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Table 1: experimental (red, italic) and predicted Mössbauer parameters of iron atoms of H-cluster and of compounds 1, 2, 3.

Comparison of experimental and calculated Mössbauer parameters of iron 
atoms in [2Fe]

H
 complexes

Introduction: 57Fe Mössbauer spectroscopy is ideally suited for the study of active site of metallo-enzymes containing iron atoms, since it provide 
parameters reflecting the geometric and electronic structures of metalloproteins along reaction pathways. This specialized spectroscopic method can 
be also applied to synthetic compounds to investigate the oxidation state of iron atoms.

Aim of the work: to resolve the ambiguities in the assignment of the red-ox state of the iron atoms in the [FeFe]-hydrogenase active site and its 
biomimetic models, we compare experimental data with isomer shifts (δ) and quadrupole splitting (ΔEQ) parameters calculated with quantum-
mechanical method. We predicted Mössbauer parameters for few [FeFe]-hydrogenase biomimetic compounds, in the formal FeIFeI and FeIIFeI states. 
Comparison of δ for complexes with different ligands allow to better rationalize the steroelectronic features required for the design of novel biomimetic 
catalysts.
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Figure 2: geometry of diiron 
models investigated

Prediction of  Mössbauer parameters for biomimetics 
compounds with different ligands

Hred [2] Hox [2] 1 1ox 2 [3] 2ox [3] 3 3ox [4]

δ (mm/s) Fep ~0.08 0.1<δ<0.3 0.21 0.21 0.05
0.06/0.06

0.10
0.10

0.05 0.07
0.04

Fed 0.03 0.14 0.05
0.07/0.06

0.17
0.19

0.21 0.25
0.20

ΔE
Q
 (mm/s) Fep ~0.87 0.7< ΔE

Q
<1.2 0.46 1.02 -0.96

-1/1.33
0.79
0.55

-0.94 0.66
0.70

Fed -1.01 0.86 -0.84
0.75/0.85

-0.73
1.06

-0.81 0.41
-0.58

Isomer shifts of iron 
compounds
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Table 2: δ, calculated with B3LYP functionals, 
and charge of Fe fragments of  complexes 2-11.
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Discussion

In the reduced state only few compounds are characterized by 
significantly different δ at two iron atoms.
Desymmetrization of the complex by using different ligands not always 
correspond to a differentiation in δ at iron nuclei.
Except for complex 5, Δδ can be correlated to the charge difference (Δq) 
between the two Fe fragments.
Δq can be explained considering the orbital diagram of two neutral 
subunits, which feature the formal FeII and Fe0 redox states. Formation 
of the bimetallic cluster from the two fragments can be described by a 
donor-acceptor interaction between occupied orbitals of the Fe0 fragment 
and unoccupied orbitals of the FeII fragment to give FeIFeI complex. 

δ is proportional to |Ψ(0)|A
2 ≡ ρ(0)A which is easily calculated by DFT.

We can therefore consider the simple equation:  
δ = a[ρ(0)A− c]+b
where a, b = fitting parameters to be determined by linear regression
               c = number that is merely introduced for convenience
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Large Δδ between the two iron atoms is indicative of the biomimetic 
complex desymmetrization. Calculation of Mössbauer parameters 

can then be a preliminary step in design of novel catalysts.
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Figure 1: biomimetic compounds, computed at DFT-BP86/TZVP level of theory.

Parameters of 2 and 3 match very well the experimental values, suggesting that the computational 
scheme is able to correctly describe the electronic structure of this type of complexes.
Experimental parameters of the enzyme are not well reproduced, probably due to the model 1, that not include 
the [Fe4S4] cluster.
Contrary to the expected, δ increase with oxidation of [2Fe]

H
 site.
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Figure 3: orbital energy diagram of the complexes 2 and 9 and their two subunits.

In this work δ is predicted 
with B3LYP functional and 
equation [1]

δ=-0.298 [ρ(0)
A
−11580]+1.118

δ (mm/s)
Δδ

q
Δq

Fep Fed Fep Fed

2 0.05 0.05 0.00 0.10 0.11 -0.01

2ox 0.10 0.17 -0.07 0.66 0.49 -0.17

3 0.05 0.21 -0.16 0.07 0.28 -0.21

3ox 0.07 0.25 -0.18 0.55 0.70 -0.15

4 -0.01 -0.01 0.00 0.04 0.05 -0.01

4ox 0.05 0.13 -0.08 0.52 0.39 0.13

5 −0.02 0.00 -0.02 -0.22 -0.52 0.30

5ox 0.00 0.04 -0.04 0.22 -0.21 0.43

6 0.01 0.02 -0.01 -0.78 -0.82 0.04

6ox 0.05 0.10 -0.05 -0.36 -0.42 0.06

7 0.06 0.07 -0.01 0.59 0.56 0.03

7ox 0.15 0.18 -0.03 0.90 1.01 -0.11

8 0.11 −0.02 0.13 0.24 -0.02 0.26

8ox 0.18 0.17 0.01 0.70 0.37 0.33

9 −0.03 0.20 -0.17 -0.14 0.36 0.50

9ox 0.01 0.23 -0.22 0.31 0.78 -0.47

10 0.06 0.08 -0.02 0.16 0.14 0.02

10ox 0.11 0.17 -0.06 0.58 0.58 0.00

11
Fc

0.12
0.66

0.24 -0.12 0.18 0.27 -0.09

11ox
Fc

0.12
0.67 

0.27 -0.15 0.99 0.31 0.68
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