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Abstract

The Probabilistic Graphical Models (GM) use graphs for representing
the joint distribution of q variables. These models are useful for their
ability to capture and represent the system of independences relation-
ships between the variables involved, even when this is complex. This
work concerns categorical variables and the possibility to represent sym-
metric and asymmetric dependences among categorical variables. At this
aim we introduce the Chain Graphical Models proposed by Andersson,
Madigan and Perlman (2001), also known as Chain Graphical Models of
type II (GMs II). The GMs II allow for symmetric relationships typical
of log-linear model and, at the same time, asymmetric dependences typ-
ical Graphical Models for Directed acyclic Graph. In general GMs II are
not smooth, however this work provides a subclass of smooth GMs II by
parameterizing the probability function through marginal log-linear mod-
els. Furthermore, we apply the proposed model to a data-set from the
European Value Study (EVS), 2008.

1 Introduction

The increasingly use of graphical models is due to their ability to represent
complex phenomena. The Probabilistic Graphical Models represent the joint
probability function of q variables through a graph where each vertex of the
graph corresponds to one variable and the arcs are indicators of dependences.
Graphical Models for Chain graphs use both directed and undirected arcs, thus
are able to represent simultaneously symmetrical or directional relationships.
This topic is largely discussed in literature, see for instance Lauritzen, 1996.
With the purpose of representing simultaneous independence relationships be-
tween a collection of categorical variables we use the Graphical Models for Chain
Graphs proposed by Andersson, Medigan and Perlman (2001) also known as
Graphical Models of type II (GM II, see Drton, 2009). In GMs II the variables
are partitioned into different sets. independences typical of log-linear models
hold among the variables in the same set. On the other hand, asymmetrical
independences typical of Graphical Model for DAG (Directed Acyclic Graph)
hold among variables in different sets. It is important to observe that, the de-
pendence between response and explicative variables is studied marginally with
respect the other response variables. As it is shown in literature, a useful way to
represent graphical models is through the marginal log-linear models introduced
by Brgsma and Rudas (2002). This is not always possible for the GMs II be-
cause, as Drton (2009) showed, these models are not smooth in general. As the
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parametric marginal models for categorical data have useful properties for the
asymptotic theory of the ML estimators, we are interested to investigate which
GMs of type II can be parameterized by a marginal models. In the past, the
graphical models of type I, GMs I, proposed by Lauritzen and Wermuth (1989),
and the graphical models of type IV, GMs IV, introduced by by Wermuth and
Cox (2004) were preferred because all these models are smooth. It is common
to think that the only GMs II, which are smooth, are equivalent to GMs I or
GMs IV. In this work, not only we define a smooth subclass of GMs II, but we
show that, in this class, there are models that can not be represented as GMs I
or GMs IV.
The work is organized as follows. In Section 2 we introduce the marginal log-
linear models with their important properties. Section 3 is dedicated to the GMs
II, where, after an introduction on basic notation, new equivalent Markov prop-
erties will be proposed. Section 4 is reserved to describe the smooth subclass of
GMs II which is representable with Marginal log-linear models. In particular,
in subsection 4.1 the advantages of the parametrization proposed will be dis-
cussed. Finally, in section 5 we present an application on EVS data to illustrate
the results obtained in this work.

2 Marginal Log-Linear Models

We consider q categorical variables V = {X1, X2, ..., Xq}, with levels d1, d2, ..., dq
respectively. The marginal log-linear models are models where the interaction
parameters are defined on marginal distributions. We will refer to these inter-
actions, that are contrasts of logarithms of sum of probabilities, as marginal
parameters (see Bergsma and Rudas, 2002). Thus, any parameter is distin-
guished by a pair of sets (M;L), where L ⊆M ⊆ V . The so called marginal set
M specifies the marginal distribution where the parameter is evaluated. The
so called interaction set L, s the set of the variables involved in the interaction.
For each configuration of the variables in L, the collection of the interactions
defined in M with interaction set L are staked in the vector:

ηML = CML logMM
L π (1)

where, CML and MM
L are a contrast and a marginalization matrix while π is

the vector of strictly positive joint probability of the q variables (Bartolucci et
al., 1977).
The whole set of parameters are collected in the vector η obtained stacking all
the previous ηML .

Definition 1. A class H = {M1, ...,Ms} of marginal sets, whereMs = V and
Mi *Mj if j < i, ∀i, j = 1, ..., s, is called hierarchical family of marginal set.

Definition 2. Given a hierarchical family of marginal sets, the vector of param-
eters η is complete if there is exactly one ηML for all L ⊆ V ; it is hierarchical if
the marginal set M of ηML is the first in H which contains the variables in L.

A marginal model is characterized by a vector of hierarchical and complete
parameters η. Bergsma and Rudas showed that a complete and hierarchical
η is a smooth parametrization of the probability distribution function of the
variables in V (Theorem 2, Bergsma and Rudas, 2002).
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Unfortunately, these marginal models are not able to represent all lists of con-
ditional independences {Ai ⊥ Bi|Ci, i = 1, ..., k}. About this problem, Rudas
et al. (2010) gave a sufficient condition so that a list of independences is rep-
resentable by a marginal model. In theorem 1 we report this important result.
Let us consider, for each independence Ai ⊥ Bi|Ci, the subclass Di

Di = {Li : Li ∈ P(Ai ∪Bi ∪ Ci)\(P(Ai ∪ Ci) ∪ P(Bi ∪ Ci))} (2)

of interaction sets containing at least one element of Ai, one element of Bi and
possibly elements of Ci. Let M(L) be the first marginal set in the hierarchical
class H = {M1, ...,Mm} which contains the interaction L , ∀L ⊆ V .

Theorem 1. Let us consider q variables, a hierarchical class of marginal sets H
and the conditional independences system {Ai ⊥ Bi|Ci, i = 1, ..., k}. The class
of probability distribution functions of the q variables that satisfies the previous
conditional independences system is equivalent to the marginal model where

η
M(L)
L = 0, ∀L ∈ ∪ki=1Di and M(L) ∈ H (3)

if the next condition is satisfied

Ci ⊆M(L) ⊆ (Ai ∪Bi ∪ Ci) ∀Li ∈ Di, i = 1, .., k (4)

In this work the marginal sets, the interaction sets and more generally the
elements of classes of sets will be denoted by (...) instead of {...}.

Example 1. Let consider a collection of four variables V = {V1, V2, V3, V4}
and the independences {V1 ⊥ V3|V4; V4 ⊥ V1, V2|V3}. Let us take a hierarchi-
cal class of marginal set, for instance H = {(V1, V3, V4); (V1, V2, V3, V4)}. In
order to verify the condition (4) we need all the classes Di, i = 1, 2. Thus,
from the independence V1 ⊥ V3|V4, we have D1 = {(V1, V3); (V1, V3, V4)}, and
from independence V4 ⊥ V1, V2|V3 we have D2 = {(V1, V4); (V2, V4); (V1, V2, V4);
(V1, V3, V4); (V2, V3, V4); (V1, V2, V3, V4)}, see formula (2). In the first case,
the condition (4) becomes V4 ⊆ M(L) ⊆ V1, V3, V4; that always holds since
M(L) = V1, V3, V4 for all L ∈ D1. Thus the vectors of parameters to constrain
to zero are η134

13 , η134
134. According to the second independence the condition (4)

becomes V3 ⊆ M(L) ⊆ V1, V2, V3, V4. Even in this case the condition holds for
all L ∈ D2 thus the second independence is represented by annulling the vectors
η134
14 ,η134

134, η1234
24 , η1234

234 ,η1234
124 , η1234

1234.

3 Graphical Models of type II

In Section 3.1 we will introduce the main notation and definitions on graph the-
ory useful to understand the graphical models of type II described in Section 3.2;
for a more general treatment see Lauritzen 1966. In Section 3.3 a new equivalent
formulation of the Markov properties of the previous GMs is introduced.

3.1 Graph Theory

The graphs are mathematical objects defined by two sets G = {V,E}, where
V = {V1, .., Vq} is the set of vertices and E ⊆ V × V is the set of edges or
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arcs that can be both directed or undirected. Two vertices are adjacent if they
are joined by an undirected edge. Given a subset A of V , the set of all ver-
tices both not included in A and adjacent to at least one of the vertices in A,
is called set of neighbours of A, nb(A). The neighbourhood of A is defined by
Nb(A) = nb(A) ∪A.
On the other hand, when there is a directed arc from a vertex Vi to a vertex Vj ,
the first vertex is called parent of Vj and Vj is called child. Given a subset A
of V , the set pa(A) of parent of A is the collection of all vertices with at least
one child in A. We define the set ch(A) of children of A as the set of all vertices
with at least one parent included in A.
A directed cycle is an ordered sequence of vertices, all joined by direction pre-
serving directed arcs (directed-path), starting and ending in the same vertex. A
semi-directed cycle is an ordered sequence of vertices, joined by both direction
preserving directed and undirected arcs (semi-directed path), which starts and
ends in the same vertex.
A Chain Graph (CG) is a graph that can include both directed and undirected
arcs without any directed or semi-directed cycle. A CG is decomposable into
Chain Components, denoted by T1, ...., Ts. Within these chain components there
are only undirected arcs and between two components there are only directed
arcs in the same direction.
Given a CG, the associated Directed Graph is a directed acyclic graph where the
components T1, T2, ... act for the vertices , and there is a direct arc linking Tj

to Th if at least an element of Th is children of an element of Tj .The definition
of parents and children also apply to the associated Directed Graph. Thus, for
instance for a component Th, the parent paD(Th) is the set of the chain com-
ponents having as children Th, h = 1, , s. The chain components are ordered in
such way that if j < h there is not any directed arc from Th to Tj .

Example 2. An example of chain graphs is represented in figure 1 where we
may recognize three components: T1 = 1, T2 = 3, 4 and T3 = 4, 5, 6. Within
the component T3, the vertices 4 and 5 are adjacent and the neighbours of 5 are
nb(5) = 4, 6. The vertex 2 is child of 1 and parent of 4. The set of parents of
4, 6 is pa(4, 6) = 2, 3 and the set of parent of the component T3 is paD(T3) =
T2 = 2, 3.

Any component Th can be partitioned in three subsets, respectively, the set
CHh of children, the set NCh of vertices that are not children but are adjacent
to them, and the set NAh of vertices that are neither children nor adjacent to
children. In the first set there are the vertices Vj ∈ Th such that paG(Vj) 6= ∅;
in NCh there are the Vj ∈ Th such that (paG(Vj) = ∅) & (nb(Vj) ∩ CHh 6= ∅);
finally, in the set NAh there are the remaining vertices of Th.

Example 3. (Continuation of Example 2) In the component T1, the sets CH1

and NC1 are empty and the only vertex 1 defines the set NA1. In the component
T2, since the vertices 2 and 3 are both children, the sets NC2 and NA2 are
empty and CH2 = {2, 3}. Finally, in the component T3 we have CH3 = {4, 6},
NC3 = {5} and NA3 = ∅.

A subset A of V is complete if every pair of vertices of A is adjacent. The
class of the complete sets of the component Th is denoted with Ch. A complete
subset A of V is a clique if it is maximal, that is if there are not complete sets
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Figure 1: Chain graphs with set of vertex V = {1, 2, 3, 4, 5, 6} and set of edges
E = {(1, 2); (1, 3); (2, 3); (3, 2); (2, 4); (3, 6); (4, 5); (5, 4); (5, 6); (6, 5)}

containing it. We denote the family of cliques of a component Th by Clh.A
subset A of V is connected if every pair of vertices of A is linked by a path in
A. Finally, we define Kh as the class of all non-connected sets of Th.

3.2 Graphical Models of Type II

Graphical models GMs take advantage of graphs to represent multidimensional
dependence structures among variables. There are four types of GMs for chain
graph, listed in Drton (2009), each of which represents different dependences
systems. The Drton’s GMs use CG where the vertices act for the variables
and the possible edges act for dependence relationships. When two vertices are
connected by an undirected edge, we can guess that the two linked variables
are ”symmetrically” dependent. On the other hand, when there is a directed
arc, we presume a dependence relationship among the linked variables. We
study Graphical models of type II (GMs II), introduced by Anderson, Madigan
and Perlman (2001), as generalization of both GMs for undirected graphs (UG)
and GMs for directed acyclic graphs (DAG) (for details see Lauritzen,1996).
These models are useful for different reasons. First, the grouping of variables
in components allows to split the variables in ”purely explicative” variables,
”purely response” variables and ”intervening” variables. Secondly, in the GMs
II, the relationship among a variable and its explicative variables is considered
marginally with respect to the variables in the same component. Finally, the
GMs II model the association between the variables within the same component
using a log-linear approach. The rules to read a list of conditional independences
from a graph are called Markov properties and, for the GM II are the following
three:

(C1) Th ⊥ ∪i<hTi \ paD(Th)|paD(Th)
(C2a) A ⊥ Th \Nb(A)|paD(Th) ∪ nb(A) ∀A ⊂ Th

(C3b) A ⊥ paD(Th) \ paG(A)|paG(A) ∀A ⊆ Th

∀h = 1, ..., s.

(5)

The first Markov property, (C1), describes the independences between the chain
components; the second, (C2a), reads the conditional independences within the
components, and the third, (C3b) interprets the lack of directed arcs between
variables in different components.
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Example 4. Applying the Markov properties in formula (5) to the graph in
figure 1, we get respectively, from the (C1) 4, 5, 6 ⊥ 1|2, 3, from the (C2a)
4 ⊥ 6|2, 3, 5 and from the (C3b) 5 ⊥ 2, 3; 4 ⊥ 3|2 and 6 ⊥ 2|3.

Unfortunately, for categorical variables these models are not always smooth,
see Drton, 2009. This means that the probability function of the q variables
under the constrains given by the removed arcs does not always belong to a
curved exponential family. As the parametric marginal models introduced in
Section 2 are always smooth, in Section 4 we will propose a subclass of smooth
GMs II, that can be parameterized as marginal models. To do this, we need
non-redundant list of independences. Since from the (C2a) and (C3b) we obtain
redundant lists, in the next subsection we propose alternative Markov properties
to the (C2a) and (C3b) which are not-redundant. These properties will be used
to proof the main theorems.

3.3 Alternative Markov properties for GMs II

As mentioned above, conditions (C2a) and (C3b) are not a non-redundant list
of independences. Below we propose two alternative conditions.

An alternative condition for (C2a). We consider the family Clh of the r
cliques of the h−th component, and we split the elements Ci of Clh in two sets
Ci = B1i ∪ B2i, for i = 1, ...r, in such way that: CHh ∩ B1i 6= ∅ and Vj ∈ B1i

if and only if Nb(Vj) = Ci, while B2i = Ci\B1i. Below is reported an example
which shows how to decompose the elements Ci.

1

2

3

4

5

Figure 2: Chain graphs with set of vertex V = {1, 2, 3, 4, 5} and set of edges
E = {(1, 2); (1, 3); (1, 4); (2, 4); (3, 2); (3, 4); (4, 3); (4, 5); (5, 4)}

Example 5. We consider the graph in figure 2. In the component T2 we have
the family of the cliques Cl2 = {(2, 3); (3, 4); (4, 5)}. Now, we split the elements
of Cl2 according to the previous rules:

Ci B1i B2i

2, 3 2 3
3, 4 ∅ 3, 4
4, 5 ∅ 4, 5
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Definition 3. The condition (C2*a) is described by the following list of inde-
pendences:

B1i ⊥ Th\Ci|paD(Th) ∪B2i (6)

∀i = 1, ..., r and ∀h = 1, ..., s.

(
Vj ∪B1,Vj

)
⊥ Th\Nb

(
Vj ∪B1,Vj

)
|paD(Th) ∪ nb

(
Vj ∪B1,Vj

)
, (7)

∀Vj ∈ ∪ri=1B2i and ∀h = 1, ..., s where B1,Vj
= nb(Vj) ∩ (∪ri=1B1i) .

While the conditions 6 and 7 are clear consequence of the condition (C2a) in
the formula 5 , the following theorem shows that these conditions are equivalent
to the condition (C2a).

Theorem 2. The (C2*a) yields a non-redundant list of independences that is
equivalent to the list of independences given by (C2a).

The proof of this theorem appears in the Appendix B.

Example 6. (Continuation of Example 5) Regarding the graph in figure (2),
Applying the properties in formula (6), we get 2 ⊥ 4, 5|1, 3. Applying the formula
(7) we get 2, 3 ⊥ 5|1, 4; 4 ⊥ 2|1, 3, 5 and 5 ⊥ 2, 3|1, 4.

An alternative condition for (C3b). The condition (C3b) expresses the
relationship between a vertex and its parents. On the other hand, the alternative
condition, (C3*b), focuses on the relationships between a vertex and its children.
At this purpose, we define the class PAh of sets composed by elements having
the same children in Th. Note that, the elements of PAh are a partition of
paD(Th).

Definition 4. The class PAh of elements with same children in Th, is

PAh = {A : ch(Vi) ∩ Th = ch(Vj) ∩ Th,∀Vi, Vj ∈ A} (8)

We consider the elements of this class partially ordered according to the
following rule: ∀A,B ∈ PAh if |ch(B)| < |ch(A)| then A ≺ B .

Definition 5. The new condition (C3*b) is defined by the following list of
conditional independences.

A ⊥ [Th\ch(A)]|(paD(Th)\A), ∀A ∈ PAh ∀h = 1, ...s. (9)

Theorem 3. The (C3*b) yields a non-redundant list of independences that is
equivalent to the list of independences given by (C3b).

The proof of this theorem appears in the Appendix B.
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Example 7. Referring to the graph in figure 1, the PA1 class is empty, since
there are not parents of T1 and the PA2 is composed by the only vertex 1:
PA2 = {1}. Finally, for the third component, we have paD(T3) = {2, 3}. Since
ch(2) = 4 6= ch(3) = 5, the class of parents with common children is PA3 =
{(2); (3)}. Note that the (C3b) and (C3*b) lead independences only between
components T2 and T3. So, from the (C3b) we have 4 ⊥ 3|2, 5 ⊥ 2, 3, 6 ⊥ 2|3,
4, 5 ⊥ 3|2 and 6, 5 ⊥ 2|3. Instead, from the (C3*b) we have 2 ⊥ 5, 6|3 and
3 ⊥ 4, 5. Through the properties of conditional independences we can prof the
equivalence between the two lists.

4 A smooth subclass of GMs II

In this section we will introduce a smooth subclass of GMs II. For this, we use the
known smoothness property of marginal models. With the help of the theorem
1, we study which graphs yield lists of independences that can be represented
with marginal models. At this purpose we follow the 4 steps:

1) define a class of hierarchical marginal sets H;

2) define the list of hierarchical and complete marginal parameters associated
to the previous marginal sets;

3) define the list of parameter to set equal to zero according to the formula
3 of Theorem 1;

4) verify when the condition 4 of Theorem 1 holds.

First, we define a hierarchical class of marginal sets. For every three sets Ai, Bi

and Ci associated to an independence Ai ⊥ Bi|Ci derived from (C1), (C2*a) and
(C3*b), the hierarchical class of marginal sets must contain at least the elements
(Ai ∪ Bi ∪ Ci). Thus, according to (C1) for each component we introduce the
marginal sets:

M1
h = ∪j≤hTj . (10)

According to (C2*a), for each component we define the marginal sets:

M2∗a
h = Th ∪ paD(Th). (11)

Finally, according to the third condition (C3*b), for each component, we intro-
duce the marginal sets:

M3∗b
h,A = paD(Th) ∪ (NCh ∪NAh) ∪A ∀A ∈ {P(CHh)\Jh}, (12)

where P(CHh) denotes the power set of CHh and Jh is the class of all subsets
of Th having parents equal to paD(Th), Jh = {A : pa(A) = paD(Th), A ⊆ Th}.
Notice that, by definition, the following relationship always holds:

M3∗b
h,A ⊆M2∗a

h ⊆M1
h ∀A ∈ {P(CHh)\Jh}, ∀h = 1, .., s. (13)

Thus, the hierarchical class of marginal sets, for each h, first contains all sets
M3∗b

h,A, sorted according to the hierarchical principle (see definition 1), then it
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contains the setM2∗a
h and finally the setM1

h. Thus, for each component h, we
have the following class:

Hh
II = {{M3∗b

h,A, ∀A ∈ P(CHh)\Jh},M2∗a
h ,M1

h} (14)

At last, the family of all marginal sets of the chain graph is given by the following
ordered collection:

HII = {Hh, h = 1, .., s} (15)

Note that, it may occur that some of the previous sets match. For example,
for a given h and A, it could happen thatM2∗a

h is equal toM3∗b
h,A, or thatM2∗a

h

is equal to M1
h.

Example 8. We consider the graph in figure 1. From the (C1) we have the
marginal sets M1

1 = (1), M1
2 = (1, 2, 3) and M1

3 = (1, 2, 3, 4, 5, 6). From the
(C2*a), we get the marginal sets M2∗a

1 = (1), M2∗a
2 = (1, 2, 3) and M2∗a

3 =
(2, 3, 4, 5, 6). Finally, from the (C3*b) we get M3∗b

1,∅ = (1), M3∗b
3,∅ = (2, 3, 5),

M3∗b
3,4 = (2, 3, 4, 5) and M3∗b

3,6 = (2, 3, 5, 6). The hierarchical class is HII =
{(1); (1, 2, 3); (2, 3, 5); (2, 3, 4, 5); (2, 3, 5, 6); (2, 3, 4, 5, 6); (1, 2, 3, 4, 5, 6)}

Once the class of marginal sets is defined, we determine the hierarchical and

complete parameters, η
M(L)
L , ∀L ∈ P(V ), where M(L) is the first marginal

set in HII containing the set L. At this point, we must select the parameters

to constrain to zero. According Theorem 1, these parameters are η
M(L)
L where

L ∈ D1
i according to the (C1), L ∈ D2∗a

i , according to the (C2*a) and L ∈ D3∗b
i

according to the (C3*b). The classes D1
i , D2∗a

i and D3∗b
i strictly depend from

the alternative Markov properties defined in subsection 3.3. The definition of
these classes are in the Appendix A and here we report only an example.

Example 9. (Continuation Example 4 and 8) Applying the formula (2) to the
the independences listed in the example 4, the resultant classes of interactions
concerning null parameters are hereafter declared. D1

1 = {∅}, D1
2 = {∅} and

D1
3 = {(1, 4); (1, 5); (1, 6); (1, 4, 5); (1, 4, 6); (1, 5, 6);(1, 4, 5, 6)}. D2∗a

1 = {∅},
D2∗a

2 = {∅}, D2∗a
3 = {(4, 6); (4, 5, 6); (2, 4, 6); (2, 4, 5, 6); (3, 4, 6); (3, 4, 5, 6);

(2, 3, 4, 6);(2, 3, 4, 5, 6)}. Finally, D3∗b
1 = {∅}, D3∗b

2 = {∅} and D3∗b
3 = {(2, 5);

(2, 6); (2, 5, 6); (3, 4); (3, 5); (3, 4, 5);(2, 3, 5); (2, 3, 6); (2, 3, 5, 6); (2, 3, 4); (2, 3, 5);
(2, 3, 4, 5)}.

By implementing Theorem 1, we obtain the class of GMs II which is parametriz-
able with marginal models. Theorem 4 shows when condition 4 of Theorem 1 is
satisfied, given the family HII of marginal sets and the sets D1

h, D2∗a
h and D3∗b

h

previously defined.

Theorem 4. A graphical model of type II is a marginal model with {ηML : L ∈
P(V )\ ∪sh=1

(
D1

h ∪D2∗a
h ∪D3∗b

h

)
,M ∈ HII}, if, for all Vj ∈ CHh such that

Nb(Vj) /∈ Ch , {K : K ∈ Kh;K ∩ nb(Vj) 6= ∅} ⊆ Jh.

This theorem shows that the smoothness problem concerns the vertices in
the children set CHh with non complete neighbourhood. For these vertices
the smoothness property of the model is preserved if all non connected sets
containing at least one neighbour of the problematic vertices, have parent set
equal to the parent set of the component, paD(Th).The proof of this theorem is
in the Appendix C.
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Figure 5:

Figure 6: Three chain graphs corresponding respectively to two smooth chain
graphical models and to a non-smooth chain graphical model

Example 10. The graph in figure 3 represents the following system of in-
dependences 3 ⊥ 4, 6|1, 2, 5; 4 ⊥ 3, 6|1, 2, 5; 1 ⊥ 4, 5, 6|2; 2 ⊥ 5, 6|1. The
marginal class referring to this graph is HII = {(1, 2); (1, 2, 5, 6); (1, 2, 4, 5, 6);
(1, 2, 3, 4, 5, 6)}. Since any vertex in CH2 = 3; 4 has complete neighbourhood:
Nb(3) ∈ C2 and Nb(4) ∈ C2, the theorem 4 holds.

Example 11. The structure of conditional independence represented in the
graph in figure 4 can be explained by the statements 1 ⊥ 2; 3 ⊥ 5|1, 2, 4, 6;
4 ⊥ 6|1, 2, 3, 5. The class of marginal sets is HII = {(1, 2); (1, 2, 3, 6); (1, 2, 5, 6);
(1, 2, 3, 4, 5, 6)}. Note that in CH2 there are the two vertices 3 and 5. Thus,
it is necessary to take into account the family of not connected sets K2 =
{(4, 6); (3, 5)}. Since (4, 6) ∈ J2 and (3, 5) ∈ J2the theorem 4 holds.

Example 12. The graph in figure 5 represents the following system of inde-
pendences 3, 4 ⊥ 5|1, 2 and 1 ⊥ 3, 4, 5. The class of marginal sets referring to
this graph is HII = {(1); (1, 3, 4, 5);(1, 2, 3, 4, 5)}. Since CH2 = (2) has a not
complete neighbourhood (3,4,5), and since the non connected sets (3, 5), (4, 5)
and (3, 4, 5) of K2 have not paD(T2) as parent set, the conditions of the theorem
4 are not satisfied.

4.1 Important Results

In the previous section we gave a subclass of GMs II parameterizable with
Marginal Models. It is legitimate to ask whether other marginal parameteriza-
tions, characterized by different marginal sets, could describe different subclass
of GMs II.
Also, it is worthwhile to consider whether the subclass defined in theorem 4
detects only the particular cases of GMs II equivalent to GMs I or GMs IV. In
this section we answer to these questions.
As response to the first query, Theorem 5 shows that hierarchical classes, which
differ from HII , in formula 15, lead to smaller subclass of GMs II parameteriz-
able through marginal models. In other words, it is proved that no other GMs
II could be expressed through marginal models.

Theorem 5. All GMs II that can be expressed by a marginal model, can be
characterized by the parametrization {ηML : L ∈ P(V )\ ∪sh=1 (D1

h ∪ D2∗a
h ∪

D3∗b
h ),M∈ HII}.
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From this theorem it derives that if a chain graph does not satisfy the con-
dition of the theorem 4, then it can not be represented with a marginal model.
As before, the proof of this theorem is postponed to the Appendix C.
Furthermore, as mentioned in the introduction, it is common to think that the
only smooth GMs II are equivalent to GMs I or GMs IV. In this section, through
the example 13 we will show that there are smooth GMs II that are neither GMs
I or GMs IV.

1

2

3

4

5

Figure 7: Chain graphs with set of vertices V = {1, 2, 3, 4, 5} and set of edges
E = {(1, 2); (2, 1); (1, 3); (1, 4); (2, 4); (2, 5); (3, 4); (4, 3); (4, 5); (5, 4)}

Example 13. The GM II associated with the graphs in figure 7 represents the
following system of independences: {1 ⊥ 5|2; 2 ⊥ 4|1; 3 ⊥ 5|1, 2, 4}. From
the theorem 4, since the class of not-connected sets K2 = {(3, 5)} is contained
in Jh = {(4), (3, 4), (3, 5), (4, 5), (3, 4, 5)}, the GM II associated is a marginal
model and therefore it is smooth. According to theorem 6 of Andersson, Medigan
and Perlman, necessary and sufficient condition for the equivalence of GMs
I and GMs II is the non presence of particular structure in the graph called
bi-flags. The graph in figure 7 is an example of bi-flag, thus, according the
aforementioned theorem does not exist any GM I which represents the same
structure of relationships. Regarding the equivalence between GMs II and GMs
IV, it is sufficient to note that the independence 3 ⊥ 5|1, 2, 4 can be represented
by no one GMs IV.

5 GMs II applied to a real dataset

We chose a data-set from the European Values Study -EVS- (2008), in order
to show the ability of the GMs II to represent a system of conditional indepen-
dences of categorical variables. The EVS is a research project on human values
in Europe. In particular, the research involves how Europeans think about
family, work, religion, politics and society. We use the GMs II to highlight
the dependence system of some variables classified as gender variable, personal
variables and opinion variables. To this aim, we select six variables so described:

G: Gender (”Female”, ”Male”);

11



E: Employed (”Yes”, ”No”);

C: Children (”Yes”, ”No”);

T: Trust in the people (”Yes”, ”No”);

O: Opinion on Society (”High”, ”Mean”, ”Low”);

W: Personal Perceived Well-being level (”High”, ”Low”);

We divided the variables in three groups, each of one corresponding to one
component in the chain graph. In the first group we placed only the Gender
variable (G). In the second group there are variables about the status of the
respondents (E= employed, C= Children). Finally, the last group regards the
variables that consider the opinion of the respondents about some topics ( W=
Personal Perceived Well-being level , O= Opinion about the society, T=Trust
in people). We represented each group of variables with a component in the
chain graph. We fitted GMs II for different European Countries. The two most
interesting case, concerning the Northern Islands (Ireland, the United Kingdom
and the Island) and Italy are reported below. In both cases we fitted the sat-
urated marginal model (unconstrained model) corresponding to the complete
chain graphical model. We proceeded testing the GMs II obtained by removing
the arcs one by one. Any model was tested using the Likelihood Ratio test
which compares the saturated model with the chosen model. In both cases, we
chose the simplest model, with fewer number of arcs, still able to representing
the data. In the case for the Northern Islands we chose the graph in figure
8. The marginal model corresponding to this graph has Likelihood ratio test
statistic Gsq = 53.19302 with 51 degree of freedom and the model displayed in
figure 8 can be retained with a p-value of 0.38976. The second interesting case
is the Italian case, well described by the graph in figure 9. In this case the stat-
ics test Gsq is 68.84138, with 55 degree of freedom and a p-value equal to 0.0935.

G

E

C

O

T

W

Figure 8: Chain Graph representing the
variables in the Northern Islands Case

G

C

E

O

T

W

Figure 9: Chain Graph representing the
variables in the Italian Case
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Northern Islands Italy
G ⊥ T,W,O|C,E G ⊥ T,W,O|C,E
W ⊥ C,E W ⊥ C,E
O ⊥ C|E O ⊥ T |W,C,E

Table 1: List of non redundant conditional independences obtained from the
condition (C1), (C2*a) and (C3*b) for the two cases.

We can analyse the chosen models. Table 1 reports the non redundant lists
of conditional independences obtained from the condition (C1), (C2*a) and
(C3*b) for the two models, while the table 5 reports the non null parameters
describing the relationships among the variables.
In both models we observe the independence of the gender variable (G) from

the opinion variables (T,O,W) given the personal variables (C,E).
Furthermore, in the Northern Islands Case (figure 8), we inspect that the vari-
able referring to the children (C) is independent of both opinion on the society
(O) and the personal perceived well-being level (W) given the employment (E).
The last independence about this graph concerns the employment (E) that is
conditional independent of personal perceived well-being level (W) given the
children (C). On the contrary, the opinion in society (O) is not independent of
the variable work (E) and the trust in people (T) is not independent of both
the variable work (E) the children variable (C) . Further, looking at the non-
null parameters in table 5 it is possible to say that the relationships between
the trust in people (T) and both children (C) is stronger than the relationship
between the trust in people (T) and employment (E).
In the Italian case we have the marginal independence between W and C,E and
the variable O is independent of T given W, C and E.
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Northern Islands Italy
M L ηML M L ηML
G G −0.0449 G G 0.0152
CEG C 0.6361 CEG C 0.6434
CEG E 0.6491 CEG E 0.7051
CEG CE 0.0207 CEG CE −0.0410
CEG CG 0.9245 CEG CG 0.4120
CEG EG −0.1460 CEG EG −0.6676
CEG CEG −0.6237 CEG CEG −0.3566
WCE W 1.5997 WCE W 0.6695
WOCE O [1.6709;−1.5237] WOTCE O [1.4606;−3.1637]
WOCE WO [−0.0045;−0.1318] WOTCE T −0.6910
WOCE OE [−0.7183;−0.2680] WOTCE WO [0.6394;−0.4189]
WOCE WOC [0.3076;−0.0108] WOTCE WT −0.0988
WOCE WOE [0.9925;−0.4202] WOTCE OC [1.1911; 1.3128]
WOCE WOCE [−0.3958; 0.1132] WOTCE TC −0.6064
WOTCE T −1.5630 WOTCE OE [−0.6684; 1.6665]
WOTCE WT 0.5808 WOTCE TE −1.1285
WOTCE OT [0.3687; 0.5243] WOTCE WOC [−0.3753;−0.1285]
WOTCE TC −21.9010 WOTCE WTC 0.0500
WOTCE TE −19.3440 WOTCE WOE [0.4847;−0.6825]
WOTCE WOT 0.2704 WOTCE WTE 1.3874
WOTCE WTC 21.8659 WOTCE OTC [0.7660;−0.9532]
WOTCE WTC 21.8395;−0.3217 WOTCE OCE [−0.1567;−2.4855]
WOTCE WTE 20.0330 WOTCE TCE 0.8888
WOTCE OTE [1.5645;−1.4979] WOTCE WOTC [0.9136;−0.4878]
WOTCE TCE 42.4563 WOTCE WOTE [−0.0037; 1.6923]
WOTCE WOTC [−21.9093; 1.1838] WOTCE WOTCE −0.5678
WOTCE WOTC [−20.3008; 20.3660]
WOTCE WTCE −42.6677
WOTCE OTCE [−42.5531; 21.0933]
WOTCE WOTCE [43.0787;−21.6751]

Table 2: Non null parameters concerning the two marginal models
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Appendix A

Family of interaction sets concerning null parameters

In this appendix we define for all the Markov properties (C1), (C2*a) and
(C3*b), respectively the classes of interaction D1

h, D2∗a
h and D3∗b

h , h = 1, ..., s.
Applying the formula 2 to the previous Markov properties we get the following
classes:

D1
h =

{
L : L ∈ P

(
∪hj=1Tj

)
\
(
P(Th ∪ paD(Th)) ∪ P(∪h−1j=1 (Tj))

)}
; (16)

D2∗a
h =

(
∪ri=1D

2∗a
h,B1i

)
∪
(
∪Vj∈∪r

i=1B2i
D2∗a

h,Vj

)
,∀h = 1, .., s (17)

where D2∗a
h,B1i

is:

{L : L ∈ P(Th ∪ paD(Th))\ (P(Ci ∪ paD(Th))∪ P(Th\B1i ∪ paD(Th)))} (18)

and D2∗a
h,Vj

is:

{L : L ∈ P(Th ∪ paD(Th))\(
P(Nb

(
Vj ∪B1,Vj

)
∪ paD(Th))∪ P(Th\

(
Vj ∪B1,Vj

)
∪ paD(Th))

)
}

(19)

and finally
D3∗b

h = ∪A∈PAh
D3∗b

h,A,∀h = 1, ..., s (20)

where D3∗b
h,A is:

{L : L ∈ P(Th\ch(A) ∪ paD(Th))\
(P(paD(Th)) ∪ P(Th\ch(A) ∪ paD(Th)\A))}

(21)

Appendix B

Proof of Markov equivalences

Proof of the Theorem 2 We prove that the independences (C2*a) follow
from the the list of independences (C2a). When A = B1i, B1i ⊂ Ci ∈ Clh, the
set of neighbours of A is nb(A) = nb(B1i) = Ci\B1i = B2i. The neighbourhood
of A is Nb(A) = Ci and from (C2a) we get B1i ⊥ Th\Ci|paD(Th) ∪ B2i, that
is the formula (6). On the other hand, when A is equal to Vj ∪ (B1,Vj ), where
B1,Vj

= nb(Vj)∩(∪ri=1B1i), the set of neighbours of A is nb(A) = nb(Vj ∪B1,Vj
)

and the set of neighbourhood is Nb(A) = Nb(Vj ∪ (nb(Vj) ∩ B1,Vj
)), so the

(C2a) gives the formula (7).
Now we prove that from the (C2*a) we get the (C2a). At this aim, we use
the equivalence between the (C2a) and the following statement (See Lauritzen
1996):

Vj ⊥ Th\Nb(Vj)|paD(Th) ∪ nb(Vj) ∀Vj ∈ Th (22)

Thus, it is sufficient to prove the equivalence between the (C2*a) and the (22).
From (6), applying the properties of the conditional independences (see Lau-
ritzen, 1996), we have:

Vj ⊥ Th\Ci|paD(Th) ∪B2 ∪B1i\(Vj) ∀Vj ∈ B1i
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Since ∀Vj ∈ B1i by definition, Nb(Vj) = Ci, and B2i∪B1i\Vj = Ci\Vj = nb(Vj)
the previous formula becomes:

Vj ⊥ Th\Nb(Vj)|paD(Th) ∪ nb(Vj) ∀Vj ∈ B1i

that is the (22). The remaining vertices of TH are considered in the statement
(7) from which, using the same property we get:

Vj ⊥ Th\Nb(Vj ∪B1,Vj )|(paD(Th) ∪ nb(Vj ∪B1,Vj ) ∪B1,Vj ).

Note that, by definition, B1,Vj
⊂ nb(Vj), thus Nb(Vj ∪B1,Vj

) = Nb(Vj). So, we
get:

Vj ⊥ Th\Nb(Vj)|(paD(Th) ∪ nb(Vj))

that is the (22).

Proof of the Theorem 3 The list of independences from the (C3b) implies
the list from the (C3*b). Applying the statement (C3b) to Th\ch(A), we get

Th\ch(A) ⊥ paD(Th)\pa(Th\ch(A))|pa(Th\ch(A)).

Since A ⊆ paD(Th)\pa(Th\ch(A)), from the properties of conditional indepen-
dences it follows Th\ch(A) ⊥ A|pa(Th)\A, that is the (C3*b).
The (C3*b) implies the (C3b). Given a set A ⊆ Th, let {A1,A2, ...,Ar} be the
collection of sets of PAh having A ⊆ Th\ch(Ai), for i = 1, .., r. Now we consider
the statements of independences related to this sets Ai , i = 1, .., r : A1 ⊥ Th\ch(A1)|(paD(Th)\A1)

...
Ar ⊥ Th\ch(Ar)|(paD(Th)\Ar)

Since A ⊆ Th\ch(Ai) , ∀i = 1, ..., r, with some passages we get: A1 ⊥ A| ((paD(Th)\ (∪ri=1Ai)) ∪ (∪ri=1Ai\A1))
...

Ar ⊥ A| ((paD(Th)\ (∪ri=1Ai)) ∪ (∪ri=1Ai\Ar))

Using the intersection property of conditional independence we obtain the (C3b):
(∪ri=1Ai) ⊥ A| ((paD(Th)\ (∪ri=1Ai))) .

Lemma 1. Property of the sets B1i and B2i: We consider the family of the
cliques Clh of a component Th and its decomposition described in section 3.3.
Then for all vertices Vj ∈ ∪ri=1B2i, the set of vertices in nb(Vj ∪ B1,Vj ) is a
subset of ∪ri=1B2i.

Proof. We consider nb(Vj ∪B1,Vj
) =

(
nb(Vj) ∪ nb(B1,Vj

)
)
\
(
Vj ∪B1,Vj

)
.

Since the set of neighbours of a set A do not contain the set itself, the right
term can be rewritten as

(
nb(Vj)\B1,Vj

)
∪
(
nb(B1,Vj

)\Vj

)
.

By definition, nb(B1i) = B2i, ∀i = 1, .., r, so nb(B1,Vj ) ⊆ ∪ri=1B2i and conse-
quently even nb(B1,Vj )\Vj ⊆ ∪ri=1B2i .
Since the set B1,Vj

, by definition, is equal to nb(Vj) ∩ ∪ri=1B1i, then in the
set nb(Vj)\B1,Vj

there is not any vertex that is a subset of ∪ri=1B1,i, thus
nb(Vj)\B1,Vj

⊆ ∪ri=1B2,i.
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Appendix C

Proof of the main results

Proof of the Theorem 4 In order to prove this theorem, we apply the
theorem 1 to the parametrization {ηML : L ∈ P(V ),M∈ HII}.
According to the condition (C1), the parameter to constrain to zero are η

M(L)
L ,

when L ∈ ∪sh=1D
1
h. Now, we check if the marginalM(L) satisfies the condition

(4) of the theorem 1. It is easy to see that each element L ∈ D1
h has at least one

vertex in Th and one vertex in ∪h−1j=1Tj\paD(Th). Since for a given h the only

marginal set containing these subsets of vertices is M1
h = ∪j≤hTh, the theorem

1 always holds for the independences following the (C1) property.
Regarding the (C2*a), each vector of parameters ηML , with L ∈ ∪si=1D

2∗a
h , must

be constrained to zero. In this case, the condition (4) of theorem 1 holds if for
every L ∈ ∪sh=1D

2∗a
h , M(L) satisfies the conditions:

paD(Th) ∪B2i ⊆M(L) ⊆ Th ∪ paD(Th), ∀i = 1, ..., r (23)

for the independence (C2*a) in (6) and the condition:

paD(Th) ∪ nb(Vj ∪B1,Vj ) ⊆M(L) ⊆ Th ∪ paD(Th), ∀Vj ∈ ∪ri=1B2i (24)

for the independence (C2*a) in (7) Obviously, whenM(L) is equal toM2∗a
h , the

conditions (23) and (24) are both satisfied and theorem 1 holds. But, in most
of cases there will be a set A ∈ P(CHh)\Jh, A = L ∩ CHh, such that M(L) =
M3∗b

h,A. When M(L) = M3∗b
h,A the second inclusion in (23) and (24), still hold.

For the first inclusion, it depends on the set A. From Lemma 1 it derives that,
the conditional set paD(Th)∪nb(Vj ∪B1,Vj

) is a subset of paD(Th)∪ (∪ri=1B2i),
thus if ∪ri=1B2i is contained in NCh ∪NAh, also the first inclusion in (23) and
(24) are satisfied. This happens when in the CHh sets there are only elements
of B1i, ∀i = 1, ..., r. From the definition of B1i, it is sufficient that Nb(Vj) ∈ Ch
or equivalently nb(Vj) ∈ Ch.
On the other hand, if there is at least a vertex Vj ∈ CHh such that nb(Vj) /∈ Ch,
so that Vj ∈ B2i, for some i, then the vertex Vj occurs in a conditioning set of an
independence of type (C2 ∗ a), that leads to constrain to zero some parameters

η
M(L)
L , where L is such that, Vj /∈ L, L ∩ nb(Vj) 6= ∅. If L ∩ Th ∈ Jh, there is

not any set A such that M(L) = M3∗b
h,A and the smallest marginal containing

these interactions isM2∗a
h and the condition (4) of theorem 4 is still satisfied. If

L∩ Th /∈ Jh, there is at least one set A ∈ P(CH)h\Jh such that A = L∩CHh

and Vj /∈ A; thusM(L) =M3∗b
h,A and the condition of the theorem 4 is violated.

This is not possible if all non-complete sub-sets C of Th such that C ∩
nb(Vj) 6= ∅, have pa(C) = paD(Th). This is equivalent to requiring that all not
connected sets K ∈ Kh, such that nb(Vj) ∩K 6= ∅, belong to Jh.
Finally, regarding the (C3*b), the relationship paD(Th)\A ⊆ L ⊆ Th\ch(A) ∪
paD(Th) = M3∗b

h,A must holds, where A = Th\ch(A) ∩ CHh. Since each M3∗b
h,A

contains paD(Th), the first inclusion is always verified. Even the second inclusion
always holds, since there is a marginal set for every A ∈ P(CHh)\Jh.

Proof of the Theorem 5 We will show that changing the marginal sets
M3∗b

h,A, the smooth sub-class of GMs II is reduced. From the proof of the pre-
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vious Theorem it possible to see that, if we consider marginal sets M3∗b
h,A such

that (NCh∪NAh) /∈M3∗b
h,A, not only the independences (C2*a), having the chil-

dren in the conditional set are potentially problematic, but every independences
(C2*a). Moreover if we consider a sub-class of the marginal setsM3∗b

h,A, for some
independences (C*3b) the second inclusion of condition 1 may be violated.
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