
ICIQ 2012, the 17th International Conference on Information Quality

163

TOWARDS THE USE OF MODEL CHECKING FOR
PERFORMING DATA CONSISTENCY EVALUATION

AND CLEANSING
(Completed-paper)

Mario Mezzanzanica

Department of Statistics and Quantitative Methods – CRISP Research Centre – University of Milano-
Bicocca

Mario.Mezzanzanica@unimib.it

Mirko Cesarini
Department of Statistics and Quantitative Methods – CRISP Research Centre – University of Milano-

Bicocca
Mirko.Cesarini@unimib.it

Fabio Mercorio

CRISP Research Centre – University of Milano-Bicocca
Fabio.Mercorio@unimib.it

Roberto Boselli

Department of Statistics and Quantitative Methods – CRISP Research Centre – University of Milano-
Bicocca

Roberto.Boselli@unimib.it

Abstract: This paper explores the application of formal methods (specifically, model checking) to the field of data
quality. A model expressing the consistency of longitudinal data is derived from the domain knowledge. This
model is used (1) to automatically verify the consistency of the data stored on a database and (2) to automatically
generate a universal cleanser, i.e. a cleanser which summarises all the feasible corrections for any kind of
inconsistency which may affect the data (as far as they can be guessed from the formal consistency model). The
universal cleanser represents a repository of corrective interventions useful to develop cleansing routines. We
applied our approach to a real world scenario: a formal verification has been performed on labour market data
evaluating the consistency of people working careers. The results show that the proposed approach can improve the
data quality evaluation and the development of cleansing activities.

Key Words: Data Consistency, Data Cleansing, Model Checking.

1 INTRODUCTION AND CONTRIBUTION

The ongoing relations between citizens and public administrations generate a lot of data and the
administrative archives store a relevant portion thereof. Such data can be very valuable for supporting the
decision making processes in several contexts: design, implementation, and evaluation of active policies,
service design and improvement, etc. Some archives record also data along time, therefore they can be
considered a source of longitudinal data (also called panel data), i.e. a set of (repeated) observations of

ICIQ 2012, the 17th International Conference on Information Quality

164

the same subjects along the time. For more details on longitudinal data see [14]. Several studies report
that the data quality of enterprise and public administration databases is very low, e.g. [12, 2]. The
organisations are getting more and more aware of the consequences and costs, therefore several plans,
strategies, and actions have been implemented, e.g. as described in [15]. Data quality is a broad concept
(a complete survey can be found in [2]). Here we focus on the consistency dimension which refers to the
violation of semantic rules defined over a set of data items.

In this paper, a data consistency model is built from the domain knowledge, then a model checker can be
used for verifying the consistency of longitudinal data and for generating the possible cleansing actions.
An example is provided: the dataset in Tab. 1 shows a cruise ship travel plan. The ship usually travels by
sea and stops at the port of calls (intermediate destinations), making a checkin when entering a harbour
and a checkout when exiting. The reader will notice that the departure date from Lisbon is missing, since
a checkout is necessary before entering the subsequent harbour (Barcelona). In this respect, the dataset is
inconsistent.

 EventId ShipID City Date Event Type
e1 S01 Venice 12th April 2011 checkin
e2 S01 Venice 15st April 2011 checkout
e3 S01 Lisbon 30th April 2011 checkin
e4 S01 Barcelona 5th May 2011 checkin
e5 S01 Barcelona 8nd May 2011 checkout
...

Table 1: Travel Plan of a Cruise Ship

Data cleansing can be performed in several ways, nevertheless when no different (and more trusted) data
source is available, the only feasible solution is to exploit business rules, i.e. to implement cleansing
algorithms fixing inconsistencies using domain derived knowledge. The uncertainty affecting the data
can impact on the aggregate data and on the information derived for decision making purposes, therefore
the inconsistencies should be appropriately managed.
The comparison among archive contents and real data is often an unfeasible or very expensive option
(e.g. due to the lack of alternative data sources, the cost of collecting the real data, etc.). On the contrary
data assessment and cleansing based on business rules is frequently an effective and valuable solution.

In this paper we show how longitudinal data consistency can be modelled and verified through explicit
model checking techniques. Once a model has been defined, a model checker can be used for deriving
the set of possible errors and the set of possible corrective actions. These can be exploited: (1) for
verifying the data consistency of real world archives and (2) as a foundation to partially automate the
development of cleansing routines. It is worth to note that the approach presented in this paper bounds
the effort of consistency checking to the formalisation of a suitable consistency model. Then, the task of
performing the consistency check and the cleansing activities can be automatically executed.
We successfully applied model-checking-based techinques to assess the quality of an administrative
archive.

The paper is organised as follows: in Sec. 2 the related works are surveyed; in Sec. 3 we shortly introduce
model checking on finite state systems and how model checking can be used for verifying data
consistency; Sec. 4 introduces the concept of the universal cleanser and provides an algorithm to
compute it; in Sec. 5 we show some experimental results obtained working on a big administrative
archive managing labour market information; finally, in Sec. 6 we report the conclusions and the future
work.

ICIQ 2012, the 17th International Conference on Information Quality

165

2 RELATED WORK

Data quality has been addressed in different research domains including statistics, management, and
computer science as reported in [27, 4]. For the sake of clarity, the works surveyed in this section have
been classified into three groups according to the (main) goal pursued: record linkage, error
localisation and correction, and consistent query answering. The classification adopted is not strict
since several works could be classified in several groups.

Record linkage (known as object identification, record matching, merge-purge problem) aims to bring
together corresponding records from two or more data sources or finding duplicates within the same one.
The record linkage problem falls outside the scope of this paper, therefore it is not further
investigated.

Error localisation and correction works can be further classified in: 1) those exploiting machine
learning methods and 2) those exploiting data dependencies (formalised by domain experts) to detect and
correct errors. Considering the latter, the effort of domain experts is required to formalise rules.

1) Machine learning methods can be used for error localisation and correction. Possible techniques and
approaches are: unsupervised learning, statistical methods, data profiling, range and threshold
checking, pattern recognition, clustering methodologies [23]. It is well known that these methods can
improve their performance in response to human feedbacks, however the model resulting from the
training phase can’t be easily accessed and interpreted by domain experts. In this paper we explore a
different approach where the consistency models are explicitly built and validated by domain experts.

2) Dependencies based methods. Several approaches focus on integrity constraints for identifying errors,
however they cannot address complex errors or several inconsistencies commonly found in real data
[18, 21].
Other constraint types have been identified in the literature: multivalued dependencies, embedded
multivalued dependencies, and conditional functional dependencies. Nevertheless, according to Vardi in
[33] there are still semantic constraints that cannot be described.
In [3] a context-free-grammar based framework is used to specify production rules (e.g., Univ. →
University), to reconcile the different representations of the same concept. Such approach mainly
focuses on the attribute level, whilst the work presented in this paper focuses on set-of-records
consistency.
Works on database repair focus on finding a consistent and minimally different database from the
original one, however the authors of [11] state that computational issues affect the algorithms used for
performing minimal-change integrity maintenance.
Deductive databases [25] add logic programming features to relational systems and can be used for
managing consistency constraints. To the best of our knowledge, few works in the literature focus on
deductive databases and data quality: [29, 19]. Furthermore, scalability issues have to be investigated
when dealing with large sets of data.
In [10] database triggers are derived from dynamic constrains expressed in a time (first-order) logic
variant. However triggers can raise computational issues when processing large datasets.

Consistent query answering works, e.g. [6], focus on techniques for finding out consistent answers
from inconsistent data, i.e. the focus is on automatic query modifications and not on fixing the source
data. An answer is considered consistent when it appears in every possible repair of the original

ICIQ 2012, the 17th International Conference on Information Quality

166

database. Semantic constraints are expressed using functional dependencies. Basically already with two
Functional Dependencies the problem of computing Consistent Query Answers involving aggregate
queries becomes NP-complete [6].

Other works and tools not included in the previous categories are now briefly surveyed. The applica-
tion of automata theory for inference purposes was deeply investigated in [34] in the database domain.
The problem of checking (and repairing) several integrity constraint types has been analyzed in [1].
Unfortunately most of the approaches adopted can lead to hard computational problems. Formal verifi-
cation techniques were applied to databases, to formally prove the termination of triggers [9], for semis-
tructured data retrieval [24], and to solve queries on semistructured data [17].
Many data cleansing toolkits have been proposed for implementing, filtering, and transforming rules
over data. A detailed survey of those tools is outside the scope of the paper. The interested reader
can refer to [21].

3 FROM DATA CONSISTENCY VERIFICATION TO MODEL CHECKING

Model checking [6] is a hardware/software verification technique to verify the correctness of a suitably
modelled system. The model is described in terms of state variables, whose evaluation determines a
state, and transition relations between states, which specify how the system can move from a state to the
next one as a consequence of a given input action. Focusing on explicit model checking techniques, a
model checker verifies if a state transition system (i.e., the model) satisfies a property by performing an
exhaustive search in the system state-space (i.e., the set of all the possible system states). The model
checker exploits techniques to reduce or compress the system state-space to be analysed, e.g. the
reachability analysis: the state variable values that can be actually reached are identified, the reachable
ones are analysed while the others are not (although being in the range of the admissible values).
The system model to be verified is expressed by means of a model checking language. Then the model
checker generates a corresponding Finite State System (FSS) where the desired consistency properties
can be evaluated. For the sake of completeness, we highlight that model checking languages can describe
both an FSS and an implicit representation (i.e. abstract and general) of some FSSs. An implicit
representation can be translated into an FSS, and the verification is always performed on the latter. Due
to the space limitations, we do not formalise such implicit representation of FSSs. However, the reader
can see [4] where such concept is expressed by means of Extended Finite State Machines.

Definition 3.1 (Finite State System) A Finite State System (FSS S) is a 4-tuple (S,I,A,F), where: S is a
finite set of states, I⊆S is a finite set of initial states, A is a finite set of actions and F:S×A→S is the
transition function, i.e. F(s,a) = s’ iff the system from state s can reach state s’ via action a.
Hence, a trajectory is a sequence of state, action π = s0a0s1a1s2a2…sn-1an-1sn where, ∀i∈[0, n-1], si∈S is
a state, ai∈ A is an action and F(si,ai)=si+1.

Let S be an FSS according to Def. 3.1 and let φ be an invariant condition specifying some properties to be
satisfied (called safety properties in the model checking domain) a state sE∈E is an error state if the
invariant formula φ is not satisfied. Then, we can define the set of error states E⊆S as the union of the
states violating φ. We limit the error exploration to at most T actions (the finite horizon), i.e. only
sequences reaching an error sE∈E within the finite horizon are detected. Note that this restriction has a
limited practical impact in our contexts although being theoretically quite relevant.
Model checking is traditionally used to explore and verify all the feasible execution paths of a system.
Then, informally speaking a model checking problem is composed by a description of the FSS to be
explored, an invariant to verify, and a finite horizon. A feasible solution (if any) is a trajectory leading the
system from an initial state to an error one.

ICIQ 2012, the 17th International Conference on Information Quality

167

3.1 Finite State Events Database
In an event-driven architecture, an exogenous event represents a change that may occur in the system
configuration due to an external occurrence. A connection can be established between event-driven
systems and databases containing longitudinal data: a database record (or a subset thereof) can be seen as
an event arriving from the external world, and an ordered set of records can be seen as an event sequence
(or action sequence). More precisely:

Definition 3.2 (Event, Event Sequence, and Finite State Event Dataset) Let R=(R1,…,Rn) be a
schema relation of a database, let e=(r1, …, rm) be an event where r1∈R1,…,rn∈Rn, then e is a record
of the projection (R1, …, Rm) over R with m ≤ n.
A total order relation ~ on events can be defined such that e1 ~ e2 ~…~ en. An event sequence (or action
sequence) is a ~-ordered sequence of events ε=e1, …, en. A Finite State Event Dataset is a longitudinal
dataset extracted from a database that can be expressed as an event sequence.

 (a) (b)

Figure 1: (a) A Graphical representation of the Cruise Ship Travel Plan model. The lower part
of a node describes how the system state evolves when an event happens. (b) A Graphical

representation of a process where the model checker is used to verify an FSEDB consistency.

Intuitively, the application of model checking to data quality problems is driven by the idea that a model
describing the consistent evolution of feasible event sequences can be used to verify if the actual data
follows a consistent behaviour.
An FSS can be used to formalise the domain business rules and to check the consistency of Finite State
Event Datasets. Although the whole content of a database could be checked by an FSS, it is advisable to
split the database in several subsets (each being a separate FSED) and to check each of them separately.

Definition 3.3 (Finite State Event Database) Let Si be an FSED, we define a Finite State Event
Database (FSEDB) as a database DB whose content is DB = where k ≥ 1.

How can an actual database be verified by a model checker? A schematic representation of this approach
is depicted in Fig. 1(b):

1. A domain expert codifies the evolution of the system as well as the consistency properties
using the model checking tool language (i.e., the model).

2. An FSED Si is retrieved from the database (i.e., the FSEDB) and the model checker
automatically generates an FSS representing the evolution of the model caused by Si.

3. The model checker looks for an error trace on the FSS. A solution (if any) represents an
inconsistency affecting the database event sequence Si. Otherwise the event sequence is
consistent.

ICIQ 2012, the 17th International Conference on Information Quality

168

Any model checker can be used to perform the verification. In our case, we used the CMurphi tool [7]
which allows one to use C/C++ functions to interact with the database.

The concept of Consistency Failure Point (CFP) is now introduced: a CFP is an event of a FSED from
which the sequence becomes inconsistent. The CFP event is not necessarily the responsible of the
consistency failure, but it is the point where the failure emerges. The FSED is labelled as inconsistent if a
CFP is discovered. The remaining of the event sequence can be hardly tested (or cannot be test at all)
since the inconsistency might hinder the FSS-state-evolution identification thereafter. Considering the
example of Tab. 1, the missing Lisbon departure prevents the exploitation of the FSS (Fig.1(a)) straight
after the Lisbon checkin (the subsequent Barcelona checkin is the CFP), since other events could be
missing, not only the Lisbon checkout. Generally speaking, the uncertainty originating after a CFP can
prevent the execution of the consistency check for some or all the subsequent events. Considering again
the example of Tab. 1, the uncertainty doesn’t last for long time: the Barcelona harbour checkin event is
enough to guess the FSS state and to resume the consistency check. In other cases, e.g. the one presented
in Sec. 5, the uncertainty can last longer. The question is how to detect the points where the consistency
check can be safely resumed. For this reason we introduce the reset actions. A reset action is an action so
that the FSS state can be determined with certainty thereafter, even though the previous history is
unknown. It can be observed that a reset action leads the FSS always to the same state, independently of
the previous history. More formally:

Definition 3.4 (Reset Action) Let S (S,I,A,F) be a Finite State System according to Def. 3.1, an action
a∈A is a reset action iff ∃sa∈S s.t. ∀s∈S either F(s,a)=sa or F(s,a) is not defined.

Since events can be mapped to actions, the reset event can be defined in a similar way: it is the event that
lead the FSS always to the same state, independently of the previous history. The reset events can be used
for partitioning a dataset into small event segments whose consistency can be evaluated independently.
An example is showed in Sec. 5. In this way, a CFP found within a segment does not prevent the
consistency evaluation of the subsequent segments.

Running Example. The following example should clarify the matter. Let us consider the Cruise Ship
example as introduced in Tab. 1.
The whole dataset is the FSEDB whilst a FSED is the travel plan of a single ship. An event ei is
composed by attributes ShipID, City, Date, and Event Type, namely ei = (ShipIDi, Cityi, Datei, Eventi
Typei). Moreover, the total-order operator ~ could be the binary operator ≤ defined over the event’s

attribute Date, hence ∀ei,ej∈E, ei ≤ ej iff Dateei ≤ Dateej. Finally, a simply consistency property could be
“if a ship checks in to the harbour A, then it must check out from A before checking in to the next
harbour“. We can model this consistency property as a model checking problem. An implicit
representation of the domain is given in Fig. 1(a). In our settings, the system state is composed by (1) the
variable pos, which describes the ship’s position, and (2) the variable city describing the city where the
ship is harboured. The consistency property of a database events sequence, e.g., the travel plan of Tab. 1,
can be expressed as a model checking problem. In such a case, a solution (i.e., the error trace) is
represented by the event sequence e1, e2, e3, e4 which generates an inconsistent trajectory on the
corresponding FSS.

ICIQ 2012, the 17th International Conference on Information Quality

169

4 DATA CLEANSING VIA MODEL CHECKING

In the previous sections we described how the consistency of a database event sequence can be modelled
and verified through model checking. Looking forward, one can wonder if the consistency model can be
used as the basis to identify cleansing activities. Namely, once the FSS describing the dataset consistency
is generated, can the FSS be exploited to identify the corrective actions that can make such dataset
consistent? Let us consider an inconsistent event sequence having an action ai that applied on a
(reachable) state si leads to an inconsistent state sj. Intuitively, a corrective action sequence represents an
alternative route leading the system from state si to a state when the action ai can be applied (without
violating the consistency rules). In other words, a cleansing action sequence (if any) is a sequence of
actions that, starting from si, makes the system able to reach a new state on which the action ai can be
applied and results in a consistent state. More formally we can define the following.

Definition 4.1 (Cleansing Action Sequence) Let S = (S,I,A,F) be an FSS, E be the set of errors states

(i.e. inconsistent states) and T be the finite horizon. Moreover,
- Let Ω = Reach() be the set of all the states reachable from the initial ones;
- Let π = s0a0 … siai sj be an inconsistent trajectory where sj∈Ω is an inconsistent state (i.e., sj∈ E

and and s0, …, si ∉E.
Then, a T-cleansing action sequence for the pair (si,ai) is a non-empty sequence of actions
Ac = c0, …, cn∈A, such that exists a trajectory πc = s0a0 … si-1ai-1 sic0 si+1c1 … si+ncn skai on S with
|Ac | ≤ T , where all the states s0, …, sk are consistent.

 In the AI Planning field a Universal Plan is a set of policy, computed off-line, able to bring the system to
the goal from any feasible state (the reader can see [13, 5, 9] for details). Similarly, we are interested in
the synthesis of an object, which we call Universal Cleanser (UC), which summarises for each pair
(state, action) leading to an inconsistent state, the set A’ of all the feasible cleansing action sequences.
This UC is computed only once and then applied as an oracle to cleanse any kind of FSEDB.
To this aim, we proceed as follows:

Step 1 A consistency model of the system is formalised by means of a model checking language as

described in Sec. 3.

Step 2 A database domain model is formalised, describing the attribute domains from which all the

possible record subsets (i.e. event subsequences) composed by at most events can be guessed (both
the consistent an the inconsistent ones). The set of possible subsets will be called worst case FSEDB
hereafter. E.g., for the cruise ship example an extract of the model is: city={Cityx, Cityy}
ETypei={checkin,checkout}. Note that the City attribute cardinality (although potentially unbounded)
can be limited by a finite and small number thanks to the number of state variables and to the FSS
diameter10.

Step3 The model checker is used to generate the FSS representing all the inconsistent sequences,

starting from the database domain model (step 2) and the consistency model (step 1), the whole
process is shown in Fig. 1(b).

10 Due to the limited space we provide only the intuition about how this task can be accomplished. The value is computed by the model checker
as the diameter of the FSS, i.e. the largest number of states which must be visited in order to travel from one state to another excluding trajecto-
ries which backtracks or loops.

ICIQ 2012, the 17th International Conference on Information Quality

170

Step4 Explore the FSS to synthesise the Universal Cleanser.

More formally, we define the Universal Cleansing Problem (UCP) and its solution.

Definition 4.2 (Universal Cleansing Problem and Solution) A Universal Cleansing Problem (UCP) is
a triple D ={S, E, T} where S (S, I, A, F) is an FSS, E be the set of error (or inconsistent) states
computed by the model checker, and T is the finite horizon.

A solution for D, or a Universal Cleanser for D is a map K from the set Ω×A to a subset A' of the power
set of A, namely A'⊆2A, where for each inconsistent trajectory π=s0a0 … siai sj if A'≠∅ then A' must
contain all the possible T-cleansing action sequences for the pair (si,ai).

It is worth to highlight that, while on the one hand the UC generated is domain-dependent, i.e. it can deal
only with event sequences conforming to the model that generated it, on the other hand it is data-
independent since, once the UC is computed on a worst-case FSEDB, it can be used to cleanse any
FSEDB. The pseudo code of the algorithm generating a Universal Cleanser is given in Procedures 1 and
2. It has been implemented on top of the UPMurphi tool [8]. The Procedure 1 takes as input the FSS of
the domain, the set of error states given by the model checker (to identify inconsistent trajectories) and a
finite horizon T. Then, it looks for a cleansing action sequence (according to Def. 4.1) for each
inconsistent (state, action) pair. This work is recursively accomplished by the Procedure 2 which explores
the FSS through a Depth First visit collecting and returning all the cleansing solutions.

Running Example. Consider again the Cruise Ship example of Tab. 1. We recall that an event ei is
ei=(ShipIDi, Cityi, Datei, ETypei) and each event sequence and subsequence is ordered with respect to the
event dates. It is worth to note that the finite horizon T = 2 is enough to guarantee that any kind of
inconsistency will be generated and then corrected using no more than 2 actions. Note that the cardinality
of the city attribute can be potentially unbounded, but since a state can store only one city information at
a time, we can use two elements (Cityx and Cityy) to represent any feasible Cityi value in the system.
Consider that the main elements of an event are ETypei∈{checkin, checkout}, Cityi∈{Cityx,Cityy}, i.e., 4
possible events. Then, we represent the wost-case FSEDB by considering into our model all the possible
2-step event subsequences (i.e., simply enrich each node of the graph in Fig. 1(a) with all the possible
edges).
Table 2 shows the Universal Cleansing for our example, which is minimal with respect to the number of
event variable assignments, i.e., the missing pair ([pos=sea], (checkout,Cityy)) fits on ([pos=sea],
(checkout,Cityx)). The UC, once generated, is able to cleanse any kind of FSEDB compliant with the
model from which it has been generated.

([state],(action)) list of corrective actions

([pos=sea], (checkout, Cityx)) (checkin, Cityx)

([pos=harbour ∧ city=Cityx], (checkout, Cityy)) (checkout, Cityx),(checkin, Cityy)

([pos=harbour∧city=Cityx], (checkin,Cityy)) (checkout, Cityx)

([pos=harbour∧city=Cityx], (checkin,Cityx)) (checkout, Cityx)

Table 2: Universal Cleanser for the Cruise Ship Example.

ICIQ 2012, the 17th International Conference on Information Quality

171

5 THE CASE OF “T HE WORKERS CAREER ADMINISTRATIVE
ARCHIVE ”

 The Italian Law No. 264 of 1949 requires the employers to notify the public administration whenever an
employee is hired, dismissed, or her/his working contract is modified. Those notifications are called
Mandatory Communications (“Comunicazioni Obbligatorie” in Italian). Since the 1997, the Ministry
developed an ICT infrastructure, called the “CO System” [16], for recording data concerning mandatory
communications, employment, and active labour market policies. Some administrative archives useful for
studying the labour market dynamics [11] are generated and called “CO Archives”or “Job Registries”.
Extracting the longitudinal data by the CO archives allows one to observe the overall flow of the labour
market for a given observation period, obtaining insightful information about worker career paths,
patterns and trends, facilitating the decision making processes of civil servants and policy makers [10].
Unfortunately the archive quality is very low, therefore cleansing is required before deriving information
for decision making purposes (see, e.g. [3]). The approach presented in this paper has been used to
perform data consistency evaluation and cleansing on the real data extracted from the CO archive of an
Italian Area.

5.1 Domain Modelling
 This subsection will provide some domain knowledge useful to achieve an overview of the
administrative archives analysed in this paper. Every time an employer hires or dismisses an employee,
or an employment contract is modified (e.g. from part-time to full-time, or from fixed-term to unlimited-
term), a Mandatory Communication is notified to the CO System and stored into a job registry. The
registries are managed at “provincial level” for several administrative tasks, every Italian province has its
own job registry recording the working history of its inhabitants (as a side effect).
For each worker, a mandatory notification (an event in our context) is composed by:

ICIQ 2012, the 17th International Conference on Information Quality

172

w_id: it represents an id identifying the person involved in the event;
e_id: it represents an id identifying the communication;
e_date: it is the event occurrence date;
e_type: it describes the event type occurring to the worker career. The allowed event types are: the start
or the cessation of a working contract, the extension of a fixed-term contract, or a contract type
conversion;
c_flag: it states whether the event is related to a full-time or a part-time contract;
c_type: it describes the contract type with respect to the Italian law (e.g. fixed-term or unlimited-term
contract, etc.).
empr_id: it uniquely identifies the employer involved in the event.

The evolution of a consistent worker’s career along the time is described by a sequence of events ordered
with respect to e_date. More precisely, in this settings an FSED is the ordered set of events for a given
w_id, and the FSEDs union composes the FSEDB. Moreover, the representative element is given by the
w_id. Now we closely look to the consistency of the worker careers, where the consistency semantics is
derived from the Italian labour law, from the domain knowledge, and from the common practice. Some
rules can be identified:

c1: an employee can have no more than one full-time contract active at the same time;
c2: an employee cannot have more than K part-time contracts (signed by different employers); in our
context we assume K = 2 i.e., employees cannot have more than two part time jobs active at the same
time;
c3: a contract extension cannot change neither the existing contract type (c_type) nor the part-time/full-
time status (c_flag) e.g., a part-time fixed-term contract cannot be turned into a full-time contract by an
extension;
c4: a conversion requires either the c_type or the c_flag to be changed (or both).

For simplicity, we omit to describe some trivial constraints e.g., an employee cannot have a cessation
event for a company for which she/he does not work, an event cannot be recorded twice, etc.
The CMurphi model checker allows us to build an FSS which will be used to check the data consistency.
The system state (i.e., a worker’s career at a given time point) is composed by three elements: the list of
companies for which the worker has an active contract (C[]), the list of modalities (part-time, full-time)
for each contract (M[]) and the list of contract types (T[]).
To give an example, C[0]=12 , M[0]=PT , T[0]=unlimited models a worker having an active unlimited
part-time contract with company .
The CMurphi model of the domain is showed in Figure 5.1 and it outlines a consistent career evolution.
Note that, to improve readability, we omit to represent conversion events as well as inconsistent
states/transitions (e.g., a worker activating two full-time contracts), which are handled by the FSS
generated by the CMurphi model.
A valid career can evolve signing a part-time contract with company i, then activating a second part-time
contract with company j, then closing the second part-time and then reactivating the latter again (i.e.,
unemp, empi, empi,j, empi, empi,j).

ICIQ 2012, the 17th International Conference on Information Quality

173

Figure 2: A graphical representation of an FSS of a valid worker’s career where st=start,
cs=cessation, cn=conversion, and ex=extension.

5.2 Data Consistency Experimental Results
 We performed the consistency check using the model described in Fig. 5.1 on the “CO archive” of an
Italian Area, composed by 1,248,751 mandatory communications. The CO archive (S from now on)
describes how the labour market has evolved from the 1st January 2000 to the 31st December 2010, by
providing CO events for 214,418 people careers. Each career has been modelled as a subset Si where i∈
[1,…, 214,418]. An Si is a FSED while S is the FSEDB according to the terminology introduced in the
previous section.
The consistency check computation was performed on a 32 bits 2.2Ghz CPU (connected to a MySQL
server through ODBC driver) in about 20 minutes using about 50 MB of RAM.
Our results show that the 43.2% of the careers are inconsistent. More precisely, the 43.2% have at least
one inconsistency (i.e., a CFP has been found). On the contrary, only the 56.8% of the total careers have
proved to be consistent. Clearly, once an inconsistency is detected at a given time point, the remaining
part of the career cannot be further evaluated since the CFP may have unpredictable effects on the
consistency of the remaining part. To mitigate this effect, we exploited the consistency model of Fig. 5.1
to discover reset events (according to Def. 3.4) and to partition the careers into smaller segments. The
following example should help to better clarify the usefulness of the reset events. Let us consider a
worker career extracted from the dataset, as presented in Tab. 3(a). According to the record having
e_id=4, the worker w1 starts a new full-time contract in date 39504 without closing the on-going part-
time. Due to this inconsistency, the whole career will be considered inconsistent, although only the first
four events have been evaluated.
Focusing on the system described in Fig. 5.1, it can be observed that some events always lead the system

ICIQ 2012, the 17th International Conference on Information Quality

174

to a specific state regardless of the previous ones: e.g., looking at Fig. 5.1, a full time cessation always
leads to the unemp state as well as a full time start always leads to the empk state. Indeed, in such cases,
the state reached by the system can be guessed in spite of the previous uncertainty. These events
contributing to reduce the uncertainty are the reset events.

w_id id e_date e_t c_flag c_type em_id

w1 1 38402 st part-time limited empr1
w1 2 38679 st part-time unlimited empr2
w1 3 39023 cs part-time limited empr1
w1 4 39504 st full-time unlimited empr3
w1 5 39651 cs full-time unlimited empr3
w1 6 39700 st part-time unlimited empr4
w1 7 40407 cs full-time unlimited empr4
w1 8 40632 st full-time limited empr5
w1 9 41449 ex full-time unlimited empr5
w1 10 41513 cs full-time limited empr5
w1 11 41726 st full-time limited empr6
w1 12 42089 ex full-time limited empr6

Table 3: (a) An example of a worker career (the data is not real although plausible).

Seg w_id id e_date e_t c_flag c_type em_id

S1 w11 1 38402 st part-time limited empr1
 w11 2 38679 st part-time unlimited empr2
 w11 3 39023 cs part-time limited empr1
 w11 4 39504 st full-time unlimited empr3

S2 w12 4 39504 st full-time unlimited empr3
 w12 5 39651 cs full-time unlimited empr3

S3 w13 5 39651 cs full-time unlimited empr3
 w13 6 39700 st part-time unlimited empr4
 w13 7 40407 cs full-time unlimited empr4

S4 w14 7 40407 cs full-time unlimited empr4
 w14 8 40632 st full-time limited empr5

S5 w15 8 40632 st full-time limited empr5
 w15 9 41449 ex full-time unlimited empr5

S6 w16 9 41449 ex full-time unlimited empr5
 w16 10 41513 cs full-time limited empr5

S7 w17 10 41513 cs full-time limited empr5
 w17 11 41726 st full-time limited empr6

S8 w18 11 41726 st full-time limited empr6
 w18 12 42089 ex full-time limited empr6

Table 3: (b) The segmented career of (a).

Using the UPMurphi tool and the model described Fig. 5.1, we verified that the full-time events always
lead to the same state, i.e. they are reset events.

ICIQ 2012, the 17th International Conference on Information Quality

175

Given a FSED (according to Def. 3.2) describing a career composed of the events e1, e2, … en the reset
events erej (corresponding to full time events) are selected where rej∈[re1,re2,re3,…,rek]⊆[e1,…en]. The
career can be splitted into segments as follows: , , ,…, . Excluding
the last event of each segment (which is repeated as first event of the following one), the segments are
non overlapping. The last event repetition is required to carry out the segment consistency check. The
FSS for verifying the segment consistency has been modified by taking into account that a career segment
can start from several states, not only from the unemp one.
Considering the example of Tab. 3(a), the career is decomposed by creating 8 segments which can be
now analysed independently, as showed in Tab. 3(b). The consistency analysis on the segments shows
that S1, S5, and S6 are inconsistent, whilst the remaining segments are consistent. S1 is inconsistent
because the job with employer empr2 is not closed before the beginning of the full-time contract with
empr3, S5 is inconsistent because the first extension event (e_id=9) has c_type=unlimited and the
extensions of an unlimited contract is not allowed. In S6 there is a c_type mismatch. As shown by this
example, the segments can now be evaluated after the first inconsistency using the career segmentation.

We applied this approach on our administrative archive S, generating an new archive S

segm where each
career has been decomposed into segments by using the reset events previously introduced. The
consistency check has been used to evaluate the segments consistency. The results (and a comparison
with the whole career results) are shown in Tab. 4. We highlight that the database S is largely composed
by reset events (the full time events are about the 81% of total events) motivating the big dimension of
the S

segm archive in terms of segments. For this reason, in S
segm a segment is now composed by a low

average number of events, less than 2 per segment (not considering the duplicates). The number of
consistent segments is the 78.3% compared to the 56.8% of the consistent careers (analysed as single
entities). Thanks to the use of the reset events we obtained a more precisely evaluation of the consistency
of S in terms of segments. Similarly, looking at the number of events belonging to inconsistent careers,
the results show that now only the 28.3% of the total events of S belong to inconsistent segments (rather
than the previous 72.2%).

Row Dataset Analysis S (careers) S

segm (segments)
1 # Events 1,248,751 2,091,507
2 # Elements 214,418 1,057,090
3 #Consistent Elements 121,853 (56.8%) 828,194 (78.3%)
4 #Inconsistent Elements 92,565 (43.2%) 228,896 (21.7%)
5 #Events member of Consistent Elements 346,553 (27.8%) 895,906 (71.7%)
6 #Events member of Inconsistent Elements 902,198 (72.2%) 352,845 (28.3%)

Table 4: A comparison between careers and segments data

Even tough the use of the reset actions has showed a more limited impact of inconsistencies in S, the
analysis confirms that the original database has a low quality, motivating the need for data cleansing.
The discussion about the reasons of such poor data quality is out of the scope of this paper, nevertheless
it is mainly related to the data collection process (few controls, a lot of manual data entry especially
before the 2005) and to some trivial errors (e.g. double entries) that can easily make the careers
inconsistent.

5.3 Data Cleansing Experimental Results
We generated the Universal Cleanser using the model described in Fig. 4. We generated the FSS from the
worst-case database by choosing a T = 5 finite horizon, which is high enough to guarantee that any
reachable inconsistent state can be considered. Then, Procedures 1 and 2 have taken as input the FSS

ICIQ 2012, the 17th International Conference on Information Quality

176

generated and the error states E, to detect inconsistent trajectories. Finally, Procedures 1 and 2 have been
used to synthesise the Universal Cleanser. The UC contains different (state, action) pairs able to
make consistent any FSEDB (conforming to the model) in no more than 3 steps, avoiding looping
corrective actions. We observed that T = 3 is enough to guarantee that any inconsistency will be
corrected, whilst using T = 2 some errors cannot be fixed. To give an example, let us consider an
inconsistent trajectory (i.e., a career in such a case) in which the last consistent state is empij with
(M:[PT,PT], T:[Limited,Limited], C:[Companyx,Companyy]), then a cessation for a full-time contract
with a new company arrives (i.e, an event as (cs, FT, Limited, Companyz)). In such a case, the UC
suggests to choose between two corrective interventions (similar to each other) composed by 3 actions
for each. The first intervention is: to close the first part-time contract, i.e. (cessation, PT, Limited,
Companyx) then to close the second one (cessation, PT, Limited, Companyy) and finally to start the full-
time contract according to the event received (start, FT, Limited, Companyz). The second intervention
can be obtained by switching the first two cessation events.

We applied the UC generated to the dataset S to cleanse the inconsistent careers as follows. For each
career Si, when an inconsistency is found: (1) Let inc be a CFP (i.e. an inconsistency at a given sequence
point) for the career Si. (2) Look at the UC evaluating all corrective action sequences able to fix . (3)
Select a suitable corrective action sequence (according to a given policy) and apply it. (4) Evaluate again
the consistency of Si. (5) Repeat steps 1-4 until no CFPs for the career Si emerges.

In this work we focus on the UC synthesis. Investigating how to select corrective actions from the ones
proposed by the UC is outside the scope of this paper. Nevertheless, for the sake of completeness, we
detail how the UC has been used to cleanse the worker career archive. We implemented the step 2 by
always selecting the corrective action sequence minimising (maximising) the (per worker) average
working days indicator. Hence, we obtained two cleansed version of S, namely S

min and S
max,

representing the cleansed versions of S in which inconsistent careers have been cleansed by minimising
and maximising their working days respectively. In our settings, these distinct datasets allow us to
perform a sensitivity analysis on the “working day” indicator with respect to the uncertainty due to
inconsistencies. Clearly, once the UC is generated, the user can use any kind of policy for choosing a
corrective action sequence. Finally, the complete UC has been made available at [1].

6 CONCLUSION AND FUTURE WORKS

In this paper we have shown how (longitudinal data) consistency verification tasks can be modelled as
model checking problems, then we used the CMurphi verifier on some administrative archives to detect
the inconsistent data. The analysed archives store the working histories of people living in an Italian area.
An anonymous version of the archives has been used, according to the current law and privacy
requirements. The results showed that the data quality of the source archives is very low: only about the
56% of people careers are consistent. To further investigate these results, we exploited the consistency
model to partition the careers into small segments whose consistency can be analysed independently,
obtaining a very fine grained evaluation of the data quality: the 78% of the segments turned out to be
consistent.

Finally, we provided an algorithm working on the consistency model that can automatically build a
universal cleanser: a cleanser domain-dependent (i.e., it focuses on the consistency of a specific domain)
but data-independent (i.e., it can cleanse any kind of dataset compliant with the model).
Using model checking to evaluate a consistency model against actual data put into the hands of domain
experts a powerful instrument contributing to a better comprehension of the domain aspects, of the data
peculiarities, and of the cleansing issues.

ICIQ 2012, the 17th International Conference on Information Quality

177

As a future work we would like to explore the temporal logic to express consistency rules. Currently our
research goes into the direction of comparing the universal cleanser with other approaches.

REFERENCES

[1] The universal cleanser of the worker career administrative archive. Public available at

http://goo.gl/OH74F, 2012.
[2] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and Techniques. Data-

Centric Systems and Applications. Springer, 2006.
[3] M. Cesarini, M. Mezzanzanica, and M. Fugini. Analysis-sensitive conversion of administrative data

into statistical information systems. Journal of Cases on Information Technology, 9(4):57–81,
2007.

[4] K. T. Cheng and A. S. Krishnakumar. Automatic functional test generation using the extended finite
state machine model. In Proceedings of DAC, pages 86–91. ACM, 1993.

[5] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation of universal plans in non-
deterministic domains. In Proceedings of AAAI/IAAI, pages 875–881, 1998.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
[7] CMurphi Web Page. http://www.dsi.uniroma1.it/ tronci/cached.murphi.html, 2011.
[8] G. Della Penna, B. Intrigila, D. Magazzeni, and F. Mercorio. UPMurphi: a tool for universal planning

on PDDL+ problems. In Proceedings of ICAPS 2009, pages 106–113. AAAI Press, 2009.
[9] G. Della Penna, D. Magazzeni, and F. Mercorio. A universal planning system for hybrid domains.

Applied Intelligence, 36(4):932–959, 2012.
[10] P. Lovaglio and M. Mezzanzanica. Classification of longitudinal career paths. Quality & Quantity,

pages 1–20, 2012. 10.1007/s11135-011-9578-y.
[11] M. Martini and M. Mezzanzanica. The Federal Observatory of the Labour Market in Lombardy:

Models and Methods for the Costruction of a Statistical Information System for Data Analysis. In
Information Systems for Regional Labour Market Monitoring - State of the Art and Prospectives.
Rainer Hampp Verlag, 2009.

[12] T. C. Redman. The impact of poor data quality on the typical enterprise. Commun. ACM, 41:79–82,
1998.

[13] M. Schoppers. Universal plans of reactive robots in unpredictable environments. In Proc. IJCAI,
1987.

[14] J. Singer and J. Willett. Applied longitudinal data analysis: Modeling change and event
occurrence. Oxford University Press, USA, 2003.

[15] S. Tee, P. Bowen, P. Doyle, and F. Rohde. Data quality initiatives: striving for continuous
improvements. International Journal of Information Quality, 1(4):347–367, 2007.

[16] The Italian Ministry of Labour and Welfare. Annual report about the CO system, available at
http://www.cliclavoro.gov.it/news/Documents/Rapporto_Annuale_Comunicazioni_Obbligatorie/
executive_summary.pdf, 2012.

	proceedings-final-not-complete 182
	proceedings-final-not-complete 183
	proceedings-final-not-complete 184
	proceedings-final-not-complete 185
	proceedings-final-not-complete 186
	proceedings-final-not-complete 187
	proceedings-final-not-complete 188
	proceedings-final-not-complete 189
	proceedings-final-not-complete 190
	proceedings-final-not-complete 191
	proceedings-final-not-complete 192
	proceedings-final-not-complete 193
	proceedings-final-not-complete 194
	proceedings-final-not-complete 195
	proceedings-final-not-complete 196

