Manuscript

AW N =

O IO W

11

12
13

14

15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35

36
37

38

39
40
41
42
43

Title: Modeling global distribution of agricultural insecticides in surface waters

Authors: Alessio Ippolito™®, Mira Kattwinkel®?, Jes J. Rasmussen®, Ralf B. Schifer’, Riccardo
Fornaroli®, Matthias Liess®!

Affiliations:

* International Centre for Pesticides and Health Risk Prevention, L. Sacco University — Hospital, Via G.B. Grassi, 74,
20157, Milan, Italy.

b Department of Earth and Environmental Sciences (DISAT), University of Milano - Bicocca, Piazza dellaScienza 1,
20126, Milan, Italy.

¢ UFZ, Helmholtz Centre for Environmental Research, Dept. System-Ecotoxicology, Permoserstrasse 15, 04318
Leipzig, Germany.

d Department of System Analysis, Integrated Assessment and Modelling, Eawag, Uberlandstrasse 133, P.O. Box 611,
8600 Diibendorf, Switzerland

® Department of Bioscience, Aarhus University, Vejlsavej 25, 8600 Silkeborg, Denmark.

" Institute for Environmental Sciences, University Koblenz-Landau, Campus Landau, Fortstrasse 7, 76829 Landau,
Germany.

'Corresponding Author: Alessio Ippolito
e-mail: ippolito.ecotox@gmail.com
Telephone: +39 333 5865622

Abstract: Agricultural insecticides constitute a major driver of animal biodiversity loss in
freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure
remain largely unknown. We applied a spatially explicit model to estimate the potential for
agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface
were at risk of insecticide runoff. We separated the influence of natural factors under human control
determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal
gradient mainly driven by insecticide application rate, in the southern hemisphere, a combination of
daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate
determined the process. The model predicted the upper limit of observed insecticide exposure
measured in water bodies (n=80) in five different countries reasonably well. The study provides a
global map of hotspots for insecticide contamination guiding future freshwater management and
conservation efforts.

Key words: Insecticide runoff, Exposure models, Risk assessment, Global map

Capsule: We provide the first global map on insecticide runoff to surface water predicting that
water bodies in 40% of global land surface may be at risk of adverse effects.

Highlights:

o first global map on insecticide runoff through modelling

e model predicts upper limit of insecticide exposure when compared to field data
¢ water bodies in 40% of global land surface may be at risk of adverse effects

e insecticide application rate, terrain slope and rainfall main drivers of exposure
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Introduction

An estimated 2.3 x 10° tons of pesticides are annually applied to agricultural land at the global scale
(Grube et al., 2011) to maintain high levels of production. This amount is equivalent to an annual
application of 0.15 kg of pesticide per hectare of the total land surface of the earth. The
environmental effects caused by these substances are fundamentally different from those of other
classes of chemicals, as pesticides are intentionally designed and released into the environment to
eradicate pests and weeds. Consequently, pesticides are a major threat to terrestrial (Barmaz et al.,
2010; Boatman et al., 2007; Newton, 1995) and aquatic biodiversity (Liess & von der Ohe, 2005;
Relyea, 2005; Schifer et al., 2012; Verro et al., 2009), although the global extent of their effects
remains largely unknown. Similarly, the relative importance of main factors driving the exposure at
a global scale needs further research. Studies performed at the local and regional scale have
demonstrated that agricultural practices (Brown et al., 2008; Tang et al., 2012) and landscape
features (Schriever et al., 2007) determine the magnitude of exposure. Large-scale screening
approaches, such as spatially explicit models based on Geographic Information Systems (GIS),
allow for rapid and cost-effective exposure estimations (Schriever et al., 2007). The identification
of areas of concern can trigger regional monitoring programs and, if necessary, exposure mitigation

measures.

Given that insecticides are designed to control pest insect populations, they have the
potential to impair aquatic invertebrate populations, which play a major role in aquatic ecosystem
structure and functioning (Fleeger et al., 2003; Ippolito et al., 2012; Liess & Beketov, 2011; Liess &
von der Ohe, 2005; Schifer et al., 2012). Such estimation of the current state of insecticide
contamination in freshwater bodies is pivotal for a targeted conservation and restoration of these
ecosystems in order to achieve a satisfactory ecological quality. The need for a global scale
perspective is at present particularly essential because farmers in many developing countries are

changing from traditional subsistence farming to market-oriented intensive-crop farming



69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

(Satapornvanit et al., 2004). Moreover, global climate change is proposed to result in a significant
increase in the global insecticide application on crops, especially in industrialized countries (Boxall

et al., 2009; Kattwinkel et al., 2011).

Several field studies documented that most insecticides can enter surface water bodies via
surface runoff triggered by heavy rain episodes (Van der Werf, 1996; Wauchope, 1978). In this
study we used existing raster maps (FAO & IIASA, 2006; Batjes, 2006) and spatial databases
(NOAA; FAO) as input data for a spatially explicit model (Kattwinkel et al., 2011; Schriever &
Liess, 2007; Schriever et al., 2007) estimating the surface Runoff Potential (RP) following strong
rainfall events. This RP model (Eq. 1) used to estimate insecticide input into streams, was split into
two parts to separate environmental factors (e.g. daily rainfall intensity, soil characteristics, slope of
the terrain etc.), from human-controlled variables (due to agricultural practices) that determine
insecticide runoff. Subsequently, the predictions of the model were compared to monitored peak

flow measurements of insecticide contamination in streams of four different biogeographic regions.

Materials and Methods:

Model

We used a generic indicator (RP; runoff potential) that distinguishes stream sites based on
key characteristics of the environment around the stream to assess the potential for insecticide
runoff inputs (Kattwinkel et al., 2011; Schriever & Liess, 2007; Schriever et al., 2007). The RP is
based on a mathematical model (Eq. 1) that estimates the amount (gLOAD) of a generic substance
that was applied in the near-stream environment and that may reach the stream in response to a

single rainfall event.

The model equation is built on nine parameters. #: grid cell index; A;: area [ha] of the stream

corridor; D: country-specific insecticide application rate [gha™]; Koc: soil organic carbon-water
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partitioning coefficient [adim]; OC;: organic carbon content [%]; s;: slope [%]; f(sy: influence of
slope on runoff; P;: daily rainfall intensity [mm], T;: texture; f{P; T;): volume of surface runoff due
to precipitation [mm]; p;: proportion of croplands in cell 7; I: average plant interception [%].

All spatial calculations were performed with ArcGis 10 (ESRI, Redlands, CA, USA). The
grid cell size used in the study was 5 x 5 arc-minutes. As a result, gLOAD reflected the mean
generic exposure of a stream section that would be located in a cell and had the same environmental
characteristics as the grid cell. The RP of an individual grid cell was derived as the logl0-
transformed gLOAD and was subsequently classified into five order-of-magnitude categories (RP
values as class boundaries: -3; -2; -1; 0).

In addition, the model was split into two submodels: the first included all environmental
variables affecting the RP (daily rainfall intensity, soil characteristics, and slope); the second
incorporated those variables that are under human control (insecticide application rate, crop
interception, fraction of land used for growing crops). By analogy with the classical risk equation,
the first submodel was used to construct a vulnerability map, with vulnerability taken as the natural
degree of susceptibility to runoff in each grid cell. The second submodel was used to derive the
hazard associated with the human management of insecticides in agriculture. The vulnerability and
hazard maps show completely different ranges of variation; hence, the class boundaries for these
maps were assigned ex-post according to the distribution function of the values (quintiles).

Area of the stream corridor (A;) - No real stream courses were considered in the present
study. In accordance with previous studies (Schriever & Liess, 2007; Schriever et al., 2007), for
each grid cell we considered a generic stream segment with one bifurcation. The near-stream
environment was set to an area of 45 ha, which was derived from a two-sided 100-m stream
corridor that extended 1500 m upstream from the site (the bifurcation was placed midway in the
upstream corridor).

Insecticide application rate (D) - Country-based data on the rate of insecticide

application were retrieved from the FAOSTAT database (FAQO). All available data for each country
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referring to the years 2000-2010 were considered. Issues reported in metadata (e.g. data refer to
imports only or data expressed in formulated products) were evaluated case by case and unreliable
data were discarded. A country was considered only if at least two acceptable data points were
present for the abovementioned period. The arithmetic mean of the insecticide application rate was
calculated for each country, unless the specific coefficient of variation was > 100%. Then, if a clear
trend was observed, only the latest value was considered (most representative of the present
situation), else the country data was omitted. For those 84 out of 165 countries without respective
data, the insecticide application rate was estimated. The estimation was done using a linear model
with the predictors average accumulated temperature (see below), the fraction of insecticide high-
consuming crops, and the GDP. The average accumulated temperature was included as predictor
since a strong correlation between temperature and the rate of insecticide application has been
identified in another study (Kattwinkel et al., 2011) for European countries.

We calculated the average accumulated temperature for each country using a map produced by
FAO & TTASA (33) (Tiean > 0 °C), then weighting the value of each grid cell in the country by the
corresponding proportion p; of croplands (taken from FAO) to account for potential differences in
temperature between crop and non-crop areas. The insecticide application rates may vary strongly
among crops. Therefore, crops were divided into two classes on the basis of their typical insecticide
amount requirements using the U.S. National Pesticide Use Database (Gianessi & Reigner, 2006).
Insecticide high-consuming crops included all kinds of fruits, nuts and olives; insecticide low-
consuming crops included all remaining crops (mostly cereals, vegetables, herbs and fiber crops).
Typical insecticide application rates differed significantly between the two groups (p < 0.0001,
Mann-Whitney and Kolmogorov-Smirnov tests). The fraction of insecticide high-consuming crops
in each country was estimated on the basis of the information retrieved from FAOSTAT database
(FAO) for the years 2000-2010. Finally, the insecticide application rate is also determined by the
economic situation in a country. Therefore, we also included the country-specific GDP. GDP values

(expressed in 2005 US dollars) per capita per country per year were retrieved from the Economic
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Research Service’s International Macroeconomic Data Set (ERC). Median GDP values were
calculated for all countries over the period 2000-2010. The regression model was calculated with
the software [R] using all the log-transformed available data at the country level. All country-based
rates of insecticide application were normalized by dividing them by the application rate for
Germany to enable comparability to those used in previous studies (Kattwinkel et al., 2011;
Schriver & Liess, 2007). A detailed description of the procedure to derive country-specific
insecticide application rate is reported in SI-I

Koc - The soil organic carbon-water partitioning coefficient is substance specific. We
considered all insecticides with respect to the application rate, therefore a substance-specific value
could not be assigned. The Ko¢ value was set to 100 in accordance with (Kattwinkel et al., 2011;
Schriever & Liess, 2007). This assumption is rather worst case since most insecticides (>75% of
used compounds, according to our estimation) have Koc values higher than 100, which would result
in lower RP. However, in the absence of detailed per country information that would allow to
compute an average Koc per country, the assignment of a different value for the global Koc would
not change the relative scale obtained for RP.

Daily Rainfall Intensity (P;) - RP is determined by single rainfall events. We calculated the
median value of the monthly maximum precipitation for each of the 76,687 stations (over the entire
available period) collected in the NOAA - GHCN daily database (NOAA). We then assigned to
each station the maximum value within the productive season. Productive seasons were assessed
using two maps included in the Food Insecurity, Poverty and Environment Global GIS Database
(FGGD) (FAO & TIASA, 2006). First, we considered the areas in which a lack of water is the
principal constraint on agriculture, according to the “Hierarchical distribution of severe
environmental constraints map”. In those areas, no time period limitations were established because
it is likely that the rainiest month is the period of maximum productivity. In all other areas, the

length of the growing period was assigned on the basis of the corresponding FGGD map (FAO &
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IIASA, 2006), while the temporal collocation of the growing season was differentiated between the
northern and southern hemispheres.

With this methodology, we assigned one value to each of the GHCN stations for which the
coordinates were known. Hence, the points were interpolated over the global land surface. Several
(ordinary kriging) semivariogram models were tested: the choice of the final interpolation model
aimed at minimizing (i) the root-mean-squared prediction error and (ii) the difference between the
latter and the average estimated prediction standard error. The best results in terms of prediction
(60%, p<0.0001, F-test) and uncertainty estimation were obtained with a Stable semivariogram
model.

The function f{7,P) proposed by the OECD (OECD, 1998) (Eq. 2) is based on empirical values and
it is valid in the range of 6-100 mm. Therefore, all values of daily rainfall intensity below 6 mm or
above 100 mm were set to 6 and 100 mm, respectively (accounting for 1% of total grid cells).

~5.86-10° P> +2.63-107 P> —1.14-10° - P —1.64-107 if T, =sand (Eq. 2)
~9.04-10°-P’ +4.04-107 - P> —4.16-10" - P, —6.11-10" if T, =loam
A detailed description of the procedure to derive daily rainfall intensity is reported in SI-II

.f(T,P)={

Plant interception (I) - Plant interception is plant- and growth-phase specific. Nevertheless,
agricultural patterns (the growth phases during which plants are treated) are too complex and
spatially heterogeneous to be represented in a global assessment. Also, a reliable representation of
crop distribution patterns at global scale is not available. In the European Generic guidance for
FOCUS surface water scenarios (FOCUS, 2012), plant interception values corresponding to four
phenological stages are reported for 21 different crops. Insecticide are likely not to be applied
during the first stage, when interception is zero for all crops. The mean and the median of the of the
remaining values (n=63, 3 stages x 21 crops) is 0.5. Hence, a fixed plant interception value of 50%
was applied to each grid cell.

Soil variables (T;, OC; -The values of the soil variables were retrieved from ISRIC-WISE

(Batjes, 2006). The organic carbon content of the first soil layer (0-20 cm) was considered. In the
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ISRIC-WISE map, organic carbon is expressed in six classes. In our study, each cell was assigned
the mean value of its class rounded to the nearest integer. Texture was derived from the database
attached to the ISRIC-WISE map. The percentage content of clay, silt, and sand in the first soil
layer (0-20 cm) was used to classify the texture as sandy or loamy. Criteria for the classification
were retrieved from Finnern et al. (2005).

Proportion of cropland in each grid cell (p;) - The occurrence of cropland was taken from
the FGGD project (FOA & ITASA, 2006).

Slope (s;) -The average slope was taken from the FGGD project (FOA & ITASA, 2006). In
the relevant FGGD map, slope was expressed in terms of seven classes. In our study, each cell was
assigned the mean value of its class rounded to the nearest integer. The function determining the

influence of slope on runoff according to OECD (1998) is Eq. 3

_ 0.00]423-Sl.2 +0.02153-s,, if 5,<20%
f(si)_{ 1, l'fS,->20% (Eq. 3)

Sensitivity analysis

A sensitivity analysis was carried out to analyze the influence of changes in each model
input variable on RP scores. Model sensitivity was assessed by varying one parameter at a time in
the ranges +/-25% and +/- 50%, while all other parameters were kept constant at their mean values
(daily rainfall intensity = 28.9 mm; organic carbon = 2.17%; slope = 12.8%; fraction of cropland in
each cell = 0.25, calculated disregarding cells for which this fraction was zero; insecticide
application rate = 0.34, calculated as median among countries) or at specified values (Koc =100;
plant interception = 50%) .
Uncertainty analysis

An uncertainty analysis was performed to take into account, how estimated RP values could
change in response to the uncertainty of the input parameters. Uncertainty ranges were estimated for

each parameter in each grid cell. Values of one parameter at a time were set to the extremes of the
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corresponding uncertainty range (lower and upper limit) and RP values were recalculated. We
evaluated changes in the RP classification of grid cells with respect to the original estimation.
Due to different data types in the input data, different approaches were used to describe the
uncertainty ranges. For the insecticide application rate (D), 95% prediction limits of the linear
model used for prediction (see above) were used as upper and lower extremes of the uncertainty
range for each country. For daily rainfall intensity (P;), a prediction standard error map associated
with the kriging interpolation was calculated. Extremes of the uncertainty range for each grid cell
were calculated by adding to (upper limit) and subtracting (lower limit) from the predicted value
twice the prediction standard error. Extremes of plant interception (/) were set everywhere to 0-90%
in accordance with (FOCUS, 2012). No accuracy assessment was available for the map used to
estimate the proportion of cropland (p;) in each grid cell (FAO & ITASA, 2006). However, this map
was originally derived from the Global Land Cover 2000 (EC-JRC, 2003), whose accuracy has
been assessed (Mayaux et al., 2006). We considered the higher error between the User’s accuracy
and the Producer’s accuracy for the category “Cultivated and managed areas” and we used this
value (27%) to estimate the extremes of the uncertainty range for each grid cell. Slope (s;) and
organic carbon (OC;) were derived from maps expressed in terms of classes (values intervals). The
extremes of these classes were used as the limits of the uncertainty ranges. To assess the uncertainty
due to soil texture (7;), the model was applied assuming that the soil was loamy and sandy
everywhere. Detailed results of the uncertainty analysis are reported in SI-III
Quantile regression

The predictions of the model were compared to actual measurements of insecticide
contamination in water bodies from previous field studies covering Germany (Liess & von der Ohe,
2005), France and Finland (Schifer et al., 2007), Denmark (Rasmussen et al., 2011) and Australia
(Schifer et al., 2011). The sampling campaigns were designed to catch runoff-induced

concentrations of the insecticides most widely used in the respective areas.
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Measured insecticide concentrations were expressed as Toxic Units (TU), i.e. benchmarked
by a standard test organism (Daphnia magna in this case) to allow for comparison of different
substances. The maximum TUs per site (Liess & von der Ohe, 2005; Schifer et al., 2013) were
matched with the corresponding RP values estimated for the same sites. Further information on the
studies and the raw TU data are provided in (Schéfer et al., 2013).

Quantile regression fits a continuous function through the local (with respect to the
independent variable) value of the quantile of a dependent variable to account for variation in the
quantile with the independent variable (Cade et al., 1999; Koenker & Bassett, 1978). We fitted
linear, exponential and logarithmic models to the data. For each model both (i) a t-specific version
of the corrected Akaike Information Criterion (Koenker, 2013), (AICc(t)) and (ii) the Akaike
weights (w;) (the relative likelihood of a model, given a data set and a set of models) were
calculated.

The difference between the model AICc(t) and the minimum AICc(t) was used to choose
the best-fitting model (Al = AICc(1) - min AICc(t)), considering that the model with the lowest
AlCc(1) generally provides the better description of the data. Values of Ai> 2 are suggested as a
threshold to exclude alternative models; values of Ai< 2 indicate substantial support for the
alternative model (Burnham & Anderson, 2002; Johnson & Omland, 2004). Last, we determined
the best model form across the 80™, 85", 90™ percentiles by averaging w; for each model from all
three percentiles model selection analyses. To test and compare the goodness of the different
models, the selection process was done for a modified dataset with all x values shifted to the
positive range. The functional form selected with w; was recalculated on the original dataset and
was tested for statistical significance in terms of the probability that the slope and intercept were
zero (Scharf et al., 1998).

Results and Discussion

The predicted magnitude of insecticide runoff driven by environmental variables was

visualized in a vulnerability map (Fig. 1). The spatial pattern of vulnerability is determined by
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geomorphology and climate, particularly the slope of the terrain and the maximum intensity of

rainfall during the crop growing season.
FIGURE 1

Subsequently, we produced a hazard map (Fig. 2) based on the anthropogenic factors that
influence runoff such as the rate of insecticide application, and the share of land used for

agriculture.
FIGURE 2

We combined the vulnerability and hazard maps into a map of predicted insecticide runoff
potential (RP) (Fig. 3) and we show that more than 40% of the global land area was at risk of
generating insecticide surface runoff to streams. Remarkably, RP values for more than 40% of that
fraction (18% of the global land area) were classified as high to very high. This result receives
support from a previous model-based study that identified pesticides as important pollutants of

streams and rivers globally (Vorésmarty et al., 2010).
FIGURE 3

High hazard was sufficient but not necessary to yield high RP values: more than 90% of the
grid cells characterized by a high (4th quintile) or very high (Sth quintile) hazard resulted in RP
classes high or very high, but half of cells in the highest RP class did not originate from high or
very high hazard values. By contrast, high vulnerability was usually a prerequisite for very high RP
values (86% of cells in the highest RP class presented high or very high vulnerability), but did not
always translate into high RP classes.

The RP map indicated the presence of a north-south gradient in the northern countries, with
increasing RP towards the south throughout Eurasia. The same trend was observed from North to

Central America, except for the Midwestern United States. This tendency generally reflects the
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insecticide application rate. The insecticide application rate depends strongly on average
temperature due to the dependency of several insect pests on the number of degree days (Herms,
2004). In addition, temperature is a limiting factor for the cultivation of high insecticide-consuming
crops (e.g. fruits, nuts, olives and ornamentals). Hence, climate change will likely increase the
proportional area with high and very high RP in the future, especially in the northern hemisphere
(Kattwinkel et al., 2011). By contrast, the RP values in the southern hemisphere showed no or only
slight changes in association with latitude. This probably reflects that the insecticide application
rate in these countries is constrained by socio-economic factors. Growing economies in several
parts of the southern hemisphere may soon overcome this constraint and attempt increasing their
food production e.g. through increasing insecticide application rates, which in turn may increase
proportions of land with high or very high RP in the future.

The relationship between measured insecticide concentrations (converted to Toxic Units
(TU) to enable comparison of potential ecological effects) in streams of five different countries
(France, Germany, Finland, Denmark, and Australia) and RP predictions was positive and linear for
all the considered percentiles in the quantile regression (80th, 85", and 90th) (See SI-IV for details).
In ecological studies, 90th-percenti1e regressions have been used to estimate limiting-factor
relationships; i.e. 90% of the observations are below the fitted line (Konrad et al., 2008). Since our
sample size was relatively small (n= 80), we modeled 3 extreme percentiles (80th, 85, 90th) for a
more robust analysis. The linear model consistently yielded the best goodness of fit with A; always
greater than 10 and an averaged w; of 0.997 (Table SI-IV 1). The positive slope of the three quantile
regression models indicated that the upper quantiles of the maximum logTU increased with RP (See
SI-IV for details). Overall, RP represents a potential - not an exact prediction of the pollution level -
and should be interpreted as a limiting factor that is valuable to identify potential hotspots of
insecticide runoff. Due to the scale used in our study, it was not feasible to consider mitigation
measures (vegetated buffer strips, unsprayed areas, artificial wetlands, etc.) implemented at local

scale. Therefore, our predictions may overestimate the exposure in regions where such measures are
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applied. Note that measured insecticide data originated from four regions of Europe and Australia
and are not representative for the whole world. Nevertheless, they originated from regions with
considerable differences in terms of landscape and agricultural practices.

Several field studies reveal that the abundance of macroinvertebrates sensitive to pesticide
pollution decreases with increasing insecticide pollution measured during runoff episodes (Liess &
von der Ohe, 2005; Schifer et al., 2007). Importantly, RP predictions for 10 km” grid cells have
been shown to provide reasonable predictions of abundances of sensitive macroinvertebrate species
from random pulls of streams in Germany, and grid cells with predicted high or very high RP
revealed reduced abundances of sensitive macroinvertebrate species in 55% and 90% of the
streams, respectively (Schriever & Liess, 2007). In the light of these results, we find it worrying
that we predict 18% of the global land surface having high or very high RP. Moreover, several
studies confirmed that undisturbed upstream sections, such as forest patches, increase recovery of
macroinvertebrate communities from pesticide pollution measured during storm flow (Schifer et
al., 2007 and reference therein). For 60% of the area with high and very high RP values in the
present study, forests cover less than 20% of the surface area. Therefore, increased community
recovery potential facilitated by upstream forested stream sections is not expected to be high in the
grid cells characterized by predicted high to very high RP.

The sharp contrasts in some parts of the hazard map reflect national borders because: (i)
insecticide application rate data were averaged on a country basis and (ii) the collection, analysis,
and distribution of those data often vary among countries. To our knowledge, only the database
maintained by the Food and Agriculture Organization of the United Nations (FAO) holds data on
insecticide usage for most countries of the world. The insecticide rate gradient spans more than
three orders of magnitude. Thus, the resolution is too low to account for regional differences. In
addition, the insecticide use had to be estimated for 84 of the 165 countries included in the analysis
(linear regression model, R?= 0.55, p <0.001 for full model, see methods for details), because data

were not available or not reliable. To our knowledge, only one other study has estimated the rate of
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pesticide application for countries without data (Esty et al., 2005). However, that study did not
distinguish between insecticides, herbicides and fungicides, which is essential for the present study.

The sensitivity analysis revealed that the RP model was most sensitive to changes in slope.
In addition, the model showed a high degree of sensitivity to changes in daily rainfall intensity
values, whereas the organic carbon content exhibited smaller influence. Generally, a variation of +/-
25% in the input parameters caused an average change in RP by |0.08| to |0.18]. A variation of +/-
50% in the input parameters would result in an average change in RP by |0.18] to |0.41]. Note that
the interval between the extremes of the same RP class is |1.00] (except for the lowest and highest
class, which have no lower and upper limit, respectively). Detailed results of the sensitivity analysis
are reported in SI-IIT

Insecticide application rates represent the greatest source of uncertainty in the final outcome.
Oscillation within the estimated prediction interval (see material and methods for details) for this
input parameter can cause a RP class shift for 97.6% of grid cells, with 24.4% shifting by +/- 2
classes. When plant interception is set to the most extreme values (0-90%), 91.6% of the grid cells
change to an upper or lower neighboring RP class. However, such values are unlikely to be
widespread over the entire productive season, therefore this assessment largely overestimates the
actual uncertainty due to this parameter. Uncertainty of daily rainfall intensity led to 61% of
potentially misclassified grid cells. The risk of misclassification due to uncertainty of the remaining
parameters was much lower (See SI-III for details), though for slope, shifting by up to 4 classes was
possible in some rare cases.

To conclude, our analysis identifies regions where insecticides may represent a major threat
to the aquatic biodiversity (Liess & von der Ohe, 2005; Vorosmarty et al., 2010). These regions
should be scrutinized for the actual exposure. To date the majority of studies dealing with
insecticide contamination of streams have been conducted on a small scale, mostly involving single
catchments (Verro et al., 2002). Only recently have empirical and modeling studies started to

extend the focus to larger areas, such as regions (Liess & von der Ohe, 2005), countries (Huber et
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al., 2000), or continents (Kattwinkel et al., 2011, Schriever & Liess, 2007; Schriever et al., 2007).
This is the first attempt to assess insecticide exposure at a global scale. The separation of
“vulnerability” (influential environmental factors; Fig. 1) and “hazard” (anthropogenic factors; Fig.
2) can be used to identify appropriate strategies for managing the use of insecticides in agricultural
activities. Whether to mitigate hazard by making changes in the cropping system, or vulnerability
by introducing modifications in the local environment should be decided on a case by case basis, if
an actual risk at the local or regional scale has been identified.

The maps available in this study can increase awareness of citizens and regulators in areas
where the ecological effects of insecticides are likely to be significant. In addition, they could
prompt national or international authorities to foster targeted local investigations. In fact,
environmental management needs to be operatively performed at regional and local scales, but
investment policies can be addressed at continental or even global scales by international agencies

and authorities (e.g., FAO, UNEP, and OECD).
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Figure legends

Fig. 1. Global insecticide runoff vulnerability map.

The map shows the potential magnitude of insecticide runoff regardless of the actual agricultural
activity and incorporates all natural variables included in the model to calculate RP. Class
boundaries have been assigned ex-post according to the distribution of the values (see Materials and

Methods).

Fig. 2. Global insecticide runoff hazard map.

The map considers all variables of the RP model that are under human control and are connected to
agricultural activities. Class boundaries have been assigned ex-post according to the distribution of
the values (see Materials and Methods). Grey areas indicate the absence of any relevant agricultural

activity.

Fig. 3. Global insecticide RP map.

The map shows the spatial distribution of potential insecticide runoff to stream ecosystems.
According to this estimation, the surface waters in 43% of the total global land area are potentially
subject to insecticide load as a consequence of current agricultural practices. The class boundaries (-
3;-2;-1;0) are the same as those used in previous studies (Kattwinkel et al., 2011). Grey areas

indicate the absence of any relevant agricultural activity.
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