BEZOUT’S IDENTITY FOR CYCLOTOMIC POLYNOMIALS
OVER THE INTEGERS

ANDREA PREVITALI

ABSTRACT. We determine the smallest positive integer lying in the ideal gen-
erated by cyclotomic polynomials over the integers and deduce that their eval-
uations at a given integer are almost always coprime.

1. INTRODUCTION

Let ®,,(z) be the minimal polynomial over Q of a primitive n-th root of unity.
Then ®,,, the n-th cyclotomic polynomial, is monic and, as proved by Gauss, irre-
ducible. In particular

D, (x)A+ P, (2)A = A,
where A = Qlz], n # m. Set B = Z[z]. Then
(®p(z)B+ P, (2)B)NZ

is an ideal in Z, thus has shape tZ, for some positive integer ¢t = t(n, m) depending
on n,m. In this short note we prove that t(n, m) equals 1 unless n = r’m, r prime,
in which case t(n,m) = r. We deduce information on gcd(®,(a), ®,,(a)), for a € Z,
showing that this value is almost always 1. This question was motivated by the
analysis of cryptographical protocols involving finite fields lite XTR or LUC (see
[FMP2]).

2. PROOF

By symmetry, we may assume that n > m > 1. We first reduce to the case
where m divides n

Lemma 1. t(n,m) =1 except when m|n.

Proof. Let d = ged(n,m). Then 2" ™ — 1 = 2" — 1 — 2" ™ (2™ — 1) proves that
"™ —1¢€ (2" —1)B + (2™ — 1) B. Inducing on n + m we obtain that

¥ —1¢€ (" —1)B+ (2™ - 1)B.

In particular 2¢ — 1 = (2" — Du(z) + (2™ — V)v(z), u,v € Z[z]. If d < m, then
vt —1¢€ (2?7 —1)®y(2)B, £ =n,m. So

1€ ®,(x)B + & (z)B.

We now show that t(nd, md)|t(n, m).
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2 Bézout’s Identity for Cyclotomic Polynomials

Lemma 2. ¢(nr,mr)|t(n,m) for any prime r.

Proof. For s,r € N, r prime, let e(s,r) equal 1 if s #, 0, 0 otherwise. Then
D (z") = Dy (2)Py(x)5>™) (see [LN, Exercise 2.57 (a),(b)]). Let ®,(z)u(x) +
D, (z)v(x) = t(n,m), for u,v € Z[z]. Then substituting = with =", we obtain

By (2) Py (2)5E N U(27) + B (@) B ()50 (27 = t(n,m),
forcing ¢(nr,mr) to divide t(n,m). O

We deduce our claim ¢(nd, md)|t(n,m) by induction on the number of prime
divisors of d counting multiplicities. We are now ready to state the main result of
this note.

Theorem 3. t(n,m) = 1 except when n = r'm, r prime, in which case t(n,m) = r.

Proof. By Lemma 1, we may assume n = md. If d is not a prime power, we
prove t(n,m) = 1 by induction on m. If m = 1, then n = d. Now ®4(z) =
Dy (z)u(z) + ®4(1). The assumption on d forces $4(1) = 1, so t(d,1) = 1. By
Lemma 2 t(n,m) = t(md, m)[t(d, 1) = 1. We are left with the case d = 7%, r prime.
Now r = ®4(1) and = ®1(1) = 0. Let y(z)u(z) + 1 (x)v(x) = t(d, 1), u,v € Z[z].
Then ru(l) = t(d, 1), so r|t(d,1). On the other hand, r = ®4(x) — 1 (x)q(z) €
®,4(r)B + ®1(x)B. So t(r,1) = r. Again Lemma 2 forces t(mr%, m) € {1,r}.

By Proposition 1 in [KOJ, ®,(u) € rZ[u], where p is a primitive m-th root of
unity. If ¢(n,m) = 1, then evaluating @, (x)u(x) + P, (z)v(xz) =1 at g would yield
ra = 1 for some a € Z[u]. Thus % would be an algebraic integer, a contradiction.
Therefore t(rim,m) = r. O

Corollary 4. Let d = ged(®y(a), ®p,(a)), where n,m € N, a € Z. Then d =1 or
n=rm, r prime andd =1 ord =r.

Proof. Clearly d must divide ¢(n,m), so the result is an immediate consequence of
Theorem 3. g

With a more subtle analysis one can prove that d = 7 if n = r'f, m = rif,
i > 37 >0, ais coprime to r and f is the multiplicative order of a modulo r (see
[FMP2, Theorem 5]).
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