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Background Adaptation by design consists in conservatively estimating the phase

III sample size on the basis of phase II data, and can be applied in almost all thera-

peutic areas; it is based on the assumption that the effect size of the drug is the same

in phase II and phase III trials, that is a very common scenario assumed in product

development. Adaptation by design reduces the probability on underpowered ex-

periments and can improve the overall success probability of phase II and III trials,

but increases phase III sample size enlarging time and cost of drug development,

also reducing the potential time on market of the drug under study. In this work,

the aim is to build a profit model under the assumption that adaptation by design is

applied, in order to compute the dependence of profit from phase II sample size and

conservativeness and to appropriately size phase II on the basis of profit behavior.

Methods Recent theoretical results on adaptation by design (viz. conservative

sample size estimation) provide the probabilistic distribution of phase III sample

size and the probability of launching phase III. The moments of phase III sample

size, viewed as a random variable, can be computed, in function of the phase II

sample size and of the amount of conservativeness.

Results The modeled revenue depends on: income per patient, annual incidence,

time on market, market share, phase III success probability. The modeled cost

depends on: fixed cost of the two phases, cost per patient under treatment. Profit is

revenue minus cost, and it depends on the random phase III sample size. So profit

moments depend on phase II sample size and conservativeness. To consider expected

profit and profit volatility is mandatory, in agreement with modern evaluation of
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investment performances. The utility, a linear function of profit expectation and

volatility, is therefore evaluated. Phase II sample size can be determined on the

basis of utility, for example optimizing utility, or achieving a given utility value. An

application shows how profit expectation, volatility and utility depend on phase II

sample size and conservativeness, and how phase II sample size can be determined.

Conclusion It has been shown how profit and profit utility depend on phase II

sample size, amount of conservativeness, launching rule. A suitable setting of these

adaptation by design operational parameters can improve profit and increase profit

utility. Adaptation by design can be adopted in many different statistical problems.

Consequently, the profit evaluations here proposed can be widely applied, together

with profit based phase II sample size determination.

Keywords: Adaptation by Design; Conservativeness; Conservative Sample Size

Estimation; Phase III Sample Size; Success Probability; Profit; Revenues; Costs;

Utility; Phase II Sample Size Determination.

1 Background

Phase III trials are usually planned on the basis of phase II data. The rational

modeling of this habit has generated the statistical technique named “Adaptation by

Design” (AbD)- this definition comes from Wang et al. [1, 2]. In detail, AbD consists

in computing the phase III sample size on the basis of the effect size (ES) estimate

obtained from phase II data, where the variability of the latter is accounted for. In

agreement with mathematical statistics language, AbD has been called Conservative

Sample Size Estimation (CSSE) [3]. In this context, phase II data are not used for

phase III confirmatory analysis.

Some Bayesian techniques too, that consider the distribution of the ES posterior

to phase II, are applied to estimate phase III sample size, and they fall under CSSE

[4]. Although the Bayesian approach can be useful in complex situations (see, for

example, [5]), Bayesian sample size estimates often present a very high variability,

implying problems in logistics [6]. Then, in this paper, the frequentist approach to

CSSE is considered.
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CSSE is based on the assumption that the response variable and the ES are the

same in phase II and phase III. Apart cancer trials, where endpoints of phase II

and phase III are usually different, there are no clinical area restrictions to apply

CSSE. Wang et al. [1] argue: “In many cases, we generally explore the appropriate

clinical endpoint in the phase II trials”. Moreover, Kirby et al. [7] state that in their

company (which is one of the world’s largest) “the most common scenario assumed

in product development is that the treatment effect is the same in both phase II

and phase III studies”. Then, CSSE can be applied in the context of many clinical

trials.

It has been shown [1, 3, 6] that CSSE: on one hand reduces the probability of

underpowered phase III and improves the average success probability of phase III;

on the other hand it reduces the probability of launching phase III.

Basic settings for CSSE are: the phase II sample size per group (n); the launch

threshold of the ES (δL); the amount of conservativeness (γ) adopted for estimating

the phase III sample size. When these parameters are well set, CSSE can provide a

high Overall Success Probability (of phase II and III trials) and a suitable precision

in planning phase III [1, 3, 6, 7].

In practice, CSSE is a statistical tool to increase the phase III sample size sug-

gested by the ES observed in phase II, and it is based on some probabilistic reasoning

(not just on some rules of thumb, such that of discounting the observed ES of, e.g.,

90%).

Then, CSSE improves the probability of success of clinical trials (and so the

expected revenues) but enlarges times and cost of experimental phases. Therefore,

the point is how the balance between higher revenue and larger cost results. In other

words, it is of interest how CSSE reflects on profit. Moreover, it is of main interest

if a suitable sizing of phase II (i.e. a suitable setting of n) can imply a good phase

III planning and a consequent good profit.

Recent simulation based works, considering specific clinical studies, linked sample

size estimation to profit [e.g. 8, 9]. Although several aspects of the drug development

program were considered, and interesting detailed profit models were adopted, just

the expected profit was computed and no concerns to profit variability were provided;

moreover, the variability in sample size estimation was not considered, that is, the

observed ES was adopted for planning phase III and CSSE was not applied.
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The aims of this work are: a) to link CSSE to a profit model, in order to obtain

direct calculation of the profit distribution; b) to show how a suitable setting of

phase II sample size (n) and conservativeness (γ) can influence and improve profit

(i.e. obtaining higher profit expectation and lower volatility) and profit-based utility

functions.

2 Materials and Methods

Parallel designs with balanced sampling in both phase II and III trials are considered.

CSSE is adopted for sizing phase III on the basis of phase II data, where h − 1

doses of a certain drug are evaluated, together with a placebo arm. A sample of

size n is collected for each arm and D represents the selected dose. The true, and

unknown, standardized ES of D is δt = (µD − µP )/σ (without loss of generality, σ can

be considered equal to 1). d•n represents an estimator of δt based on phase II data.

Being δL the threshold of interest for the ES, phase III is launched if d•n > δL - this

is a simple and general launching rule [1, 3 (Ch.3), 7].

When phase III is launched, two two-arm trials comparing D to placebo are run.

It is assumed that phase III ES is still δt. The ideal phase III sample size, that

depends on the unknown ES, is MI = b2(z1−α + z1−β)2/δ2t c+ 1, with standard meaning

of α and β, and where zγ is the γth quantile of a standard normal random variable.

The actual sample size of each phase III group is an estimate of MI obtained

through d•n, and so based on phase II random samples. To control random variability,

a conservative approach is adopted: d•n = dn − zγ
√

2/n = dγn is the lower bound of a

one-sided confidence interval for δt, with coverage probability γ. Then, phase III

(random) sample size is

Mγ
n = b2(z1−α + z1−β)2/(dγn)2c+ 1 (1)

Since Pδt(d
γ
n ≥ δt) = 1 − γ, Mγ

n provides underpowered experiments with probability

1 − γ. The higher is γ, the higher phase III sample size and the averaged success

probability of phase III, provided that phase III is launched. Indeed, at the same

time, the higher is γ, the lower the probability to launch phase III (i.e. Pδt(d
γ
n > δL)).

In practice, low γs give low success probabilities, and high ones give low launch

probabilities. An amount of conservativeness (γ) from 50% to 80% is suggested,
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since it often provides the optimal Overall Success Probability, which actually is a

concave function of γ [6].

Note that, since phase III is launched only when dγn > δL, Mγ
n has an upper bound

given by mmax = b2(z1−α + z1−β)2/δ2Lc + 1. Exact formulas for the distribution of Mγ
n

are reported in Ch.3 of [3].

3 Results

3.1 Modeling Profit

The profit model is built by referring to [10] and [8]. Basically, profit is the revenue

minus the cost.

The revenue depends on: the income realized by treating one patient (ip), the

annual incidence of the illness condition under consideration (ai), the time on market

of the drug (tmark), the market share (s), the success probability of phase III (SPIII).

Since tmark and SPIII depend on n and m, the latter denoting the generic sample size

of one group in phase III trials, the revenue (r) too is a function of these sample

sizes:

r(m,n) =

 ip × ai× tmark(m,n)× s× SPIII(m) if phase III is launched

0 otherwise
. (2)

In detail, SPIII(m) = Φ(δt
√
m/2− z1−α) (see [3], Ch.1), and the time on market, which

depends on: the time horizon of the patent (th), the time spent between experimental

phases (tbp), the total sample sizes of both phases, the accrual rate (ar), is:

tmark(m,n) =

 th − tbp − (hn+ 4m)/ar if th > tbp + (hn+ 4m)/ar

0 otherwise
. (3)

The cost of the whole experiment depends on the fixed cost of the two phases

(fcII and fcIII) and the cost per patient under treatment (cp). Being (h×n+2×2×m)

the total sample size, the cost is:

c(m,n) =

 fcII + 2× fcIII + cp × (h× n+ 2× 2×m) if phase III is launched

fcII + cp × h× n otherwise
.

(4)
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Then, making use of (3) and (2) for the revenue, and of (4) for the cost, the profit

is:

p(m,n) = r(m,n)− c(m,n) (5)

Now, it should be remarked that the actual phase III sample size (Mγ
n) is a random

variable, since it is based on phase II samples. Moreover, the behavior of Mγ
n depends

on n, on the conservativeness γ, and on its upper bound mmax (which is a function

of the launch threshold δL). As a consequence, also revenue, cost and profit are

random variables whose behavior depend on n, γ and mmax. So, the random profit

can be denoted by P γn = p(Mγ
n , n) - for simplicity, the dependence from mmax is not

reported.

Hence, thanks to (5) and to the distribution of Mγ
n in (1), the moments of P γn can

be computed. The q-th moment is:

µq(n, γ) = E[(P γn )q] =

mmax∑
m=2

(p(m,n))qPδt(M
γ
n = m)− (fcII + cp × h× n)qPδt(d

γ
n ≤ δL) (6)

In particular, the first term in the right-hand side of (6) represents the part of the

q-th moment of profit when phase III is launched, where the second term that when

phase III is not launched. The first and the second moment of P γn give the mean

and the variance of profit.

3.2 Sizing phase II on the basis of profit

Profit is a random variable based on investments, that, in the model here introduced,

are represented by cost and time. Then, profit can be viewed as the random perfor-

mance of an investment. In modern portfolio theory, investment performances are

usually evaluated through the classical mean-variance criterion (Markowitz, [11]).

In practice, besides expected profit (µ1), profit volatility (i.e. the standard devi-

ation σ(P γn ) =
√
µ2(n, γ)− µ1(n, γ)2 = σP (n, γ) ) should be accounted for. We remark

that considering profit volatility goes further [8] and [9].

A suitable investment is characterized by a performance with high expectation

and small volatility. Often, the maximum of the former does not match with the

minimum of the latter. Then, the utility function (u), which is a linear combination

of performance expectation and volatility, is usually adopted to find the subjective

best performance. This holds for profit too, so that the utility of profit is adopted
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for evaluating profit behavior. Since µ1 and σP depend on phase II sample size n

and conservativeness γ, utility turns out to be:

u(n, γ) = µ1(n, γ)− λσP (n, γ) (7)

The parameter λ represents the subjective aversion to risk: it quantifies how many

µ1 points an investor would pay for one point reduction in σP . The higher is λ, the

higher the aversion to risk of the investor is. In this framework, investor’s role is

played by the research sponsor.

Note that when λ = 0, utility is the expectation of profit. In practice, aversion to

risk is important for investors, and this implies λ > 0. Consequently, σP becomes of

great interest.

Phase II sample size n can be determined on the basis of utility. At first, note that

as n increases, cost increases too, where revenue cannot raise over ip× ai× th× s. So,

when n tends to infinity, profit decreases and becomes negative. Consequently, it is of

interest to find suitable utility solutions for n, where the amount of conservativeness

γ can be either given fixed or free of varying.

Then, several criteria can be adopted to determine phase II sample size on the

basis of utility. For example, given the risk parameter λ, one can compute the

phase II sample size that optimizes utility (viz. nI). Another possibility consists in

computing, given λ and the utility to achieve (ū), the minimum phase II sample size

such that u(n, γ) overcomes ū (viz. nII). Both nI and nII may be computed given γ

fixed (e.g. γ = 75%).

3.3 Average of cost

Besides profit behavior and phase II sample size determination, the research sponsor

may be interested in operational cost c in (4). In practice, the actual cost c(Mγ
n , n) =

Cγn is, once again, a random variable. Then, Cγn varies from fcII + cp × h × n, when

phase II only is developed, to fcII + 2× fcIII + cp × (h× n+ 2× 2×mmax), when phase

III is launched. On average, the cost is

E[Cγn ] = fcII + cp × h× n+ 2× fcIII × Pδt(dγn ≥ δL) + 4× cp × E[Mγ
n ] (8)

The range and the mean of Cγn might be considered from the sponsor for taking

practical decisions that go beyond profit based optimal solutions, some of which has

been indicated by nI and nII .
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4 Application

Profit behavior is shown here in a practical context, to remark the dependence

of profit from phase II sample size and conservativeness. Then, profit utility is

evaluated and phase II sample size is computed following different approaches and

under different settings. The amounts of money are reported in thousands dollars.

Assume that h = 6 groups are considered in phase II and that the standardized

effect size is δt = 0.5. In phase III, a power 1−β = 90% is desired, with α = 2.5%, giving

an ideal sample size MI = 85. The threshold for launching phase III is δL = 0.205,

giving an upper bound mmax = 500 for the phase III sample size estimator Mγ
n . Phase

II sample sizes n of 60 and 90 are considered, that, according to [6], are close to the

ideal phase III sample size 85.

Now, assume that: the annual incidence of the disease is 50 000, the revenue per

patient is $0.1, the time horizon of the patent is 20 years, the time between phase II

and phase III is 6 months, the annual accrual rate is 1200, the market share is 40%,

the cost of phase II is $1 000, that of phase III is $1 500, and the cost per patient

under treatment is $3.2 (these data are taken from [11]). Then, the mean and the

volatility of profit are computed and showed in Figure 1. Of course, a high average

of the profit associated to low volatility would be welcome.

As expected, the conservativeness giving best expected profit (µ1) does not match

with that giving lowest volatility (σP ). Therefore, a uniformly shared optimal so-

lution does not exist: to balance between µ1 and σP , the profit utility should be

adopted, that depends on subjective aversion to risk.

Assume that an aversion to risk parameter λ = 0.5 is chosen, meaning that one

would pay 0.5 points of µ1 for one point reduction in σP . The utility functions so

obtained are reported in Figure 2.

It can be noted that utility is a concave function of γ. Being γopt the amount of

conservativeness giving maximal utility (i.e. u(n, γopt) ≥ u(n, γ) for every γ), we have

γopt = 61% and γopt = 66%, with n = 60, 90, respectively. Detailed values of utility and

profit values are reported in Table 1.

It can also be noted that utility with n = 90 is higher than that with n = 60: this

is not a constant trend, since utility decreases an n tends to infinity; for example,

with n = 1000 cost is so high that u(1000, γ) < 0, for every γ.
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The determination of the value of n providing the best utility with λ = 0.5, re-

gardless to γ, gives nI = 197, see Figure 3. Considering that one would adopt the

fixed conservativeness γ = 75%, the determination of the smallest phase II sample

size overcoming the utility threshold ū = 18000, that is, a difference of $18M between

expected profit and half of the volatility is assumed to be of minimal interest, gives

nII = 105 (Figure 3). The values of n• with respective utility and profit values are

reported in Table 2.

Comparing Tables 1 and 2, remarkable are the small differences between the

values of expected profit (i.e. $22 301, $23 202) obtained when phase II sample size

nI gives the best utility and those obtained with n = 90 (i.e. $21 827, $22 938):

utility is best with nI thanks to an approximated 40% reduction in volatility with

respect to that with n = 90.

Finally, note that with n = 60, 90, the maximum of the cost is $11 552, $12 128,

respectively (see section 3.3). However, since the phase III sample size Mγ
n is often

lower than mmax = 500, the average of cost (8) is around $6 300, $7 100, when

n = 60, 90, respectively, with small γ-dependent variation.

4.1 Varying aversion to risk, launch threshold, power

To evaluate how results change when the launch threshold δL and the aversion to

risk parameter λ vary, a second level has been considered for these two settings.

The former has been set to δL = 0.145 (giving mmax = 1000), and latter to λ = 1.5.

Consequently, a total of four different scenarios have been studied.

Table 1 reports utility and profit values with n = 60, 90, where Table 2 reports

those of the determined sample sizes nI and nII

In this application, utility and profit measures do not vary a lot when n goes

from 60 to 90 and λ changes from 0.5 to 1.5: there are great differences when n is

too small with respect to the problem it is apart. For example, when n = 30, utility

is about 50% of that when n = 90.

To improve profit, the power may be set higher, in order to then increase phase

III success probability and, so, the revenue. Nevertheless, when 1− β is higher, also

MI increases and so does the random phase III sample size Mγ
n , together with the

cost. For example, increasing the power to 1 − β = 95% (that gives MI = 104), with

mmax = 500 and λ = 0.5, the optimal u (i.e. u(n, γopt)) with respective values of µ1 and
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σP , result equal to: $16 289, $21 587, $9 316 with n = 60, and to $19 033, $22 913, $7

761, with n = 90. Comparing this u(90, γopt) = 19033 with that obtained with power

equal to 90% (i.e. $17 557, see Table 1, second line), an increment of 8.4% in profit

utility is obtained; the average of cost is around $7 300, with a increment of 2.8%

with respect to $7 100.

5 Conclusion

In this work, according to the aims claimed in the first section, a model linking

Conservative Sample Size Estimation (viz. Adaptation by Design) and profit distri-

bution has been built. The results showed how expectation and volatility of profit

and, mainly, profit utility depend on: phase II sample size n, launch threshold δL,

amount of conservativeness γ. Moreover, a correct adoption of CSSE (i.e. a suitable

setting of its operational parameters n, δL, and γ), besides increasing the Overall

Success Probability [6], can improve profit and increase profit utility - this has been

shown through the application in section 4.

Usually, the launch threshold δL is defined either by clinical indications, or as a

consequence of the maximum sample size imposed to phase III trials. Therefore,

profit behavior can be more directly influenced by n and γ. Inverting the latter

relationship, phase II sample size n can be determined on the basis of profit, and in

particular of profit utility; the conservativeness γ can either remain free of varying,

or be given fixed, i.e. by defining in advance which CSSE strategy is to be applied.

For example, phase II can be sized in order to optimize profit utility, or to achieve

a given level of the latter.

CSSE can be applied in a general parametric framework (including χ2, t, and F

tests) through the estimation of lower bounds of noncentrality parameters (see [3],

Ch.5). A general nonparametric technique for CSSE is also available, for k-sample,

univariate or multivariate tests (see [6], Ch.9, and [12]). Moreover, CSSE can be

applied also when phase II effect size is different from phase III one, by adopting

suitable correction strategies [1, 13].

To conclude, CSSE can be adopted in many different clinical contexts (as ex-

plained in the first section) and it can be used in many different statistical prob-

lems. Then, the profit evaluations here proposed can be widely applied, together

10



with profit based phase II sample size determination.

The profit model giving (6) can, of course, be improved. For example, safety con-

siderations can be introduced in the analysis of phase II results for the subsequent,

eventual, launch of phase III. Also, the market share can be modeled as a function of

the results of safety and efficacy observed in phase III. Future works might concern

these topics.
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Table 1 Utility and profit values

settings n γopt u µ1 σP

mmax =500 n =60 61% 15362 20401 10078

λ =0.5 n =90 66% 17557 21827 8540

mmax =1000 n =60 66% 17043 21593 9101

λ =0.5 n =90 73% 19026 22938 7465

mmax =500 n =60 55% 5487 20089 9735

λ =1.5 n =90 61% 9168 21557 8259

mmax =1000 n =60 63% 8016 21464 8965

λ =1.5 n =90 70% 11840 22821 7321

Table 1. Utility and profit values in various settings of risk and of upper bound for

phase III sample size, with MI = 85 and n = 60, 90.
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Table 2 Utility and profit values

settings n γ• u µ1 σP

mmax =500 nI =197 γopt =81% 19678 22301 5246

λ =0.5 nII =105 γ =75% 18016 22290 8457

mmax =1000 nI =178 γopt =85% 20947 23202 4510

λ =0.5 nII =74 γ =75% 18045 22405 8720

Table 2. Sample sizes determined with two different criteria, together with their

respective utility and profit values, for two different upper bounds for phase III

sample size, and with MI = 85.
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Figure 1: Expected profit and profit volatility with n = 60, 90, in function of γ.
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