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Abstract

This thesis conducts an observational study into whether diuretics should
be administered to ICU patients with sepsis when length of stay in the ICU
and 30-day post-hospital mortality are considered. The central contribution
of the thesis is a stepwise, reusable software-based approach for examining
the outcome of treatment vs no-treatment decisions with observational data.
The thesis implements, demonstrates and draws findings via three steps:

Step 1. Form a study group and prepare modeling variables.

Step 2. Model the propensity of the study group with respect to the ad-
ministration of diuretics with a propensity score function and create
groups of patients balanced in this propensity.

Step 3. Statistically model each outcome with study variables to decide
whether the administration of diuretics has a significant impact.

Additionally, the thesis presents a preliminary machine learning based method
using Genetic Programming to predict mortality and length of stay in ICU
outcomes for the study group.

The thesis finds, for its study group, in three of five propensity balanced
quintiles, a statistically significant longer length of stay when diuretics are
administered. For a less sick subset of patients (SAPS ICU admission score
< 17) the administration of diuretics has a significant negative effect on
mortality.
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Chapter 1

Problem Statement

1.1 Introduction

Diuretics are drugs which promote urination. They are often used to bring
fluids levels down to normal after intravenous (IV) fluids have been inten-
sively infused. They could be harmful in some circumstances but there are
no randomized clinical trials to date which provide evidence for the benefit
or harm of these drugs in general. This thesis conducts an observational
study into this question.

Generally, all ICU! patients with sepsis? are infused with high levels of
fluids as soon as they enter the ICU in order to improve their low blood
pressure and treat their medical condition. This practice is called fluids
resuscitation. When a patient is recovering and still has high fluid levels,
clinicians face a decision on whether to prescribe diuretics, which will bring
about a reduction of a patient’s fluids levels to normal, or to let fluids levels
decrease naturally. This is a grey area of clinical medicine: different doctors,
even when presented with similar patients, can choose either to prescribe
diuretics or not.

The long term and broad aim of the developed analysis is to provide
clinicians with quantitatively reasoned decision support when they face the
choice of treating or not treating. The central contributions include clearly
delineated steps describing the analysis see Section 1.3, and a set of soft-
ware tools. The software tools are re-usable. They support the creation

! An Intensive Care Unit (ICU) is a highly specialized department of a hospital that
provides intensive-care medicine, concerned with the diagnosis and management of life
threatening conditions requiring sophisticated organ support and invasive monitoring.

2Sepsis is a potentially deadly medical condition that is characterized by a whole-body
inflammatory state and the presence of a known or suspected infection. For a precise
description of sepsis see Appendix A.
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of a new study group by providing software that extracts, intersects and
filters Mimic II Clinical Database records. Additional software supports de-
veloping co-variate statistically balanced quintiles of the study group with
respect to propensity to receive diuretics. It can be used to develop any
propensity score function whether there are treated and untreated patients.
Another software module supports outcome modeling with logistic and lin-
ear regression accompanied by p-value derivation. The final component
of software is slightly modified genetic programming-based machine learn-
ing code which executes symbolic regression for classification and regression
plus code calling a library function that performs clustering, a form of un-
supervised learning. Specifically, in this thesis, the aim is to retrospectively
examine the data of ICU patients with sepsis and, while controlling for the
propensity for the administration of diuretics and considering the possibly
confounding factor of illness, to determine whether the administration of
diuretics has a significant effect on 30 day mortality outcome post-ICU or
mean duration of ICU stay.

1.2 Study Group

The analysis attempts to address a specific group of patients, in particular
adult patients with a large amount of fluids in their bodies. Therefore, the
analysis will be conducted on patients over 18 years old® and with a sepsis
diagnosis*. From this group, CMO? patients have been filtered out because
their outcome with respect to mortality is distinctive. Patients who had been
taking diuretics before entering the ICU have also been eliminated because
of the compliating nature of this on a decision for the administration of
diuretics (or continuing to take them). Finally, patients who had multiple
admissions, both in ICU and in the hospital have been eliminated.S.

1.2.1 Variables of the Outcome Study and/or Propensity
Model

A certain number of variables have been used as variables in the study to
describe the condition of a patient during his/her stay in the ICU. Now a

3Neonatal sepsis is not subject of study in this work.

4Tt is difficult to define sepsis. In this work, as described in Appendix A, have been
used the definition described in[1].

®Comfort Measures Only refers to medical treatment of a dying person where the
natural dying process is permitted to occur while assuring maximum comfort.

SFirst ICU visit data is a good potential alternative filter in a follow up study group
creation.
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brief medical description of those factors is presented. Much of the text is
directly quoted because of the need for medical precision.

e SAPS II score: this point score is based upon a severity of disease
classification system|[2]. It is calculated from 12 routine physiological
measurements during the first 24 hours, information about previous
health status and some information obtained at hospital admission.

e SOFA score: this point score is based upon a scoring system to de-
termine the extent of a person’s organ function or rate of failure[3].
The score is based on six different scores, one each for the respiratory,
cardiovascular, hepatic, coagulation, renal and neurological systems.

e Elixhauser score: this score integrates a list of 30 comorbidities relying
on the ICD-9-CM coding manual. The comorbidities were not simpli-
fied as an index because each comorbidity affected outcomes (length of
hospital stay, hospital changes, and mortality) differently among dif-
ferent patients groups. The comorbidities identified by the Elixhauser
comorbidity measure are significantly associated with in-hospital mor-
tality and include both acute and chronic conditions. Walraven et
al.[4] has derived and validated an Elixhauser comorbidity index that
summarizes disease burden and can discriminate for in-hospital mor-
tality.

e Creatinine: this is a break-down product of creatine phosphate in
muscle. It is usually produced at a fairly constant rate by the body
(depending on muscle mass). In our study, this factor is included
because it can be indicative of kidney disease.

e (Administration of) Vasopressors: Vasopressors indicates whether the
patient was administered any sort of vaso-suppressor. Vasopressors
are drugs that constrict the blood vessels and thereby elevate blood
pressure. Usually, before a patients is considered able to leave the
ICU, vasopressors are suspended. The administration of any vaso-
suppressor have been included as a factors because vaso-suppressors
are indicative of health condition.

e Mechanical ventilation: this boolean variable indicates whether or not
the patient was mechanically ventilated. Mechanical ventilation assists
or replaces spontaneous breathing. Ventilation may involve a machine
called a ventilator or the breathing may be assisted by a physician,
respiratory therapist or other suitable person compressing a bag or set
of bellows.
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e Arterial blood pressure: this quantity is the pressure exerted by circu-
lating blood upon the walls of blood vessels and is one of the principal
vital signs. The blood pressure in the circulation is principally due to
the pumping action of the heart. In the study, the value for arterial
blood pressure refers to systolic’.

e Mean arterial blood pressure: This quantity is defined as arterial pres-
2-diastolic+systolic
3 .

sure during a single cardiac cycle. Is is calculated as

1.3 Analysis Steps
There are 4 steps in the developed statistical analysis.

Step 1: Form a study group and prepare modeling variables. In this step,
subsets of patient records are extracted from the Mimic II Clinical
Database and the subsets are fused then filtered according to clini-
cian input. The variables of the study group are next prepared for
subsequent analysis. This step is described in Chapter 2.

Step 2: Model the propensity of the study group with respect to the ad-
ministration of diuretics with a propensity score function and create
groups of patients balanced in this propensity. This step is described
in Chapter 3.

Step 3: Statistically model outcome with study variables to decide whether
the administration of diuretics has a significant impact on mortal-
ity and length of stay in ICU while considering health condition and
propensity of the administration of diuretics. This step is described in
Chapter 4.

Step 4: Design a preliminary machine learning based method using Genetic
Programming to predict mortality and length of stay in ICU outcomes
for the study group. This step is described in Chapter 5.

An overview of this process is shown in Figure 1.1 on the facing page.
Finally, Chapter 6 summarizes the analysis and its findings and lists possible

future work.

"During each heartbeat, blood pressure varies between a maximum (systolic) and a
minimum (diastolic) pressure. Systolic blood pressure is a measure of blood pressure
while the heart is beating, while diastolic pressure is a measure of blood pressure while
the heart is relaxed.
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Chapter 2

Study Group Extraction

The aim of this Chapter is to show Step 1 of the analysis in which the
study group is identified by means of extraction, intersection and filtering
of records from the Mimic II Clinical Database and the variables are condi-
tioned for subsequent propensity balancing and outcome analysis modeling.

In Figure 2.1 on the next page the software modules supporting Step 1
are shown. The output after dataset extraction from the Mimic II Clinical
Database is a series of flat files. In the dataset preprocessing module, the
flat files provided by the dataset extraction were then merged into a flat file
containing all the data. A detailed description of the contributed software
is provided in Appendix B.

The chapter proceeds in the following manner: Section 2.1 starts with
a description of the Mimic II Clinical Database. All the contents of this
Section are drawn from [5] and a deeper description of the database can be
found there. A description of how the study group was formed via a series of
extractions, intersections and filters then follows in Section 2.2. Descriptive
statistics on the study group is also provided. Section 2.3 explains how each
of the variables for the modeling steps were prepared. Timeline oriented
variables were worthy of explicit attention. It provides a complete list of
every variable prepared for modeling and a breakdown of how many patients
the administration of diuretics vs those not were distributed for the variable.

2.1 Mimic II Clinical Database

The Mimic IT Clinical Database (Multiparameter Intelligent Monitoring in
Intensive Care) records data from all ICU patients in the Beth Israel Dea-~
coness Medical Center. It is notable for three factors: it is publicly and
freely available; it encompasses a diverse and very large population of ICU
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CHAPTER 2. STUDY GROUP EXTRACTION 9

patients; and it contains high temporal resolution data including lab results,
electronic documentation, and bedside monitor trends and waveforms. The
database can support a diverse range of analytic studies spanning epidemi-
ology, clinical decision-rule improvement, and electronic tool development.
The process and the sources of the data collection for the Mimic II
Clinical Database is shown in Figure 2.2. The data is collected dating from

Hospital
ICU
Bedside monitoring Chart
« Vital signs + Fluids
= Wavelorms + Medications Calculated
= Trends + Progress noles variables
* Alarms (SAPS, SOFA,
Elixhauser
co-motbidity)
Tests
* Laboratory
= Microbiology De-identification >
Orders MIMIC-II
= Provider order entry (POE) .
Data archive Database
Billing
- ICD9
- DRG
0% o [Fomsonmsn >
Demographics
= Admission/discharge dates A
+ Dale of birth/death

- Refigionfethnicity/marital stalus

Notes and reports

= Discharge summaries User feed-
* Radiology (X-ray, CT, MR, Ultrasound) back and
» Cardiology (ECHO, ECG)

External

Social Security Death Index I:/)

Figure 2.2: Schematic of data collection and database construction. Source data
consists of: bedside monitor waveforms and trends, the ICU clinical databases, the
hospital archives and the Social Security Death Index. These data are assembled
in a protected and encrypted database which is then de-identified to provide one
relational database plus associated flat file bedside waveforms and trends.

2001 from Boston’s Beth Israel Deaconess Medical Center (BIDMC). Any
patient who was admitted to the ICU on more than one occasion may be
represented by multiple patient visits. The adult ICUs (for patients aged 15
years and over) include medical (MICU), surgical (SICU), coronary (CCU),
and cardiac surgery (CSRU) care units. Data were also collected from the
neonatal ICU (NICU).

Clinical data are recorded far less frequently than bedside monitor data
and come from a variety of databases. These include the laboratory re-
sults, pharmacy provider order entry (POE records, admission and death
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records, demographic details, discharge summaries, ICD-9 codes, procedure
codes, microbiology and lab tests, imaging and ECG reports and the ICU
central database (which includes some subset of the bedside monitor trends,
drip rates, free text nursing notes and nurse-verified down-sampled trends,
amongst other information).

2.1.1 Definition of Patient Record

Since a patient may have been admitted several times during the period in
which our data were collected, it is important to understand exactly how to
identify patients and his/her stay(s).

There are essentially four identifiers for data associated with any given
patient:

e SUBJECT_ID: to identify the patient. It is an integer number iden-
tifying a particular patient. This can be thought of as a substitute
for a unique medical record number. In the flat file data posted on
PhysioNet, the number representing the SUBJECT_ID is left padded
with zeros to five digits and preceded by the letter s. In the relational
database, the SUBJECT_ID has no preceding letter or leading zeros.

e HADM_ID: to identify the admission in the hospital. It is an inte-
ger number identifying a particular admission to the hospital. Each
patient may have many HADM_IDs associated with his/her unique
SUBJECT_ID.

e ICUSTAY _ID: to identify the admission in the ICU. It is an integer
number identifying an ICU stay. An ICU stay, refers to the period
of time when the patient is cared for continuosly in an Intensive Care
Unit. Each patient may have one or more ICU stays associated. An
ICU stay is considered to be continuous if any set of ICU events (such
as bed transfers or changes in type of service) belonging to one SUB-
JECT_ID which are fewer than 24 hours apart. Longer breaks in the
patient’s stay automatically cause a new ICUSTAY _ID to be assigned.

Figure 2.3 on page 12 illustrates the possible data available for a given in-
dividual, identified by a ICUSTAY_ID. Time progresses from left to right,
and the different types of data collected are shown vertically. Each subject
can have multiple hospital admissions, identified with HADM_IDs. Each
hosptial admission can contain multiple ICU stays, identified with ICUS-
TAY _IDs. Laboratory and microbiology tests are performed throughout a
hospital stay and can therefore take place outside the ICU stay. Vital sign

10



CHAPTER 2. STUDY GROUP EXTRACTION 11

validation, medications, fluid balances and nursing notes are only performed
in the ICU and are not available during the remainder of the hospital stay.
Date of death is recorded in-hospital and has also been obtained from so-
cial security records for out-of-hospital mortality. The above illustrates an
ideal case where the timestamps associated with the data fall within the
hospital and/or ICU stay. Unfortunately, real-world issues can complicate
matters allowing data to be recorded outside of a patient stay. For example,
a patient could be physically present in the ICU and connected to moni-
tors before their admission has been entered into the system. This results
in a waveform recording which starts before the subject’s ICU admission.
Furthermore, missing/mistaken data can mean that ICU stays exist where
there is no matching hospital admission record.

Note that a patient may move between ICUs during any given admission.
If the move is longer than 24 hours, it is defined to be a new ICU stay. Note
also that the amount of data varies during and between ICU stays and that
data are often missing.

The Mimic IT Clinical Database is a relational database.

2.2 Dataset Extraction

The study group was extracted with a series of extractions, intersections
and filters.

2.2.1 Extractions, Intersections and Filtering

Step 1 consists of a series of queries to the Mimic II Clinical Database.
These queries extract the data to 21 files and generate record sets. Of the
21 extracted files, the first 3 contain the triples (SUBJECT_ID, HADM_ID,
ICUSTAY ID). These triples, which identify respectively the patients, the
admission to the hospital and the admission in the ICU, identify uniquely
the data for each feature extracted in the remaining files.

An other file is generated which contains the patient discharge sum-
maries. They are reports in a English text-like format where the clinical
history of the patients before and during the stay in the hospital is de-
scribed.

Finally, the last 17 extracted files contain the variables of interest for
each patient.

In the Mimic II Clinical Database there are 39,919 ICUSTAY _ID records.
The impact on the filter is shown for each step. The values referred as
original db report how the single step impacts on the Mimic II Clinical

11
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CHAPTER 2. STUDY GROUP EXTRACTION 13

Database. The values referred as previous subset report how the single step

impacts on the subset after the previous step. The values referred as all

conditions report how the interactions between all the steps applied till that

point impact on previous step. The sequence of filtering steps follow:

1.

Extract patients with all the 3 IDs (SUBJECT_ID, HADM_ID, ICUS-
TAY _I(d) available and different from null:

e 36,708/39,919 91.95% (original db)

. Extract patients with only one admission in the hospital and in the

ICU:

e 26,027/39,919 65.19% (original db)

. Intersect 1 and 2:

e 26,027/36,708 70.90% (previous subset)
e 26,027/39,919 65.19% (all conditions)

. Extract patients with at least 1 full day of data in the ICU:

e 29,462/39,919 73.80% (original db)

. Intersect 3 and 4:

e 18,770/26,027 72.11% (previous subset)
o 18,770/39,919 47.02% (all conditions)

Extract patients with age equal or over 18. The aim of doing this is
to remove neonates:

e 31,859/39,919 79.80% (original db)
Intersect 5 and 6:

e 15,176/18,770 80.85% (previous subset)
e 15,176/39,919 38.01% (all conditions)

. Extract patients with sepsis according to [1]:

e 3,818/39,919 9.56% (original db)

. Intersect 7 and 8&:

e 1,644/15,176 10.83% (previous subset)

13



14 CHAPTER 2. STUDY GROUP EXTRACTION

e 1,644/39,919 4.11% (all conditions)

10. Extract patients not CMO (comfort measure only):
e 39,651/39,919 99.32% (original db)

11. Intersect 9 and 10:
e 1,644/1,644 100% (previous subset)
e 1,644/39,919 4.11% (all conditions)

12. Extract patients with a discharge summary available:
e 31,475/39,919 78.84% (original db)

13. Intersect 11 and 12:
e 1,638/1,644 99.63% (previous subset)
e 1,638/39,919 4.10% (all conditions)

14. Extract patients who are diuretics naive. See note in 2.2.1.1:
e 30,646/39,919 76.77% (original db)

15. Intersect 13 and 14:
e 1,606/1,638 98.04% (previous subset)
e 1,606/39,919 4.02% (all conditions)

16. Filter 15 for missing data:

e 1,606/1,638 94.76% (previous subset)
e 1,522/39,919 3.81% (all conditions)

For a detailed description of the results of this step see Appendix C.

2.2.1.1 Diuretics Naive Status

The study was intended to consider patients who had not been administered

diuretics before entering the ICU. This is intended to avoid having data

which would be conditioned before the interval of study. Unfortunately this

information is not directly available from the Mimic IT Clinical Database. It

needs to be parsed out of the discharge summary. The discharge summary is

saved in the database in an English text-like format. It consists of a summary

of what has happened to the patient before and during his admittance at

14



CHAPTER 2. STUDY GROUP EXTRACTION 15

the hospital. The document is hand written by clinicians so it does not have
a well defined structure. The needed pieces of information were extracted
using a complicated parser which searched the English text for the names of
a list of diuretics decided by the doctors. Those patients who had not been
administered diuretics before entering the ICU were considered diuretics

naive.

2.2.2 Filters

Step 2 takes as an input the files provided by the SQL queries and the list
of diuretics naive patients. The aim of this step is to combine the results
of the SQL queries to the one of the diuretics naive procedure. Moreover,
the procedure discards the patients who have missing data for any variable
needed for the analysis.

The output of this phase is a series of files where all the available data
are saved. A file per variable is then created.

e Results 1,522/39,919 patients (3.81%)
e To 189/1,522 patients (12.41%) diuretics have been given, D
e To 1,333/1,522 patients (87.59%) diuretics have not been given, D~

A summary of all the steps of the dataset extraction are shown in Table 2.1
on the following page. The final number of patients considered for the study
is 1,522.

2.3 Variables Preparation

Critical care medical data is arguably the most valuable clinical data sup-
porting medical informatics. This is because the ICU is the crucible of a
hospital. It accepts the most acutely ill of patients, it uses pervasive moni-
toring, and intensivists encounter frequent medical episodes for which they
must make rapid interventions.

ICU medical doctors, specialists known as intensivists, are key members
of any knowledge mining team which consults a data resource such as the
Mimic II Clinical Database. Data engineers, with expertise in modeling and
machine learning, request a lot of information from a team’s intensivists. A
key request they make is the variables that should be selected for predictive
or explanatory models which will be mined from the data.

For example, in a study on the necessity of so called diuretics (drugs)
for diuresis (fluid shedding), after fluid resuscitation in the ICU, it must

15
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Step Type Effects %
1 | Extract(A) | 36,708 | 91.95%
2 Extract(B) 26,027 | 65.19%
3 ANnB—~C 26,027 | 65.19%
4 | Extract(D) | 29,462 | 73.80%
) CnNnD—E 18,770 | 47.02%
6 Extract(F) | 31,859 | 79.80%
7 ENF—=G 15,176 | 38.01%
8 | Extract(H) | 3818 | 9.56%
9 GNH—=1 | 1,644 | 411%
10 | Extract(L) | 39,651 | 99.32%
11 INL—-M 1,644 4.11%
12 | Extract(N) | 31,475 | 78.84%
13 MNN-—O 1,638 4.10%
14 Extract(P) 30,646 | 76.77%
15 | ONP—Q | 1606 | 4.02%

16 | Filter(Q) —» R | 1,522 | 3.81%

Table 2.1: Summary of the 16 steps of the dataset extraction. Next of each step, is
shown how it impacts on the Mimic II Clinical Database. The number of patients
in the final subset is 1,522.

16



CHAPTER 2. STUDY GROUP EXTRACTION 17

be determined what intravenous diuretics data should be included as model
variables.

Indicator selection calls upon intensivists’ theoretical and clinical knowl-
edge and their ICU experience. The selection process is intensely deliber-
ative and uncertain. The intensivists recognize how the events of each pa-
tient’s ICU stay are unique and how the care administered is both subjective
and informed by medical knowledge. They are uncertain as to whether some
of the collected data variables confound the outcome that is to be explained.
As well, they are aware that among intensivists there exists a propensity to
treat similar patients differently. They find it very challenging to choose
variables that essentially pinpoint some time point or variable of a complex
human health process. For example, while including an feature expressing
the amount of a diuretic is an obvious decision, how the amount is described
is open to debate.

The uncertainty of the decisions imply that the feature selection pro-
cess is challenged to be systematic and unbiased and impacts the quality
and accuracy of modeling in an obviously critical way. In addition to the
uncertainty, from a broader perspective, the selection of variables prior to
their experimentation in model regression is problematic. It forces a model
design decision that is premature because the appropriate information is
unavailable.

In this work, the definition of the problem and descriptive variables to
be included in the model was carried out through interviews and meetings
with a group of doctors, experts in the field. In particular, from an initial
definition of the problem due to the intuition and experience of the medical
experts, through this process a more formal definition has been gained of
all variables needed to define a comprehensive model. This process went
hand in hand with an increasing acquisition of medical knowledge needed to
define, from a statistical point of view, an effective model that describes the
problem. Another fundamental endeavor has been made in understanding
the Mimic II Clinical Database and the related problems that occurred in
the preprocessing step.

2.3.1 Timelines

Some of the variables have timelines, this means that for those variables
there are values at different times. It is difficult to choose good times where
to take the values avoiding forward-looking variables. In the study the
clinical data of the patients are available during the whole ICU stay, but
the doctors, while making their decision whether giving or not diuretics,

17



18 CHAPTER 2. STUDY GROUP EXTRACTION

are considering only the values till the current day. In this sense, values
available after the diuretics decision points are considered forward-looking
variables, in fact their values may be caused by the diuretics decision itself.

To avoid such problems, for those variables the extraction have been
performed at the following times:

o T1 Diuretics Decision Timepoint: This is when the decision to give
diuretics was 'theoretically’ or actually taken. There are two possibil-
ities:

— for a patient who got diuretics, the actual time of the first dose;

— for the patients who didn’t get diuretics, the T1 timepoint is
day 4. The decision to use day 4 was reached by examining the
patients who got diuretics in the first week of their ICU stay.
Among this group the first day they were administered diuretics
was examined. From this, 'first administration day’, data, the
median was extracted (day 4) as the timepoint.

e T2 Max Fluids Ratio Timepoint: Day of highest fluids ratio: Ideally
this timepoint would be determined individually for each member of
the study group. It would express variables at the time when a patient
has his/her highest fluids ratio. However, this would have required
us to look forward in the data which would make calculation of the
timepoint in reality impossible. Instead, day 3 in the ICU T2 has been
selected. It was selected by examining the day of highest fluids ratio
for all patients in the study group and choosing the median. The fluids
ratio is calculated as

inputs(t — 1) + inputs(t)
outputs(t — 1) + outputs(t)

(2.1)

e T3 2nd Highest Fluids Ratio Timepoint: Day of 2nd highest fluids
ratio: The timepoint of second highest fluids ratio has been added
because the day of highest fluids ratio is typically very close to the
first day of ICU admission when fluids are infused. It may reflect
recent infusion more than a delay in shedding fluid.

Ideally this timepoint would be determined individually for each mem-
ber of the study group. It would express variables at the time when a
patient has his/her second highest ratio of fluids in the body. However,
this would have required us to look forward in the data which would
make calculation of the timepoint in reality impossible. Instead, T3

18
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have been selected to be day 4. This day was selected by examining
the day of the second highest fluids ratio for all patients in the study
group and choosing the median.

Figure 2.4 provides a visual summary of the considered times and of the
ICU timeline in general. In Appendix C are available more details on how
these times were chosen.

ICU Admission ICU Discharge
Ty T Ts T

A
Day 3 Day 4 I Diuretics
I

VSIS S s e S s e S e s ' Outcome: 30 days mortality
Outcome: Length of ICU stay

Figure 2.4: The timepoints where the values for timeline variables were acquired.
All the values refer to the ICU stay. TO is day 1, T2 and T3 are days 3 and 4.
T1, the diuretics decision time, is day 4 for the patients who didn’t get diuretics
and it is the actual day when the drug was first administered in the patients who
got diuretics. The choice of these timespoint allows us to avoid forward-looking
variables.

2.3.2 List of Variables

The flat files produced by the previous modules are the input of a series of
procedures which elaborate and save them in a format directly usable as an
input for the further analysis. As has been said, the inputs of these modules
are a series of files provided by the previous phase, then on those files are
computed the time points as discussed in 2.3.1.

In the Mimic IT Clinical Database the values are saved in an irregular
sampling rate, each values is recorded when available tipically a few times
each days. As for this study the values were needed on a daily basis, the
original irregular sample rate has been downsampled to fit a regular daily
rate of values. This has been done by computating the median value of the
available values each day. The median value also made the system robust
to outlayers.

Then the list of variables are generated. In the following list is reported
the type of the feature, and where needed a brief description:

1. Diuretics in the ICU:

x1 Binary: -1 not given, +1 given;

19



20

CHAPTER 2. STUDY GROUP EXTRACTION

2. Age when admitted in the ICU:
x9 Numeric;
3. Gender:
x3 Binary: -1 male, +1 female;
4. Race (white vs not white):
x4 Binary: -1 not white, +1 white;
5. Saps:

x5 Average from day 1 to day T1;
x¢ Mean of values during the first day;
x7 Mean of values during day T1;
xg Mean of values during day T2;

x9 Mean of values during day T3;
6. Sofa:

x10 Average from day 1 to day T1;
x11 Mean of values during the first day;
x12 Mean of values during day T1;
x13 Mean of values during day T2;

x14 Mean of values during day T3;
7. Elixhauser overall®.
x15 Numeric;

8. Elixhauser binary: 9 of the 30 fields composing the Elixhauser score
are selected: congestive heart failure, cardiac arrhythmias, valvular
disease, hypertension, diabetes uncomplicated, diabetes complicated,
renal failure, liver disease and obesity.

r16 — x24 Binary: -1 not present, +1 present;
9. Creatinine:

295 Average from day 1 to day T1;

!The sum of all the parameters of the Elixhauser score, as explained in Chapter 1.2.1.

20
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10.

11.

12.

13.

14.

15.

x2¢ Mean of values during the first;
T97 Mean of values during day T1;
228 Mean of values during day T2;

T99 Mean of values during day T3;
Fluids inputs in liters:

x30 Average of sums from day 1 to day T1;
x31 Sum of values during the first day;

x32 Sum of values during day T1;

x33 Sum of values during day T2;

x34 Sum of values during day T3;
Fluids outputs in liters:

x35 Average of sums from day 1 to day T1;
x3¢ Sum of values during the first day;

x37 Sum of values during day T1;

x3g Sum of values during day T2;

r39 Sum of values during day T3;

Fluids balance in liters (fluids inputs - fluids outputs):

x40 Average of sums from day 1 to day T1;
x41 Sum of values during the first day;

42 Sum of values during day T1;

x43 Sum of values during day T2;

244 Sum of values during day T3;

Use of vasopressors in the ICU:

x45 Binary: -1 not given, +1 given;
Mechanical ventilation in the ICU:

x4¢ Binary: -1 not happened, +1 happened;
Arterial blood pressure:

247 Average from day 1 to day T1;

x48 Mean of values during the first day;

21
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249 Mean of values during day T1;
x50 Mean of values during day T2;

x51 Mean of values during day T3;
16. Mean arterial blood pressure:

52 Average from day 1 to day T1;
53 Mean of values during the first day;
54 Mean of values during day T1;
x55 Mean of values during day T2;

x56 Mean of values during day T'3;

17. Mortality within 30 days:
x5y Binary: -1 alive, +1 dead;

18. Length of stay in the ICU after the first dose of diuretics:
xsg Numeric, in days;

For the medical meaning of some of those variables, see Chapter 1.2.1. Ta-
ble 2.2 on the facing page shows a summary for the values for the binary
variables.

Tables 2.3 on the next page, 2.4 on page 24 and 2.5 on page 25 show
a summary of the values for the not binary variables, for the variables with
timeline which refer to the clinical condition of the patient and for the vari-
ables with timeline which refer to the fluids measurements.

Detailed descriptions of those variables and of sepsis are available re-
spectively in Chapter 1.2.1 and Appendix A. Instead for a more detailed
description of the procedures produced to realize the study group extrac-
tion see Appendix B.

22
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Variable DY (189) D~ (1333)

Name 1 || # Positive % # Positive %
DIU 1 189 100% - -
GEN 3 81 42% 566 42%
RAC 4 1 0.5% 29 2%
EL1 (CHF) 16 91 48% 418 31%
EL2 (Cardia arrythmia) | 17 70 Ba | 33 | B |
EL3 18 26 13% 110 8%
EL4 19 51 26% 366 27%
EL5 20 47 24% 258 19%
EL6 21 9 4% 7 5%
EL7 22 10 5% 115 8%
EL8 23 16 8% 125 9%
EL9 24 5 2% 18 1%
VAS (vasosuppressor) 45 163 86% 865 64%
VEN (ventilation) 46 177 93% 904 67%
MOR o7 63 32% 504 37%

Table 2.2: Descriptive statistics for unbalanced, binary variables in the study group.
The abbreviation of the variable, its x; subscript, the number of patients positive
for the variable within the patients who got diuretics and within the patients who
did not get diuretics are reported. The 4 variables where there is a noticeable,
major difference between the diuretics treated and non-treated patients have been
highlighted however the study group is not balanced in terms of covariates.

Variable | DT UD~ (1522) D (189) D~ (1333)
Name | ¢ || Mean(SD) | Me | Mean(SD) | Me | Mean(SD) | Me
AGE | 2 66.1(16.9) | 68.3 | 66.2(15.4) | 68.9 | 66.1(17.1) | 68.2
ELI | 15| 3(1.6) 3 | 3.1(14) | 3 | 29(1.6) | 3
LOS |58 || [ra@18)y | 3 | 1514 | 1t | 631 | 3

Table 2.3: Descriptive statistics for unbalanced discrete variables in study group.
The abbreviation of the variable, its x; subscript, the mean, standard deviation
and median of the variable within the study group, patients who got diuretics and
within the patients who did not get diuretics are reported. There is a noticeable
difference between the length of stay of diuretics treated and non-treated patients
which has been highlighted however the study group is not balanced in terms of
covariates.
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Variable | DT UD- (1522) D (189) D~ (1333)
Name | ¢ || Mean(SD) | Me | Mean(SD) | Me | Mean(SD) | Me
SAL | 5 || 15.8(4.6) | 15.4 | 162(3.4) | 16 | 15.7(4.8) | 15.3
SA2 | 6 | 17.1(5.4) | 17 | 17.9(4.9) | 18 | 17(55) | 17
SA3 | 7 | 15(5.2) | 15 | 15.7(43) | 16 | 14.9(5.3) | 15
SA4 | 8 |[ 153(5.2) | 15 | 16.3(4.6) | 16 | 152(52) | 15
SA5 | 9 || 17.1(5.4) | 17 | 17.9(49) | 18 | 17(55) | 17
SO1 | 10 8.3(4.2) 7.6 9.7(3.6) 9.6 8 1(4.3) 7.4
SO2 | 11 9.1(4.5) 9 10.3(4.2) 11 8.9(4.5) 8
SO3 | 12 7.6(4.8) 7 9.5(4.3) 9 7.3(4 9) 7
S04 | 13 8.2(4.7) 7.4 10(4.1) 10 7.9(4.7) 7
SO5 | 14 9.1(4.5) 9 10.3(4.2) 11 8.9(4.5) 8
CRI |25 1.8(1.8) | 1.2 | 16(15) | 1.2 | 1.8(1.8) | 1.2
CR2 | 26 | 1822 | 12 | 15(13) | 1.1 | 1.8(23) | 13
CR3 |27 | 182 | 12 | 1.6(14) | 1.1 | 18(21) | 1.2
CR4 | 28 | 1.7(15) | 1.2 | 1.6(14) | 1.2 | 1.8(16) | L2
CR5 | 29| 1.8(22) | 1.2 | 15(1.3) | 1.1 | 1.8(23) | 13
BP1 |47 | 113(17.3) | 114 | 113(14.7) | 113 | 113(17.7) | 114
BP2 |48 | 110(18.7) | [114 | 108(19.5) | (106 | 110(18.5) | 114
BP3 | 49 || 114(22.1) | 114 | 114(19.2) | 112 | 114(22.5) | 114
BP4 | 50 || 113(19.6) 114 111(17.7) 110 113(19.8) 114
BP5 | 51 110(18.7) 114 108(19.5) 106 110(18.5) 114
BM1 | 52 || 78.6(12.5) | 79.2 | 77.2(8.8) | 77 | 78.8(13) | 79.2
BM2 | 53 || 77.6(14.6) | 79.2 | 74.8(12.1) 74 78(14.9) 79.2
BM3 | 54 || 78.9(15.3) | 79.2 | 77.1(12.8) | 75 | 79.2(15.6) | 79.2
BM4 | 55 || 78.4(13.9) | 79.2 | 75.5(11.2) | 73 | 78.8(14.2) | 79.2
BM5 | 56 || 77.6(14.6) | 79.2 | 74.8(12.1) | 74 | 78(14.9) | 79.2

Table 2.4: Descriptive statistics for unbalanced variables on timepoints (part 1).
The abbreviation of the variable, its x; subscript, the mean, standard deviation
and median of the variable within the study group, patients who got diuretics and

within the patients who did not get diuretics are reported.
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Variable Dt UD™ (1522) Dt (189) D~ (1333)
Name | ¢ || Mean(SD) | Me | Mean(SD) | Me | Mean(SD) | Me
FI11 | 30 1.7(1.3) 1.4 1.4(1.2) 1.1 1.7(1.3) 1.4
FI12 | 31 2.6(2.3) 2 3(3.2) 2.2 2.5(2.1) 2
FI3 | 32 1.1(1.2) 0.7 1(1.1) 0.6 1.1(1.2) 0.7
FIl4 | 33 1.4(1.4) 1 1.6(1.7) 1 1.4(1.4) 1
FIH | 34 2.6(2.3) 2 3(3.2) 2.2 2.5(2.1) 2
FO1 | 35 1.5(1.1) 1.3 1.8(1.5) 1.6 1.4(1.1) 1.2
FO2 | 36 1.6(1) 1.2 1.6(3.4) 1.1 1.5(1.4) 1.2
FO3 | 37 1.4(1.3) 1.1 1.9(1.7) 1.7 1.3(1.2) 1
FO4 | 38 1.4(1.5) 1.1 1.6(3.1) 1.1 1.3(1.1) 1.2
FO5 | 39 1.6(1.8) 1.2 1.6(3.4) 1.1 1.5(1.4) 1.2
FB1 | 40 0.2(1.7) 0.05 -0.35(2) -0.4 0.3(1.7) 0.1
FB2 | 41 1(2.9) 0.7 1.4(4.8) 1 1(2.5) 0.7
FB3 | 42 -0.3(1.8) -0.3 -1(2.2) -0.9 | -0.3(1.7) -0.1
FB4 | 43 || 0.001(2.1) | -0.01 | 0.001(3.7) | 0.6 0.1(1.8) -0.05
FB5 | 44 1(2.9) 0.7 1.4(4.8) 1 1(2.5) 0.7
Table 2.5: Summary of the values for the timepoint variables related to the fluids

measurements. The abbreviation of the variable, its x; subscript, the mean, stan-

dard deviation and median of the variable within the study group, patients who
got diuretics and within the patients who did not get diuretics are reported.
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Chapter 3

Propensity Analysis

3.1 Introduction

Randomized controlled trials (RCTs) typically compare balance in baseline
covariates between treated and untreated subjects. They are a type of scien-
tific experiment, a form of clinical trial, most commonly used in testing the
safety (or more specifically, information about adverse drug reactions and
adverse effects of other treatments) and efficacy or effectiveness of health-
care services (such as medicine or nursing) or health technologies (such as
pharmaceuticals, medical devices or surgery).

An observational study is an empirical investigation of treatments and of
the effects they cause, but it differs from a randomized controlled trial in the
fact that the investigators can’t control the assignment of the treatments to
the subjects. Observational studies are, by nature, non-randomized and ret-
rospective. Therefore, there is no reason to assume that baseline covariates
will be balanced in expectation between treated and untreated subjects. In-
deed, treated subjects tend to differ systematically from untreated subjects.
Consider the comparison between two heart surgeons, both of them have
completed 100 surgeries. The first one had 10 deaths, while the second 5.
Apparently the second one would seem to be the best, but how can the two
surgeons be compared if the patients of the first one were older and had a
higher risk compared to those of the second surgeon?

Under the example scenario presented above, it is important and neces-
sary to seek group of patients under both the doctors that are alike in the
statistical sense. This could be achieved by forming sub-groups of patients
and then assessing balance in the covariates among these sub groups. Sev-
eral authors have proposed methods for assessing balance in observational
studies. Recent efforts to address issues of nonrandom assignment, includ-
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28 CHAPTER 3. PROPENSITY ANALYSIS

ing a class of methods known as Propensity Scoring, can reduce bias in the
estimation of treatment effects when assignment is not random.

Propensity score techniques are useful in this context, that is when there
may be important differences in patient characteristics between treated and
not treated groups. In fact, this kind of medical analysis aims to show
whether the differences in the outcomes are attributable to the differences
in the treatments provided to the patients, when sometimes it is infeasible
or unethical to assign patients to different treatments.

As shown in Figure 3.1, the propensity score method has gained an
increasing interest during the last decade. By counting the publications
is shown that the number of papers rose sharply from < 10 in 1997 to
> 200 in 2007. Through the propensity score, it is possible to produce

Publications in Pub Med with phrase "Propensity Score"
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Figure 3.1: The publication regarding the propensity score are increasing in the

last three decades.

comparable groups under some nonrandomized conditions. It provides a
way to summarize covariate! information about treatment selection into a

LA covariate is a variable that is possibly predictive of the outcome under study. A
covariate may be of direct interest or it may be a confounding or interacting variable.
A confounding variable is an extraneous variable in a statistical model that correlates
(positively or negatively) with both the dependent variable and the independent variable.
An interaction variable may arise when considering the relationship among three or more
variables, and describes a situation in which the simultaneous influence of two variables
on a third is not additive.
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scalar value.
In the next Section the original definition of this technique provided for
the first in 1983 time by Rosenbaum and Rubin in [6] will be described.

3.2 Summary of the Dataset

A brief summary of the dataset assembled in Chapter 2 is now provided.
There is a total of 1,522 patients in the study group. Out of these 189
recieved diuretics and 1333 did not. In the subsequent sections these patients
will be referred to as DT and D~ respectively. For each of these patients
there are:

(a) 55 variables which will be referred to as covariates.
(b) 1 diuretics decision variable.

(c) 2 outcomes, i.e., 30-day mortality and length of stay in ICU.

3.3 Propensity score model building and balanc-
ing

A propensity score is the conditional probability of assignment to a partic-
ular treatment given a vector of observed covariates. Consider the study
group in which are compared two treatments, labeled 1 and 0, denoted by
the variable z representing the treatment assignment. Each of the patient
is represented by a set of covariates x = {x1,x2,...,x55}. The propensity
score is the conditional probability that a patient with vector x of observed
covariates will be assigned to treatment 1 given by:

e(x) = Pr(z = 1|x). (3.1)

A systematic approach to build the model and refine it is presented in Rubin
and Rosenbaum|[6]. The method follows the 4 steps:

Step 1 : Building a propensity model via stepwise logit model.
Step 2 : Stratification and balance assessment.

Step 3 : Refinement of the model.

Step 4 : Decision if the desired balance is achieved or goto Step 2.

An overview of the process is shown in Figure 3.2 on the next page. In the
following Subsections details about each step will be provided and the results
achieved on the dataset created in Chapter 2 will be presented. The goal of
propensity score model building and refining is to find the subgroups (a.k.a
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subclassifications) of the patients along the propensity score axis such that
within each subclass, patients who are DT and D™, are statistically similar
in the covariate space. Statistical similarity is measured by analyzing the
difference in each covariate values between the D™ and D~. Refinement of
the propensity score model is achieved by adding variates or their interaction
terms resulting in:

(a) changing of the propensity score values for the patients.
(b) changing the subclass membership of a few patients (if not all).
(c) improving the statistical similarity of covariates within each group.

REFINEMENT

DATA —> STEPWISE LOGIT MODEL BALANCING VARIABLES SELECTION

strata <] BUILDING NEW MODEL

Figure 3.2: According to Rosenbaum and Rubin, the propensity score method is
composed by a first phase where a stepwise discriminant analysis is performed on
the whole dataset and a second iterative phase in which the achieved balance is
evaluated and improved.

3.3.1 Step 1: Building a Propensity Score Model via Step-
wise Logit Model

The propensity score is estimated using a logit model (Cox 1970) for

e(y) T
e(lr) = ——=a+ 5" f(x), 3.2
@)= 120 @) (32)
with y = log[lf(;)m)] and where a and 3 being parameters and f(+) a specified

function determined with the regression model. To build the first propensity
score model first the 55 covariates have been provided, to choose from to the
stepwise discriminant analysis. The stepwise discriminant analysis method
selects a subset of variables xg € x. Then the pariwise interaction terms
x; - x; where x;,z; € Xg is provide to the stepwise discriminant analysis
method. Each time the parameters for the logit model are estimated via
maximum likelihood method[6]. In the study group, the variables (and
their pairwise interaction terms) chosen at the end of this step are shown in
Table 3.1 on the facing page.
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Variable Detail
T11 Sofa mean of values during the first day
12 Sofa mean of values during day T1
T16 Elixhauser congestive heart failur
17 Elixhauser cardiac arrhythmias
T40 Balance average of sums from day 1 to day T1
x4 Balance sum of values during the first day (41)
T43 Balance sum of values during day T2
45 Use of vasopressors
T46 Mechanical ventilation
Tq7 Arterial bp average from day 1 to day T1
55 Arterial bp mean mean of values during day T2
T11 " T55 -
L40 43 -
L40 * 46 -
T41 " T43 -
T43 " T43 -
T46 * X55 -

Table 3.1: Covariates and their interactions selected after first step.
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3.3.2 Step 2: Stratification and Balance Assessment

The propensity score model built in the previous section provides a score
for each patient. Consequently, the patients have been subclassified into
5 groups each group corresponding to a quintile of the distribution of the
estimated propensity score. Figure 3.3 illustrates the process of subclassi-
fication. It is suggested in Rubin and Rosenbaum that by performing sub-

INITIAL GROUPS STRATIFICATION IN 5 GROUPS
TREATED | NOT TREATED [_TREATED | NOT TREATED | TREATED [ NOT TREATED
. : L 1 1 0.0t
0.100 0.500 i 0.001 . 2 0.010
SORT 0.050 ;
0.010 " 5 0.010 . RANKED ACCORDING
e 0.100 = —_—>3 0.050 TO THE PROPENSITY
. . 0.500 ‘ =
0.050
) 0.001 : ) 4 0.100
m 0 m 0 5 0.500

Figure 3.3: The stratification process consists in the ranking of the patients accord-
ing to their propensity score and then in the division of the whole ranked datasets
in 5 quintile. Rosenbaum and Rubin suggest that 5 quintilescan reduce the 90% of
the bias in the original dataset.

classification into quintiles based on the propensity score, one can largely
balance all observed covariates. The balance is achieved X, in the sense that
within subclasses that are homogeneous in e(x), the distribution of x is the
same for treated and control (not treated) patients. Note that while all the
covariates are not included in the propensity score model, the balance is still
sought across all the covariates. In fact this is a key point in the propensity
score methodology. At this stage the effectiveness of the subclassification
due to this specific propensity score model can be measures by following
the method in[6]. The effectiveness is quantified by calculating F-Ratios.
The statistical technique, which uses F-ratios, used to assess the balance
is briefly explained in Section 3.3.3, but more details will be provided in
Appendix B.

3.3.3 Assessing the Balance with Subclasses

To assess balance each of the 55 covariates are subjected to a two-way (2
(treatments) x 5 (subclasses) analysis of variance (ANOVA). In its simplest
form, ANOVA provides a statistical test of whether or not the means of
several groups are all equal, and therefore generalizes T-test to more than
two groups. By doing this two F-values for each covariate are calculated.
The first one is for treatment vs no treatment interaction. The second one is
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for treatment vs subclass interaction. The first value will be called primary
effect and the second one, secondary effect?.

The achieved balance has been analyzed by comparing a five-number
summary (that is minimum, lower quartile, median, upper quartile, maxi-
mum) of the 55 F-ratios® prior to subclassification with the F-ratios for the
primary effect of the treatment and the treatment x subclass interaction in
the two-way analysis of variance. The five point summary prior to propen-
sity score modeling and after the first step of propensity score modeling and
startification is presented in Figure 3.4 on the following page. Note that the
summary statistics are the same for primary and secondary effects initially
since the groups have not been stratified yet. It can be observed that after
this first step, the F-ratios referring to both primary effects and secondary
are decreased significantly, indicating the improvement in the balances of
the respective groups subsequent to the propensity score method.

3.3.4 Step 3: Refinement of the Model

In this step, the refinements of the existing logistic model for propensity
have been performed to improve the covariates balance further. Covariates
with large F-ratios that had previously been excluded from the model were
considered for addition to the model. Adding these variables changes the
propensity scores for the patients, resulting in reassignment of patients to
different quintiles (groups or subclasses). After adding each variable, a lo-
gistic models was fitted by maximum likelihood. If the variable produced
a lower F-ratio, it was kept. If the variable produced a large F-ratio after
inclusion in the model, the square of the variable and cross-products with
other variables were instead tried, per the advice of [6].

This refinement process added 11 of 44 variables, that is 25% of them.
Figure 3.5 on page 35 shows the improvement made by the inclusion of each
variable in the new refined model. It appears that the most important im-
provements are due to the first few variables which have the biggest F-ratios.
Figure 3.6 on page 37 shows the balance achieved in the final refined model,
which is considered satisfactory. Note that, if the improvements in the max-

*In [6] the first F-ratio hs been called as main effect and the second one as interaction
effect. In order to avoid confusion between these definitions and the previous definitions of
main effects, being the variables themselves, and interactions effects, representing pairwise
products z; - x;, alternative names have been chosen.

3An F-test is any statistical test in which the test statistic has an F-distribution under
the null hypothesis. It is most often used when comparing statistical models that have
been fit to a data set, in order to identify the model that best fits the population from
which the data were sampled.
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imum quintile are not considered, there is no substantial improvement in
the balance comparing the groups formed after the refinement process.

The complete list of variables included in this final model, of which the
first 17 variables were already in the logit model, are in Table 3.2.

Variable Detail
11 Sofa mean of values during the first day
12 Sofa mean of values during day T1
16 Elixhauser congestive heart failur
r17 Elixhauser cardiac arrhythmias
40 Balance average of sums from day 1 to day T1
T4 Balance sum of values during the first day (41)
43 Balance sum of values during day T2
45 Use of vasopressors
T46 Mechanical ventilation
Tq7 Arterial bp average from day 1 to day T1
55 Arterial bp mean mean of values during day T2
T11 * T55 -
T40 * T43 -
T40 * T46 -
T41 - T43 -
L43 " T43 -
T46 * T55 -
T90 Elixhauser diabetes uncomplicated
32 Inputs sum of values during day T1
T49 Balance sum of values during day T1
s Saps mean of values during day T2
T12 - x5 | T12- Saps average of sums from day 1 to day T1

Table 3.2: Covariates and their interactions selected after first step.

3.3.5 Experts’ Covariate Sets

Finally, the analysis was repeated for 2 new variable sets based on advice by
clinical experts. The details of this analysis are presented in Appendix C.
Note that, if the improvements in the maximum quintile are not considered,
there is no substantial improvement in the balance comparing the experts’
variable sets to the final refinement-based balance.

Figure 3.7 on the facing page shows the variables which were selected in
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each of 4 variable sets: the set selected in the automatic stepwise discrimina-
tion process before iterative refinement, the set selected in the refined model
and the two sets resulting from starting with the experts’ variable sets. Five
variables were select in all four variable sets: Elixhauser congestive heart
failure (z16), Elixhauser cardiac arrhythmias (z17), Fluids balance sum of
values during the first day (x41), Use of vasopressors (z45) and Mechanical
ventilation (x46).

3.3.6 Estimating the Average of Treatment Effects

In the Rosenbaum and Rubin study,[6], the groups defined by the propensity
analysis, which are now homogeneous, are directly compared with respect
to basic statistics on mortality or on other predetermined outcomes.

Austin warns that when using propensity score methods involving pair
matching between patients, the matched nature of the pairs should be con-
sidered in the analysis of the outcomes [7]. But in the creation of the quintile,
stratification is performed prior to treatment assignment (as in randomized
controlled trials) and this implies that there is no reason subjects within a
stratum are more similar then randomly selected ones.

Considering this, it is possibile using the stratification approach to esti-
mate the treatment effects of the treatment just by direclty comparing the
treated and not treated groups.
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CHOSEN VARIABLES

AUTOMATIC REFINED EXPERTS'1 EXPERTS'2

VARIABLES

11 16 18 22

Figure 3.7: Five variables were chosen from all the four variable sets: Elixhauser
congestive heart failure (x16), Elixhauser cardiac arrhythmias (x17), Fluids balance
sum of values during the first day (z41), Use of vasopressors (x45) and Mechanical
ventilation (x4g).
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3.4 Stratification Results

Table 3.3 on the next page shows the quintiles, their propensity score ranges
and their split between DT and D~ in terms of number of patients, mortality
rate and mean length of ICU stay for the propensity score model generated
automatically by stepwise discrimination, before refinement. The stepwise
logit model in this case maximizes the accuracy of the model, however, in
fact, the first two quintiles are very unbalanced in the number of treated
and untreated patients and cannot considered useful for analysis. Quintiles
3 and 4 are less unbalanced even if the number of untreated patients is still
a lot bigger then the treated ones. In quintile5 there are balanced numbers.

From the results, it appears that typically the treated patients spend
more time in the ICU. The mortality however seems to be more or less
the same, except for group 3 where diuretics seem to slightly improve the
chances of survival.

Table 3.4 on page 42 shows the quintiles, their propensity score ranges
and their split between DT and D~ in terms of number of patients, mortality
rate and mean length of ICU stay for the propensity score model which was
subsequently iteratively refined. Even though the variable set went through
the refinement, quintiles 1 and 2 are still very unbalanced. Quintiles 3 and
4 are less unbalanced, while Quintile 5 is balanced. Except for quintile 5,
also in this dataset it seems that patients who got diuretics have a slightly
better chance of survival.
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Quintile 1 PS € [0.00; 0.00]

Diuretics given

Diuretics not given

Number of patients 2 302
Deaths 0% 43%
Mean length of stay 40 days 3.7 days
Quintile 2 PS € [0.00;0.02] | Diuretics given | Diuretics not given
Number of patients 5 299
Deaths 40% 32%
Mean length of stay 28 days 4.1 days
Quintile 3 PS € [0.02;0.06] | Diuretics given | Diuretics not given
Number of patients 20 284
Deaths 15% 30%
Mean length of stay 13.3 days 6 days
Quintile 4 PS € [0.07;0.17] | Diuretics given | Diuretics not given
Number of patients 27 277
Deaths 37% 40%
Mean length of stay 13.5 days 9.5 days
Quintile 5 PS € [0.17;1.00] | Diuretics given | Diuretics not given
Number of patients 134 170
Deaths 41% 44%
Mean length of stay 15 days 10 days

Table 3.3: Results on the Automatic generation dataset.
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Quintile 1 PS € [0.00;0.01]

Diuretics given

Diuretics not given

Number of patients 4 300
Deaths 25% 30%
Mean length of stay 46.7 days 1.3 days
Quintile 2 PS € [0.01;0.04] | Diuretics given | Diuretics not given
Number of patients 4 300
Deaths 25% 33%
Mean length of stay 7 days 5.2 days
Quintile 3 PS € [0.04;0.08] | Diuretics given | Diuretics not given
Number of patients 25 279
Deaths 24% 38%
Mean length of stay 13.8 days 7.4 days
Quintile 4 PS € [0.08;0.18] | Diuretics given | Diuretics not given
Number of patients 27 277
Deaths 29% 46%
Mean length of stay 10.7 days 8.8 days
Quintile 5 PS € [0.18;0.99] | Diuretics given | Diuretics not given
Number of patients 127 177
Deaths 45% 42%
Mean length of stay 15.7 days 10.5 days

Table 3.4: Results on the Automatic generation dataset after the refinement pro-

cess.
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3.4.1 Comparison between the Quintiles

Now a comparison between the quintilesfor the Refined dataset will be dis-
cussed. In Figure 3.8 shows a parallel between the number of patients for
the 5 quintile. The numbers seem to be consistent as going from quintile 1
to 5, there is an increasing number of patients who received diuretics as the
propensity of getting them is increasing. Figure 3.9 on the following page
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Figure 3.8: Number of patients in the refined dataset, across the quintiles.

show a comparison between the mortality rate in the 5 quintile. In the first
4 quintilethere is a slightly better chance of survival by the administration of
diuretics, while for quintileb the chances are similar. Figure 3.10 on the next
page show a comparison between the length of stay in ICU in the 5 quintile.
The results seem consistent except for the first quintile, where probabily
there are outliers or noisy values for the patients who got diuretics. It seems
that the patients treated with diuretics have a longer stay in ICU.

3.4.2 Comments on the Results

In both the 2 datasets, mortality rates are usually similar between treated
and untreated patients and looking at those values, it seems that the treated
patients have a slightly better chance of survival. But from this analysis is
not easy to determine in which cases the diuretics should be given, it can
just be concluded that, in case of indecision, they may be of benefit for the
patient. Instead, in all the four datasets, seems that the treated patients

43



44

CHAPTER 3. PROPENSITY ANALYSIS

- NN
g o

MORTALITY ACROS
=)

(=N

W b A~ O
[ = =

(63}
(=)

LENGTH OF STAY ACROSS QUINTILES
w5 o 3 &

o

| Ml Diuretics
Il No Diuretics

1 2 3 4 5
QUINTILES

Figure 3.9: Death balance in the 5 quintiles.

Il Diuretics
- Il No Diuretics |

1 2 3 4 5
QUINTILES

Figure 3.10: Length of stay in ICU balance in the 5 quintiles.
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Automatic Dataset Deaths | Length of Stay
Diuretics given 31% 13.9 days
Diuretics not given 38% 8.5 days

Automatic Refined Dataset | Deaths | Length of Stay
Diuretics given 32.6% 13.4 days
Diuretics not given 42% 8.9 days

Table 3.5: Results on quintiles 3, 4 and 5. The patients to whom diuretics were

given seems to have a better chance of survival, while they have a longer stay in
the ICU.

stay more time in the ICU.

In Table 3.5 are shown the averages of the outcomes in the 2 models.
The averages are made considering only quintile 3, 4 and 5 as quintile 1 and
2 have too few patients to whom diuretics were administrated. The patients
to whom diuretics were given seem to have a better chance of survival, while
they have a longer stay in the ICU. In Table 3.6 on the next page is shown
the same analysis performed using all 5 quintile. Comparing the two tables,
it is possibile to see that the values for the length of stay for the patients who
got diuretics of the first two datasets seem to be outliers: in these groups the
patients who actually got the drugs were too few to have a reliable result.

It is possibile to see another reason to use only quintile3, 4 and 5 by
noticing that in the results of the analysis performed on all the 5 quintileboth
the mortality rates and the lengths of stay in the ICU in all the four datasets
are better, in fact the chance of survival is higher and the lenght of stay in
the ICU shorter. This result is consistent with what was said by doctors
involved in the work: clinicians are usually against giving diuretics because
in general they are harmful drugs and if they give them, the length of stay
in ICU of the patient lengthens. In the tables, going from the quintilel to 5,
the propensity for diuretics of being prescribed increases, and this goes along
with the worsening of the conditions of the patients: by using quintiles3, 4
and 5 the analysis is capturing the chances of survival of the patients on the
border line, that is the patients whose conditions leave to the doctors the
judgment whether giving or not diuretics. Furthermore, have to be said that
in group 5 there are the sicker patients: in this groups seems not to make
any difference if diuretics were given or not. This could mean that quintile3
and 4 are the most relevant for the analysis, as in these groups the fact that
diuretics were given or not seems to make the difference in the survival of
the patients. In Table 3.7 on the following page are shown the results for
these two groups.
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Automatic Dataset Deaths | Length of Stay
Diuretics given 26.6% 21.9 days
Diuretics not given 37.8% 6.6 days

Automatic Refined Dataset | Deaths | Length of Stay
Diuretics given 29.6% 18.7 days
Diuretics not given 37.8% 6.6 days

Table 3.6: Results on all the 5 quintiles. The mortality rates are decreasing as a
bigger propensity of getting diuretics is related the a worse condition of the patient.

Automatic Dataset Deaths | Length of Stay
Diuretics given 26% 13.4 days
Diuretics not given 35% 7.7 days

Automatic Refined Dataset | Deaths | Length of Stay
Diuretics given 26.5% 12.2 days
Diuretics not given 42% 8.1 days

Table 3.7: Results on quintiles 3 and 4. The differences of the chances of survivals
between treated and untreated patients are wider in this case.

The percentage of death and length of stay in the ICU have also been cal-
culated on the whole (without the propensity method) dataset. The results
on the original dataset are, comparing the patients to whom diuretics were
given to the ones who didn’t got diuretics, the 32.8% vs 37.8% percentage of
death and 15.1 vs 6.3 days in the ICU. These results are shown in Table 3.8.
As predicted, here the differences of the mortality rates are slightly narrow-
ing because is not considered the fact that usually the patients to whom
diuretics are administrated are sicker, and have a worst chance of survival.

3.4.3 Conclusions of the Propensity Analysis on the Diuret-
ics Problem

In conclusion from this analysis, only comparing the outcomes within the
quintile, seems that patients who received diuretics have a slightly better

Original Dataset | Deaths | Length of Stay
Diuretics given 32.8% 15.1 days
Diuretics not given | 37.8% 6.3 days

Table 3.8: Results on the original dataset, without propensity analysis and strati-
fication.
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chance of survival, while they stay longer in the ICU even if it is not clear
how statistically relevant these results are and when exactly diuretics should
be given.

The refined dataset seems to be the best one, and on it have been per-
formed a series of statistic tests to decide if the results should be considered
statistically significant.

The Chi-squared test* has been performed to compare mortality between
the 5 quintileand the T-test® has been used for length of stay.

From the tests appears that the results for mortality are not statistically
significant in all the 5 quintile, while the ones for length of stay are significant
for quintilel, 3 and 5.

This confirms that is not clear if diuretics are harmful or not: in fact, even
if in the 2 datasets, when comparing the percentages of death between the
quintilebetween the treated and untreated patients the chances of survival
are increasing of 7% or 8%, these differences are not statistically significant
and they may be randomly happened. Instead it is easier to deduce that
the length of stay in the ICU increases for the patients who got diuretics,
according to the average results between 5 and 6 days.

From this analysis can be concluded that, in general, diuretics should not
be given as they do not seem to make difference in the chances of survival of
the patients, while by giving them the length of stay in ICU is lengthened.

This analysis can not provide any information on the conditions when
diuretics should be given and this will be the object of Chapter 4.

4A Chi-squared test is any statistical hypothesis test in which the sampling distribution
of the test statistic is a chi-squared distribution when the null hypothesis is true, or any
in which this is asymptotically true, meaning that the sampling distribution (if the null
hypothesis is true) can be made to approximate a chi-squared distribution as closely as
desired by making the sample size large enough. It can be used for dichotomous variables,
as mortality.

5 A T-test is any statistical hypothesis test in which the test statistic follows a Student’s
t distribution if the null hypothesis is supported. It is most commonly applied when
the test statistic would follow a normal distribution if the value of a scaling term in
the test statistic were known. When the scaling term is unknown and is replaced by an
estimate based on the data, the test statistic (under certain conditions) follows a Student’s
t distribution. It can be used for continuous variables, as length of stay.
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Chapter 4

Outcome Analysis

4.1 Introduction

In this Chapter, Step 3 of the analysis, will be described. While the propen-
sity score analysis of Chapter 3 provides balanced quintiles of patients with
respect to propensity of the administration of diuretics, it does not account
for confounding factors which might also affect mortality and length of stay.
An obvious confounding factor is a patient’s health condition, i.e. underly-
ing illness. In this Chapter the question that have been answered is: Does
the administration of diuretics have a statistically significant effect
on mortality or length of stay? If so, to what extent?
Therefore, is first described a modeling methodology for:

A. Determining if, when health condition is taken into account, the admin-
istration of diuretics has a significant effect on outcome (mortality or
length of stay).

B. Determining, if the administration of diuretics has no significant effect
in (A), whether the cross-variable interaction of the administration
of diuretics and health condition, has a significant effect on outcome
(mortality or length of stay).

C. Given (B), i.e. that the administration of diuretics has a significant effect
on outcome, determining if the administration of diuretics crossed with
health condition has a significant effect on outcome when the study
group is adjusted according to health condition.

Each determination involves the regression of a model and statistical deter-
mination of effect. There is 1 step in the methodology corresponding to each
of the determinations:
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Step A. Use the study group to regress propensity score, health condition
and diureticsDecision as independent variables for the outcome mor-
tality using a logistic regression. For the length of stay outcome, use
generalized linear regression. These models will be labelled by MoD-
ELA and append to the model label either Mortality’ or 'LOS’ for
length of stay, e.g. MODELA .Mortality and MODELA.LOS .

Set up a null hypothesis that diureticsDecision has no significant ef-
fect on outcome. Examine the p-value of diuretics decision variable.
If the p-value < 0.05, accept the null hypothesis. If the null hypoth-
esis is rejected, revisit the balanced propensity quintiles and consider
the result of a chi-squared test for significance of difference in out-
come between patients the administration of diuretics and not with
the administration of diuretics to be conclusive.

For more information on statistical hypothesis tests and use of p-value
see Appendix D.

Step B. If the effect of the administration of diuretics is NOT significant,
use the study group to regress the same variables as Step A while
adding a new variable SAPS-t0_diureticsDecision. Such a model will
be labelled as MODELB. Set up a null hypothesis that the new cross-
variable SAPS-t0_diureticsDecision has no significant effect on out-
come. Examine the p-value of this variable. If the p-value < 0.05,
reject the null hypothesis and proceed to Step C.

Step C. Divide the study group into 2 subsets according to health condition
by using SAPS-Tj’s median value as a threshold. Repeat Step A with
each subset and evaluate the null hypothesis that diureticsDecision has
no significant effect on outcome, in the cases of a subset of sick and
another of less sick patients.

In the following sections the modeling methodology will be demonstrated.
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4.2 Confounding Factors

A confounding factor in a study is a variable which is related to one or more
of the variables defined in the study. A confounding factor may mask an
actual association or falsely demonstrate an apparent association between
the study variables where no real association between them exists. If con-
founding factors are not measured and considered, bias may result in the
conclusion of the study[8].

Cause Effect/outcome
(independent o ldependent
variable) variable)

Other factors
{confouding
variable)

Figure 4.1: A confounding factor in a study is a variable which is related to one
or more of the variables defined in a study. A confounding factor may mask an
actual association or falsely demonstrate an apparent association between the study
variables where no real association between them exists. If confounding factors are
not measured and considered, bias may result in the conclusion of the study:.
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ModelA Mortality | Mortality LOS LOS

p-value Bi p-value Bi2
z1 | DiureticsDecision 0.075 -0.189 < 0.001 | 2.626
To Age < 0.001 0.023 < 0.001 | -0.078
T3 Gender 0.410 0.048 0.753 -0.092
T5 SAPS-Ty < 0.001 0.053 0.004 0.202
10 SOFA-Ty < 0.001 0.125 0.649 -0.039
T15 Elixhauser Score 0.095 0.058 0.019 -0.409
i Propensity Score 0.478 -0.289 < 0.001 | 11.795

Table 4.1: Effects of variables in MODELA . Mortality and MODELA.LOS. For both
mortality and length of stay outcomes, health condition variables xo, x3, and x4
(Age, SAPS-Ty, and SOFA-T,) have statistically significant effects and thus are
highlighted with yellow cells. The Administration of Diuretics instead appears to
have a significant effect only for length of stay. The positive 8 coeflicient sign
implies length of stay increases when diureticsDecision is true.

4.3 Step A, ModelA: health condition and propen-
sity adjustment.

The purpose of Step A is to determine, when health condition is taken into
account, whether the administration of diuretics has a significant effect on
outcome (mortality or length of stay). For the regression of both MoD-
ELA .Mortality and MODELA.LOS , the patient’s diureticsDecision as 1
and his/her propensity score (as calculated in Chapter 2) as V7 have been
included. To express health condition the following independent variables
To, T3, x5, 10 and x15 have been chosen: Age, Gender, SAPS-Tj, SOFA-Tj,
Elixhauser Score. Table 4.1 shows the p-value and beta coefficient analyses
for both outcomes. With respect to mortality, health condition variables
x9, w3, and 10 (Age, SAPS-Tp, and SOFA-Tj) have statistically significant
effects. The diureticsDecision does not have a statistically significant effect
on mortality. With respect to length of stay, illness variables xo, x4, %15
(Age, SAPS-Tp, and Elixhauser Score) have statistically significant effects,
as does propensity score. Importantly, and in contrast to mortality, the null
hypothesis that the effect of diureticsDecision is not significant on length
of stay, is rejected (p-value < 0.001). For length of stay outcomes, these
findings imply health condition is not a confounding factor and diureticsDe-
cision is independently significant in its effect on Length of Stay. One can go
back to each propensity quintile and, where there is sufficient data, examine
the T-test of the difference between the length of stay outcome distribution
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for patients with the administration of diuretics and those without. In this
case, the test indicates for quintile 1, quintile 3 and quintile 5 a significant
difference, leading to the conclusion, qualified for this study group, that the
administration of diuretics increases a patient’s length of stay in the ICU.

4.4 Step B

For mortality outcome, the diureticsDecision is NOT independently sig-
nificant in its effect. However, it may be there is an interactive effect of
diureticsDecision with health condition that is more than random. There-
fore, what happens in modeling when the cross-interaction variable SAPS-
t0_diureticsDecision, x7 - x5, is included will now be examined. Table 4.2 on
page 56 columns 2 and 3 show the p-value and Beta coefficient analyses for
this mortality outcome logistic regression. The null hypothesis that SAPS-
t0_diureticsDecision has no significant cross-dependent effect on mortality is
rejected given the p-value = 0.013. Therefore, Step C have been performed
and two models generated: MODELC.LESSSICK and MODELC.SICKER using
two subsets divided by relative SAPS-Ty median within the study group.

4.5 Step C, ModelC: Health condition Split and
New Adjustment Models

4.5.1 Splitting the Study Group by Health condition

The 2 health condition subsets are divided across the median SAPS-Tj score
of 17. The less sick subset is composed of 816 patients and the sicker subset
has 706 patients. Descriptive statistics of the two subsets in terms of Age,
SAPS-T1 and SOFA-T} are provided in Figures 4.2 on the following page
for the less sick subset and Figures 4.3 on page 55 for the sicker one. Other
descriptive statistics of the subsets are provided in Appendix C.

As predicted, all the clinical values for the sicker group are generally
worst.

4.5.2 ModelC.LessSick and ModelC.Sicker: New Adjustment
Models

Table 4.2 on page 56 columns 4 and 5 show the p-value and Beta coefficient
analyses for the mortality outcome regression on the less sick subset. The
null hypothesis that diureticsDecision has a no significant cross-dependent
effect on mortality in the less sick subset is rejected. Columns 6 and 7
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Var | Model B Model C Model C
p-value Bio Less Sick Bin Sicker Bis

Tl 0.069 0.602 0.004 1.842 0.531 -0.50
To < 0.001 0.023 < 0.001 | 0.0234 < 0.001 0.025
x3 0.347 0.054 0.445 0.064 0.760 0.025
T5 0.278 0.021 0.270 -0.054 0.244 0.043
10 < 0.001 0.123 < 0.001 0.094 < 0.001 0.141
T15 0.100 0.057 0.645 0.023 0.067 0.092
%] 0.576 -0.224 0.093 1.036 0.038 -1.148

T1- Ty 0.013 -0.043 0.001 -0.145 0.709 0.013

Table 4.2: MODELBAnalysis (columns 2 and 3) indicates that the cross product
variable SAPS-t0_diureticsDecision (x; - x5) has a significant effect on mortality.
MobELCanalysis (columns 4 and 5 for the less sick subset, and columns 6 and
7 for the sicker subset. In the less sick subset, diureticsDecision is a significant
independent variable effect, whereas in the sicker subset, it is not (red font).

show the p-value and Beta coefficient analyses for the mortality outcome
regression on the sick subset. The null hypothesis that diureticsDecision
has a no significant cross-dependent effect on mortality in the sicker subset
is NOT rejected.

4.5.3 Stratification Analysis with Adjustment for Confound-
ing Factor of Health condition

Returning to quintile analysis: the study group has been divided by SAPS-
Ty median threshold into 2 groups.

Descriptive statistics of quintiles 4 and 5 in terms of Age, SAPS-T} and
SOFA-T7 is provided in Figures 4.4 on page 58 for the less sick subset and
Figures 4.5 on page 59 for the sicker one.

All patients of a group are ranked by propensity score and divide the
ranked group into 5 quintiles of equal size. In a quintile, in each health con-
dition subset, the mortality rate for those patients with the administration
of diuretics and those which did not were compared. In this case the null
hypothesis is that the outcomes come from the same distribution. To test
the null hypothesis, the Chi-Squared test has been used.

The health condition adjusted stratification analysis is summarized in
Table 4.3 on page 60. In the less sick subset of quintile 4 (PS € [0.06;0.15])
mortality rate is significantly less for the patients with the administration of
diuretics compared to those without. It is not significantly different for quin-
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tile 5 (PS € [0.15;0.99]). The mortality rate is not significant in quintiles

1, 2 and 3 either.
For the sicker group, see Table 4.4 on page 61, mortality rate is not

significantly different for quintiles 1 to 5.
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quintile 1 PS €[0.00;0.01] | D* D~
Number of patients 0 163
Deaths 0% 14%

quintile 2 PS €[0.01;0.02] | D* D~
Number of patients 4 159
Deaths 25% | 24%

quintile 3 PS €[0.02;0.06] | D* D~
Number of patients 6 157
Deaths 33% | 24%

quintile 4 PS €[0.06;0.15] | D* D~
Number of patients 21 142
Deaths 14% | 28%

quintile 5 PS €[0.15;0.99] | D* D~
Number of patients 57 106
Deaths 28% | 40%

Table 4.3: Mortality outcomes after propensity and less sick stratification. The
difference in mortality is statistically significant (null hypothesis of Chi-Squared
test is rejected) in quintile 4 only. The difference in mortality is not statistically
significant (null hypothesis of Chi-Squared test is not rejected) in quintiles 1, 2, 3
and 5.
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quintile 1 PS € [0.00;0.02] | Dt | D~
Number of patients 4 137
Deaths 25% | 61%

quintile 2 PS €[0.02;0.05] | D" | D~
Number of patients 4 137
Deaths 25% | 46%

quintile 3 PS €[0.05;0.1] | DT | D™
Number of patients 9 132
Deaths 22% | 53%

quintile 4 PS €0.1;0.21] | DY | D~
Number of patients 15 126
Deaths 53% | 54%

quintile 5 PS €[0.21;0.99] | D" | D~
Number of patients 68 73
Deaths 55% | 45%

Table 4.4: Mortality outcomes after propensity and sicker stratification. The dif-
ference in mortality is not statistically significant (null hypothesis of Chi-Squared
test is not rejected) in quintiles 1, 2, 3, 4 and 5.
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Chapter 5

Machine Learning with GP
Analysis

5.1 Introduction

In this Chapter the analysis performed by using GP techniques will be dis-
cussed. A description of Machine Learning and Genetic Programming tech-
niques is available in Appendix E. This analysis used GPLAB, A Genetic
Programming Toolbox for MATLAB produced by Sara Silva!. GPLAB is
a genetic programming toolbox for MATLAB and its architecture follows
a highly modular and parameterized structure. For a description of the
toolbox see[9].

GP was used to classify the study group on mortality and to evolve
symbolic regression to predict length of stay. For this analysis the 8 variables
in Table 5.1 on the next page were used.

The presented results are preliminary and need further study to tune the
GP method properly. This should be considered an initial exploration.

The goal of this analysis was the use of GP-based machine learning
(ML) for predictive outcome modeling with the diuretics study as startup
demostration context. The envisioned approach to helping a new patient, is
to:

A identify the cluster were the new patient is placed.
B: push each new patient’s variables into the identified cluster model.

The used approach is divided into 2 steps:

1Sara Silva is currently, Summer 2012, senior researcher of the KDBIO group at INESC-
ID Lisboa, IST / UTL.
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Var Name

T DiureticsDecision
o Age

T3 Gender

Ts5 SAPS-T},

x10 SOFA—TO

T15 Elixhauser Score
\%1 Propensity Score

- x5 -

Table 5.1: The variables used in the GP analysis.

Step 1: use an unsupervised ML technique (optional) to cluster the patients
in the study group. For each cluster follow step 2.

Step 2: is divided in 2 parts:

(a) evolve a GP classifier to predict mortality as a classification prob-
lem.

(b) evolve a GP model for predicting length of stay.

5.1.1 Step 1: Unsupervised Learning of Clusters

To reduce variance, clusters was (optionally) performed by using K-means[10].
Four clusters have been generated using the k-means? clustering method.
The method was applied on a subset of the variables which describe the
clinical conditions of the patients. The chosen variables were: Age, Sex,
SAPS-Ty, SOFA-T and Elixhauser Score.
The 4 generated clusters grouped the patients according to their condi-
tions as follows:

e Cluster 1: this cluster is composed by 221 patients. Age and SAPS-
Ty are shown in Figures 5.1 on the facing page.

e Cluster 2: this cluster is composed by 426 patients. Age and SAPS-
Ty are shown in Figures 5.2 on page 66.

e Cluster 3: this cluster is composed by 435 patients. Age and SAPS-
Ty are shown in Figures 5.3 on page 67.

2K-means clustering is a method of cluster analysis which aims to partition n obser-
vations into k clusters in which each observation belongs to the cluster with the nearest
mean.
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Cluster | # || DT | D~ | Mean(SD) | Median | Mean(SD) | Median
Age Age SAPS-Ty | SAPS-Ty

1 221 || 25 | 196 | 37(8) 30 | 14.8(4.9) 15

2 | 426 || 53 | 373 | 56.5(5) 57 16(5.3) 16

3 | 435 | 42 | 393 | s4.8(4.6) | 84 17.4(5) 17

4 440 || 79 | 371 | 71.5(4.2) 72 19.2(5.5) 19

Table 5.2: Clusters create by 1 execution of K-means with k=4 on variables: Age,
Sex, SAPS-Ty, SOFA-Ty and Elixhauser Score.

Operator Value
Population Size 100
# of Generations 10

Operators

{+, —, %, /,loga, \/}

Probability of Reproduction p,, 0.1
Initial Probability of Crossover p. 0.5
Initial Probability of Mutation p., 0.5

Initialization Type Tournament
Maximum Depth of the Trees 17

Table 5.3: Parameters of the GP executions.

e Cluster 4: this cluster is composed by 440 patients. Age and SAPS-
Ty are shown in Figures 5.4 on the next page.

Clustering does not and should not create logically separated groups.

However very roughly can be observed that these clusters have approximate

charaterization by Age and health condition. A description of the clusters

is provided in Table 5.2.

5.2 Step 2: GP modeling

For both the two outcomes, the step 2 of the analysis was performed on

the whole dataset (1,522 patients), on a series of subsets composed by 4

clusters and on the less sick and sicker groups used in the analysis discussed

in Chapter 4. In Table 5.3 are shown the parameters for the GP executions.

In Table 5.4 on page 70 is shown a description of the less sick and sicker

groups. Median SAPS-T; on which the groups were splitted is 17.
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Cluster | # || DY | D~ | Mean(SD) | Median | Mean(SD) | Median
Age Age SAPS-Ty | SAPS-Ty
Less Sick | 816 || 83 | 728 | 63.8(17.7) 60 13(2.9) 14
Sicker | 706 || 101 | 605 | 68.8(155) | 71 | 21.9(3.5) 21

Table 5.4: Clusters chosen according to health condition WITHOUT any machine
learning technique.

Dataset
1522 Patients

TP
411

TN
293

FP
663

FN
155

SEN
0.38

SPE
0.65

Success Rate
47%

Table 5.5: GP Overall Results on the Dataset for Mortality.

5.2.1 Results on Mortality

For all the groups described above 10 indipendent GP runs have been per-
formed using each time the 70% of the patients current group for training
and the remaining 30% for testing. Each time the patients for both training
and testing were randomly chosen. For all the analyzed groups the median
values of the 10 runs for success rate, true positive, true negative, false pos-
IN ) will be

TN+FN
given and discussed. All the results refer to the whole set of each group

itive, false negative, sensitivity (Tﬁipw) and specificity (

as the obtained results on the respective training and the testing sets are
always similar between each others.

5.2.1.1 Results on the Original Dataset

Table 5.5 shows the overall results on the whole dataset. The models have
the 46% of success on average more or less equaly divided between true
positive and true negative even if the models could have problems to evaluate
false positive, as the false negative are a lot. Table 5.6 shows the two best
results on the whole dataset. The best model has the 63% of success.

Dataset Success Rate | TP | TN | FP | FN | SEN | SPE
1522 Patients 63% 0 | 956 | 0 | 566 0 0.63
1522 Patients 59% 62 | 829 | 127 | 504 | 0.32 | 0.62

Table 5.6: GP Best Results on the Dataset for Mortality.
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Group Size SR | TP | TN | FP FN SEN | SPE
Less Sick | 816 Patients | 26% | 209 | 3 | 604 0 0.26 1
Sicker 706 Patients | 50% | 2.5 | 342 7 354.5 | 0.26 | 0.49

Table 5.7: GP Overall Results on the Less Sick and Sicker Groups for Mortality.

Group Size SR | TP | TN | FP | FN | SEN | SPE
Less Sick | 816 Patients | 73% 1 597 | 10 | 208 | 0.09 | 0.74
Less Sick | 816 Patients | 48% | 116 | 272 | 335 | 93 | 0.26 | 0.74

Sicker 706 Patients | 54% | 320 | 64 | 285 | 37 | 0.53 | 0.63

Sicker 706 Patients | 54% | 320 | 64 | 285 | 37 | 0.53 | 0.63

Table 5.8: GP Best Results on the Less Sick and Sicker Groups for Mortality.

5.2.1.2 Results on the Less Sick and Sicker groups

Table 5.7 shows the overall results on the less sick and sicker groups. The
models have the bad rate of success on average on the less sick group. In this
groups the models have big problems to evaluate false positive. Table 5.8
shows the two best results on the less sick and sicker groups. The best model
is for the less sick group with a success rate of 73%.

5.2.1.3 Results on the 4 Clusters

Table 5.9 shows the overall results on the 4 clusters. The models have more
or less the 40% of success on average. The detection of false negative is a
problem in this case too. Table 5.10 on the following page shows the two
best results on the 4 clusters. The best models are the ones of clusters 1
and 2 where the success rate is better then 64%.

Cluster Size SR TP | TN | FP FN | SEN | SPE

Cluster 1 | 221 Patients | 44% | 36.5 | 59.5 | 114.5 | 10.5 | 0.24 | 0.85

Cluster 2 | 426 Patients | 37% | 114.5 | 42.5 | 253.5 | 15.5 | 0.31 | 0.73

Cluster 3 | 435 Patients | 47% | 203 0.5 | 230.5 1 0.47 | 0.33

Cluster 4 | 440 Patients | 44% | 182.5 11 244 2.5 | 043 | 0.81

Table 5.9: GP Overall Results on the 4 Clusters for Mortality.
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Cluster Size SR | TP | TN | FP | FN | SEN | SPE
Cluster 1 | 426 Patients | 71% 7 149 | 25 | 40 | 0.22 | 0.79
Cluster 1 | 426 Patients | 66% | 0 | 145 | 29 | 47 0 0.75
Cluster 2 | 440 Patients | 68% | 0 | 291 | 5 | 130 0 0.69
Cluster 2 | 440 Patients | 65% | 0 | 275 | 21 | 130 0 0.68
Cluster 3 | 221 Patients | 53% | 15 | 214 | 17 | 189 | 0.47 | 0.53
Cluster 3 | 221 Patients | 49% | 122 | 92 | 139 | 82 | 0.47 | 0.53
Cluster 4 | 435 Patients | 53% | 9 | 226 | 29 | 176 | 0.24 | 0.56
Cluster 4 | 435 Patients | 50% | 136 | 83 | 172 | 49 | 0.44 | 0.63

Table 5.10: GP Best Results on the 4 Clusters for Mortality.

Dataset Median Mean Absolute Error
1522 Patients 7.5 days

Table 5.11: GP Overall Results on the Dataset for LOS.

5.2.2 Results on Length of Stay in ICU

The analysis was performed in the same way of the one for mortality, but
this time the mean absolute error is the only result presented. Even in this
case, all the results refers to the whole analyzed groups as the results on
training and testing sets are similar between each others.

5.2.2.1 Results on the Original Dataset

Table 5.11 shows the overall results on the whole dataset. The mean absolute
error is of 7.5 days on average. Table 5.12 shows the two best results on the
whole dataset. The mean absolute error is more or less of 7 days on average.

5.2.2.2 Results on the Less Sick and Sicker groups

Table 5.13 on the next page shows the overall results on the less sick and
sicker groups. The mean absolute error goes between 6 to 11 days on average.

Dataset Median Mean Absolute Error
1522 Patients 6.7 days
1522 Patients 7 days

Table 5.12: GP Best Results on the Dataset for LOS.
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Group | Patiens | Median Mean Absolute Error
Less Sick 816 6.4 days
Sicker 706 11.6 days

Table 5.13: GP Overall Results on the Less Sick and Sicker Groups for LOS.

Group | Patiens | Median Mean Absolute Error
Less Sick 816 5.8 days
Less Sick 816 5.8 days

Sicker 706 8.1 days

Sicker 706 8.6 days

Table 5.14: GP Best Results on the Less Sick and Sicker Groups for LOS.

Table 5.14 shows the two best results on the less sick and sicker groups. The

mean absolute error goes between 5 to 8 days on average.

5.2.2.3 Results on the 4 Clusters

Table 5.15 shows the overall results on the 4 clusters. The mean absolute
error goes between 5 to 10 days on average. Table 5.16 shows the two best
results on the 4 clusters. The mean absolute error goes between 4 to 7 days

on average.

5.2.2.4 Comment on the GP Results

Both for mortality and length of stay in ICU the prediction results are not
satisfactory. Especially for length of stay the error is big. This probably is
due to the difficult of the problem. The fact that the models generate on
average a lot false negative indicates the difficulty of evaluating the chance
of survival of the patients, expecially of the sickest ones. Furthermore, these
are preliminary results and the GP models could be tuned in a better way.

Cluster Patiens Median Mean Absolute Error
Cluster 1 | 426 Patients 10.9 days
Cluster 2 | 440 Patients 7.9 days
Cluster 3 | 221 Patients 5.1 days
Cluster 4 | 435 Patients 8.2 days

Table 5.15: GP Overall Results on the 4 Clusters for LOS.
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Cluster Patiens Median Mean Absolute Error
Cluster 1 | 426 Patients 7.3 days

Cluster 1 | 426 Patients 7.5 days

Cluster 2 | 440 Patients 6 days

Cluster 2 | 440 Patients 6.5 days

Cluster 3 | 221 Patients 4.2 days

Cluster 3 | 221 Patients 5 days

Cluster 4 | 435 Patients 6.5 days

Cluster 4 | 435 Patients 6.7 days

Table 5.16: GP Best Results on the 4 Clusters for LOS.

5.2.3 Simulated Outcomes

In this final analysis the chances of survival with or without diuretics have
been evaluated by using the two best models produced with GP for each
dataset. All the available values for the patients have been used except for
the diuretics variable. Then the chances of survival for each patients have
been evaluated by inserting the two possibile values, given and not given,
for the diurecits variables. In this way two perfectly paired patients have
been created for each actual patient.

This analysis try to overcome the real problem of an observational study
that is the fact that investigators can not control the assignment of the
treatments to patients and, hence, the experiment is non-randomized. With
an approach of this type instead, there is the possibility of duplicate the
dataset and then confront perfectly paired patients. The results of this
analysis are presented in this Section. But it should be borne in mind that
these results are influenced a lot by the models accuracy. So, as the models
accuracy is not satisfactory, they should be considered preliminary and may
be object of further analysis.

5.2.3.1 Results on Mortality

In Table 5.17 on the facing page are shows the results for mortality. An other
problem that an analysis of this type could have it that the diuretics variable
is binary, hence it is possible that by only flipping it, the model could not
capture any difference: this could be because either the diuretics are not
actually making difference or because the model is not accurate enough.
In fact by analyzing the results for mortality, two things stand out: a)the
models are generating a lot of false negative and the mortality rates are low,
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Group | MOR 1D- | MOR 1 D+ | MOR 2 D- | MOR 2 D+
Dataset 0% 0% 0% 1%
Cluster 1 14% 14% 13% 13%
Cluster 2 11% 11% 4% 4%
Cluster 3 60% 60% ™% ™%
Cluster 4 8% 8% 70% 70%
Less Sick 13% 13% 58% 40%

Sicker 1% 0% 1% 1%

Table 5.17: GP Simulated Results for Mortality.

Group | LOS 1D+ | LOS1D- | LOS 2 D+ | LOS 2 D-
Dataset 2 days 2 days 1.3 days 1.3 days
Cluster 1 | 3.6 days 3.6 days 5 days 5.6 days
Cluster 2 1.9 days 1.8 days 5.7 days 5.7 days

Cluster 3 0 days 0 days 1.5 days 1 days
Cluster 4 | 2.2 days 2.2 days 1.9 days 0.9 days
Less Sick | 0.5 days 0.5 days 0.3 days 0.3 days
Sicker 0 days 0 days 6.6 days 6.6 days

Table 5.18: GP Simulated Results for LOS.

b)in the most of the models diuretics do not seem to make difference, for one
of the reason defined above. The last thing that stands out is curiously the
result for the less sick group: only in this case in fact, for the second best
model, the results seems to give a better chance of survival for the patients
who are getting diuretics and this goes along with the results obtained by
the analysis of the first Section of this Chapter. Obviously what said is to
be taken with caution, given the low accuracy of the models used.

5.2.3.2 Results on Length of Stay
In Table 5.18 are shows the results for length of stay. In this case, the results
are not conclusive, possibly because of the poor accuracy of the models used.

5.2.3.3 Comments on the Results on the Simulated Outcomes

As already said, the tecnique used in this Section relies on the accurancy of
the used models. In this case, the models have not a satisfactory accurancy,
hence the presented results should be taken with caution. But this method
could be the object of further analysis.

75



76 CHAPTER 5. MACHINE LEARNING WITH GP ANALYSIS

76



Chapter 6

Conclusions

6.1 Summary of Findings

A brief summary of the findings woven through Chapter 4 is now provided:

e Finding 1: Length of stay and the administration of diuretics:
With respect to length of stay, health condition variables xo, x5 and
x15 (Age, SAPS-Ty, and Elixhauser Score) have statistically signifi-
cant effects, as does propensity score. The null hypothesis that the
independent effect of diureticsDecision is not significant on length of
stay, is rejected (p-value < 0.001).

For length of stay outcome, these findings imply health condition is
not a confounding factor and diureticsDecision is independently sig-
nificant in its effect on length of stay.

This validates the findings of the quintile analysis for length of stay in
Chapter 3. They indicate a statistically significant difference in length
of stay for quintile 1 (PS € [0.00;0.01]), quintile 3 (PS € [0.04;0.08])
and quintile 5 (PS € [0.19;0.99]), leading to the conclusion, qualified
for this study group, that the administration of diuretics increases a
patient’s length of stay in the ICU.

e Finding 2: Independent Effect of the administration of di-
uretics on mortality:
The null hypothesis that the independent effect of diureticsDecision is
not significant on mortality, is accepted (p-value > 0.05). Hence, the
diureticsDecision does not have a statistically significant independent
effect on mortality.

e Finding 3: Cross-Dependent Effect of the administration of
diuretics and health condition on mortality:
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The null hypothesis that SAPS-t0_diureticsDecision has a not signifi-
cant cross-dependent effect on mortality is rejected given the p-value
= 0.013. Through adjusted regression analysis with MODELC.SICKER
and MODELC.SICKER, (see Table 4.2 on page 56 columns 4-5 and
6-7), the null hypothesis that diureticsDecision has a not significant
cross-dependent effect on mortality in the less sick subset is rejected.
The null hypothesis that diureticsDecision has a not significant cross-
dependent effect on mortality in the sicker subset is NOT rejected.
Furthermore, through health condition adjusted stratification analy-
sis, see Table 4.3 on page 60, in the less sick subset of quintile 4
(PS € ]0.06;0.15]) mortality rate is significantly less for the patients
with the administration of diuretics compared to those without. It is
not significantly less for quintile 5 (PS € [0.15;0.99]). Per Table 4.4
on page 61 mortality rate is not significantly different for either of
quintiles 4 or 5.

In Chapter 5 a preliminary analysis using genetic programming is de-
scribed. The Chapter’s contribution is to outline the method, whereas the
produced results are not reliable.

6.2 Future Work

6.2.1 Propensity Analysis

The primary objective of this work was to develop a statistical methodology
based on propensity analysis and logistic or linear regression. A study group
was selected for the analysis and results on it were produced. A first set of
possible future work would involve reformulating the study group both with
the aim of studying a larger better selection of patients who exhibit high
fluid levels (than has been done in this work) but a different pathology.

It has to be said that during the definition of the study group and dur-
ing the subsequent extraction from the Mimic IT Clinical Database, certain
choices were made, as described in the respective Chapters. This was neces-
sary given the vastness of the topic. Hence, it could be of interest to further
study possible alternatives to the already explored choices. While the study
of other diseases with the same method would be of obvious interest: for
this purpose all the developed procedures were designed to be easily reused
in this context.
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6.2.2 GP Analysis

As regards the analysis carried out by genetic programming, its aim was to
be only a first exploration of the method. This entire analysis would lend
itself to further study. First of all, it requires a precise study of the configu-
ration used for the executions of the algorithm with the aim to improve the
reliability of the produced models.

If this is done, the updated results could be re-evaluated and potentially
prompt new experiments or method refinements. For example, generating
different models using separately the group of patients to which diuretic
was administered and the one who did not get diuretics and even further
dividing the groups by illness in the case of mortality.

Furthermore, different machine learning techniques for both the genera-
tion of the clusters and of the models should be tried and compared.
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Appendix A

Medical Backgrounds

This Appendix aims at providing an overview on medical concepts usefull
to understand the analysis discussions. In particular will be defined what
sepsis is. The Appendix does not aim at being a full medical guide on the
topic, but intends to provide some useful basic medical knowledge.

A.1 Definition of Septis

Sepsis is the leading cause of death in noncoronary intensive care units (ICU)
in the United States[11].

It is a potentially deadly medical condition that is characterized by a whole-
body inflammatory state, called a systemic inflammatory response syndrome
or SIRS, and the presence of a known or suspected infection. The body may
develop this inflammatory response by the immune system to microbes in
the blood, urine, lungs, skin, or other tissues. Severe sepsis is the systemic
inflammatory response, plus infection, plus the presence of organ dysfunc-
tion'.

The core of the current definition of sepsis arose from the 1991 American
College of Chest Physicians / Society of Critical Care Medicine (ACCP /
SCCM) Consensus Conference. This definition was revisited and slightly
modified by the 2001 Internal Sepsis Definition Conference.

A.1.1 1991 ACCP / SCCM Consensus Conference

An American College of Chest Physicians / Society of Critical Care Medicine
Consensus Conference was held in Chicago in August 1991 with the goal of

1Organ dysfunction is a condition where an organ does not perform its expected func-
tion. When the organ dysfunction gets bad to such a degree that normal homeostasis
cannot be maintained without external clinical intervention, occurs organ failure.
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Abnormalities Values
Temperature <36°C (96.8°F) or >38°C (100.4°F)
Heart rate >90/mins
Respiratory rate >20/min or PaC02<32 mmHg (4.3 kPa)
WBC <4x10? /L (<4000/mm?), >12x10/L
(>12,000/mm?) or 10% bands

Table A.1: According to the 1991 ACCP / SCCM definition, SIRS is diagnosed
when a patient has two or more of the clinical abnormalities.

agreeing on a set of definitions that could be applied to patients with sepsis
and its sequelae[11]. The conference provided a set of definitions used to
characterize the progression of the disorder.

Sepsis refers to a clinical spectrum of complications starting with the initial
infection and ultimately progressing to septic shock. It initially manifests
as the nonspecific systemic inflammatory response syndrome (SIRS). SIRS
is diagnosed when a patient has two or more of the clinical abnormalities
provided in Table A.1. The patient must present at least two of the following
SIRS abnormalities: temperature, heart rate, respiratory rate, WBC?.

As it has been said, according to the American College of Chest Physicians
/ Society of Critical Care Medicine, there are different levels of sepsis:

e Sepsis: defined when SIRS occurs and there is a documented or highly
suspected infection.

e Severe sepsis: defined as sepsis with organ dysfunction, hypoperfu-

3 4

sion”, or hypotension®.

e Septic shock: defined as sepsis with refractory arterial hypotension or
hypoperfusion abnormalities in spite of adequate fluid resuscitation.

The progression of sepsis symptoms is shown in Figure A.1 on page iii.

2Total white blood cell count.
3Decreased blood flow through an organ.
4 Abnormally low blood pressure, especially in the arteries of the systemic circulation.
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Two or more of the following conditions:
« Temperature > 38°C or <36°C
« Heart rate > 90 beats per min
* Respiratory rate > 20 breaths per min
+ White blood count > 12,000 / mm?
or < 4,000 / mm?3

—

Systemic response to infection:
- SIRS
+ Documented or highly suspected
Infection

Sepsis associated abnormalities:
+ Sepsis
+ Evidence of organ dysfunction,
hypoperfusion, or hypotension

Severe

Sepsis

Sepsis induced hypotension:
+ Systolic BP < 90 mmHg despite
adequate fluid resuscitation
« Evidence of organ dysfunction,
hypoperfusion, or hypotension

e md md )

Figure A.1: The clinical spectrum of sepsis begins with the nonspecific systemic
inflammatory response syndrome and progresses through increasing inflammatory
response stages. The spectrum ultimately ends in septic shock and/or multiple
organ dysfunction syndrome (MODS).

iii
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A.1.2 2001 Internal Sepsis Definition Conference

Ten years after the 1991 ACCP / SCCM Consensus Conference was held
to establish to uniform definitions for sepsis and the associated spectrum
of progressive injurious processes, the 2001 Internal Sepsis Definition Con-
ference revisited these definitions to evaluate their efficacy and suggest im-
provements. In the conference was stated that there had been an impetus
from experts in the field to modify these definitions to reflect the current
understanding of the pathophysiology of these syndromes[12].

Participants of the 2001 Internal Sepsis Definition Conference agreed that in
the 1991 ACCP / SCCM Consensus Conference, SIRS definition was overly
sensitive and provided little clinical utility in the initial diagnosis of sepsis.
Clinicians did not make the diagnosis of sepsis based on the 1991 SIRS crite-
ria, but rather by analyzing the host of symptoms and deciding the patient
looks septicregardless of a documented source of infection[12].

Thus in hopes to increase utility in making the sepsis diagnosis, a more
comprehensive list of SIRS criteria was established as provided in Table A.2
on page v. Except for expanding the SIRS list, the conference found no evi-
dence to support any need for changes in the 1991 ACCP / SCCM Consensus
Conference definition.

A.2 Epidemiology

In the United States, sepsis is the second-leading cause of death in non-
coronary Intensive Care Unit (ICU) patients and the tenth most common
cause of death overall according to data from the Centers for Disease Control
and Prevention (the first being heart disease)[1]. Sepsis is common and also
more dangerous in elderly, immunocompromised, and critically ill patients.
It occurs in 12% of all hospitalizations and accounts for as much as 25%
of ICU bed utilization. It is a major cause of death in intensive-care units
worldwide, with mortality rates that range from 20% for sepsis, through
40% for severe sepsis, to over 60% for septic shock.

It is importante to note that the results in the studies of sepsis are highly
sensitive to the case definition for sepsis used in the study. Additionally,
retrospective studies (for examples using discharge summaries) are at the
mercy of clinicians to make diagnoses and most of those are made on the
basis of a gut feeling that the patient is looking septic.
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Diagnostic criteria for sepsis
Infection, documented or suspected, and some of the following

General variables:

Fever (core temperature >38.3°C)

Hypothermia (core temperature <36 °C)

Heart rate >90min~! or >2 SD above the normal value for age
Tachypnea®

Altered mental status

Significant edema or positive fluid balance (>20 mL/kg over 24 hrs)
Hyperglycemia (plasma glucose >120 mg/dL or 7.7 mmol/L) in the
absence of diabetes

Inflammatory variables:

Leukocytosis (WBC count >12,000 uL~1)

Leukopenia (WBC count <4000 pL~1)

Normal WBC count with >10% immature forms

Plasma C-reactive protein >2 SD above the normal value
Plasma procalcitonin >2 SD above the normal value

Hemodynamic variables:

Arterial hypotension (SBP <90 mm Hg, MAP <70, or an SBP decrease
>40 mm Hg in adults or <2 SD below normal for age)

Sv02 >70%b

Cardiac index >3.5 L- min~!- M~%3

Organ dysfunction variables:

Arterial hypoxemia (PaOy/FI05<300)

Acute oliguria (urine output <0.5 mL- kg=!- hr~! or 45 mmol/L for at
least 2 hrs)

Creatinine increase >0.5 mg/dL

Coagulation abnormalities (INR >1.5 or aPTT >60 secs)

Ileus (absent bowel sounds)

Thrombocytopenia (platelet count <100,000 L 1)
Hyperbilirubinemia (plasma total bilirubin >4 mg/dL or 70 mmol/L)

Tissue perfusion variables:
Hyperlactatemia (>1 mmol/L)

Decreased capillary refill or mottling

Table A.2: In the 2001 Internal Sepsis Definition Conference the definition of SIRS
was updated.
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Appendix B

Software

All the procedures used in this work will be described in this Appendix. The
first Section refers to the extraction from the Mimic II Clinical Database of
the variables for the patients in the study group and expands the discussion
made in Chapter 2. The second Section describes the variables preparation
modules and it is also an extension of the discription provided in Chapter 2.

The third Section describes all the procedures used to perform the propen-
sity analysis described in Chaper 3.

The last Section briefly summarize the procedures regarding the outcome
analysis and the machine learning with gp analysis of Chapters 4 and 5.

B.1 Dataset Extraction

As already anticipated in Chapter 2, the extraction of the records for the
analysis has been performed by three Matlab Scripts: a)SQL Script, b)Diuretics
Naive Condition and c)Data Filtering. In this Section a deeper description
of the produced code will be made.

B.1.1 SQL Script

The SQL Script module consists in 21 queries on a PostgreSQL database
containing an updated image of the Mimic II Clinical Database. The schema
of the database is well defined in[5], so refers to it for a deeper description.
The next contents are also drawn from|5].

In Figure B.1 on page viii are shown the relationships between the tables
of the database which identify a patient. The clinical conditions and related
exams of each patient are stored for four significant contexts each of these
in a separated series of tables: chart events, see B.2 on page ix, medication
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MIMIC2V26,NOTEEVENTS MIMIC2V261CDS
PFv SUBJECTID  NUMBER () F v SUBJECT_ID  NUMBER (7)
PF+ HADM_ID NUMEER (7) F + HADM_ID NUMBER (7)
FICUSTAY.D  NUMBER (7 ——4 “SEQUENCE  NUMBER (7)
P ELEMID NUMEER (7) + CODE VARCHAR? (100 BYTE
P v CHARTTIME  TIMESTAMP WITH TIME ZONE DESCRIPTION  VARCHAR? (255 BYTE
REALTIME TIMESTAMP WITH TIME ZONE PR TR v
FoCGiD NUMEER (7)
P CORRECTION  CHAR(1 BYTE O
Foocub NUMEER (7) I
CATEGORY VARCHAR2 (26 BYTE |
TITLE VARCHAR2 (255 BYTE |
TEXT CLOB
EXAM_NAME  VARCHAR2 (100 BYTR |
PATIENT_INFO HAR2 (4000 BYTE i
v MIMIC2V2GADMISSIONS
M P * HADM_ID NUMEER (7)
F v SUBIECT_ID  NUMBER (7)
MIMIC2V26.D_PATIENTS GLOTCD TR DAL
“DISCHDT ~ DATE
P * SUBJECT_ID NUMEBER (7) [ » DXPIRELFLG  CHAR (1 BYTD
Rt
o yARcuARZ EaTD 41 ADMISSIONS_PK (HADM_ID)

DATE L antaccinne a1 supiccT in

* HOSPITAL_EXPIRE_FLG ~ VARCHAR2 (1 BYTE v

Figure B.1: Relationship between the table containing the patients’ data and hos-
pital admissions, ICD9 codes and note events tables.

events, see B.3 on page x, input/output events, see B.4 on page xi and lab
events, see B.5 on page xii.

Should be noted that even if different tables are made for each context, all
of them have a central table where the timeline of the events for each patients
are saved and a series of other tables where are saved the descriptions of these
events, for instance the kind of performed medication or the duration of an
exam.

The queries are performed for the following tasks and realize the extrac-
tion of the values for the patients on the cohort of study:

1. triples ordered by subject_id: performs the steps of the filtering
and order the results by subject_id;

2. triples ordered by hadm_id: performs the steps of the filtering and
order the results by hadm_id;

3. triples ordered by icustay_id: performs the steps of the filtering
and order the results by icustay_id;

4. discharges summaries ordered by hadm_id: extracts the dis-
charge summaries and order the results by hadm_id;

5. diuretics ordered by icustay_id: extracts the IDs of the patients
who got diuretics at least one time during the stay in ICU and order
the results by icustay_id;

6. diuretics first time ordered by icustay_id: extracts the time when
the patients got diuretics for the first time and order the results by
icustay_id;
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MIMIC2V26A_CHARTDURATIONS

PF * SUBJECT_ID NUMEER (7)
F ICUSTAY_ID NUMBER. (7}
PF + ITEMID NUMEER (7)
P ELEMID NUMBER. (7}
P * STARTTIME TIMESTAMP WITH TIME ZONE
* STARTREALTIME  TIMESTAMP WITH TIME ZONE
ENDTIME TIMESTAMP WITH TIME ZONE
F o CUD NUMEER (7)
DURATION NUMEER
5= A_CHARTDURATIONS_PK SUBJECT_ID, ITEMID, ELEMID, STARTTIN
k4
W
MIMIC2V 26.0_CHARTITEMS
P+ ITEMID NUMEER (7)
LABEL VARCHARZ (110 BYTE)

CATEGORY VARCHARZ (50 BYTE
DESCRIPTION  VARCHAR2Z (255 EYTE

= D_CHARTITEMS_PK (ITEMID)

MIMIC2V26.CHARTEVENTS

PF* SUBJECT_ID NUMEER (7)
F  ICUSTAY_ID NUMBEER (7)
PF * ITEMID NUMEER (7)
P * CHARTTIME TIMETAMP WITH TIME ZONE
P~ ELEMID NUMBEER (7)

* REALTIME TIMESTAMP WITH TIME ZONE
F CGID NUMEER (7)
F CUD NUMBEER (7)

VALUEL VARCHARZ (110 BYTE

VALUELNUM NUMEER

VALUEIUOM VARCHARZ (20 BYTE
VALUE2 VARCHARZ (110 BYTE
VALUEZNUM NUMBER

VALUEZUOM VARCHARZ (20 BYTE)
RESULTSTATUS  VARCHARZ (20 BYTE
STOPPED WVARCHARZ (20 BYTE
ANNOTATION VARCHARZ (500 EYTE

2= CHARTEVENTS_PK SUBJECT_ID, ITEMID, CHARTTIME, ELEMID)
v

Figure B.2: Patients’ chart values are stored in 3 tables: chartevents, d_chartitems
and a_chartdurations. The events’ timeline is in the chartevents table while the
related elements and durations are in the other tables
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MIMIC2V26.MEDEVENTS

F ~ SUBJECT_ID  NUMEER (7)
ICUSTAY_ID  NUMBER (7

=

F * [TEMID NUMBER (7}
* CHARTTIME ~ TIMESTAMP WITH TIME ZONE
* ELEMID NUMBER (7)
* REALTIME TIMESTAMP WITH TIME ZONE
F CGID NUMBEER (7)
F  CuD NUMBER (7)
VOLUME NUMBER
DOSE NUMBER

DOSEUOM WARCHAR2 (20 BYTE
F  SOLUTIONID  NUMBER (73
SOLVOLUME ~ NUMEBER

SOLUNITS WVARCHARZ (20 BYTE

ROUTE WARCHARZ (20 BYTD
STOPPED WARCHAR2 (20 BYTE)
SITE WARCHAR2 (20 BYTE

ANNOTATION VARCHARZ (500 BYTE

< MEDEVENTS_PK SUBJECT_ID, ITEMID, ELEMID)
& MEDEVENTS_O1 (CUID) v

YY

MIMIC2V26A_MEDDURATIONS

F  SUBJECT_ID NUMEER (7)
MIMIC2V26.D_MEDITEMS F ICUSTAY_ID NUMEER (7)
F - TEMD NUMBER ) F o ITEMID NUMEBER (7)
LABEL VARCHAR2 (20 BYTE * ELEMID NUMBER (7)
cAreudiy’ WAGHAR ST 1 " TARTREALIME  TIMSTAMPWITH TIME FONE
MESTAMP WITH TIME ZON
@ D_MEDTEMS_EK. GTEMID) ENDTIME TIMESTAMP WITH TIME ZONE
F cuiD NUMEER (7)
DURATION NUMEER
& A_MEDDURATIONS_O1 (CUID)
+ & A_MEDDURATIONS_PK SUBJECT_ID, ITEMID, ELEMID) v

MIMIC2V26ADDITIVES

PF ~ SUBJECT_ID NUMEER (7}
F  ICUSTAY_ID  NUMBER (7)
PF * ITEMID NUMBER (7)
PF~ |OITEMID NUMBEER (7)
P~ CHARTTIME  TIMESTAMP WITH TIME ZONE

P * ELEMID NUMBER (7)
F CGID NUMBER (7)
F CuD NUMBER (7)

AMOUNT NUMEER
DOSEUNITS WARCHAR2 (20 BYTE
ROUTE WVARCHARZ (20 BYTE
MLPERUNIT ~ NUMEER

&= ADDITIVES_PK (ITEMID, IOITEMID, SUBJECT_ID, CHARTTIME, ELEM
v

Figure B.3: Patients’ medications are stored in 4 tables: medevents, d_meditems,
a_meddurations and additives. The events’ timeline is in the medevents table while
the related elements and durations are in the other tables.
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&= ADDITIVES_PK (ITEMID, IOITEMID, SUBJECT_ID, CHARTTIME, ELEM
h 4

Figure B.4: Patients’ IO values are stored in 6 tables:
a_iodurations, deliveries, totalbalevents and additives.

WIMICZV 26JOEVENTS MIMIC2V 26,DELIVERIES
PF ~ SUBJECT_ID MUMBER (7) F * SUBJECT_ID MUMBER (7)
F ICUSTAY_ID MUMBER i7) F ICUSTAY_ID MUMBER. (7}
PF + ITEMID NUMEER (7) F * IOITEMID NUMEER (7)
P+ CHARTTIME TIMESTAMP WITH TIME ZONE * CHARTTIME  TIMESTAMP WITH TIME ZONE
P+ ELEMID NUMBER (7) |+ ELEMID NUMBER (7)
F ALTID MUMBER (7) |<:F Gl MNUMBER (7)
REALTIME TIMESTAMP WITH TIME ZONE F cuin MUMBER (7}
F o CGID NUMEER (7) SITE VARCHAR2 (20 BYTE
F cuip MUMBER (7) RATE MUMBER
VOLUME MUMBER “ RATEUOM VARCHARZ (20 BYTE
VOLUMEUOM VARCHAR2 (20 BYTE
UNITSHUNG NUMBER & DELIVERIES_PK. SUBJECT_ID, IOITEMID, ELEMID)
UNITSHUNGUOM VARCHAR2 (20 BYTE < DELIVERIES_O1 (CUID) %
NEWBOTTLE NUMEBER
STOPPED VARCHAR? 20 BYTE MIMIC2V 26.TOTALBALEVENTS
ESTIMATE VARCHAR2 (20 BYTE PF + SUBJECT_ID NUMEBER (7)
DRESSINGCHANGED ~ NUMBER F ICUSTAY_ID NUMEBER (7)
TUEINGCHANGED MUMBER PF = ITEMID NUMBER (7)
ASSESSMENT NUMEER P+ CHARTTIME TIMESTAMP WITH TIME ZONE
ANNOTATION VARCHAR2 (500 BYTE P+ ELEMID NUMEBER (7)
* REALTIME TIMESTAMP WITH TIME ZONE
FooCGID NUMBER (7)
(3= |OEVENTS_PK SUEBJECT_ID, ITEMID, CHARTTIME, ELEMID) 13 cuib NUMBER (7)
T PERVOLUME NUMBER
CUMVOLUME ~ NUMEBER
ACCUMPERIOD VARCHAR2 (20 BYTE
MIMIC2V26.D_IOITEMS ] APPROX WVARCHAR?2 (20 BYTE
P+ ITEMID NUMBER. (7} ; RESET NUMEER
LABEL VARCHAR? (600 BYTD |  sToPPED VARCHAR2 (20 BYTE
CATEGORY  VARCHARZ (50 BYTE ANNOTATION ~ VARCHARZ (500 BYTE
e DT EMS_ PACTERID) = TOTALBALEVENTS_PK SUBJECT_ID, ITEMID, CHARTTIME, ELEMID)
Y v
MIMIC 2V 26A_IODURATIONS
MINIC2V26ADDITIVES F * SUBJECT_ID MUMBEER (7)
PF* SUBJECT_ID  NUMBER (7) F ICUSTAY_ID NUMEER (7)
F  ICUSTAY_ID  NUMEBER (7) F oo ITEMID NUMEER (7}
PF~ ITEMID NUMEER (7} * ELEMID NUMBER (7)
FF * IOITEMID NUMBER (73 * STARTTIME TIMESTAMP WITH TIME ZONE
P+ CHARTTIME  TIMESTAMP WITH TIME ZONE |  STARTREALTIME  TIMESTAMP WITH TIME ZONE
P+ ELEMID NUMBER (7) ENDTIME TIMESTAMP WITH TIME ZONE
F o CGID NUMEBER (7) FooCUD NUMBER (7)
F o CuD NUMBER (7) DURATION NUMEBER
AMOUNT NUMEBER
DOSEUNITS WARCHARZ (20 BYTE & A_IODURATIONS_O1 (CUID)
ROUTE VARCHAR2 (20 BYTE & A_IODURATIONS_PK SUBJECT_ID, ITEMID, ELEMID) ¥,
MLPERUNIT ~ NUMEER

ioevents, d_ioitems,
The events’ timeline is in

the ioevents table while the related elements and durations are in the other tables.
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MIMIC2V26.0_LABTENS MIMIC2V 26.LABEVENTS
P ITEMID NUMBER (7) F * SUBJECT_ID  NUMEER (7)

* TEST_NAME VARCHAR2 (50 BYTE F HADM_ID NUMBER (7)

* FLUID ARCHARZ (50 EYTE FICUSTAY_ID  NUMEER (7)

* CATEGORY (50 EYTE F oo ITEMID NUMEBER. (7)
LOINC_CODE HAR2 (7 BYTE) < * CHARTTIME  TIMESTAMP WITH TIME ZONE
LOINC_DESCRIFTION ~ VARCHAR2 (100 BYTE VALUE VARCHAR2 (100 BYTE

(== D_LABITEMS_PK (TEMID) | ;/&Lgmum N s
& D_LABITEMS_O1 (LOINC_CODB ' VALUEUOM  VARCHAR2 (10 BYTE
& LABEVENTS_O1 SUBJECT_ID)
& LABEVENTS_O2 (HADM_ID)
MIMIC2V26.MICROBIOLOGY EVENTS @ &gg{gmg-g: :igéﬂ'{ghlm
7 4 =
P SUBIECT_ID NUMEER (7)
5 Pt N o) & LABEVENTS_OS (ICUSTAY_ID, ITEMID)
CHARTTIME TIMESTAMP WITH TIME ZONE
F SPECITEMID NUMEER (7)
F ORGITEMID NUMBER (7)
ISOLATE_NUM NUMBER s s s 2
F ABITEMID NUMEER (7) o __ TR TS
DILUTION_AMOUNT VARCHAR2 (72 BYTB > [ - e -
DILUTION_COMPARISON ~ VARCHARZ (10 BYTE I — — T A _.P ITEMID HUNEERE
INTERPRETATION VARCHAR2 (1 BYTE Bl ! e > CODE RCHARZ (10 BYTE
I TYPE VARCHAR2 (1
& MICROBIOLOGYEVENTS_O1 (AB_ITEMID) > | CATEGORY VARCHAR.
& MICROBIOLOGYEVENTS_O2 (HADM_ID) I s —»  LABEL VARCHAR
& MICROBIOLOGYEVENTS_O3 SUBJECT_ID) [ e e = —»  DESCRIPTION  VARCHAR?
& MICROBIOLOGYEVENTS_O4 (ORG_ITEMID) | '— — — — — — — — — — > v
& MICROBIOLOGYEVENTS_OS SPEC_ITEMID) @ 0_CODEDITEME_PICUTEMID)

Figure B.5: Laboratory and microbiology tests are stored in 4 tables: labevents,
microbiologyevents, d_labitems and d_coded items. The events’ timeline is in the
labevents and microbiologyevents tables while the related elements, containing full
descriptions of the lab tests (with LOINC codes, a database and universal standard

for identifying medical laboratory observations) and microbiology tests (specimin,
organism and antibiotic), are in the other tables.

7

10.

11.

12.

13.

14.

. demographic data ordered by icustay_id: extracts age and gen-

der for each patient and order the results by icustay_id;

race ordered by hadm_id: extracts the race for each patient and
order the results by hadm_id;

saps ordered by icustay_id: extracts the saps score for each patient
and order the results by icustay_id;

sofa ordered by icustay_id: extracts the sofa score for each patient
and order the results by icustay_id;

elixhauser ordered by hadm_id: extracts the elixhauser score for
each patient and order the results by hadm_id;

elixhauser binary ordered by hadm_id: extracts the elixhauser
parameters for each patient and order the results by hadm_id;

creatinine ordered by icustay_id: extracts the creatinine values
for each patient and order the results by icustay_id;

fluids inputs ordered by icustay_id: extracts the fluids inputs
values for each patient and order the results by icustay_id;
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15. fluids outputs ordered by icustay_id: extracts the fluids outputs
values for each patient and order the results by icustay_id;

16. use of vasopressors ordered by icustay_id: extract a binary value
representing if vasopressors were given to the patient during the ICU.
For the positive records are save the IDs of the patients order by
icustay_id;

17. mechanical ventilation ordered by icustay_id: extract a binary
value representing if patient was on mechanical ventilation during the
ICU. For the positive records are save the IDs of the patients order by
icustay_id;

18. arterial bp ordered by icustay_id: extract the bloop pressure val-
ues and order the results by icustay_id;

19. arterial bp mean ordered by icustay_id: extract the bloop pres-
sure mean values and order the results by icustay_id;

20. mortality within 30 days ordered by icustay_id: extract the
mortality value and order the results by icustay_id;

21. length of stay ordered by icustay_id: extract the lengths of stay
in ICU and order the results by icustay_id;

The first three queries perform the filtering steps and order the results by
the three IDs. This have been done to reduce the complexity of the next
procedure, that will have to perform some kind of searching in a list of
sorted files. The three files generated by these queries save the three IDs
of the records of the dataset and in this sense represent the individual of a
possibile GP population applied to the problem. The query four extract the
discharge summaries used in the next procedure.

The following queries extracts the data for each variable used in the
further the analysis. For the variables which have a timeline (see queries 6,
9, 10, 13, 14, 15, 18, 19), the time when a single value is refferring to is saved
has an offset with respect to when the respective patient entered the ICU.
For those variables with timeline the sampling rate of when the values are
saved is irregular, to normalize the rate to a daily one have been computed
the average of the values considered by day. Furthermore, it happens that
sometimes there are more values at the same time. To decrease the weight
of outlayes, have been computated the median value of those values.

The queries five and six extract the needed values for the input, that is
diuretics given or not in the ICU, variable. The time of the first dose of
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diuretics is extracted for statistical analysis on when this first dose occurs.
Queries seven and eigh extract pieces of information about age, gender and
race.

Queries nine, ten and eleven extract the values for saps, sofa and elix-
hauser, the twelfth query extract a binary value for 9 of the 30 parameters
of the elixhauser score. Query thirteen extract the values for the creatinine
variable.

Queries fourteen and fifteen extracts the amounts of fluids inputs and
outputs administrated to each patients. As these values are amount, the
single values available are summed daily instead of computing the average.

Queries sixteen and seventeen extract two binary values. The first one is
the use of vasopressors during the stay in ICU and the second one capture
a binary value regarding the usage of mechanical ventilation for a patient
during the ICU stay. This second value is not directly available in the
Mimic IT Clinical Database, therefore to obtain this value has been used an
euristic procedure: if there are two changes in the ventilator’s parameter
for a patient at a distance longer than 6 hours, have been assumed that
the current patient went from extubated to intubated, hence the mechanical
ventilation was considered occurred. Queries eighteen and nineteen extract
the values for the bood pressure.

The last two queries, the twenty and twenty first, extract the values for
the two identified outcomes: mortality within 30 days and the length of stay
in the ICU.

B.1.2 Diuretics Naive Condition

The diuretics naive condition refers to the fact that a certain patients re-
ceived diuretics before the admission in the ICU. A patients is considered
naive if didn’t receive any kind of diuretics before entering the ICU, all the
patients that were not naive, were discarded from the dataset.

The condition was verified by parsing a text like field extracted from the
Mimic IT Clinical Database, the discharge summary. Everytime a patient
leave the hospital, a summary is stored which a series of information regard-
ing the stay of the patient in the hospital, the drugs the patients declared
to have received before entering the hospital and the medications given to
the patient while leaving.

However, the discharge summaries don’t have a standard form: the Sec-
tion of the summary are usualy, even if not always, demarcated by Section
titles. These titles, though, are not always the same. For instance the di-
uretics informstion regarding the drugs given to the patient before entering
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the ICU could have been demarcated with DRUGS ON ADMISSION or
with ON ADMISSION or in other different ways.

The parsing process was made with a Perl script that gets as an imput
a file with the HADM_ID and the summary of each patient and provides as
an output a file with the list of HADM_ID of the naive patients.

B.1.3 Data Filtering

Aim of this procedure is to create a list of records combining the SQL filtering
to the diurecits naive condition. Plus the procedure set a series of variables
to be mandatory for a patient, for instance the fluids inputs or outputs, and
discard the records without a value for them.

The objective is achived in two steps. The first one go through the files
considered mandatory and save three files containing the triples ordered by
one of the three IDs each. The diuretics naive condition is combined with
the mandatory variables. The second step go throught the files provided by
step one and save in series of files the data for all the variales.

The input of this procedure are the files provided by the previous ones
except for the discharge summary, which are analized in the diretics navice
condition procedure. The output is a series of files all of them ordered by the
respective ID, three with the triples (that is defining the dataset’s records)
and the others with all the variables.

An easy method to go through the files for the seach would be to use two
nested loops for each file, one going through the triples file ordered by the ID
of the current variable, and one going through the file of the variable: this
approach has a complexity O[N - (n - m)], being N the number of variables
to be analized, n dimention of input file that is the current variable file, and
m the dimension of the dataset. In this way the extraction process was too
computationally expensive.

The complexity was then reduce to O[N - (n+m)] by exploiting the fact
that the files were in numerical acending order. In this way every line of the
files were read to most one time each. The pseudo-code of the algorithm is
shown in Algorithm 1 on page xvi.

B.2 Variables Preparation

The variables preparation consists in a transformation of the dataset’s values
in a format straight forward usable in the analysis procedures.

Before the variables preparation itself, are executed a few script as follow:
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Algorithm 1 Pseudocode of the algorithm used to perform the merging
process.

external loop go through the IDs file (F'1)
internal loop go through the current variable file (F'2)
while (Both files have lines) do
if F'1 == F2 then
go on reading one line from F2 file. Then write one line to output
end if
if F1!=F2ANDF1 < F2 then
save F'2 data and go on one step with F'1
end if
if F1!=F2ANDF1 > F2 then
go on reading from file F'2
end if
end while

e run a script to get age and gender values: in the Mimic IT Clinical
Database all patients over 90 years old have been saved as 200 years
old, the script get the true age. Then the value for gender, that is M
for male and F for female, is modified in a binary one, 0 for male and
1 for female;

e run a script to get the elixhauser values: extracts in single files the
binary values for the exlixhauser parameters;

e run a script to compute the balance values defined as inputs — outputs;

e run a script to define the times where to save certain values, that is
T1, T2 and T3, the times discussed previously in Chapter 2.

Completed these steps, the variables preparation starts and each variable is
saved in a file, in particulare the following procedures have been realized:

e average processing: to save the values for the variables that require to
calculate the average (or the sums) till a certain day;

e binary processing: to save the values for the binary variables;
e numeric processing: to save the values for the numeric variables;

e time processing: to save the values for the variables for the variables
with timelines.

xvi
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The scripts define above, also perform an analysis on the results and save
the in a file.

After the variables preparation the procedure save the results in two
files directly usable for the analysis. The first file contains the labels for the
computated variables, the second the data itself.

B.3 Propensity Analysis

The propensity analysis, following[6], have been performed by the following
procedures:

1. Fitting the Propensity Score: the propensity score, that is the the
conditional probability of assignment to a particular treatment given
a vector of observed covariates, is calculated with a logit model.

2. Generating the five Quintile: the patients are ranked according
their propensity score and then divided in five quintiles.

3. Assessing the Balance: the balance in each of the five quintilesis
evaluated with the ANOVA test for primary effects and secondary
effects.

4. Refining the Quintile: the balance in the quintileis improved by
inserting the variables with large F-ratio and the computing a new
logit model with them.

In Figure B.6 on page xviii the basic elements of the code produced to
implement the propensity method.

Now a description of these procedures will be provided. These Sections
extend what have already been discussed in Chapter 3. In Algorithm 2 on
page xix is shown an overview of all the propensity score process.

B.3.1 Fitting the Propensity Score

The propensity score is calculated by performing a two-phases stepwise dis-
criminant analysis with a logit model: first it is generated a model evaluating
the main effects of all the variables in the dataset. The output of this pro-
cess is a list of variables chosen as main effects. In the study 11 variables
were chosen in this first logit model.

After that, a second stepwise discriminant analysis is performed consid-
ering only the variables whose main effects were chosen in the first logit
model and in this second analysis the interactions between these variables

Xvii
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Algorithm 2 Pseudocode of the Propensity Score process.

Generate the stepwise logit model M1 on main effects
Generate the stepwise logit model M2 including interactions
Based on M2, compute the propensity score PS
Rank the patients based on PS and perform the subclassification
Evaluate the balance according to the F-ratios
Rank the variables based on their F-ratios
Chose the first variable in the ranked list, X
while (All the variables not in M2 have not considered) do
if (Including X), its F-ratio improves then
include X in the model and proceed to the next variable
end if
if (Including X?), its F-ratio improves then
include X? in the model and proceed to the next variable
end if
if (Including interaction of X), its F-ratio improves then
include interaction of X in the model and proceed to the next variable
end if
Chose the next variable in the ranked list, X = X
end while

XIX
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are considered: the result of this second logit model was a model of 17
variables, 11 main effects defined in the first stepwise discriminant analysis
and 6 interactions between them added in the second stepwise discriminant
analysis. The full list of those variables is presented in Chapter 3.

At this point, using this model it is possibile to calculate a probability of
getting the diuretics. Being z the resulting values available for each patient

using the model on their data, p(z) of receiving diuretics is: p(z) = %

B.3.2 Generating the five Quintile

The records of the patients are then ranked in an increasing order according
to the propensity score calculated with the second logit model. Based on
this ranked order, are define 5 groups, called quintile, and the patients with
a lower probability of being administrated with diuretics are in group 1 while
the ones with the higher one are in group 5.

B.3.3 Assessing the Balance

The balance in each quintileis evaluated using the ANOVA test. ANOVA
provides a statistical test of whether or not the means of several groups are

all equal.

variance—between—groups
variance—within—groups ’
partitioning of the total sum of squares S into components related to the

it is based on the

The test produces a ration F' =

effects used in the model.
Will be defined as S7 the sum of squares of the differences between the
means in each group, m;, and the overall mean m, that is: S; = >, n; -

2 with n; number of elements of group i.

(m; —m)

The will be defined as S5 the sum of squares of the differences between
the means in each group, m;, and the value of a certain element of that
group, x; j. That is Sp =), Zj ni - (i —mi)2

At this point, being k& the number of groups to be evaluated and n all
Si
the elements in the groups, the F-ratio defined by ANOVA is F' = (1)

(:22)"

B.3.3.1 Evaluating the Balance

At this point, the one-way ANOVA test have been performed on the original
dataset: the test compares the treated vs not treated patients and, of course,
the F-values are high.

Then the two-ways ANOVA is calculated on the dataset divided in the
5 quintile. The test produces two values: the first one is made considering

XX
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the main effect of the diuretics (given vs not given) variable. Consider for
instance the comparison between two binary variables, if the combinations
of their values are listed in a table, the result is a 2 x 2 matrix: the main
effect values that the two-way ANOVA would calculate on this table are
two, the first one considering the rows and the second one considering the
columns. The main effect values in the ANOVA test consider as gourps

/\ FACTORA [\

[\ A

FACTOR AO\rBo FAC#ORW
T 2
»

o
H
3)
=
"""
<MﬁR AQFB1 FACTOR ﬂl_*L,>

\ / \J

% \V

Figure B.7: The groups for a two-way ANOVA on the main effects. In red are the
2 groups considering the columns and in blue the 2 groups considering the rows.

to be compared only the rows or the columns, mixed combinations are not
allowed. In Figure B.7 the groups for main effects are shown.

The second values considers the interaction effects, that is the effects of
one factor on the others. An A - B interaction is a change in the simple
main effect of B over levels of A or the change in the simple main effect of
A over levels of B. Here are involved mixed combinations. In Algorithm 3
on page xxii are shown all the steps to perform a two-ways ANOVA.

In the plots in Chapter 4 are shown the improvements of the balance
both of main effects and interactions.

B.3.4 Refining the Quintile

The refinement is an iterative process. First all the variables excluded by
the model are ranked according to their F-ratios and of those the 25% is
inserted one by one in a new model. If after their inclusion, the balance for
the current variable is not improving, the square of this variable and then

xxi
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Algorithm 3 Pseudocode of the Two-Ways ANOVA with 2 binary vari-
ables.
Step 1: Consider the main effects, that is rows and columns of the two-

ways binary factors A and B

Step 2: Calculate the overall mean m

Step 3: Considering the rows (first factor, A), calculate the means of the
2 rows (i = 1,2), mq

Step 4: Considering the rows (first factor, A), calculate the elements of
the 2 rows (1 = 1,2), ng,;

Step 5: Calculate the between-groups sum of squares for A, S 4

Step 6: Considering each element of the groups x; ; calculate the within-
groups sum of squares for A, Sy,

Step 7: Calculate the number of groups k, = 2 and the elements in all
the groups n

Step 8: Calculate the ratio Fy, for factor A using Si 4, S2.4, kq and n
Step 9: Repeat the process for the columns (second factor, B), obteining
SLba 5271, and Fb

Step 10: Calculate the between-groups sum of squares, Sp,,, considering
all the 4 groups (2 rows and 2 columns)

Step 11: Calculate S 4.6 = Spw — S1,a5 —S1p

Step 12: Calculate the within-groups sum of squares, Sy,;, considering
all the 4 groups (2 rows and 2 columns)

Step 13: Calculate S 4.6 = Swi — 52,0, —S2

Step 14: Calculate the number of groups k4., = 2-2 and the elements in
all the groups n

Step 15: Calculate the ratio Fp., for interaction A - B using S1 .5, 52,4.6,
kop and n

xxii
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the interactions of it with the variables in the model generated in the fitting
phase are tried. If none of this possibilieties improves the F-ratio of the
analyzed variable, it is discarded. If it improves it is included in the model.

B.4 Outcome Analysis and Machine Learning with
GP Analysis

After performing the procedures of the previous steps, the ones relating to
these two types of analysis are simple.

As regards the outcome analysis, were carried out a series of regressions
performed using the methods provided by Matlab and a series of new stratifi-
cations performed using procedures similar to the ones previously described.

As regards the machine learning with gp analysis, as already said, the
executions of the genetic programming were carried out using GPLAB.

xxiil
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Appendix C

Details on the Datasets

In this Appendix details on the datasets will be provided.

C.1 List of Diuretics

The diuretics variable was computated by looking in the Mimic IT Clinical

Database for the following list of drugs:

acetazolamide (Diamox), dichlorphenamide (Daranide);

methazolamide(Glauctabs, MZM, Neptazane), torsemide (Demadex),
furosemide (Lasix);

pironolactone (Aldactone), amiloride (Midamor), triamterene (Dyre-

nium);

hydrochlorothiazide (HCTZ, HydroDIURIL, Aquazide H, Esidrix, Mi-
crozide), metolazone (Mykrox, Zaroxolyn);

methyclothiazide (Enduron, Aquatensen), chlorothiazide (Diuril), in-
dapamide (Lozol);

bendroflumethiazide (Naturetin), polythiazide (Renese), hydroflume-
thiazide (Saluron), chlorthalidone (Thalitone).

This list has been suggested by the medical experts.

C.2 List of Fluids

The fluids inputs variable has be computated looking in the Mimic IT Clinical

Database for the following list of items:

XXV
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e 106 - Lactated Ringers, 107 - .9% Normal Saline, 130 - D5/.45NS, 131
- D5/.45NS 10000.0ml;

e 134 - .9% Normal Saline 1000.0ml, 142 - Lactated Ringers 1000.0ml,
151 - 45% Normal Saline 1000.0ml, 152 - D5/.45NS 1000.0ml;

e 154 - D5NS, 165 - D5W 1000.0ml, 180 - .45% Normal Saline, 187 -
.9% Normal Saline 500.0ml;

e 214 - D5 Normal Saline, 219 - D5RL 1000.0ml, 249 - .9% Normal Saline
250.0ml, 297 - D5NS 1000.0ml;

e 299 - D5 Normal Saline 1000.0ml, 309 - .9% Normal Saline 100.0ml,
615 - D5/.45NS 2000.0ml, 631 - .9% Normal Saline 2000.0ml.

The number next to each fluid is the corresponding identifier in the database.

C.3 Variables Descriptive Statistics

In this Section histograms of the values of all the variables are provided.

Figure C.1 on page xxvii show the histograms for diuretics, mortality
and length of stay.

Figures C.2 on page xxviii and C.2 on page xxviii show the histograms
for gender, race, use of vasopressor and mechanical ventilation.

Figures C.4 on page xxx and C.5 on page xxxi show the histograms for
the 9 Elixhauser parameters.

Figures C.6 on page xxxii, C.7 on page xxxiii, C.8 on page xxxiv, C.9 on
page xxxv, C.10 on page xxxvi, C.11 on page xxxvii, C.12 on page xxxviii
show the histograms of all the numeric variables.
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C.4 Timeline Values Discussion

In this Section an overview of the correlations of the values for the variables
with timelines at 8 time points will be provided. The final decisions on how
to prepare timeline variables is in Chapter 2.

Here the earlier data that have been collected which informed the final
decisions are described. Follows the list of the studied time points:

Timepoint 1: Diuretics average over DT patients (189 of 1,522 patients);

Timepoint 2: Diuretics average over DT patients as fraction of length of
stay;

Timepoint 3: First fluids balance minimum,;
Timepoint 4: Second fluids balance minimum;
Timepoint 5: Stop of vasopressors average on 1,028 of 1,522 patients;

Timepoint 6: Stop of vasopressors average on 1,028 of 1,522 patients as
fraction of length of stay;

Timepoint 7: First blood pressure minimum;
Timepoint 8: Second blood pressure minimum.

These results showed that most of the defined time points were correlated
and not introduced new information regarding diuretics to the dataset. So,
it was decided to adopt the time points defined in Chapter 2

XXXIX
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0.75 0.70 0.75 0.83 0.75 0.72 0.76
0.75 1 0.86 0.88 0.79 0.87 0.83 0.85
0.70 0.86 1 0.89 0.75 0.82 0.86 0.84
0.75 0.88 0.89 1 0.78 0.86 0.85 0.89
0.83 0%S L7 0.78 1 0.90 0.77 0.79
0.75 0.87 0.82 0.86 0.90 1 0.81 0.84
02 0.83 0.86 0.85 0.77 0.81 1 0.90
0.76 0.85 0.84 0.89 0.79 0.84 0.90 1
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Table C.1: The correlations between 8 time points for the saps variable.

1 0.74 0.70 10).745) 0.80 0.72 0.72 0.76
0.74 1 0.87 0.89 0.79 0.89 0.86 0.88
0.70 0.87 1 0.91 (0).77 0.84 0.89 0.87
0575 0.89 0.91 1 0.79 0.87 0.87 0.91
0.80 0.79 0L 7T 0.79 1 0.90 0.79 0.80
0.72 0.89 0.84 0.87 0.90 1 0.85 0.86
0.72 0.86 0.89 0.87 0.79 0.85 1 0.93
0.76 0.88 0.87 0.91 0.80 0.86 0.93 1
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Table C.2: The correlations between 8 time points for the sofa variable.
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| T | T2 | T3 | T4 | T5 | T6 | T7 | T8

1 0.89 0.37 0.38 0.47 0.45 0.46 0.47

T2 0.89 1 0.43 0.42 0.48 0.49 0.49 0.50
T3 0.37 0.43 1 0:99 0.81 0.82 0.82 0.82
T4 0.38 0.42 [ 1 0.81 0.82 0.82 0.82

0.47 0.48 0.81 0.81 1 099 0.97 097
T6 0.45 0.49 0.82 0.82 0.99 1 0.98 0.98

_'
-]

(=] (6)]

0.46 0.49 0.82 0.82 0.97 0.98 1 0.99
0.47 0.50 0.82 0.82 0.97 0.98 0.99 1

_|

Table C.3: The correlations between 8 time points for the creatinine variable.

1 0.66 0.58 0.61 0.68 0.60 0.61 0.63
0.66 1 0.67 0.68 @55 0.62 0.65 0.66
0.58 0.67 1 0.93 0.62 0.68 0.80 0.78
0.61 0.68 093 1 0.64 0.71 0.78 0.78
0.68 55 0.62 0.64 1 0.87 0.66 0.68
0.60 0.62 0.68 0.71 0.87 i 0.66 0.68
0.61 0.65 0.80 0.78 0.66 0.66 1 0.92
063 0.66 0.78 0.78 0.68 0.68 0.92 1
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Table C.4: The correlations between 8 time points for the fluids inputs variable.

1 0.47 0.38 0.40 0.50 0.35 0.37 0.48
0.47 1 0.55 057 0.43 0.50 0.36 0.42
0.38 0.55 1 0.72 0.45 0.49 0.56 0.54
0.40 @57 0.72 1 0.45 0.52 055 055
0.50 0.43 @1/355) 045 1 0.80 0.60 0.74
0:35 0.50 0.49 0.52 0.80 1 0.60 0.66
03 0.36 0.56 055 0.60 0.60 1 0.76
0.48 0.42 0.54 055 0.74 0.66 0.76 1

—
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: The correlations between 8 time points for the fluids outputs variable.

xli



xlii APPENDIX C. DETAILS ON THE DATASETS

0.35 0.30 0.36 0.46 0.40 028 0.35
0.35 1 0.39 0.42 0.38 0.42 052 0.34
0.30 0.39 1 0.68 0.36 0.42 0.55 0.47
0.36 0.42 0.68 1 0.41 0.40 0.52 0.53
0.46 0.38 0.36 0.41 1 0.80 0.42 0.45
0.40 0.42 0.42 0.40 0.80 1 0.35 0.39
025 0.32 0.55 0:52 0.42 0.35 1 0.68
0.35 0.34 0.47 0.53 0.45 0.39 0.68 1
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: The correlations between 8 time points for the fluids balance variable.

1 0.63 054 0.62 0.79 0 7l 0.62 0.63
0.63 1 064 0.65 0.60 0.64 0.64 0.65
054 0.64 1 0.85 0.57 0.62 0.71 073
0.62 0.65 0.85 1 0.62 0.66 0.68 0.73
0.79 0.60 0.57 0.62 1 0.91 0.59 0.60
0.71 0.64 0.62 0.66 0.91 1 0.62 0.62
062 0.64 0.71 0.68 0.59 0.62 1 0.83
0.63 0.65 0373 073 0.60 0.62 0.83 1

— |-

|||
(7]

]
[T
| 15

Table C.7: The correlations between 8 time points for the vasopressors amounts
variable.

0.55 0155 0.60 0.68 0.59 0.58 0.60
T2 0.55 1 0.64 0.59 0.59 0.62 0.63 0.60
T3 0.53 0.64 1 0.82 0.59 0.63 0.71 0.65
T4 0.60 0.59 0.82 1 0.60 0.65 0.67 0.73
T5 0.68 0.59 0.59 0.60 1 0.88 0.60 0.60
T6 0.59 0.62 0.63 0.65 0.88 1 0.62 0.62
T7 0.58 0.63 0.71 0.67 0.60 0.62 1 0.84
T8 0.60 0.60 0.65 0%:3 0.60 0.62 0.84 1

Table C.8: The correlations between 8 time points for the blood pressure variable.
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C.5 Dataset Correlations

Tables C.9 and C.10 on page xliv show an overview of the correlations be-
tween the variables of the study at an earlier point at time. Table C.11
on page xlv provide full description of the abbreviations. This shows that
all the parameters are sensible and that the weight of the possible outliers
present in the database has been mitigated. In red are the correletion values
which are significant.

-mmmmmmmmm

-0.1 0,08 001 0,14 003 -00 -00 -00 -00 -00 037
04 1 048 062 032 003 0.16 0,16 -01 -00 04 -0.2
m 008 048 1 050 067 004 0,18 021 -00 -00 037 0.14
m 001 062 050 1 069 002 029 029 -02 -00 056 -00
m 014 032 067 069 1 004 025 030 -0.1 -00 038 0.16
m 0,03 003 004 002 004 1 006 008 -00 -00 007 -00
-00 016 0,18 029 025 006 1 074 -00 -00 016 -00
-00 0,16 021 029 030 008 074 1 -00 -00 016 -00
-0 -0 00 -02 -01 -00 00 -00 1 040 -01 -00
-0 -00 -00 -00 -00 -00 -00 -00 040 1 -0.0 0.00
-00 04 037 056 038 007 0.16 0.16 -01 -00 1 -00
- 037 -02 014 -00 016 -00 -00 -00 -00 000 -00 1

Table C.9: Correlations between a subset of the variables of the final dataset. In
red the values with high correlation.
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-mmmmmmmm

0,30 0,06 004 0.70 033 011 0,23 006 001 011 -01
1 0,03 0,03 020 0,18 0,16 0,10 0,09 0,07 0,01 0,01
003 1 038 -06 002 012 -01 -00 0,01 -03 0,03
0,03 038 1 -02 001 004 -00 0,00 0,00 -0,1 0,08
020 06 02 1 018 -0,0 028 008 -00 037 -0,1
0,18 0,09 001 018 1 023 025 010 029 0,14 0,15
m 011 016 0,12 0,04 -00 023 1 003 003 008 -00 0,02
\'~y§ 0.23 0,10 -01 -00 028 025 003 1 044 020 033 -00
\'-v41 0,06 009 -00 0,00 008 0,10 0,03 044 1 0,6 0,5 0,02
\"-\ 0.01 007 0,01 0,00 -0.0 029 0.08 020 0.16 1 022 035
m 01 o001 -03 -01 037 0,14 -00 033 0,15 022 1 -00
-0,1 001 003 008 -01 015 002 -00 002 035 -00 1

Table C.10: Correlations between a subset of the variables of the final dataset. In
red the values with high correlation.
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Abbreviation Description
Di Abministration of Diuretics
Sal SAPS at the first day in ICU
Sa2 SAPS sum during the stay in ICU
Sol SOFA at the first day in ICU
So2 SOFA sum during the stay in ICU
Eli Elixahuser Score
Crl Creatinine at the first day in ICU
Cr2 Creatinine sum during the stay in ICU
Bpl Arterial Blood Pressure at the first day in ICU
Bp2 Arterial Blood Pressure sum during the stay in ICU
Fil Fluids Inputs at the first day in ICU
Fi2 Fluids Inputs sum during the stay in ICU
Fol Fluids Outputs at the first day in ICU
Fo2 Fluids Outputs sum during the stay in ICU
Fbl Balance Input — Outputs sum during the stay in ICU
Fb2 Balance sum from TotalBalanceEvents
Fb3 Balance at the first day in ICU from TotalBalance Events
Val Amount of Vasopressors at the first day in ICU
Va2 Amount of Vasopressors sum during the stay in ICU
Ve Mechanical Ventilation
MO Mortality
LS Length of Stay

Table C.11: Abbrevation used in the correlations tables.
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C.6 Experts Datasets

Except for the datasets described in Chapter 3, the propensity analysis was

performed on two more lists provided by medical experts'. In this Section

the results on this two datasets will be presented.

List of the variables chosen by the doctors follow:

e Experts list 1: Chosen variables:

H
o

11.

© PN e oA WD

Age when admitted in the ICU (z2)

Race (white vs not white) (z4)

Elixhauser overall (x15)

Elixhauser binary (selected 9 fields) (216 — x24)
Creatinine mean of values during the first day (x26)
Fluids inputs sum of values during the first day (x31)
Fluids outputs sum of values during the first day (x36)
Fluids balance sum of values during the first day (z41)
Use of vasopressors in the ICU (x45)

Mechanical ventilation in the ICU (x46)

Arterial bp mean of values during the first day (z48)

e Experts list 2: Chosen variables:

,_.
e

11.

© ° NS o WD

Age when admitted in the ICU (x2)

Race (white vs not white) (x4)

Elixhauser overall (x15)

Elixhauser binary (selected 9 fields) (x16 — x24)
Creatinine mean of values during the first day (x26)
Fluids inputs sum of values during the first day (x31)
Fluids outputs sum of values during the first day (x36)
Fluids balance sum of values during the first day (z41)
Use of vasopressors in the ICU (x45)

Mechanical ventilation in the ICU (x46)

Arterial bp mean of values during the first day (x48)

!The work has been performed with the support of medical experts, including Dr. Leo
Celi, MD Critical Care Physician - Boston, MA and John Danziger, MD Department of
Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center - Boston, MA.
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12. Creatinine mean of values during day T1 (x27)
13. Fluids inputs sum of values during day T1 (z32)
14. Fluids outputs sum of values during day T1 (x37)
15. Fluids balance sum of values during day T1 (x42)

In Figures C.13 on page xlviii and C.14 on page xlix the improvements
in the balance after subclassifiction with the list of variables provided above
are shown:

Finally, a comparison of the results between these 2 new datasets is now
provided:

e Experts list 1: These quintileswere created with the help of medical
experts. They seems to be more balanced then the ones created with
the stepwise method, because the propensity number calculated in
this way was less predictive. The results for this dataset are shown in
Table C.12 on page L.

Quintile 1 is unbalanced and it should not be considered for the anal-
ysis. The length of stay in ICU appears to be longer for the patients
who got diuretics in this case too, while the chances of survival are
better for patients who did not get diuretics belonging to quintile 3
and for patients who got diuretics belonging to quintile 5.

e Experts list 2: These quintileswere created with the help of medical
experts too and they are similar to, even though not the same, the
previous one. In fact in this case the accurancy of the model seems to
be improved.
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Quintile 1 PS € [0.00;0.02]

Diuretics given

Diuretics not given

Number of patients 4 300
Deaths 0% 26%
Mean length of stay 4 days 2.3 days
Quintile 2 PS € [0.02;0.08] | Diuretics given | Diuretics not given
Number of patients 18 286
Deaths 44% 26%
Mean length of stay 12 days 5 days
Quintile 3 PS € [0.08;0.13] | Diuretics given | Diuretics not given
Number of patients 34 270
Deaths 41% 48%
Mean length of stay 10.9 days 7 days
Quintile 4 PS € [0.13;0.19] | Diuretics given | Diuretics not given
Number of patients 46 258
Deaths 39% 43%
Mean length of stay 12.4 days 9.9 days
Quintile 5 PS € [0.19;0.65] | Diuretics given | Diuretics not given
Number of patients 86 218
Deaths 34% 47%
Mean length of stay 19.6 days 8.2 days

Table C.12: Results on experts list 1 dataset.
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Quintile 1 PS € [0.00;0.02]

Diuretics given

Diuretics not given

Number of patients 2 302
Deaths 0% 29%
Mean length of stay 3.5 days 2.2 days
Quintile 2 PS € [0.02;0.06] | Diuretics given | Diuretics not given
Number of patients 15 289
Deaths 26% 32%
Mean length of stay 14.2 days 5 days
Quintile 3 PS € [0.06;0.12] | Diuretics given | Diuretics not given
Number of patients 28 276
Deaths 42% 45%
Mean length of stay 12.4 days 7.2 days
Quintile 4 PS € [0.12;0.19] | Diuretics given | Diuretics not given
Number of patients 46 258
Deaths 32% 46%
Mean length of stay 11.5 days 8.9 days
Quintile 5 PS € [0.19;0.77] | Diuretics given | Diuretics not given
Number of patients 97 207
Deaths 42% 37%
Mean length of stay 18.2 days 8.3 days

Table C.13: Results on experts list 2 dataset.
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Appendix D

Statistical Methods

In this Appendix will be provided some details on the used statistical meth-
ods.

D.1 Basic Stuff on Calculating a Propensity Score

It is essential to realize that the outcome variable is not used in this step.

D.1.1 Using the Propensity Score

There are different ways of using the propensity score even if, regardless of
the technique, it is always calculated in the same way. However, once the
propensity score is calculated, its application is different, and this will now
be described. The following contents are drawn from[13].

The three most common analytical techniques based on the propensity
score are matching, stratification and regression adjustment. In the study
described in Chapter 3, the stratification approach have been followed.

e Matching by Propensity Scores: Matching is a technique for ad-
justing baseline characteristics. Control subjects are matched with
treatment subjects on important baseline characteristics, which need
to be controlled for (potential confounders). However, an important
drawback is the difficulty in finding close matches for all important
confounders. The more confounders that require matching, the harder
it is to find suitable patients in each group, with a corresponding reduc-
tion in sample size. As already noted, propensity scoring summarizes
all measured confounders in a single score. So, using the propensity
score requires the matching of only one (composite) factor and offers

liii
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greater ease of use. This is one of the great advantages of this statis-
tical technique.

Stratification by Propensity Scores: Stratification is another com-
monly used technique in non-randomized observational studies to con-
trol for measured differences in baseline characteristics. Patients are
first grouped in strata determined by their propensity score and then
treated and control patients in the same strata are compared directly.
Similarly to matching, difficulty arises when the number of baseline
characteristics increases.

Regression Adjustment based on Propensity Scores: Propen-
sity scores can also be used in a regression adjustment. Recall, the
propensity score is obtained by using a logistic regression model, with
exposure to treatment as the dependent variable and all baseline char-
acteristics as independent variables. In regression adjustment, the
propensity score is used as the only confounding variable in associa-
tion with the exposure to treatment (the primary predictor variable)
to estimate the effect of the exposure on the outcome.

In the analysis that have been conducted in Chapter 3, the propensity

score was used by including it out logistic regression models. However, it

was NOT the only confounding variable. Variables related to the health

condition of the patient have added because was suspected that they were

also effecting mortality or effect length of stay.
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D.2 Linear Regression

Linear regression is an approach to modelling the relationship between a
scalar dependent variable y and one or more explanatory variables denoted
X.

The model of linear regression is:
Yi = Bo+ Bi - Xi+ pi- (D.1)

where:

i€[l,n];

Y; is the dependent variable;

X, is the independent variable;

Bo + i - X; is the regression function;

Bo is the y-intercept of the regression function;
B; is the slope of the regression function;

w; is the statistical error.

In linear regression, data are modelled using linear predictor functions,
and unknown model parameters are estimated from the data. Such mod-
els are called linear models. Like all forms of regression analysis, linear
regression focuses on the conditional probability distribution of y given X.

D.2.1 Generalized Linear Model

The generalized linear model generalizes linear regression by allowing the
linear model to be related to the response variable via a link function and
by allowing the magnitude of the variance of each measurement to be a
function of its predicted value.

D.2.2 Logistic Regression

Logistic regression is a special case of generalized linear model with link
function as logit function.

(o) = T = a+ 67 f(o) (D2)

It is a regression model applied in cases where the dependent variable y is
a dichotomous attributable to the values 0 and 1.

Iv
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D.3 Medical Studies: P-values and Statistical Sig-
nificance

Null Hypothesis: The independent variable is responsible for random effects
(rather than actual difference) in outcome. Whether the difference in out-
come is just pure chance based on the effect of this variable. To answer,
P-value derivation considers independent variable’s coefficient. The only
thing can be said analyzing the P-value is that, when repeating
the experiment, in the 97% of the cases a smaller difference be-
tween the groups than in the observed ones would be observed,
while in the remaining 3% the difference would be greater.

In this Section the use of P-value in this context will be described. The
following contents are drawn from[14]

D.3.1 Null and Alternative Hypothesis

The statistical and probabilistic formalization of medical studies is based
on the formulation of a hypothesis to be tested on the basis of collected
data. The null hypothesis is that the studied treatment produces absence
of effect to the patients or more generally that there is absence of difference
between the two treated and untreated patients. The alternative to the null
hypothesis (which defines what is expected to be true if the null hypothesis
is false), that is that there is a difference between the two groups of patients.

In this context, the statistical and probabilistic formalization of medical
studies aim at statistically defining if a given treatment is making or not
the difference between the treated and untreated patients in the collected
data. Once the data have been collected, their consistency with the null
hypothesis will be measured. More precisely, will be determined which of
the two hypotheses is statistically more plausible.

The p-value can be used to analyze the importance of a variable in a
model. Being in fact the null hypothesis that the inclusion of a given variable
x; in the model does not make a significant contribution, as discussed above
a small p-value goes along with the rejection of this hypothesis. Hence,
a small p-value, in the already discussed ranges, could indicate if a given
variable x; is important or not for the outcome.

D.3.2 Parametric and Non-Parametrics Hypothesis Tests

A statistical test is parametric if assumes that the data has come from a type
of probability distribution and makes inferences about the parameters of the
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distribution. In a non-parametric test, instead, the data are not assumed to
come from a given distribution.

In the analysis made on the diuretics problem, mortality was studied with
the Chi-squared test, a non-parametric test usable for binary (dichotomous)
variables, while length of stay was studied with T test, a parametric test
usable for continuous variables.

D.3.3 Hypothesis Test with P-value
D.3.3.1 How a P-value is calculated

The P-value is the probability of obtaining a test statistic at least as extreme
as the one that was actually observed, assuming that the null hypothesis is
true. Being X the expected value, Z the observed value and Hy the null
hypotesis, the P-value is:

P(X > Z | Hy) (D.3)

D.3.3.2 Interpretation of a P-value

In this context the P-value is defined as the probability that quantifies the
strength of evidence expressed by the observed data against the null hy-
pothesis and in favor of the alternative one. In other words, the P-value is
a probability that expresses whether it is more plausible that the observed
data come from the null hypothesis or the alternative.

A big P-value, more than 0.05, defines that the results on the two com-
pared groups of patients are likely following the same probability distribu-
tions and that it is more likely that any obtained difference in the results on
these groups is caused by random effects rather then by actual differences.
On the contrary, a small P-value, less then 0.05, rejects the null hypothe-
sis, and this means that the differences in the results between the treated
and untreated patients are likely to be due to actual differences between the
outcomes in the two groups.

Figure D.1 on page lviii shows a graphical visualization of how a P-value
can indicate the probability of the null hypothesis.

The p-value is a probability, i.e. between 0 to 1. The levels of significance
of the p-value follow:

e p-value > 0.1: absence of evidence against the null hypothesis.
e p-value € (0.05;0.1]: weak evidence against the null hypothesis.

e p-value € (0.01;0.05): moderate evidence against the null hypothesis.
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Figure D.1: A p-value can be used to deduce the likelihood of the null hypothesis.

e p-value € [0.001;0.01]: strong evidence against the null hypothesis.

e p-value < 0.001: very strong evidence against the null hypothesis.

D.3.3.3 Clarification in the Interpretation of the P-value

The significance of the p-value is often misunderstood. A p-value equal to
0.03 expresses that there is a 3% probability of observing a difference equal
to the one observed in the data even if the means of the two populations are
identical, that is even if the null hypothesis is true. One might be tempted to
say that there is a probability of the 97% that the observed difference reflects
a real difference between the populations and a 3% probability that the
difference is due to chance. However, this conclusion would be incorrect: the
only thing you can say analyzing the p-value is that, by repeating
the experiment would be observed in the 97% of the cases a smaller
difference between the groups than in the observed ones, while in
the remaining 3% the difference would be greater.

Often the p-value is interpreted, wrongly, as the probability that the null
hypothesis is true. It is necessary to clarify that a small p-value does not
mean that the probability that the null hypothesis is true is lower, but only
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that it is more reasonable that the observed data were generated under the
alternative hypothesis.

Bottom Line: The only thing you can say analyzing the P-value
is that, when repeating the experiment, in the 97% of the cases a
smaller difference between the groups than in the observed ones
would be observed, while in the remaining 3% the difference would
be greater.

lix
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Appendix E

Machine Learning

The focus of this Appendix is to describe some methodologies used in the
context of problems similar to the one analyzed in this work. Most of the
contents are drawn from related papers.

In the first part of the Chapter, will be presented a series of concepts
related to knowledge discoverty in clinical databases and further on discribed
the methodologies used in similar works.

In the second part of the Chapter, will be provided a background in the
context of machine learning and evolutionary computation. In particular the
focus will be on describing the Genetic Programming (GP) methodology.

E.1 Knowledge Discovery

In this Section Knowledge discovery will be defined. The contents are drawn
from|[15].

Knowledge discovery is a concept that describes the process of automat-
ically searching large volumes of data for patterns that can be considered
knowledge about the data. It is often described as deriving knowledge from
the input data. This complex topic can be categorized according to 1) what
kind of data is searched and 2) in what form is the result of the search rep-
resented. Knowledge discovery developed out of the Data mining domain,
and is closely related to it both in terms of methodology and terminology.

Knowledge discovery is the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data. Given a set of facts
(data) F, a language L, and some measure of certainty C, a pattern is
defined as a statement .S in L that describes relationships among a subset
Fg of F' with a certainty ¢, such that S is simpler (in some sense) than the
enumeration of all facts in Fis. A pattern that is interesting (according to a
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user-imposed interest measure) and certain enough (again according to the
users criteria) is called knowledge. The output of a program that monitors
the set of facts in a database and produces patterns in this sense is discovered
knowledge[15]. The most well-known branch of data mining is knowledge

Application

Data-
base

| Discovery Method Discovered

Search : Knowledge
Evaluation
-
-

Dict -

Domain
Knowledge

Figure E.1: A Framework for Knowledge Discovery in Databases.

discovery, also known as Knowledge Discovery in Databases (KDD). Just as
many other forms of knowledge discovery it creates abstractions of the input
data. The knowledge obtained through the process may become additional
data that can be used for further usage and discovery.

Although machine learning is the foundation for much of the work in
this area, knowledge discovery in databases deals with issues relevant to
several other fields, including database management, expert systems, statis-
tical analysis, and scientific discovery.

e Database Management: provides procedures for storing, accessing,
and modifying the data. Typical operations include retrieval, update,
or deletion of all tuples satisfying a specific condition, and maintain-
ing user-specified integrity constraints. The ability to extract tuples
satisfying a common condition is like discovery in its ability to pro-
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duce interesting and useful statements (for example, Bob and Dave
sold fewer widgets this year than last). These techniques, however,
cannot by themselves determine what computations are worth trying,
nor do they evaluate the quality of the derived patterns. Interesting
discoveries uncovered by these data-manipulation tools result from the
guidance of the user. However, the new generation of deductive and
objectoriented database systems (Kim, Nicolas, and Nishio 1990) will
provide improved capabilities for intelligent data analysis and discov-
ery.

e Expert Systems: attempt to capture knowledge pertinent to a spe-
cific problem. Techniquesexist for helping to extract knowledge from
experts. One such method is the induction of rules from expertgen-
erated examples of problem solutions. This method differs from dis-
covery in databases in that the expert examples are usually of much
higher quality than the data in databases, and they usually cover only
the important cases, for a comparison between knowledge acquisition
from an expert and induction from data). Furthermore, experts are
available to confirm the validity and usefulness of the discovered pat-
terns. As with database management tools, the autonomy of discovery
is lacking in these methods.

e Statistics: slthough they provide a solid theoretical foundation for the
problem of data analysis, a purely statistical approach is not enough.
First, standard statistical methods are ill suited for the nominal and
structured data types found in many databases. Second, statistics are
totally data driven, precluding the use of available domain knowledge,
an important issue that will be discussed later. Third, the results of
statistical analysis can be overwhelming and difficult to interpret. Fi-
nally, statistical methods require the guidance of the user to specify
where and how to analyze the data. However, some recent statistics-
based techniques such as projection pursuit (Huber 1985) and discov-
ery of causal structure from data (Glymour et al. 1987; Geiger, Paz,
and Pear]l 1990) address some of these problems and are much closer
to intelligent data analysis. That methods using domain knowledge
is expected to be developed by the statistical community. Statistics
should have a vital role in all discovery systems dealing with large
amounts of data.

e Scientific Discovery: discovery in databases is significantly differ-
ent from scientific discovery in that the former is less purposeful and
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less controlled. Scientific data come from experiments designed to
eliminate the effects of all but a few parameters and to emphasize
the variation of one or a few target parameters to be explained. How-
ever, typical business databases record a plethora of information about
their subjects to meet a number of organizational goals. This richness
(or confusion) both captures and hides from view underlying relation-
ships in the data. Moreover, scientists can reformulate and rerun their
experiments should they find that the initial design was inadequate.
Database managers rarely have the luxury of redesigning their data
fields and recollecting the data[l5].

E.1.1 Knowledge Discovery in Databases

This and next Sections describe the use of database in the context of knowl-
edge discovery. The contents are drawn from[16] and [15].

Historically, the notion of finding useful patterns in data has been given
a variety of names, including data mining, knowledge extraction, informa-
tion discovery, information harvesting, data archaeology, and data pattern
processing. The term data mining has mostly been used by statisticians,
data analysts, and the management information systems (MIS) communi-
ties. It has also gained popularity in the database field. The phrase knowl-
edge discovery in databases was coined at the first KDD workshop in 1989
(Piatetsky-Shapiro 1991) to emphasize that knowledge is the end product
of a data-driven discovery. It has been popularized in the AI and machine-
learning fields.

KDD refers to the overall process of discovering useful knowledge from
data, and data mining refers to a particular step in this process. Data
mining is the application of specific algorithms for extracting patterns from
data. The distinction between the KDD process and the data-mining step
(within the process) is a central point of this article. The additional steps in
the KDD process, such as data preparation, data selection, data cleaning,
incorporation of appropriate prior knowledge, and proper interpretation of
the results of mining, are essential to ensure that useful knowledge is derived
from the data. Blind application of data-mining methods (rightly criticized
as data dredging in the statistical literature) can be a dangerous activity,
easily leading to the discovery of meaningless and invalid patterns[16].

An example of Knowledge Discovery in Databases Process is shown in
Figure E.2 on page Ixv.
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Figure E.2: An Overview of the Steps That Compose the Knowledge Discovery in
Databases Process.

E.1.2 Complexity in Knowledge Discoverty

Discovery algorithms for large databases must deal with the issue of com-
putational complexity. Algorithms with computational requirements that
grow faster than a small polynomial in the number of records and fields are
too inefficient for large databases.

Empirical methods are often overwhelmed by large quantities of data
and potential patterns. The incorporation of domain knowledge can improve
efficiency by narrowing the focus of the discovery process but at the risk of
precluding unexpected but useful discovery. Data sampling is another way
of attacking the problem of scale; it trades a degree of certainty for greater
efficiency by limiting discovery to a subset of the database (see previous
Section on uncertainty)[15].

E.1.3 Clinical Decision Support Systems

This Section discuss the use of computer based techniques in clinical con-
texts. The contents are drawn from [17] and [18].

Computerized Clinical decision support systems (CDSSs) are interactive
decision support systems (DSS)! Computer Software, which are designed to

! A decision support system (DSS) is a computer-based information system that sup-
ports business or organizational decision-making activities. DSSs serve the management,
operations, and planning levels of an organization and help to make decisions, which may
be rapidly changing and not easily specified in advance.
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assist physicians and other health professionals with decision making? tasks,
as determining diagnosis of patient data.

The goal of diagnosis is to place a nosologic® label on a process that man-
ifests itself in a patient over time. However, diagnosis is a complex procedure
more involved than producing a nosologic label for a set of patient descrip-
tors. Efficient and ethical diagnostic evaluation requires a broad knowledge
of people and of disease states. The nosologic labels used in diagnosis reflect
the current level of scientific understanding of pathophysiology and disease,
and may change over time without the patient or the patients illness per se
changing.

The utility of making specific diagnoses lies in selection of effective ther-
apies, in making accurate prognoses, and in providing detailed explanations.
In some situations, it is not necessary to arrive at an exact diagnosis in order
to fulfill one or more of these objectives. Treatment is often initiated before
an esact diagnosis is made. Furthermore, the utility of making certain di-
agnoses is debatable. Labeling a patient as having obesity does not flatter
the patient, and even worse, may cause the physician to do more harm than
good.

In medical diagnostic reasoning, there are also cases where recognition
from compiled knowledge does not pertain. Some cases present an over-
whelming army of seemingly contradictory information; others present with
common conditions in unexpected or unusual manners; some patients mani-
fest rare findings or disorders. Unlike expert chess players who are no better
than novices in reproducing random board positions from memory, medical
experts have different modes of reasoning that can be invoked when simple
pattern recognition based on experience fails. Medical diagnosticians in such
settings attempt to reason from first principles, using their detailed knowl-
edge of pathophysiologic processes, to construct scenarios under which an
illness similar to the patients might occur[17].

A CDSS allows to match characteristics of individual patients to a com-
puterized knowledge base, and software algorithms generate patientspecific
recommendations[18].

There is currently widespread enthusiasm for introducing electronic med-
ical records, computerized physician order entry systems, and CDSSs into
hospitals and outpatient settings.

2Decision making can be regarded as the mental processes (cognitive process) resulting
in the selection of a course of action among several alternative scenarios.
3Nosology is a branch of medicine that deals with classification of diseases.
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E.2 Machine Learning

Learning is the process of knowledge acquisition in the absence of explicit
programming. It can be seen as the process of construction of a program
to run a job on the basis of information that do not provide an explicit
description of the program itself. Machine learning concerns with the design

Improving according to a given
measure the capability to perform
a certain task, through experience

LEARNING

Figure E.3: A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E[19].

and development of algorithms that allow computers to evolve behaviors
based on empirical data, such as from sensor data or databases. A learner
can take advantage of examples (data) to capture characteristics of interest
of their unknown underlying probability distribution. Data can be seen as
examples that illustrate relations between observed variables. A major focus
of machine learning research is to automatically learn to recognize complex
patterns and make intelligent decisions based on data.
Tom Mitchell in [20] stated that

Machine Learning is a natural outgrowth of the intersection
of Computer Science and Statistics. Could be said that the
defining question of Computer Science is how machines that
solve problems can be built, and which problems are inherently
tractable/intractable? The question that largely defines Statis-
tics is What can be inferred from data plus a set of modeling
assumptions, with what reliability?

The defining question for Machine Learning builds on both, but
it is a distinct question. Whereas Computer Science has fo-
cused primarily on how to manually program computers, Ma-
chine Learning focuses on the question of how to get computers
to program themselves (from experience plus some initial struc-
ture).

Whereas Statistics has focused primarily on what conclusions
can be inferred from data, Machine Learning incorporates ad-
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ditional questions about what computational architectures and
algorithms can be used to most effectively capture, store, index,
retrieve and merge these data, how multiple learning subtasks
can be orchestrated in a larger system, and questions of compu-
tational tractability.

Machine learning, knowledge discovery in databases (KDD) and data
mining often employ the same methods and overlap strongly. Infact these
fields work with similar basic assumptions: in machine learning, the perfor-
mance is usually evaluated with respect to the ability to reproduce known
knowledge, while in KDD the key task is the discovery of previously un-
known knowledge. Evaluated with respect to known knowledge, an unin-
formed (unsupervised*) method will easily be outperformed by supervised
methods, while in a typical KDD task, supervised methods cannot be used
due to the unavailability of training data.

E.2.1 Complexity of a Problem

The gap between the development of hardware and software technology
appears to be one of the biggest unsolved problems in Computer Science.
Hardware speed and capabilty has inscreased exponentially during the last
few years. Yet an adequate development of software production techniques
does not correspond to such a quick and continuous improving in computer
hardware performances.

Demand for computer code, more and more efficient and sophisticated,
keeps growing in almost every field of industry, but the process of writing
code still appears to be slow and obsolete: structured programming, object-
oriented programming, and many other techniques allow, today, to write
programs in a clean and friendly way, but still each single piece of code is
handmade by a ’‘craftsman’, the programmer|[21].

Hence the attempt to produce techniques that allow computers to learn.

In particular, machine learning methods are already the best methods
available for developing particular types of software, in applications where:

e The application is too complex for people to manually design the algo-
rithm. For example, software for sensor-base perception tasks, such as
speech recognition and computer vision, fall into this category. All of
us can easily label which photographs contain a picture of our mother,

“Supervised learning is the machine learning task of inferring a function from supervised
(labeled) training data. On the contrary unsupervised learning refers to the problem of
trying to find hidden structure in unlabeled data.
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but none of us can write down an algorithm to perform this task. Here
machine learning is the software development method of choice sim-
ply because it is relatively easy to collect labeled training data, and
relatively ineffective to try writing down a successful algorithm.

e The application requires that the software customize to its operational
environment after it is fielded. One example of this is speech recogni-
tion systems that customize to the user who purchases the software.
Machine learning here provides the mechanism for adaptation. Soft-
ware applications that customize to users are growing rapidly - e.g.,
bookstores that customize to your purchasing preferences, or email
readers that customize to your particular definition of spam. This
machine learning niche within the software world is growing rapidly.

Viewed this way, machine learning methods play a key role in the world of
computer science, within an important and growing niche. While there will
remain software applications where machine learning may never be useful
(e.g., to write matrix multiplication programs), the niche where it will be
used is growing rapidly as applications grow in complexity, as the demand
grows for self-customizing software, as computers gain access to more data,
and as increasingly effective machine learning algorithms[20] are developed.

E.2.2 Classification Problems

Classification is the problem of identifying which of a set of categories (sub-
populations) a new observation belongs, on the basis of a training set of
data containing observations (or instances) whose category membership is
known. The individual observations are analyzed into a set of quantifiable
properties, known as various explanatory variables or features. These prop-
erties may variously be categorical (e.g. "A”, ”B”, 7AB” or 0", for blood
type), ordinal (e.g. ”large”, "medium” or ”small”), integer-valued (e.g. the
number of occurrences of a particular word in an email) or real-valued (e.g.
a measurement of blood pressure). Some algorithms work only in terms
of discrete data and require that real-valued or integer-valued data be dis-
cretized into groups (e.g. less than 5, between 5 and 10, or greater than 10).
An example would be assigning a given email into ”spam” or ”non-spam”
classes or assigning a diagnosis to a given patient as described by observed
characteristics of the patient (gender, blood pressure, presence or absence
of certain symptoms, etc.).

An algorithm that implements classification, especially in a concrete im-
plementation, is known as a classifier. The term ’classifier’ sometimes also
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refers to the mathematical function, implemented by a classification algo-
rithm, that maps input data to a category.

In the terminology of machine learning, classification is considered an
instance of supervised learning®. The corresponding unsupervised proce-
dure is known as clustering (or cluster analysis), and involves grouping data
into categories based on some measure of inherent similarity (e.g. the dis-
tance between instances, considered as vectors in a multi-dimensional vector
space).

Terminology across fields is quite varied. In statistics, where classifi-

6 or a similar procedure, the

cation is often done with logistic regression
properties of observations are termed explanatory variables (or independent
variables, regressors, etc.), and the categories to be predicted are known as
outcomes, which are considered to be possible values of the dependent vari-
able. In machine learning, the observations are often known as instances, the
explanatory variables are termed features (grouped into a feature vector),
and the possible categories to be predicted are classes. There is also some
argument over whether classification methods that do not involve a sta-
tistical model can be considered statistical. Other fields may use different
terminology: e.g. in community ecology, the term ’classification’ normally
refers to cluster analysis, i.e. a type of unsupervised learning, rather than

the supervised learning described in this article.

E.2.3 Evolutionary Computation

The contents of this Section are drawn from [22].

Evolution is any change across successive generations in the heritable
characteristics of biological populations. Evolutionary processes give rise to
diversity at every level of biological organisation, including species, individ-
ual organisms and molecules such as DNA and proteins.

Evolutionary computation uses iterative progress, such as growth or de-
velopment in a population. This population is then selected in a guided
random search using parallel processing to achieve the desired end. Such
processes are often inspired by biological mechanisms of evolution.

The principle of evolution is the primary unifying concept of biology,

SLearning where a training set of correctly-identified observations is available.

SLogistic regression is a type of regression analysis used for predicting the outcome
of a binary dependent variable (a variable which can take only two possible outcomes,
e.g. "yes” vs. "no” or "success” vs. "failure”) based on one or more predictor variables.
Logistic regression attempts to model the probability of a ”yes/success” outcome using
a linear function of the predictors. Specifically, the log-odds of success (the logit of the
probability) is fit to the predictors using linear regression.
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linking every organism together in a historical chain of events. Every crea-
ture in the chain is the product of a series of accidents that have been sorted
out thoroughly under selective pressure from the environment. Over many
generations, random variation and natural selection shape the behaviors of
individuals and species to fit the demands of their surroundings.

This fit can be quite extraordinary and compelling, a clear indication
that evolution is creative. While evolution has no intrinsic purpose, it is
merely the effect of physical laws acting on and within populations and
species, it is capable of engineering solutions to the problems of sutvival
that are unique to each individual’s circumstance and, by any measure,
quite ingenious[22].

The most important scientific theory on evolution of species is due to
Charles Darwin. He established that all species of life have descended over
time from common ancestors, and proposed the scientific theory that this
branching pattern of evolution resulted from a process that he called natural
selection”.

Darwin identified a small set of essential elements to rule evolution by
natural selection: reproduction of individuals, variation phenomena that
effect the likelihood of survival of individuals, heredity of many of the par-
ents’ features by sons in reproduction and the presence of a finite amount
resources causing competition for survival between individuals.

These simple features , reproduction, likelihood of survival, variation,
heredity and competition are the bricks that build the simple model of evo-
lution that inspired the machine learning technique known as evolutionary
algorithms (EAs).

An EA uses some mechanisms inspired by biological evolution: repro-
duction, mutation, recombination, and selection. Candidate solutions to
the optimization problem play the role of individuals in a population, and
the fitness function® determines the environment within which the solutions
”live”. Evolution of the population then takes place after the repeated ap-
plication of the above operators.

During the years, many diffent kinds of EAs have been developed. The
main feature characterizing the different paradigms of EAs is how the in-
dividuals are represented. In particular now will be described the generic
algorithms, ancestor of genetic programming.

"Natural selection is the gradual, nonrandom process by which biological traits become
either more or less common in a population as a function of differential reproduction of
their bearers.

8 A fitness function is a particular type of objective function that is used to summarise,
as a single figure of merit, how close a given design solution is to achieving the set aims.
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E.2.3.1 Genetic Algorithms

Genetic Algorithms (GA) were invented for the first time by Holland in
1970s, see [23], and later on extended by Goldberg in his works, see [24].

GA'’s key idea is to adapt the principles of evolution in the way of being
able to implement these concepts in a computer so that they can be used to
find the solution (or approximate it) for particular problems. In this context,
these principles are called genetic operators. Given its nature inspired by
natural evolution, many terms used are taken from biology and adapted for
this use.

Genetic algorithms, in short, try to simulate the evolution of a species:
defined an optimization problem?, starting from a random set of candidate
solutions'® of the problem, they attempt to improve their quality in an
iterative way, applying the genetic operators.

At the beginning of the algorithm is generated a set of possible solu-
tions to the problem, which is indicated with the term of population. Each
solution present in the population is codified through a string of bits fixed
length and takes the name of individual.

The quality of a solution is instead indicated by the term fitness, which
is usually determined by a particular function that takes the name of fitness
function.

After the initialization, the evolutionary process starts, which consists
of updating at each iteration the set of hypotheses. Each iteration takes the
name of generation and it is performed in two phases: the selection process
and the variation process.

In the selection phase are calculated the fitness values of all individuals
in the population and then is performed a probabilistic extraction on the
population based on the values of these fitness. The selected individuals are
then used to form the population of the new generation.

In the variation phase are used one or more genetic operators on the
individuals of the new population. Not all individuals undergo the process
of variation and therefore some of them are replicated unchanged into the
next population.

The process ends on the basis of a termination criterion: most com-

9Tt refers to the selection of a best element from some set of available alternatives. In
the simplest case, an optimization problem consists of maximizing or minimizing a real
function by systematically choosing input values from within an allowed set and computing
the value of the function

10 A candidate solution is a member of a set of possible solutions to a given problem. A
candidate solution does not have to be a likely or reasonable solution to the problem, it
is simply in the set that satisfies all constraints.
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monly the process ends when at least one individual in the population has
a satisfactory fitness or when a prefixed number of generation has occurred.
Follows a deeper discussion on how a genetic algorithm works:

e Crossover: is applied to randomly paired strings with a probability
denoted p.. It produces two offsprings, usually different from their
two parents and different from each other, but conteining some genetic
material from each of their parents. The offsprings are then put into
the new population. Many crossover algorithms have been developed
for GAs. The most common one is called one point crossover. Its
behaviour is shown in Figure E.4. First of all, a number between 1 and

(8 L e ) T ojo|1(0|DO]O

(b) (c)

Figure E.4: The GA crossover. Two (a) individuals are selected for crossover. The
crossover point, in this case, is 4. In (b) and (c) are shown the results of the
crossover process. The two individual are generated by combining the crossover
fragment s of the parents.

L —1 is randomly generated using an uniform distribution, being L the
length of the individuals’ string. This number, that in Figure E.4 is 4,
becomes the crossover point. Each parent is then split at this crossover
point into a crossover fragment and a remainder. For example, in the
picture, the crossover fragment is 1011 and the remainder is 00. The
crossover fragment of the first individual is then combined with the
reminder of the second one and the crossover fragment of the second
individual with the remainder of the first one. The resulting individual
are then inserted in the new population.
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e Mutation: modifies a sub-string of an individual, with a certain prob-
ability p,,, and the resulting individual is put into the new population.
Many mutation algorithms have been developed. The most commonly
used is called point mutation. Its behaviour is shown in Figure E.5.
Each position of the current string is chosen with distribution p,, and

Figure E.5: The GA mutation. In (a) are shown the individuals chosen for mutation
with, in this case, mutation point 3. In (b) are shown the individuals resulting by
mutation.

the character contained in that positionis then replaced with another

randomly chosen character.

e The algorithm: the pseudo-code is shown in Algorithm 4 on page Ixxv.
The algorithm takes as an input the dimension n of the population, la
probability of crossover p. and the probability of mutation p,,. The
output is the best individual till the last population.

E.2.4 Genetic Programming

A lot of the contents of this Section are drawn from [21] and see it for a
deeper discussion.

Genetic Programming (GP) is an evolutionary algorithm-based method-
ology inspired by biological evolution to find computer programs that per-
form a user-defined task. It is a specialization of genetic algorithms (GA)
where each individual is a computer program. It is a machine learning tech-
nique used to optimize a population of computer programs according to a
fitness landscape'' determined by a program’s ability to perform a given

111 evolutionary optimization problems, fitness landscapes are evaluations of a fitness

Ixxiv



APPENDIX E. MACHINE LEARNING Ixxv

Algorithm 4 Below is shown and example of pseudocode of a genetic al-
gorithm

Require: n >0
Generation of a random initial population P of n individuals
while (Termination criterion is not verified) do
Computation of the fitness value for each individual in the population
Generation of an empy population P’
while (Population P’ < n) do
Perform the selection of a pair of individuals 1 and xo
Random extraction of a value r in the interval [0, 1]
if r < p. then
Perform crossover on x1 and xs optaining their sons y; and ys
else
Y1 < T1
Y2 < T2
end if
Perform mutation on y; with probability p,, for each bit
Perform mutation on ys with probability p,, for each bit
P'=P U{y} U{y2}
end while
P+ P
end while
Return the best individual of P’
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computational task.

The concept of GP was introduced by Koza in [25] and then refined in [26]
and [27]. This tecnique aimed at overcoming the fixed length rapresentation
of Genetic Algorithms’s individuals. This limitetion, infact, is unnatural
and contraining for a wide set of applications. For examples, fixed length
strings do not readily support the hierarchical organization of tasks into
subtasks typical of computer programs, they do not provide any convenient
way of incorporation iteration and recursion and so on. But above all,
GA rapresentation schemes do not have any dynamic variability: the initial
selection of strings length limits in advance the number of internal states of
the system and limits what the system can learn[21].

GP, as originally defined by Koza, considers individuals as LISP-like!'?
tree structures. These structures are perfectly capable of capturing all the
fundamentals properties and features of modern programming languages.
The tree-based GP is the oldest and the most commonly used rapresentation,
althrough not the only one existing!?[21].

An example of GP individuals is shown in Figure E.6 on page Ixxvii.

E.2.4.1 GP Individuals

All the individuals are composed within two groups of symbols: the first one,
F, composed by the function symbols F' = {fi, ..., f,,} and the second one,
T, composed by the terminal symbols T' = {t1, ..., t, }. Every function in F
has a fixed number of arguments defined arity. Every element of the terminal
symbols is a variable or a constant, defined according to the problem. For
instance let’s consider F = {+,—} and T" = {z,1}, a possible LIPS-like
individual could be (+x(—1+ z)).
The sets of symbols F' and T should have the following properties:

e Closure: Every function should be able to take as an argument every
possible value of every element of F' and T'.

e Sufficiency: The symbols in F' and T should be able to define a
solution for the problem. Often the two groups of symbols are not

function for all candidate solutions.

121ISP is a family of computer programming languages. It is an expression-oriented
language. Unlike most other languages, no distinction is made between ”expressions”
and ”statements”; all code and data are written as expressions. When an expression is
evaluated, it produces a value (in Common Lisp, possibly multiple values), which then
can be embedded into other expressions. Each value can be any data type.

13In particular, in the last few years, a growing attention as been dedicated to linear
and graph rapresentations.
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Figure E.6: An example of tree-like GP individual.

known a priori, but decided according to the problem.

E.2.4.2 Initialization of the population

Due to the complexity of the individuals, it is necessary to introduce partic-
ular initialization methods of the population. Koza in [27] proposed three
methods: grow, full and ramped half and half. For each of those is necessary
to specify the set F' of functional symbols, the set T of terminals and a
maximum allowed depth of the trees.

The grow method is performed as follows:

1. Random extraction of a function symbol f; from F to be used as root
of the tree;

2. Being n the arity of f;, if the current depth is lower then d—1, randomly
extract n nodes from F'UT to be used as sons of f;, otherwise the
extraction is performed only on T

3. Recursively repeat the procedure for all the n extracted nodes.

The full method uses the same procedure of the grow one, with the difference
that extracts the nodes from F' when the depth is lower then d instead that
extracting them from FUT.
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Both the methods, as observed by Koza in [27], generate a population
of trees a lot similar with each others. To avoid this, the method ramped
half and half has the purpose of preserving divertiry in the population. The
idea is to divide the population in d subgroups with the same dimension
and assign to each of those a different maximum depth (between 1 and d).
Afterwards half of each group is initialized with the grow method and half
with the full one.

E.2.4.3 Fitness Evaluation

Each program in the population is assigned a fitness value, rapresenting its
ability to salve the problem. This values is calculated by means of same well
defined explicit procedure. The two most commonly used measures in GP
are the raw fitness and the standardized fitness.

The raw fitness, as defined by Koza, is ”the measurement of fitness that
is stated in the natural terminology of the problem itself’. It is, therefore,
the most natural way to calculate the ability of a program to solve a problem.
For instance, if the task is to drive a robot to pick up the maximum number
of objects, the raw fitness is the number of object picked up by the robot.

The standardized fitness restates the raw fitness so that a lower value is
always better one. Problems where the raw fitness is used are also called
mazximization problems, instead problems where the standardized fitness is
used are also called minimization problems.

E.2.4.4 Genetic Operators

For each individual of the in the GP population, three possible actions can
be choses: genetic operators can be applied to that individual, it can be
copied into the new population as it is, or it can be discarded and replaced
by a new individual.

Now will be discussed three genetic operators: selection, crossover and
mutation.

The selection operator makes the decision of which of the three actions
should be applied to the individual. Many possible algorithms have been
developed for selection, of those three are the most common: fitness propor-
tional (or roulette wheel) selection, ranking selection, tournament selection.

In the fitness proportional selection, being N the number of individuals of
the population P and {fi,..., fy—1} their fitness values, each individual has

the probability of beeing chosen p; = In practice, the probability

fi
Sl fi
of being selected is proportional to the value of the fitness.
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In the ranking selection every individual is sorted according to their
fitness values. Every individual is then associated with a function to be
chosed according to their rank. This approach was proposed to mitigate the
importance of high fitness values in the selection process.

In the tournament selection a number of individuals, called tournament
size, is randomply selected and of those the one with best fitness is chosen.

The crossover operator in GP, as in GA, genetates two individuals, y;
and g9, from two parents x1 e x2. This operator selects a subtree of the
individual z; and one of xo and swaps them, generating in this way two
new individuals with genetic material from both the two parent individ-
uals. In Figure E.7 is shown an example of this process. The mutation

+
b4
[y
=

Figure E.7: An example of crossover in Genetic Programming. On the left are
shown the parent individuals and on the right the sons. In green are pointed out
the swaped subtrees.

operator choses a subtree of an individual and replace it with a randomply
generated one. The depth of the new subtree is limited to the maximum
depth of the whole tree. An example of mutation is shown in Figure E.8 on
page Ixxx. Differently from the GA operators, the operators defined in GP
are very destructive as they modify the individuals a lot. For this reason,
less destructive variants exist. The following techniques aim at this:

e Steady State: in this case, after variation, one or two individuals are
directly merged into the new population. After the new individuals
have been inserted into the population, the new individual are already
taken in count for selection. In this way, the steady state works as the
variation takes place just one time per generation.

e Automatically Define Fuction: some subtrees are considered un-
changeble atomic objects. They can be defined ad hoc for the appli-
cation.
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Figure E.8: An example of mutation in Genetic Programming. On the left is shown
the original individual while on the right is the shown the tree after the mutation.
In green is pointed out the mutated subtree.
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E.2.4.5 GP Algorithm

The pseudo-code for the GP algorithm is the same as the one shown in
Algorithm 4 on page Ixxv for GA.

In synthesis, the GP paradigm breeds computer programs to solve prob-
lems by executing the followind steps:

1. Generate an initial population of computer programs (or individuals);

2. Iteratively perform the following steps untill the termination criterion
has been satisfied:

(a) Execute each program in the population and assign it a fitness
value according to how well it solves the problem;

(b) Create a new population by applyng the following operations:

i. Probabilistically select a set of computer programs to be re-
produced, on the basics on thier fitness (selection);

ii. Copy same of the selected individuals, without modifying
them, into the new population (reproduction);

iii. Create new computer programs by genetically recombining
randomply chosed (crossover) parts of two selected individ-
uals;

iv. Create new computer programs substituting (mutation) ran-
domply chosed parts of some selected individuals with new
randomly generated ones;

3. The best computer program appeared in each generation is designed
as the result of the GP process at that generation. This result may be
a soluction (or an approximate solution) to the problem[21].
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