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Introduction

One of the most important task for epidemiologists, biologists, ecologists

and sociologists is to analyse and forecast possible changes and dynamics in a

population. In order to understand and monitor these changes, accurate es-

timates of population characteristic are required and so sampling techniques

are to be implemented.

Capture-recapture experiments may be used to obtain meaningful infor-

mations from population under study. A typical capture-recapture experi-

ment consists in a sequence of random samples; for each sample individuals

drawn are marked (or tagged) and released in the population. The ratio-

nal behind this method is to account for unobserved individuals by using

observed individual trapping histories. Once the data are collected, suit-

able statistical methodology is applied and the estimates of the population

characteristic of interest are made.

Literature about capture-recapture has grown rapidly and the method

was applied in many di�erent �elds with respect to the originally purpose.

The �rst use of capture-recapture analysis can be traced to Graunt, who

applied a similar technique to estimate the English population in 1625 and

Laplace who estimated the population size in France in 1782. However, it

is usually mentioned that the �rst application of capture-recapture was due

by Petersen in the study of �sh and wildlife populations in 1894. For this

reason, in ecology the method is generally called Petersen method.

The �rst application of capture-recapture method to human populations

is due to Sekar and Deming [20], who in 1949 used it to estimates birth and

death rates. In this context, personal identi�er such as identi�cation numbers

or names are used as marks or tags, and "being captured" is replaced by

"being observed" in the registrations. Shapiro[21] applied a similar approach

using birth registration in United States and census data.
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Introduction 2

Common labels for the method in human populations and record linkage

are multiple-system, multiple-recapture or multiple-records systems methods.

The use of capture-recapture analysis to the study of epidemiologic prob-

lems came relatively late through the work of Wittes and her colleagues [24,

23] in 1968 and 1974. However, in this context some problems arise with

some underlying assumptions. In 1972 Fienberg [9] approached these prob-

lems through the use of the log-linear model, as it had emerged for the

analysis of multidimensional contingency tables. One of the major advan-

tages of his solution is represented by the fact that was general and so well

applicable both to animal and human populations.

A central assumption in traditional capture-recapture approach is the

homogeneity of the capture probability. However, di�erences of character

or behaviour between individuals may occur and this fact results in indirect

dependence between registrations. Models that allows for varying suscep-

tibility to capture through individuals and unequal catchability have been

proposed either in the case of human populations [7] or in animal popula-

tion studies [1] and psychometric models, such as the Rasch model, were

successfully applied.

The Rasch model is a model for dichotomous item widely used in psy-

chometrics. Here, the probability of a response to an item is modelled as

a function of the di�culty of the item and the underlying latent ability of

the individual. An extension of the dichotomous Rasch model is represented

by the multidimensional Rasch model, that allows for more than one latent

trait underlying the performance of a test.

Applying the dichotomous Rasch model to the capture-recapture context,

correct or incorrect answers to an item are replaced by "being observed" or

"not being observed" in a registration and, if all registrations are supposed to

be of the same kind, it is possible to treat heterogeneity in terms of constant

apparent dependence between registrations (Darroch, 1993 [7], Agresti, 1994

[1], International Working Group for Disease Monitoring and Forecasting,

1995 [13]).

The basic assumptions of the Rasch model are the conditional depen-

dence and unidimensionality. Bartolucci and Forcina, 2001 [2], shown how

to relax these assumptions by adding some suitable columns to the design

matrix of the model.
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Contribution of this work. In the present work, we propose the use

of the multidimensional Rasch model in the capture-recapture context. In

particular, we assume that registrations may be divided into two or more

subgroups, such that they can be view as indicators of the latent variables

which account for correlations among registrations. To do so, the extension

of the Dutch Identity for the multidimensional partial credit model (Hessen,

2012 [11]) can be utilized. The Dutch Identity is a tool proposed by Hol-

land, 1990 [12] useful in the study of the structure of item response models,

used by psychometricians to explain the characteristics and performance of

a test. We use the results of Hessen, typically used in psychometric context,

in the capture-recapture framework to express the probability of a generic

capture pro�le in terms of log-linear multidimensional Rasch model and to

derive the parameters of the traditional log-linear model from those of the

multidimensional Rasch model.

The reminder of this work is organized in the following way:

In Chapter 1 we introduce the basic concept of capture-recapture sample

and the capture-recapture methodology is brie�y described; then we focus

on the problem of dependence among samples (or registrations).

In Chapter 2 we present the use of the log-linear models in capture-

recapture framework and the principal methods utilised for model selection

are brie�y discussed.

In Chapter 3 is focused on the Rasch model. In particular, �rst the di-

chotomous Rash model, that is the simplest model, is described and its basic

properties are discussed. Then, the attention is focused on the multidimen-

sional Rasch model.

In Chapter 4 we propose the use of the multidimensional Rasch model

in capture-recapture context. In particular, under certain assumptions dis-

cussed in the Chapter, we show how it is possible to re-express the probabil-

ity of a generic capture pro�le in the log-linear form of the multidimensional

Rasch model and the connection with the parameters of the traditional log-

linear model is described.

Finally, in Chapter 5 we present an application of the methodology

described in the preceding Chapter to a dataset on Neural Tube Defects

(NTD's) in the Netherlands. The scope of the application is to estimate the

total population size of children a�ected by NTD's during the period of the
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study. The results of the application shows that the multidimensional Rasch

model we propose presents the lowest value of AIC and BIC and thus it is

the best model and selected for inference.





Chapter 1

Capture-recapture method

1.1 Introduction

A capture-recapture experiment consists of a sequence of sampling or

capture occasion. On capture, previously uncaptured individuals are marked

(or tagged) and marks (or tags) of previously captured individuals are noted.

Once the information needed has been recorded, individuals are released back

into the population. Capture occasions are usually conducted at equally

spaced intervals (e.g. consecutive nights/days, breading season over a num-

ber of consecutive years, ecc.)

The resulting data from a capture-recapture experiments consist of indi-

vidual capture histories, that record whether an individual has been captured

or non captured at each sampling occasion. The basic capture data can be

conventionally expressed in matrix form as, for example:

X =


1 1 . . . 1

1 0 . . . 0
...

...
. . .

...

0 1 . . . 1


where

Xij =

1 if the ith individual is caught on the jth occasion

0 otherwise

In this way, row i gives the trapping results for individual i, while column

6



1.2 Capture-recapture method for human populations 7

j gives results for the jth sampling occasion. Note that matrix X only

contains capture histories for those individuals observed at least once, but

does not include the capture histories for individuals that were never caught.

Once data are collected and appropriate assumptions made, the capture

histories can be used to estimate population demographic characteristic of

interest by �tting capture-recapture models. Assumptions depend upon the

situation the researcher wants to study:

- Closed population: there are no changes in the population due to

birth, death, emigration or immigration during the time of period when

the sampling takes place1.

- Open population: possible changes in the population from one sam-

ple to the next, due to birth, death, emigration or immigration, are

allowed. This results in more complexity of the models used to esti-

mate the population size.

In the remainder of the present work the attention will be restricted on

closed population. The closure assumption ensures that individuals observed

in a registration may be observed in other registrations. In addition, it

is possible to improve population estimates taking into account individual

heterogeneity, or time variation. Another assumption is that it is possible to

link individuals in all registrations perfectly.

1.2 Capture-recapture method for human popula-

tions

Despite the fact that the capture-recapture method was originally devel-

oped to estimate the size of an animal population, it has been successfully

applied to human populations. The earliest reference to the application of

this methodology refers to Sekar and Deming, 1949 [20], who applied the

method to two samples. Later Wittes and Sidel, 1968 [24], Fienberg, 1972

[9], Wittes, 1974 [25] and Wittes et al., 1974 [23] adapted it to more than

two samples.

In human populations, capture-recapture techniques are applied to es-

timate the demographic characteristics of interest using information from

1Note that the demographic closure assumption is usually valid for data collected in a
relatively short time.
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overlapping registrations (or lists) of cases from di�erent sources. The reg-

istrations are by their nature incomplete and the problem is to estimate the

portion of population missed by all registrations. However, there are some

di�erences between wildlife and human application of capture-recapture: in

fact, in human studies there are usually two to four available registrations

(or lists), while in wildlife surveys there are usually more trapping sam-

ples. There is a natural time ordering in animal experiments, but this is not

true for registrations (or the order may vary with individuals). In a human

population di�erent types of ascertainment sources2 are utilised and so the

behavioural response due to the sampling scheme is not considered in the

model; for animal populations all trapping samples usually use identical trap-

ping method and this results in model that takes into account behavioural

response to capture.

In the case of ascertainment data, each registration (or list) is regarded

as a capture sample and identi�cation number (or name) as tag or mark.

In this way, "being captured in sample i" corresponds to "being observed

in registration i" and "capture probability" corresponds to "ascertainment

probability". Thus, the set up for human population is similar to capture-

recapture set up for wildlife estimation.

1.3 Capture-recapture methodology

1.3.1 Two-registration model

The simplest capture-recapture model is one in which there are only two

registrations (or samples). Suppose that registrations A and B are available.

Let ni1i2 denotes the observed frequencies of the data. For each registration,

is = (0, 1), where is = 0 denotes "non captured" (or "non observed") and

is = 1 denotes "captured" (or "observed"). Let πi1i2 be the corresponding

probability, with
∑
πi1i2 = 1. Thus, n10 denotes the frequency of individ-

uals observed only in the �rst registration, n01 is the number of individual

included in the second list, but not in the �rst, and n11 is the frequency of

individual observed in both registrations. Note that n00 and π00 represent,

respectively, the frequency of individual "not observed" in either registration

and the correspondent probability. Since they are unknown, they have to be

2In human populations data are usually obtained from registrations of ascertainment
cases, like administrative registers, medical registrations, police registers and so on.
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estimated in order to estimate the total unknown population size N .

The data can be regarded as a form of an incomplete 22 contingency

table for which the cell corresponding to those individual unobserved in both

registrations is missing:

Table 1.1: Contingency table for two registrations

B

A Observed Not Observed Total

Observed n11 n10 n1+

Not Observed n01 -

Total n+1

where the symbol "+" denotes that the table is collapsed over the corre-

sponding index and "−" means that the count for the corresponding cell is

missing.

The rational behind capture-recapture method is to estimate the number

of individuals not included in any registration using the numbers observed

in only one registration and the number observed in both registrations. The

assumption required for this estimate to be valid can be summarized as

follows:

(i) There is no change in the population during the investigation (popula-

tion is closed), that is there is no births, no deaths, no immigrations or

emigrations. This results in a non-zero probability for each individual

to being observed in each sample.

(ii) no misclassi�cation of records, that is an individual can be matched

without error from capture to recapture.

(iii) For at least one of the two samples, each individual has the same

probability to being observed in the registration, that is homogeneity

of inclusion probability.

(iv) Inclusion in registration A is independent of inclusion in registration

B.

Note that if assumption (i) doesn't hold, also (iii) will not hold; in fact,

individuals which stay in the population have higher probability to being ob-
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served than individuals who migrate or die. Furthermore, assumption (iv)

directly follows from assumption (iii), that implies that capture in the �rst

sample does not a�ect capture in the second sample, so that the probability

of inclusion in the �rst sample is independent from the probability of in-

clusion in the second sample (see International Working Group for Disease

Monitoring and Forecasting, 1995 [13]).

Suppose that being in registration A is independent from being in regis-

tration B. The frequencies n10, n01 and n11 have a multinomial distribution

with probabilities π10, π01 and π11 of being observed in the correspondent

categories. Let m11,m1+ and m+1 be the expected frequencies of n11, n1+

and n+1, respectively, and let m̂11, m̂1+ and m̂+1 denote the corresponding

maximum-likelihood (ML) estimates. If assumption (iii) holds, then the pro-

portion of the population observed in registration A is roughly the same as

the proportion of individuals observed in registration A in the sub-population

of those observed in registration B, that is:

m1+

N
=

m11

m+1

m̂1+

N
=

m̂11

m̂+1
(1.1)

Since the MLEs for the expected frequencies mi1i2 are just the corre-

sponding observed frequencies ni1i2 , (1.1) can be written as

n1+
N

=
n11
n+1

which yields the estimator of the population size

N̂ =
n1+ × n+1

n11
(1.2)

This is the well-known Petersen estimator (derived independently by Pe-

tersen, 1896 [16] who was interested in the size of �sh populations, and by

Lincoln, 1930 [15], who was considering banding returns of wildfowl).

1.3.2 Dependence among registrations

A crucial assumption in the traditional capture-recapture approach is the

homogeneity of inclusion probabilities and so independence of inclusion in

registrations. However, dependence among registrations or unequal catcha-
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bilities may occur. They may be caused by two di�erent sources:

1. List dependence (or local dependence) within each individual, that is

the response of an individual to one source depends on the response

to the other source. In this case, conditional on any individual, the

inclusion in one registration has a direct causal e�ect on inclusion in

other registrations.

2. Heterogeneity between individuals, that is di�erences of character or

behaviour between individuals may cause indirect dependence between

registrations. In this case, even if the inclusion probabilities for the two

registrations are independent within individuals, the ascertainment of

the two sources may become dependent. In other words, personal

behaviour has direct in�uence on the probability of inclusion in a reg-

istration and thus the inclusion probabilities are heterogeneous among

individuals.

These two sources of dependencies are usually confounded and cannot be

easily disentangled in data analysis (see International Working Group for

Disease Monitoring and Forecasting, 1995 [13], and Chao et. al, 2001 [4]).

Note that in two-source capture-recapture analysis assumptions of homo-

geneity of inclusion probability and independence of registrations are crucial

because it is impossible to check independence mathematically. In this case,

in fact, there are four parameters (the total population size N , the two mean

capture probabilities and a dependence measure); however, only three cells

are observable, namely individual observed only in the �rst registration, in-

dividual present only in the second and those who are included in both. For

this reason, data are insu�cient for estimating dependence unless additional

covariates are available.

If one or more covariates are available, instead of independence, one can

make a less restrictive assumption, that is the independence conditional on

covariates. In this case, estimation of the population size is improved due to

the possibility to consider heterogeneity of inclusion probabilities over the

level of the covariates. In addition, it is possible to make the estimates of the

subpopulation size for each level of the covariates and then add up to arrive to

the estimation of the size of the whole population. The traditional approach

for including covariates in capture-recapture context consists in choosing

only the covariates that are available in all registrations, but recently also
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the use of covariates that are available for only one registration was studied

(for more details see Zwane and Van der Heijden, 2007 [26] and Van der

Heijden et al., 2012 [22]).

Note that, if independence assumption is made, its violation may lead to

biased estimates of the population size. Gerritse et al., 2013 [10] investigated

the robustness of these estimates, pointing out that, if the assumption of

independence does not hold, then the estimates could be seriously biased.

Bias may also occur in the case in which one or more covariates are taken

into account.

If there are more than two registrations, violation of the homogeneity

assumption has been successfully handled by the use of log-linear models [9,

3, 5, 1], as shown in the next chapter.





Chapter 2

Log-linear models for

Capture-recapture

2.1 Introduction

The traditional capture-recapture method assumes independence between

samples (or registrations). If more than two registrations are available, to

handle possible dependence among samples log-linear models have been pro-

posed. In presence of two registrations, the independence assumption is

always made, as the number of observed counts is equal to the number of

parameters in the independence model, that represents the saturated model.

The availability of more than two registrations allows for inclusion of depen-

dence parameters. In particular, dependencies between registrations corre-

spond to two factor or higher-order terms in the model. Data are arranged

in a 2S contingency table (where S is the number of registrations taken into

account), with one missing cell corresponding to absence in all registrations.

The empty cell is treated as a "structural zero", i.e. is known a priori to

have a zero value. This implies that the cell corresponding to a structural

zero must remain empty under any �tted model.

Since the object of the analysis is the estimation of the missing cell, that

is the number of individuals in the population who are not observed, the

approach utilised is conditional: at �rst various log-linear models, allowing

for dependencies among registrations, are �tted to the 2S contingency table

which excludes the missing cell. A model is selected, taking into account

parsimony as well as �t to the data, and �nally used to estimate the number

14
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of individuals missed by all registrations.

Model selection is usually performed on the basis of likelihood function.

In particular, one can use Akaike Information Criterion (AIC) or Bayes'

Information Criterion (BIC).

Also the deviance can be used as criterion for the model selection, as it

can be interpreted as a measure of the lack of �t of the model: in particular,

the smaller the deviance, the better the �t to the data.

Using a log-linear model it is possible to take into account dependencies

that can arise in several ways. In fact, positive interaction terms mean that

individuals are selectively included in several samples (or registrations), and

this may be due to "trap fascination" in animal capture-recapture experi-

ments (or "social visibility" in other context, like social situations); on the

other hand, negative interaction terms might be due to "trap avoidance"

(or "social invisibility"), or might re�ect the strati�cation of the population

according to some latent variables (for more details, see Bishop et. al, 1975

[3]).

The remainder of the Chapter is organized as follow: in Section 2.2 a fac-

torization of the multinomial likelihood function is described; this represents

a theoretical justi�cation of the two-stage approach used to �t a log-linear

model in capture-recapture context. In Section 2.3 the two-registration prob-

lem and the model of quasi-independence are treated. It is shown that the

estimate of the unknown total population size is the same as the one ob-

tained in Chapter 1 and an example is proposed. In Section 2.4 the use of

the log-linear model approach to a general situation is described. In Section

2.5 the results of Sections 2.4 and 2.2 are combined to obtain the estima-

tion of the unknown population size and some examples are given. Finally,

the problem of model selection and a brief description of principal methods

utilised is given in Section 2.6.

2.2 Maximum likelihood estimation of N

The two-stage approach for the estimation of the total population size

described above �nds a theoretical justi�cation in the conditional maximum

likelihood estimation of N . In fact, the maximum likelihood function which

involves the unknown total population size N as an unknown parameter can

be factored into a product of two terms, such that one factor is a binomial
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likelihood function involving N and the individuals missed by all registra-

tions, and the other factor is a multinomial likelihood giving the conditional

distribution of the observed frequencies ( see Bishop et. al, 1975 [3]).

Consider a general situation in which S registrations are available. The

resulting 2S contingency table has one missing cell, corresponding to absence

in all registrations. Let t be the number of observed cells in the contingency

table and consider a (t+ 1)-cell multinomial random variable with cell prob-

abilities πi, i = 1, . . . , t for the �rst t cells and π∗ = 1 −
∑t

i=1 πi for the

(t + 1)st cell (the cell containing the missing value). Let N be the un-

known total number for the (t + 1)-cell multinomial and ni, i = 1, . . . , t be

the observed counts for the �rst t cells. Let n =
∑t

i=1 ni the total amount

of observed individuals, then the missing count for the cell not observed is

N − n.
The multinomial likelihood function can be written as:

L (N ; θ) =
N !

(N − n)!
∏t
i=1 ni!

π∗N−n
t∏
i=1

πnii (2.1)

where the capture probabilities are rewrite as some known function of pa-

rameters (see Sanathanan, 1972 [19]) πi = πi (θ) and π∗ = π∗ (θ) and the

dimension of the vector θ is at most t.

The likelihood in (2.1) can be rewritten as the product of two factors in

the following way:

L (N ; θ) = L1 (N ;π∗(θ))L2 (θ) (2.2)

where

L1 (N ;π∗(θ)) =
N !

n! (N − n)!
π∗N−n (1− π∗)n (2.3)

L2 (θ) = n!
t∏
i=1

Qi (θ)ni

ni!
(2.4)

with

Qi (θ) =
πi (θ)

1− π∗(θ)
(2.5)

Although it is possible to carry out the maximum likelihood estimates of

N and θ simultaneously from (2.1), it can be quite di�cult due to the alge-

braic manipulations required. A simpler approach consists in the estimation
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of θ maximizing L2; then, it is possible to compute the maximum likelihood

estimates for N using L1.

Let θ̂C the maximum likelihood estimates for θ obtained maximizing L2

(where C reminds the fact that θ is estimated using the conditional likelihood

(2.4)). The estimator of the total population size N is

N̂C =

 n∑t
i=1 πi

(
θ̂C

)
 (2.6)

where the notation [x] denotes the greatest integer ≤ x.

2.3 Two-registration problem

Consider the situation with two registrations available described in Ta-

ble 1.1. Let n1+, n+1 and n11 be the number of individuals observed in the

�rst registration, in the second registration and in both respectively, and

let π1+, π+1 and π11 denote the corresponding probabilities. Suppose that

the two registrations are independent. Let miAiB be the expected counts of

frequencies niAiB under the independent-registrations model

E (niAiB ) = miAiB (2.7)

where iA = 0 denotes "not observed" while iA = 1 indicates "observed" (iB

is de�ned in a similar manner).

Let K be the set of cells not containing structural zeros. Since it is

known a priori that structural zeros have zero values, we have miAiB = 0 for

(iAiB) 6∈ K.

In addition, it is possible to restrict the attention to the three cells that

contain observed values. The resulting model is known in the literature as

"quasi-independence" model, because is a form of independence conditional

on the restriction of attention to an incomplete portion of the original con-

tingency table.

If we have a 2× 2 table with observations for all four cells, the model for

the expected cell counts can be written in the natural logarithmic scale as

follows:

lnmij = λ+ iAλA + iBλB + iAiBλAB (2.8)
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∀(i, j) ∈ K, with constraints:

2∑
i=1

αiAiB (iAiB)λAB =
2∑
j=1

αij(ij)λAB = 0 (2.9)

2∑
i=1

α
(B)
i iλA =

2∑
j=1

α
(A)
j jλB (2.10)

where

αij =

1 if (i, j) ∈ K

0 otherwise

α
(A)
j =

1 if the αij = 1 for some j

0 otherwise

and α
(B)
i is de�ned in a similar manner.

If we put no further restrictions on the λ-terms, the mij remain unre-

stricted. The model of quasi independence is de�ned by setting (ij)λAB = 0,

that is

lnmij = λ+ iλA + jλB (2.11)

If we restrict the attention to the conditional likelihood function for the

cells with observed frequencies, the conditional maximum likelihood esti-

mates of the expected counts are just the corresponding nij . We know that,

under independence, the cross-product ratio for the expected values is

m11m00

m10m01
= 1,

so that

m00 =
m10 ×m01

m11
.

Thus, the maximum likelihood estimate for the missing cell (i, j) = (0, 0) is

m̂00 =
m̂10 × m̂01

m̂11
=
n10 × n01

n11
.

and the estimate of the unknown population size N̂ is:

N̂ = n11 + n10 + n01 +
n10 × n01

n11
=
n1+ × n+1

n11
(2.12)
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that is the same obtained in the previous chapter.

Example. - Estimation of births and deaths in India

Sekar and Deming (1949)[20] used capture-recapture method to esti-

mate the number of births and deaths for the residents in the Singur

Health Center, an area near Calcutta in India. In their work, they

described the results of an inquiry conducted during February 1947,

reporting the births and deaths in years 1945 and 1946 separately. At

the time of the study the total population of the area was about 64,000

people, living in about 8,300 houses. The Chowkidar, the headman in

each village, periodically submit to the registrar of the area a list of

births and deaths. The registrar coordinates this informations with a

second report from each village and a list from the Maternity and Child

Welfare Department. This list is named "registrar's list of births and

deaths" (R-list). During an eleven-week period beginning on February

1947 interviewers from the All-India Institute of Hygiene and Public

Health visited every house within the Singur Health Centre to prepare

a list of all of the births and deaths that occurred during 1945 and 1946

(the I-list). After deleting the non-veri�able, illegible, incomplete, and

incorrect items Sekar and Deming applied the two-registrations tech-

nique described above.

Data are displayed in Table 2.1

Table 2.1: Investigators' Report on Comparison of Lists of Singur Health Centre

R-List I-List

Total Observed Not Observed Extra
Year in I-List in I-List

Births
1945 1504 794 710 741
1946 2242 1506 736 1009

Deaths
1945 1083 350 733 372
1946 866 439 427 421

Source: Sekar and Deming 1949

To illustrate the capture-recapture methodology, consider the deaths

occurring during 1945. The data of interest are summarized in a 22

contingency table as follows:
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Table 2.2: Number of Deaths Occurring During 1945

R-List

I-List Observed Not Observed Total

Observed 350 372 722

Not Observed 733 -

Total 1083

The estimate of the total number of deaths in 1945 is

N̂ =
722× 1083

350
= 2234

where the result is rounded to the nearest integer.

2

2.4 Generalization

Consider a situation in which S registrations are available. Let ni1...is , s =

1, . . . , S denotes the observed frequencies of the data, where is = (0, 1) and

is = 0 denotes "not observed" while is = 1 denotes "observed". Data can be

arranged in a 2S incomplete contingency table with one missing cell, which

is unobserved by de�nition, corresponding to absence in all registrations.

Similarly to the two-registrations problem, let K be the set of cells ob-

tained excluding the (0 . . . 0) cell from the 2S contingency table. Suppose

that the observed frequencies ni1...is , s = 1, . . . , S for the cells in K have a

multinomial distribution and that the total sample size is n =
∑
ni1...is , with

s = 1, . . . , S, where the summation is over all cells contained in K.

Letmi1...is denote the expected count of the frequency in the (i1 . . . is) cell

and assume that all the expected frequencies are positive. The probability

associated to a generic capture pro�le (i1 . . . is) can be written as mi1...is/n.

Let N be the unknown total population size. Thus, n0...0 = N − n is the

number of individuals missed by all S registrations.

The most general log-linear model for the cells in K can be written as

lnmi1...iS = λ+i1λ1+ · · ·+iSλS+
∑

iωiνλων+ · · ·+i1i2 . . . iSλ12...S (2.13)

where the sum of any individual λ term in (2.13) over any of its subscript is
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zero; for example

1∑
iω=0

iωλω =
1∑

iω=0

iωiνλων =
1∑

iν=0

iωiνλων = 0

1∑
iω=0

iωiνiηλωνη =
1∑

iν=0

iωiνiηλωνη =

1∑
iη=0

iωiνiηλωνη = 0

Since the frequency corresponding to capture pro�le (0 . . . 0) is not in

the set K, it is necessary to identify the model to set λ12...S(i1i2...iS) =

0,∀(i1 . . . iS) ∈ K.

By setting λ-terms in (2.13) equal to zero, it is possible to de�ne various

unsaturated log-linear models. There, the attention is restricted to the family

of hierarchical models, de�ned as the family such that if any λ-term is set

equal to zero, all its higher-order relatives must also be set to zero; conversely,

if any λ-term is not zero, all its lower-order relatives must be present in the

log-linear model1. Thus, for example in a three-registrations model if λ12 = 0

we must have λ123 = 0; on the other hand if λ12 is present in the model,

then λ1 and λ2 must be also present.

The problem where the S registrations are independent corresponds to

the unsaturated log-linear model given by

lnmi1...iS = λ+
S∑
s=1

isλs (2.14)

(see Darroch, 1958 [6]).

For any unsaturated log-linear model the maximum likelihood estimates

for ni1...is can be obtained by setting the expected values of the marginal

totals corresponding to the highest-order λ-term in the model equal to the

1The restriction to hierarchical models is due to the fact that in non-hierarchical models
all the λ-terms cannot be thought of in terms of ratios of cross-product ratios (for more
details, see Fienberg, 1972, p. 187).
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observed frequencies. For the model in (2.14) the MLEs are given by

m̂i1++···++ = ni1++···++(i1 = 0, 1)

m̂+i2+···++ = n+i2+···++(i2 = 0, 1) (2.15)

m̂+++···+iS = n+++···+iS (iS = 0, 1)

(2.16)

where the summation is over the cells in the set K and the symbol "+"

denotes the sum over the corresponding subscript.

Except for S = 2 there is no closed form solution for equations in

(2.15), but in general they can be obtained using numerical methods (like

the Deming-Stephan iterative proportional �tting, or Newton-Raphson, or

iteratively reweighted least squares). Once the MLEs are obtained it is pos-

sible to assess the goodness of �t of the model to the observed data using

either

χ2 =
∑
K

(ni1...iS − m̂i1...iS )2

m̂i1...iS

G2 = 2
∑
K

ni1...iS ln

(
ni1...iS
m̂i1...iS

)
(2.17)

The degrees of freedom of the model are determined by subtracting the

number of independent parameters used in the model from the total number

of cells to which the model is being �tted (that is the number of cells in the

set K).

2.5 Estimation of N

Once various log-linear models are �tted to the incomplete data and the

model with the best �t is chosen, it is possible to extend that model to cover

the unobserved cell, whose expected value ism0...0. The maximum likelihood

estimates for m0...0 can be written as

m̂0...0 =
M̂odd

M̂even

(2.18)
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where M̂odd is the product of all m̂i1...iS from the incomplete contingency

table with
∑
is equal to an odd number and M̂even is the product of all

m̂i1...iS from the incomplete contingency table with
∑
is equal to an even

number. Then, the estimation of the unknown total population size is

N̂ = n+ m̂0...0 (2.19)

The expression in (2.18) yields the estimation of N no matter which

log-linear model is selected. However, if we work with a large number of

registrations and the log-linear model includes only a few interaction terms,

expression in (2.18) may be numerically ine�cient, even though algebraically

correct (this is due to the cancellation of terms in the numerator and denom-

inator).

In addition, it is possible to de�ne S classes of hierarchical log-linear

models having closed form MLEs for the expected frequencies of observed

cells and thus for m̂0...0. Let the i-th class be the class of models de�ned by

setting equal to zero exactly i two-factor λ-terms (i = 0, l . . . , S − 1) with

one dimension or variable in common.

If i = 0 the model is unrestricted and the expected frequencies are equal

to the observed frequencies; thus, (2.18) applies directly. If two-factor terms

involving a common dimension are set to zero, for example λ12 = λ13 = 0,

then

m̂0...0 =
n1000...0 × n0++0...0

n1++0...0 − n1000...0
(2.20)

In general, if exactly L < S two-factor terms involving a common dimen-

sion equals zero, for example λ12 = λ13 = · · · = λ1L+1, then

m̂0...0 =
n10...0 × n0++···+0...0

n1++···+0...0 − n10...0
(2.21)

where there are L consecutive subscript "+" and the remaining subscripts

are equal to zero. Note that, due to the hierarchy of the model, if a two-

factor order term equals zero, then all its high-order relatives must also be

equal to zero.

2.5.1 The three-registrations model

In order to better understand the rational behind the use of log-linear

models in capture-recapture problem, consider a situation in which three
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registrations R1, R2 and R3 are available. Data can be arranged in a 23

contingency table with one missing cell as shown in Table 2.3

Table 2.3: Contingency table for three registrations

R3
Observed Not Observed

R2 R2
Observed Not Observed Observed Not Observed

R1
Observed n111 n101 n110 n100

Not Observed n011 n001 n010 0∗

∗ Missing cell is treated as structurally zero cell

In this case, there are 8 di�erent hierarchical log-linear models for the

incomplete 23 table that include parameters for the margins:

1. the saturated model (all pairwise relationship are present)

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12 + i1i3λ13 + i2i3λ23 (2.22)

2. three models with two two-factor terms (two pairs of registrations are

related)

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12 + i1i3λ13

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12 + i2i3λ23 (2.23)

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i3λ13 + i2i3λ23

3. three models with one two-factor term

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i3λ13 (2.24)

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i2i3λ23

4. the "independence" model

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 (2.25)

Since there are 7 observed cells, the degrees of freedom of the models are

0 for the saturated model, 1 for the models with two two-factor terms , 2 for
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the models with one two-factor term and 3 for the independence model.

Consider the saturated model in (2.22). In this case the MLEs for the

expected frequencies mi1i2i3 correspond to the observed frequencies; thus,

applying (2.18) we have:

m̂000 =
n001n010n001n111
n110n101n011

(2.26)

and using (2.19)

N̂ = n+ m̂000 (2.27)

For any of the three models in (2.23) the MLEs have a closed form; for

example, if λ13 = 0, then:

m̂001 = n001 m̂100 = n100 m̂101 = n101

m̂010 =
n01+n+10

n+1+
m̂110 =

n11+n+10

n+1+
m̂011 =

n01+n+11

n+1+
(2.28)

m̂111 =
n11+n+11

n+1+

then, after some simple manipulation, we obtain

m̂000 =
n001n100
n101

(2.29)

Also for the three models of the form (2.24) exists a closed form for the

MLEs; for the model which has only one two-factor term, corresponding to

λ12 the MLEs are

m̂111 =
n11+n

′
++1

n′
m̂101 =

n10+n
′
++1

n′
m̂011 =

n01+n
′
++1

n′

m̂110 =
n11+n

′
++0

n′
m̂100 =

n10+n
′
++0

n′
m̂010 =

n01+n
′
++0

n′
(2.30)

m̂001 = n001

where

n′++1 = n++1 − n001 n′ = n− n001 (2.31)

Here (2.18) reduces to

m̂000 =
n001n++0

n′++1

=
n001n++0

n++1 − n001
(2.32)
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For the independence model there is no a closed form solution for the

MLEs and an iterative procedure to get the maximum likelihood estimates

must be used. Then, it is possible to get the estimate m̂000 of the individuals

missed by all registrations by applying (2.18) and thus the estimates of the

total population size N̂ .

Note that for each of these models a di�erent re-parametrization of the

expected frequencies can be written, so that

lnm000 = λ

and the expected number of individuals missed by all registrations may be

estimated by

m̂000 = exp(λ) (2.33)

In particular, for the saturated model in (2.22) a re-parametrization of

the expected frequencies can be written as follows:

lnm100 = λ+ λ1 lnm010 = λ+ λ2 lnm001 = λ+ λ3

lnm110 = λ+ λ1 + λ2 + λ12 lnm101 = λ+ λ1 + λ3 + λ13

lnm011 = λ+ λ2 + λ3 + λ23

lnm111 = λ+ λ1 + λ2 + λ3 + λ12 + λ13 + λ23

For the model in (2.23) in which λ13 = 0 a re-parametrization is given by

lnm100 = λ+ λ1 lnm010 = λ+ λ2 lnm001 = λ+ λ3

lnm110 = λ+ λ1 + λ2 + λ12 lnm101 = λ+ λ1 + λ3

lnm011 = λ+ λ2 + λ3 + λ23

lnm111 = λ+ λ1 + λ2 + λ3 + λ12 + λ23

For the model which has only one two-factor term, corresponding to λ12 a

re-parametrization is:

lnm100 = λ+ λ1 lnm010 = λ+ λ2 lnm001 = λ+ λ3

lnm110 = λ+ λ1 + λ2 + λ12 lnm101 = λ+ λ1 + λ3

lnm011 = λ+ λ2 + λ3 lnm111 = λ+ λ1 + λ2 + λ3 + λ12
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Finally, for the independence model in (2.25) we have:

lnm100 = λ+ λ1 lnm010 = λ+ λ2 lnm001 = λ+ λ3

lnm110 = λ+ λ1 + λ2 lnm101 = λ+ λ1 + λ3

lnm011 = λ+ λ2 + λ3 lnm111 = λ+ λ1 + λ2 + λ3

Example. - Estimation of dementia in South Carolina

Sanderson et al. (2003) applied capture-recapture methodology to eval-

uate the prevalence of dementia in individuals 65 years of age and older

in the state of South Carolina. To do so, they used three di�erent reg-

istrations:

- the Department of Mental Health Admissions (R1)

- the Impatient Admissions from Hospital Discharge Data (R2)

- the Emergency Room Visits from Hospital Discharge Data (R23)

Data are summarized in Table 2.4

Table 2.4: Data on dementia in South Carolina

R3
Obs Not Obs
R2 R2

Obs Not Obs Obs Not Obs

R1
Obs 105 104 298 1,350

Not Obs 1,285 2,197 9,430 −

Consider the model that allows dependence of inclusion probabili-

ties between R1 and R2 and R1 and R3, that is

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12 + i1i3λ13 (2.34)

The estimated parameters of this model are

λ̂ = 9.688 λ̂1 = −2.525 λ̂2 = −0.536

λ̂3 = −1.993 λ̂12 = −0.747 λ̂13 = −0.072

who give the estimates of expected frequencies

m̂100 = 1, 290 m̂010 = 9, 430 m̂110 = 358 m̂001 = 2, 197

m̂101 = 164 m̂011 = 1, 285 m̂111 = 45
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By applying (2.29) we have

m̂000 =
n010 × n001

n011
= 16, 122.73 ' 16, 123

or also by applying (2.33):

m̂000 = exp(9.688) ' 16, 123

and

N̂ = 14, 769 + 16, 123 = 30, 892

Suppose now that of inclusion probabilities of registrations R1 and R3

are independent; the model is:

lnmi1i2i3 = λ+ i1λ1 + i2λ2 + i3λ3 + i1i2λ12 (2.35)

In this case the estimated parameters are

λ̂ = 9.698 λ̂1 = −2.543 λ̂2 = −0.545

λ̂3 = −2 λ̂12 = −0.738

and the corresponding estimates of expected frequencies are

m̂100 = 1, 281.213 m̂010 = 9, 441.678 m̂110 = 355.109 m̂001 = 2, 197

m̂101 = 172.787 m̂011 = 1, 273.322 m̂111 = 47.89

By applying (2.32) (or (2.33)) and (2.19) we have

m̂000 = 16, 291 and N̂ = 31, 060

2

2.6 Model selection

In multiple-registration problems several competing models can be used

to estimate the number of individuals missed by all registrations. Thus,

model selection is an important part of the estimation procedure.

The aim of model selection is to �nd, among all the models available, a

parsimonious model that �ts the data well. Parsimony represents a trade-o�

between too few parameters and too little model structure versus too many

parameters and too much model structure.
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Several methods can be applied to identify the most appropriate model.

For example, the likelihood ratio test (LR) can be utilised to select between

two hierarchical nested log-linear models. The philosophy behind the LR

test is to determine if the di�erence in deviance (−2×log-likelihood) among

the two models is statistically signi�cant. The LR statistic approximately

follows a chi-squared distribution and, using information about the degrees

of freedom given by the di�erence in number of parameters, it is possible

to determine the critical value of the test statistic and thus discriminate

between the two models. In addition one can also test a model against to

the data.

The likelihood can also be used to select between non-nested models:

the Akaike's information criterion (AIC) or the Bayes' information criterion

(BIC) can be adopted for this purpose.

Akaike de�ned the information criterion as

AIC = −2× log-likelihood + 2k (2.36)

where k is the number of the parameters of the model. The �rst term may be

interpreted as a measure of lack of �t of the model (how well the model �ts

the data), while the second term is a penalty for estimating k parameters. In

fact, when �tting models, it is possible to increase the likelihood by adding

parameters, but doing so may result in over�tting: the penalty enforces

parsimony. The model with the minimum AIC value is chosen for inference.

On the other hand, the BIC can also be used for model selection. It is

de�ned as:

BIC = −2× log-likelihood + k ln(n) (2.37)

where k is de�ned as above and n is the number of individuals observed in all

registrations. Here, penalty about the number of parameters of the model is

higher than in AIC. Also in this case, model with the lowest value of BIC is

selected.

Example. - Selection of the model

Consider the example on Dementia in South Caroline discussed in the

preceding section. The model that allows dependence of inclusion prob-

abilities between R1 and R2 and R1 and R3 (Model 1) has 1 degree

of freedom and deviance equal to 95. On the other hand, the model

that allows dependence of inclusion probabilities between R1 and R2
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(Model 2) has 2 degrees of freedom and deviance equal to 96.

Table 2.5 reports a summary of the two models.

Table 2.5: Summary of the models with deviance, AIC and BIC

Number of Degrees of

Model parameters freedom Deviance AIC BIC N̂
Model 1 6 1 95 107 153 30,892
Model 2 5 2 96 106 144 31,060

Thus, Model 2 is preferred over Model 1, since it has the lowest

value of AIC and BIC.

2





Chapter 3

Rasch model as a log-linear

model

3.1 Introduction

Item Response Theory (IRT) refers to a set of latent trait models widely

used by psychometricians to explain the characteristics and performance of

a test. The basic idea of an IRT is that the performance of a test can be

described by a set of latent variables (usually called latent traits); in addi-

tion, the relationship between these latent traits and the item performance

can be represented by a monotonically increasing function (known as Item

Characteristic Curve), that describes relationship between the probability of

a correct response to an item and the latent trait.

There are several latent trait models which di�er in the number of param-

eters involved and the mathematical representation of the item characteristic

curve. Among all the possible models, in the present work the attention is

focused on the Rasch model.

The Rasch model, also known as one-parameter logistic model, postu-

lates that the response to an item can be explained by the underlying latent

ability of the individual and the di�culty of the item. Here, a set of survey

items are utilised in order to produce an interval scale that describe both

item di�culties and individual abilities. One of the fundamental assump-

tions of the Rasch model is that the comparison between two individuals is

independent of the item used, so that the model is able to point out the

structure of the responses.

32
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The dichotomous Rasch model is the simplest model, since it has just one

parameter describing the individual ability and just one parameter for the

di�culty of an item. If it is assumed that more than one latent trait underlies

the performance of a test then, instead of the dichotomous Rasch model, the

multidimensional Rasch model has to be utilised. This is an extension of the

original formulation of the model that allows for a multidimensional setting.

Log-linear models have been successfully applied to the Rasch model. In

fact, the �exibility of log-linear model is helpful to simplify the estimation of

parameters. In this context, an useful tool to re-express the Rasch equation

in a log-linear form is represented by the Dutch Identity, proposed by Holland

in 1990 [12], where the probability function is written as a second-order log-

linear model. An extension of the Dutch Identity that allows for more than

one latent trait was proposed by Hessen in 2012 [11].

The remainder of the Chapter is organised as follows: in Section 3.2 the

dichotomous Rasch model and its properties are presented. Even if jointly

estimation of the parameters of the model is possible, it yields inconsistent es-

timates; for this reason, the marginal likelihood estimation procedure, which

yields consistent estimates, is discussed. Then, a situation in which the per-

formance of a test depends of more that one latent variable is considered

and an extension of the Rasch model for the multidimensional framework is

described in Section 3.3. Finally, the application of the log-linear approach

to the Rasch measurement context is treated in Section 3.4 and an example

is given.

3.2 The Rasch model

The Rasch model was �rst developed by the Danish mathematician Rasch

in 1960 [17]. Here, the probability of a speci�ed response is modelled as a

function of both individual and item parameters.

Consider a situation in which S items are administered to a sample of

n individuals; suppose that the individual's responses to the s−th item can

take values 0 (that denotes a wrong answer or disagree) or 1 (denoting right

answer or agree).

Data can be summarised as in Table 3.1
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Table 3.1: Data matrix of responses

Items

1 · · · s · · · k

Individuals

1 x11 x1s x1S
...

i xi1 xis xiS
...

n xn1 xns xnS

where xis takes the value 0 if the i−th individual gives an incorrect

answer to the s−th item and xis is equal to 1 if the i−th individual gives

a right answer to the s−th item. In addition, note that rows correspond to

individuals, while columns correspond to items.

The simplest form of the model is the dichotomous Rasch model that

assumes that the probability that individual i gives a response score xis to

item s depends on one latent individual parameter. This probability can be

written as

P (Xis = xis) =

(
eθi−δs

1 + eθi−δs

)xis ( 1

1 + eθi−δs

)1−xis

=
exis(θi−δs)

1 + eθi−δs
(3.1)

where δs is the item parameter describing the di�culty of item s and θi is the

individual parameter denoting the ability of person i. Thus, the probability

to give a correct answer is

P (Xis = 1) =
eθi−δs

1 + eθi−δs
(3.2)

Note that individual ability and item di�culty are measured on the same

logit scale.

The Rasch model in (3.1) is also referred to as the "log-odds" model.

In fact, the odds ratio for the correct answer (that is the ratio between the

probability of a correct answer to the probability of getting an incorrect

answer) can be written as
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odds (Xis = 1) =

eθi−δs

1+eθi−δs

1− eθi−δs

1+eθi−δs

= eθi−δs (3.3)

and the log-odds (or logit) takes the particularly simple form

log − odds (Xis = 1) = θi − δs (3.4)

Note that, since the estimates of individual ability and item di�culty

are set to a common logit scale, the quantity θi − δs can be interpreted as

follows: if θi − δs > 0 then the most probable outcome is a correct answer,

as individual ability exceeds the di�culty of the item; on the other hand, if

θi− δs < 0 then the most probable outcome is a wrong answer, as the ability

is less than item di�culty.

An important property of the Rasch model regards the invariant compar-

ison: both the individual parameter and the item parameter can be jointly

estimated in order to produce the estimates. However, although a jointly

estimation procedure for the parameters of the model is possible, it is known

that this approach yields inconsistent estimates for a �xed number of items

and when n tends to in�nity. Estimates are consistent when the number of

items is large. An alternative estimation procedure that yields consistent

estimates for the parameters of the model is the marginal maximum like-

lihood estimation. Here, the individual and the item parameters are not

estimated simultaneously, but the individual parameters are integrated out

(specifying the latent variable distributions) and then the item parameters

are estimated. Thus, in this case the probability of a generic response pattern

x = (x1, . . . , xS) can be written as

P (X = x) =

∫ S∏
s=1

P (Xs = 1|θ)xs {1− P (Xs = 1|θ)}1−xsf (θ) dθ (3.5)

where f (θ) is the multivariate density of θ. Then, the marginal likelihood

is equal to

L (δ1, . . . , δS) =
∏
x

P (X = x)nx (3.6)

Since the attention is focused to a small number of items, in the remainder

of the present work we will use the marginal maximum likelihood estimation

procedure.
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It should be noted that the estimates of individual parameter do not

depend upon the particular item used and, on the other hand the estimates

of the item parameter are independent of the individuals to which items are

administered. This property is re�ected in the formal structure of the Rasch

model: in fact, item parameter and individual parameter can be algebraic

separated and θi can be eliminated in the estimation of δs. This also means

that the raw scores (i.e. the number of 1's) for both individuals and items are

su�cient statistics for the corresponding parameters (su�ciency property).

Thus, all information on the ability of an individual is contained in the score

and all information available with respect to the item, concerning the relevant

latent trait, is contained in the item's score. As consequence, individuals with

the same score will obtain the same estimate of the ability, even if it does not

imply that they do have the same ability. This only means that if the Rasch

model is valid for the situation under study, then the same score corresponds

to the same estimation of the ability and no further di�erentiation can be

made between them with respect to the ability.

Another important characteristic of the Rasch model is the local inde-

pendence property, that is that the response to an item is independent of

responses to other items.

In order to illustrate the logic underlying the Rasch point of view the

Item Characteristic Curve (ICC) can be useful. The ICC is a curve that

describes the relationship between the probability of a correct response to

an item and the ability scale. Figure 3.1 shows hypothetical ICC for the

Rasch Model.

On the x-axis is reported the individual ability (in logit) while on the

y-axis there is the probability of success. An ICC indicates the probability

that an individual that have ability delineated along the x-axis will have a

response score equal to 1. The mid-way point along the curve, where the

probability of a right answer is equal to 0.5, denotes the di�culty of the

item. Thus, it is possible to estimate the probability of a correct response of

an individual at any ability level on each item by drawing a perpendicular

line through a point on the x-axis: the corresponding intersections with the

ICCs denote these probabilities (Figure 3.2).
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Figure 3.1: ICC curve for three items with di�erent di�culty
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Figure 3.2: Probability of success for three items with di�erent di�culty and
�xed ability level

3.3 Multidimensional Rasch model

Suppose now that it is necessary more than one ability to give a correct

answer to an item. In such case model in (3.1) may be inappropriate and

an extension of the dichotomous Rasch model that allows for more than one
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latent variable is needed (see Reckase, 1985 [18] and Kelderman and Rijkes,

1994 [14]).

Thus, consider a situation in which a test of S items is administered to

a sample of n individuals and suppose that there are q latent variables that

underlie the performance of the test. Let Θ = (Θ1, . . . ,Θq) denotes the

vector of latent variables and let θ = (θ1, . . . , θq) be a realization.

In other words, we are assuming that the probability to give a correct

response to an item depends of a vector of latent variables, that is

P (Xs = 1|θ) =
eu
′
sθ−δs

1 + eu′sθ−δs
(3.7)

where δs is the item parameter describing the di�culty of item s and u′s =

(us1, . . . , usq) is a vector of indicator variables taking the value usr = 1 if the

response to item s depends of the r−th latent variable and usr = 0 otherwise.

To estimate the parameters of the model in (3.7) the marginal maximum

likelihood estimation procedure described in the preceding section may be

utilised. Thus, after specifying a multivariate distribution for the latent vari-

ables, they are integrated out and the the item parameters can be estimated.

3.4 Log-linear representation of the Rasch model

The log-linear representation of the Rasch model can be very helpful,

due to the possibility to modelling and testing several hypotheses about the

latent traits. In addition, log-linear models represent a general and simpler

approach that allows to deal with multidimensionality models.

In this context, a useful tool is represented by the Dutch Identity pro-

posed by Holland in 1990 [12]. Here, the probability of a response is re-

expressed in a form of second-order log-linear model. Hessen in 2012[11]

proposed an extension of the Dutch Identity that allows for more than one

latent trait.

Let Θ = (Θ1, . . . ,Θq) be the vector of q latent traits that are assumed

to underlie the performance of a test T administered to a sample of n in-

dividuals, and let θ = (θ1, . . . , θq) be a realization. Suppose that the test

T is composed by S items and let X = (X1, . . . , XS) and x = (x1, . . . , xS)

denote the random vector of item scores and its realization, respectively.

Let u′s = (us1, us2, . . . , usr) be a vector of preassigned binary values and the
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s−th row of the S × q full column matrix U = [usr] where usr = 1 if the

probability distribution of Xs is assumed to depend on the latent trait θr,

while usr = 0 otherwise. Following Hessen [11] the probability of a response

pattern x can be written as

P (X = x) = P (X = 0) exp

{
S∑
s=1

xsδs + t′µ+
1

2
t′Γt

}
(3.8)

where µ is the mean vector, Γ is a symmetric but non necessarily positive

semi-de�nite matrix and t = (t1, . . . , tq)
′ is the vector of the total scores

computed using

t = U′x =


u11 . . . uS1
...

...

u1q . . . uSq

 =


x1
...

xS

 =


t1
...

tq

.
If it is assumed that the population of individuals whom the test T is

administered is in�nite, then the expected frequencies (ex) of a response

pattern x in a sample of size n is equal to

ex = nP (X = x) (3.9)

In this case, in fact, the observed frequencies corresponding to all possible

response patterns x have multinomial distribution. Thus, substituting (3.9)

in (3.8) and taking the logarithm gives a log-linear representation of the

model:

ln ex = δ +
S∑
s=1

xsδs + t′µ+
1

2
t′Γt (3.10)

where δ = ln{nP (X = 0)}.
Without any additional constraint the model in (3.10) remains unidenti-

�ed. To allow for identi�cation it is possible to �x µ to be equal to 0. Thus,

(3.10) may be rewritten as

ln ex = δ +
S∑
s=1

xsδs +
1

2
t′Γt (3.11)

Note that in the resulting model the observed frequency corresponding

to the response pattern x is predicted by r(r + 1)/2 covariates which are
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functions of r su�cient statistics.

Example. - Model with two latent traits

Suppose that the performance on a test of 9 binary items is supposed

to be underlie by two latent variables (named t1 and t2).In particular,

suppose that responses on items 1 to 4 are dependent of latent trait t1

and responses on items 5 to 9 are assumed to be dependent on latent

trait t2. The resulting 9× 2 full column matrix U is equal to

U =



u11 u12

u21 u22

u31 u32

u41 u42

u51 u52

u61 u62

u71 u72

u81 u82

u91 u92


=



1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 1


.

Thus, the resulting model is given by

P (X = x) = exp
{
δ +

9∑
s=1

xsδs +
1

2
t′Γt

}
= exp

{
δ +

9∑
s=1

xsδs +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ22

}
where xs = 0 denote a wrong response, while xs = 1 denote a correct

response, and t1 =
∑9

s=i = us1xs and t2 =
∑9

s=i = νs2xs are the total

scores �tted to the data.

Note that in this case there are 2(2 + 1)/2 = 3 parameters of the

model to be estimated to account for the two latent traits.

2





Chapter 4

Rasch model as a log-linear

model for Capture-Recapture

4.1 Introduction

Modelling dependence between registrations is one of the major issue in

capture-recapture framework.

As pointed out in Chapter 1 dependence among registrations may be due

to registration dependence and heterogeneity between individuals. However,

if both types of dependencies occur, they cannot be disentangled and inter-

action or common interaction terms cannot be separated (see Chao, 2001

[4]).

A way to model dependence between registrations is to include in the

model two factor or higher-order interaction parameters, while to take into

account dependence due to heterogeneity Rasch model can be used (see,

Darroch et al., 1993 [7], and Agresti, 1994 [1]). Here, correct or incorrect

answers to an item are replaced by presence or absence in a registration and

heterogeneity among individuals is modelled in terms of constant apparent

dependence between registration (see International Working Group for Dis-

ease Monitoring and Forecasting, 1995 [13]). With only three registrations

available, the �rst-order heterogeneity parameter H1 is introduced in the

model, taking all two-factor interaction terms to be equal and positive. If

more than three registrations are available, one can include in the model the

second-order heterogeneity parameter H2 (all three-factor interaction terms

are supposed equal and positive), and so on.

42
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On the other hand, if additional dependence between registrations oc-

cur, then it is possible to add in the model also two factor or higher-order

interaction parameters (see Chao, 2001 [4]).

However, in this way the number of parameters to estimate may increase

rapidly, as well as the complexity of the model.

Bartolucci and Forcina, 2001 [2], shown how it is possible to relax assump-

tion of conditional dependence and unidimensionality of the Rasch model

by assuming that individuals are homogeneous within a �nite set of latent

classes. This results in adding some suitable columns to the design matrix

of the model.

The alternative approach that we propose to deal with this situation

is to utilise the multidimensional Rasch model. In particular, we suppose

that the registrations may be divided into subgroups which constitute the

latent variables which account for correlation among registrations. This is

equivalent to assume that random variables denoting the presence or absence

in each registration are conditionally independent, given the latent variables.

Note that in capture-recapture method for the estimation of demographic

characteristics of a human population there is usually a small number of

registrations available. In this case, the jointly estimation procedure (which

yields inconsistent estimates for the parameters of the model) cannot be

used; thus, the marginal likelihood estimation procedure has to be adopted

and the distribution of the latent variables has to be speci�ed. Suppose that

the posterior distribution of the latent variables follow a multivariate normal

distribution; under this assumption the extension of the Dutch Identity for

the multidimensional partial credit model (Hessen, 2012 [11]) can be applied

to re-express the probability of a generic capture-pro�le in a log-linear form.

The remainder of the Chapter is organized as follows: after introducing of

notation in Section 4.2, in Section 4.3 the attention is focused on the simpler

situation in which three registrations are available. First, in Section 4.3.1

the model that allows for two latent variables is described and an example is

proposed. Next, the model in presence of a stratifying variable is discussed

in Section 4.3.2 and the particular case of measurement invariance is treated.

The extension to a more general situation is straightforward and described

in Section 4.4. Finally, the connection between the log-linear representation

of the multidimensional Rasch model and the standard log-linear model is

explained in Section 4.5. Here it is shown how it is possible to obtain the
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parameters of the traditional log-linear model from the parameters of the

multidimensional Rasch model.

4.2 Notation

Consider a situation in which S registrations, R1, R2, . . . , RS are avail-

able. Let π0s , s = 1, 2, . . . , S be the probability of not being observed in the

s−th registration, let π1s = 1−π0s be the probability of being observed in the
s−th registration and let i = (i1, i2, . . . , iS) denote a generic capture pro�le

for an individual. Let Is, s = 1, 2, . . . , S be the random variables denoting

the presence or absence of an individual in the corresponding registration

and suppose that there are q latent variables which explain the correlation

among registrations. Let Θ = (Θ1,Θ2, . . . ,Θq) denotes the vector of latent

variables and θ = (θ1, θ2, . . . , θq) denotes a realization.

We assume that registrations are conditional independent given the latent

variables, that is that the probability of a generic capture pro�le, given θ,

may be written as

πi1,i2,...,iS |θ =

S∏
s=1

πis|θ (4.1)

where πis|θ denotes the conditional probability of the s−th registration, given
the vector of latent variables θ.

Note that, since is = (0, 1), s = 1, 2, . . . , S the conditional probability of

the s−th registration may be written as

πis|θ =
(
π1s|θ

)is (π0s|θ)1−is (4.2)

and thus

πi1,i2,...,iS |θ =

S∏
s=1

(
π1s|θ

)is (π0s|θ)1−is (4.3)

4.3 Three registrations problem

4.3.1 Model with three registrations and two latent variables

Suppose that registrations are not independent of each other and that

correlation among registrations may be explained by some latent variables.
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For the sake of simplicity, consider a situation in which three registra-

tions are available and there are only two latent variables which explain the

correlation among registrations. In other words, assume that the covariances

between the random variables I1, I2 and I3 can be explained by two latent

variables, say θ1 and θ2, that is I1, I2 and I3 are conditional independent

given the two latent variables.

Assume, for example, that registrations R1 and R2 are indicators of the

�rst latent variable and that R2 and R3 are indicators of the second latent

variable. This situation may be illustrated as in Figure 4.1.

 

Figure 4.1: Three registrations and two latent variables

In Figure 4.1 the straight arrows between the latent variables and reg-

istrations mean that there is a direct in�uence of the latent variables on

the connected registration, while the curved lines between the two latent

variables states that there is a correlation between the two latent variables.

On the other hand, since there are not direct edge between any pairs of

registrations, these are conditional independent given the latent variables.

We are assuming that the capture probabilities are conditionally inde-

pendent given the two latent variables, that is:

πi1i2i3|θ =
3∏
s=1

πis|θ

=
3∏
s=1

(
π1s|θ

)is (π0s|θ)1−is (4.4)

where θ = (θ1, θ2), and π1s|θ denotes the probability of being observed in

the s−th registration, conditionally on the vector of latent variables. This

probability may be expressed in a logistic form in the following way:
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π1s|θ =
eu
′
sθ−δs

1 + eu′sθ−δs
(4.5)

where u′s is the row vector of the (3× 2) full column rank matrix U = [usr]

of weights for the latent variables, where

usr =

1 if the registration Rs belongs to the r−th latent variable

0 otherwise

For the example above, the matrix U is then given by

U =

 u11 u12

u21 u22

u31 u32

 =

 1 0

1 1

0 1

.
Furthermore, to account for the two latent variables, we need the total scores

t1 = u11i1 + u21i2 + u31i3 and t2 = u12i1 + u22i2 + u32i3.

Note that model in (4.5) is the multidimensional Rasch model presented

in the preceding chapter. Here, δs is the parameter for the registration s,

while θr is the parameter for the r−th latent variable.

According to the standard probability theory, the probability of a generic

capture pro�le may be written as

πi1i2i3 =

∫
. . .

∫
πi1i2i3|θf (θ) dθ (4.6)

where f (θ) is the multivariate density of θ.

The Dutch Identity (Holland, 1990 [12]) represents a useful tool that al-

lows to re-express probability in (4.6) such that integrals disappear. Hessen,

2012 [11] proposed an extension of the Dutch Identity for the multidimen-

sional partial credit model (the multidimensional Rasch model in (4.5) is a

special case of this model for dichotomous items).

We use the results of Hessen, typically used in psychometric context,

in the capture-recapture framework to express the probability of a generic

capture pro�le in terms of log-linear multidimensional Rasch model.

Using the fact that

π000|θ =

3∏
s=1

1

1 + eu′sθ−δs
(4.7)
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and

π000 =

∫
3∏
s=1

1

1 + eu′sθ−δs
f (θ) dθ (4.8)

the probability in (4.6) may be written as:

πi1i2i3 =

∫
3∏
s=1

eis(u
′
sθ−δs)

1 + eu′sθ−δs
f (θ) dθ (4.9)

and, after some algebra

πi1i2i3 = π000e
−

∑
s isδs

∫
etθg (θ|(i1i2i3 = 000)) dθ (4.10)

where g (θ|(i1i2i3 = 000)) is the posterior distribution of θ given the capture

pattern equal to zero (that is the probability of not be observed in any

registration).

Note that

MΘ(t) =

∫
etθg (θ|(i1i2i3 = 000)) dθ

is the moment generating function conditional to the the capture pattern

(i1i2i3 = 000). In order to compute the probability in (4.10), it is necessary

to make an assumption about the posterior distribution of the latent variables

and thus to choose a moment generating function. Assume that the posterior

distribution of the latent variables follows a multivariate normal distribution,

so that

MΘ(t) = et
′µ+ 1

2
t′Γt (4.11)

This is equal to assume that the population of individuals not observed in

any registration follows a normal distribution.

Then, the probability of a generic capture pro�le πi1i2i3 can be expressed

as:

πi1i2i3 = π000 exp

{
3∑

s=1

isδs + t1µ1 + t2µ2 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12

}

= π000 exp

{
3∑

s=1

isδs + t′µ+
1

2
t′Γt

}
(4.12)

where t = (t1, t2)
′ = i′U and Γ = [γir] is symmetric.

Let n the number of individuals observed in all registrations. Since the

probability of a generic capture pattern i1i2i3 has multinomial distribution,
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we can express the expected frequencies mi1i2i3 of the observed frequencies

ni1i2i3 as

mi1i2i3 = nπi1i2i3 (4.13)

Substituting (4.13) in (4.12) and taking the logarithm is possible to re-

express (4.12) in a log-linear representation

lnmi1i2i3 = δ +
3∑
s=1

isδs + t′µ+
1

2
t
′
Γt (4.14)

where δ = ln(nπ000).

Without any additional constraint, the model in equation (4.14) cannot

be identi�ed. To go around this problem we can �x µ to be equal to 0.

Then, the model can be rewritten as:

lnmi1i2i3 = δ +

3∑
s=1

isδs +
1

2
t
′
Γt (4.15)

= δ + i1δ1 + i2δ2 + i3δ3 +
1

2
t21γ11 +

1

2
t22γ22 + t1t2γ12

The resulting model is denoted as R1+R2+R3+θ1 + θ2.

Note that, as pointed out in the previous chapter, there are 2(2+1)/2 = 3

parameters to account for the two latent variables θ1 and θ2. In particular,

γ11 and γ22 represent, respectively, the variance of the �rst latent variable

and the variance of the second latent variable, given the total scores t1 and t2

, while γ12 represent the covariance between the two latent variables, given

the total scores t1 and t2.

Example 4.1. - Constructing the two latent variables

In order to better understand how to account for the two latent vari-

ables and �t the model, matrix approach may be useful.

Let m be the vector of expected counts

m =
(
m000 m001 . . . m111

)′
.

In matrix term the model in (4.15) may be written as

ln m = Xθ

where θ =
(
δ δ1 δ2 δ3 γ11 γ22 γ12

)′
is the vector of parame-
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ters to be estimated and X is the design matrix whose columns are the

vectors of coe�cients of each parameter, that is

X =
(
1 i1 i2 i3 t21 t22 t1t2

)
.

Suppose that three registrations R1, R2 and R3 are available and

that R2 is indicator of the �rst latent variable and that R1 and R3 are

indicators of the second latent variable. The matrix U is given by

U =

 u11 u12

u21 u22

u31 u32

 =

 0 1

1 0

0 1

.
and the total scores t1 and t2 for each capture pro�le are computed

using

t = U′i =

[
u11 u21 u31

u12 u22 u32

] i1

i2

i3

 =

[
t1

t2

]
.

Then matrix X may be written as

X =



1 0 0 0 0 0 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 0 1 1 1 1 1

1 1 0 0 0 1 0

1 1 0 1 0 4 0

1 1 1 0 1 1 1

1 1 1 1 1 4 2


and the model may be �tted as a traditional log-linear model.

2

4.3.2 Model with three registrations, two strata and two la-

tent variables

The model presented above can be applied also in the case in which a

stratifying variable is available. For convenience, consider the simple situa-

tion in which three registrations are recorded in two strata (or time periods,

for example two years). Here, year is a strati�ed variable with two cate-

gories denoted by the index j and ni1i2i3j and πi1i2i3j denote the observed

frequencies and the probabilities for year j, respectively.
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The resulting contingency table has two missing cells, one corresponding

to individuals not observed in either registration for the �rst year, and one

corresponding to individuals missed by all registrations in the second year.

The corresponding contingency table is shown in Table 4.1.

Table 4.1: Contingency table for three lists and two strata

R3
Observed Not Observed

R2 R2
Year R1 Observed Not Observed Observed Not Observed

1
Observed n1111 n1011 n1101 n1001

Not Observed n0111 n0011 n0101 0∗

2
Observed n1112 n1012 n1102 n1002

Not Observed n0112 n0012 n0102 0∗

∗ Missing cell are treated as structurally zero cells

Suppose that, also in this situation, we have two latent variables.

The probability of a generic capture pro�le may be written as

πi1i2i3j =

∫
. . .

∫
πi1i2i3j|θf (θ) dθ (4.16)

where πi1i2i3j|θ is the probability of capture pro�le i1i2i3 for year j and f (θ)

is the multivariate density of θ.

Similarly to the previous case, assuming that the posterior distribution

(given the capture pattern equal to zero) of the latent variables follows a

multivariate normal distribution, model in equation (4.15) can be written as

πi1i2i3j = π000j exp

{
3∑
s=1

isδsj + t′µj +
1

2
t′Γjt

}
(4.17)

where µj is the mean vector for the j-th strata and Γj is a symmetric matrix.

Let mi1i2i3j denotes the expected frequency corresponding to the ob-

served frequency ni1i2i3j , that is

mi1i2i3j = nπi1i2i3j (4.18)

Thus, substituting (4.18) in (4.17) we obtain
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lnmi1i2i3j = δj +

3∑
s=1

isδsj + t′µj +
1

2
t′Γjt (4.19)

where δj = ln(nπ000j).

Without any additional constraints model in (4.19) cannot be identi�ed;

setting µj equal to zero for identi�cation we have

lnmi1i2i3j = δj +
3∑
s=1

isδsj +
1

2
t′Γjt (4.20)

4.3.3 Model of measurement invariance

Assume now that parameters are equal across the years. This means

that the model has measurement invariance across strata (that is, the model

applies across years). Under assumption of measurement invariance we have

δsj = δs, ∀j (4.21)

Thus, model in equation (4.14) is equal to:

lnmi1i2i3j = δj +
3∑
s=1

isδs + t′µj +
1

2
t′Γjt (4.22)

Without any additional constraint this model cannot be estimated. To

identify the model we can set µj to 0 for one j.

In the case of measurement invariance, it is possible to test whether

µj = µ = 0 and Γj = Γ for all j.

If the simultaneous hypothesis holds, then model in (4.22) becomes

lnmi1i2i3j = δj +

3∑
s=1

isδs +
1

2
t′Γt. (4.23)

4.4 General case

The extension of the method described in the preceding sections to a

more general situation is straightforward.
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Assume that we have S registrations and J strata. Let ni1...isj and πi1...isj

be the observed frequencies and the probabilities, respectively, where the

index is, s = 1, 2, . . . , S denotes the cross-classi�cation of S registrations and

j = (1, 2, . . . , J) is the index denoting the strata. Note that the resulting

contingency table has J structural zeros (one for each strata).

Suppose now that covariances between the random variables I1, . . . , IS

can be explained by q latent variables. Let u′s denotes the s−th row of the

SJ × q full column rank matrix U = [usr], where usr = 1 if registration RS

belongs to the rth latent variable and 0 otherwise, and let t = (t1, . . . , tq) be

the vector of the total scores of the latent variables, that is tr =
∑S

s=1 usris.

Similarly to the simpler situations, under assumption of multivariate nor-

mal distribution of the posterior distribution of the latent variables (condi-

tional to the capture pattern of individuals not observed in any registration),

the probability of a generic capture pro�le πi1...isj is equal to

πi1...isj = π0...0j exp

{
S∑
s=1

isδsj + t′µj +
1

2
t′Γjt

}
(4.24)

where µj is the mean vector for the j-th strata and Γj is a symmetric matrix.

Let mi1...isj = nπi1...isj denotes the expected counts of observed frequen-

cies ni1...isj . Then we have the log-linear representation

lnmi1...isj = δj +

S∑
s=1

isδsj + t′µj +
1

2
t′Γjt (4.25)

Without any additional constraints the model cannot be identi�ed. If we

set µj equal to 0 for identi�cation is

lnmi1...isj = δj +

S∑
s=1

isδsj +
1

2
t′Γjt (4.26)

Thus, the model in (4.26) can be treated as a traditional log-linear model

and, once the parameters have been estimated can be used to obtain the

estimate of the portion of population missed by all registrations and thus

the total unknown population size N .

Also in this case, if assumption of measurement invariance holds, then

the model in (4.26) can be written in the following way:
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lnmi1...isj = δj +
S∑
s=1

isδs + t′µ+
1

2
t′Γt (4.27)

4.5 Connection between log-linear and multidimen-

sional Rasch models

Consider the general situation described in the preceding section with

S registrations and a stratifying variable available. Consider the log-linear

model in which all the two-factor interaction parameters are present and

suppose that parameters di�er among strata. This model can be written as:

lnmi1...iSj = λj +

S∑
s=1

isλsj +
S−1∑
s=1

S∑
c=s+1

isicλscj (4.28)

Consider now the log-linear representation of the multidimensional Rasch

model in (4.25); it is equal to

lnmi1...isj = δj +

S∑
s=1

isδsj +
1

2

q∑
r=1

t2rγrrj +

q−1∑
r=1

q∑
ν=r+1

trtνγrνj (4.29)

where µj is set to zero for identi�cation.

Using the fact that tr =
∑S

s=1 usris it is possible to obtain a re-parametri-

zation of the model that allows for a connection between the multidimen-

sional Rasch model and the standard log-linear model. In fact, writing out

t2r and trtν we have:

t2r =

S∑
s=1

u2sri
2
s + 2

S−1∑
s=1

S∑
c=s+1

usrucrisic (4.30)

and

trtν =

S∑
s=1

usrusνi
2
s +

S−1∑
s=1

S∑
c=s+1

(usrucν + usνucr) isic (4.31)

Substituting these expressions in (4.29) and noting that i2s = is and u
2
sr = usr
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we obtain

lnmi1...iSj = δj +

S∑
s=1

isδsj +
1

2

q∑
r=1

[
S∑
s=1

usris + 2

S−1∑
s=1

S∑
c=s+1

usrucrisic

]
γrrj

+

q−1∑
r=1

q∑
ν=r+1

[
S∑
s=1

usrusνis +
S−1∑
s=1

S∑
c=s+1

(usrucν + usνucr) isic

]
γrνj

so that

lnmi1...iSj = δj +

S∑
s=1

is

[
δsj +

1

2

q∑
r=1

usrγrrj +

q−1∑
r=1

q∑
ν=r+1

usrusνγrνj

]
(4.32)

+
S−1∑
s=1

S∑
c=s+1

isic

[
q∑
r=1

usrucrγrrj +

q−1∑
r=1

q∑
ν=r+1

(usrucν + usνucr) γrνj

]

Note that model in (4.32) is equal to the model in (4.28), in which

λj = δj (4.33)

λsj = δsj +
1

2

q∑
r=1

usrγrrj +

q−1∑
r=1

q∑
ν=r+1

usrusνγrνj (4.34)

and

λscj =

q∑
r=1

usrucrγrrj +

q−1∑
r=1

q∑
ν=r+1

(usrucν + usνucr) γrνj (4.35)

The expressions (4.33)-(4.35) are useful to compute the parameters of the

log-linear model in (4.28), using the parameters of the multidimensional

Rasch model in (4.29).

Suppose now that assumption of measurement invariance holds. Under

this assumption the traditional log-linear model in (4.28) takes the form

lnmi1...iSj = λj +

S∑
s=1

isλs +

S−1∑
s=1

S∑
c=s+1

isicλsc (4.36)

while the multidimensional Rasch model is equal to

lnmi1...isj = δj +
S∑
s=1

isδs +
1

2

q∑
r=1

t2rγrr +

q−1∑
r=1

q∑
ν=r+1

trtνγrν (4.37)
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where µ is set to zero for identi�cation.

Similarly to the previous case, it is possible to obtain a re-parametrization

of the model where

λs = δs +
1

2

q∑
r=1

usrγrr +

q−1∑
r=1

q∑
ν=r+1

usrusνγrν (4.38)

and

λsc =

q∑
r=1

usrucrγrr +

q−1∑
r=1

q∑
ν=r+1

(usrucν + usνucr) γrν (4.39)

and thus, it is easy to obtain the parameter for the log-linear model in (4.36)

from those of the multidimensional Rasch model in (4.37).

Example 4.2.

Consider the Example 4.1. In this case the expressions (4.34)-4.35

become:

λs = δs +
1

2

2∑
r=1

usrγrr + us1us2γ12

and

λsc =

2∑
r=1

usrucrγrr + (us1uc2 + us2uc1) γ12

Applying these formulae to the example we obtain the parameters of

the traditional log-linear model in the following way:

λ1 = δ1 +
1

2
(u11γ11 + u12γ22) + u11u12γ12 = δ1 +

1

2
γ22

λ2 = δ2 +
1

2
(u21γ11 + u22γ22) + u21u22γ12 = δ2 +

1

2
γ11

λ3 = δ3 +
1

2
(u31γ11 + u32γ22) + u31u32γ12 = δ3 +

1

2
γ22

λ12 = u11u21γ11 + u12u22γ22 + (u11u22 + u12u21) γ12 = γ12

λ13 = u11u31γ11 + u12u32γ22 + (u11u32 + u12u31) γ12 = γ22

λ23 = u21u31γ11 + u22u32γ22 + (u21u32 + u22u31) γ12 = γ12

Note that in this case there are not registrations in common between

the two latent variables and, to obtain the main-e�ect parameters (λs)

for the registration s, we add to the main-e�ect parameter in the mul-

tidimensional Rasch model half of the variance (given the total scores)



4.5 Connection between log-linear and multidimensional Rasch

models 56

of the latent variable to which registration belongs. On the other hand,

the two-factor interaction parameters (λsc) of the log-linear model cor-

respond to the variance (given the total scores) for those two-factor

interaction parameters which involve registrations which are indicator

of the same latent variable; while the two-factor interaction parameters

for registrations which belong to di�erent latent variables are equal to

the covariance (given the total scores) between the two latent variables.

However, if we construct the two latent variables di�erently, then

we obtain a di�erent parametrization for both main-e�ect parameters

and two-factor interaction parameters of the standard log-linear model.

In particular, suppose that the two latent variables have a registration

in common, i.e. registrations R1 and R2 are indicator of the �rst latent

variable and registration R1 and R3 are indicators of the second latent

variable. Now, the matrix U is given by

U =

 u11 u12

u21 u22

u31 u32

 =

 1 1

1 0

0 1

.
Applying formulae (4.34)-(4.35) to this situation, we obtain the follow-

ing expressions for the parameters of the standard log-linear model:

λ1 = δ1 +
1

2
(γ11 + γ22) + γ12 λ2 = δ2 +

1

2
γ11 λ3 = δ3 +

1

2
γ22

λ12 = γ11 + γ12 λ13 = γ22 + γ12 λ23 = γ12

Here, to obtain the main-e�ect parameter for the registration that be-

longs to both the latent variables, we have to add to the main-e�ect

parameter in the multidimensional Rasch model half of the two vari-

ances (given the total scores) of the two latent variables and the co-

variance (given the total scores) between the two latent variables. The

other main-e�ect parameters are the same to the previous situation.

Concerning the two-factor interaction parameters, for the parameter

involving registrations which belong to di�erent latent variables it is

equal to the covariance (given the total scores) between the two latent

variables; on the other hand, the two two-factor interaction parameters

which involve the registration R1 (that is the registration in common

for the two latent variables) era equal to the the variance (given the

total scores) of the latent variable to which the other registration be-

longs, plus the covariance (given the total scores) between the two

latent variables.

2





Chapter 5

Application

5.1 Introduction

To illustrate the procedure presented in Chapter 4, the present applica-

tion is adapted from the data set described by Zwane et al. (2004, [27]) on

neural tube defects (NTD's) in the Netherlands.

Neural tube defects are serious congenital defects contributing to infant

mortality and serious disability. They can occur in the �rst month of preg-

nancy and result from failure of the neural tube to close during the fetal

development; consequently, the spinal cord, brain, and related structures do

not form properly.

The target population of interest includes children born with an NTD's

in the Netherlands during the years 1988 through 1998. In the Netherlands,

several national databases record cases of neural tube defects. In the remain-

der of this chapter we will consider �ve registrations: the Dutch Perinatal

Database I, the Dutch Perinatal Database II, the National Neonate Database,

the Dutch Monitoring System of Child Health Care and the Dutch Associa-

tion of Patients with a NTD.

None of these registrations record all cases of neural tube defects in the

Netherlands, but children with NTD's may be included in more than one of

the registrations. So, capture-recapture method can be utilised to estimate

the total unknown number of children a�ected by NTD's in the Netherlands.

The scope of this application is to estimate the total unknown number of

children a�ected by NTD's in the Netherlands and to demonstrate that the

use of the methodology presented in Chapter 4 improves the accuracy of

58
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estimation.

The remainder of the Chapter is organised as follow: �rst of all a brief

description of �ve registrations and of the structure of data set on NTD's is

given in Section 5.2. Since not all registrations are operational in the same

period of time, there are several unobservable cells in the data set. Zwane et

al. approached the absence of observations as an incomplete data problem

and proposed the E-M algorithm to estimate the unobservable cells resulting

from not operational registrations. In Section 5.3 a brief description of their

procedure is presented. Then, in Section 5.4, the multidimensional Rasch

model discussed in Chapter 4 is applied to the NTD's data set and results

are discussed in Section 5.5.

5.2 Dataset

The �ve registrations used in this application are described below:

The Dutch Perinatal Database I

The Dutch Perinatal Database I is an anonymous register of pregnancy and

birth which record low risk pregnancies and births. Such cases are referred

as primary care, that is the health care services provided by health care

professionals who act as a �rst point of consultation for all patients within

the health care system (in the Netherlands, midwives are responsible for care

in such cases). Data also include cases for which care only relates to a part

of pregnancy or delivery.

For this registration, data from 1988 through 1998 are utilised.

In the following we refer to the Dutch Perinatal Database I as R1.

The Dutch Perinatal Database II

The Dutch Perinatal Database II is an anonymous register which record in-

formation about birth of children in secondary care, that is that care services

are provided by medical specialists and other health professionals who gen-

erally do not have �rst contact with patients (for example, paediatricians or

gynaecologists).

Data for this registration are recorded from 1988 through 1998.

In the following we refer to the Dutch Perinatal Database II as R2.
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The National Neonatal Database

The National Neonatal Database is an anonymous database recording infor-

mations about all admissions and re-admissions of newborns to paediatric

departments within the �rst 28 days of life.

Data from 1992 through 1998 are used.

In the following we refer to the National Neonatal Database as R3.

The Dutch Monitoring System of Child Health Care

The Dutch Monitoring System of Child Health Care is a register which record

information about children born alive with a NTD's who visit paediatrician

for the �rst time. Thus, paediatric departments participated in the registra-

tion.

For this registration, data referred to period 1993-1998.

In the following we refer to the Dutch Monitoring System of Child Health

Care as R4.

The Dutch Association of Patients with a NTD

This is a short questionnaire that was sent to every member of Dutch Asso-

ciation of Patients with a NTD with a child a�ected by NTD in the period

1988-1998.

In the following we refer to the Dutch Association of Patients with a NTD

as R5.

Data are summarised in Table 5.1. Here, capture pro�les are denoted

as iR1iR2iR3iR4iR5, so that pro�le 10000 indicates the frequency of children

observed in registration R1, but not in the other registrations; pro�le 11000

denotes the frequency of observations included in registrations R1 and R2

but not included in R3, R4 and R5, and so on.

Note that for the �rst two registrations R1 and R2 abortions are possible,

while they cannot be present in the other registrations. For this reason,

attention is restricted to children with a pregnancy duration grater than 24

weeks (that represents the legal limit for abortion in the Netherlands).
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Then, it should be noted that the �ve registrations do not refer to the

same years, since only three registrations (R1, R2 and R5) cover the same

period of time of 11 years (from 1988 through 1998), while registration R3

refers to the period 1992-1998 and registration R4 is available from 1993

to 1998. Thus, there are 24 structural zeros cells in the resulting contin-

gency table; in particular, there are 11 structural zeros cells corresponding

to capture pro�le 00000 (children missed by all registrations) for years 1988

through 1998; for each years from 1988 to 1991 there are 3 more structural

zeros cells corresponding to capture pro�les 00100, 00010 and 00110, that

correspond to children observed in registration R3 only, in registration R4

only, and in both R3 and R4, respectively. Finally, for year 1992 there is

1 more structural zero cell corresponding to capture pro�le 00010, that is

children observed only in registration R4.

In addition, for years with incomplete registrations, observed frequencies

for some capture pro�les may also include observations that could have been

a di�erent capture pro�le if registrations R3 and/or R4 had been active. In

particular, for years 1988 to 1991 registrations R3 and R4 are not available

and observed frequencies corresponding to capture pro�le "not observed" for

R3 and R4 may be distributed also to pro�les corresponding to the cross-

classi�cation in registrations R3 and R4. Thus, for example, capture pro�le

01000 denoting the frequency of NTD's cases recorded only in registration R2

may also include observations for capture pro�les 01100 (cases observed in

registrations R2 and R3), 01010 (cases observed in registrations R2 and R4),

01110 (cases observed in registrations R2, R3 and R4). Similarly, for 1992

only registration R4 is not available and observed frequencies corresponding

to capture pro�le "not observed" for R4 may be distributed also to pro�les

corresponding to capture pro�le "observed" for R4 in this year; thus, for

example, capture pro�le 10000, denoting cases observed only in R1 may also

include observations for capture pro�le 10010 (cases observed in R1 and R4).

In Table 5.1(a) are reported all possible con�gurations for incomplete years

1988 to 1991, while in Table 5.1(b) are reported all possible con�gurations

for 1992.
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(a) Years 1988− 1991

Observed Possible
capture pro�les capture pro�les

(with only R1, R2 (if all registrations
and R5 active) had been active)

10000

10000
10100
10010
10110

01000

01000
01100
01010
01110

00001

00001
00101
00011
00111

11000

11000
11100
11010
11110

10001

10001
10101
10011
10111

01001

01001
01101
01011
01111

11001

11001
11101
11011
11111

(b) Year 1992

Observed Possible
capture pro�les capture pro�les

(with R4 non-active) (if R4had been active)

10000
10000
10010

01000
01000
01010

00100
00100
00110

00001
00001
00011

11000
11000
11010

10100
10100
10110

10001
10001
10011

01100
01100
01110

01001
01001
01011

00101
00101
00111

11100
11100
11110

11001
11001
11011

10101
10101
10111

01101
01101
01111

11101
11101
11111

Table 5.2: Possible capture pro�les
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5.3 EM Algorithm

As pointed out in the preceding section, the �ve registrations on NTD's

in the Netherlands cover di�erent but overlapping periods of time. Zwane

et al. (2004, [27]) showed that if the fact that registrations refer to di�erent

but overlapping populations is ignored, then the resulting estimates of the

total population size may be biased. They approached this situation as

a missing data problem and presented a version of the EM algorithm to

estimate the missing entry (see Table 5.2) resulting from registrations that

are non operating in some strata.

The EM (Expectation Maximization) algorithm is an iterative procedure

proposed by Dempster et al. (1997, [8]) useful to compute the maximum like-

lihood estimates when the observations can be view as incomplete data. Data

are assumed to be "missing at random" (MAR) (Rubin, 1976), that is that

the missing value is conditionally independent of the actual response that

would have been observed given the observed responses to other questions.

In capture-recapture context, this means that observations from years where

all registrations are active and observations from years with non-operating

registrations with the same characteristics do not di�er systematically by

year (see Zwane et al., 2004).

In the EM algorithm proposed by Zwane et. al data set is divided into

two groups: one group, denoted by S1, containing years where all registra-

tions are available (completely classi�ed observations); the other one, de-

noted by S2, consists of years for which non all registrations are available.

Thus, S1 consists of 6 years, while S2 consists of 5 years, that is S1 =

(1993, 1994, 1995, 1996, 1997, 1998) and S2 = (1988, 1989, 1990, 1991, 1992).

In the t−th iteration of the E-step, the expected frequencies of partially

classi�ed pro�les are calculated. In particular, the partially classi�ed fre-

quencies in S2 are distributed to possible capture pro�les (see Table 5.2)

using information from S1.

Once all expected frequencies are computed and the data set is com-

pleted, in the M-step a log-linear model is �tted to completed data and the

log-likelihood is maximised in order to calculate the estimate probabilities

that will be used in the (t+1)−th iteration of the E-step. Thus, the updates

for the completed data are derived and the log-linear model is �tted in the

M-step.
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This procedure is repeated until the log-likelihood function converge.

Then, the parameters estimated in the last step of the algorithm are used

to estimate the expected frequencies for structural zero cells, and �nally the

estimation of the total population size is obtained.

In order to better understand how to apply this procedure to the NTD's

data set, consider, for example, the capture pro�le 10000 for year 1992 for

the NTD's data set. Observed frequency for this pro�le is 9, but the EM

algorithm has to distribute this value to capture pro�les 10000 and 10010.

Let ni1i2i3i4i5|k and n̂
(t)
i1i2i3i4i5|k denote the observed frequencies and the

expectation of the frequencies in the t−th step of the algorithm, respectively,

where i1i2i3i4i5 denotes the capture pro�le and k indicates the year.

The (t+1)−th E-step of the EM algorithm calculates the expectations of

frequencies of capture pro�les 10000 and 10010 for year 1992 in the following

way:

n̂
(t+1)
10000|1992 =

∑
k∈S1

n̂
(t)
10000|k∑

k∈S1
n̂
(t)
100+0|k

× n10000|1992

n̂
(t+1)
10010|1992 =

∑
k∈S1

n̂
(t)
10010|k∑

k∈S1
n̂
(t)
100+0|k

× n10000|1992

where n̂
(t)
100+0|k = n̂

(t)
10000|k + n̂

(t)
10010|k.

5.4 The Multidimensional Rasch Model

To apply the multidimensional Rasch model to the dataset on NTD's in

the Netherlands, we assume that the �ve registrations R1, R2, R3, R4 and

R5 may be divided into two subgroups which constitute the latent variables

which account for correlation among registrations.

In order to decide which registrations belong to the same latent variable,

we �t in the M-step of the EM algorithm presented above the log-linear model

that allows for the presence of all the two-factor interaction parameters; we

denoted this model as (R1R2+. . .+R4R5)+Ycat, where Ycat denotes the

Year (that is treated as a stratifying variable). Table 5.3 summarize the

estimates for the two factor interaction parameters among registrations, after

the convergence of the EM algorithm.
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Table 5.3: Estimates of the two-factor interaction parameters

R1 R2 R3 R4 R5

R1 -

R2 0.718424 -

R3 0.185740 0.024525 -

R4 0.557406 1.055780 1.690401 -

R5 0.633640 -0.100489 0.467334 1.725820 -

From Table 5.3, we assume that registrations R1 and R2 belong to the

�rst latent variable (named θ1), while registrations R3, R4 and R5 belong to

the second latent variable (called θ2). Figure 5.1 illustrate this situation.

 

Figure 5.1: Model with �ve registrations and two latent variables

In this case, the matrix U of weights for the latent variables is given by:

U =


u11 u12

u21 u22

u31 u32

u41 u42

u51 u52

 =


1 0

1 0

0 1

0 1

0 1

.

Assuming that hypothesis of measurement invariance holds, the model

considered takes the form

lnmi1i2i3i4i5 = δ + δj +

5∑
s=1

isδs +
1

2

2∑
r=1

t2rγrr + t1t2γ12 j = 1988, . . . , 1997

where t1 and t2 are the total scores accounting for the latent variables

θ1 =R1+R2 and θ2 =R3+R4+R5, respectively, δ is the general mean and

δj are the main-e�ect parameters for years (here year 1998 is assumed as

reference category).
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The resulting model has 19 parameters, since there is 1 parameter for

the general mean, 10 parameters(δj) accounting for years, 5 parameters (δs)

accounting for registrations and 3 parameters () for the two latent variables

γ11, γ22 and γ12 denoting, respectively, the variance (given the total scores

t1 and t2) of θ1,the variance (given the total scores) of θ2 and the covariance

(given the total scores) between the latent variables. In addition, since there

are 229 observed cells in the dataset (see Table 5.1) the model has 210 degrees

of freedom.

From Table 5.3 it seems also reasonable to assume that registrations R1,

R2 and R4 belong to the same latent variable (say θ3), while registrations

R3, R4 and R5 are indicator of the other latent variable (named θ4). In this

case, the two latent variables have registration R4 in common. Figure 5.2

shows this situation.

 

Figure 5.2: Model with �ve registrations and two latent variables

Now, the matrix U is given by

U =


u13 u14

u23 u24

u33 u34

u43 u44

u53 u54

 =


1 0

1 0

0 1

1 1

0 1

.

and, under assumption of measurement invariance, the model considered

takes the form

lnmi1i2i3i4i5 = δ + δj +

5∑
s=1

isδs +
1

2

4∑
r=3

t2rγrr + t3t4γ34 j = 1988, . . . , 1997

where t3 and t4 are the total scores accounting for the latent variables

θ3 =R1+R2+R4 and θ4 =R3+R4+R5, respectively.



5.5 Results 68

Analogous to the preceding case, the resulting model has 19 parameters

and 210 degrees of freedom.

5.5 Results

In this section we present the results obtained �tting the two multi-

dimensional Rasch models discussed in the previous section to the NTD's

dataset, and compare them with other log-linear models. In total, we take

into account �ve models, which are:

- Model 1: the model that allows for all main-factor parameters and

Year as a stratifying variable, that is

lnmi1i2i3i4i5 = λ+ λj +

5∑
s=1

isλs j = 1988, . . . , 1997

We denote this model as 1: R1+R2+R3+R4+R5+Ycat. It has 16 pa-

rameters, that are 1 parameter for the general mean, 10 parameters(λj)

accounting for years, 5 parameters (λs) for registrations, and 216 de-

grees of freedom.

- Model 2: the model 1 plus all the two-factor interaction parameters

among registrations, that is

lnmi1i2i3i4i5 = λ+λj+

5∑
s=1

isλs+

4∑
s=1

5∑
c=2

isicλsc j = 1988, . . . , 1997

We denote this model as 2: 1+(R1R2+. . .R4R5), which has 26 param-

eters and 203 degrees of freedom.

- Model 3: the model 1 plus the �rst-order heterogeneity term, that is

lnmi1i2i3i4i5 = λ+ λj +

5∑
s=1

isλs +H1 j = 1988, . . . , 1997

where H1 is computed taking all the two-factor interaction parameters

among registrations to be equal, so that the resulting model has 17

parameters and 212 degrees of freedom. We denote this model as 3:

1+H1.
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- Model 4: the �rst of the two models presented in the preceding sec-

tion, with the two latent variables θ1 =R1+R2 and θ2 =R3+R4+R5.

We denote this model as 4: 1+θ1 + θ2.

- Model 5: the second of the two models presented in the preceding sec-

tion, with the two latent variables θ3 =R1+R2+R4 and θ4 =R3+R4+R5.

We denote this model as 5: 1+θ3 + θ4.

Table 5.4 summarize the results of these models �tted to the data. In

Table 5.4(a) for each model is reported the number of parameters, the de-

grees of freedom, the deviance, the value of AIC, the value of BIC and the

estimation of the total population size N̂ , while Table 5.4(b) presents the

yearly estimates N̂j , j = 1988, . . . , 1998 for each model.

Table 5.4: Selected models

(a) Selected models with deviance, AIC and BIC

Model Design matrix Par df∗ Dev AIC BIC N̂
1 R1+R2+R3+R4+R5+Ycat 16 213 400 432 487 2229
2 1+(R1R2+. . .+R4R5) 26 203 298 350 439 3077
3 1+H1 17 212 349 383 441 3009
4 1+θ1 + θ2 19 210 324 362 427 2793
5 1+θ3 + θ4 19 210 311 349 414 3041

(b) Selected models with yearly estimates

Model N̂88 N̂89 N̂90 N̂91 N̂92 N̂93 N̂94 N̂95 N̂96 N̂97 N̂98

1 199 224 234 206 222 186 189 202 178 210 179
2 275 309 323 285 302 258 261 280 246 290 248
3 272 305 319 281 303 249 252 271 238 280 239
4 251 282 295 260 280 232 235 252 222 261 223
5 271 305 318 281 300 255 258 277 244 287 245

∗ There are 229 observed cells
§H1 is the �rst-order heterogeneity term
†θ1 = R1 +R2 and θ2 = R3 +R4 +R5
‡θ3 = R1 +R2 +R4 and θ4 = R3 +R4 +R5

Figure 5.3 reports the plot of the yearly estimates for each model.

Note that the model with only the main-e�ect parameters does not �t

well the data, as it has a high deviance. The model with the �rst-order

heterogeneity parameter improves the �t, while adding all the two-factor

interaction parameters to Model 1 results in a smaller deviance, even if the

number of parameters is higher (and this fact results in a higher value of
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Figure 5.3: Yearly estimates for the �ve models

AIC and BIC).

Both of the multidimensional Rasch models �t well the data and the

Model 5, with the registration R4 in common between the two latent vari-

ables is the best model, since it has the smallest value of AIC and BIC; thus,

it is the selected model.

Table 5.5 reports the estimation of parameters for the selected model and

the corresponding standard error.

For Model 5, the formulae (4.38)-(4.39) to obtain the estimation of pa-

rameters of the standard log-linear model, take the form:

λs = δs +
1

2

4∑
r=3

usrγrr + us3us4γ34

λsc =
4∑
r=3

usrucrγrr + (us3uc4 + us4uc3) γ34
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Table 5.5: Estimation of parameters for Model 5

Parameter Estimate Std. Error

δ 4.513951 0.142557
δ1988 0.101292 0.116082
δ1989 0.218309 0.112754
δ1990 0.260357 0.111628
δ1991 0.135194 0.115088
δ1992 0.201906 0.111082
δ1993 0.038221 0.112887
δ1994 0.050644 0.112545
δ1995 0.122103 0.110637
δ1996 -0.00651 0.114147
δ1997 0.156004 0.109768
δ1 -2.20858 0.14922
δ2 -1.04768 0.142911
δ3 -3.25652 0.124767
δ4 -2.9981 0.176131
δ5 -4.16525 0.145811
γ33 0.618927 0.082545
γ44 1.108461 0.087735
γ34 0.219176 0.053513

Applying these formulae, we obtain the following expressions for the param-

eters of the log-linear model:

λ1 = δ1 +
1

2
γ33 λ2 = δ2 +

1

2
γ33 λ3 = δ3 +

1

2
γ44

λ4 = δ4 +
1

2
(γ33 + γ44) + γ34 λ5 = δ5 +

1

2
γ44 λ12 = γ33

λ13 = γ34 λ14 = γ33 + γ34 λ15 = γ34

λ23 = γ34 λ24 = γ33 + γ34 λ25 = γ34

λ34 = γ44 + γ34 λ35 = γ44 λ45 = γ44 + γ34

Thus, the main-e�ect parameters are equal to the main-e�ect parameters

for the Model 5 plus half of the variance (given the total scores) of the latent

variable to which the registration belongs, except for the registration R4, for

which it is equal to the main-e�ect parameter δ4 plus half of the variance

of both the latent variables plus the covariance between θ3 and θ4, given

the total scores. Concerning the two-factor interaction parameters, for those

involving registrations which are indicator of di�erent latent variables (that
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Table 5.6: Estimation of parameters of log-linear model from Model 5

Parameter Estimate Std. Error

λ1 -1.89911 0.154823
λ2 -0.73821 0.148751
λ3 -2.70229 0.132254
λ4 -1.91523 0.193684
λ5 -3.61102 0.152267
λ12 0.618927 0.082545
λ13 0.219176 0.053513
λ14 0.838102 0.098373
λ15 0.219176 0.053513
λ23 0.219176 0.053513
λ24 0.838102 0.098373
λ25 0.219176 0.053513
λ34 1.327637 0.101656
λ35 1.108461 0.087735
λ45 1.327637 0.101656

are λ13, λ15, λ23, λ25) are equal to the covariance (γ34) conditional to the

total scores. The two-factor interaction parameters which involve registra-

tions belonging to the same latent variable (except those involving R4) are

equal to the variance (given the total scores) of the corresponding latent vari-

able, while other two-factor interaction parameters (λ14, λ24, λ34 and λ45) are

equal to the covariance (given the total scores) plus the variance (given the

total scores) of the latent variable for which the other registration is assumed

to be indicator. The resulting parameters are reported in Table 5.6.

Note that the two-factor interaction parameters between registrations

belonging to di�erent latent variables (except those involving R4) are equal,

as well as the two-factor interaction parameters between registration R4 and

registrations belonging to θ3 and registration R4 and registrations belonging

to θ4.

We used the parametric bootstrap with 500 replications and the per-

centile method in order to compute the con�dence intervals for the popula-

tion size estimates. Table 5.7 summarises the 95% con�dence intervals for

each of the �ve models.
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Table 5.7: 95% Con�dence intervals

Model Design matrix N̂ 95 per cent C.I.

1 R1+R2+R3+R4+R5+Ycat 2229 [2164, 2297]

2 1+(R1R2+. . .+R4R5) 3077 [2724, 3571]

3 1+H1 3009 [2737, 3345]

4 1+θ1 + θ2 2793 [2559, 3104]

5 1+θ3 + θ4 3041 [2755, 3409]
§H1 is the �rst-order heterogeneity term
†θ1 = R1 +R2 and θ2 = R3 +R4 +R5
‡θ3 = R1 +R2 +R4 and θ4 = R3 +R4 +R5

In addition, we compute the con�dence intervals for the yearly estimates

for Models 2 and 5. In this case, con�dence intervals for the yearly estimates

for Model 5 are always smaller than those of the Model 2. Results are shown

in Table 5.8.

Table 5.8: 95% Con�dence intervals by year

Model 2 Model 5

Year Observed N̂ 95 per cent C.I. N̂ 95 per cent C.I.

1988 145 275 [225, 333] 271 [226, 328]
1989 163 309 [256, 385] 305 [256, 367]
1990 170 323 [272, 395] 318 [268, 382]
1991 150 285 [234, 360] 281 [235, 336]
1992 172 302 [251, 367] 300 [254, 357]
1993 160 258 [211, 311] 255 [213, 303]
1994 162 261 [216, 325] 258 [215, 305]
1995 174 280 [233, 342] 277 [235, 327]
1996 153 246 [204, 308] 244 [203, 286]
1997 180 290 [243, 355] 287 [241, 343]
1998 154 248 [200, 308] 245 [205, 297]





Chapter 6

Discussion

In the present work we proposed the use of the multidimensional Rasch

model in the capture-recapture framework.

Throughout the thesis, we focused our attention on closed populations,

for which we assumed that there are no births, deaths, immigrations or em-

igrations during the period of the study. As consequence of these assump-

tions, individuals in all the registrations may be perfectly linked, and if an

individual is not in a registrations it is because he is simply not observed,

but he must have been present in the population.

In this context, a problem widely discussed in literature concerns the

way to model possible dependence among registrations. Dependence may be

due to two di�erent sources: "local dependence" (that is, the inclusion of an

individual in a registration has a direct causal e�ect on the inclusion in other

registrations), and "heterogeneity" among individuals (that is, registrations

may become dependent because of the heterogeneity of inclusion probabilities

among individuals).

To account for dependence among registrations log-linear models were

successfully proposed; here dependence among registrations may be modelled

by adding the corresponding two-factor interaction or higher-order interac-

tion terms to the model. On the other hand, to model dependence caused

by heterogeneity among individuals the dichotomous Rasch model was pro-

posed and dependence due to heterogeneity can be modelled by adding the

�rst-order heterogeneity or the higher-order heterogeneity parameters to the

model. If extra dependence among registrations occurs, then it is possible

to include the two-factor interaction or higher-order interaction terms to the

75
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model.

To deal with this situation, the alternative approach that we proposed in

this work is to use the multidimensional Rasch model. It is an extension of

the dichotomous Rasch model which allows the presence of more than one

latent variable underlying the performance of a test.

In the capture-recapture context, we assumed that registrations may be

divided into two or more subgroups (not necessarily disjoint) which consti-

tute the latent variables accounting for correlations among registrations. As

consequence, the random variables denoting the presence or absence of an

individual into a registration are assumed to be conditionally independent,

given the latent variable.

In addition, we assumed that the posterior distribution of the latent

variables follows a multivariate normal distribution (and this is equal to

assume that the population of individuals not observed in any registration

follows a normal distribution).

Under these assumptions, we applied the extension of the Dutch Identity

proposed by Hessen in psychometric context to capture-recapture framework

and we showed how it is possible to re-express the probability of a generic

capture-pro�le in terms of the log-linear multidimensional Rasch model.

We also discussed the proposed model in the case in which a stratifying

variable is available and in the particular situation in which the assumption

of measurement invariance can be made.

Then, we presented a re-parametrization of the proposed model that

allows for a connection between the multidimensional Rasch model and the

standard log-linear model. Applying these formulae it is possible to compute

the parameters of the standard log-linear model, starting from those of the

multidimensional Rasch model.

In the last Chapter of the present work, we applied the methodology we

proposed to a dataset on Neural Tube Defcts (NTD's) in the Netherlands

from 1988 through 1998. The target population included children born with

a NTD's and data referred to �ve registrations. Since these �ve registrations

did not refer to the same years (as they covered di�erent but overlapping

periods of time), we used the E-M algorithm proposed by Zwane et. al to

estimate the missing entry in the dataset.

The scope of the application was to estimate the total amount of children

born with a NTD's during the period of the study.
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The results showed that the selected model for inference is one of the

log-linear multidimensional Rasch model obtained applying the methodology

proposed. In fact, it was preferable among the other log-linear model, as it

presented the smallest value of both AIC and BIC.

Finally, starting from the estimates of parameters of the selected model,

we used the connecting formulae to compute the estimates of the correspond-

ing traditional log-linear model.

Future research should be focused on the study of the multidimensional

Rasch model in capture-recapture in a more general situation in which more

than one latent variable is available.

Furthermore, it would be interesting to study the multidimensional Rasch

model under di�erent assumptions for the posterior distribution of the latent

variables.





Appendix

EM_alg<-function(model){

dati<-read.csv("C:/Users/Mark/Desktop/Dataset.csv",header = TRUE, sep = ";")

NewData<-list(casenumber=dati$"Case",R1=as.numeric(dati$"R1"),R2=as.numeric(dati$"R2"),

R3=as.numeric(dati$"R3"),R4=as.numeric(dati$"R4"),R5=as.numeric(dati$"R5"),year=as.numeric(dati$"Year"))

intable<-table(NewData$R1,NewData$R2,NewData$R3,NewData$R4,NewData$R5,as.numeric(NewData$year))

incomtable<-table(NewData$R1,NewData$R2,NewData$R3,NewData$R4,NewData$R5,as.numeric(NewData$year))

options(contrasts=c("contr.treatment","contr.poly"))

options(digits=10)

####ASSEGNO I VALORI INIZIALI PER L'ALGORITMO####

#####1988-1991###

for (i in 1:4){

incomtable[1,2,1,1,1,i]<-incomtable[1,2,1,2,1,i]<-incomtable[1,2,2,1,1,i]<-

incomtable[1,2,2,2,1,i]<-intable[1,2,1,1,1,i]*0.25

incomtable[1,2,1,1,2,i]<-incomtable[1,2,1,2,2,i]<-incomtable[1,2,2,1,2,i]<-

incomtable[1,2,2,2,2,i]<-intable[1,2,1,1,2,i]*0.25

incomtable[2,1,1,1,1,i]<-incomtable[2,1,1,2,1,i]<-incomtable[2,1,2,1,1,i]<-

incomtable[2,1,2,2,1,i]<-intable[2,1,1,1,1,i]*0.25

incomtable[2,1,1,1,2,i]<-incomtable[2,1,1,2,2,i]<-incomtable[2,1,2,1,2,i]<-

incomtable[2,1,2,2,2,i]<-intable[2,1,1,1,2,i]*0.25

incomtable[2,2,1,1,1,i]<-incomtable[2,2,1,2,1,i]<-incomtable[2,2,2,1,1,i]<-

incomtable[2,2,2,2,1,i]<-intable[2,2,1,1,1,i]*0.25

incomtable[2,2,1,1,2,i]<-incomtable[2,2,1,2,2,i]<-incomtable[2,2,2,1,2,i]<-

incomtable[2,2,2,2,2,i]<-intable[2,2,1,1,2,i]*0.25

79



Appendix 80

incomtable[1,1,1,1,2,i]<-incomtable[1,1,1,2,2,i]<-incomtable[1,1,2,1,2,i]<-

incomtable[1,1,2,2,2,i]<-intable[1,1,1,1,2,i]*0.25

}

###1992###

incomtable[2,1,1,1,1,5]<-incomtable[2,1,1,2,1,5]<-intable[2,1,1,1,1,5]*0.5

incomtable[1,2,1,1,1,5]<-incomtable[1,2,1,2,1,5]<-intable[1,2,1,1,1,5]*0.5

incomtable[1,1,2,1,1,5]<-incomtable[1,1,2,2,1,5]<-intable[1,1,2,1,1,5]*0.5

incomtable[1,1,1,1,2,5]<-incomtable[1,1,1,2,2,5]<-intable[1,1,1,1,2,5]*0.5

incomtable[2,2,1,1,1,5]<-incomtable[2,2,1,2,1,5]<-intable[2,2,1,1,1,5]*0.5

incomtable[2,1,2,1,1,5]<-incomtable[2,1,2,2,1,5]<-intable[2,1,2,1,1,5]*0.5

incomtable[2,1,1,1,2,5]<-incomtable[2,1,1,2,2,5]<-intable[2,1,1,1,2,5]*0.5

incomtable[1,2,2,1,1,5]<-incomtable[1,2,2,2,1,5]<-intable[1,2,2,1,1,5]*0.5

incomtable[1,2,1,1,2,5]<-incomtable[1,2,1,2,2,5]<-intable[1,2,1,1,2,5]*0.5

incomtable[1,1,2,1,2,5]<-incomtable[1,1,2,2,2,5]<-intable[1,1,2,1,2,5]*0.5

incomtable[2,2,2,1,1,5]<-incomtable[2,2,2,2,1,5]<-intable[2,2,2,1,1,5]*0.5

incomtable[2,2,1,1,2,5]<-incomtable[2,2,1,2,2,5]<-intable[2,2,1,1,2,5]*0.5

incomtable[1,2,2,1,2,5]<-incomtable[1,2,2,2,2,5]<-intable[1,2,2,1,2,5]*0.5

incomtable[2,1,2,1,2,5]<-incomtable[2,1,2,2,2,5]<-intable[2,1,2,1,2,5]*0.5

incomtable[2,2,2,1,2,5]<-incomtable[2,2,2,2,2,5]<-intable[2,2,2,1,2,5]*0.5

#####Algoritmo EM###########

dati<-as.data.frame(incomtable)

H1<-(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var2"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var3"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var3"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var4"])-1)*(as.numeric(dati[,"Var5"])-1)

H2<-(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var3"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var1"])-1)*(as.numeric(dati[,"Var4"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var4"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var2"])-1)*(as.numeric(dati[,"Var4"])-1)*(as.numeric(dati[,"Var5"])-1)+

(as.numeric(dati[,"Var3"])-1)*(as.numeric(dati[,"Var4"])-1)*(as.numeric(dati[,"Var5"])-1)

t1<-(as.numeric(dati[,"Var1"])-1)+(as.numeric(dati[,"Var2"])-1)

t2<-(as.numeric(dati[,"Var3"])-1)+(as.numeric(dati[,"Var4"])-1)+(as.numeric(dati[,"Var5"])-1)

t3<-(as.numeric(dati[,"Var1"])-1)+(as.numeric(dati[,"Var2"])-1)+(as.numeric(dati[,"Var4"])-1)
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t4<-(as.numeric(dati[,"Var3"])-1)+(as.numeric(dati[,"Var4"])-1)+(as.numeric(dati[,"Var5"])-1)

t1_2<-0.5*t1*t1

t2_2<-0.5*t2*t2

t12<-t1*t2

t3_2<-0.5*t3*t3

t4_2<-0.5*t4*t4

t34<-t3*t4

k<-32

iter<-0

dev<-0

devnew<-0

while(iter<10000)

{

##M-STEP####

Etable<-as.data.frame(incomtable)

Year<-relevel(Etable$Var6, ref="1998")

Etable<-cbind(Etable,H1,H2,t3,t4,t1_2,t2_2,t12,t3_2,t4_2,t34)

fit <-glm(model,family=poisson,data=Etable,

weights=c(0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))

estt<-fitted.values(fit)

est<-array(estt, dim=c(2,2,2,2,2,11))

devnew<-deviance(fit)

if(abs(devnew-dev) <=0.00000000000000000001) break

#####E-STEP#####

#############ANNO 1992##############

incomtable[2,1,1,1,1,5]<-(sum(est[2,1,1,1,1,6:11])/sum(est[2,1,1,,1,6:11]))*intable[2,1,1,1,1,5]

incomtable[2,1,1,2,1,5]<-(sum(est[2,1,1,2,1,6:11])/sum(est[2,1,1,,1,6:11]))*intable[2,1,1,1,1,5]

incomtable[1,2,1,1,1,5]<-(sum(est[1,2,1,1,1,6:11])/sum(est[1,2,1,,1,6:11]))*intable[1,2,1,1,1,5]

incomtable[1,2,1,2,1,5]<-(sum(est[1,2,1,2,1,6:11])/sum(est[1,2,1,,1,6:11]))*intable[1,2,1,1,1,5]
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incomtable[1,1,2,1,1,5]<-(sum(est[1,1,2,1,1,6:11])/sum(est[1,1,2,,1,6:11]))*intable[1,1,2,1,1,5]

incomtable[1,1,2,2,1,5]<-(sum(est[1,1,2,2,1,6:11])/sum(est[1,1,2,,1,6:11]))*intable[1,1,2,1,1,5]

incomtable[1,1,1,1,2,5]<-(sum(est[1,1,1,1,2,6:11])/sum(est[1,1,1,,2,6:11]))*intable[1,1,1,1,2,5]

incomtable[1,1,1,2,2,5]<-(sum(est[1,1,1,2,2,6:11])/sum(est[1,1,1,,2,6:11]))*intable[1,1,1,1,2,5]

incomtable[2,2,1,1,1,5]<-(sum(est[2,2,1,1,1,6:11])/sum(est[2,2,1,,1,6:11]))*intable[2,2,1,1,1,5]

incomtable[2,2,1,2,1,5]<-(sum(est[2,2,1,2,1,6:11])/sum(est[2,2,1,,1,6:11]))*intable[2,2,1,1,1,5]

incomtable[2,1,2,1,1,5]<-(sum(est[2,1,2,1,1,6:11])/sum(est[2,1,2,,1,6:11]))*intable[2,1,2,1,1,5]

incomtable[2,1,2,2,1,5]<-(sum(est[2,1,2,2,1,6:11])/sum(est[2,1,2,,1,6:11]))*intable[2,1,2,1,1,5]

incomtable[2,1,1,1,2,5]<-(sum(est[2,1,1,1,2,6:11])/sum(est[2,1,1,,2,6:11]))*intable[2,1,1,1,2,5]

incomtable[2,1,1,2,2,5]<-(sum(est[2,1,1,2,2,6:11])/sum(est[2,1,1,,2,6:11]))*intable[2,1,1,1,2,5]

incomtable[1,2,2,1,1,5]<-(sum(est[1,2,2,1,1,6:11])/sum(est[1,2,2,,1,6:11]))*intable[1,2,2,1,1,5]

incomtable[1,2,2,2,1,5]<-(sum(est[1,2,2,2,1,6:11])/sum(est[1,2,2,,1,6:11]))*intable[1,2,2,1,1,5]

incomtable[1,2,1,1,2,5]<-(sum(est[1,2,1,1,2,6:11])/sum(est[1,2,1,,2,6:11]))*intable[1,2,1,1,2,5]

incomtable[1,2,1,2,2,5]<-(sum(est[1,2,1,2,2,6:11])/sum(est[1,2,1,,2,6:11]))*intable[1,2,1,1,2,5]

incomtable[1,1,2,1,2,5]<-(sum(est[1,1,2,1,2,6:11])/sum(est[1,1,2,,2,6:11]))*intable[1,1,2,1,2,5]

incomtable[1,1,2,2,2,5]<-(sum(est[1,1,2,2,2,6:11])/sum(est[1,1,2,,2,6:11]))*intable[1,1,2,1,2,5]

incomtable[2,2,2,1,1,5]<-(sum(est[2,2,2,1,1,6:11])/sum(est[2,2,2,,1,6:11]))*intable[2,2,2,1,1,5]

incomtable[2,2,2,2,1,5]<-(sum(est[2,2,2,2,1,6:11])/sum(est[2,2,2,,1,6:11]))*intable[2,2,2,1,1,5]

incomtable[2,2,1,1,2,5]<-(sum(est[2,2,1,1,2,6:11])/sum(est[2,2,1,,2,6:11]))*intable[2,2,1,1,2,5]

incomtable[2,2,1,2,2,5]<-(sum(est[2,2,1,2,2,6:11])/sum(est[2,2,1,,2,6:11]))*intable[2,2,1,1,2,5]

incomtable[1,2,2,1,2,5]<-(sum(est[1,2,2,1,2,6:11])/sum(est[1,2,2,,2,6:11]))*intable[1,2,2,1,2,5]

incomtable[1,2,2,2,2,5]<-(sum(est[1,2,2,2,2,6:11])/sum(est[1,2,2,,2,6:11]))*intable[1,2,2,1,2,5]

incomtable[2,1,2,1,2,5]<-(sum(est[2,1,2,1,2,6:11])/sum(est[2,1,2,,2,6:11]))*intable[2,1,2,1,2,5]

incomtable[2,1,2,2,2,5]<-(sum(est[2,1,2,2,2,6:11])/sum(est[2,1,2,,2,6:11]))*intable[2,1,2,1,2,5]

incomtable[2,2,2,1,2,5]<-(sum(est[2,2,2,1,2,6:11])/sum(est[2,2,2,,2,6:11]))*intable[2,2,2,1,2,5]



Appendix 83

incomtable[2,2,2,2,2,5]<-(sum(est[2,2,2,2,2,6:11])/sum(est[2,2,2,,2,6:11]))*intable[2,2,2,1,2,5]

#############ANNI 1988-1991###########

for(i in 1:4){

incomtable[1,2,1,1,1,i]<-((incomtable[1,2,1,1,1,5]+sum(est[1,2,1,1,1,6:11]))/

(sum(incomtable[1,2,,,1,5])+sum(est[1,2,,,1,6:11])))*intable[1,2,1,1,1,i]

incomtable[1,2,1,2,1,i]<-((incomtable[1,2,1,2,1,5]+sum(est[1,2,1,2,1,6:11]))/

(sum(incomtable[1,2,,,1,5])+sum(est[1,2,,,1,6:11])))*intable[1,2,1,1,1,i]

incomtable[1,2,2,1,1,i]<-((incomtable[1,2,2,1,1,5]+sum(est[1,2,2,1,1,6:11]))/

(sum(incomtable[1,2,,,1,5])+sum(est[1,2,,,1,6:11])))*intable[1,2,1,1,1,i]

incomtable[1,2,2,2,1,i]<-((incomtable[1,2,2,2,1,5]+sum(est[1,2,2,2,1,6:11]))/

(sum(incomtable[1,2,,,1,5])+sum(est[1,2,,,1,6:11])))*intable[1,2,1,1,1,i]

incomtable[1,2,1,1,2,i]<-((incomtable[1,2,1,1,2,5]+sum(est[1,2,1,1,2,6:11]))/

(sum(incomtable[1,2,,,2,5])+sum(est[1,2,,,2,6:11])))*intable[1,2,1,1,2,i]

incomtable[1,2,1,2,2,i]<-((incomtable[1,2,1,2,2,5]+sum(est[1,2,1,2,2,6:11]))/

(sum(incomtable[1,2,,,2,5])+sum(est[1,2,,,2,6:11])))*intable[1,2,1,1,2,i]

incomtable[1,2,2,1,2,i]<-((incomtable[1,2,2,1,2,5]+sum(est[1,2,2,1,2,6:11]))/

(sum(incomtable[1,2,,,2,5])+sum(est[1,2,,,2,6:11])))*intable[1,2,1,1,2,i]

incomtable[1,2,2,2,2,i]<-((incomtable[1,2,2,2,2,5]+sum(est[1,2,2,2,2,6:11]))/

(sum(incomtable[1,2,,,2,5])+sum(est[1,2,,,2,6:11])))*intable[1,2,1,1,2,i]

incomtable[2,1,1,1,1,i]<-((incomtable[2,1,1,1,1,5]+sum(est[2,1,1,1,1,6:11]))/

(sum(incomtable[2,1,,,1,5])+sum(est[2,1,,,1,6:11])))*intable[2,1,1,1,1,i]

incomtable[2,1,1,2,1,i]<-((incomtable[2,1,1,2,1,5]+sum(est[2,1,1,2,1,6:11]))/

(sum(incomtable[2,1,,,1,5])+sum(est[2,1,,,1,6:11])))*intable[2,1,1,1,1,i]

incomtable[2,1,2,1,1,i]<-((incomtable[2,1,2,1,1,5]+sum(est[2,1,2,1,1,6:11]))/

(sum(incomtable[2,1,,,1,5])+sum(est[2,1,,,1,6:11])))*intable[2,1,1,1,1,i]

incomtable[2,1,2,2,1,i]<-((incomtable[2,1,2,2,1,5]+sum(est[2,1,2,2,1,6:11]))/

(sum(incomtable[2,1,,,1,5])+sum(est[2,1,,,1,6:11])))*intable[2,1,1,1,1,i]

incomtable[2,1,1,1,2,i]<-((incomtable[2,1,1,1,2,5]+sum(est[2,1,1,1,2,6:11]))/

(sum(incomtable[2,1,,,2,5])+sum(est[2,1,,,2,6:11])))*intable[2,1,1,1,2,i]

incomtable[2,1,1,2,2,i]<-((incomtable[2,1,1,2,2,5]+sum(est[2,1,1,2,2,6:11]))/

(sum(incomtable[2,1,,,2,5])+sum(est[2,1,,,2,6:11])))*intable[2,1,1,1,2,i]

incomtable[2,1,2,1,2,i]<-((incomtable[2,1,2,1,2,5]+sum(est[2,1,2,1,2,6:11]))/

(sum(incomtable[2,1,,,2,5])+sum(est[2,1,,,2,6:11])))*intable[2,1,1,1,2,i]

incomtable[2,1,2,2,2,i]<-((incomtable[2,1,2,2,2,5]+sum(est[2,1,2,2,2,6:11]))/

(sum(incomtable[2,1,,,2,5])+sum(est[2,1,,,2,6:11])))*intable[2,1,1,1,2,i]

incomtable[2,2,1,1,1,i]<-((incomtable[2,2,1,1,1,5]+sum(est[2,2,1,1,1,6:11]))/

(sum(incomtable[2,2,,,1,5])+sum(est[2,2,,,1,6:11])))*intable[2,2,1,1,1,i]

incomtable[2,2,1,2,1,i]<-((incomtable[2,2,1,2,1,5]+sum(est[2,2,1,2,1,6:11]))/

(sum(incomtable[2,2,,,1,5])+sum(est[2,2,,,1,6:11])))*intable[2,2,1,1,1,i]

incomtable[2,2,2,1,1,i]<-((incomtable[2,2,2,1,1,5]+sum(est[2,2,2,1,1,6:11]))/

(sum(incomtable[2,2,,,1,5])+sum(est[2,2,,,1,6:11])))*intable[2,2,1,1,1,i]

incomtable[2,2,2,2,1,i]<-((incomtable[2,2,2,2,1,5]+sum(est[2,2,2,2,1,6:11]))/

(sum(incomtable[2,2,,,1,5])+sum(est[2,2,,,1,6:11])))*intable[2,2,1,1,1,i]

incomtable[2,2,1,1,2,i]<-((incomtable[2,2,1,1,2,5]+sum(est[2,2,1,1,2,6:11]))/

(sum(incomtable[2,2,,,2,5])+sum(est[2,2,,,2,6:11])))*intable[2,2,1,1,2,i]

incomtable[2,2,1,2,2,i]<-((incomtable[2,2,1,2,2,5]+sum(est[2,2,1,2,2,6:11]))/

(sum(incomtable[2,2,,,2,5])+sum(est[2,2,,,2,6:11])))*intable[2,2,1,1,2,i]

incomtable[2,2,2,1,2,i]<-((incomtable[2,2,2,1,2,5]+sum(est[2,2,2,1,2,6:11]))/

(sum(incomtable[2,2,,,2,5])+sum(est[2,2,,,2,6:11])))*intable[2,2,1,1,2,i]
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incomtable[2,2,2,2,2,i]<-((incomtable[2,2,2,2,2,5]+sum(est[2,2,2,2,2,6:11]))/

(sum(incomtable[2,2,,,2,5])+sum(est[2,2,,,2,6:11])))*intable[2,2,1,1,2,i]

incomtable[1,1,1,1,2,i]<-((incomtable[1,1,1,1,2,5]+sum(est[1,1,1,1,2,6:11]))/

(sum(incomtable[1,1,,,2,5])+sum(est[1,1,,,2,6:11])))*intable[1,1,1,1,2,i]

incomtable[1,1,1,2,2,i]<-((incomtable[1,1,1,2,2,5]+sum(est[1,1,1,2,2,6:11]))/

(sum(incomtable[1,1,,,2,5])+sum(est[1,1,,,2,6:11])))*intable[1,1,1,1,2,i]

incomtable[1,1,2,1,2,i]<-((incomtable[1,1,2,1,2,5]+sum(est[1,1,2,1,2,6:11]))/

(sum(incomtable[1,1,,,2,5])+sum(est[1,1,,,2,6:11])))*intable[1,1,1,1,2,i]

incomtable[1,1,2,2,2,i]<-((incomtable[1,1,2,2,2,5]+sum(est[1,1,2,2,2,6:11]))/

(sum(incomtable[1,1,,,2,5])+sum(est[1,1,,,2,6:11])))*intable[1,1,1,1,2,i]

}

dev <- devnew

iter <- iter + 1

}

dev<-round(

sum(apply(intable[,,,,,1:4],c(1,2,5,6),sum)*log((apply(intable[,,,,,1:4],c(1,2,5,6),sum)/

apply(est[,,,,,1:4],c(1,2,5,6),sum))) ,na.rm=T)+

sum(apply(intable[,,,,,5],c(1,2,3,5),sum)*log((apply(intable[,,,,,5],c(1,2,3,5),sum)/

apply(est[,,,,,5],c(1,2,3,5),sum))) ,na.rm=T)+

sum( intable[,,,,,6:11] * log( (intable[,,,,,6:11]/est[,,,,,6:11]) ) ,na.rm=T),

digits=3)

summary(fit)

par<-dim(summary(fit)$coefficients)

output<-cat("N_est:", round(sum(fitted.values(fit))), "\n",

"N_88:", (sum(est[,,,,,1])), "\n",

"N_89:", (sum(est[,,,,,2])), "\n",

"N_90:", (sum(est[,,,,,3])), "\n",

"N_91:", (sum(est[,,,,,4])), "\n",

"N_92:", (sum(est[,,,,,5])), "\n",

"N_93:", (sum(est[,,,,,6])), "\n",

"N_94:", (sum(est[,,,,,7])), "\n",

"N_95:", (sum(est[,,,,,8])), "\n",

"N_96:", (sum(est[,,,,,9])), "\n",

"N_97:", (sum(est[,,,,,10])), "\n",

"N_98:", (sum(est[,,,,,11])), "\n",

"Deviance:", dev, "\n")

return(list(model, output))

}
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