s context using single 
sensor, are prominent in designing the PA recognition algorithm? 

RQ 1.3: Which are the issues related to training dataset collection schemes and its 
impact on already developed machine learning algorithms in terms of accuracy 
and reliability? 

RQ 1.4: Which are the issues related to feature/model parameter extraction from 
dataset associated with every subject? 

RQ 1.5: How the accuracy and reliability of the PA classification algorithm can be 
improved with subject-dependent recognition system which require less training 
time to train the system. 

1.5 Structure	of	the	dissertation 
The thesis is organized into the six chapters, described below: 

Chapter 1: Introduction 

The first section of the chapter describes the motivation behind activity 
recognition system and its importance in the context of elderly independent living. 
Then literature overview is presented which highlights the limitations of 
conducted research in terms of activities, context, subjects and sensors. The 
abstract model of the presented activity recognition system is described. Later, the 
primary research question and sub-questions in relation to state of the art are 
outlined. 
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Chapter 2: State of the art 

The second chapter briefly described the related work in the area of physical 
activity recognition using wearable sensors. Initially it describes different types of 
wearable sensor used in activity recognition systems and reasons behind the 
selection of accelerometer sensor. Secondly, the chapter discusses how 
accelerometer sensors are considered to be effective in activity classification. How 
data was gathered; either controlled or in uncontrolled way, for different activities 
and which kind of feature parameters were selected, in reference to literature. 
Thirdly, the implemented methodologies and classification techniques already 
employed are discussed. 

Chapter 3: Detailed description of research issues and methodologies 

This chapter provides detail description of different challenges in the state of the 
art, in terms of complexity of activities, sensor requirements and its placement, 
acquiring training dataset issues, feature/model parameter analysis and real-time 
constraints in activity recognition research. 

Chapter 4: Proposed activity recognition system 

The chapter provides an overview of the proposed activity recognition system. It 
first describes the sensing devices used in this research for selected physical 
activities. Features extracted from sensor data are explained. Later, the importance 
of subject-dependent activity system is explained as a result of data analysis. The 
detailed description of the presented methodology and the reasons behind 
integrating statistical model and clustering method are explained for activity 
classification. 

Chapter 5: Evaluation 

This chapter describes in detail the evaluation procedure for the presented 
recognition system. The evaluation was conducted with a dataset collected in a 
controlled and an uncontrolled way. 

Chapter 6: Conclusions 

This section provides a discussion on the main results of the presented method 
and their relation to the existing work presented in the state of the art chapter. 
Furthermore, this chapter explains the contribution of this work and limitations 
are explained. 
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2 STATE	OF	THE	ART 

2.1 Introduction 
Nowadays, every human is being surrounded and interacts in his/her daily life 
with many computers, electronic devices and sensors, which range from small to 
even nano-scale. The distributed behaviour of these computing devices, called 
Ubiquitous Computing, for humans becomes more interesting if designed to 
integrate user’s context, i.e. information which is relevant to the current situation. 
Ubiquitous computing is to create such personal applications which can adapt and 
react to the current context of the user. This implies that context-awareness is one 
of main foundations of the ubiquitous computing. However, the term context itself 
is very broad, as explained by (Dey 2001), 

Context is any information that can be used to characterize the situation 
of an entity. An entity is a person, place, or object that is considered 
relevant to the interaction between a user and an application, including 
the user and application itself. 

One type of information is inferring user’s current physical activity in a specific 
context, i.e. environment. The inference of the user’s current activity has been very 
important research topic which includes, but is not limited to, industrial 
applications, experiments and games, especially healthcare and assisted living etc. 
Consequently to acquire user’s contextual information about physical activity, 
sensor/s devices are needed to build such a context-aware application. There are, 
however, kinds of information which can’t be measured directly with one sensor. 
In this case, information has to be inferred from combinations of sensors. 

Activity recognition has become a multidisciplinary research area which has its 
roots in multiple fields of study such as artificial intelligence, machine learning, 
human-computer interaction, ubiquitous computing and as well as neuroscience, 
physiotherapy, psychology etc. At broad level, research is evolving in two areas 
side by side, which are the medical community and the scientific community. The 
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medical community published research describes their understanding about 
human activities and associated movements’ importance in one’s life.  On the other 
side, the scientific community have developed systems that can identify human 
activities and associated movements using technology. The assessment of medical 
work is not the scope of the presented work, thus only well cited scientific work is 
considered. 

Thus, the following chapter provides an overview of the literature work in physical 
activity recognition with the perspective of above mentioned four components. 

2.2 Sensors 
A wide range of sensors have been used for activity recognition. There are two 
prominent types of sensors that have been employed for physical activity 
recognition system: wearable sensor/s; such as accelerometers, gyroscopes, 
magnetometers, pressure sensors, heart rate sensors etc. and non-wearable 
sensor/s; such as infra-red sensors, magnetic switches, video cameras etc.. 

Non-wearable Sensors 

This type of sensors range from relatively simple mechanism with discrete output, 
such as infrared sensors and magnetic switches (e.g. (Noury et al. 2000)), ball 
switches (e.g. (Laerhoven & Lo 2004)), RFID tag readers, to more complex sensing 
methods using computer vision (e.g. (Wu 2000), (Nam et al. 2013)). 

In computer vision (camera-based) approach, a video camera/s is placed in 
room/home for subject’s movements and classification of activities. This approach 
often works with good accuracy under laboratory conditions, however it is unable 
to provide the same accuracy under real conditions due to clutter, variable lighting 
and highly varied activities that take place in natural environment (Tapia et al. 
2004). These devices are generally considered as recording devices which also 
generate concerns of subject’s privacy and invasiveness. Furthermore, the high 
installation and maintenance cost makes this approach less feasible in the real 
deployment. 

Wearable Sensors 

Some researchers used ambulatory wearable sensing devices consisting of inertial 
sensors, (e.g. DynaPort (Uiterwaal et al. 1998), Physilog (Aminian et al. 1999)) for 
activity recognition. The sensors include different instruments, like accelerometers 
(e.g. (Mathie et al. 2001), (Ravi et al. 2005), (Olgu & Pentland 2006), (Gjoreski et al. 
2011)), combination of accelerometers and gyroscopes (e.g. (Li et al. 2009)), 
combination of accelerometer and physiological sensor (e.g. (Parkka & Ermes 
2006)), and force resistive sensors on foot with gyroscopes (e.g. (Pappas et al. 
2001)). 



 

24 

Rapid enhancements in micro-electromechanical systems (MEMS) technology, 
makes it possible to manufacture small size accelerometer sensors which makes it 
possible to integrate them in smartphones. Some researchers developed 
smartphone applications for activity recognition e.g. (Khan et al. 2013), (Bayat et 
al. 2014). 

In activity recognition using wearable sensors, accelerometer sensors are 
considered as most effective and capable of providing reliable measurements. 
Beside this, these sensors are low cost, require less energy, memory consumption, 
processing power and are fairly unaffected by environmental conditions. 
Moreover, wearable accelerometer sensors are considered as less intrusive as 
compared to camera-based systems. 

Although a range of sensors have been used in the area of activity recognition, 
though accelerometer sensors have emerged as the most effective sensor for 
mobility assessment in both clinical and home environments. 

2.3 Wearable	Accelerometer	Sensors 
Accelerometer sensors are capable of measuring the applied acceleration along 
their axes. There are different types of accelerometers available, such as 
piezoelectric crystals, piezo-resistive sensors, servo force balance transducers, 
electronic piezoelectric sensors and variable capacitance accelerometers. Most 
physical activity recognition systems have used accelerometers which are capable 
of responding to acceleration due to gravity as well as acceleration due to 
movement. 

2.3.1 Sensor placement 
Figure 2 shows the three planes; transverse (horizontal), sagittal (vertical) and 
frontal (side), which intersect at center mass of human body (Winter 2004). The 
body center mass is often considered as important when studying activities and 
movements as it is important for control of whole body movements. However, the 
body center mass change dynamically and it is challenging to determine due to the 
complex dynamics of the human body. 
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Figure 2 Description of Human Body 

Usually, accelerometer sensors are attached to the part of body whose movements 
are under study. The accelerations generated during any movement may or may 
not vary among different humans, depending upon how particular 
activity/movement is performed. In order to study multiple activities researchers 
have used single accelerometer sensors at particular place of human body, as 
shown in Table 1. However other researchers have used multiple accelerometer 
sensors placed across different places of human body, as shown in Table 2. 

Table 1 Activity recognition studies using single accelerometer at single 
location. 

# Location Reference/s 

1 Waist/Hip 
(Mathie et al. 2001), (Mathie & Celler 2004), (Ravi et al. 2005), 
(Cleland et al. 2013), (Ellis et al. 2014), (Gao et al. 2014), (Gupta & 
Dallas 2014) 

2 Foot (Pappas et al. 2001), (Cleland et al. 2013) 

3 Trunk (Noury et al. 2003) 

4 Chest (Karantonis et al. 2006), (Cleland et al. 2013), (Nam et al. 2013) 

5 Wrist (Yang et al. 2008), (Cleland et al. 2013) 

6 Lower (Bonomi & Goris 2009), (Cleland et al. 2013) 
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# Location Reference/s 

back 

7 Thigh (Cleland et al. 2013) 

8 Pocket 
(Khan et al. 2013), (Leppanen & Eronen 2013), (Fahim et al. 
2013), (Kwon et al. 2014) 

 

Table 2 Activity recognition studies using multiple accelerometer sensors at 
multiple locations. 

# Locations Reference/s 

1 Upper arm, Lower arm, Hip, Thigh, Foot (Bao & Intille 2004) 

2 Trunk and Thigh (Lyons et al. 2005) 

3 Head, Behind ear (Lindemann et al. 2005) 

4 Both wrists, Thigh, Necklace (Pirttikangas et al. 2006) 

5 Chest, Wrist (Parkka & Ermes 2006) 

6 Chest, Hip, Wrist (Olgu & Pentland 2006) 

7 Waist, Thigh (Yeoh et al. 2008) 

8 Chest, Thigh (Li et al. 2009), (Chiang et al. 2013) 

9 Chest, Waist, Ankle, Thigh (Gjoreski et al. 2011) 

10 Wrist, Hip (Zheng et al. 2013) 

11 Wrist, Ankle (Mannini et al. 2013) 

 

The design of an activity recognition system is usually determined by its purpose; 
context, activities to be monitored and duration of the activity monitoring. For 
example, in clinical environments when the objective is to acquire information in a 
short time and supervised way, large number of accelerometer sensors can be 
used. The information gathered in supervised monitoring situations leads to 
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accurate assessment of the activities. However, the long-term activity monitoring 
which is usually occurred in unsupervised situations such as smart home, assisted 
living, or independent living of the subjects, subject’s compliance becomes an 
essential requirement, if the system is to be used. A qualitative study (Boström et 
al. 2013) was conducted to identify and describe how older persons perceive 
monitoring technology in terms of personal privacy. The study identified 
uncertainty in terms of independence vs security and privacy vs intrusion. As one 
of the focus of this thesis is to monitor activities in unsupervised situations using 
single accelerometer sensor at one location which from one side could limit the 
number of activities to be monitored but could simplify the system design, its 
complexity, and usability and will be less intrusive. Moreover, increasing number 
of sensors not only increase the complexity but also the cost of the system. 

2.4 Physical	Activities 
With wide range of available wearable sensors, it is not surprising that researchers 
have tried to recognize a wide range of activities. The authors, (Caspersen et al. 
1985), defined the common and professional uses of the terms “physical activity”, 
“exercise” and “physical fitness”. The paper defined these terms with the hope that 
each definition will provide a framework in which studies can be interpreted and 
compared. The definitions of these terms were: 

Physical Activity: It is defined as any bodily movement produced by skeletal 
muscles that result in energy expenditure. Physical activity in daily life can be 
categorized into occupational, sports, conditioning, household, or other activities. 

Exercise: It is a subset of physical activity that is planned, structures, and 
repetitive and has as final or immediate objective the improvement or 
maintenance of physical fitness. 

Physical Fitness: It is a set of attributes that are either health- or skill-related. The 
degree to which people have these attributes can be measured with specific tests. 

The categorization of investigated activities in literature, itself, is a challenging 
task. Some researchers tried to recognize basic daily life physical activities such as 
standing, sitting, lying and walking using single or multiple accelerometers. The 
accelerometer sensors data has successful results in recognizing these activities, 
under certain conditions. 

Another subclass of physical activities are called Activities of Daily Living (ADLs), as 
originally proposed by (Katz et al. 1963). ADLs are, for example, bathing, dressing, 
toileting, brushing teeth, and cooking, vacuuming, stairs climb/descend, laundry, 
watching TV, reading newspaper, typing, taking a cab etc. The ADLs are basic 
activities and used by physicians to assess function in daily life as well as their 
need for assistance in living. 
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Furthermore, the activities which can be considered as part of exercise such as 
running, cycling, jumping, rowing, squatting, dancing, basketball, hoping are 
studied using single/multiple accelerometer sensors. Table 3 presents the details 
of the activities investigated. 

2.4.1 Fall Detection 
Another kind of activity lies in the category of unwanted/unexpected events such 
as, but not limited to, falling. Due to rapid ageing, falls have been one of the biggest 
risks to especially elderly in terms of health and their well-being which leads to 
functional dependence. There are many fall detection systems solutions available 
on the market such as Philips AutoAlert, VigiFall, FATE-Fall detector for elderly, 
elderly medical alert system, Medical guardian FallAlert, Glaxy Fall detection 
system. Research has been and is still progressing in detecting fall using wearable 
sensors, includes accelerometers, gyroscopes, barometric pressure sensors and 
medical sensors such as ECG, EEG etc. Falls are a serious risk for the elderly, 
particularly for those living independently. 

(Noury et al. 2000) proposed a fall detection system using an accelerometer, 
actimeter, with the approach of detecting falls where the initial position is stand 
and final position end up in lying. In (Noury et al. 2003) the authors proposed a 
methodology using 2 accelerometers that measures inclination and speed 
parameters from the sensor data. In (Mathie & Celler 2004), the authors emphasize 
the identification of transitional activities among standing, sitting, walking, and 
lying. The researchers claimed that fall related events could occur during 
transitional activities. Similar work has been done by (Karantonis et al. 2006). 
Some researchers (e.g. (Boyle & Karunanithi 2008)) developed their algorithms by 
simulating different fall related events in a controlled environment. In (Bianchi et 
al. 2010), a fall detection algorithm was presented using the combination of 
accelerometer and barometric pressure sensors. This study incorporates several 
protocols including simulated falls on the mattress and simulated activities of daily 
life. In (Bagalà et al. 2012), the authors presented their findings with low 
specificity and sensitivity when accelerometer-related fall based detection 
algorithms (already published) were evaluated with real-world fall data. 

Although, accelerometer sensors have been proposed as being suitable for falls 
detection in the independent living context, there have been issues and challenges 
in the development of reliable falls detection systems. One reason is availability of 
real datasets containing fall events and need further work. 
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Table 3 State of the Art Review 

# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

1 
(Noury et al. 
2000) 

 Standing, Lying 
 Fall 

Physical activity NA NA 

Piezoelectric 
infrared sensor 
and a Magnetic 
contact switch 

Threshold 

2 (Mathie et al. 
2001) 

Standing, Sitting, Lying, 
Walking and Transitions 
(postures) 

Physical activity Uncontrolled 
Trial 

Patients 
(NA) 

Single 
accelerometer 

Threshold 

3 
(Pappas et al. 
2001) 

 Walking (Gait 
balance) - Walk on flat 
and irregular surfaces 

 Stairs, step over small 
obstacles 

Physical activity Controlled 

Healthy 
(10), 

Impaired 
gait 
problems 
(6) 

3 force sensitive 
resistors on foot 
and single 
gyroscope 

Rule-based 
detection 
algorithm 

4 
(Noury et al. 
2003) 

Standing-Bending-Lying (To 
predict Fall) 

Physical activity Controlled 
Healthy 
(10) 

2 accelerometers 
and single buzzer, 
push button 

Threshold 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

5 (Bao & Intille 
2004) 

 Walking, Sitting 
 Vacuuming, Laundry 
 Running, Cycling 

 Physical 
activity 

 Exercise 
NA NA (20) 5 accelerometers DT, kNN 

6 
(Mathie & 
Celler 2004) 

 Walking, Transitions 
among sit, stand and 
lie, to predict 

 Fall 

Physical activity NA NA (26) 
Single 
accelerometer 

DT 

7 
(Ravi et al. 
2005) 

 Sitting, Lying, Walking 
 Climbing stairs 
 Running 

 Physical 
activity 

 Exercise 
Controlled NA  (2) 

Single 
accelerometer 

NB, SVM, DT, 
kNN 

8 
(Lyons et al. 
2005) 

Sitting, Standing, Lying, 
Moving 

Physical activity Uncontrolled Elderly (1) 2 accelerometers Threshold 

9 (Lindemann 
et al. 2005) 

 Sitting, Lying, Walking 
 Climbing stairs 
 Running 

 Physical 
activity 

 Exercise 
Uncontrolled Elderly (1) 2 accelerometers Threshold 

10 (Karantonis 
et al. 2006) 

 Walking 
 Running, Jumping 

 Physical 
activity 

Controlled Healthy (5) Single 
accelerometer 

DT 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

 Fall  Exercise 

11 (Pirttikangas 
et al. 2006) 

 Stand, Sit and relax, 
Sit and watch TV, Lie, 
Walk 

 Stairs climb/descend, 
Read newspaper, 
Drink, Vacuum, 
Typing, Elevator 
up/down 

 Run 

 Physical 
activity 

 Exercise 
Controlled Healthy 

(13) 
4 accelerometers ANN, kNN 

12 (Parkka & 
Ermes 2006) 

 Lying, 
Sitting/Standing (as 
one activity), Walking 

 Running, Rowing, 
Cycling 

 Physical 
activity 

 Exercise 
Controlled Healthy 

(16) 

Single 
accelerometer 
and Physiological 
sensor 

Custom-DT, DT, 
ANN 

13 
(Olgu & 
Pentland 
2006) 

 Stand, Sit down, Walk, 
Lay down 

 Crawl, Hand 
movements while 
standing 

 Physical 
activity 

 Exercise 
Controlled Healthy (3) 3 accelerometers HMM 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

 Run, Squat 

14 (Yeoh et al. 
2008) 

Standing, Sitting, Walking 
speed, Lying 

Physical activity Controlled Healthy (5) 3 accelerometers HM 

15 
(Yang et al. 
2008) 

 Standing, Sitting, 
Walking 

 Vacuuming, 
Scrubbing, Brushing 
teeth 

 Running 

 Physical 
activity 

 Exercise 
Controlled Healthy (7) 

Single 
accelerometer 

ANN, kNN 

16 (Bonomi & 
Goris 2009) 

 Standing, Sitting, 
Lying, Walking 

 Working on a 
computer 

 Running, Cycling 

 Physical 
activity 

 Exercise 
Controlled Healthy 

(20) 
Single 
accelerometer 

DT 

17 
(Li et al. 
2009) 

 Standing, Bending, 
Sitting, Lying, to 
predict 

 Fall 

Physical activity Controlled 
Healthy 
(NA) 

Single 
accelerometer Threshold 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

18 
(Gjoreski et 
al. 2011) 

Standing, Sitting, Lying, and 
transitions 

Physical activity Controlled 
Healthy 
(11) 

4 accelerometers RF 

19 
(Zheng et al. 
2013) 

 Standing, Sitting, 
Walking, Lying down 

 Household chores 
 Running, Basketball, 

Dance 

 Physical 
activity 

 Exercise 
Controlled 

age 5-15, 
Healthy 
(71) 

2 accelerometers 

Self-defined 
Model – Sub-
window 
Ensemble Model 

20 
(Khan et al. 
2013) 

 Standing, walking, 
walking-upstairs, 
walking-downstairs 

 Running, Hopping 

 Physical 
activity 

 Exercise 
Uncontrolled 

Healthy 
(30) for 
model 
evaluation, 

Healthy 
(10) for 
validation 

Built-in 
accelerometer of 
smartphone 

ANN 

21 (Chiang et al. 
2013) 

 Standing, Sitting, 
Lying, Walking 

 Running 

 Physical 
activity 

 Exercise 
Controlled Healthy (3) 3 accelerometers Fuzzy algorithm 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

22 
(Mannini et 
al. 2013) 

Authors classified activities 
in following classes, 

 Sedentary (Lying, 
Sitting, Internet 
search, Reading, 
Typing, Writing, 
Sorting files on 
paperwork, and 
Standing still) 

 Cycling (indoor and 
outdoor) 

 Ambulation (Natural 
walking, Treadmill 
walking, Carrying a 
box, and Stairs 
up/down) 

 Other activities 
(Sweeping with room 
and Painting with 
roller or brush). 

 Physical 
activity 

 Exercise 
Controlled 

Healthy 
(33) 2 accelerometers SVM 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

23 (Cleland et al. 
2013) 

 Standing, Sitting, 
Lying, Walking 

 Walking up and down 
stairs 

 Running 

 Physical 
activity 

 Exercise 
Controlled Healthy (8) 6 accelerometers NA 

24 
(Leppanen & 
Eronen 2013) 

Authors classified activities 
in following classes, 

 Idle/Still (Breakfast, 
Lying, Sitting, sleep, 
Standing, Still) 

 Walking 
 Running 
 Skiing 
 Cycling (Bicycling) 
 Vehicle (Car, Subway 

train, Taxi, Train) 
 Other (Cleaning, 

Cooking, Skating) 

 Physical 
activity 

 Exercise 
Uncontrolled NA 

Built-in 
accelerometer of 
smartphone 

GMM, q-GMM 

25 (Fahim et al.  Walking, going up 
stairs, going down 

 Physical 
activity 

NA Healthy accelerometer Genetic 



 

36 

# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

2013) stairs 
 Jogging, Running, 

Cycling, Hopping 

 Exercise (10) algorithm 

26 (Nam et al. 
2013) 

 Sitting-down, 
Standing-up, Walking 
forward, Walking 
backward 

 Turning left, Turning 
right, Going down 
stairs, Going up stairs, 
Taking an elevator 

Physical activity Uncontrolled NA 

Single 
accelerometer 
and single grid 
based image 
sensor 

SVM 

27 
(Bayat et al. 
2014) 

 Slow-Walk, Fast-Walk 
 Stairs-up, Stairs-down 
 Running, , Dancing 

 Physical 
activity 

 Exercise 
Controlled Healthy (4) 

Single 
accelerometer NA 

28 (Ellis et al. 
2014) 

 Standing, Sitting, 
Walking 

 Riding in a vehicle 
 Bicycling 

 Physical 
activity 

 Exercise 
Uncontrolled Healthy (2) Single 

accelerometer 
Random Forest 
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# Reference Studied activities 

How activities were evaluated? 

Activity Type Context User (#) Sensor/s Classification 
Method 

29 (Kwon et al. 
2014) 

 Standing, Sitting, 
Lying, Walking 

 Running 

 Physical 
activity 

 Exercise 
Uncontrolled NA Single 

accelerometer 
k-Mean, GMM, 
Hierarchical 

30 
(Gao et al. 
2014) 

Standing, Sitting, Lying, 
Walking and transitions Physical activity Controlled Elderly (8) 

Single 
accelerometer 

ANN, DT, kNN, 
SVM 

31 
(Gupta & 
Dallas 2014) 

 Sit/Stand (as one 
activity), Walking 

 Jumping, Running 

 Physical 
activity 

 Exercise 
Controlled Healthy (7) 

Single 
accelerometer NB, kNN 

Note: ‘NA’ corresponds to unavailability/unclear information from the reference paper. User represented as ‘Patient’ corresponds to real 
patient for study. User represented as ‘Healthy’ corresponds to either children or young adults for study. User represented as ‘Elderly’ 
corresponds to senior citizens for study. 
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In conclusion, physical activity recognition systems can be developed using a 
variety of wearable sensors with the capability of identifying a wide range of 
activities; basic daily activities, ADLs, and activities related to exercise. These 
wearable sensors can placed in many locations to get information about multiple 
activities or single location for more focused set of activities. The literature review 
identifies that the research community in the area of activity recognition is focused 
on two components; activity and sensor. In my understanding, the literature is 
lacking in highlighting the two other components of the system design for activity 
recognition which are the end user and the context. The recognition 
algorithm/model is the core of any activity recognition system with the integration 
of sensors. In order to evaluate the developed algorithm, sensors data acquired 
from under study activities are needed. 

The next section will provide an overview of literature in terms of user and context 
for data collection. 

2.5 Data	Collection	and	Selection	of	Users	and	Context 
Data collection is considered to be an important step in the development process 
of any computing system. In activity recognition systems, it is the process of 
gathering and acquiring information from sensor/s, in a systematic way that 
enables to answer research questions and to evaluate recognition algorithms. The 
objective is to collect reasonable amount of data and then through data analysis 
allow us to build concreate answers to the research questions. There are two 
methods of data collection. 

2.5.1 Controlled/Supervised 
Controlled experiments are a very common way of collecting data in almost every 
field. In activity recognition, in controlled experiments the researcher sets an 
experimental setup or pre-defined protocol for collecting data of each activity that 
needs to be studied. In order to conduct the experiment, two groups are needed: an 
experimental group (training group) and a control group (testing group). The 
training group is a group of users/subjects that are bound to perform any activity 
as described or set by the researcher in the experimental protocol. Each activity is 
labelled with the respective activity name/tag, which can be done either manually 
or through custom software. The dataset collected from the training group is used 
to evaluate the activity recognition algorithm or developed method. The testing 
group, on the other hand, is allowed to perform the activities without following the 
protocol. In principle, the data collected from testing group shouldn’t have any 
activity labels. Due to algorithm validation process, the data labelling is performed 
to training dataset as well. 

On the positive side, the controlled experiments have the strength of establishing 
baseline information for the investigated activities. Experimentation done in 
controlled way can be repeated many times for algorithm model evaluation. It is 
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difficult to answer, due to limited work done, if either results or conclusions made 
from controlled experimentation can be generalized for large sets of user 
population or not. On the negative side, controlled experiments can be artificial as 
they are conducted, for the most part, in a laboratory setting and therefore not able 
to include many real-life effects. 

2.5.2 Uncontrolled/Unsupervised 
The uncontrolled or unsupervised is another type of data collection method. In 
uncontrolled experiments, the users perform the unlimited number of activities in 
certain environment; such as clinical or home. The sensor/s is attached to one or 
multiple locations of body. The sensor/s data usually stored in the memory chip 
integrated with the sensing device. After collecting reasonable amount of data (for 
all activities), extensive data analysis is performed and the activity recognition 
algorithm is evaluated for certain activities. Due to the unlabelled dataset, machine 
learning techniques are used for activity classification and identification. 

The literature study, as shown in Table 3, suggests that most data collections have 
been conducted in controlled environments with healthy subjects. There is very 
little work where datasets have been collected in uncontrolled situations with 
elderly or patients. Most of the research work done in activity recognition is being 
targeted to elderly users in different contexts of healthcare and assisted living 
situations which are considered to be uncontrolled environments. However, the 
experimentation, even in controlled way, with healthy subjects has not been 
validated in uncontrolled situations.  

2.6 Activity	Recognition	Methodologies 
Wearable accelerometer sensors have been used to devise algorithm methods for 
activity recognition system to classify different postures and movements. Some 
researchers develop systems using multiple sensors, and some use a single 
accelerometer sensor. Different body locations have been used to place wearable 
accelerometer/s which includes waist, chest, leg, thigh, foot etc. The datasets have 
been collected using the selected number of accelerometers located at single or 
multiple locations. The collected dataset is mainly the raw sensor data. The sensor 
data is, first, divided into small segments, referred as window-segments/windows. 
Then for each window, one or more feature parameters are computed. These 
feature parameters eventually become the input for developed activity recognition 
algorithm or already build classification methods which will associate each 
window with an activity. 

2.6.1 Features selection 
A wide range of features extracted from accelerometer sensors have already been 
studied. Table 4 highlights the most common features used in previous studies. 
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Table 4 Features Categorization 

Category Feature Reference 

Time-domain 
Energy expenditure 

(Mathie et al. 2001), (Bao & Intille 
2004), (Ravi et al. 2005), (Cleland et 
al. 2013), (Ellis et al. 2014), (Gupta & 
Dallas 2014) 

Mean 

(Bao & Intille 2004), (Mathie & Celler 
2004), (Ravi et al. 2005), 
(Pirttikangas et al. 2006), (Lombriser 
et al. 2007), (Yang et al. 2008), (Yang 
et al. 2008), (Bonomi & Goris 2009), 
(Fernandez-Luque et al. 2010), 
(Gjoreski et al. 2011), (Atallah et al. 
2011), (Zheng et al. 2013), (Gupta & 
Dallas 2014)  

Standard deviation and 
variance 

(Kern et al. 2003), (Ravi et al. 2005), 
(Lyons et al. 2005), (Parkka & Ermes 
2006), (Bonomi & Goris 2009), 
(Gjoreski et al. 2011), (Zheng et al. 
2013), (Chiang et al. 2013), (Cleland 
et al. 2013), (Bayat et al. 2014), (Ellis 
et al. 2014), (Gao et al. 2014), (Gupta 
& Dallas 2014) 

Zero or mean crossing 
rate (Maurer et al. 2006) 

Root mean square 
(Maurer et al. 2006), (Luinge & 
Veltink 2005), (Bonomi & Goris 
2009) 

Peak-to-peak values 
(Van Laerhoven & Gellersen 2004), 
(Parkka & Ermes 2006), (Bonomi & 
Goris 2009), (Zheng et al. 2013) 

Maximum and minimum (Bayat et al. 2014), (Ellis et al. 2014) 

Correlation between 
pair of axes 

(Ghasemzadeh et al. 2008), (Ravi et 
al. 2005), (Yang et al. 2008), (Bonomi 
& Goris 2009), (Zheng et al. 2013), 
(Cleland et al. 2013), (Bayat et al. 
2014) 
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Category Feature Reference 

Frequency-domain Spectral energy (Bao & Intille 2004), (Bonomi & Goris 
2009) 

Spectral entropy (Preece et al. 2009), (Ellis et al. 2014) 

Spectral centroid (Wu et al. 2008) 

Time-frequency 
domain 

Wavelet transform 
(Preece et al. 2009), (Li et al. 
2013) 

 

Generally, features are the parameters extracted from the sensors which can easily 
discriminate one activity from another. Existing research indicates the variability 
of selected features, even for the same activity. Thus one can infer that subjects 
may or may not perform the same activity in different ways which leads to the fact 
of features variability. Hence, to achieve effective activity classification, selecting 
features with high discriminative ability is of high importance.  

There are numbers of ways that have been used for selecting appropriate feature 
sets for activity recognition. The statistical analysis approach is to assess the 
distribution of selected time-domain feature/s for different activities, e.g. (Lyons et 
al. 2005). Another approach is forward-backward search in which features can be 
added or removed from a larger feature set. Importantly, the final optimal features 
are identified depending upon the classification accuracy achieved for each feature 
subset e.g. (Bayat et al. 2014). Some researchers used another approach where, 
instead of selecting a subset of features, features were combined to make a new set 
of features. This approach is often useful in reducing the number of features, 
where the dataset is being collected from many sensors, which are either 
unnecessary or need more computational work. This approach is called feature 
reduction. Principle Component Analysis (PCA) and Independent Component 
Analysis (ICA) are two commonly used feature reduction techniques used in 
activity recognition with multiple sensors, e.g. (Habilitationsschrift 2005). 

As far as frequency domain and time-frequency domain parameters are concerned, 
these features are computed by first transforming the window-segment into 
frequency domain, these parameters need complex computation to discriminate 
physical activities, longer window-segments are required for these feature 
calculation. Due to increase in computational time and power, these feature 
techniques are inappropriate for real-time application. 

On the other hand, time-domain parameters, typically of statistical manner, 
require less computational time and can be extracted easily in real time. These 
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features are still the most widely used features in many acceleration-related 
activity recognition systems. 

As a result of selecting a feature set which can classify the sensor data to particular 
activity, it will become the input to the classification algorithm. The complexity of 
these classification algorithms varies from simple threshold-based methods to 
more advanced algorithms such as Machine Learning (ML) techniques. 

2.6.2 Fixed Threshold-based Methods 
The published research work have used mostly time-domain features to develop 
activity recognition methods called as Fixed Threshold-based Methods that use 
feature set parameters assigned with fixed value or pre-determined value as a 
result of investigation. Literature, published results, for activity recognition using 
threshold-based methodology showed better results in controlled situations 
because such methods developed with the assumption that acceleration signals are 
deterministic. Threshold-based methods have been used successfully in 
discriminating static activities, such as standing, sitting and lying, and dynamic 
movements; walking, running, jumping etc., using single accelerometer sensor 
worn at waist/trunk ((Mathie et al. 2001), (Noury et al. 2003)) and multiple 
accelerometer sensors worn at trunk/thigh/head/ear/chest ((Lyons et al. 2005), 
(Lindemann et al. 2005), (Li et al. 2009)). However, acceleration signals generated 
in response to any activity are not deterministic due to the complex dynamics of 
the human body. Thus, there is the possibility for developing a better mathematical 
model by using discrete time-series data analysis to describe the acceleration 
signals. 

2.6.3 Machine Learning Techniques 
The following section provides a brief and general overview of the machine 
learning techniques that have been used in the literature for activity recognition  
for a detailed description and mathematical model for each technique see e.g. 
(Witten et al. 2011). A wide range of classification methods have been employed, 
as shown in Table 3. The comparison of different methods becomes difficult due to 
few reasons. First, there is a lack of standard datasets available for each activity. 
Usually, every ML technique works under a certain mathematical model. However, 
it is not evident from the literature why different researchers used different 
techniques for the similar type of activities. Secondly, the researchers’ selected ML 
technique usually depends on the selected activities and type of sensors data. 

Machine learning techniques are generally categorized into supervised, 
unsupervised and semi-supervised. Each learning technique has its own pros and 
cons. More research evidence is required to know which learning technique should 
be applied at any particular situation. 
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Supervised Learning Technique 

Supervised learning techniques require a training phase where labelled data of 
each activity is provided to an algorithm. Once, the algorithm is trained then there 
is a testing phase where the algorithm is able to classify, or to assign, correct 
activity for which it is trained. Some supervised learning techniques used in the 
literature are kNN (Nearest Neighbourhood), Decision Trees (DT), Ensemble, 
Naïve Bayes (NB), Support Vector Machine (SVM), Artificial Neural Networks 
(ANN) etc., as mentioned in Table 3. 

The general procedure for supervised learning algorithms for activity recognition 
consists of the following steps: 

Sensor data acquisition for each activity with labels, as described in Section 2.5.1, 
usually referred as true value or ground truth. 

1. Feature extraction and selection 

2. Dividing each activity dataset into train and test dataset 

3. Train dataset is used for algorithm or classifier training 

Test dataset is used for predicting algorithm performance, in terms of accuracy, 
precision, sensitivity, specificity etc. Cross-validation (CV) approach is used to 
evaluate the accuracy of the recognition system. 

Unsupervised Learning Technique 

The unsupervised learning techniques require neither training phase nor the 
labelled activity dataset. The unsupervised clustering method e.g. k-Means work 
with the objective to partition n data samples to k clusters in such a way that each 
data sample belongs to nearest mean value (pre-determined by k-Means algorithm 
based on data distribution). For example, if the dataset is composed of 4 activities 
then the clustering methods require selected feature set and k value (number of 
clusters) as an input parameter. The chosen clustering method distribute the 
dataset into k clusters. Unfortunately, clustering algorithms can’t identify the 
cluster label, hence need careful offline work. Unsupervised learning techniques 
used in literature are Hierarchical Modelling (HM), k-Means, DBSCAN, Expected 
Minimization, Gaussian Mixture Models (GMM) etc., as mentioned in Table 3. 

The general procedure for unsupervised learning algorithms used for activity 
recognition consists of the following steps: 

i. Data collection from body attached sensors without labels 

ii. Feature Extraction 

iii. Application of already developed clustering models 
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The claimed classification results have shown variation among different clustering 
algorithms which makes difficult to evaluate the applied clustering algorithms. The 
conducted research indicates few approaches to validate the selected algorithm’s 
performance; such as using camera, hiring an observer, offline data processing.  

For example, a camera-based validation study was conducted by researchers (Wu 
2000) for distinguishing fall-related activities from normal activities; standing, 
sitting, walking and lying. The dataset was collected using a single body-worn 
wearable accelerometer sensor attached to subject’s trunk. The threshold-based 
approach was used to classify normal activities and the proposed system was 
validated using cameras installed in the room. 

In another study, for example, researchers (Lyons et al. 2005) assigned an 
observer to the patient in the hospital environment. The activity recognition 
system was designed for patient’s mobility monitoring, for standing, sitting, lying 
and walking activities. The dataset for the mentioned activities were collected in 
an uncontrolled way. However, as mentioned above, one observer was assigned to 
the patient and recorded the patient’s activity without interacting with the patient. 
The research was done by using two accelerometers attached to the subject’s trunk 
and thigh. After collecting reasonable amount of data, the activities classified by 
proposed threshold-based algorithm was compared with the observer’s records. 
All data processing, algorithm evaluation and validation were done in offline mode. 
The findings indicated 93% accuracy. 

In (Kwon et al. 2014), the authors conducted an uncontrolled data collection study 
using a smartphone placed in the subject’s pocket. The study was based on 
assessing the effectiveness of different unsupervised learning algorithms and 
consists of two parts; when k (number of activities) is known and when k is 
unknown. The authors selected k-Means, Gaussian Mixture Models (GMM) and 
Hierarchical clustering methods for activity classification. The dataset for 
activities; standing, sitting, lying, walking and running was collected, for 10 
minutes, from the subject. Their findings indicate 71.9% accuracy for k-Means, 
100% for GMM and 79.9% for hierarchical clustering.   

Semi-supervised Learning Technique 

The third category of machine learning techniques is semi-supervised learning. 
The semi-supervised technique tries to merge the concepts of supervised and 
unsupervised learning techniques. Although, there is very little work in this 
domain however it is quite interesting in the area of activity recognition systems. 
The semi-supervised approach has been applied when less labelled data and 
comparatively large unlabelled data is available; when it is usually expensive to 
acquire continuously labelled data. In (Khan et al. 2013),  the authors developed 
their own activity recognition algorithm integrated in a smartphone for: standing, 
walking, running and hopping. The evaluation of the developed model was done by 
30 healthy subjects and for validation 10 healthy subjects participated. During the 
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validation phase, each subject was carrying the smartphone while performing the 
activities. A mobile application at certain moments indicates the name of the 
activity the user is doing. However the subject has to identify the correct activity to 
the application for developed algorithm calibration. The developed system showed 
87.1% accuracy in classification of the selected activities. 

2.7 Conclusion 
This chapter elaborates the literature work introducing two considerations, the 
first is the importance of wearable sensors in the activity recognition area and the 
second the large variety of activities that can be identified using wearable sensors. 
Within wearable sensors, the accelerometer sensor/s showed significant attention 
towards activity recognition. These accelerometer sensors can be attached to the 
subject’s body at different locations such as waist, hip, thigh, chest, wrist for 
selected activity data collection.  

The chapter also describes different data collection schemes used for acquiring 
activity dataset and which kind of features can be extracted from these datasets. 
After feature selection for selected activities, the next step is either to develop an 
activity recognition algorithm or utilize the already developed wide range of 
classification and clustering methods of machine learning. Time-domain features 
are commonly used in developing threshold-based methods, as these features 
require less computational time and power to build real-time recognition systems. 
As the threshold-based methods usually work with pre-determined feature values, 
the research indicates that the selected features may or may not have data 
variability which could depend on the data collection scheme or the activity 
selection. Researchers have applied many machine learning algorithms in order to 
achieve more accuracy by applying different ML techniques. Published works 
cover many ML algorithms and the interesting point is to compare accuracy 
claimed with ML algorithms. The reason of this wide variability could be the size of 
the dataset, data collection protocol, subjects group, environment, number of 
sensors, sensor placement etc. Some researchers have also presented their own 
algorithms. 

Therefore considerable further work is required to establish the suitability of the 
different techniques for a range of classification problems. Most previously 
published activity monitoring studies vary considerably in the choice of sensor 
placements and in the range of activities analysed. 
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3 RESEARCH	ISSUES	AND	
CHALLENGES	USING	
WEARABLE	SENSORS 

3.1 Overview 
The literature in the area of physical activity recognition is wide spread ranging 
from different types of sensors that can be used to identify variety of activities in 
different contexts.  

Physical activities have been studied in epidemiological research for investigating 
human movements and their relationships to health status, especially in the area of 
muscle weakness, mobility, cardiovascular diseases (Lyons et al. 2005), diabetes 
mellitus, gait balance and control (Lord et al. 2013)(Z. Rubenstein 2006)(Pappas et 
al. 2001), geriatrics training and stroke patients during rehabilitation (Chiang et al. 
2013), fitness, obesity and health (Blair & Church 2004). A declining PA level 
represents a major factor in multiple illnesses and symptoms related to functional 
impairments (Blair & Church 2004). Thus, an automatic PA recognition system can 
help to understand physical health trends (Aziz et al. 2007). 

The automatic recognition of PA using wearable sensors has practical limitations 
from subject’s perception, such as number of sensors and location of sensors. 
There are other issues that influence in the successful deployment of activity 
recognition system. 
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3.2 Complexity	of	Activities,	the	Selected	Subjects	and	Context	
Influence 
The developed systems in the field of activity recognition using wearable sensors 
can be evaluated in terms of identified activities complexity with respect to 
selected subjects and the subject’s context. The recognition systems complexity 
can vary depending on different factors, which can include; number of activities, 
which subjects, which context, kind of activities and issues related to acquire 
training dataset for the selected activities. 

3.2.1 Number of activities 
Human body dynamics is capable of generating different types of activities. There 
could be inter-subject and intra-subject variability in performing activities. The 
human activities can be identified either by using single/multiple wearable 
sensors or with combination of different type of wearable sensors. The selected 
activities and sensors should be able to recognize these activities. Multiple or 
combination of sensors could be useful and could have the capability to identify 
the large set of activities, with certain concerns, if the recognition system is 
designed for short-term use. However, in case of long-term recognition, it is 
usually easier to recognize a subset of activities than large number of activities. 
Hence, it is more useful and would be more meaningful to recognize small set of 
activities, with reasonable accuracy, which have more impact in one’s independent 
living. 

3.2.2 Which subjects and contexts? 
The published work proposed recognition systems for elderly subjects in the 
context of their independent living, assisted living etc. in terms of their healthy and 
active life. However, the experimentation conducted was based on healthy subjects 
and in controlled laboratory environments. The published work is mostly based on 
either pilot or preliminary studies with no future implementation of their initial 
findings (to my knowledge). Few researchers conducted their studies with real 
patients or elderly in uncontrolled environments; however, more research work is 
required in this domain. As mentioned before, the subject could perform the same 
type of activity differently in a different context of living. It is very important to 
decide the ultimate user and associated context in the development of activity 
recognition system. Thus, the proposed system should be capable of identifying the 
same activity correctly, at least for the same subject. In the context of, e.g., 
independent living of elderly, the proposed system has to be less intrusive and 
easy to use with an objective of utilizing recognition system for longer period of 
time. 
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3.2.3 Which kind of activities? 
The basic activities are considered to be the important in every ones daily life. In 
the context of elderly’s well-being and activeness, these basic activities play an 
important role and can be recognized using single wearable sensor. However, 
other household activities are also important, but probably require more sensors 
to be attached on the body. The activity recognition system can achieve simplicity 
with single wearable sensor to recognize basic activities of elderly. The other 
activities can be identified by exploiting non-wearable sensors; such as ambient 
sensors, with the help of indoor-localization techniques as explained in e.g. (Merico 
et al. 2012; Merico et al. 2013). 

3.2.4 Training dataset collection issues 
For algorithm evaluation, a train dataset is required which can be collected either 
in a controlled laboratory environment or in an uncontrolled environment, as 
described in the Section 2.5. 

Usually, dataset collected in laboratory settings use protocols, pre-defined by the 
investigator. Thus the subjects performed activities are, probably, with same speed 
and for less time. The probability of acquiring unnatural activity patterns for the 
subjects are high, due to the fact that subject has to follow the protocol in strict 
manner. 

However, in free living or uncontrolled conditions, the dataset is collected in 
unsupervised way. Hence, the subject might perform the same activities differently 
than the controlled laboratory conditions. The understanding of human behaviour, 
while performing any activity, in an uncontrolled environment is still a challenging 
work. 

On the positive side, it is easy to label the subject’s activity during laboratory 
conditions and a mandatory task for activity recognition algorithm’s evaluation. 
Therefore, the training dataset collected for activities in controlled settings are 
usually easier and ultimately the algorithm’s evaluation produces good results. On 
the other side, the dataset collected in unsupervised/uncontrolled settings brings 
several challenges in terms of validating the algorithm when there is no labelled 
data. The approach to label data in uncontrolled way, described in literature, is 
accomplished either by the help of external observer, or the subjects themselves 
labelled the activity. These scenarios generate another problem, if the activity data 
labelling is incorrect or unreliable then it will affect the classifier’s training and 
eventually decrease the recognition accuracy. 

3.3 Sensor	Requirements	and	Its	Placement 
Among wearable sensors, the accelerometer sensor/s has been successfully used 
in the activity recognition system in classifying different activities. The activity 
recognition systems developed using small set of sensors are capable of 
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recognizing small set of activities, such as basic daily life, which are easier in terms 
of collecting training dataset and more appropriate to real-world applications. The 
real-world applications are built with the concept of working in real-time 
conditions. Towards building real-time applications, small number of sensors 
means fewer signals are needed to analyse and less computational complexity as 
compared to the systems with large set of sensors.  

Furthermore, the published research indicates that the single accelerometer 
sensors have the potential to recognize/identify activities, if algorithms have been 
developed within the subject’s context and selected activities. Some researchers 
have conducted studies for optimal location of single accelerometer sensors e.g. 
(Cleland et al. 2013)(Gao et al. 2014) and findings  showed that the subject’s waist 
could be the optimal location for specific activities and can achieve reasonable 
accuracy in recognizing different physical activities. 

The literature review demonstrates that useful information can be obtained using 
single accelerometer sensor attached to subject’s waist (e.g. (Mathie et al. 2001), 
(Mathie & Celler 2004), (Ravi et al. 2005), (Yang et al. 2008), (Cleland et al. 2013), 
(Ellis et al. 2014), (Gao et al. 2014), (Gupta & Dallas 2014)); considered as close to 
center of mass of the subject (Winter 2004). 

Moreover, the sensor’s placement on the subject’s body has major impact in the 
classification of activities. Some activities can be classified with more accuracy at 
certain sensor’s location, and some other at different location. More sensors 
attached to the subject’s body might be acceptable for short-term activity 
monitoring in controlled situations, however, they are not that much feasible for 
long-term activity monitoring in uncontrolled situations. 

Thus, in the context of independent living, the developed system should consider 
subject’s tolerance towards wearing sensors and this can be achieved by using 
single body-worn accelerometer sensor to recognize activities with high accuracy. 

3.4 Training	Dataset	and	its	Impact	on	The	Recognition	
Algorithm’s	Performance 
As described before, activity dataset can be collected in either controlled or 
uncontrolled environments. Moreover, generally, there are two approaches being 
used to develop activity recognition system which includes either Threshold-based 
methods or Machine learning techniques (Supervised/Unsupervised). To explain 
the impact of training dataset to algorithm’s recognition accuracy, the subset of 
literature is selected where researchers developed/proposed/used algorithms for 
basic activities such as standing, sitting, lying and walking using single/multiple 
accelerometer sensor. 

It appears to me that a reasonable amount of each activity dataset is required for 
threshold-based methods to compute feature thresholds which can discriminate 



 

50 

one activity from another. These methods becomes challenging, e.g., how much 
data is required? Which features to be used? Will the pre-determined threshold 
values, for selected features, be reliable enough for large subject population? As 
mentioned before with reference to the literature that the activities performed by 
human body could be different at different situations, which results in variations in 
achieved system’s accuracy, as shown in Table 5. Furthermore, different subjects 
might perform the same activity in different way. There is lack of research 
evidence for the validation of already proposed threshold-based methods with 
selected feature set. 

On the other side, machine learning techniques deal with the development of 
activity recognition systems that are meant to learn from the data. Therefore, 
machine learning techniques require two types of datasets; one called a train 
dataset and the other as a test dataset. The train dataset, collected from given 
subjects, is used for classifier (of selected technique) training/learning. The test 
dataset, collected from unobserved subjects, is used for trained classifier 
evaluation. The objective of this training phase is to achieve generalization, leads 
to subject independent recognition. Generalization in this context is the ability of 
the classifier to perform accurately on new, unseen subjects after learning from the 
training dataset. Unfortunately, neither there are any training data collection 
protocol standards nor any agreements on the size of training/testing dataset are 
mentioned in the literature. As shown in Table 5, the variations in achieved 
recognition accuracy for even basic activities is due to different amount of data 
gathered for different number of subjects or due to the reason that there is inter or 
intra-subject data variability. Moreover, different researchers have claimed 
different recognition accuracies for different machine learning techniques. The 
challenges in the adopting machine learning techniques are, 1) the quantity of 
training dataset collection, 2) subject-independent or subject-dependent training, 
3) data labelling issues in supervised learning techniques, 4) data labelling 
requirement for unsupervised learning techniques for validation purposes, 5) 
feature selection, 6) classifier selection and 7) addition and identification of new 
activities.  
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Table 5 A selected review of basic physical activity (stand, sit, walk, lying) 
using accelerometer sensor/s. 

Ref. Context Dataset 
(Subjects) 

Sensor Method Accuracy 

(Mathie et 
al. 2001) 

Uncontrolled 14 hrs (NA) 1 Threshold NA 

(Lyons et 
al. 2005) 

Uncontrolled 29 hrs (1) 2 Threshold 93% 

(Yeoh et 
al. 2008) 

Controlled NA (5) 3 Heuristic 
Model 

100% 

(Li et al. 
2009) 

Controlled <5 min 
(NA) 

2 Threshold 91% 
Sensitivity 

(Gjoreski 
et al. 
2011) 

Controlled 15 min 
(11) 

4 Random 
Forest 

75%–99% 

(Chiang et 
al. 2013) 

Controlled 70 sec (3) 3 Fuzzy 
algorithm 

99.33% 

(Cleland 
et al. 
2013)* 

Controlled 7 min (8) 1 SVM, J48, NB, 
NN 

97.81%, 
94.11%, 
95.92%, 
97.75% 

(Kwon et 
al. 2014) 

Uncontrolled NA 1 k-Means, GMM, 
Hierarchical 
clustering 

71.98%, 
100%, 
79.98% 

(Gao et al. 
2014)* 

Controlled 340.5 min 
(8) 

1 Decision Tree 92.8% 

Note: References in red colour indicates the participation of elderly/patient in data 
collection and black colour references collected data from healthy subjects. NA 
means information is not clearly available. *Reference conducted studies for 
evaluating different accelerometer sensors location and classifiers comparisons, 
accuracy w.r.t single sensor attached to waist are presented. 
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3.5 Conclusion	and	the	Proposed	Solution 
Most of the published work in the area of activity recognition systems is mainly 
focused on a number of sensors attached at different locations and a number of 
physical activities. As explained before, the ideal activity recognition system is a 
combination of, not only, sensors and activities but also the end user and the 
context of system’s use. There should be a trade-off among these components 
which ultimately provide a reliable recognition system performance. 

As mentioned before, the approach of utilizing more sensors although they have 
the capability to recognize more activities is not feasible for long-term and 
uncontrolled activity monitoring system deployment due to issues like 
invasiveness, cost, difficult to use etc. Relatively, few studies have been conducted 
with single accelerometer sensor attached to subject’s waist in uncontrolled 
situations. Such systems with single accelerometer sensors provided good 
accuracy results in the past, however, failed to achieve the same accuracy for basic 
activities of daily life such as standing, sitting, walking, lying and transitional 
activities. The transitional activities were considered to be important in the 
literature to detect unwanted events such as, but not limited to, falls. Thus for the 
presenting thesis work, the basic activities of life and transitional activities are 
considered. 

A wide range of feature sets, both time and frequency-domain, have been 
investigated in the past, however showed variation in terms of recognition 
system’s accuracy. As explained before, frequency domain features require high 
computational power and time to distinguish different activities. Time-domain 
features, on the other side, require less computation and can easily be extracted in 
real-time. The features mean and standard deviation were chosen in order to 
discriminate activities and for transitional activities identification. The published 
results, in terms of accuracy, indicate the presence of high variability in the 
selected features and classifiers which might be because of the way subjects 
performed activities. The results suggest that there may or may not be inter or 
intra-subject data variations in the features. The construction of a subject 
independent classifier is a challenging task and requires the train datasets from 
large subject’s population. Moreover, some work, such as (Bao & Intille 2004), 
strongly suggest that subject independent recognition of activities is hard to attain. 
In case of subject-dependent recognition systems, the issue of training dataset and 
data labelling will be limited to a particular subject and can achieve reliable 
accuracy rate in both controlled and uncontrolled situations. Furthermore, the 
system can be recalibrated by acquiring a new training dataset, if possible, as 
explained in (Fahim et al. 2013). 

The most of the past work in activity recognition is conducted in controlled 
laboratory environments with limited amount of activity datasets. As seen, the 
classification accuracy achieved in controlled experimentation is quite high. 
However, there is very few work conducted in uncontrolled environments. The 
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researchers claimed to provide activity recognition solutions for elderly, in the 
context of independent living. The proposed systems were pilot/preliminary 
studies which lack from the validation point of view in real-world scenario. In case 
of unlabelled data the traditional clustering techniques were used for activity 
classification. In conventional clustering methods the algorithms’ objective is to 
partition n data points into k clusters in such a way that each data point belongs to 
the cluster with nearest mean (centroid). The proposed methods, in the past, 
generally rely on a controlled supervised training. Therefore, by applying different 
clustering algorithms end up in identifying different classification accuracy for the 
same type of activities, as shown in Table 5. 

In order to overcome fixed thresholds and clustering problems, we propose a 
semi-supervised subject-dependent clustering approach which requires limited 
amount of labelled data in order to compute centroids for activity clusters. Later, 
the subsequent assignment of new data to clusters’ centroid is conditioned to a 
physical activity transition model. The next chapter will explain the proposed 
recognition methodology for the basic activities of life and transitional activities 
using single accelerometer sensor attached to subject’s waist. 
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4 PROPOSED	RECOGNITION	
SYSTEM 

The following chapter presents an overview of the activity recognition system that 
is the result of the thesis. It also describes the research approach used to collect 
training data for the development of an algorithm model and its evaluation. 

4.1 Overview 
Every human being experiences and performs different activities throughout 
his/her life, which may or may not differ from one subject to another. In order to 
infer any activity, a wide range of sensors can be used. However, making a 
complete inference of any activity using a combination of sensors is possible but 
not practical. If complete and detailed description is required, then video data is 
necessary. In this work, this is not the case, so video data were not recorded during 
acquisition of data set used due to privacy concerns. 

The objective of the presented work is to design and develop an algorithm for 
activity recognition with the following requirements: 

 It should be able to correctly recognize basic normal activities; stand, sit, 
walk, lay and all transitions among these activities. 

 It should be user friendly and non-obtrusive. 
 As much as possible the system should be battery operated. 
 The data gathering and processing must be done in real-time to achieve 

immediate response to subject’s actions. 

In order to devise such a system, I followed these steps. 

1) Firstly, activity data sets were collected for physical activities from different 
subjects under laboratory conditions. 
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2) Once data sets were collected, a systematic analysis was performed to 
determine the relevant parameters for recognition algorithm with real-time 
performance. 

3) The classification algorithm was developed to evaluate the parameters 
extracted from the second step. 

4) The developed algorithm was validated by acquiring data set in real-time. 

4.2 Sensor	Devices 
In this research, data collection for model development evaluation and validation 
was done by using two sensors. 

4.2.1 A Custom-build Data Acquisition Device 
A custom-build data acquisition network device, called Mobile Device (MD), as 
shown in Figure 3, that includes a Jennic JN5148 transceiver (Jennic 2014) and a 
InvenSense MPU-9150 motion tracking device (InvenSense 2014) was used. The 
JN5148 is an ultra-low power, high performance microcontroller with 2.4GHz 
IEEE802.15.4 compliant transceiver. The MPU-9150 is an integrated 9-axis motion 
tracking device that combines a 3-axis accelerometer, 3-axis gyroscope, 3-axis 
magnetometer and a Digital Motion Processor hardware accelerometer engine that 
runs on low power at 2.4V to 3.46V.  The MPU-9150, 3-axis accelerometer, 
provides digital output with programmable full scale range of ±2g, ±4g, ±8g, and 
±16g at sampling frequency of 20 Hz. 

 

Figure 3 A Custom-built Mobile Device 

4.2.2 Gt3x Ambulatory Monitoring Device 
The GT3X+ ambulatory monitor (Llc 2014), shown in Figure 4, uses a 3-axis 
accelerometer and ActiGraph’s proprietary digital filtering algorithms to measure 
the amount and frequency of human movement. The raw data collected by the 
GT3X+, at sampling frequency 30-100Hz, can be reviewed directly or further 
processed through ActiGraph’s digitally matched filter. This digital filter band-
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limits the accelerometer to the frequency range of 0.25 to 2.5Hz, which has been 
carefully chosen to detect accelerations caused by normal human motion. 

 

Figure 4 GT3x Ambulatory Monitoring Sensor 

4.3 Physical	Activities 
The activities to be investigated were classified into two categories: 

 Static Postures: 

o Standing: This implies that the subject is standing in his/her natural 
way. 

o Sitting: The subject is sitting on a chair. 

o Lying: The subject is lying on the floor where the trunk and the hip 
are at the same level. 

Static postures may include some movements while remaining in the same 
posture. 

 Dynamic Posture: 

o Walking: Walk is an activity which is evolved from stand posture 
with a significant movement. 

The above mentioned activities were considered as basic activities of life. 

 Transition Activities: 

These are the activities where the subject goes through a transition phase 
while moving completely from one static activity/posture to another. 
Transitions are the postures which occur for short time. 

o Standing to Sitting 
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o Sitting to Standing 

o Sitting to Lying 

o Lying to Sitting 

 Abnormal activities: These are the activities which are hard to define and 
non-trivial. There is no concrete definition of abnormal activities yet. 
However, this work considers all the activities which are not explicitly 
defined as abnormal activities. 

4.4 Assumptions 
The following assumptions were made while developing physical activity 
recognition algorithm. 

4.4.1 Sensor and Its Placement 
The body worn single tri-axial accelerometer sensor was attached to the subject’s 
waist by a belt. If the sensor is hanging freely, then the sensor’s reading will not 
represent the subject’s movement and cannot be considered for subject’s activity. 

Subject has to be in standing position at the beginning of the experiment. 

4.4.2 Physical Activity Transition Model 
A Physical Activity (PA) performed by a human body (subject) is a combination of 
static postures and dynamic movements. In the context of basic activities of daily 
life, static postures can be defined as STAND, SIT, LAY and WALK. The subject 
remains in the same static posture unless there is a movement or a transition 
occurs. However, static postures may still include some movements while 
remaining in the same posture. 

The subject goes through a transition phase while moving completely from one 
static posture to another. For example, STAND-SIT is the transition state while 
moving from the STAND posture to the SIT posture. 

Moreover, there is the possibility of returning back from a transition state to the 
previous static posture which can be identified as one form of dynamic movement. 
For example, subject enters in the transition state STAND-SIT and returns back to 
the STAND posture. 

In this approach, WALK and RUN are activities that evolve from the STAND posture 
with a significant factor of movement which is subject-dependent. 

Another possibility is that the subject performs the same posture in a different 
context; for example, the subject is sitting either on the ground, or on the couch, or 
while driving a car etc. In order to distinguish this SIT (posture) in different 
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contexts requires either interaction with the caregiver or the system needs to be 
trained to recognize this particular posture. In this scenario, the current 
methodology will recognize an abnormal activity that later will become part of the 
basic activities, if the caregiver considered it as a normal activity. However, in 
(Noury et al. 2008), the researchers described the phenomenon of critical events, 
such as a fall, which could probably be more likely to occur during transitioning 
phases of normal activity. It is difficult to describe precisely the phenomenon of 
fall, and even harder to imagine the means for its detection. 

In our opinion, PAs performed by any subject can be modelled with natural 
behavioural rules as described above and can be considered as hypothesis as 
shown in Figure 5. 

 

Figure 5 Physical Activity Transition Model 

4.5 Feature	Extraction 
Initial data analysis and experimentation process of presented research showed 
that mean and standard deviation of the acceleration signal, being simple features, 
have potential to identify physical activities and transitions with reasonable 
accuracy. In presented work, the computed mean and standard deviation from 
accelerometer signal correspond to expected physical activity posture and 
associated movement. 

4.6 Sensor	Data	Collection 
The physical activities considered in this research study were composed of basic 
activities of daily life, such as standing, sitting, lying and walking, using single 
body-worn tri-axial accelerometer attached to subject’s waist. There are various 
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reasons why a small number of researchers have worked on the basic activities 
(with some exceptions, as described in Chapter 3). Recognition of these activities 
becomes challenging with only single accelerometer because: 

(1) These activities are hard to discriminate (for example, standing and sitting) 
due to the similar posture pattern. 

(2) This high similarity among activities is not uniform throughout the whole 
dataset. In simple words, a subset of activities share high similarity among its 
activities but are very different from another subset. For example, standing and 
sitting are very similar; however, they are very different from walking. 

(3) In addition to long-term postures and movement, short term movements such 
as stand-to-sit, sit-to-stand, sit-to-lay and lay-to-sit are also part of the basic 
activities. These short-term activities are the most widely performed tasks that 
represent transition from one posture to another. These transitions play important 
role in physical activity recognition system because if transitions are not handled 
properly, they could result in large number of misclassification. Recognition of 
these transitions with reliable accuracy has not been successful because the 
features highlighted in previous systems need to be calculated over longer time-
windows. 

Thus the goal of this research is to develop and evaluate a classification scheme 
that, unlike previous systems, can recognize basic activities of daily life associated 
with transitional activities with reliable accuracy in real-time. 

An important step towards recognizing physical activities is a collection of reliable 
and realistic data collection. To this end we formulated four requirements and 
considerations as the basis of our data recording. First, as the primary aim was the 
recording of basic activities, we explicitly started with the recording of these 
activities with annotation. Second, the recording should be as realistic as possible 
so the activities should be performed in naturalistic way. Third, the usefulness and 
the usability of activity recognition system strongly depend on the price and form-
factor of the device. Therefore we decided to keep the algorithms, features and 
sensor-platform as simple and power efficient as possible so that embedding into a 
simple self-defined device is feasible in future. Forth, data recording was started 
with small group of healthy subjects in controlled environment, as primary aim 
was to analyse sensor’s data among different subjects and show the feasibility of 
basic activities recognition first.  

One requirement formulated above was to base our recognition on simple sensors 
and easy-to-compute features which is why mean and standard deviation of 
acceleration signal were chosen. Rapid advancements in Micro-electromechanical 
Systems (MEMS), accelerometers sensors are cheap and can easily integrated in 
custom-build devices. The use of simple features for recognition would allow the 
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computation to take place in real-time on the sensor device without draining the 
battery. 

Two different studies were done for the evaluation of the proposed algorithm. The 
first study was with a limited number of healthy subjects in a controlled 
environment. The explicit goal of this study was to analyse sensor’s data and 
extracting features which are computationally inexpensive and more reliable. The 
second study with 30 elderly subjects was conducted in an uncontrolled 
environment. 

The detailed description of experimental setup, dataset collection and evaluation 
results will be presented in Chapter 5. 

4.7 Sensor	Data	Analysis 
The selected feature set (mean and standard deviation, as described in Section 4.5) 
was computed for each PA dataset. The descriptive statistical analysis was 
conducted for each subject. The purpose of data analysis was to observe 
probability distribution of each PA dataset samples, data distribution variations 
among subjects in terms of features and confidence intervals.  

For each PA, the dataset were constructed in the following way: 

Let, ܦ = {݀ଵ ,݀ଶ, … ,݀}  where ܲܣ = ,ܦܰܣܶܵ} {ܻܣܮ,ܭܮܣܹ,ܶܫܵ  and ݊  is the 
number of PA data samples. 

Each  ݀ = ,ଶݔ,ଵݔ} … , {ݔ , where ݔ = ݏ݈݁݉ܽݏ ݂.݊  and ݉  is the number of 
sensor raw data samples which are used to compute the features. 

We analysed PA dataset, in three different perceptions, with respect to Mean 
(variable) and two hypothesis conditions ܪ: ߤ = :ܪ ,ߤ ߤ ≠   with assumptionߤ
of equal variances. 

4.7.1 Single dataset of subject’s particular activity 
Motivation: Samples from a population (PA dataset) will show variation in their 
means. Therefore samples might have different mean when drawing two samples 
from a single population even though the underlying population is the same. 

For example, if two samples are drawn from the same distribution. There will 
always be some non-zero likelihood of obtaining a difference in the means of these 
samples, although no difference should actually be there. We analysed three 
samples of different size drawn from the same population. Note that we have two 
samples. We can compute the difference of the means of these two samples. 
Because these two samples were drawn from the same distribution, their 
difference should be 0. But with samples of small size some differences can be 
observed. We computed the probability of getting non-zero differences between 
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two samples. The results show how the size of the sample changes the probability. 
Moreover, the smaller the sample size the higher the probability of non-zero 
difference. 

The Figure 6 shows the histogram of these mean differences.  The blue 
distribution, the one generated by resampling with the smallest sample size (1) 
has the largest standard deviation. Therefore there is higher chance of observing a 
difference with a small sample size. We plot vertical lines indicating the empirical 
difference. The height of the distributions of the matching colour (i.e., matching 
sample size) at the location of the empirical difference (vertical coloured line) is 
the probability that the empirical difference was obtained by chance given by 
sample size. 

 

Figure 6 Probability of getting difference between two random samples as a 
function of sample size 

4.7.2 Multiple datasets of subject’s activity 
Data analysis was done among multiple datasets of a particular activity from single 
subject. Each dataset was collected in different days to observe data distribution. 
Figure 7 shows the histogram of sample mean of multiple PA datasets. It is 
observable that, not only within single dataset, multiple datasets have significant 
mean variations. 

PA dataset from a particular subject collected on the same day was analysed and 
the achieved results showed significant data variations in features; mean and 
standard deviation. The results suggest that, for correct PA classification, the 
activity recognition model cannot rely on fixed activity classification parameters. 
However, parameters need to be updated as subject’s behaviour change. 
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Figure 7 Probability of sample mean distribution of multiple datasets of 
single subject 

4.7.3 Similar PA dataset of multiple subjects 
An independent two-sample t-test of difference in mean with equal variance was 
conducted between same PA datasets of two subjects. For example, dataset of 
subject-A (ܯ = ܦܵ,2.4357 = 0.1578) and subject-B (ܯ = = ܦܵ,2.2982   0.0336) 
with conditions; (120) ݐ  =  6.653 and  < 0.001  suggests that there is no 
similarity between datasets at ߙ = 0.05 significance level. 

Confusion matrix among random selected datasets was generated. Two output 
parameters; hypothesis result and associated p-Value, was analysed which clearly 
show non-similar likelihood among data distributions. Table 6 represents the 
outcome results. 

Furthermore, all PA datasets samples were analysed among 5 (random selected) 
healthy and elderly subjects. Dataset from healthy subjects was collected in 
controlled situation and dataset was gathered from elderly in an uncontrolled 
environment. The Figure 9 shows a comparison between healthy and elderly 
subjects in terms of feature (mean). The results indicates that the sensor attached 
to the subject’s waist generate different feature values in healthy and elderly. In 
our opinion, each PA may exhibit inter-subject variability depending upon 
subjects’ physical characteristics; weight, height, health status etc., and intra-
subject variability due to change in physical conditions, environment, and 
situations. 
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Figure 8 Intra-subject Data Variability; a) PA data variations in mean, b) PA 
data variations in standard deviation 

Table 6 Confusion Matrix: Among selective subjects datasets 

Subject 1 2 3 4 5 

 Output: (Hypothesis result / p-Value) 

1 (0/1) (1/0) (1/0) (1/3.8e-5) (1/1.1e-5) 

2 (1/0) (0/1) (1/0) (1/0) (1/0) 

3 (1/0) (1/0) (0/1) (1/0) (1/1.7e-5) 

4 (1/3.8e-5) (1/0) (1/0) (0/1) (1/0) 
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Subject 1 2 3 4 5 

5 (1/1.1e-5) (1/0) (1/1.7e-5) (1/0) (0/1) 

 

 

Figure 9 Inter-subject Data Variability 

In conclusion, the results highlight the fact that there is significant variation in the 
parameters; mean and standard deviation, within single/multiple datasets of 
single subject and among different subject’s. Thus, this parameter needs to be 
estimated continuously not only for one subject but for every subject. The feature 
parameter standard deviation which represents subject’s movement associated 
with particular activity, could be useful in determining not only the PA associated 
movement but also subjects’ health, change in physical activity behaviour and 
potential new health pathologies. 

The data analysis results support the argument to develop activity recognition 
algorithms which are subject-dependent and truly represent physical behaviour of 
respective subject. Subject-dependent system will incorporate personalized 
activity monitoring. 

4.8 Methodology 
In the area of activity recognition, classification algorithms are generally 
categorized using fixed threshold-based methods or machine learning (ML) 
Techniques. These techniques are described in detail in Section 2.6.  

In relation to Sensor Data Analysis (Section 4.7), designing an algorithm based on 
fixed parameters is not effective. This is due to variations in the population data 
within single/multiple subjects. Moreover in any PA there could be a possibility to 
observe behavioural change. Generally these behaviour changes in the activity may 
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not be observed in daily life; however sensing device has the capability to 
differentiate. 

Contrary to fixed threshold-based methods, ML provides classification technique 
and clustering method to find optimal solution in many areas. These algorithms 
require a training data to initialize the reasoning process which can classify data 
based on how the learning or training phase is done i.e. supervised learning, 
unsupervised learning (clustering) and semi-supervised learning. ML techniques 
require large amount of labelled data to achieve classification results with reliable 
accuracy. The traditional clustering methods are generally considered for PA 
classification of unlabelled data (Lee & Cho 2011)(Ugulino et al. 2012). Usually 
traditional clustering methods work on specific algorithm which is not sufficient to 
classify human activity (Zhang & Yoshie 2012). In conventional clustering methods 
the algorithms’ objective is to partition ݊ data points into ݇ clusters. This is done in 
such a way that each data point belongs to the cluster with nearest mean 
(centroid). Due to inter/intra-subject data variability, applying different clustering 
algorithms results in different centroids for the same data. It is more likely that 
activities are misclassified due to unavailability of large labelled data sets for each 
PA to train the classifier. 

The proposed methodology overcomes fixed thresholds and clustering problems 
with a semi-supervised subject-dependent clustering model framework. The 
model requires limited amount of labelled data, for training, to compute initial 
centroids of PA clusters. The subsequent assignment of new data samples to 
cluster’s centroid is conditioned to a physical activity transition model. 

The presented semi-supervised subject-dependent clustering model is composed 
of two parts; 

 Statistical Model 

 Semi-supervised Clustering Model 

The proceeding sections explain the details behind construction and optimization 
of classifier design. The architectural model of classifier design is shown in Figure 
10. 
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Figure 10 Architectural Model of Classifier Design 

4.8.1 Training Dataset 
A single accelerometer sensor was worn by subject at waist using belt. The dataset, 
of 8-10 minutes, consist of four physical activities (STAND, SIT, WALK and LAY) 
performed by the subject. Each activity was labelled during training data 
acquisition. Subject performed each activity in controlled situation under the 
supervision of observer. The subject performed the activities in the following 
order: 

 STAND (two minute) 

 STAND-to-SIT 

 SIT (two minute) 

 SIT-to-STAND 

 STAND (two minute) 

 WALK (two minute) 

 SIT-to-LAY 

 LAY (two minutes) 

 LAY-to-SIT 
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Subject was requested to perform each activity in his/her normal way so sensor 
data reflects the true activity behaviour. The collected dataset can be considered as 
empirical data for the subject who is under experimentation. 

The PA dataset is formalized in the following way: 

Let dataset, ܦ = {݀ଵ, ݀ଶ, … ,݀} 

Where ܲܣ = ,ܦܰܣܶܵ}  {ܻܣܮ,ܭܮܣܹ,ܶܫܵ

And ݀ = {݉݁ܽ݊,  .{݊݅ݐܽ݅ݒ݁݀ ݀ݎܽ݀݊ܽݐݏ

Each data sample ݀ = ,ଶݔ,ଵݔ} … , ݉ } was computed usingݔ = 20 samples of raw 
acceleration data (see Section 4.2 for sensor specification). The number of samples 
is dependent on the sampling frequency of the accelerometer sensor. 

We compute empirical mean ߤ  by the sample mean of ܦ using (1), 

ࡼࣆ  =

࢞





 (1) 

And, we compute empirical standard deviation ߪ  by the sample standard 
deviation using (2), 

ࡼ࣌  = ඩ


− 
࢞) − (ࡼࣆ





 (2) 

The confidence interval was computed using percentile method. The described 
training dataset collection procedure will be applied to each subject. 

After collecting training dataset for each PA, the following parameters will become 
the input of the model which includes; 

Table 7 Input parameters of classification model 

Activity 
Total 

empirical 
samples 

Feature 
95% Confidence 

Bounds 
Mean Std. 

deviation 

STAND 2400 ߤௌ்ே  σୗୈ ൣμୗୈ ,μୗୈ ൧ 

SIT 2400 μୗ୍ σୗ୍ ൣμୗ୍ ,μୗ୍ ൧ 

WALK 2400 μ σ ൣμ
 ,μ

 ൧ 
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Activity 
Total 

empirical 
samples 

Feature 
95% Confidence 

Bounds 
Mean Std. 

deviation 

LAY 2400 μଢ଼ σଢ଼ ൣμଢ଼ ,μଢ଼ ൧ 

4.8.2 Statistical Model 
The first component of the presented model is the statistical model as shown in 
Figure 11. In this component, for every new observed data samples, we want to 
find an estimator and an (1 −  . The goal is toߤ interval for the mean 100%(ߙ
estimate sample mean ߤ with respect to empirical mean ߤ . We consider mean 
estimation problem as comparing two sample means; new sample mean and 
empirical mean, with assumption of equal variances. We use t-test (statistical 
method) to establish the likelihood of the equal mean of two samples. The ߙ = 0.05 
level was used as a significance criterion. 

The statistical model is composed of two sub-components; 

 Parameter estimation 

 Hypothesis test 

 

Figure 11 Statistical Model 
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4.8.2.1 Parameter Estimation 
For each new observed data sample, let ݀ = ,ଶݔ,ଵݔ} … {ݔ,  and ݉  be an 
independent and identically distributed samples/sec collected from the 
accelerometer sensor, and suppose we wish to find an estimator and [100%ߙ, (1 −
 .interval for the mean [100%(ߙ

Usually, we estimate ߤ by the sample mean 

ࣆ =


࢞





 

A confidence interval for ߤ  can be found by determining the distribution of ߤ, 
and finding values ߤ   such thatߤ,

ࡸࣆ൫ࡼ ≥ ࡼࣆ ≤ ൯ࢁࣆ =  −  ࢻ

4.8.2.2 Hypothesis 
An independent two sample t-Test for comparing sample mean and empirical 
mean with assumption of equal variances was conducted. 

The research hypothesis is: testing dataset samples (new observed samples) will 
have different mean than the empirical mean computed from training dataset. 

ߤ:ܪ ≠  ߤ

The null hypothesis would be: testing dataset samples (new observed samples) 
will have equal mean with empirical mean computed from training dataset. 

:ܪ ߤ =  ߤ

The above hypothesis test finds the probability that two sample means are drawn 
from the same data distribution. The result ܪ = 0 will indicate that t-Test does 
not reject the null hypothesis at ߙ = 0.05 significance level. 

Figure 12.(a) shows samples mean variation of testing dataset samples of a 
particular PA and computed empirical mean from training dataset and 95% 
confidence interval. Figure 12.(b) shows the probability distribution of samples. 
Figure 12.(c) shows the hypothesis test results. The hypothesis result ܪ = 0 
indicates that new observed sample comes from the same PA distribution and 
considered as classified activity. 

In following section, we provide an example for the model working demonstration. 
A testing dataset consist of two activities; STAND and SIT, collected from a subject 
was provided to the model as an input. The activity will classified based on t-test 
for comparing two means hypothesis. 
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Figure 12 Testing dataset samples statistics of a particular PA, a) Sample 
mean ࣆvariation over time b) Probability distribution of samples mean ࣆ. 
The ࡱࣆ  is the empirical mean of respective PA and associated 95% 
confidence intervals c) Two sample t-Test hypothesis results at ࢻ = . 
significance level. The result ࡴ =  indicates that test does not reject null 
hypothesis. 

4.8.2.3 Model Demonstration Example of Two Activities 
Let testing dataset ்ܦ௦௧ = {݀ଵ ,݀ଶ , … , ݀} consist of two activities; STAND and SIT. 
The empirical means of STAND and SIT are already computed during training 
phase. The testing data set and empirical information of STAND and SIT with 
respective empirical means is shown in Figure 13.(a). For each testing sample 
݀ (ߤ) = ,ଶݔ,ଵݔ} …  ଶ}, the parameter mean will be estimated, as explained inݔ,
Section 4.8.2.1. At this moment statistical test for testing sample against each PA 
training sample will be conducted at ߙ = 0.05 significance level, as illustrated in 
Figure 11. The hypothesis results are shown in Figure 13.(b). 
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Figure 13 Statistical Model Demonstration, a) Testing dataset sample 
mean ࣆ, empirical means of STAND and SIT from training dataset and 
respective 95% CI, b) PA classification based on t-test hypothesis at ࢻ = . 
significance level. 

Classification Results: 

 The new observed samples will be classified as, for example, STAND, if t-test 
hypothesis test for STAND returns ࡴ = . 

 It is unlikely that two or more hypothesis results generate ࡴ  =  , 
however, the only possibility is that two PA’s have overlapped confidence 
bounds. The overlapped confidence bounds indicate that activities are 
having similar behaviour. For example, STAND and WALK are activities 
which are quite similar in terms of mean parameter, however can be 
discriminated in terms of standard deviation parameter as explained in 
Section 4.4.2. Furthermore, the mean parameters can be estimated using 
bootstrap technique. The bootstrap method was invented by B. Efron (Efron 
1979) as an approach to calculate confidence intervals for parameters in 
circumstances where standard methods cannot be applied (Efron & Gong 
1983). The short description of bootstrap principle is explained in Chapter 
8. 

 

 



 

72 

 It is likely to have ࡴ =  from more than one PA hypothesis tests. The 
rejection of null hypothesis indicates, in general, that observed samples 
have no similarity to gathered training PA data samples and need to be 
addressed. 

In conclusion, the presented statistical model ensures the samples correct 
classification with 95% confidence. The subject-dependent model approach also 
resolves the data variability and fixed thresholds issue among subjects. 
Furthermore, the approach has the capability to include more physical activities 
and classify based on the respective PA training samples. 

In the following section, the samples which statistical model could not classify, or 
samples which reject the null hypothesis, will be addressed. The problem, to 
associate new observed samples to initially collected PA training samples 
knowledge, was addressed with the help of machine learning (ML) techniques. The 
semi-supervised clustering approach is considered. The initial prior knowledge 
(training samples) of each PA was collected in a supervised way. Then observed 
samples will be classified using unsupervised k-Means clustering technique. 

4.8.3 Semi-supervised Clustering Model 
Most unsupervised clustering methods work with the objective to partition ݊ data 
samples into ݇ clusters in such a way that each data sample belongs to nearest 
mean (centroid). Each PA may exhibit inter-subject and intra-subject data 
variability, also observed in Sensor Data Analysis (Section 4.7), therefore different 
clustering algorithms end up in identifying different centroids for the same data 
samples. 

The presented clustering model resolves random selection of centroids for 
clustering and needs less training data to classify PA. The model is composed of the 
following stages, 

 Clusters’ Centroid Initialization 

 Classifier for Physical Activity Classification 

 Unsupervised Learning 

The model diagram is shown in Figure 14. 
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Figure 14 The Semi-supervised Clustering Model Framework 

4.8.3.1 Centroids Initialization 
For subjects profiling, sensor data for each physical activity: 
ܦ = ,ܭܮܣܹ,ܶܫܵ,ܦܰܣܶܵ}  from each subject is acquired as described in ,{ܻܣܮ
Section 4.8.1. The training dataset is considered as true representation of the 
subject’s PA. Each training dataset corresponds to a respective PA cluster. The 
feature mean ߤ computed for each PA cluster can be considered as true cluster 
centroid. The obtained train datasets are homogenous with respect to each 
physical activity and associated features. The major advantage of profiling is to 
obtain clusters’ centroids which are subject-dependent and to avoid random 
selection of centroids by traditional algorithms. 

 

Figure 15 Clusters’ Centroid Initialization Using Training Dataset 

4.8.3.2 Classifier for PA Classification 
In the second stage, a classifier model is defined which is composed of clustering 
model (Prediction) and physical activity transition model (Estimation) for 
associating subsequent sensors data to the correct cluster as shown in Figure 14. 
Each physical activity and transition was considered as states, with an assumption 
that initial state of the activity posture is STAND. For every new observed data 
samples, the features ߤ and ߪ were computed. The new feature set values and 
initial centroids computed in the previous step will be the input of the classifier for 
activity prediction. The classifier model is shown in Figure 16. 
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 Prediction: Clustering model is based on traditional k-means technique 
which predicts the activity. Mean Squared Error (MSE) for each ࡼࡰwas 
computed using Eq. (3), to estimate the difference between predicted 
computed feature ࣆ and true value of the estimator ࡼࣆ . 

Each MSE value of physical activity is the distance from each respective PA cluster 
centroid (mean value). Having minimum MSE refers to minimum distance from 
cluster centroid, as a predicted activity. 

ࡼࡱࡿࡹ  =



ࣆ) − (ࡼࣆ




 (3) 

 Estimation: by picking the minimum MSE, the algorithm will classify the 
true activity posture based on physical activity classification as described in 
Section 4.4.2. As a result, proposed methodology will provide posture and 
associated movement estimation as an output. 

Feature	Extraction
µ0,	σ0

Initial	Centroids
µPA,	σPA

Classifier	Model

Prediction

MSEPA =	1/n	∑(µ0	- µPA)2

Where,	PA=STAND,	SIT,	
WALK,	LAY

Estimation

Physical	Activity	
Transition	Model

(Hypothesis)

Activity
Posture

Activity
Movement

 

Figure 16 Classifier for PA Classification 

4.8.3.3 Unsupervised Learning 
In the third stage, we define a learning algorithm with a capability to recognize 
shifts in subjects’ behavioural statuses, identification of unexpected events, and re-
computation of clusters centroids of tuning physical activity features. This stage is 
an adaptive learning about a particular subject. The Section 5.3 will describe the 
situation where particular PA data samples changed their distribution from 
associated training data samples distribution. 
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4.9 Block	Diagram	of	Proposed	Machine	Learning	Algorithm 
The physical activity recognition algorithm is developed using machine learning 
components: (i) Feature extraction (Input), (ii) Physical activity transition Model 
(Hypothesis), (iii) Classifier, (iv) PA recognition (Output), and (v) Unsupervised 
learning. The block diagram is shown in Figure 17. 

 

Figure 17 Block Diagram of Proposed Algorithm 

In the next chapter we evaluate the presented model using two data collection 
experimental settings; controlled and uncontrolled. 
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5 EVALUATION 

“Evaluation is systematic interpretation and inferring predicted or actual results.” 

This chapter describes in detail the evaluation of the proposed semi-supervised 
clustering approach using proposed feature set in controlled and uncontrolled 
experimental settings. It also describes the experimental settings for data 
collection, reasoning behind the implementation of activity classification scheme 
and significance of achieved results in terms of accuracy. 

Two different studies were done for the evaluation of proposed algorithm. The 
first study was with limited number of subjects in a controlled environment. The 
explicit goal of this study was to analyse sensor’s data and extract features which 
are computationally inexpensive and more reliable. The second study with 30 
subjects was conducted in an uncontrolled environment. 

5.1 Controlled	Dataset	for	Model	Evaluation 

5.1.1 Experimental Setup 
Contexta-CARE system was used in order to evaluate the proposed semi-
supervised clustering approach for ܲܣ = ,ܦܰܣܶܵ} -The Contexta .{ܭܮܣܹ,ܶܫܵ
CARE system, shown in Figure 18, is composed of the following components: (i) a 
Wireless Sensor Network (WSN) (Stankovic 2006), based on IEEE 802.15.4 
protocol, called Contexta-NET (Merico 2009)(Merico et al. 2011)(Merico et al. 
2013) that is used for gathering data about user and environment and (ii) an 
intelligent concentrator software that computes high level information about 
gathered data, (iii) a custom-build data acquisition network device, called Mobile 
Device (MD), that includes a Jennic JN5148 transceiver and a tri-axial 
accelerometer and A mobile phone application is used to label subjects data. The 
evaluation process described below has been repeated for each subject. 
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Figure 18 Contexta-CARE: Hardware architecture 

The intelligent concentrator shown in Figure 19, implements multi-sensory 
tracking engine, is used to compute the user location, a situation assessment 
component, and physical activity recognition component for better understanding 
of the user’s contextual situation that is occurring. 

Particularly, the physical activity recognition component is composed of: (i) 
computation of Feature Extraction, (ii) Posture Manager, (iii) Movement Manager, 
(iv) Learning Algorithm (for tuning features with respect to physical activity), and 
(v) Prediction of critical situations and identification of change in user’s normal 
activity statuses over time. 

 

Figure 19 Contexta-CARE: Software architecture 

5.1.2 Dataset Collection 
The body-worn tri-axial accelerometer sensor was attached at subject’s waist. The 
dataset were collected from 7 healthy subjects (39±12.67 years). Each dataset, of 
8-10 minutes, consist of three physical activities (standing, sitting, and walking) 
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performed by each subject. Each activity was labelled with the separate mobile 
application. 

The data gathering activity was divided in two protocols; under observer’s 
supervision, and without observer’s supervision. 

 Protocol-I: Training dataset (Standardized activity baseline test) 

In the first phase, each subject was asked to perform each activity in 
controlled way; under observer’s supervision. Initially, the subject was in 
standing position with the sensor attached to the waist. Later, the subject 
performed the activities in the following order: 

o Standing (two minute) 

o Stand-to-sit 

o Sitting (two minute) 

o Sit-to-Stand 

o Standing (two minute) 

o Walking (two minute) 

Dataset of Protocol-I has to be collected with special care otherwise it will not 
represent the true PA behaviour of subject. 

 Protocol-II: Testing dataset (Without observer’s supervision) 

In the second phase, each subject performed 4-6 min standardized 
sequence of standing, sitting and walking activities in uncontrolled way and 
subject was free to perform activities in different order. The total duration 
of the protocol is about 10 minutes. 
Each dataset was recorded five times on different days in order to analyse 
that if there was any data variation in subjects’ activities. 

5.1.3 Feature Extraction 
The data gathered was then imported to MATLAB for further processing, where 
different physical behaviours (standing, sitting, walking and transitional activities) 
were examined. In this research study, we are not considering any specific physical 
motion in the side plane. We define the horizontal plane as combination of the Z-, 
and the X-axis which is computed by using (4). 

ࢠ࢘ࡴࢄࢆ  = ඥࢆࢉࢉ +   (4)ࢄࢉࢉ

For each PA, the datasets were constructed in the following way: 
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Let, ܦ = {݀ଵ,݀ଶ, … , ݀}  where ܲܣ = ,ܦܰܣܶܵ} {ܻܣܮ,ܭܮܣܹ,ܶܫܵ  and ݊  is the 
number of PA data samples. 

Each  ݀ = ,ଶݔ,ଵݔ} … , {ݔ , where ݔ = ݏ݈݁݉ܽݏ ݂.݊  and ݉  is the number of 
sensor raw data samples which are used to compute the features. 

For each ݀, the features (mean and standard deviation) which were computed 
from accelerometer raw data signals at sampling frequency of 20 Hz with one 
second window. 

The computed mean will be used to identify expected PA postural and standard 
deviation as associated PA movement. 

5.1.4 Evaluation Results 
In this section, we describe the evaluation procedure and results of basic life 
activities; standing, sitting, walking and transitional activities, using presented 
approach as explained in Section 4.8. We will first report the results achieved by 
applying statistical model for feature/parameter estimation and then show how 
classification performance can be improved by proposed semi-supervised 
clustering model. The evaluation procedure reported below was applied to each 
subject individually. 

5.1.4.1 Training Dataset Collection 
The training data recordings shown in Figure 20 contains activities; stand, sit and 
walk respectively. The figure shows the raw signal, which is the magnitude of the 
acceleration occurring at the waist, sampled at 20 Hz. The 2 minute activity data of 
each PA is concatenated in the figure. 

Let dataset ܦ  = {݀ଵ,݀ଶ, … , ݀} , where ݊ no. of samples 
and ܲܣ = ,ܦܰܣܶܵ}  represent samples of a particular subject PA ,{ܭܮܣܹ,ܶܫܵ
collected using Protocol-I (as described in Section 5.1.2). Each sample ݀  is 
combination of two parameters; mean and standard deviation as explained in 
Section 5.1.3. With an assumption of true PA representation, the dataset was 
considered as empirical data. We computed two statistics for the dataset; mean 
 . The 95% confidence interval was computed usingߪ  and standard deviationߤ
percentile method. The descriptive statistics is shown in the Table 8. 
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Figure 20 Accelerometer signal variation over planes. 

Table 8 Descriptive statistics of PA Training data. 

Activity Stand Sit Walk 

Mean 2.2983 7.9321 2.1855 

Std. Deviation 0.0294 0.0362 0.7796 

95% CI [2.2230, 2.3559] [7.8306, 7.9750] [1.6213, 2.6918] 

    

5.1.4.2 Statistical Parameter Estimation 

Let dataset  ்ܦ௦௧ = ,ଶݔ,ଵݔ} … ,  } represent samples of the same subject’s PAݔ
collected using Protocol-II (as described in Section 5.1.2). For each sample mean ݔ, 
the estimated parameter mean ߤ was computed using Eq. (5), and hypothesis test 
was conducted. 

ࣆ  =

࢞





 (5) 

The estimated parameter confidence bounds, using Eq. (6), were computed using 
two-sided Student-t distribution. 

࢚࢙ࡱࣆ  = ࣆ ± ࢻ࢚
ൗ

࢙
√

൨ (6) 

We consider mean estimation problem as comparing two sample means; one 
empirical mean (ߤ , as a result of training data) and new sample mean ߤ, with 
assumption of equal variances. We use t-test (statistical method) to establish the 
likelihood of the equal mean of two samples from unknown distribution. The 
ߙ = 0.05 level was used as a significance criterion. The presented results describes 
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the parameter estimation for single activity, however same approach was applied 
to other activities. 

Figure 21 shows the distribution of sample mean, estimated mean with reference 
to empirical mean. The red dotted lines represent the 95% confidence interval of 
empirical mean. 

 

Figure 21 Parameter estimation of the mean 

Interpretation 

A t-test finds the probability that the two means were drawn from the same 
distribution. The p-Value, sample probability occurrences, helps to decide whether 
or not to reject null hypothesis. The significance level was set at 0.05. If the 
probability  < 0.05, we can reject the null hypothesis; which means that samples 
are not identified as correct PA. The samples will be considered as correctly 
classified if  > 0.05. The two-sample t-test hypothesis results are represented in 
Figure 22. 

 

Figure 22 Hypothesis Results 
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Error Estimation 

The standard error of the mean (i.e., of using the sample mean as a method of 
estimating the population mean) is the standard deviation of those sample means 
over all possible samples (of a given size) drawn from the population. Standard 
Error (SE) of the means was calculated using Eq. (7). Error margin was set based 
on empirical dataset which was considered as true dataset of particular PA. 

࢚࢙ࡱࡱࡿ  = ࡱࡱࡿ − ࢋࢇࡿࡱࡿ  (7) 

The results shown in Figure 23 reflect the standard deviation in the sampling 
distribution of the statistic (mean). 

 

Figure 23 Error estimation results between empirical and sample mean 

5.1.4.3 Classification using Statistical Model 
We performed classification of the testing dataset, based on the statistical t-test 
hypothesis, using empirical parameters computed from training dataset for each 
PA. When comparing to the ground truth to the hypothesis results, the achieved PA 
classification is shown in Table 9. 

Table 9 PA Classification using Statistical Model 

Activity Classified Samples (%) Misclassified Sample (%) 

Stand 91.67 8.33 

Sit 95.0 5.00 

Walk 98.3 1.70 

 

-0.030
-0.025
-0.020
-0.015
-0.010
-0.005
0.000
0.005
0.010

0 10 20 30 40 50 60

SE
 o

f t
he

 M
ea

n

Sample

Est. Error Error Margin



 

Evaluation   83 

The achieved results with statistical model are based on one parameter ߤ. The 
testing samples which were classified with 95% confidence are shown as classified 
samples in the above table. The samples below 95% confidence are shown as 
misclassified samples. The misclassified testing dataset samples will be addressed 
by semi-supervised clustering model in the following section. 

5.1.4.4 Semi-supervised Clustering Model 
Figure 24 shows the same ்ܦ௦௧ , under evaluation, with sample mean (ߤ) and 
standard deviation (ߪ) over time frame. The empirical parameters for PAs (ߤ) 
are represented as ߤௌ்ே ௌூ்ߤ ,  and ߤௐ . In order to avoid wrong initialization of 
cluster centroids, the presented approach initialize clusters’ centroid with 
empirical parameters acquired using ்ܦ (training dataset) in supervised way 
(described in Section 4.8.3). We call PA cluster centroid initialization process as 
prior knowledge. 

 

Figure 24 PA clusters’ centroids (ࡰࡺࢀࡿࣆ  acquired using (ࡷࡸࢃࣆ and ࢀࡵࡿࣆ ,
supervised way and variations in test sample features/parameters ࣌ ,ࣆ while 
performing PA in unsupervised way. 

After acquiring prior knowledge, for each new ்ܦ௦௧  (testing dataset) sample mean 
 Mean Squared Error (MSE) was computed to estimate the difference between ,(ߤ)
predicted computed feature/parameter ߤ and true value of the estimator ߤ, 
where ܲܣ = ,ܦܰܣܶܵ}   .The MSE was calculated using Eq. (8) .{ܭܮܣܹ,ܶܫܵ

ࡱࡿࡹ  = 

∑ ࣆ) − (ࡼࣆ
  where 20= samples/sec (8) 

Each MSE value of PA is the distance from each respective cluster mean centroid 
 Having minimum MSE refers to minimum distance from cluster centroid, as .(ߤ)
predicted activity. By picking the minimum MSE, the algorithm will classify the 
true activity Posture (as shown in Figure 25) based on the physical activity 
transition model as described in Section 4.4.2. 
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Figure 25 PA Classification using Physical Activity Transition Model 

Figure 26 shows final output of the model where the True PA (in black colour) as 
the ground truth and Estimated PA (in red colour) as the PA classified by the semi-
supervised clustering technique. Moreover, the clustering model identifies the 
transitions among different PAs. 

 

Figure 26 Estimated PA using Semi-supervised Clustering Model 

5.1.4.5 Classification using Clustering Model 
The results shown in Figure 26 are represented in Table 10, as confusion matrix 
among activities and transitions. The training datasets do not contain sample data 
for transitions; however, the clustering model is capable of detecting transitions 
between two activities based on Physical Activity Transition Model (which is 
described in 4.4.2). Moreover in the case of Walk activity, there are some samples 
which are classified as Stand is due to the fact that the presented approach 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1.5 2.5 3.5 4.5 5.5 6.5

St
d.

 D
ev

ia
tio

n

Mean

STAND SIT WALK STANDSIT SITSTAND

STAND

SIT

WALK

LAY

STANDSIT

SITSTAND

SITLAY

LAYSIT

0 60 120 180 240 300 360
Time (sec)

True PA Estimated PA



 

Evaluation   85 

discriminates these two activities with respect to associated movement (std. 
deviation). 

Table 10 Controlled Dataset: PA Confusion matrix and classification results 

Activity Stand Sit Walk Trans. Accuracy (%) Error Rate (%) 

Stand 2400 0 0 0 100.00 0.00% 

Sit 0 2360 0 40 98.33 1.67 

Walk 60 0 2320 20 96.67 3.33 

Subject’s PA Recognition Accuracy  98.33 1.67 

 

In conclusion, the error rate generated by statistical model for activities; STAND 
and SIT were 8.33, 5.00 respectively were improved by clustering model to 0.00 
and 1.67. Moreover during transitional phase, the samples classified as transitional 
activity are considered as misclassified. Furthermore, the error rate for WALK 
increased from 1.50 to 3.33. The reason behind this is that the clustering model 
discriminates STAND from WALK not only with mean but also with standard 
deviation. Thus, if there is no significant movement, in terms of standard deviation, 
in WALK samples then the model will classify these samples as STAND. 

5.1.5 Controlled dataset: PA Classification Results 
Table 11 shows the classification accuracy achieved of each healthy subject, which 
participated in the laboratory experimentation. The average accuracy achieved 
from 7 subjects was about 93.77(±4.49)% on average. 

Table 11 Controlled dataset: PA Classification Results 

Subject Accuracy (%) Error Rate (%) 

Subject: 1 87.99 12.01 

Subject: 2 93.19 6.81 

Subject: 3 98.33 1.67 

Subject: 4 97.22 2.78 

Subject: 5 88.38 11.62 
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Subject Accuracy (%) Error Rate (%) 

Subject: 6 98.67 1.33 

Subject: 7 92.60 7.4 

Overall Recognition Accuracy 93.77±4.49 6.23 

5.2 Uncontrolled	dataset	for	Model	Evaluation 

5.2.1 Experimental Setup 
The second study was conducted with group of 30 elderly of (72.69 ± 1.46) years. 
The group consist of 13  males of ܯ)  = ܦܵ,72.44 = 1.33) years, 17  females 
of(ܯ = ܦܵ,72.88 = 1.56)years in which 7 subjects had previous fall history. The 
inclusion criteria for both groups are as follows: 

 Home-dwelling 

 Able to move around without walking aids 

 Able to take verbal instructions on movements 

Inclusion criteria for the functional fit group are: 

 Able to walk 500 m without walking aids 

 Preferred gait speed ≥	1.1	m/sec 

Inclusion criteria for the functional impaired group are: 

 Preferred gait speed < 1.1 m/sec 

Participants were recruited from seniors’ citizen centres in the municipality of 
Trondheim, Norway and from exercise groups for seniors with impaired physical 
function. 

5.2.2 Dataset Collection 
The dataset was collected using commercially available body-worn accelerometer 
sensor in unsupervised way, as described in Section 4.2.2. The sensing device was 
attached to the waist of the subject. Each dataset, of 7-14 days, consist of 
recordings of the physical activities; STAND, SIT, WALK and LAY, performed by 
each subject. All activities were labelled by sensing device with already defined 
classification algorithm. The labelled data was used for presented approach 
evaluation and validation purposes. 
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5.2.3 Data Analysis and Feature Extraction 
The data gathered was imported to MATLAB for further processing and analysis, 
where presented activity recognition algorithm was used to identify the physical 
activities: standing, sitting, walk and lying, and walking and transitions between 
these activities. 

In order to apply the presented approach, where training dataset consist of true 
representation of under evaluation physical activities was extracted from each 
dataset of each subject. The same approach as explained in Section 5.1.3 was 
applied in the construction of training and testing datasets for each subject. 

5.2.4 Evaluation Results 
The training data recorded shown in Figure 27 consist of representation of 
accelerometer signal acquired for physical activities. Each dataset contains 10 min 
of respective PA performed in unsupervised way. 

Let training dataset samples ܦ  = {݀ଵ,݀ଶ, … ,݀} , where ݊ no. of samples 
and ܲܣ = ,ܦܰܣܶܵ} ,ܭܮܣܹ,ܶܫܵ  .represent samples of a particular subject PA ,{ܻܣܮ
Each sample ݀  is combination of two parameters; mean and standard deviation as 
explained in Section 5.1.3. The training dataset was considered an empirical data 
representation of each PA. We computed two statistics for the dataset; mean ߤ 
and standard deviation ߪ. The 95% confidence interval was computed using 
percentile method. 
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Figure 27 Acceleration signal of training dataset. a) Stand activity with mean 
 c) Stand activity with mean ,(ࡷࡸࢃࣆ) b) Stand activity with mean ,(ࡰࡺࢀࡿࣆ)
 (ࢅࡸࣆ) d) Stand activity with mean ,(ࢀࡵࡿࣆ)

The descriptive statistics is shown in Table 12. 

Table 12 Descriptive Statistics 

Activity 
Descriptive Statistics 

Mean Std. Deviation 95% CI 

STAND 0.1957 0.0484 [0.1221,0.2743] 

WALK 0.2158 0.0593 [0.1352, 0.3150] 

SIT 0.5357 0.0145 [0.5149, 0.5569] 

LAY 0.9939 0.0040 [0.9875, 0.999] 
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In order to show the evaluation results, testing dataset was extracted from the 
original dataset which replicate the scenario; standing, walking, sitting and lying. 
The total duration of the activities was 50 min. Classification of the testing dataset 
was performed based on the statistical t-test hypothesis using empirical 
parameters computed from training dataset for each PA. The hypothesis test was 
conducted with ߙ = 0.05 level of significance. When comparing to the ground truth 
to the hypothesis results, the achieved PA classification accuracy is shown in Table 
13. Testing dataset samples that were false rejected by null hypothesis will be 
addressed by semi-supervised clustering model in the following section. 

Table 13 PA Classification using Statistical Model 

Activity Accuracy (%) Error Rate (%) 

Stand 97.4773 2.5227 

Sit 95.8403 4.1597 

Walk 95.8403 4.1597 

Lay 94.6755 5.3245 

 

Figure 28 shows the same ்ܦ௦௧ , under evaluation, with sample mean (ߤ) and 
standard deviation (ߪ) over time frame. The empirical parameters for PAs (ߤ) 
are represented as ߤௌ்ே ௌூ்ߤ , ௐߤ ,  and ߤ . The clusters’ centroids were 
initialized (prior knowledge) with empirical parameters acquired using ்ܦ 
(training dataset). 

 

Figure 28 PA cluster centroids ࡰࡺࢀࡿࣆ  and variations in ࢅࡸࣆ and ࡷࡸࢃࣆ ,ࢀࡵࡿࣆ,
features/parameters ࣌ ,ࣆ while performing PA in unsupervised way. 
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After acquiring prior knowledge, for each new ்ܦ௦௧  (testing dataset) sample mean 
 Mean Squared Error (MSE) was computed to estimate the difference between ,(ߤ)
predicted computed feature/parameter ߤ and true value of the estimator ߤ, 
where ܲܣ =  .The MSE was calculated using Eq. (9) .{ܻܣܮ,ܭܮܣܹ,ܶܫܵ,ܦܰܣܶܵ}

ࡱࡿࡹ  = 

∑ ࣆ) − (ࡼࣆ
  where 30= samples/sec (9) 

By picking the minimum MSE, the algorithm will classify the true activity Posture 
(as shown in Figure 29) based on the physical activity transition model as 
described in Section 4.4.2. Figure 30 shows final output of the model where the 
True PA (in black colour) as the ground truth and Estimated PA (in red colour) as 
the PA classified by the semi-supervised clustering technique. Moreover, the 
clustering model identifies the transitions among different PAs. 

 

Figure 29 PA Classification using Physical Activity Transition Model. 

 

Figure 30 Estimated PA using Semi-supervised Clustering Technique 
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The results presented in Figure 30 are shown in Table 14 as confusion matrix 
among physical activities and achieved classification accuracy. 

Table 14 Uncontrolled Dataset: PA Confusion matrix and classification 
results. 

Activity Stand Sit Walk Lay Trans. Accuracy (%) 
Error Rate 

(%) 

Stand 24300 0 2700 0 0 90 10 

Sit 0 17850 0 0 150 100 0 

Walk 2400 0 15600 0 0 87 13 

lay 0 0 0 17850 150 100 0 

Subject's PA Recognition Accuracy 94 6 

5.2.5 Uncontrolled dataset: PA Classification Accuracy 
The dataset of physical activities; STAND, SIT, WALK and LAY, collected in 
unsupervised way from group consist of 13 males of (ܯ = ܦܵ,72.44 = 1.33)years, 
17 females of(ܯ = ܦܵ,72.88 = 1.56)years was evaluated with the presented 
methodology. The average classification accuracy of 90.81(±3.24)% was achieved. 

Table 15 shows the classification accuracy achieved of each elderly subject with 
demographic information, which were participated in the experimentation. 

Table 15 Uncontrolled Dataset: PA Classification Results 

No. Subject ID Gender Age Fall 
History 

Accuracy (%) Error Rate 
(%) 

1 5 2 72.70 0 90.88 9.12 

2 26 1 71.59 0 95.31 4.69 

3 38 2 72.58 0 89.57 10.43 

4 58 2 74.82 1 85.50 14.5 

5 61 2 73.55 0 92.32 7.68 
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No. Subject ID Gender Age 
Fall 

History 
Accuracy (%) 

Error Rate 
(%) 

6 66 2 72.41 1 89.77 10.23 

7 71 2 74.42 2 91.61 8.39 

8 73 2 74.33 0 90.31 9.69 

9 83 1 71.47 0 88.36 11.64 

10 89 2 70.47 0 88.94 11.06 

11 107 1 73.32 2 94.81 5.19 

12 111 2 73.39 2 93.23 6.77 

13 121 2 73.23 0 95.02 4.98 

14 140 1 74.37 0 92.76 7.24 

15 151 2 71.30 0 85.67 14.33 

16 173 2 69.94 1 88.73 11.27 

17 188 2 74.80 0 87.53 12.47 

18 194 2 72.11 0 90.81 9.19 

19 208 1 71.61 0 87.05 12.95 

20 209 2 70.71 3 83.21 16.79 

21 221 1 71.68 0 95.38 4.62 

22 233 2 73.57 0 89.64 10.36 

23 245 1 70.85 0 88.21 11.79 

24 423 1 72.60 3 89.87 10.13 

25 721 2 74.68 0 90.85 9.15 
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No. Subject ID Gender Age 
Fall 

History 
Accuracy (%) 

Error Rate 
(%) 

26 769 1 74.54 0 95.75 8.17 

27 771 1 74.41 0 92.81 7.19 

28 783 1 72.72 0 91.83 6.21 

29 811 1 71.33 0 93.79 5.23 

30 812 1 71.20 0 94.77 4.25 

       

Overall Recognition 
Accuracy 

72.69  
90.81±3.24 9.19 

5.3 PA	Behavioural	Shift	Indicators	and	Parameters	Retuning 
Mean as an indicator 

We made an argument in the Section 4.7.2 that there is a possibility that subject 
may perform a particular same PA in different ways. As a consequence, the sensing 
device generates different set of data. To validate this argument, we observed a 
scenario as shown in Figure 31. 

 

Figure 31 PA behavioural shift and parameter retuning. 

The p-Value was used as an indicator for any change in the sample mean and the 
empirical mean. As long as the computed p>0.05, the under observation PA is 
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within the empirical CI. In case of p<0.05 for certain number of samples, 
readjustment of parameters is needed. In our approach, we readjusted the 
parameters if 10 sec of consecutive samples are misclassified as any defined PA. 
The empirical mean information of the PA which has smaller MSE with respect to 
other empirical PA means was updated. The Figure 33 shows 1) estimated sample 
mean (in black colour) of accelerometer signal, 2) initial empirical true mean (in 
blue colour) which is computed from training dataset and 95% CI of empirical 
mean (in blue dotted colour), and 3) updated mean (in red colour) and new 95% CI 
of updated mean (in red dotted colour). 

Standard Deviation as an indicator 

Each PA has some significant amount of movement which can easily be monitored 
with the standard deviation parameter as shown in Figure 34. In case of no 
movement wither device is stationary or subject; wearing the device, may have 
some unexpected event. In our approach, model also keep track of the movement 
factor and generate an activity signal impulse every 20 sec which identifies 
subjects continuous PA. 

 

Figure 32 Physical	activity	signal	(condition	if	σ	>	0.005) 

The mean and standard deviation can be good indicator of subjects’ health statues 
in terms of physical fitness. 

5.4 Comparison:	Healthy	and	Elderly	Subjects	PA	Datasets 
We analysed healthy and elderly subjects in controlled and uncontrolled 
environments with respect to parameters; mean and standard deviation. The PA 
behavioural analysis between two healthy subjects and between healthy and 
elderly subject was conducted. The results shown in Table 16 suggest that there is 
no similarity among two independent healthy and elderly subjects in terms of 
mean and standard deviation.  
  

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 60 120 180 240 300

Fe
at

ur
e 

(σ
)

Time (sec)

σ Activity



 

Evaluation   95 

Table 16 PA Behavioural Analysis Results 

Activity / Subject Healthy vs Healthy Healthy vs Elderly 

Stand 

 
Mean 2.4458 2.2965 Mean 2.2966 0.1957 

Std. 0.1896 0.0437 Std. 0.0437 0.0572 

Levenes’s Test for 
Equality of 
Variances 

F 15.703 F 20.048 

Sig. 0 Sig. 0 

t-Test for Equality 
of Means 

t 5.942 t 279.083 

df 118 df 959 

Sig. (2-tailed) 0 
Sig. (2-
tailed) 

0 

Sit 

 
Mean 5.2705 7.9329 Mean 7.9329 0.5357 

Std. 0.8352 0.0710 Std. 0.0710 0.1717 

Levenes’s Test for 
Equality of 
Variances 

F 29.5239 F 174.221 

Sig. 0 Sig. 0 

t-Test for Equality 
of Means 

t -24.604 t 2035.769 

df 118 df 659 

Sig. (2-tailed) 0 
Sig. (2-
tailed) 0 

Walk 

 
Mean 2.5490 2.1948 Mean 2.1948 0.4679 

Std. 0.4872 0.4679 Std. 0.2158 0.0701 

Levenes’s Test for 
Equality of 
Variances 

F 0.015 F 842.395 

Sig. 0.902 Sig. 0 

t-Test for Equality 
of Means 

t 4.061 t 94.199 

df 118 df 659 

Sig. (2-tailed) 0 Sig. (2-
tailed) 

0 

Lay  Mean - - Mean 2.3987 0.9938 
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Activity / Subject Healthy vs Healthy Healthy vs Elderly 

Std. - - Std. 0.6213 0.0047 

Levenes’s Test for 
Equality of 
Variances 

F - F 2179.758 

Sig. - Sig. 0 

t-Test for Equality 
of Means 

t - t 59.6 

df - df 606 

Sig. (2-tailed) - 
Sig. (2-
tailed) 

0 
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6 CONCLUSIONS 

The following chapter summarizes the main findings and contributions in the area 
of physical activity recognition systems. 

A brief overview of the literature in human activity monitoring was provided. The 
thesis explored different aspects and components of developing a robust and 
reliable physical activity recognition system. The thesis highlighted the fact that 
the success of an activity recognition system lies in four components; activity, 
context, subject and sensor. A single sensor is not capable of recognizing every 
human activity, while many sensors on the subject body are not feasible. Choice of 
number of sensors depends on the context and purpose of use of the recognition 
system. 

In this thesis work, a single accelerometer sensor was attached to the subject’s 
waist for collection of activity data. The basic activities of daily life; stand, sit, walk 
and lying were considered to be recognized. These basic activities are meaningful 
and provide enough information using a single accelerometer sensor in long-term 
unsupervised care of elderly/patients. The data analysis indicated that there is 
inter-subject and intra-subject data variability in performing activities, thus 
subject-independent algorithm development is not appropriate. The human body 
has different response times while performing the same physical activities of daily 
life and different subjects may have different way of performing activities. Thus, 
subject-dependent activity recognition is more useful and personalized. The simple 
features mean and standard deviation; extracted from single accelerometer sensor, 
have enough capability to discriminate one activity from another. 

The thesis addressed the limitations of threshold-based methods and machine 
learning techniques and presented a methodology with the combination of 
threshold-based and machine learning methods. In order to avoid fixed thresholds, 
a simple statistical model was presented which is subject-dependentmodel 
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adapts for each individual subject. Each activity data samples were collected as the 
prior knowledge of the subject. The assumption was made that respective activity 
data samples corresponds to the true activity behaviour of the subject, otherwise 
the recognition system results will not be true. The model has the capability to 
classify activity with the 95% confidence accurately. Moreover, the model has the 
capability to adapt the subject’s activity behaviour change. In unsupervised 
situations reducing the classifier training time and the amount of labelled data is 
important, as collecting labelled data is not possible. The novel semi-supervised 
clustering framework was described which need no training data, besides the prior 
activity knowledge, and no further offline data analysis is required. Each new 
subsequent sensor data will be classified with reasonable accuracy with the 
presented classifier using the physical activity transition model. The presented 
methodology can effectively classify the selected activities and transitional 
activities with reasonable accuracy. The indicated classification accuracy results 
reflect the correct recognition of stand, sit, walk and lay activities, where the 
transitions among these activities were considered as unclassified. As mentioned 
in Section 4.3 that the stand activity could include some movement, therefore in 
the achieved findings there are some stand samples were classified as walk and 
vice versa. The reason behind is of elderly’s slow activity response (in terms of 
sensor data) found in walk and stand activities. 

Most of the published work is based on findings from controlled situations. In 
order to validate the recognition system accuracy in both environments, two 
different studies in both a controlled laboratory and in an uncontrolled situation 
was included in the presented work. The accuracy achieved in the controlled 
environment (laboratory) with 7 healthy subjects was 93.77% and the accuracy 
achieved in uncontrolled environment (hospital) with 30 elderly subjects was 
90.81%. 
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