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Stratification of biological samples based on  
proteomics data

D Di Silvestre1, I Zoppis2, G Mauri2, PL Mauri1*

Abstract
Introduction
Stratification of biological samples by 
using high-dimensional data, such as 
those derived from mass spectrom-
etry-based proteomics approaches, 
has become a promising strategy to 
solve biological questions, as well as 
to classify samples in relation to dif-
ferent phenotypes. In this regard, we 
have discussed some computational 
aspects related to the processing of 
Multidimensional Protein Identifica-
tion Technology data through a class 
of algorithms widely used in machine 
learning community, such as support 
vector machines. Specifically, after a 
short presentation of the input data 
structure, we focused on properties 
and abilities of feature selection and 
classification models, indicating use-
ful tools for assisting scientists in 
these computations. Finally, we con-
cluded this review hinting at new 
strategies of inference which coupled 
to mass spectrometry improvement, 
in instruments and methods, may rep-
resent the perspectives of this field.
Conclusion
In this review we have made a well-
defined overview of a method that, 
by combining high-throughput pro-
teomic data and machine learning 
algorithms, allows the stratification 
of biological samples. Besides the 
importance that these procedures 
can play for diagnostic or prognos-
tic purposes, they are useful also for 

identifying meaningful expression 
patterns. Therefore, it represents a 
valid tool for investigating both clini-
cal and biological aspects.

Introduction
Recent developments in analytical 
techniques such as mass spectrome-
try (MS) have created the opportunity 
to measure proteomes at large-scale, 
providing a representative snapshot 
of cells and/or tissues associated with 
different phenotypes. In this context, 
new MS instruments are able to reach 
the limit of detection up to attomole 
and a dynamic range of 1 × 1061. As a 
consequence, MS has become essen-
tial for proteomic research, and owing 
to its powerful activity of discovering 
it has already been introduced as a 
tool for clinical applications. In fact, 
one of the main aims in this field is to 
use relevant biomarkers for improv-
ing current methods of diagnosis (e.g. 
healthy–diseased), for selecting ap-
propriate therapeutic approaches and 
for monitoring their effectiveness2.

The construction of an inference 
model able to discriminate biological 
samples (sharing some character-
istics, such as m/z ions, peptides or 
proteins) is a common issue in many 
areas of life sciences including prot-
eomics. In the last few years, a variety 
of algorithms have been designed for 
this purpose. In many of these studies, 
different authors applied support vec-
tor machines (SVMs)3 to experimental 
data mainly generated by analysing 
body fluids through MALDI (matrix-
assisted laser desorption/ionisation) 
and SELDI (surface-enhanced laser 
desorption/ionisation) technologies, 
while very few cases investigated the 
data obtained by liquid chromatog-
raphy coupled to MS4. In a number of 
publications, discovery of biomarker 

patterns has been reported with di-
agnostic sensitivities and specificities 
approaching 100%. Although these 
results prefigure a prominent posi-
tion for diseases diagnosis, to realise 
the potential of MS-based proteomics 
in the area of clinical utility, additional 
requirements, such as reproducibility 
and standardisation of methods, need 
to be addressed5.

Regardless of the analytical meth-
odology used to generate proteomic 
data, two main interests address the 
inference on the biological sample 
discrimination: the feature selection 
and the classification problems (Fig-
ure 1). For each of them, scientists 
can apply a wide range of algorithms, 
hence there is no unique way lead-
ing to an adequate inference model. 
As a consequence, which strategy 
works best is yet an open issue. To 
answer this question, some investi-
gators have begun to perform stud-
ies for assessing which procedure 
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Figure 1: General workflow for 
sample classification by using high-
dimensional proteomic data.
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inserted in Bioworks and Discovery 
software (ThermoFisher Scientific). 
The latter also provides spectra inter-
pretation by means of Mascot11, which 
is probably the most widely used tool 
for mass spectra interpretation. Typi-
cally, a single MudPIT run allows the 
identification up to a thousand pro-
teins, peptides, and spectra per sam-
ple8. These data are associated with 
quantitative sampling parameters, 
such as peak area intensity or spec-
tral count (SpC), which in the last dec-
ade have permitted the development 
of tools and procedures for character-
ising biomarkers, by means of both 
label- and label-free approaches4.

Both for biomarker discovery and 
classification inferences, results from 
multiple MudPIT experiments are 
conveniently represented in a table, 
as shown in Figure 3, where the num-
ber of variables are usually bigger 
than the number of analysed samples 
(v >> s). Columns are indexed through 
some characteristics describing the 
samples. As we shall see, these are 

earlier, that is feature selection and 
SVM classification. 

Proteomic data
MudPIT approach is a powerful 
analytical method based on two-
dimensional liquid chromatography 
separation coupled to tandem MS 
(Figure 2). Except sample prepara-
tion, the whole experiment is fully 
automated and the process, repeated 
several times, produces thousands of 
MS and MS/MS spectra. MS precur-
sor ion intensities can be used for 
peptide quantification, while MS/MS 
spectra contain sequence informa-
tion and are processed for obtaining 
peptide and protein lists. Specifically, 
MS/MS interpretation is based on the 
comparison of experimental spectra 
versus theoretical peptide fragments 
calculated from a reference database. 
This job is performed by specific da-
tabase search engines, commercial or 
available for free. One of oldest and 
best recognised algorithms for this 
purpose is the SEQUEST10, which is 

allows the best performances; some 
of them combined feature selec-
tion techniques with statistical and 
machine learning6, while others eval-
uated biomarker discovery of differ-
ent feature selection methods7 or 
the classifier capabilities associated 
with different data types8. Although 
these comparative studies are of 
great importance, their comparison 
is very difficult because they vary 
in several conditions, ranging from 
analytical parameters to algorithms 
used for statistical data analysis. For 
this reason, in this review, we have 
focused mainly on the computational 
aspects to discriminate phenotypes, 
by a class of algorithms widely used 
in the machine learning community, 
such as SVMs, and proteomic data 
obtained by Multidimensional Pro-
tein Identification Technology (Mud-
PIT)9. In particular, we first shortly 
describe the MudPIT approach and 
the structure of its data, and then we 
discuss the computational aspects 
of the two main interests mentioned 

Figure 2: Multidimensional Protein Identification Technology workflow. MudPIT approach is made of four distinct phases 
consisting of sample preparation, liquid chromatography separation, mass spectrometry analysis and data-processing. 
Sample preparation usually involves protein extraction and trypsin digestion. Generated peptides are separated by 
means of strong cation exchange (SCX) followed by C18 reverse phase (RP) chromatography, and directly analysed by 
mass spectrometer. It isolates ions (MS) of a particular peptide, subjects them to fragmentation and records the produced 
fragments in a tandem mass spectrum (MS/MS). Finally, MS/MS spectra are processed by means of database search 
engines for obtaining peptide and protein lists.
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tive enumeration is infeasible in 
most cases as it results in 2n subsets 
to be tested. Finally, in many applica-
tions (e.g. diagnosis), it is clear that 
a reduced number of features avoid 
risks (e.g. invasive exploratory sur-
gery) and save costs during their 
utilisation. 

Generally, feature selection algo-
rithms can be classified into three 
main categories based on whether 
or not feature selection is done in-
dependent of the learning algo-
rithm used, for example to construct 
the classifier. These categories in-
clude filter, wrapper and embedded 
methods.

Filter methods
The fastest way for feature selection 
is probably ranking the features. In 
this case, filters do not take into ac-
count feature interaction, but they 
assess the relevance of a feature by 
looking only at the intrinsic charac-
teristics of the data. In most cases, 
a feature relevance score is cal-
culated, and low-scoring features 
are removed. The features can be 
ranked with some statistical test. 
Several methods use simple correla-
tion coefficients similar to Fisher’s 
discriminant criterion; others adopt 
mutual information19 or statistical 
t-test, or F-test. Advantages of filter 
techniques are that they easily scale 
to very high-dimensional data sets, 
and they are computationally simple 
and fast. As a result, feature selection 
needs to be performed only once, 
and then different classifiers can be 
evaluated. As mentioned earlier, a 
limitation of filter methods is that 
they ignore both interaction with the 
classifier and the feature dependen-
cies. To overcome this last problem, 
a number of multivariate filter tech-
niques were introduced18.

Wrapper methods
Wrapper techniques perform a 
search in the space of feature subsets 
by incorporating the classification al-
gorithm within the process. In other 

1. �the construction of a model which 
is able to discriminate between 
case and control samples (i.e. clas-
sification problem). 

2. �the need to perceive which pro-
teins (peptide, signals etc.) are 
associated with specific factors 
of interest (e.g. differentially ex-
pressed proteins between case 
and control groups), thus sug-
gesting potential biomarkers for 
future investigation (i.e. feature 
selection problem). 

In general, the first interest does 
not imply the second; however, in 
some cases they cannot be consid-
ered as independent issues14. For in-
stance, proteomic profiles consist of 
a wide range of measurements, such 
as peak area intensity or SpC, evalu-
ated for both biomarker discovery 
and classification inference. Hence, 
to assure good inference accuracy 
one has to search for a robust com-
bination of feature selection methods 
and classification models.

Features (or attributes) are char-
acteristics describing the samples. 
In many applications, identifying 
the most characteristic features is 
critical, for example when one tries 
to minimise the inference accuracy 
obtainable in the subsequent classi-
fication problem. The feature selec-
tion15–19 refers to the task of identify-
ing the useful subset of attributes to 
be used for representing patterns of 
a larger set of often mutually redun-
dant or irrelevant attributes. This 
process is fundamental for proteom-
ic data sets due to the abundance of 
noisy (e.g. chemical) or misleading 
features. Depending on the charac-
teristics of the classification model, 
irrelevant and redundant features 
could worsen the prediction rate for 
the classification problem. Moreo-
ver, reducing the number of features 
gives less computationally intensive 
models. To provide the most accu-
rate subset of features, we would 
ideally have to test all the subsets of 
the original n features. This exhaus-

the features considered for the task 
at hand. Rows are the analysed sam-
ples (e.g. cell lines, tissues and body 
fluids). Each cell represents the value 
(i.e. expression level) assumed by the 
feature j when describing the sample 
i. A specific feature identifying the 
group membership of each observa-
tion is generally given in the case of 
a classification problem. In figure 3, a 
vector of target variables yi{−1, +1} is 
coded to identify the group member-
ship (i.e. case/control) of each obser-
vation. 

Before applying classical label-free 
quantification approaches, as well 
as future selection and classification 
algorithms, standard procedures in-
volve data pre-processing to remove 
instrumental noise and to make 
measurements comparable. For in-
stance, mass spectral profiles may 
be affected by baseline effects, shifts 
in mass-to-charge ratio, alignment 
problem or differences in signal in-
tensities, which may be corrected by 
software, such as MZmine12. In the 
same way, variation of sampling pa-
rameters associated with identified 
proteins, such as SpC, could be due to 
different amounts of analysed sam-
ple. These differences are adjusted 
by using strategies of data normali-
sation13. For example, we report one 
of the simplest procedures, called To-
tal Signal method: given two or more 
samples, S1, S2…Si, and with T1, T2…Ti 
the respective sum of SpC for all the 
proteins, this method aims to obtain 
T1 = T2… = Ti. Therefore, normalisa-
tion of SpCij is obtained by dividing 
SpCij for the value obtained by sum-
ming SpC values of all proteins be-
longing to the same list (Ti).

SpCij = SpCij/Ti

Feature selection
Recent proteomic technologies pro-
vide great amount of data, which 
need to be processed through sophis-
ticated tools. As mentioned previous-
ly, when handling such data there are 
two general interests.
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words, wrappers utilise the classifier 
as a ‘black box’ to score the subsets 
of features based on their predic-
tive power. This way, the evaluation 
of a specific subset is obtained by 
training and testing the classifica-
tion model, rendering this approach 
tailored to the specific classification 
algorithm. As the number of all fea-
ture combinations is exponential in 
the number of the considered fea-
tures, the search for the subset which 
provides the most accurate classifi-
cation accuracy is often critical for 
its practical acceptance. To overcome 
this problem, many heuristic meth-
ods, deterministic and randomised, 
are used to guide the search of ‘sub-
optimal’ subsets15,16. 

Embedded methods
Embedded methods search among 
different feature subsets, howev-
er, unlike wrappers, the process is 
tied closely to a certain classifica-
tion model and takes advantage of 
its characteristics and structure. In 
other words, the learning part and 
the feature selection problem cannot 
be separated, for example Weston 
et al.20 measured the importance of 
a feature using a bound that is valid 
only for SVMs.

Classification with SVM
SVMs have become a state-of-the-
art technique in solving classifica-
tion and regression problems3,21,22. 
The reason for this success is not 
only because of their sound theoreti-
cal foundation but due to their good 
generalisation performance in many 
real applications, also. Here, we focus 
on SVMs for two-class classification 
problems (e.g. cases/control). In this 
case, samples can be suitably repre-
sented geometrically through their 
feature values (rows of the table in 
Figure 3) as set of points in Rn. Figure 
4a gives a simple example of repre-
sentation for the Euclidean plane. By 
associating with the points of their 
group membership variable, we ob-
tain the representation in Figure 4b. 

Figure 4: Linear SVM classification. (a) Labelled points are represented in R2. 
(b) A decision surface (line) separates the two classes of points. (c) There are 
many possible hyperplanes separating the two classes of points. (d) The optimal 
hyperplane separates positive and negative examples with the maximal margin. 
The position of the optimal hyperplane is determined by the examples that are 
closest to the hyperplane (support vectors.).

Figure 3: Example of profile data from case and control groups. Rows represent 
samples, while columns indicate their features (e.g. m/z, peptides or proteins). 
In each cell, a value corresponding to the parameter associated with feature is 
reported. For instance, peak area intensity (AUC) may be used for m/z mass 
points or peptides, while SEQUEST score or spectral count (SpC) for proteins.

In the figure, we illustrate a set of lin-
early separable points labelled by −1 
for disease patients and +1 for con-
trol subjects. We point out that a set 

of points are linearly separable when 
they can be completely separated 
by a line (in R2) or, for much higher 
dimensions, by a hyperplane. All 
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The KD process is modelled by a com-
plex nested chain of objects, called 
operators, which can be dropped as 
nodes onto a working pane. In this 
way, data-flows are specified by con-
necting the operator nodes in such a 
way that one is able to represent the 
conceptual sequence of operational 
steps (i.e. workflows) applied for dif-
ferent data mining experiments. The 
workflows are essentially executable 
visual representations of complex 
procedures, and can realise eas-
ily classification, clustering, feature 
selection and even data integration 
tasks28. For example, Figure 5 shows 
the RapidMiner workflow designed 
for a feature selection process. Basi-
cally, it implements standard SVM 
algorithms to forecast the patient 
membership group.

As mentioned above, SVMs are 
used as ‘black box’ inference process-
es to score each set of features ac-
cording to the inference performance 
of the algorithm. After learning is 
completed, adequacy of features or 
a classifier is evaluated to insure that 
it provides a universal model able to 
generalise to new data the relation-
ships learned on the training set. This 
capability may be tested through 
different methods (e.g. k-fold cross-
validation, bootstrapping and hold-
out)3 and by using validation sets, 
previously unseen. One of the most 
common procedures to measure 
the classifier performance is based 
on the confusion matrix. It assesses 
phenotype prediction through stand-
ard indices (Table 1). However, other 
methods, such as receiver-operating 
characteristic curve, are available29.

Discussion
Traditional inference tasks, such as 
classification, feature selection or 
clustering, attempt to find patterns 
in a data set characterised by a col-
lection of independent instances 
of a single ‘table’. Numerous algo-
rithms have been designed to work 
on such a standard approach, where 
instances can be easily represented 

either (w∙xi − b ≥ 1) for the first class 
or (w∙xi − b ≤ −1) for the second, and 
more compactly yi (w∙xi - b ≥ 1) for 
all 1≤ i ≤ n. Putting all of this togeth-
er, we obtain the following optimisa-
tion problem:

min

. . . , .
,w b

i i

w

s t y w x b i n− ≥( ) ≤ ≤1 1

The optimisation problem in Equa-
tion (1) is difficult to solve as it de-
pends on ||w|| (the norm of w) that 
involves a square root. Note that by 
substituting ||w|| in the objective 
with 1/2||w||2 the solution remains 
unchanged as the minimum of the 
original and the modified equation 
both have the same w and b (the fac-
tor of 1/2 being used for mathemati-
cal convenience). Hence, we obtain 
the equivalent quadratic program-
ming (QP) optimisation problem as 
follows:

min

. . . ,
,w b

i i

w

s t y w x b i n

1
2

1 1

2

− ≥( ) ≤ ≤
� (2)

This problem can be solved us-
ing standard QP optimisation tech-
niques3. The optimal solution � �w b,( ) 
for the problem in Equation (2) ena-
bles the classification of a new point 
z according to the following expres-
sion: class(z) = sgn( �w ∙ z + �b), where 
sgn is the signum function. This way, 
the label of z is +1 if the vector z is 
greater than or equal to zero and −1 
if it is less than zero. When the linear 
decision surface does not exist (i.e. 
points are not linearly separable) 
the data can be mapped into a much 
higher-dimensional space where 
the separating hyperplane can be 
found23. 

Data mining workflows 
Many open source systems support 
users with graphical interface for 
rapid prototyping of machine learn-
ing and knowledge discovery (KD) 
processes, for example Weka24, Tav-
erna25, KNIME26 and RapidMiner27. 

samples of one class lie on one side 
of the line and all samples of the oth-
er class lie on the other side. In this 
situation, the class of linear SVMs can 
be easily applied, for example for the 
classification problem.

Linear SVMs search for the optimal 
hyperplane that is equidistant from 
the two considered classes of sam-
ples. Generally, there are most likely 
many possible hyperplanes that sep-
arate the classes (Figure 4c). For this 
reason, the main issue of the SVMs 
is to find the separating hyperplane 
with the largest distance (i.e. mar-
gin) between border-line samples 
(i.e. support vectors) from the two 
classes (Figure 4d). In other words, 
the hyperplane is a decision bounda-
ry between the two classes of points. 
Once this hyperplane has been ob-
tained, the class label (i.e. member-
ship group) of new samples can be 
predicted by testing which side of the 
hyperplane they appear. 

Now, we give a brief mathematical 
summary of this approach. Let K be 
the collection of points {(xi, yi), xi ∈ 
Rn, yi ∈ {-1, 1}}, where yi indicates 
the class label for xi , 1 ≤ i ≤ N. The 
goal is to find the maximum-margin 
hyperplane dividing the points hav-
ing yi = 1 from those having yi = −1. 
We can express any hyperplane as 
the set of points xi satisfying, w∙xi − b 
=0, where ∙ denotes the dot product 
and w is a normal vector perpen-
dicular to the hyperplane, the value 
b/||w|| determines the offset of the 
hyperplane from the origin along the 
normal vector w. Therefore, we can 
choose w and b to maximise the dis-
tance (margin) between the parallel 
hyperplanes in such a way that the 
data are separated. The two equa-
tions describing these hyperplanes 
are w∙xi − b = 1 and w∙xi − b = −1. 
For linearly separable points, the 
distance between these two hyper-
planes is 2/||w||; hence, the goal is 
to minimise ||w||. Furthermore, to 
prevent the data points from falling 
into the margin, the following con-
straints are also needed: for each xi 
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has the potential to optimise clas-
sifier capability and address the in-
creasing demand of systems biology 
studies for correlating molecular ex-
pression to biological processes.

Conclusion
Improvement in mass spectrometry, 
coupled to advanced statistical anal-
ysis, represents a good starting point 
for developing procedures of inves-
tigation more and more accurately 
and precise. It may have important 
effects on understanding biological 
questions, and represent a crucial as-
pect for developing efficient methods 
of diagnosis, prognosis and thera-
peutic follow-up of human diseases. 
However, both for analytical and 
statistical parts, some questions like 

Figure 5: RapidMiner workflow. (a) Data are retrieved by the ‘Read data’ operator and the feature selection is performed 
(‘Feature Selection’ operator). (b) Feature selection encapsulates a cross-validation process (‘Cross-validation’ operator) 
to select the most performing set of features. (c) Cross-validation operator encapsulates a k-fold cross validation process. 
Cross-validation is a two-step process: in the first step a classifier is built describing a predetermined set of data classes. In 
the second step, the model (a trained SVM) is used for testing new classification examples. The first inner operator (‘SVM’) 
realises the first step described earlier (Training). The second inner operator (‘Apply Model’) realises the second step. 
Finally, the predictive accuracy of the classifier is estimated by the ‘Performance’ operator (Testing).

as fixed-length vectors of attribute 
values. Unfortunately, many stud-
ies still do not consider that many 
real problems are best described by 
structured data where instances of 
multiple types are related to each 
other in complex ways. For this rea-
son, data sets to be analysed may be 
described by a relational database 
or semi-structured representations, 
such as XML. In this case, features of 
one entity are often correlated with 
the features of related entities. It may 
happen that, just as some features are 
not helpful for mining data sets, some 
relations might provide information 
for clustering or classification algo-
rithms. For instance, when it comes 
to analyse differentially expressed 
MS peaks (or proteins) in a case/

control classification problem, com-
parisons are generally performed 
between profiles of different groups 
or between statistics summarising 
the peaks’ property of a group30. Ac-
tually, different neighbourhoods in 
the m/z spectra can be (anti)corre-
lated to each other, and this property, 
in turn, may change from group to 
group. In such a situation, the incor-
poration of relational information 
can give powerful discrimination 
ability. This has been proved useful 
in many fields31–33, and represents a 
promising approach also in relation 
to both MudPIT data structure and 
MS improvement, in instruments and 
methods, such as targeted proteom-
ics or data-independent analysis34,35. 
In fact, the improved quality of data 
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p207–33.
5. Palmblad M, Tiss A, Cramer R. Mass 
spectrometry in clinical proteomics – 
from the present to the future. Proteom-
ics Clin Appl. 2009 Jan;3(1):6–17.
6. Sampson DL, Parker TJ, Upton Z, Hurst 
CP. A comparison of methods for classi-
fying clinical samples based on proteom-
ics data: a case study for statistical and 
machine learning approaches. PLoS One. 
2011;6(9):e24973.
7. Christin C, Hoefsloot HC, Smilde AK, 
Hoekman B, Suits F, Bischoff R, et al. A 
critical assessment of feature selection 
methods for biomarker discovery in 
clinical proteomics. Mol Cell Proteomics. 
2013 Jan;12(1):263–76.
8. Di Silvestre D, Zoppis I, Brambilla F, 
Bellettato V, Mauri G, Mauri P. Availability 
of MudPIT data for classification of bio-
logical samples. J Clin Bioinforma. 2013 
Jan;3(1):1.
9. Mauri P, Scigelova M. Multidimensional 
protein identification technology for clin-
ical proteomic analysis. Clin Chem Lab 
Med. 2009;47(6):636–46. 
10. Link AJ, Eng J, Schieltz DM, Carmack 
E, Mize GJ, Morris DR, et al. Direct anal-
ysis of protein complexes using mass 
spectrometry. Nat Biotechnol. 1999 
Jul;17(7):676–82.
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databases using mass spectrometry 
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work for processing, visualizing, and 
analyzing mass spectrometry-based mo-
lecular profile data. BMC Bioinformatics. 
2010;11:395.
13. Carvalho PC, Fischer JSG, Chen EI, 
Yates 3rd JR, Barbosa VC. PatternLab for 
proteomics: a tool for differential shot-
gun proteomics. BMC Bioinformatics. 
2008;9:316.
14. Kohavi, R. and John, G. The wrapper 
approach. In: Liu H, Motoda, H., editors, 
Feature selection for knowledge discov-
ery and data mining. Norwell, MA, USA: 
Kluwer Academic Publishers; 1998. 
p.33–50.

measurement reproducibility and 
lack of standardisation, remain open 
and further studies are obviously 
needed. In fact, although MS-based 
proteomics have become an impor-
tant field for clinical applications, its 
potential have not yet been exten-
sively developed and applied.

Abbreviations list
KD, knowledge discovery; MudPIT, 
Multidimensional Protein Identifica-
tion Technology; MS, mass spectrom-
etry; QP, quadratic programming; 
SpC, spectral count; SVM, support 
vector machine.
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