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Research on data quality is growing in importance in both industrial and academic communities, as it aims at
deriving knowledge (and then value) from data. Information Systems generate a lot of data useful for studying
the dynamics of subjects’ behaviours or phenomena over time, making the quality of data a crucial aspect for
guaranteeing the believability of the overall knowledge discovery process. In such a scenario, data cleansing
techniques, i.e., automatic methods to cleanse a dirty dataset, are paramount. However, when multiple cleans-
ing alternatives are available a policy is required for choosing between them. The policy design task still relies
on the experience of domain-experts, and this makes the automatic identification of accurate policies a signifi-
cant issue. This paper extends the Universal Cleaning Process enabling the automatic generation of an accurate
cleansing policy derived from the dataset to be analysed. The proposed approach has been implemented and
tested on an on-line benchmark dataset, a real-world instance of the Labour Market Domain. Our preliminary
results show that our approach would represent a contribution towards the generation of data-driven policy,
reducing significantly the domain-experts intervention for policy specification. Finally, the generated results

have been made publicly available for downloading.

1 INTRODUCTION

Nowadays, public and private organizations
recognise the value of data as a key asset to deeply un-
derstand social, economic, and business phenomena
and to improve competitiveness in a dynamic business
environment, as pointed out in several works (Fox
et al., 1994; Madnick et al., 2009; Batini et al., 2009).
In such a scenario, the field of KDD - Knowledge Dis-
covery in Databases (KDD) field (Fayyad et al., 1996)
- has received a lot of attention from several research
and practitioner communities as it basically focuses
on the identification of relevant patterns in data.

Data quality improvement techniques have rapidly
become an essential part of the KDD process as most
researchers agree that the quality of data is frequently
very poor, and this makes data quality improvement
and analysis crucial tasks for guaranteeing the believ-
ability of the overall KDD process! (Holzinger et al.,
2013b; Pasi et al., 2013a). In such a direction, the
data cleansing (ak.a. data cleaning) research area
concerns with the identification of a set of domain-
dependent activities able to cleanse a dirty database

"Here the term believability is intended as “’the extent to
which data are accepted or regarded as true, real and credi-
ble”(Wang and Strong, 1996)

(with respect to some given quality dimensions).

Although a lot of techniques and tools are avail-
able for cleansing data (e.g., the ETL-based toolsz),
a quite relevant amount of data quality analysis
and cleansing design still relies on the experience
of domain-experts that have to specify ad-hoc data
cleansing procedures (Rahm and Do, 2000).

Here, a relevant question is how to guarantee that
cleansing procedures results are accurate, or (at least)
it makes sense for the analysis purposes, making
the selection of accurate cleansing procedures (w.r.t.
the analysis purposes) a challenging task that may
consider the user’s feedback for being accomplished
properly (Cong et al., 2007; Volkovs et al., 2014).

This paper draws on two distinct works
of (Holzinger, 2012) and (Mezzanzanica et al.,
2013).  Basically, the former has clarified that
weakly-structured data can be modelled as a ran-
dom walk on a graph during the DATA 2012
keynote (Holzinger, 2012). This, in turns, has en-

2The ETL (Extract, Transform and Load) process fo-
cuses on extracting data from one or more source systems,
cleansing, transforming, and then loading the data into a
destination repository, frequently a Datawarehouse. The
ETL covers the data preprocessing and transformation tasks
in the KDD process (Fayyad et al., 1996).



couraged the use of graph-search algorithms for both
verifying the quality of such data and identifying
cleansing alternatives, as shown by the work of
(Mezzanzanica et al., 2013) and recently expressed
also in terms of Al Planning problem (Boselli et al.,
2014c; Boselli et al., 2014a).

Here we show how the approach of (Mezzanzan-
ica et al., 2013) for the automatic identification of
cleansing activities can be enhanced by selecting the
more accurate one on the basis of the dataset to be
cleansed. The technique has been formalised and re-
alised by using the UPMurphi tool (Della Penna et al.,
2009; Mercorio, 2013). Furthermore, we report our
experimental results on the basis of the on-line dataset
benchmark provided by (Mezzanzanica et al., 2013),
making them publicly available to the community.

2 Motivation and Contribution

The longitudinal data (i.e., repeated observations
of a given subject, object or phenomena at distinct
time points) have received much attention from sev-
eral academic research communities among the time-
related data, as they are well-suited to model many
real-world instances, including labour and health-
care domains, see, e.g. (Hansen and Jarvelin, 2005;
Holzinger, 2012; Holzinger and Zupan, 2013; Prinzie
and Van den Poel, 2011; Lovaglio and Mezzanzanica,
2013; Devaraj and Kohli, 2000).

In such a context, graphs or tree formalisms,
which are exploited to model weakly-structured data,
are deemed also appropriate to model the expected
longitudinal data behaviour (i.e., how the data should
evolve over time).

Indeed, a strong relationship exists between
weakly-structured and time-related data. Namely, let
Y(¢) be an ordered sequence of observed data (e.g.,
subject data sampled at different time ¢ € T'), the ob-
served data Y (r) are weakly-structured if and only if
the trajectory of Y (¢) resembles a random walk on a
graph (Kapovich et al., 2003; De Silva and Carlsson,
2004).

Then, the Universal Cleansing framework intro-
duced in (Mezzanzanica et al., 2013) can be used as
a model-based approach to identify all the alterna-
tive cleansing actions. Namely, a graph modelling
a weakly-structured data(set) can be used to derive
a Universal Cleanser i.e., a taxonomy of possible er-
rors (the term error is used in the sense of inconsistent
data) and provides the set of possible corrections. The
adjective universal would mean that (the universe of)
every feasible inconsistency and cleansing action is
identified with respect to the given model.

Table 1: An example of data describing the working career
of a person. P.T. is for part-time, F.T. is for full-time.

Event # Event Type | Emplo- Date
yer-ID
01 P.T. Start Firm 1 | 127%/01/2010
02 P.T. Cessation | Firm 1 | 31%/03/2011
03 FE.T. Start Firm 2 1%7/04/2011
04 P.T. Start Firm 3 151/10/2012
05 P.T. Cessation | Firm 3 15/06/2013

The Universal Cleanser is presented as a foun-
dation upon which data cleansing procedures can be
quickly built. Indeed, the final step toward the cre-
ation of an effective data cleanser requires the identi-
fication of a policy driving the choice of which correc-
tion has to be applied when an error can be corrected
in several ways.

Here we show how a policy can be inferred from
the dataset to be analysed, by evaluating the possible
cleansing actions over an artificially soiled dataset us-
ing an accuracy like metric. This, in turn, enhances
the Universal Cleansing framework since the cleans-
ing procedures can be automatically generated, thus
avoiding domain-experts to manually specify the pol-
icy to be used.

In this regard, the term accuracy is usually re-
lated to the distance between a value v and a value
v which is considered correct or true (Scannapieco
et al.,, 2005). As one might imagine, accessing the
data correct value can be a challenging task, therefore
such a value is often replaced by an approximation.
Our idea is to exploit the part of the data evaluated as
correct (thus accurate) for deriving a cleansing policy
for cleansing the inconsistent part.

The following example should help in clarifying
the matter.

Motivating Example. Some interesting informa-
tion about the population can be derived using the
labour administrative archive, an archive managed
by a European Country Public Administration that
records job start, cessation, conversion and extension
events. The data are collected for administrative pur-
poses and used by different public administrations.
An example of the labour archive content is re-
ported in Table 1, a data quality examination on the
labour data is shortly introduced. Data consistency
rules can be inferred by the country law and common
practice: an employee having one full-time contract
can have no part-time contracts at the same time, an
employee can’t have more than k part-time contract at
the same time (we assume k = 2). This consistency



behaviour can be modelled through the graph shown
in Fig. 1. Consistent data can be described by a path
on the graph, while a path does not exist for inconsis-
tent data.

Figure 1: A graph representing the dynamics of a job career
where st = start, cs = cessation, ch = conversion, and ex =
extension. The PT and FT variables count respectively the
number of part-time and the number of full-time jobs.

The reader would notice that the working history
reported in Table 1 is inconsistent with respect to
the semantic just introduced: a full-time Cessation is
missing for the contract started by event 03. Look-
ing at the graph, the worker was in node emprr|
when event 04 was received, however, event 04 brings
nowhere from node emprri. A typical cleansing ap-
proach would add a full-time cessation event in a
date between event 03 and event 04. This would al-
low one to reach the node unemp through the added
event and then the node emppr; via event 04, and this
would make the sequence consistent with respect to
the given constraints. However several other inter-
ventions could be performed e.g., to add a conver-
sion event from full-time to part-time between event
03 and event 04 (reaching node emppr). Notice that,
in such a case, although the two distinct cleansing ac-
tions would make the career consistent, the former
would create a career having one single part-time con-
tract active while the second would make active two
distinct part-time contracts. The question is: how to
choose between these two alternatives? Indeed, al-
though the last option may be unusual, a domain ex-
pert should take into account such a question since
choosing one solution at the expense of the other may
generate inconsistencies in the future, and vice-versa.

The comparison between archive contents and real
data is often either unfeasible or very expensive (e.g.
lack of alternative data sources, cost for collecting the
real data, etc.). Then the development of cleansing
procedures based on business rules still represent the
most adopted solution by industry although the task of
designing, implementing, and maintaining cleansing
procedures requires a huge effort and is an error prone
activity.

In such a scenario, one might look at the consis-
tent careers of the dataset where similar situations oc-
curred in order to derive a criterion, namely a policy,
for selecting the most accurate cleansing option with
respect to the dataset to be cleansed.

Contribution. Here we support the idea that an
approach combining model driven cleansing (which
identifies all the possible cleansing interventions
based on a model of data evolution) and a cleansing
policy (derived from the data and driving the selection
of cleansing alternatives) can strengthen the effective-
ness of the KDD process, by providing a more reli-
able cleansed dataset to data mining and analysis pro-
cesses. Indeed, according to the whole KDD process,
the data cleansing activities should be performed af-
ter the preprocessing task but before starting the min-
ing activities by using formal and reliable techniques
so that this would contribute in guaranteeing the be-
lievability of the overall knowledge process (Redman,
2013; Sadiq, 2013; Fisher et al., 2012).

This paper contributes to the problem of how to
select a cleansing policy for cleansing data. To this
end, we formalise and realise a framework, built on
top of the Universal Cleansing approach we provided
in (Mezzanzanica et al., 2013), that allows one:

e to model complex data quality constraints over
longitudinal data, that represents a challenging is-
sue. Indeed, as (Dallachiesa et al., 2013) argue,
the consistency requirements are usually defined
on either (i) a single tuple, (ii) two tuples or (iii) a
set of tuples. While the first two classes can be
modelled through Functional Dependencies and
their variants, the latter class requires reasoning
with a (finite but not bounded) set of data items
over time as the case of longitudinal data, and this
makes the exploration-based techniques a good
candidate for that task;

e to automatically generate accurate cleansing poli-
cies with respect to the dataset to be analysed.
Specifically, an accuracy based distance is used
to identify the policy that can better restore to
its original version an artificially soiled dataset.
The policy, once identified, can be used to cleanse
original inconsistent datasets. Clearly, several
policy selection metrics can be used and conse-
quently the analysts can evaluate several cleansing
opportunities;

e to apply the proposed framework on a real-life
benchmark dataset modelling the Italian Manda-
tory Communication domain (The Italian Min-
istry of Labour and Welfare, 2012) actually used



at CRISP Research Centre, then providing our re-
sults publicly available for downloading?.

The outline of this paper is as follows. Sec. 3
outlines the Universal Cleansing Framework, Sec. 4
describes the automatic policy identification process,
Sec. 5 shows the experimental results, Sec. 6 surveys
the related works, and finally Sec. 7 draws the conclu-
sions and outlines the future work.

3 UNIVERSAL CLEANSING

Here we briefly summarise the key elements of the
framework presented by (Mezzanzanica et al., 2013)
that allows one to formalise, evaluate, and cleanse
longitudinal data sequences. The authors focus on the
inconsistency data quality dimension, which refers to
the violation of semantic rules defined over a set of
data items or database tuples” (Batini and Scanna-
pieco, 2006).

Intuitively, let us consider an events sequence € =
ey,ea,...,e, modelling the working example of Tab.1.
Each event e; will contain a number of observation
variables whose evaluation determines a snapshot of
the subject’s state* at time point i, namely s;. Then,
the evaluation of any further event e; | might change
the value of one or more state variables of s;, generat-
ing a new state s,y in such a case. More formally we
have the following.

Definition 1 (Events Sequence). Let R = (Ry,...,R))
be the schema of a database relation. Then,

(i) An event e = (ry,...,ry) is a record of the projec-
tion (Ry,...,Ry) over Q C R withm <[ s.t. r €
Ry,....rm € Ry;

(ii) Let ~ be a total order relation over events, an
event sequence is a ~-ordered sequence of events
€=eq,...,6

A Finite State Event Dataset (FSED) S; is an event se-
quence while a Finite State Event Database (FSEDB)
is a database S whose content is S = |J*_, S; where
k>1.

3.1 Data Consistency Check

Basically, the approach of (Mezzanzanica et al., 2013)
aims at modelling a consistent subject’s evolution
over time according to a set of consistency require-
ments. Then, for a given subject, the authors verify if
the subject’s data evolve conforming to the model.

3 Available at http://goo.gl/yy2fw3
4The term “state” here is considered in terms of a value
assignment to a set of finite-domain state variables

To this end the subjects’ behaviour is encoded on a
transition system (the so-called consistency model) so
that each subject’s data sequence can be represented
as a pathway on a graph. The transition systems can
be viewed as a graph describing the consistent evolu-
tion of weakly-structured data. Indeed, the use of a
sequence of events € = ey, es,...,e, as input actions
of the transition system deterministically determines
a path T = sjeq ... spenspy1 on it (i.e., a trajectory),
where a state s; is the state resulting after the appli-
cation of event ¢; on s;. This allows authors to cast
the data consistency verification problem into a model
checking problem, which is well-suited for perform-
ing efficient graph explorations.

Namely, a model checker generates a trajectory
for each event sequence: if a violation has been found,
both the trajectory and the event that triggered the vi-
olation are returned, otherwise the event sequence is
consistent. Generally speaking, such a consistency
check can be formalised as follows.

Definition 2 (ccheck). Let € = ey,...,e, be a se-
quence of events according to Definition 1, then
ccheck : FSED — N x N returns the pair < i,er >
where:

1. i is the index of a minimal subsequence €; =
el1,...,e; such that €1 is inconsistent while Vj :
J <i <, the subsequences €; are consistent.

2. er is zero if €, is consistent, otherwise it is a nat-
ural number which uniquely describes the incon-
sistency error code of the sequence €;1.

By abuse of notation, we denote as first{ccheck(S)}
the index i of the pair whilst second{ccheck(S)} de-
notes the element er.

The authors implemented the ccheck function
through model-checking based techniques and ap-
plied this approach for realising the (Multidimen-
sional) Robust Data Quality Analysis (Boselli et al.,
2013).

For the sake of completeness, we remark that the
consistency requirements over longitudinal data de-
scribed in (Mezzanzanica et al., 2013) could be ex-
pressed by means of FDs. Specifically, to the best
of our knowledge, one might proceed as follows.
Let us consider the career shown in Table 1 and let
R = (R1,...,R;) be a schema relation for these data.
Moreover, let R be an instance of ® and let P, =
Ri Xeond Ro ... Meona Ry be the k™ Self Join (where
cond is R;.Event = R;y1.Event 4+ 1) i.e., P is R joined
k times with itself on the condition cond which (as an
effect) put subsequent tuples in a row (with respect to
the Event attribute). For simplicity we assume Table1
to report data on only one career °.

5The above schema can be modified to manage data of



The k' self join allows one to express constraints
on Table 1 data using functional dependencies al-
though this presents several drawbacks that we sketch
as follows: (1) an expensive join of k relations is
required to check constraints on sequences of k ele-
ments; (2) the start and cessation of a Part Time (e.g.
events 01 and 02) can occur arbitrarily many times
in a career before the event 04 is met (where the in-
consistency is detected), therefore there can not be a
value of k higher enough to surely catch the incon-
sistency described; (3) the higher the value of k, the
more the set of possible sequence (variations) to be
checked; (4) Functional Dependencies do not provide
any hint on how to fix inconsistencies, as discussed
in (Fan et al., 2010).

3.2 Universal Cleanser (UC)

When an inconsistency has been caught, the frame-
work performs a further graph exploration for gener-
ating corrective events able to restore the consistency
properties.

To clarify the matter, let us consider again an in-
consistent event sequence € = ey,...,e, as the corre-
sponding trajectory T = Sjej ... Sy€,Sy+1 presents an
event e; leading to an inconsistent state s; when ap-
plied on a state s;. What does “cleansing” such an
event sequence mean? Intuitively, a cleansing event
sequence can be seen as an alternative trajectory on
the graph leading the subject’s state from s; to a new
state where the event ¢; can be applied (without violat-
ing the consistency rules). In other words, a cleans-
ing event sequence for an inconsistent event e; is a
sequence of gemnerated events that, starting from s;,
makes the subject’s state able to reach a new state on
which the event e; can be applied resulting in a con-
sistent state (i.e., a state that does not violate any con-
sistency property). For example, considering the in-
consistency described in Sec. 1 and the graph shown
in Fig. 1, such cleansing action sequences are paths
from the node empp7 to the node emppr; or to the
node unemp. For our purposes, we can formalise this
concept as follows.

Definition 3 (Cleansing event sequence). Let € =
el,...,e, be an event sequence according to Def. 1
and let ccheck be a consistency function according to
Def. 2.

Let us suppose that the € sequence is inconsistent,
then ccheck(€) returns a pair < i,err > withi > 0 and
an error-code err > 0.

several careers in the same table and it can be enhanced to
manage sequences shorter than k by using the left outer join
instead of the inner join as well.

A Cleansing event sequence €. is a non empty se-

quence of events €. = c1,...,cy able to cleanse the
inconsistency identified by the error code err, namely
the new event sequence € =ej,...,€;,Cl,-..,Cn,€ii1

is consistent, i.e., second{ccheck(¢')} = 0.

Then, the Universal Cleanser UC can be seen as
a collection that, for each error-code err returns the
set C of the synthesised cleansing action sequences
€. € C. According to the author of (Mezzanzanica
et al., 2013), the UC can be synthesised and used for
cleansing a dirty dataset as shown in Figure 2(a).

4 AUTOMATIC POLICY
IDENTIFICATION

The Universal Cleansing framework proposed by
(Mezzanzanica et al., 2013) has been considered
within this work since it presents some relevant char-
acteristics useful for our purposes, namely:

1. it is computed off-line only once on the consis-
tency model;

2. itis data-independent since, once the UC has been
synthesised, it can be used to cleanse any dataset
conforming to the consistency model;

3. it is policy-dependent since the cleansed results
may vary as the policy varies.

Focusing on (3), when several cleansing interven-
tions are available for a given inconsistency, a policy
(i.e., a criterion) is required for identifying which one
has to be applied in the case.

The Universal Cleansing framework requires a
policy to drive the data cleansing activities, and the
policy identification task usually depends on the anal-
ysis purposes and the dataset characteristics as well.
For these reasons, here we aim at automatically iden-
tifying an optimal cleansing policy, so that the data
cleansing process (reported in Fig.2(a)) can be ap-
plied straightforward.

Clearly, a policy can be optimal if an optimality
criterion is defined. This concept can be formalised
according to the proposed framework as follows.

Definition 4 (Optimal Cleansing Policy). Let
€ =ey,...,en be an event sequence according to
Def. 1 and let ccheck be a consistency function
according to Def. 2.

Let err € N be an error-code identified on € by the
ccheck function and let C the set of all the cleansing
action sequences c; € C able to cleanse the error code
err. A cleansing policy P : N — 2€ maps the error
code err to a list of cleansing action sequences c; € C.
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Figure 2: (a) The Universal Cleansing framework (taken from (Mezzanzanica et al., 2013)) and the Accurate Policy identifi-

cation process as described in Sec.4

Finally, let d : Nt x C x C — R be the accuracy
function, an optimal cleansing policy P* with re-
spect to d assigns to each error-code the most ac-
curate cleansing action sequence c*, namely Verr €
UC,Yc¢; € C,3c™ M esych that d(err,c*,c"e) <
d(err, Ci7 Caccumte).

In Def. 4 the accuracy function basically evaluates
the distance between a proposed corrective sequence
(for a given error-code) against the corrective actions
considered as accurate (i.e., the corrective sequence
that transforms a wrong data to its real value). Unfor-
tunately, the real value is hard to be accessed, as dis-
cussed above, therefore a proxy, namely a value con-
sidered as consistent according to the domain rules is
frequently used.

In order to automatically identify a policy, we par-
tition the source dataset into the consistent and in-
consistent subsets respectively. Then, the consistent
event sequences are used for identifying an accurate
policy so as to cleanse the inconsistent subset. Basi-
cally, this can be accomplished through the following
steps, whose pseudo-code is provided in Procedures
1,2 and 3.

COMPUTE TIDY DATASET. Use the ccheck func-
tion for partitioning the source dataset S into §"¢
and S9""Y which represent the consistent and in-
consistent subsets of S respectively;

ACCURATE POLICY IDENTIFICATION. For all €
from $"@ (lines 2-12) and for all event ¢; € €
(lines 3-11), generate a new sequence € obtained
from € by removing the event ¢; (line 5) and verify
the consistency on € (line 6). If € is inconsistent
then use the resulting error-code err for retrieving

the set of cleansing action sequences C from the
Universal Cleanser (line 7);

SYNTHESISE PoLICY. Compute the cleansing se-
quences minimising the the distance between c;
and the event deleted e; (line 1). Once identified,
enhance the UC properly. We recall that ¢; is the
most accurate correction (i.e. this is not a proxy)
as it has been expressly deleted from the consis-
tent sequence.

ACCURATE POLICY IDENTIFICATION. For each
error-code err of the UC (line 1-3), compute the
more accurate ¢; and add it to the map 2 indexed
by err.

Finally, for the sake of clarity, a graphical repre-
sentation of this process has been given in Figure2(b).

Procedure 1 COMPUTE TIDY DATASET

Input: S The Source Dataset
Output: S"¥ C§
1 Sty <
2 foralle =e¢q,...,¢, € Sdo
3 <lI,err >< ccheck(e)
4 if err =0 then
s: §ridy ¢ §tidy  {g}
6
7
8

end if
. end for '
. return S'@

S EXPERIMENTAL RESULTS



Procedure 2 ACCURATE POLICY IDENTIFICATION
Input: Consistency Model,
UC Universal Cleanser,
ccheck Consistency Function,
d Accuracy function,
S The Source Dataset, the FSEDB according to
Def.1
Output: Cleansing Policy P
1. Svalidation ¢ /1Will be used in Proc.4
2. 8" < COMPUTE TIDY DATASET(S)
x foralle =ey,... e, € S"Y do
4. foralle; € edo

5: €, + remove_event_from(e, e;)

6: < i,err >« ccheck(g}) //check €] consis-
tency

7: if err # 0 then

8: SYNTHESISE POLICY(UClerr])

o Svalidation «— Svalidation U {8:}

10: end if

1:  end for

12: end for

13 for all err € UC do

. Plerr] < ming,cycier) (UClerr][ci])
15: end for

16: return P

Procedure 3 SYNTHESISE POLICY

Input: UClerr] The Set of Cleansing Sequences for
err
I Cin < MiNGcyClery] d(err,ci,e;)
2 UClerr][cmin] < UC[err][cmin] + 1

In this section the policy generation process de-
scribed in Sec. 4 has been used for deriving a policy
based upon the on-line benchmark domain provided
by (Mezzanzanica et al., 2013). In Sec. 5.1 the do-
main model is described while in Sec. 5.2 some pre-
liminary results are outlined.

5.1 The Labour Market Dataset

The scenario we are presenting focuses on the Ital-
ian labour market domain studied by statisticians,
economists and computer scientists at the CRISP Re-
search Centre.

According to the Italian law, every time an em-
ployer hires or dismisses an employee, or an employ-
ment contract is modified (e.g. from part-time to full-
time), a Compulsory Communication - an event - is
sent to a job registry. The Italian public administra-
tion has developed an ICT infrastructure (The Ital-
ian Ministry of Labour and Welfare, 2012) generat-

ing an administrative archive useful for studying the
labour market dynamics (see, e.g.(Lovaglio and Mez-
zanzanica, 2013)). Each mandatory communication is
stored into a record which presents several relevant at-
tributes: e_id and w_id are ids identifying the commu-
nication and the person involved respectively; e_date
is the event occurrence date whilst e_type describes
the event type occurring to the worker’s career. The
event types can be the start, cessation and extension
of a working contract, and the conversion from a con-
tract type to a different one; c_flag states whether the
event is related to a full-time or a part-time contract
while c_type describes the contract type with respect
to the Italian law. Here we consider the limited (fixed-
term) and unlimited (unlimited-term) contracts. Fi-
nally, empr_id uniquely identifies the employer in-
volved.

A communication represents an event arriving
from the external world (ordered with respect to
e_date and grouped by w_id), whilst a career is a lon-
gitudinal data sequence whose consistency has to be
evaluated. To this end, the consistency semantics has
been derived from the Italian labour law and from the
domain knowledge as follows.

cl: an employee cannot have further contracts if a
full-time is active;

¢2: an employee cannot have more than K part-time
contracts (signed by different employers), in our con-
text we shall assume K = 2;

¢3: an unlimited term contract cannot be extended;
c4: a contract extension can change neither the con-
tract type (c_type) nor the modality (c_flag), for in-
stance a part-time and fixed-term contract cannot be
turned into a full-time contract by an extension;

¢5: a conversion requires either the c_type or the
c_flag to be changed (or both).

5.2 Accurate Policy Generation Results

The process depicted in Fig.2(b) was realised as de-
scribed in Sec.4 by using the following as input.

The Consistency Model was specified using the
UPMurphi language and according to the consis-
tency constraints specified in Sec. 5.1;

The on-line repository provided by (Mezzanzanica
et al., 2013) and containing: (i) an XML dataset
composed of 1,248 814 records describing the
career of 214,429 people. Such events have been
observed between 1% January 2000 and 31* De-
cember 2010; and (ii) the Universal Cleanser
of the Labour Market Domain collecting all the
cleansing alternatives for 342 different error-
codes.



An Accuracy Function usually intended as the dis-
tance between a value v and a value v which is
considered correct or true. As the consistency
we model is defined over a ser of data items
rather than a single attribute, the accuracy func-
tion should deal with all the event attribute val-
ues, as we clarified in the motivating example.
To this end, the edit distance over the merged at-
tribute values was used. Specifically, it is well-
suited for comparing two strings by measuring
the minimum number of operations needed to
transform one string into another, taking into ac-
count insertion, deletion, substitution as well as
the transposition of two adjacent characters. No-
tice that the edit distance is often used for mea-
suring similarities between phrases, then it is suc-
cessfully applied in natural language processing,
bio-informatics, etc. Thus, as a mandatory com-
munication is composed by strings, the edit dis-
tance metric represents a good candidate for real-
ising the accuracy function.

The Proc. 1, 2, and 3 of Sec.4 have been imple-
mented through C++ while the ccheck function basi-
cally calls the UPMurphi planner searching for an in-
consistency. The process required about 2 hours run-
ning on a x64 Linux-machine, equipped with 6GB of
RAM and connected to a MySQL DMBS for retriev-
ing the data.

The output of such a process is an accurate policy
according to the Def. 4, which we visualise in Fig 3.

The x axis reports the error-codes caught by ap-
plying Procedure 2 on $@ while two y-axes are
provided. The rightmost reports how many times
an error-code has been encountered during the pol-
icy generation process using a logarithmic scale (the
black triangle) while the leftmost shows the percent-
age of successfully cleansing action applications.

Here, some results are commented as follows.

Result Comments. The error-code numbering was
performed using a proximity criterion, the similar
the inconsistencies the closer the error codes. The
coloured bars refer to the leftmost axis showing the
percentage of cases that have been successfully cor-
rected using a specific cleansing action. For this
dataset, 17 cleansing actions of the universal cleanser
were applied at least once.

To give a few examples, we discovered that the
most adopted cleansing intervention is C11 as it has
been applied up to 49,358 times for a situation like the
following: a person having only an active part-time
contract with a given company A received a cessation
event for another part-time contract with another com-
pany B. This clearly represents an inconsistency for

which the most accurate correction event was C11,
namely the introduction of a single corrective event
¢; = (start, PT,Limited,Company B).

On the contrary, the error-code 84 represents an
unemployed subject that starts his career receiving a
conversion event of a (non-existing) working contract,
namely e; = (conversion,FT, Unlimited Company
A). Although one might easily argue that a start of
a contract with company A is the only thing capable
of making career consistent, it might not be so easy to
identify the most accurate attribute values of the event
to be added (e.g., the contract type). Indeed, several
cleansing alternatives were identified as accurate dur-
ing the process, namely to consider (C11) a full-time
unlimited contract; (C15) a part-time unlimited con-
tract and (C13) a part-time limited one.

Another case worth of mentioning is the error-
code 31: a person is working for two companies A
and B and a communication is received about the start
of a third part-time contract with Company C. Here,
two cleansing alternatives are available: to close the
contract either with A (C2) or with B (C3). This is
a classical example that reveals the importance of an
accurate policy identification, as one must define (and
motivate) why a correction has been preferred over
another. Thus, such a kind of result is quite important
for domain-experts as it represents a criterion derived
(automatically) on the basis of the dataset that they
intend to analyse and cleanse.

Considering the results of Fig. 3, for some incon-
sistencies there is only a cleansing alternative (e.g.
error-codes from 71 to 82). On the other hand, when
more alternative cleansing are available, very fre-
quently one of them greatly outperforms the others
in terms of number of successfully cleansed cases.
Moreover, we discovered that similar error-codes are
successfully cleansed by the same cleansing actions
(e.g. the error codes from 9 to 14, from 59 to
66). Generally speaking, the overall plot of Fig.2(b)
provides useful information for the development of
cleansing procedures.

Finally, it is worth noting that the edit distance
value for every cleansed sequence was zero, and this
confirms that the UC generated is really capable to
identify effective cleansing actions.

5.3 Accuracy Estimation

Here, the k-fold cross validation technique (see,
e.g. (Kohavi, 1995)) was used to evaluate the policy
synthesised according to the framework proposed.
Generally speaking, the dataset S is split into k&
mutually exclusive subsets (the folds) Sy, ..., Sk of ap-
proximatively equal size. Then, k evaluation steps are



performed as follows: at each step ¢ the set of events
S\ S; is used to identify the cleansing policy %, whilst
the left out subset S; is used for evaluating the cleans-
ing accuracy achieved by 7. In each step, it is com-
puted the ratio of the event sequences the cleanser has
made equal to the original via %, over the cardinal-
ity of all the cleansed event sequences, namely |S;|.
Then, an average of the k ratios is computed. These
steps are described by the pseudo-code given in Proc.
4.

Procedure 4 K-FOLD CROSS VALIDATION

LS« Svalidalion

//Stepl: generate folds

» forallr € {1,...,k} do

4 S «—random_sampling(S, k) //such that US; =
Sand NS, =0and |S,| =k

s: end for

. //Step2: iterate on folds

7. forallr € {1,...,k} do

8:

9

»

match <0
. S S\S;
1. //Step2.1: synthesise a new policy 7,
;. foralle € S do

12: SYNTHESISE POLICY(UClerrg])

13 end for

4. forallerr c UC do

15: Bilerr] < ming,eycler] (UC[err][ci])
16:  end for

17 //Step2.2: evaluate policy P, against &,
1. foralle=eq,...,e, €5 do

19: €cleansed < apply_policy(,[erre],€)
20: Erigy < retrieve_original_from(S’ ’dy, €)
21: if €cjeansed = €iay then

22: match < match+ 1

23: end if

2. end for

match
25 M, S

26: end for
27: //Step3: compute policy accuracy
2 MK %):le M,

Step 1: Generate k folds by splitting the Sv#/idarion
dataset (lines 1-5). Notice that the S¥@/idation yag
computed previously by Procedure 1.

Step 2: For each ¢ up to k, (i) iteratively generate a
new policy® %, by using only the dataset S\ S; as
input (lines 7-16). (ii) Evaluate the instance of €
cleansed according to the policy %, i.e. comprare
€cleansed With the original instance of € as appears
in S, namely €4y (lines 17-26).

Notice that the creation of a new policy is not an ex-
pensive task as it does not require to invoke ccheck.

Step 3: Compute the overall P accuracy, i.e., M* as
the average of the accuracy values M; reached by
each fold iteration (line 28).

This method has the advantage of using all the
available data for both estimating and evaluating the
policy, during the k steps. Indeed, although k£ = 10
is usually considered as a good value in the com-
mon practice, we used a variable value of k ranging
in {5,10,50, 100} so that different values of accuracy
M* can be analysed, as summarised in Tab. 2. The
results confirm the high-degree of accuracy reached
by the policy P synthesised in Sec.5.2. Indeed, dur-
ing the iterations no single M* value was lower than
99.4% and peaks of 100% were reached during some
iterations.

Table 2: Values of M* applying k-cross validation of Pro-
cedure 4.

k 5 10 50 100
MF 99.77% 99.78% 99.78%  99.78%
min(M*) | 99.75% 99.75% 99.48%  99.48%
max(M*) | 99.77% 99.80% 99.92%  100%
|S; | 42,384 21,193 4,238 2,119
N 211,904

6 RELATED WORK

The data quality analysis and improvement tasks
have been the focus of a large body of research in dif-
ferent domains, that involve statisticians, mathemati-
cians and computer scientists, working in close co-
operation with application domain experts, each one
focusing on its own perspective (Abello et al., 2002;
Fisher et al., 2012). Computer scientists developed al-
gorithms and tools to ensure data correctness by pay-
ing attention to the whole Knowledge Discovery pro-
cess, from the collection or entry stage to data visual-
isation (Holzinger et al., 2013a; Ferreira de Oliveira
and Levkowitz, 2003; Clemente et al., 2012; Fox
et al., 1994; Boselli et al., 2014b). From a statisti-
cal perspective, data imputation (a.k.a. data editing)
is performed to replace null values or, more in gen-
eral, to address quality issues while preserving the
collected data statistical parameters (Fellegi and Holt,
1976).

On the other hand, a common technique exploited
by computer scientists for data cleansing is the record
linkage (a.k.a. object identification, record match-
ing, merge-purge problem), that aims at linking the
data to a corresponding higher quality version and



to compare them (Elmagarmid et al., 2007). How-
ever, when an alternative (and more trusted) data to
be linked are not available, the most adopted solu-
tion (specially in the industry) is based on Business
Rules, identified by domain experts for checking and
cleansing dirty data. These rules are implemented in
SQL or in other tool specific languages. The main
drawback of this approach is that the design relies
on the experience of domain experts; thus exploring
and evaluating cleansing alternatives quickly become
a very time-consuming task: each business rule has
to be analysed and coded separately, then the overall
solution still needs to be manually evaluated.

In the database area, many works focus on
constraint-based data repair for identifying errors by
exploiting FDs (Functional Dependencies) and their
variants. Nevertheless, the usefulness of formal sys-
tems in databases has been motivated in (Vardi, 1987)
by observing that FDs are only a fragment of the first-
order logic used in formal methods while (Fan et al.,
2010) observed that, even though FDs allow one to
detect the presence of errors, they have a limited use-
fulness since they fall short of guiding one in correct-
ing the errors.

Two more relevant approaches based on FDs
are database repair (Chomicki and Marcinkowski,
2005a) and consistent query answering (Bertossi,
2006). The former aims to find a repair, namely a
database instance that satisfies integrity constraints
and minimally differs from the original (maybe
inconsistent) one. The latter approach tries to
compute consistent query answers in response to
a query i.e., answers that are true in every repair
of the given database, but the source data is not
fixed. Unfortunately, finding consistent answers to
aggregate queries is a NP-complete problem already
using two (or more) FDs (Bertossi, 2006; Chomicki
and Marcinkowski, 2005b). To mitigate this problem,
recently a number of works have exploited heuristics
to find a database repair, as (Yakout et al., 2013;
Cong et al., 2007; Kolahi and Lakshmanan, 2009).
They seem to be very promising approaches, even
though their effectiveness has not been evaluated on
real-world domains.

More recently, the NADEEF (Dallachiesa et al.,
2013) tool has been developed in order to create a uni-
fied framework able to merge the most used cleans-
ing solutions by both academy and industry. In our
opinion, NADEEF gives an important contribution to
data cleansing also providing an exhaustive overview
about the most recent (and efficient) solutions for
cleansing data. Indeed, as the authors remark, con-
sistency requirements are usually defined on either a

single tuple, two tuples or a set of tuples. The first two
classes are enough for covering a wide spectrum of
basic data quality requirements for which FD-based
approaches are well-suited. However, the latter class
of quality constraints (that NADEEF does not take
into account according to its authors) requires reason-
ing with a (finite but not bounded) set of data items
over time as the case of longitudinal data, and this
makes the exploration-based technique a good candi-
date for that task.

Finally, the work of (Cong et al., 2007), to the
best of our knowledge, can be considered a milestone
in the identification of accurate data repairs. Basi-
cally, they propose (i) a heuristic algorithm for com-
puting a data repair satisfying a set of constraints ex-
pressed through conditional functional dependencies
and (ii) a method for evaluating the accuracy of the re-
pair. Compared with our work their approach differs
mainly for two aspects. First, they use conditional
FDs for expressing constraints as for NADEEF, while
we consider constraints expressed over more than two
tuples at a time. Second, their approach for evaluating
the accuracy of a repair is based upon the user feed-
back. Indeed, to steam the user effort only a sample
of the repair - rather than the entire repair - is pro-
posed to the user according to authors. Then a con-
fidence interval is computed for guaranteeing a pre-
cision higher than a specified threshold. On the con-
trary, our approach reduces the user effort in the syn-
thesis phase exploiting a graph search for computing
accurate cleansing alternatives.

7 CONCLUDING REMARKS AND
FURTHER DIRECTIONS

In this paper the Universal Cleansing framework
was extended in order to enable the automatic iden-
tification of an accurate policy (on the basis of the
dataset to be analysed) used for choosing the cleans-
ing intervention to be applied when there are several
available. This represents the final step to achieve
the selection of accurate cleansing procedures. To
this end, we modelled the consistency behaviour of
the data through UPMurphi, a model checking based
tool used for verifying the data consistency. Then,
the whole consistent portion of the source dataset was
made inconsistent so that several cleansing interven-
tions could be evaluated.

As a result, a data-driven policy was obtained
summarizing only the cleansing actions that minimise
the accuracy function for a given error-code. Here, we
used the well-known “edit distance” metric for mea-
suring the accuracy between the real data and the pro-



posed cleansing action, although our approach sup-
ports the use of different metrics.

The main benefit of our approach is in the auto-
matic policy generation, as it (i) speeds up the devel-
opment of cleansing procedures, (ii) provides insights
about the dataset to be cleansed to domain-experts and
(iii) dramatically reduces the human effort required
for identifying an accurate policy.

Finally, our approach has been successfully tested
for generating an accurate policy over a real (weakly-
structured) dataset describing people working careers
and tested according to the well-known k-fold cross
validation method.

As a further step, we have been working to-
ward evaluating the effectiveness of our approach on
biomedical domain. Finally, we intend to deploy our
policy on the system actually used at CRISP Research
Centre, which is based on an ETL tool. This would
represent a contribution toward the realisation of a
hybrid approach that combines a mode-based policy
generation with a business-rules-based cleansing ap-
proach.
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process performed against the benchmark dataset. The x axis reports the 90 error-codes identified on the soiled dataset.
The rightmost y-axis reports how many times an error-code was encountered during the policy generation process using a
logarithmic scale (the black triangle) while the coloured bars refer to the leftmost axis showing the percentage of cases that
were successfully corrected using a specific cleansing action.



