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Abstract

We propose a general framework for Bayesian inference that does not re-
quire the specification of a complete probability model, or likelihood, for the
data. As data sets become larger and systems under investigation more com-
plex it is increasingly challenging for Bayesian analysts to attempt to model
the true data generating mechanism. Moreover, when the object of interest
is a low dimensional statistic, such as a mean or median, it is cumbersome
to have to achieve this via a complete model for the whole data distribu-
tion. If Bayesian analysis is to keep pace with modern applications it will
need to forsake the notion that it is either possible or desirable to model the
complete data distribution. Our proposed framework uses loss-functions to
connect information in the data to statistics of interest. The updating of be-
liefs then follows from a decision theoretic approach involving cumulative
loss functions. Importantly, the procedure coincides with Bayesian updating
when a true likelihood is given, yet provides coherent subjective inference
in much more general settings. We demonstrate our approach in impor-
tant application areas for which Bayesian inference is problematic including
variable selection in survival analysis models and inference on a set of quan-
tiles of a sampling distribution. Connections to other inference frameworks
are highlighted.
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1. Introduction. Data sets are increasing in size and modelling environ-
ments are becoming more complex. This presents opportunities for Bayesian
statistics but also major challenges, perhaps the greatest of which is the re-
quirement to define the true sampling distribution, or likelihood, for the data
generator fy(x), regardless of the study objective. So even if the task is
inference for a low-dimensional statistic of the population, the analyst is re-
quired to model the complete data distribution and, moreover, assume that
the model is “true”. We propose a coherent procedure for general Bayesian
inference that does not require complete knowledge of fo () and which con-
nects information in the data to the value of an unknown object or parameter
of interest via the use of loss functions. By “coherent” we mean that all
relevant information is contained in the posterior probability distribution.
For ease of exposition we shall use the terminology “parameter of interest”
and “statistic of interest” interchangeably. We show how the approach leads
to conventional Bayesian updating when the true likelihood is known but
allows for rational updating of beliefs in much more general settings.

The central tenet of our paper is this: as applications get more com-
plex Bayesian analysts will increasingly be forced to forsake the notion that
they can precisely model all aspects of the data. Settling for a misspec-
ified model undermines the traditional Bayesian approach leading to inter-
pretability problems along with the reliability of the posterior distribution. If
the analyst acknowledges this then they should seek an alternative coherent
way to proceed. We aim to contribute to this task.

1.1 The idea. Let 6 denote a parameter or statistic of interest, for example
the mean or median of a population Fj(z), and let = denote a set of ob-
servables x from Fy(z), with Fjy unknown. We are interested in a formal,
optimal, way to update prior beliefs () to posterior beliefs 7(6|z) given
x.

Bayesian inference proceeds through knowledge of a complete, true,
model for fo(x). This is often parameterised via a sampling distribution
f(x; ) and a prior 7(/3), such that,

fol) = /ﬂ f(x: Byn(dB)

and following de Finetti we know that all exchangeable distributions can be
modelled in such form, see for example Bernardo and Smith (1994). Then
inference for the statistic of interest, 6, can occur via,

w0le) = [ olf s B)m(asln
where g[-] defines the statistic; for example, if 6 is the mean then g[f(-; §)] =

J xf(z; B) da; or if 6 denotes the median then g[f(-; 8)] = F/B_l(O.E)). Fol-
lowing the Savage axioms (Savage, 1954) the Bayesian update can be shown
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to be the rational way to proceed. However, fy(x) may be unknown, x
may contain a vast number of data points and S might be high-dimensional.
Taken together, this makes the Bayesian approach somewhat cumbersome.

We are interested in the rational updating of beliefs, w(0) — = (0|z),
under more realistic and manageable assumptions. To do so we relax the
assumption that fy(x) is known and make use of loss functions to connect
information in data to parameters of interest. Informally for now, we write
such loss functions as (¢, =), and we will discuss specific types later in the
paper. We shall consider the reporting of subjective beliefs, 7(0|x), as an
action made under uncertainty and use decision theory to guide the optimal
action. See for example Hirshleifer and Riley (1992).

To outline the theory, let v denote a probability measure on the state
space of #. We shall construct a loss function to select an optimal posterior
measure 7(6) given a prior w(6) and data x. To achieve this we construct a
loss-function L(v; 7, z) on the space of probability measures on 6, and then
present

U =arg myin L(v;m, x),

as the optimal “honest” representation of beliefs about the unknown value
of 6 given the prior information represented via the belief distribution 7 and
data x. Asitis widely assumed data x is an independent piece of information
to that which gave rise to the prior, it is appropriate to consider an additive,
or cumulative, loss function of the form

L(l/;ﬂ',l’):hl(l/,l')—i-hz(l/,ﬂ), (1)

where hp and hy are themselves loss functions representing fidelity-to-data
and fidelity-to-prior, respectively. See, for example, Berger (1993) for more
about ideas on uses of loss functions within decision theory.

Under this approach the analyst needs to specify h; and hgy in such a
way that they proceed in an optimal, rational, and coherent manner. We can
deal immediately with the loss function hs(v, 7). Somewhat remarkably, as
proved later, for coherent inference ho must be the Kullback—Leibler diver-
gence, Kullback and Leibler (1951), and given by

ho(v, 7) = dicp (v, 7) = /@ V(d6) Tog{1(d0) /= (d0)}.

Regarding hq, since 7/(0) is a probability measure representing beliefs about
6, the only choice is to take the loss-to-data hq (v, x) as the expected loss
(see von Neumann and Morgenstern, 1944) of [(6, x); that is

hl(y,x):/@l(e,x) v(do),

with the particular types of the loss-function (6, z) to be discussed later.
In general there the form of (6, z) will be problem specific as discussed in
Section 3.



Substituting in h; and he, the cumulative loss function is then given by
L(v;m,z) = / 1(0,2) v(dO) + di (v, 7). 2
e

Surprisingly, but quite easy to show, the minimizer of L(v; , x) is given by

v(#) = argminL(v;m,z)

exp{—1(0,x)}r(0)
f@ exp{—1(0,z)}r(df)

This has the form of a Bayesian update but where the complete log-likelihood,
log f(x; ), is replaced by a loss function /(x, 6) targeting the parameter of
interest. As is usual in decision problems involving the use of loss function,
it is incumbent on the decision maker to ensure solutions exist. So [(6, x)
needs to be constructed so that 0 < [ exp{—I(6, z)}m(df) < +oc.

Whereas the Bayesian approach requires the construction of a probabil-
ity model for all possible outcomes conditional on all unknown states of
nature, the approach here requires the construction of loss functions given
the outcomes for only the parameter of interest. This allows the decision
maker to concentrate on modeling only those quantities that are important
to the task to hand.

3)

1.2 Connections with other work. There is a vast amount of literature on
procedures for robustly estimating a parameter of interest by minimizing the
cumulative loss

L(0;z) =Y 1(0, ;).
=1

See, for example, Hiiber (2009), where we note that the primary aim is not
modeling the data but rather estimating a statistic. This is an advantage
when a probability model for the data is too hard to formulate. We are
presenting a Bayesian extension of this idea. Since we are interested in a
belief distribution for # given data, and have further information provided
by 7, we claim the appropriate Bayesian version is given by (2).

Some of the ideas presented in the paper have been considered in a less
general setting by Zhang (2006a, 2006b) and Jiang and Tanner (2008). In
Zhang (2006a) an estimation procedure, named Information Risk Minimiza-
tion, also known as a Gibbs posterior, which has the same form as (3), is
described in Section IV of his paper. This is our procedure when data is re-
garded as stochastic. Zhang then concentrates on the properties of the Gibbs
posterior.

Further theoretical work is done in Zhang (2006b). In Jiang and Tan-
ner (2008) a Gibbs posterior is studied in comparison with a true Bayesian
posterior where the model is assumed to be misspecified. The claim is that
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posterior performance of a Bayesian model can be unreliable when misspec-
ified, whereas a Gibbs posterior which targets points of interest can have
better performance. The comparison involves variable selection for high-
dimensional classification problems involving a logit model.

We build on the work of Zhang (2006a, 2006b) and Jiang and Tanner
(2008) in a number of important directions. The first is that we develop an
approach for inference and statistical applications rather than studying the
theoretical properties of the posterior under misspecification. We provide a
principled approach to scale the relative information in the data to informa-
tion in the prior; that is left as an arbitrary free parameter in Zhang (2006a,
2006b) and Jiang and Tanner (2008). We show that in order to remain co-
herent, the modeller must adopt the Kullback-Leibler divergence as the loss
between prior 7 and v. Finally, we demonstrate how to incorporate non-
stochastic information into the cumulative loss function, which provides a
definition of a conditional probability in the presence of non-stochastic in-
formation.

Another similar construct to L(v; 7, z) is provided by Zellner (1988),
who presents what is essentially a loss function for the posterior distribution
using ideas of information processing from prior to posterior. The motiva-
tion is different and relies on notions of information present in log proba-
bilities and log likelihoods, which may not be compatible as noted by J.M.
Bernardo in the discussion of Zellner’s paper. Furthermore, our derivation of
the loss function allows a broader interpretation of the elements, which does
not require the existence of a probability distribution for the observation.

Concerns that the specification of a complete model for the data generat-
ing distribution is unachievable date back to de Finetti (1937) and the notion
of “prevision”. In his work de Finetti considers conditional expectation as
the fundamental primitive, or statistic, of interest on which prior beliefs are
expressed and updated. Recently other researchers have further developed
this approach under the field of Bayesian linear statistics, see Goldstein and
Wooff (2007).

There has been increasing awareness of the restrictive assumptions that
formal Bayesian analysis entails. Royall and Tsou (2003) describe proce-
dures for adjusting likelihood functions when the model is misspecified.
More recently, Doucet and Shepherd (2012), and Muller (2012) consider
formal approaches to pseudo-Bayesian methods using sandwich estimators
to update subjective beliefs, motivated by robustness to model misspecifi-
cation, see also Hoff and Wakefield (2013). Ribatet et al (2009) consider
pseudo-Bayesian approaches with composite likelihoods.

Several authors have considered issues with Bayesian updating with proxy
models, f(z;8), for example, Key et al. (1999), when (z;) is known not to
arise from f(x; @) for any value of 6. That is, there is no # conditional on
which z is from f(x; ). This is referred to as the M—open case in Bernardo



and Smith (1994). One suggested solution is to use methods based on ap-
proximations and Key et al. (1999) describe one such idea using a cross—
validation approach. While this may be a pragmatic it does have some short-
comings. Most serious is that there is little back—up theory and this has
repercussions in that the update suffers from a lack of coherence

Another approach is to ignore the problem. That is, assume the ob-
servations are coming from f(x;6) even though it is known they are not.
According to Goldstein (1981), “there is no obvious meaning for Bayesian
analysis in this case”. The disaster of making horribly wrong inference can
be protected to some extent by model selection; that is, postulating a num-
ber of models for fo(x), say f;(x;6;), with corresponding priors 7;(6;),
and model probabilities (p;), for j = 1,..., M. But as Key et al. (1999)
point out, how does one construct 7;(¢;) and p; when one knows none of
the postulated models are correct. So the Bayesian update breaks down in
that nothing has any interpretation.

A recent popular idea is to use Bayesian nonparametrics. See Ghosh and
Ramamoorthi (2003), and Hjort et al. (2010) for reviews. The idea here
is making the choice of modeling density f(x) so large by constructing a
prior directly on a space of density functions, and written as 7(d f), which
has such a large support that it is reasonable to assume fy(x) lies in the
support. A well known model is the infinite mixture model, whereby 7(d f)
is generating random density functions of the type

f@ﬁ=i/€ZKXxk)dP@%

where K is a density for each z, often the normal density and z denotes the
mean and variance, and P is a random distribution function, usually of the

type
o0
P = Z wy 5217
=1

and the prior is assigned to (w;, 2;);°,. Here the (w;) are weights and sum
to unity. The Dirichlet process, Ferguson (1973), is widely used in such
contexts; see Lo (1984) and Escobar (1988) for the origins of the model and
sampling based algorithms for estimating the model. While this method-
ology has made rapid developments in recent years, including the devel-
opment of sampling algorithms, for complex data structures there are still
issues about just how large the supports are and indeed how complicated in-
ference can be and how to construct priors which capture reasonable beliefs
about dependencies in the data. Moreover this still requires the specifica-
tion of complete beliefs on fy(z) even when the objective is inference for a
summary statistic of the data distribution.
Finally, we note that it is informative to view the selection of 7, i.e.

P(9) = argmin {h(v;x) + ha(v,7)) )
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as trading off fidelity to the data and fidelity to the prior. This highlights
connections with penalised likelihood and regularized regression, see for
example Hastie et al (2009). But whereas in penalised likelihood the objec-
tive is to select a single parameter estimate 6, the general Bayesian approach
(4) selects a probability distribution 7/(6).

The layout of the remainder of the paper is as follows. In Section 2 we
discuss how (3) arises as the unique minimiser of expected loss. In Sec-
tion 3 we discuss forms for the loss-to-data functions and calibration. Sec-
tion 4 then considers general forms of data, such as partial information and
non-stochastic information. Section 5 provides some numerical illustrations
including inference based on the Cox proportional hazards model and infer-
ence about the median of a distribution function. Section 6 concludes with
a discussion on a number of points.

2. Information in the prior. Here we discuss the choice of the Kullback—
Leibler divergence as being appropriate for quantifying the loss-to-prior
ho(v, ) in (1). With n independent pieces of information = = (z1,...,xy,)
we take the cumulative loss as

L(V;T(',ZL‘):Zhl(V,in)+h2(V,7T), (5)
i=1

where h; will be taken in the integral form, i.e. the average or expected loss:

hi(v,x;) = /@l(Q,xi) v(de).

Now, adhering to the “likelihood principle” (see Bernardo and Smith 1994),
for any 0 < m < n, all the information contained in (x1, ..., Zy,) is to be
found in 7,,,, where 7,,, minimizes

m

L(vim, a1, wm) = > ha(v,20) + ho(v, 7).
i=1

and hence it follows that,
n
L(v;m,z) = Z hi(v, ;) + ha(v, V),
i=m-+1

where 7y, now serves as the prior for future information (41, ..., %n).
For coherence, the solution from L for all cases of m must be the same. To
derive the form of ho we start with the family of g—divergences, that is

ho(v,m) = dgy(v,7) = /g(dﬁ/du) dv (6)



where g is a convex function from (0, co) to the real line and g(1) = 0. See
Ali and Silvey (1966). For this coherence to be in force, it is necessary that
the discrepancy hg is the Kullback-Leibler divergence. To be more precise,
the following theorem can be stated:

Theorem. Let the loss L(v;, [x1, x2]) be defined by (5) and (6). Moreover,
let Uir 2, «y) be the probability measure that minimizes the loss

L(l/; ™, [xl, xQ])

among the probability measures on © that are absolutely continuous with re-

spect to . Similarly, let U, V(r,z1) and U, V(D(r 0y)2) be the probability measures

minimizing the loss L(v;m,x1) and L(v; V(val),mg), respectively. Assume
that

Vo0, ys22) = Vi [or,2]) )

for every probability measure 7 on © and for every choice of the loss func-
tions hy (v, z1) and ha (v, v2) such that Vx5 251) Vime1)» A(,,(m ao)» are all
properly defined. Then hs is the Kullback—Leibler divergence.

In virtue of this Theorem, which is proved in Appendix A, for coherence
it is required to take

ha(v, ) = dicp (v, ) = / v log(v/m),

the Kullback-Leibler divergence. So, in the case of m = 0, we have

L(V; T, .%') = Z hl(l/, l’z) + dKL(V, 7T),
=1

where 7 is the initial choice of probability measure representing beliefs
about 6 in the absence of x.
The solution to this minimization problem is easy to find and is given by

exp{—3 =, Li(0,zi)} m(d)
Joexp{=22101 (0, @)} w(d6)’

and this is the solution since one can see that
Jol(0,2)v(d0) + [gv(d) log{v(0)/m(0)}
= [ov(d0) log{v(0)/[exp(~1(0,x)) 7 (0)]}.

v(d) =

3. Information in the data. In this section we will consider the form of
h1 in (1) that connects information in the data to the value of the unknown



6. We shall consider three broad situations, first when the analyst really
believes they know the complete family of distributions from which (z;)
arose, the so called M—closed scenario. Second when fy(x) is unknown but
where a complete likelihood f(z;0) is being used as a proxy model, the so
called M—open perspective. Finally, when the statistic # does not index a
complete sampling distribution or proxy model for z.

3.1 M—closed and self-information loss. When the analyst knows the fam-
ily from which (z;) arose then the Bayesian approach to learning is fully
justified, well known and widely used as a statistical approach to inference;
the book of Bernardo and Smith (1994) is comprehensive. Here we recall
the essence of it: A parameter of a density function f(x;6), § € O, is un-
known and beliefs about it are encapsulated via a prior distribution 7(6).
Once (conditionally) independent samples (z1,...,x,) are observed from
the density function f(x; ), the prior is updated to the posterior distribution
via Bayes’ Theorem; given by

_ 1n(8) 7(d8)
" Joln(6) 7(d6)’

where 1,,(0) = [[;, f(zs;0) is the likelihood function. The posterior then
represents revised beliefs taking into account both the prior distribution and
the observations. Mathematically, it is an application of Bayes’ Theorem via
the standard definition of conditional probability.

So the Bayesian update works and is applicable in the case when the
(z;) come from the density f(x;6) for some # € ©. In Bernardo and Smith
(1994) this is referred to as the M—closed view. To see how Bayes arises
in our framework, we would need to construct a loss function for (6, z)
with the knowledge that = came from f(x;6). It is well known that the
“honest” loss function in this case is the self—information, or logarithmic
loss function, given by

w(db|z1,. .., xn)

1(0,x) = —log f(x;0).

See Bernardo (1979) and Merhav and Feder (1998) for more on the self
information loss function. This amounts to the use of proper scoring rules to
ensure that the analyst remains honest in expressing subjective beliefs, under
which we recover the Bayesian updating rule. However, there are different
ideas behind our derivation of this rule, with different assumptions being
made. Most crucially, we need the (z;) to provide independent pieces of
information to maintain the credibility of the cumulative loss function.

3.2 M-open and the use of proxy models. As has been mentioned by many
authors, for example, Key et al. (1999), issues with the Bayesian rule arise



when f(x; ) is known not to be the family of densities from which the (z;)
come. Equivalently, there is no § conditional on which z is from f(x;6).
This is referred to as the M—open case in Bernardo and Smith (1994). In
many situations, the correct sampling density, fo(z), is unknown or unavail-
able or too complex to work with. There are a number of ways to attempt to
resolve this issue from a Bayesian perspective.

One idea is to use methods based on approximations and Key et al.
(1999) describe one such idea using a cross—validation approach. While
this may be a suitable idea which can work in practice it does have some
shortcomings. Most serious is that there is little back—up theory and this has
repercussions in that the update suffers from a lack of coherence

Another approach is to ignore the problem. That is, assume the ob-
servations are coming from f(x;6) even though it is known they are not.
According to Goldstein (1981), “there is no obvious meaning for Bayesian
analysis in this case”. The disaster of making horribly wrong inference can
be protected to some extent by model selection; that is, postulating a num-
ber of models for fy(z), say fj(x;6;), with corresponding priors 7;(6;),
and model probabilities (p;), for j = 1,..., M. But as Key et al. (1999)
point out, how does one construct 7;(¢;) and p; when one knows none of
the postulated models are correct. So the Bayesian update breaks down in
that nothing has any interpretation.

We show in Appendix B that it is possible to learn about this 6 since an
infinite collection of (x;) yields fo(-) via the empirical distribution function
and so 6y will be found with sufficient samples. Then we would wish the
sequence of v(d#) to accumulate about 6. So what is the appropriate loss
[(0, x) in the case where we’re trying to learn about the value of 6y? The loss
function [(6, x) = — log f(x; 0) is still the right choice. For the standardized
cumulative loss based on a sequence of observations is given by

—n"log f(xs;0) — /—logf(a:;@) dFp(z) as.

which is minimized by 6.

When an approximate model f(z;#) has been supposed, it is often pru-
dent to consider a number of models, say f;(x;0;) for j = 1,..., M, as
we have mentioned previously. We can deal with this in a simple way.
So let @ = (01,...,05) and let w(0) be the prior distribution for 6 on
0= Uj]\/il © ;. This would be constructed by considering beliefs about which
6, from f;(-; ;) takes this family closest to fy(-). The model f(x;6) would
then be given by

M
Flw;0) = pj fi(x;6))
j=1

and the (p;) would now be the probabilities describing beliefs about which
model provides the closest density to fy(-). Hence, unlike the Bayesian ap-
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proach to model selection in the M—open case, all the quantities to be speci-
fied have clear interpretation. We can recover the Bayesian update when we
take, for each i € (1,...,n),

0, z;) = —log f(z:;0).

So while the Bayesian approach has some issues to deal with whether
the M—open or M—closed view hold, for us it is irrelevant. If one adopts 6
as the parameter value taking the family closest to fy(-) then one does not
need to worry if in M—open or M—closed, since if f(-;0) is the true family
then obviously 6, reverts to the true parameter value. This point is crucial,
since for the Bayesian it may be that one simply does not know if one is
in the M—open or M—closed view (though strictly speaking this puts you in
M-open) and then one needs a framework in which the same approach is
adopted and justified regardless of which view is held. We have provided
such a framework.

3.3 M—free. Often the analyst might not wish to express a full probability
model for the data, either as it’s too cumbersome or too problematic. A
motivating example is inference for the median of a population of iid data.
However, the analyst knows the object or statistic 6 that they wish to express
beliefs about. It is incumbent on them to choose a specification for [(6, x)
that provides greatest information on the unknown value. The literature on
this is in the area of Robust Statistics and loss functions can be found in
the literature pertaining to M -estimation and estimating equations. See, for
example, Hiiber (2009). We refer to this setting as M—free to highlight the
model free aspect of inference.

An important class of loss functions is provided by the M estimators for
a location parameter, Hiiber (1964). So rather than using the loss function
—log f(x4;0), a p(x;;0) is used in an attempt to obtain robust estimation,
rather than the traditional maximum likelihood estimator, which can be sus-
pect if the model is incorrect. This idea has been generalized to the class of
estimating equations, whereby the estimate of 6 is obtained by minimizing

> p(i;0)
=1

Our approach, which mirrors this classical robust procedure, would use the
loss function

L(vixy,...,zpn,m) /Zp xi;0)v(dO) + dgr (v, )

with solution provided by
v(df) o exp { Zp x;; 0 } (d).
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For example, one possible application would be the Generalized Estimat-
ing Equations, see Liang and Zeger (1986). For the grouped observations
(xi17 AR 7xin7;),

p(i,0) = 5 (@i — 1i(B8))'Vi(¢, @) (zi — pi(B))

where 6 = (3, ¢, @) and for some link function g, g(u;(3)) = z};3, and for
some correlation matrix R;(«) and diagonal matrix A;, with j entry given
by a(ui;(8)), with a a specified variance function, V; = ¢A;/2Ri(a)Ail/2,
with ¢ a scale parameter. There is by now an abundance of literature on
M -estimation, estimating equations and generalized estimating equations.
Our point is that all such equations can be viewed as loss functions connect-
ing independent units with parameters of interest. Hence, all fit within our
framework and we would extend the loss function to include the prior 7 and
we obtain an explicit expression for v(df). In cases when the parameter es-
timation is done via iterative methods, which is typically the case, Markov
chain Monte Carlo methods would substitute for our sampling strategies
from v(d6).

In essence, this is the practical innovations of the framework we are

proposing. We are claiming that any loss function of the type

Z p(xia 9)
=1

can be extended to the Bayesian type updating mechanism. The 6y of in-
terest is implicitly assumed to be the limit of the sequence of minimizers
of the cumulative losses. This would be the minimizer of [ p(z;6) dFy(z)
and hence the prior beliefs are being expressed about this unknown value.
Then the loss function (6, x) = p(x;0) is ensuring the updates are indeed
“moving towards” 6. To complete the picture, it would have been that the
decision maker would be happy to make a decision given the minimizer of

J pla:6) dFo(w).

3.4 M-free calibration of relative losses. In the M—closed and M—open
settings the use of the self-information loss [(0, x) = — log f(x; 6) results in
a fully specified form for (3). However in the M—free setting there is an issue
about the scale of the loss function h; which is a consequence of the apparent
arbitrariness in the weight of [(v, ) relative to (v, 7), in that we are free to
multiply either by an arbitrary factor. So equivalently we are interested in
the loss function w [(6, x) for some w > 0. The question is how to select w,
noting that w controls the relative weight of loss-to-data to loss-to-prior. Of
course, such an issue does not arise in the classical literature on estimation
using such loss functions since there is no combining with different styles of
loss functions. However the calibration of different types of loss function is
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not a unique problem. It arises in many applied contexts; possibly the most
well known be in health economics where losses pertaining to costs need to
be balanced against losses pertaining to health benefits. There are a number
of ideas for the choice of w and we discuss them here.

3.4.1 Annealing. In the literature on Gibbs posteriors, the weighting pa-
rameter is labelled as a “temperature” and selected subjectively. There are
clear connections here with the use of “power priors” (Ibrahim & Chen,
2000) where

n
v(df) oc [ ] £(xi;0)" w(d6).
i=1
Such an idea has also been discussed in Walker and Hjort (2001). It is ev-
ident what w achieves; if 0 < w < 1 then the loss-to-prior is given more
prominence than in the Bayesian update and the data will be less influential.
In the extreme case when w = 0 we retain the prior throughout. On the other
hand, when w > 1 the loss — log f(x; ) is given more prominence than in
the Bayesian update and in the extreme case when w is very large the v is
accumulating about the maximum likelihood estimator for the model; that is
v(df) = 65(df), where § maximizes [ [ f(xi;0).
Alternative ideas for setting w include a data dependent assignment based
on cross-validation and a random assignment once the parameter has ap-
peared in the Gibbs posterior. That is, one considers

v(f|z) = /17(9|w,x) T (dw)

for some probability measure 7, (dw).

3.4.2 Unit information loss. Here we discuss a subjective assignment but
a more orientated and direct allocation. The subjective choice is based on a
prior evaluation of the expected value of [(6, ).

To aid in the calibration of the loss functions and the selection of w
we can consider the following. Write the loss function with an additional
term log 71(5), which is a constant, and where  maximizes m(0), so that the
cumulative loss becomes

L(viz,7) = / [m(e,x)ﬂog{w(@)/w(e))}} v(df) + / v(d6) log v(0).

In order to calibrate the information in the data relative to the prior we
now assume that both loss functions, (6, z) and log{x(6)/(6)} are non-
negative, and we standardise [(6, z) such that ming [(¢,z) = 0 for any z. If
this is not the case then we replace [(6, z) by (0, z) — (0, ) where now
0, minimizes (0, z). Hence, we can regard

~

L(O;z,7m) =wl(f,z) + log{m(8)/7(0)}

13



as a loss function for # with information provided by = and 7. So, assuming
that [(6, ) > 0, we want to calibrate the two loss functions given by

wl(f,z) and log{m(8)/m(h)}.

These are two loss functions for # and to adhere with the notion that at
the outset before we have data, there is a single piece of information, we can
calibrate the two losses by making the expected losses to match. That is,
whether someone takes a 6 and is penalized by the loss log{7(6)/7(6)}, or
takes a (6, x) and is penalized by the loss wl (0, =), at the outset, the expected
losses should match. They are confronted by two choices of loss with one
piece of information and thus the losses can be calibrated by ensuring their
expected losses coincide. The connection between expected information and
expected loss can be found in Bernardo (1979).

Thus w can be set by ensuring

E (1(0,2)) = E (log{(8) /7 (6)} )

Here E is with respect to a joint belief in = and 0; say m/(x, 6), the marginal
for 6 of which is 7(6). So

_ [ log{m(6)/x(6)} w(d6)
S0, z)ym(dd,dz)

One empirical choice is then given by

_ Jlog{n(6)/7(6)} m(d6)
= [0, 2) 7(d) dFy(z)

Let us consider an example, where (0, 7) = (0 — z)? with 7(0) =
N(#]0, 72) with m(x|) being any density with mean # and variance 2.
Then we can evaluate

/ log{m(8)/7(6)} 7(d6) = 1/2

// —z)*m(dz,db) =

1
202"
Hence, this calibration idea yields the “correct” value of 1/(20%) in this case.
This construction requires the user specification of a joint density m(dz, df)
which in some circumstances may prove difficult. One further suggestion is

and

So

w =
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to replace the prior evaluation of the expected datum-loss with the observed
unit information loss given x,

//l(@,x) m(dz,df) ~ nl—p Zl(éx,xz) (8)

where §, = argming [, 1(0, ;)] is the data-loss estimate of 6 and p is the
dimension of #. For instance, in the above example this leads to,

w

262

where 6% = L3 (z; — 7).

3.4.3 Hierarchical loss. Another way to proceed is to extend the loss func-
tion to include w as an unknown parameter. Standard ideas here would
suggest we take

L0, w;z,7m) =wl(0,z) + &{l(w) — logm(h, w)

for some & > 0. We would appear to be making no progress since we now
have a £ to assign. However, this is akin to the hierarchical Bayesian model
where uncertainty is propagated via hyper-prior distributions to robustify the
ultimate prior choice at some level. Hence, the allocation of a £ would not
be as crucial as the assignment of a w.

For example, as w is a scale parameter on loss-to-data, taking [(w) =
log w the solution is given by

v(0,w|z, ) < wE exp{—wl(0,z)} (0, w)

and given that w® can be absorbed in to the prior 7 it is perfectly reasonable
to assess & subjectively. That is, it seems unreasonable to accept that 7w can
be chosen subjectively but that £ can not.

3.4.4 Operational Characteristics. The idea here is to set w so that the
posterior quantiles match up at some level of error to frequentist confidence
intervals based on the estimation of § via minimizing the loss

> U0, ).
i=1

So, if Co(w, x1, ..., xy) is the 100(1 — a))% level confidence interval for 6,
then we would select the w such that the posterior distribution of 6, with
parameter w, is such that

PO € Co(w,x1, ..., xn)|x1,...,20) =1 — .

15



See, for example, the review article by Datta and Sweeting (2005) for refer-
ences to probability matching priors and posteriors, and Ribatet et al (2009)
for ideas in pseudo-Bayesian approaches with composite likelihoods.

4. General forms of information. In this Section we discuss more general
forms of information to condition on, rather than a complete stochastic data
sample x from unknown Fy(z). In particular we provide a definition of
conditional probability when non—stochastic information is available, and
updating using partial-information in a data set.

4.1 Conditional probability distributions and non-stochastic data. The
theory of conditional probability distributions is a well-established mathe-
matical theory that provides a procedure to update probabilities taking into
account new information. Such a procedure is available only if the infor-
mation which is used to update the probability concerns stochastic events;
that is, events to which a probability is assigned. In other words, such in-
formation needs to be already included into the probability model. In this
section, we shall show how the approach can be used to define conditional
probability distributions based on non—stochastic information.

Information about # may arrive in the form of non—stochastic data; such
if an expert declares “6 is close to 0”. This type of information has been
discussed by a number of authors and is known to be problematic for the
Bayesian especially when such information arises after or during the arrival
of stochastic observations (x;). We cite the paper by Diaconis and Zabell
(1982) and in particular refer the reader to example in Section 1.1 of their
paper.

If we denote by I a piece of information for which no probability model
for each 6 is possible. In other words it is not and can not be determined to
be stochastic in any way. However, a loss function (6, I') can be assigned.
Our theory does not preclude such a loss function based on such a piece of
information. The answer 7(#) based on I and 7 can then be considered as
a means of defining a conditional probability distribution in the presence of
non-stochastic information. This section develops this argument.

Before proceeding, we introduce the notation for this section, being dif-
ferent to put the discussion in a more broader context than simply a Bayesian
statistical style updating. Let Y be a random variable on a probability space
(Q,.#,P), which will be the outcome of interest, and valued into a measur-
able space (Y, #) with probability distribution Py. Hence, Py represents
initial belief about the outcome concerning Y. Now, assume that that the
outcome of another random variable, say X, is known. So, let X be a ran-
dom variable from (£2,.%,P) into (X, .2") with probability distribution Py
and the additional information  about Y will be assumed to be an outcome
of X. Then it is possible to update the unconditional distribution of Y to the
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probability distribution of Y given X.
In probability theory, a conditional distribution of Y given X is a map p
from % x X into R such that:

e for each z in X, p(-, x) is a probability measure on %/,

e foreach B in %, p(B, X (w)) is a version of the conditional probabil-
ity P(Y € B| X(w)), i.e. foreach A in 2" and each B in %/,

PIX €AY € B} = [ p(B.a)aPx(a), )

where Px denotes the probability distribution of X.

The conditional distribution is known to be essentially unique, i.e. unique
only up to almost sure equality. This is a consequence of X being stochastic.
In fact, as (Feller, 1971, p. 160) points out, if, for instance, the distribution
of X is concentrated on a subset Xy of X, no natural definition of p(B, z)
is possible for x outside Xy. Nevertheless, in individual cases, there usually
exists a natural choice dictated by regularity requirements.

Moreover, it is well known that conditional distributions do not always
exist unless some conditions are satisfied by the spaces (X, 2") and (Y, %).
For more information about conditional probability distributions, see, for
instance, Feller (1971) or Billingsley (1995).

Here, we will consider the case in which there are two o-finite measures
w1 and p2 on # such that the probability distribution of (X, Y') is absolutely
continuous with respect to y1 X po. Denote its density by f. This is a general
framework which includes most applications and enables us to find easily an
expression for the conditional distributions. Generally, X and Y are subsets
of R*, for some k, and p; and ps are the corresponding Lebesgue measures.

If f is the density of the probability distribution of (X, Y') with respect
to p1 X o, then one can take

— fB f(ac,y) ,U'2(dy)

p(B,z) = , (10)
B Jy F(z,y) pa(dy)
for every B in Y and every z in X such that
0 < fx(x):= / f(z,y) pe(dy) < oo. (11
Y

Note that p(+, ) is absolutely continuous w.r.t. z2 and its density is

fY‘X(fU’:’E) = f(ff7y)/fX($)7 (12)

for every x in X satisfying (11). The density (12), which is called the con-
ditional density of Y given X, is what is used in most application to find
an expression for the conditional distribution. Therefore, (10) deserves to
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be considered as the “practical definition” of conditional probability distri-
bution. Indeed, it is the natural version of the conditional distribution of Y
given X whenever a joint density f exists for X and Y.

Clearly, this approach relies on the joint distribution of X and Y and
therefore is not available when X is replaced by some non-stochastic in-
formation /. Moreover, even if I coincides with an outcome of the random
variable X, to define the conditional distribution of Y given X, it is required
to know all the possible alternatives of I, that is, all the outcomes of X. It
is also required to assess the joint distribution of X and Y or the conditional
distribution of X given Y. This is quite easy if, for instance, I is known
to be an outcome of some well-defined random experiment. In many situa-
tions, one has seen the outcome X and in order to establish an update of the
distribution of Y, one needs to retrospectively ponder and imagine a joint
probability model.

This difficulty arises in different puzzles such as, for instance, Freund’s
puzzle of the two aces, introduced by Freund (1965). For other puzzles about
conditional probabilities, see, for instance, Gardener (1959).

These puzzles have been widely used to discuss the concept of condi-
tional probability. Hutchison (1999, 2008) emphasizes that the updating
process needs to take into account the circumstances under which the truth
of I was conveyed. Also, Bar—Hillel and Falk (1982) claim that to know
how the knowledge was obtained is “a crucial ingredient to select the appro-
priate model”. These scholars present different views about the concept of
conditionalization, but all agree on the fact that there would not be a prob-
lem if it was known how the information I became available, and therefore
one could build a model including 1.

The concept of conditional probability distributions is certainly appro-
priate as a procedure to update probabilities on the basis of any new in-
formation that was already included in the probability model. But it can
be difficult to construct a model that considers all possible relevant infor-
mation that in the future could become available. Therefore, the problem
arises when one obtains some new and possibly unexpected information and
wants to use it to update a probability distribution. Indeed, it does not seem
appropriate to assess the probability of something which has been already
observed.

First, we shall now show that if instead I is the outcome of a random
variable X and there is a joint density f for (X, Y"), then one can recover as
particular case the conditional distribution of Y given X.

If there is a joint density f for (X,Y"), then the conditional distribution
(10) of Y given X arises as the solution of a decision theoretic problem
related to a loss function of the form (2). For every x in X satisfying (11),
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such a loss function is:
—-/Qlog(f(w,y)/fy(y))uz(dy) + dir(v Py), (13)

where

h@%=4ﬂ%wm®m

S is the set of all y in S such that 0 < fy(y) < oo, Py is the probability
distribution of Y, v is a probability measure on Y absolutely continuous
w.r.t. Py. The loss (13) is of the form (2) with

10,1) = h(y,z) : = =Is(y)log(f(z,y)/fr(v))

14

where Ig(y) is equal to 1 or 0 depending on whether y belongs to S or not.
For every z in X satisfying (11), the conditional distribution p(-, x) given by
(10) minimizes the loss (13).

If the random variable X is replaced by some non—stochastic informa-
tion I, then the self—information loss (14) cannot be defined, but one can still
resort to a loss function of the form (2), by choosing a different loss 1(6, I).
So, the approach introduced in Section 2 provides a general definition of
conditional distributions based on non-stochastic information.

4.2 Partial information. We now consider a partial information problem.
Here the parameter of interest is 6 yet the information I collected is more
informative; it is possible to identify Ig C I which provides all the infor-
mation about #. One is therefore interested in constructing the loss function
[(0,Ig). A particular example to be looked at in detail is the proportional
hazards model. If the model is that the hazard function is go(¢) exp(g(6, z;))
for individual 4, where z; is the covariate value for individual ¢, gg is the
baseline hazard function and ¢(6, z) is the regression function, then the in-
formation about 6 is provided by individual ¢ failing from the set of possible
failures S; = {j : t; > t;}, where ¢; is the time of failure of individual 4,
and these are assumed to be different for each individual. The assumption
for us to use the partial information is that information of the failure times
provide information about # only through the sets {S;}. Hence, there are
k < n pieces of information, where & is the number of individuals whose
failure time is known, and it is usual to denote this by setting §; = 1.

Using the partial self—information or logarithmic loss function, we have

10,1o) = —> 51 logP(ilSi, 2)

=5 {h(@, z;) — log (EjeSi exp(h(0, Zj))>}
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and so the solution to the decision problem is given by
v(df) oc exp{—1(0, Ig)} w(d6).

This is a new approach and not taken on by Bayesians due to the lack of
motivation. In Appendix C we consider other stylized models.

S. Illustrations. In this section we discuss the application of our approach
to two important inferential problems. The first is an analysis of variation
in survival times of colon cancer patients incorporating genetic information
as potential predictors. The second is for joint inference on a set of quan-
tiles. In both cases we claim that the choice of loss function is well founded
(and unique) and that there is no traditional Bayesian interpretation of the
updates we are implementing. Yet the updates we employ do allow us to
learn about the specified parameters of interest. All of the models used to
generate results are available as open source code in R.

5.1 Colon cancer genetic survival analysis. Colon cancer is a major world-
wide disease with increasing prevalence particularly within western soci-
eties. Exploring the genetic contribution to variation in survival times fol-
lowing incidence of the cancer may shed light into the disease eitiology and
underlying disease heterogeneity. To this aim collaborators at the Wellcome
Trust Centre for Human Genetics, University of Oxford, obtained survival
times on 918 cancer patients with germline genotype data at 100,000’s of
markers genome-wide. For demonstration purposes we only consider one
chromosome’s worth of data containing 15,608 genotype measurements.
The data table X then has n = 918 rows and p = 15,608 columns, where
(X)i; € {0,1,2} denotes the genotype of the 4’th individual at the j’th
marker. Alongside this we have the corresponding (n X 2) response table of
survival times Y with a column of event-times, y;;1 € R and a column of
indicator variables y;2 € {0, 1}, denoting whether the event is observed or
right-censored at ;.

To explore association between genetic variation and time-to-event we
employ a loss function derived under proportional hazards, treating the loss
to the baseline hazard as a nuisance parameter. This is based on the Cox pro-
portional hazard (PH) model, one of the most widely used methods in sur-
vival analysis since its introduction in Cox (1972). In this log-linear model
the hazard rate at time ¢ for an individual with covariate x = {z1,...,zp}
is defined as,

p
h(tlx) = ho(t)exp | Y ;B
j=1

where ho(t) is a baseline hazard function. In the seminal work of Cox
(1972), ho(t) is treated as a nuisance parameter (or process) that does not
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enter into the partial-likelihood for estimating the parameters of interest 3.
Using our construction we can consider only the order of events as partial-
information relevant to the regression coefficients, 3, via the cumulative loss

function,
B n exp(zj xijﬁj)
[(B,x) = ;10% (ZlERi exp(3; xljﬁj)) ’

where R; denotes the risk set, those individuals not censored or at time %;,
and in this way obtain a conditional distribution 7 (3|x).

5.1.1 Single marker association. As is standard practice, e.g. Balding
(2006), we initially investigate the evidence of genetic association by testing
each of the 15,608 markers in turn using a univariate model with loss,

(B, %x;) = Y I eXp(%’j/Bj) )
(Bj,%;) ; 08 (ZleRi exp(z1;05)

for each of the 5 = 1,...15,608 genetic makers. An advantage of our
approach is the incorporation of prior information into the analysis. In most
modern genome-wide genetic association studies we expect a priori that
the coefficient values of predictive markers will be small, as otherwise we
would have detected association of the marker using historic linkage based
methods with lower resolution but higher power. Hence, we have additional
information on the coefficient values. For unknown markers truly associated
with survival we assume,

/Bj ~ N(O>Uj)

and set v; = 0.5 for our study, reflecting beliefs that associated coefficients
will be modest. For each marker we now include an indicator variable,
7, € 0, 1 that specifies whether there is any association at the corresponding
marker or not. This defines a hierarchical prior with,

m(Bj105) = { N(0, vj) otherwise,

and our prior 7(d;) reflects beliefs about whether the corresponding /3; will
be zero or not. For now we shall simply assume 7(d; = 1) = 0.5, although
we note it is straightforward to incorporate genetic prior information here.

In this way we can use our framework to calculate a posterior measure
7(d;, Bj|x,y) for each marker. Interest lies in the evidence for a non-zero
effect, i.e., in the marginal,

(05X, y) :/B'ﬂ'(ﬁjaéﬂan)dﬁj‘

J
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In particular we can define the general Bayes Factor of association at the j
th marker as,

J5, exp [=1(B;1x;)] m(B;10; = 1)dB;
exp [=1(5; = 0[x;)]

The one-dimensional integral in the numerator is simple to evaluate using
quadrature or Monte Carlo methods. However, with a large sample size
and over 15,000 integrals to calculate it is convenient to adopt a Laplace
approximation to the integral, namely,

BF; =

/ exp [—~1(B;]x;)] m(B;10; = 1)dB; ~ |5;]"/? exp[~1(B;|x)]w(5;]6; = 1)

Bj

where Bj is the MAP estimator, mode of the posterior 7(/3;|d;,%,y), and ﬁ)j
is an estimate of the Hessian at the mode. Both the MAP estimate and the
Hessian can be calculated efficiently under our loss and normal prior for 3;.
We calculated the general Bayes Factors for each marker and in Fig (1) we
plot the log Bayes Factors over the chromosome. While there is considerable
variation we observe strong evidence of association around marker 10,000.
To test if the Laplace approximation is accurate we selected 500 markers
at random and ran a Monte Carlo importance sampler with NV (Bj, flj_l),
and 500 samples. Fig (2) indicates that the Laplace approximation appears
accurate. This is not so surprising given we have 918 observations and a
single parameter.

It is interesting to compare the evidence of association provided by the
Bayes Factor Fig (1) in comparison to that obtained using a conventional
Cox PH partial-likelihood based test. In Fig (3) we plot the log Bayes Fac-
tors versus — log;, p-values obtained from a likelihood ratio test. We can
see general agreement especially at the markers with strongest association
as one would expect for a large sample size. Interestingly there appears
to be greater dispersion at markers of weaker association. In Fig (4) we
highlight the region of weaker association and colour the points by the stan-
dard error of the maximum likelihood estimate. We can see a tendency for
markers with less information, greater standard error, to get attenuated to-
wards a logBF of 0 under the general Bayesian approach. This is further
highlighted in Fig (5) where we plot the standard error against log Bayes
Factors. Markers with high standard error relate to genotypes of rarer alleles
and the attenuation reflects a greater degree of uncertainty for association at
these markers that contain less information.

Returning to the “hit region” showing strongest association around marker
10,000, in Fig (6) we see the portion of the graph from Fig (1) containing
800 makers around the marker of strongest association. Due to high colin-
earity between markers it is not clear whether the signal of association arises
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from a single effect correlated with others, or from multiple independent as-
sociation signals. In order to investigate this we developed multiple marker
methods.

R code to calculate Bayes Factors for single marker association using
Laplace and Monte Carlo Importance Sampling is available.

5.1.2 Multiple marker variable selection. With the aim of determining if
there are multiple markers underlying the signal of association in Fig (6) we
consider a model using potentially all 800 makers in the region and phrase
the problem as a variable selection task under a partial-likelihood (loss), in
which the user suspects that some of the p = 800 recorded covariates (15)
may not be relevant to variation in survival times.

In the non-Bayesian paradigm, variable selection can proceed by defin-
ing a cost function, such as AIC or BIC, that adjusts fit to the data by the
number of covariates in the model. Inference proceeds using an optimization
algorithm, such as forward or stepwise selection, to find a model that min-
imises the cost. More recently, penalized-likelihood methods have proved
popular (Tibshirani, 1997; Fan and Li, 2002) where the partial-likelihood is
maximised subject to some constraint on the norm of the regression coeffi-
cients defined by some appropriate sparsity inducing metric.

Despite the enormous impact of Cox PH models and the importance of
variable selection, the Bayesian literature in this area is very limited. This
is because of the lack of a theoretical foundation to treat ho(t) as a nuisance
parameter, leading to either ad hoc methods or the full specification of a joint
probability model. For instance, Faraggi and Simon (1998) and Volinsky et
al. (1997) adopt pseudo-Bayesian approaches. The paper of Volinsky et
al. (1997) take the BIC as an approximation to the marginal likelihood and
they use a branch and bound algorithm to find a set of models with differing
sets of covariates with high BIC scores. The difficulty here is that, while
the methods are important and well motivated, they are ultimately ad hoc.
Moreover, prior information on 7(3) does not enter into the calculation of
the BIC, meaning that an important aspect of the Bayesian approach is lost.

In contrast, Ibrahim et al. (1999) consider variable selection within a full
joint model using a prior specification of a gamma process for the baseline
hazard. This provides a formal Bayesian solution but inference is then condi-
tional on, and sensitive to, the specification of the prior on ho(t), something
the partial-likelihood model explicitly avoids.

Here we use the partial-information relevant to the regression coeffi-
cients 3 via the cumulative loss function,

- n eXP(Zj xijﬁj)
1Blx) = 2 log (z exn(3 muﬁﬂ) | "

where R; denotes the risk set, those individuals not censored or at time ¢;. As
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in Section 6.1.1 we assume proper priors, 7(/3) on the regression coefficient,

{0 ifd; =0
m(8;) = { N(0, vj) otherwise,

where §; € {0, 1} is an indicator variable on covariate relevance with,
m(d5) = Bn(a;)

where Bn(-) denotes the Bernoulli distribution but we now treat {d1, . . ., dgo }
as a vector in a joint model. In this way the posterior 7(Jd|x) quantifies be-
liefs about which variables are important to the regression. We use Markov
chain Monte Carlo (MCMC) to draw samples approximately from (3, §|x)
from which the marginal distribution on § can be examined. In particular
we make use of an efficient joint updating proposal, ¢(d’, 3'|8), within the
MCMC as

q(8', B'16) = q(8'6)q(B'|&")

where ¢(0’|d) proposes a local move to add, remove, or swap one vari-
able per MCMC iteration in or out of the current model indexed by d, and
q(B'|¢’) is a joint independence Metropolis update proposal,

4(8'18') = N(By, Vy)

where {3s/, Vs } are the MAP and approximate Information Matrix ob-
tained from the combination of log-partial-loss and normal prior. The joint
proposal is then accepted with probability,

exp[—I(B'[x)]x(B'16")w(6")q(8B, 6|4") }
exp[—I(B[x)]x(B]0)7(d)q(B', 6'|0)

We ran our MCMC algorithm for 100,000 iterations with prior parameter
settings, {v; = 0.5,a; = 1/800}, forall j = 1, ..., p, equivalent to a prior
assumption of a single associated marker. In Fig (7) we show the marginal
inclusion probability, after discarding 10,000 samples as a burn in. The
algorithm showed an overall acceptance rate of 8% for proposed moves.
The model suggest overwhelming evidence for a single marker in the region
of index 10200 but also weaker evidence of independent signal in a couple
of other regions. R code to perform the reversible jump MCMC multiple
variable sampling for the Cox PH partial-likelihood with normal priors is
available on request.

a = min{l,

5.2 Joint inference for quantiles and the Bayesian Boxplot. We discuss
this illustration for three reasons. The first is that there is a unique loss func-
tion for learning about a set of quantiles, countering the notion that loss func-
tions are arbitrary, and second there is no traditional Bayesian version for
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updating a set of quantiles which can coincide with our approach. Finally,
we show how boxplots, one of the most widely used exploratory graphical
tool, can be enhanced by taking into account uncertainty in the plot due to a
finite sample size.

Let us start with the median solely. The unique loss function for learning
about the median of a distribution function is given by (0, z) = w|0 — z|
for some w > 0. Hence, the posterior distribution is given by

70|z, ..., z) X exp {—wz |x; — 0|} 7(0).
i=1

One might be tempted to argue that this is merely a Bayesian update using
the Laplace distribution and hence falls within the Bayesian paradigm. This
is correct but it would put the Bayesian in an awkward quandary if she knew,
for example, the observations were coming from a normal distribution.

In fact we are, as we have stated previously, not assigning a probability
model for x. To make this distinction more explicit let us consider the sit-
uation where we want to learn about the three quartiles (61, 62, 03) jointly,
where 6 is the lower quartile, 65 the median, and 03 the upper quartile. The
prior will be denoted by 7 (61, 62, 3) which would obviously include the
constraint §; < # < 3. The loss function (6, x) in this case, treating the
learning of the quartiles with equal importance, is given by

1(0,2) =w{0.25(0; — )+ + 0.75(x — 01)++

+0.5|0, — | + 0.75(03 — 2) 4 + 0.25(x — 03),.}

for some w > 0. Then the posterior distribution is given by

70|z, ..., x,) o w(6) exp {Zl(@,xi)} .
=1

This can not be obtained by any Bayesian model that has currently been
proposed. It is certainly therefore not classifiable as a Bayesian update.

We can illustrate the utility of this by considering a boxplot. In Fig (8)
we show a boxplot of data taken from the example used in MATLAB help
file for the function boxplot .m, in the statistics toolbox. The plot illus-
trates the distribution of miles per gallon (MPG) from records of a selection
of cars taken in the 1970s, broken down by manufacturing country. The
data set is available as carbig.mat in MATLAB, we have omitted the
‘England’ group which contains only 1 observation.

The boxplot is one of the most important and widely used graphical tool
applied to summarise the distribution of data and highlight potential differ-
ences in the distributions across groups, but there is traditionally no uncer-
tainty displayed in the summary statistics of the distributions used in the
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boxplot. In fact, for this data there are only 13 observations for “French”
cars while there are 249 observations for the “USA”, yet the conventional
boxplot fails to inform on this.

We placed a prior on the median, upper and lower quartiles defined by
the blue boxes in Fig (8) and account for the uncertainty by inferring the
posterior distribution on these unknowns. Let 6; denote the lower quartile,
05 the median and 63 the upper quartile. We adopted a normal, fairly vague,
prior,

6, ~ N(10,100); 65 ~ N(20,100); 65~ N(30,100),

with the constraint §; < 6 < 3. We adopt the “observed unit information
loss” in the setting of w, see Section 3.4.2,

J log{m(8)/m(6)} =(d0)

where we estimate [ log{(0)/7(6)} w(d6) via Monte Carlo and use a Nelder-
Mead optimiser for 0,.

We then implemented a Metropolis-Hastings MCMC algorithm to sam-
ple from the posterior 7 (61, 02, 03|z), for each of the 6 groups of cars shown
in Fig (8), using 100,000 samples with a 50,000 sample burn-in.

In Fig (9) we show our “Bayesian boxplot” which includes the orig-
inal boxes (empirical estimates) overlaid with 95% credible intervals for
(01,02,03). Credible intervals are shown as extended dotted lines from the
empirical estimates with a small diamond denoting the edge of the interval.
In comparison with Fig (8) we see that Fig (9) contains much more informa-
tion. For example, we see that while in Fig (8) the median MPG of Italian
and Swedish cars look different, in fact the 95% credible intervals overlap in
Fig (9). In addition we see that there is considerable overlap in the distribu-
tion of medians between Sweden and the USA; and in general, comparison
of medians or distributions in the conventional boxplot are obscured and
confounded by sample size.

The MCMC samples approximately from 7 (61, 62, 03|z) for France and
USA are shown in Figs (10), (11). The data set for France contains 13
observations and hence there is much greater uncertainty in the posterior
marginals. Moreover, looking at the joint densities of (61,62) and (62, 63)
we can see the constraints imposed by the prior. In contrast, due to the higher
sample size the posterior samples for the USA are tighter and hence exhibit
less dependence. An interesting extension would be to include hierarchical
priors on the quartiles whereby one could borrow strength across groups.

,lj):

6. Discussion. We have provided a basis for general learning and the up-
dating of information using belief probability distributions. Loss functions
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constructed on spaces of probability measures allow for coherent updat-
ing. Specifically, information is connected to the parameter of interest via
a loss function and this is the fundamental concept, replacing the restric-
tive connection based on probability models. We can recover precisely the
traditional updating rules such as the Bayes rule when we select the self-
information loss function, when it is appropriate to do so.

The assumptions we make are minimal. That information can be con-
nected to unknown parameters via loss functions and that individuals then
act rationally by minimizing their expected loss. If information is assumed
to come from some probability model then we can accommodate this within
our framework by appealing to the self—information loss function equivalent
to the negative log-likelihood and so we can argue that loss functions are
sufficient for learning mechanisms currently in use.

The scope of our findings provides extensive generalizations to the Bayes
updating rule. For the Bayesian, when it is problematic to construct a prob-
ability model with all the implications about assigning probability one to
events, can be compared to the ease of introducing a loss function which has
no further implications. A probability model needs to assert a sample space
with alternatives and assign probabilities to all outcomes. On the other hand,
a loss function can be constructed after the information has been received
and determined solely for the known information without need to consider
which alternative information could have been received. Yet, surprisingly,
both approaches can coincide which suggests the Bayesian support theory is
more than is really needed.

More generally, we can use loss functions currently employed in a classi-
cal context for robust estimation; for example, generalized estimating equa-
tions. We can also deal appropriately with partial information where it is
only a part of some observed information is useful or relevant for learning
about the decision making process based on a particular relevant parameter
of interest.

We have developed a rigorous approach to updating beliefs where we
are required only to think about which is the best parameter from a chosen
model needed to make a decision rather than have to think about a non—
existent true model parameter which coincides with the true data generating
mechanism.

6.1 Optimal Decisions. Let us now recap the story from a slightly different
perspective when observations are independent and identically distributed
from Fj(x) and action a € A is to be made. The decision maker is happy to
make an action if the minimizer, 6y, of [ 1(, ) dFy(z) is known, for some
loss function (6, ). This action is based on the utility function u(a, #) and
hence the action would be the one maximizing u(a, 6p).

With 6 not being known, as Fp is not known, a prior distribution 7(6)
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is constructed expressing beliefs about the location of 6y. Then, with data
(x;)1"_,, the loss function picking out the appropriate probability measure
v(0), with which to provide an action a through the maximization of ex-
pected utility, i.e. U(a) = [gu(a, ) v(df), itself minimizes the loss func-
tion

L(v) = ;/@l(&,xi)y(dG) +dg (v, 7).

In this way it is seen that the sequence of v(#) should accumulate about 6.

To us, now, there seems to be no reason whatsoever why (6, x) should
be exclusively based on a probability distribution. For example, if we want
the median then (0, z) = |0 — z|; if we want the mean then (0, z) =
(6 — x)?; whereas if we want the # taking us closest in Kullback—Leibler
divergence to fy, then [(0,z) = —log f(x;6).

6.2 Conclusion. We acknowledge we have presented a general framework
which at first sight might appear to sanction “anything goes”. This is wrong.
We have replaced a subjective probability model with an objective loss func-
tion, since the parameter of interest is typically defined by the statistical
problem. In this case, the loss function connecting the information to the
parameter is unique. See, for example, Section 5.2, in the case of the pa-
rameter of interest being the median. On the other hand, there is no unique
probability distribution to use to first model the data and then use this to
estimate the median.

When the interest is in a parameter indexing a family of densities and
the parameter to target is the one which makes this family closest to the true
model, then the unique loss function in this case is the self—information loss,
which yields the Bayesian update.

We believe it is more fundamental to identify parameters of interest
through loss functions and the corresponding information available. The
alternative route through a probability model is, we argue, highly restric-
tive and leads to narrow types of Bayesian updating and, moreover, is more
arbitrary. The necessary supporting theory for us is minimal, the construc-
tion and minimization of loss functions. Whereas for the use of probability
models it is also more intricate and restrictive.
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Appendix A: Proof of Theorem in Section 2.1. This result is proven by
Bissiri and Walker (2012) in their Theorem 2. Here, a shorter proof is given
by assuming the differentiability of g.

Assume that © contains at least two distinct points, say 61 and 3. Oth-
erwise, 7 is degenerate and the thesis is trivially satisfied. To prove this
theorem, it is sufficient to consider the case n = 2 and a very specific choice
for 7, taking m = podg, + (1 — po)dg,, where 0 < pyp < 1. Any proba-
bility measure v absolutely continuous with respect to 7 has to be equal to
pdg, + (1 — p)dg,, for some 0 < p < 1. Therefore, in this specific situation,
the loss L(v; I, w) becomes:

I(p,po, hr) :==phi(61) + (1 —p) hr(y1)

D I—p
+pog<> +(1P0)9<1 )
Po — Po

where h](@l) = h(@z, Il)—i-h(gi, 12) forl = (Il, 12) and h[(ez) = hl(ei, Ij)
for I = I;,4,j = 1,2. Denote by p; the probability 77, ({61}), i.e. the min-
imum point of I(p, p1, Az, 1,)) as a function of p, and by ps the probability
T(Iy,I)) ({61}). By hypotheses, ps is the unique minimum point of both loss
functions I(p, p1, hr,) and I(p, po, h(1,,1,)). Again by hypothesis, we shall
consider only those functions hy, and hy, such that each one of the func-
tions I(p, po, b1, ), U(p, p1, h1y), and I(p, po, b1, 1,)), as a function of p, has
a unique minimum point, which is p; for the first one and p, for the second
and third one. The values p; and p2 have to be strictly bigger than zero and
strictly smaller than one: this was proved by Bissiri and Walker (2012) in
their Lemma 2. Hence, p; has to be a stationary point of {(p, po, hz,) and pa
of both the functions I(p, p1, h1,) and I(p, po, (1, 1,))- Therefore,

[ P1 (1 —p
L = hy,(y1) — h1,(61), 16
g (pﬂ) g <1p0) n(y1) — hr (61) (16)
/[ P2 , (1 —Dp2
23 =h —h 0)), (17
g <p0> g (1_]70) (11,12)(y1) ([1,12)( 1) (17)
1 [ P2 (1 —p2
- - =h — hr(61). 18
g <p1) g <1_p1) (Y1) — hp(61) (18)

Recall that iy, 1,y = hr, + hy,. Therefore, summing up term by term (16)
and (18), and considering (17), one obtains:

/<p2> /<1_p2>

g\— ) —4g

Po 1—po
D1 1—p P2 1—po
Po 1 —po p1 1—pm

(19)

Recall that by hypothesis (16)—(18) need to hold for every two func-
tions hy, and hy, arbitrarily chosen with the only requirement that p; and
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p2 uniquely exist. Hence, (19) needs to hold for every (po, p1, p2) in (0, 1)3.
By substituting t = pg, © = p1/po and y = pa/p1, (19) becomes

1 —txy
/ /
Mw)g<1%>
1 -tz 1 —txy
_ o / o
g (z) g<1_t>+g(w sJ(l_m>,
which holds for every 0 < ¢ < 1, and every z,y > 0 such that z < 1/t

and y < 1/(xt). Being g convex and differentiable, its derivative ¢’ is
continuous. Therefore, letting ¢ go to zero, (20) implies that

g (zy)=4d'() + 4 (y) — () 21)

holds true for every z,y > 0. Define the function ¢(-) = ¢'(-) — ¢’(1). This
function is continuous, being ¢’ such, and by (21), p(zy) = p(z) + ¢(y)
holds for every =,y > 0. Hence, ¢(-) is kIn(+) for some k, and therefore

(20)

g(x) = kn(z) + ¢'(1), (22)

where & = (¢'(2) — ¢'(1))/In(2). Being g convex, ¢’ is not decreasing
and therefore k > 0. If & = 0, then ¢’ is constant, which is impossible,
otherwise, for any hy, p; satisfying (16) either would not exist or would not
be unique. Therefore, k£ must be positive. Being g(1) = 0 by assumption,
(22) implies that g(z) = kxln(z) + (¢'(1) — k)(z — 1). Hence,

hg(lll,Vg) = k/ln (j:) dl/1

holds true for some k& > 0 and for every couple of measures (v1,v2) on O
such that 14 is absolutely continuous with respect to v5.

Appendix B: Asymptotics under M—-open. Here we discuss the asymptotic
properties of the general Bayesian learning model. The difference to typical
asymptotic studies is that we need to understand what happens when the
proxy model chosen is “wrong”, in a sense to be made precise. We will
do this for the parametric model; f(z;0), 6 € O, and the idea is that we
want the posterior distribution to accumulate about y; the parameter which
minimizes the Kullback—Leibler divergence between the family and the true
density function fy(x); i.e. 6p minimizes

D(fol). f(-16)) = /X fol) log{fo(w)/ £z 0)} da,
and we will let

5= [ fola) log{ o)/ (a3 60)}
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Early work in this direction has been done by Berk (1966) and more
recently by Bunke and Milhaud (1998), Kleijn and van der Vaart (2006) and
De Blasi and Walker (2012).

For our idea, two assumptions in order to achieve this almost sure accu-
mulation are:

1. The likelihood ratio satisfies

n~t Zlog{f(a:i; 0)/f(x::600)} — 0 as

i=1

where @ is the maximum likelihood estimator; that is, 6 maximizes
[T, f(xi]0). We of course assume that this exists in the first place.

2. The best parameter 6 is in the support of the prior, so
m(0:0 < D(fo(x), f(x;0)) <d+mn) >0

for all n > 0.

The first is that the maximum likelihood estimator converges to the best pa-
rameter 6y. The topic is dealt with by White (1982) and gives conditions
under which 6 — 0o a.s., and the additional assumptions under which con-
dition 1. is satisfied.

Condition 2. is clearly a support condition, so that the prior actually does
put mass in a suitable neighborhood of 6.

It is sufficient to consider the following problem. Take out a neighbor-
hood N about 6y so that now the parameter closest to fp has a Kullback—
Leibler distance * > ¢, and label the parameter as 6;. We will now show
that

Ini/ILe — +00 as

where .
Iny =/N{£[1f($z')/fo($i)} T (df)
and

Ly = /@_N {};[1 f(ivi)/fo(ﬂﬁi)} Te-n(d0)

where, for example, m is 7 restricted to the set N. Now, using assumption
2., and following ideas in Barron, Schervish and Wasserman (1999), it can
be shown that

I, > e ™ as

for all large n, for any ¢ > ¢§. Also, based on assumption 1.,
n —
Lng < [ [ £* @)/ fo(a:)
i=1
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where F is the maximum likelihood restricted to © — N. A similar tech-
nique is used in Walker and Hjort (2001). Using the result of White (1982),
we have that

limsupn!log I < —6* as.

n

Putting this together we see that we have
liminfn~tlog Iy /I > —c+ 6% > 0 ass.
n

and hence the desired result, since we can choose § < ¢ < §*.

More recently, De Blasi and Walker (2012) have extended the consis-
tency result of Walker (2004) to the misspecified model case. In Walker
(2004) the support condition along with

Z 7"'(14]',6)1/2 < 400

J

for all € > 0, where the (A; ) form a Hellinger partition of the space of den-
sities with balls of size e is sufficient for consistency. For the misspecified
case, for accumulation about fj, the condition becomes

Z W(Aj,e(a))a < 400

J

for all @ > 0, where, e.g., (o) = (a?/2)?. This is an important result. If
the target is 0y then we need to be sure we can find it given an arbitrary large
amount of information.

Appendix C: Stylized inference problems. The form of the problem is
as follows. We have independent stochastic pieces of information I;. We
identify a 6 of interest to aid us in the decision process from which we will
construct a utility u(a, 6). Equally, if 6y were known we would be happy
to select the action a maximizing u(a,#). The information (I;) provides
further knowledge about 6 through an appropriate loss function [(6, ;).

Let us return to the case when we observe (z;) independent and identi-
cally distributed from some density fo(x) and f(z; 6) is the chosen family to
model this. In our framework we do not need to concern ourselves whether
this family contains fy(x) or not, provided we use (0, z) = —log f(x;6)
under both scenarios.

We then obtain the standard Bayesian updating rule, but now the prior
m(df) and posterior v(df) represent our best beliefs about which 6 gets
us closest to fo(x). All other aspects of inference can be done with this
interpretation of 6 and v. So, for an action a € A, we would maximize U (a)
defined previously in terms of v.
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There is also a difference to be highlighted with prediction. It is clear
that as far as prediction is concerned,

p(z) = /@ f(x:0) v(d0)

is the estimate of the density closest to fy(x) and, unlike the Bayesian in-
terpretation, one knows that the next z is certainly not coming from this
density. We can formally obtain p(z) as the estimate for the density closest
to fo(x) by using the utility function

up.0) = = [ (o) = f(a:0)? o
Let us move on to more complicated data structures.

C1 Regression model. We will first consider a standard regression model;
so we consider the case when x; come from the density fy(x|z) and we use
the model f(-|z;, @), where the (z;) are covariate information and the (z;)
are independent observations. So I; = (z;,z;). We recover the Bayesian
approach when we take (0, (z;, z;)) = —log f(x;|zi,0) and as before the
usual interpretation of # is the parameter which takes us closest to fo(z;|z;).
If the (z;) are independent and identically distributed with probability mea-
sure 1 then we can define 6 to minimize

/Z A (F(120). fol-|2))u(dz).

An infinite collection of the (x;, z;) will give us fy(x|z) and so 6 is defined
asymptotically. An equivalent idea would be to define 6 as the # minimizing

Jim ™S i (£ 0). foC 20,
i=1

In both of these cases, the loss function is suitable for learning about this 6;
in the sense that the asymptotic minimizer of

n~! Z 10, (i, 21)) = —n” ' log H f(xilz,0)
i=1

=1

is, under mild regularity conditions, precisely 6. Alternatively, we could, if
the (z;) are non—stochastic, define 6y as minimizing

sup dicr,(f(-]2,0), fo(-[2))-

z€Z

In this case it would be necessary to construct a loss function (6, (z, 2))
which asymptotically yielded this 6.
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C2 Hierarchical model. A random effects hierarchical model will be sim-
ilar to the above described regression model; yet here we would have the
f(z]z,0) in a particular form given by

Fail=,0) /fxzm,&, F(Bil=.6) dBs.

We retain I; = (z;, z;). One determines here that there is a 6 to be learnt
about which involves an unobserved set of (3;). We can define 6 as in the
regression case; that is the # which minimizes

nlgrolon ZdKL f(12i,0), fo(-2:))-

=1

In this case it would be quite challenging to find an alternative to the I(6, (x;, 2;)) =
—log f(z;]z,0) loss function. For inference one can solve for v(d ) and
then set up the joint measure

v(d0, B .., Ba) = {H f(@ilz, 6:.6) f(ﬁilzz‘ﬁ)} 7 (d6)

i=1

to allow inference via Markov chain Monte Carlo methods, for example.

C3 Time series model. Now let us consider a time series setting whereby

it is deemed that 2; depends on (x;_1,...,;—p); that is a p-autoregressive
model. In this case I; = (z4,2i—1,...,%i—p) and if we model the obser-
vations through f(x;|z;—1,...,2i—p,0) then the Bayesian update arises by
taking (0, I;) = —log f(zilzi—1,...,xi—p,0). In this case the target O

will be the parameter minimizing

Jim n” lZdKL Clie1, - imp, 0), fo(mimts oo mip)).
=1

Of course this assumes that the order is known to be p and typically this
will be unknown. Writing the true model as fo(x;|zi—1,...,21) we can
construct a general model as

o)
f(ﬂ?i|l‘i_1, ey, L1, (9) = Z wp fp(l‘i’l‘i_l, e ,xi_p, 9p)
p=1

where wy, is the probability that the correct order is p and § = (01,62, ...) so
m(0) = [[,2, 7p(0p) and mp(6),) represents the beliefs about which 0, takes
fp(lxizt, ..., @i—p, 0p) closest to fo(-|zi—1,...,xi—p), conditional on the
truth of p being the correct order. The Bayesian update now arises by taking
10, (i, xi-1,...,21)) = —log f(zilzi-1,..., i 0).
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C4 Grouped data model. Here we consider the case when we have repeated
observations on independent units; so I; = (i1, ..., Zin,, 2;), where the z;
are unit specific covariates. If it assumed that the (x;;); are conditionally
independent given an unobserved parameter (3; then we would have a model
of the type

il 0) = [ 1] foilen, 50.0) £(6110)
j=1

and we recover the Bayesian update when we take

10, (zi,2)) = —log f (w42, 0)

and the interpretation for the prior 7(6) is again to do with beliefs about
where the 6 taking this model closest to the true model is to be located.

This section shows that it is possible to undertake Bayesian inference with
models in the M—open view by taking the logarithmic loss functions asso-
ciated with these models. The interpretation of 6 is different however. We
construct prior distributions and learn about the best parameter ¢ which
takes us closest to the true model. It is assumed the data can give the true
model completely and therefore there is access to 6.
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Figure 1: Log Bayes Factor (Laplace) vrs marker index along chromosome
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log Bayes Factor (Monte Carlo)

log Bayes Factor (Laplace)

Figure 2: Log Bayes Factor using 500 Monte Carlo samples vrs Laplace approxi-
mation: at 500 random markers
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Figure 3: Log Bayes Factor vrs -log10 p-value of association
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Figure 4: Log Bayes Factor vrs -log10 p-value of association coloured by standard
error in MLE
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Figure 5: Standard Error in MLE vrs log Bayes Factor
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Figure 6: Log Bayes Factor vrs marker index in the “hit region”

45

10600



1.0

Posterior probability of inclusion

00 02 04 06 08

| I I I
9800 10000 10200 10400 10600

marker index

Figure 7: Posterior marginal inclusion probability from multiple marker model
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Figure 8: Boxplot of cars MPG data; taken from the MATLAB boxplot.m help
file illustration.
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Figure 9: General Bayesian Boxplot of cars MPG data using Unit Information
Loss
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Figure 10: Posterior samples for quartiles of Franch cars MPG data using Unit
Information Loss
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Figure 11: Posterior samples for quartiles of USA cars MPG data using Unit
Information Loss
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