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Abstract 

An approach based on hydraulic simulation and machine learning is presented, aimed at improving leakage management via 
analytical leak localization and reducing time and costs for investigation and rehabilitation of the Water Distribution Network. 
Hydraulic simulation is used to run different leakage scenarios by introducing a leak on each pipe, in turn, and varying its severity. 
The approach has been validated on two WDNs: a Pressure Management Zone in Milan (Italy) and a District Metered Area in 
Timisoara (Romania), the two pilots of the EU-FP7-ICT project ICeWater, obtaining a high reliability (>90%) in localizing a wide 
set of simulated leaks. 
© 2014 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Organizing Committee of WDSA 2014.  
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1. Introduction 

Nowadays urban Water Distribution Networks (WDNs) suffer leakage, mainly due to the age of the infrastructures, 
implying failures, large amounts of Non Revenue Water (NRW) and high costs for energy (i.e., pumping) and 
rehabilitation, while budgetary constraints are becoming more strong. The International Water Association (IWA) 
highlighted the relevance to improve the leakage management process [1], which is usually divided in three 
consecutive steps [2]: assessment, detection and physical localization. Several studies proposed to improve localization 
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through the analysis of data collected by computer-based systems usually adopted in WDNs, such as Supervisory 
Control And Data Acquisition (SCADA), Automatic Metering Readers (AMR), GIS and hydraulic simulation 
software. Many approaches use machine learning, statistics, probabilistic modeling have been investigated [3-6], with 
the common idea that actual modifications in flow and pressure within the WDN are linked to a set of leaky pipes: 
hydraulic simulation software may be therefore used to simulate a wide set of leaks, store variations and then discover 
the inverse relation between variations and leaky pipes [7-9]. While most of the proposed approaches try to localize a 
leak on pipes, in [10] a combination between hydraulic simulation and classification learning has been developed to 
identify leaks on junctions. 

This paper presents an analytical framework that uses: 1) extensive simulation of leaks for data generation, 2) 
network-based Spectral Clustering to group together leaks implying similar variations in pressure and flow, 3) 
classification learning (i.e., Support Vector Machine, SVM) to discover the relation linking variations in pressure and 
flow to a limited set of probably leaky pipes (i.e., a cluster of those provided by Spectral Clustering). The approach 
also proposes a strategy to support cost-effective placement of flow and pressure meters, identifying the best trade-off 
between reliability in localization and deployment costs. All the results are related to a real test case, a Pressure 
Management Zone (PMZ) of the WDN in Milan, Italy, one of the two pilots of the FP7-ICT project ICeWater co-
funded by the European Commission. 

2. Method and Materials 

2.1. Description of the pilot and the data generation process 

In the following Fig.1, the two ICeWater pilots are depicted: the Pressure Management Zone (PMZ) 
“Abbiategrasso” in Milan, Italy, and the District Metered Area (DMA) “Neptun” in Timisoara, Romania. Both the 
pictures have been obtained by using EPANET, a hydraulic simulation software widely used for modeling WDNs and 
downloadable for free from the Environmental Protection Agency web site 
(http://www.epa.gov/nrmrl/wswrd/dw/epanet.html). EPANET permits to perform what-if simulation and it can be also 
integrated with optimization models for supporting decisions both at operational, planning and strategic level. 

 

 

Fig. 1. The PMZ “Abbiategrasso”, in Milan, Italy (left) and DMA “Neptun”, in Timisoara, Romania (right) 

Abbiategrasso is a PMZ consisting of 1212 junctions (612 are consumption points) and 1385 pipes; the overall pipe 
infrastructure is long about 116905m. Pipes length ranges from 0.25m to 844.92m (average 84.41m), pipes diameter 
ranges from 50mm to 900mm (average 244.92mm). Neptune is a DMA consisting of 335 junctions (92 are 
consumption points) and 339 pipes; the overall infrastructure is long about 4000m. Pipes length ranges from 0.034m 
to 83.808m (average 12.778m), pipes diameter ranges from 50mm to 500mm (average106.917mm). 
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2.2. Clustering Leakage Scenarios and Quality Measure 

In the proposed approach, EPANET is used to simulate a wide set of leakage scenarios, consisting in placing, in 
turn, a leak on each pipe and varying its severity in a given range. At the end of each run, EPANET provides pressure 
and flow values at each junction and pipe, respectively. Then, variations in pressure and flow, induced by the leak, 
are computed with respect to the simulation of the faultless network. Results obtained are stored in a dataset, together 
with the information related to the affected pipe and the damage severity. Each row of this dataset can be represented 
as a vector with the following notation: 

1 1, , , , , , ,
P Ni j k n nv l c f f p p   (1) 

where  is the link with the leakage,  is the leakage severity, f1,…,fnP are the flow variation measured over the 
 links of the network and  p1,…,pnN are the pressure variation measured over the  nodes of the network. Starting 

from these vectors,   are defined removing the labels concerning the pipe ( ) and the leakage severity ( ) from 
the vectors, leaving only the pressure and flow variations. More details about the leakage scenarios generation process 
as well as the pressure-dependent leak modeling have been firstly described in [7]. Clustering leakage scenarios 
previously generated through EPANET is the core of the proposed approach. The aim is to group together scenarios 
(rows of the dataset) that are similar in terms of variations in pressure and flow induced by the corresponding leak. 
Only information on pressure and flow (that is the effect of the leak) is taken into account during this process, while 
information on leaky pipe and leak severity is ignored. Several clustering algorithms are available; all of them need a 
specific measure (distance or similarity) to be defined in order to compare two objects, that in this case are two vectors 
of pressure and flow variations at junctions and pipes. At the end of clustering process, a measure should be adopted 
to enable an evaluation of the quality of the solution with respect to the goal. Although several measures have been 
proposed to evaluate the validity of clustering procedures, evaluating the capability to localize leak has required the 
definition of a specific measure, namely “Localization Index”, already proposed in a previous work of the authors. 
The Localization Index for each cluster (LIk) requires to retrieve the information on leaky pipe related to each scenario 
and is then computed as the number of distinct pipes related to the scenarios in that cluster with respect to the overall 
number of pipes in the WDN: 
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where  is the overall number of pipes of the WDN and  is the number of leaky pipes of the scenarios into 
cluster k (with ,  the overall number of clusters). 

The maximum value of LIk is LIk = 1 that is obtained when the cluster k contains scenarios all related to leaks 
simulated only on one pipe (i.e., = 1). On the other hand, the minimum value of LIk is LIk = 0 that is obtained if the 
cluster k contains scenarios referred to all the pipes of the WDN (i.e., = ). 

While in the previous work of the authors the overall localization index (LI) has been computed as the simple 
average of LIk, in this case the average has been weighted by the number of distinct pipes in each cluster: 
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where K is the overall number of cluster. In this work another relevant measure is proposed to evaluate how much 
a clustering algorithm is able to put in the same cluster scenarios related to same (leaky) pipe and to all the different 
severity values. This index has been named “Quality of Localization” and is defined, for each cluster k, as: 
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where S is the set of different severity used (and |S| is the overall number of severity values used), P is the set of 
the pipes of the network,  is the number of scenarios in cluster k associated to the j-th pipe, and nP

k is the number 
of distinct pipes related to the scenarios in cluster k. The maximum value of QLk is QLk = 1 that is obtained when in 
the cluster k are all the scenarios related to all the severity values of the correspondent leaky pipes. The overall Quality 
of Localization for a clustering algorithms is given by the average of QLk. 

Finally, a global index LI* is defined, combining Localization Index and Quality of Localization 

*LI LI QL   (5) 

Amongst the available clustering algorithms, in this paper were used both traditional algorithms (K-Means and 
Farthest-First) and graph-based algorithm (Spectral Clustering). 

2.3. Identifying leaky pipes through Support Vector Machines 

After clustering the leakage scenarios, the next step consists in discovering a reliable relation between the variations 
in pressure and flow, due to a leak, and the correspondent cluster, which permits to retrieve the set of correspondent 
leaky pipes. This relation allows reducing time for investigations and rehabilitation: when a leak is detected (e.g., with 
traditional methods, such as Minimum Night Flow analysis [3]), the actual pressure and flow measurements at the 
monitoring points are compared with those obtained through simulation of the faultless network model, in order to 
compute the variations in pressure and flow and finally identify only a restricted number of pipes to physically check. 
In their previous study, the authors proposed to compare the obtained vector of values with those related to the 
centroids of the clusters, and selected the cluster associated to the most similar centroid. 

 

 

Fig. 2. Overall approach proposed: Spectral versus traditional clustering of leakage scenarios. 

However, since the Spectral Clustering procedure implicitly applies a non linear transformation from the Input 
Space (related the variations in pressure and flow) to the eigen-space spanned by the most relevant eigenvectors of 
the Laplacian Matrix, similarity computed in the Input Space does not guarantee that the association of the computed 
vectors to a specific cluster is correct. In order to improve the reliability of the localization process, a Support Vector 
Machine (SVM) classifier has been trained taking the variations in pressure and flow of each scenario as input and 
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the correspondent cluster provided by Spectral Clustering as target output (class label). Thus, the SVM classifier learns 
to approximate the non-linear mapping performed by Spectral Clustering and to estimate the most probable cluster 
which an actual vectors of variations in pressure and flow belongs to.  

The Fig. 2 shows the overall workflow, presenting the mapping performed by the Spectral Clustering. The SVM 
permits to apply Spectral Clustering only to a more restricted, even if relevant, set of leakage scenarios, requiring a 
smaller scenarios graph, reducing complexity in memory and time, and guaranteeing to adopt a reliable approximation 
of Spectral Clustering to identify the correspondent scenarios cluster for any new vector of variations in flow and 
pressure. 

2.4. Cost-effective sensors placement 

Since variations in pressure and flow at the monitoring points are input both of Spectral Clustering and SVM 
classification, number and position of sensors affects overall performance of the approach proposed. Ideally, the 
greater the number of deployed sensors the higher is the quality of clustering and accuracy of the SVM classifier. 
However, deployment implies high costs for equipment and installation as well as useless redundancy of information. 
Optimal sensors placement has been recently addressed for both leakage detection/location [11, 12] and water quality 
issues [13, 14]. In this study, a solution for cost-effective sensor placement is proposed, aimed at identifying the best 
trade-off between high reliability in leakage localization (effectiveness) and costs for sensors. The solution uses, again, 
clustering on the dataset of leakage scenarios; in this case clustering (Partitioning Around Medoids, PAM) is applied 
on the columns of the dataset, that are variations in pressure and flow at each junction and each pipe, respectively. 
Clustering is performed separately for junctions and pipes sets, with the aim to group together, separately, those that 
are similar over the simulated leakage scenarios. Only the medoids of the clusters are selected as the most relevant 
monitoring points (that are a pressure meter in the case of junction medoid and a flow meter in the case of pipe 
medoid). 

 

 

Fig. 3. Abbiategrasso: Costs for sensors (y-axis) versus LI* (x-axis). 

3. Experimental results 

In this section, the results are presented. The overall number of leakage scenarios that have been generated is 29800 
and 3150 (both divided in 50% training and 50% test set), respectively for Abbiategrasso and Neptun, obtained by 
placing a leak, in turn, on each pipe, and varying its severity among 10 different values. 
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3.1. Results on cost-effective sensors placement 

In Fig. 3 the results of all the sensors placements considered for Abbiategrasso are depicted: 7, 10, 13 or 16 pressure 
meters and 3, 4, 5 or 6 flow meters. Fig. 4 is related to the Neptun case study, where 7, 10 and 13 pressure meters and 
1, 2 and 3 flow meters have been taken into account. LI* has been considered as global index of localization reliability 
(effectiveness), while costs for sensors have been set 1 for a pressure meter and 10 for a flow meter. 

 

Fig. 4. Neptun: Costs for sensors (y-axis) versus LI* (x-axis) 

 

Fig. 5. Abbiategrasso: LI* depending on number of clusters (K), traditional versus network-based clustering algorithms: simple K-means (SKM), 
Farthest First (FF), Spectral Clustering (SP). 

3.2. Results on Spectral Clustering  

This section reports a comparison among three different implementations of Spectral Clustering (i.e., internally 
using: a) simple K-means, b) Farthest-First and c) PAM) and two “traditional”, not-network-based clustering 
algorithms (i.e., simple K-means and Fartest-First). The Fig. 5 and Fig. 6 show the trend of LI* with respect to the 
number of desired clusters for each algorithm. Taking into account the definition of LI, it is quite easy to understand 
that increasing K improves LI while reduces QL.  
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Fig. 6. Neptun: LI* depending on number of clusters (K), traditional versus network-based clustering algorithms: simple K-means (SKM), 
Farthest First (FF), Spectral Clustering (SP). 

The best configuration selected in this paper is the algorithm Spectral Clustering with internally the simple K-
means (S-SKM), by setting K=11 and K=12 respectively for Abbiategrasso e Neptun (and the first 3 smallest non-
zero eigen-vectors in both cases). Spectral Clustering performances are clearly higher than those offered by clustering 
algorithms which are not-network-based. 

3.3. Results on SVM-based leaky pipes identification 

The implementation of C-SVM provided in the open-source Java-based suite WEKA (Waikato Environment for 
Knowledge Analysis, http://www.cs.waikato.ac.nz/ml/weka/) has been adopted. In particular, the Radial Basis 
Function (RBF) kernel has been adopted for non-linear mapping. Both C and the internal parameter γ of the kernel 
have been varied until accuracy, on 10 fold-cross validation, is no more improved. Accuracy is the percentage of 
vectors correctly associated to the cluster provided by the Spectral Clustering process; 10 fold-cross validation 
technique uses the entire dataset to train a model and test it, giving an estimation of the reliability in predicting the 
class label (i.e., cluster associated to new vectors of hydraulic variations, in this case). The best SVM configuration 
resulted setting C = 1 and γ = 1. The learned SVM classifier has been then validate on an independent test set, related 
to leakage scenarios obtained on values of severity different from those already adopted (i.e. new leaks). Neither 
Spectral Clustering or SVM training are performed on this test set; the vectors of pressure and flow variations, 
associated to a leak, are given as input to the learned SVM classifier, which provides an estimation of the cluster 
probably assigned by Spectral Clustering. If the leaky pipe associated to the specific vector of variations is in the set 
of distinct pipes associated to the predicted scenarios cluster  a successful localization  is counted for. 

The following Fig. 7 and Fig. 8 summarize the performances related to the number of successful localizations, both 
on training (average = 97.99% and 97.21%, respectively for Abbiategrasso and Neptun) and independent test (average 
= 98.02% and 97.50%, respectively for Abbiategrasso and Neptun). 

4. Conclusions 

The approach presented in this paper aims at improving leakage localization in urban WDN through simulation of 
several leakage scenarios, Spectral Clustering and Support Vector Machine classification. A reliable relationship 
(reliability about 98%) between variations, in pressure and flow, and leak location has been identified and can be used 
to reduce time and costs for investigations and rehabilitation: when a leak is detected (e.g., with traditional methods, 
such as Minimum Night Flow analysis [3]) actual pressure and flow measurements are given as input to the SVM 
which provides the set of probably leaky pipes (cluster of the Spectral Clustering) associated to that variation. The 



1087 A. Candelieri et al.  /  Procedia Engineering   89  ( 2014 )  1080 – 1088 

framework supports also cost-effective sensor placement. The overall approach has been validated on a real case 
study, the Abbiategrasso PMZ, in Milan, Italy, one of the two pilots of the European project ICeWater. 

 

 

Fig. 7. Successful leakage localization, both on training and test set and for each cluster. 

 

Fig. 8. Successful leakage localization, both on training and test set and for each cluster. 
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