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INTRODUCTION

Current European and American guidelines for pnnpaievention of major coronary and stroke
events recommend the use of a multivariable riskligtion model to identify high risk subjetts
Several risk scores are available in differenf'8nd Europearpopulations of middle-aged adults
to estimate the risk of first fatal and non-fatatdiovascular event over a 10 year time internahfr
a generally restricted number of risk factors, saslage, gender, lipids, systolic blood pressure,
smoking habit and diabetes.

During the 2000s the 10-year risk prediction eguator the Italian population was developed as
part of the Progetto CUOREA project pooling 17 population-based cohortsked between mid-
1980s and early-1990s in different geographicagrmcluding the Brianza. The CUORE model
has been adopted in clinical practice for risktstcation and statin reimbursement, but it was
recently replaced by the European SCORE chathough the latter does not consider non-fatal

events in the prediction.

In a recent commentary on the utility of risk ssof@ primary prevention of cardiovascular disease
in clinical practice, Grover and colleagues idéedifthree important challende§irst, primary

"9 and “long-term” risk¥’, motivated

prevention need to be moved towards the conceptdeiime
also by the increasing life expectancy in westeonr@ries. To this extent, 10-year risk prediction
models are inadequate to distinguish between thblseth low short-term and long-term risks, and
those at low short-term but at elevated long-tesk due to the presence of non-optimal risk factors
levels*™*3 In the Framingham Study population, an unfavaraisk factor profile led to an

increased 30-year risk of first cardiovascular ¢venlependently on the age at the risk factors
assessmettt In a cross-sectional study conducted in a reptatige sample of the Italian

population, about 80% of individuals classifiedaat 10-year risk had increased lifetime risk

according to US definition (>=40%), potentially ti¥ag to a consistent number of un-prevented



events that might have been prevented if lifetiiak had been consider€dThis group was largely
composed of women and young subjects, suggestadaihg-term prediction models for risk
stratification may be even more beneficial in papioihs at low incidence of cardiovascular
diseas¥. As we write this document, there are only twogleerm risk equations, one developed
from the Framingham population in the ¥JSand the other from a database of clinical records
the UK™. The previous experience with short-term modetgyests that the development of a
specific risk score in a low-incidence populatishsuld be preferred with respect to re-calibration

of models derived in high-incidence counttfes

The second challenge is the assessment of theatliility of any given score, in particular ofme
ones. Subjects’ stratification in risk categoresften based on arbitrary cut-points of absolist€ r
originally proposed from the US population but tivety show no benefit in clinical practice when
applied in a different conteXt Moreover, these cut-off values are the same far and women,
although the underlying risk distribution is noétbame. The evaluation of the clinical benefit of
long-term prediction by means of some standard ore¥shas not been provided so far and is

therefore required

The third challenge is bounded to the conceptmpfiovement” in risk prediction. The
discrimination ability as measured by the Area Urtle ROC curve (AUC) of most models based
on traditional risk factors is in the range of 782%4°. Many efforts are nowadays dedicated to the
contribution of novel markers, in particular to irape subjects’ stratification and clinical utifify

At this stage, promising biomarkers are recommeridieslecondary screening of subjects at
intermediate risk, due also to the costs of asses&ht" while non-laboratory risk factors assessed
in clinical practice at lower costs may be espéciadneficial at a population level. Family history
of coronary heart disease (CHD) and low socio-enuoatatus are well-established independent

risk factors with the same level of evidence aisgnsitivity CRP or fibrinogér?. However,



despite the strong evidence coming from associatiadies, their contribution to risk prediction
beyond traditional risk factors has been examioedllesser degree and with controversial

findings®%’ over a short-term time interval only.

The aim of this PhD project was to develop a loergat cardiovascular disease risk prediction
model intended to be used for primary preventiodlimical practice in Italy and potentially in othe
low-incidence, Southern European populations withilar characteristics. The work, as well as
this document, has been structured in three mais,paughly corresponding to the three
challenges above mentioned. In the first sectiorgel development and validation, we focused on
deriving the reference model for 20-year risk pc&dn of first coronary event or ischemic stroke,
fatal or non-fatal, in the Italian population. Exteng the range of risk prediction over 20 years is
not a straightforward operation. First, althoughesal studies have shown that a single
measurement of risk factor is predictive of futavents after 30 plus yeafs’® behavioral changes
and risk factors modification may affect model disination. Second, although an external
validation, on a “new” set of subjects, of any scwrecommended before adopting it in clinical
practicé®, it is rarely performed in long-term predictionuegjons as it requires high-quality follow-
up data, with a consistent event definition ovaeretiin a large number of subjects possibly enrolled
in different study cohorts. Previous long-term msdmly provided internal validatidh Finally,
some authors suggested the potential need of atiegudar the competing risk of non-CVD death
when long-term models are used for risk stratifagt: *°

In the second section we evaluateddineical utility of the reference model for risk stratification,
according to several strategies with contrastingipunealth aims, namely to reduce the fraction of
events potentially “missed” by any preventive attior to reduce un-necessary treatment. Subjects’
stratification based on predicted risk was compé&opea stratification based on the number of risk

factors. The decision curve analy8isased on the Net Benefit was also provided.



Finally, in the last section, we evaluated ittrovement in long-term risk prediction whefiamily
history of coronary heart disease and education are added to the reference model. Family history
remains to date the most accessible way of measdrsease heritability, and it reflects both the
genetic trait and the environment shared amongetmis members. Level of education is a
frequently adopted proxy of social status, becausesasily measured, it remains stable over time,
and it reflects both intellectual and material teses, as well as early lifetime conditidns

We hypothesized that the addition of these twoiimvariant conditions in middle-aged adults,

might actually improve long-term risk predictionybed traditional and behavioral risk factors.

MATERIALS AND METHODS

Study population

The Brianza population comprises residents in 78iaonpalities in the area between Milan and the
Swiss border, Northern Italy. The CAMUNI (CArdiowasgar Monitoring Unit in Northern Italy)
study includes four independent population suneysied out between 1986 and 1994 as part of
either the WHO-MONICA Project (3 survéysor the PAMELA study. Participation rates were
70.1%, 67.2%, and 70.8% for the three MONICA susyegspectively, and 64% for the PAMELA
Study, with no differences between men and womeih Bhe baseline screening and the follow-up

for all the surveys were approved by the ethicahimattee of the Monza Hospital.

Baseline risk factors assessment

Cardiovascular risk factors were collected at hasedccording to the standardized procedures and
quality standards of the WHO-MONICA Proj&ttSerum total cholesterol, HDL-cholesterol and
blood glucose were determined using the enzymagithoa on a fasting blood sample. Systolic
blood pressure was assessed twice, at 5 minutes agiag a standard mercury
sphygmomanometer; the study variable for systdbodb pressure is the average of the two

measurements. A standardized interview was adraneidtto participants by trained interviewers.
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Information on the use of anti-hypertensive treatnie the previous two weeks was dichotomized
as yes/no; similarly, cigarette smoking habit whdtomized as current versus past/never
smokers. Diabetes mellitus was defined using sgbrted diagnoses, information on insulin and
oral hypoglycemic treatments and fasting blood gbgcexceeding 126 mg/dl. The presence at
baseline of a previous history of myocardial infeme, unstable angina pectoris, cardiac

revascularization or stroke was defined based limeg@orted information.

Definition of family history of CHD and socio-econmic position

In the first two MONICA surveys and in the PAMELAugly cohort, the first-degree family history
of coronary heart disease (“Has one or more of fisstrdegree relatives suffered from coronary
heart disease? ", with possible answers: yes/ne)aseertained at baseline as part of the interview,
with no reference to age limit. The last MONICA &y included an age limit at 50 in the

definition. The number of years of schooling (“Havany years have you spent at school or in full
time study?”) was also investigated. As year obsting are subject to modifications across
different birth cohorts, we derived a three-classlg variable (high, intermediate and low
education) by comparing the years of schoolinggfgiven subject with the distribution within his

gender-specific birth cohort. Sample tertiles wesed as cut-points, as previously described

Study endpoint and follow-up procedures

The study endpoint is the occurrence of first mamonary event (myocardial infarction, acute
coronary syndrome and coronary revascularizatiofiysi ischemic stroke or carotid
endarterectomy, fatal and non-fatal. Vital statog death certificates were available for 99% of the
subjects. Suspected out-of-hospital deaths westigated through interview of relatives.
Suspected hospitalized coronary (discharge codel}CD10 or 411 and ICD-1X CM 36.0-9 for
coronary revascularization) and stroke events (IR@30-432, 434, 436; ICD-IX CM 38.01-39.22

or 39.50-39.52 with at least one 430-438 as digghaode, for carotid endarterectomy) were



identified through deterministic and probabilistecord linkages with regional hospital discharge
databases, obtaining a satisfactory performancase finding, as report€d® *” All acute events
were investigated and validated according to theNWEA diagnostic criteri®; the ischemic

subtype for stroke was attributed after reviewhef available clinical information.

Statistical methods

Model development and validation

Thederivation sefor model development consisted in the 35-69 yektsnen and women, free of
cardiovascular disease at enrollment, participemtse CAMUNI study. The reference 20-year risk
prediction model consisted in two gender-specifox @egression models with age, total
cholesterol, HDL-cholesterol, systolic blood pressanti-hypertensive treatment, cigarette
smoking and diabetes. These predictors are cdedaasors included in the 10-year CUORE
Project score*®as well as in other well-established 10-year eigkations *. After a preliminary
check on linearity, total- and HDL-cholesterol wareluded in the model as categorical variables
in four standard classed he interaction between systolic blood pressackanti-hypertensive
treatment was not statistically significant (p-v&au84 in men and 0.12 in women, respectively).
There was no evidence of any cohort effect in thlenfiodel, in men (3 df test p-value=0.2) nor in
women (p-value=0.5). Finally, no violations in f@portional hazard assumption were observed
using a standard test for time-dependent variables.

Model calibration was assessed through the Grggri@sbgan goodness-of-fit test, which is the
extension of the Hosmer-Lemeshow test to the sabhgetting®. The Area Under the ROC curve
(AUC) defines a measure of model discriminationthasprobability that the risk score for an event

is higher that the score in a subject who is a exent:

AUC=P(Z,>Z||D =1 D; =0) 1]



As we are in a survival setting, we must acknowtettiti) the AUC must be defined within a
certain follow-up time, i.e. AUC(t), as “events’dafnon-events” must be defined within a certain
follow-up time; andi) censorship must be taken into account when estignAlJC(t), since
because of censorship we might not able to seébkeabvents within t. Therefore, we will estimate
the AUC(t) according to the following formdfa

AUS() = El(L- S(§Z)) * SWEZ))1(Z, <Z,)]
E[(1- S(12)) * S(12)

[2]

where é(t|Zi) is the fitted survival function for risk scoi& , 1(Z; < Z;)is an indicator variable

for Z, <Z, and E is the estimated expected value. As the formdlgs[Based on the fitted

survival function, the AUC takes censorship intoamt. Similarly, model sensitivity and
specificity in the top and bottom predicted riskrdiles were also computed taking censorship into
account’.

To assess the hypothesis of a loss in discriminatimlity due to a longer prediction period, we
estimated the 10-year predicted probability of ¢wemur database, using the same set of risk
factors but with shorter follow-up period, i.e. tpthe end of 2002 for all the subjects (number of
events: 234 in men, 79 in women). We then comptre@stimated AUC(10) with AUC(20) by
looking at their respective bootstrapped confidantervals.

Theinternal validation analysigonsisted in estimating over-optimism in discriation through
1000 bootstrapped sampi&swe then provide AUC-corrected valu&sr theexternal validation
analysis, the validation set consisted in the 52448 men) subjects enrolled in the Latina (Rome)
in the same time span as the Brianza cohorts (M&8B8idy). The MATISS studywas also part

of the CUORE Project and shared the same procetlurbaseline risk assessment and follow-up
procedures, including MONICA definition of acuteeews, as the derivation set. To assess the
external validation, we evaluated the performarfadee® CAMUNI score in the validation set; the

Framingham CVD risk scotevas used for comparison. The absolute predicgdfiom both



scores was re-calibrated to the 20-year risk oleskirv the validation set. We report the calibration
slopé" as a measure of calibration. The calibration slepiee beta-coefficient from a Cox model
fitted in the validation set with the re-calibratgolsolute risk as the only covariate; a value cifie
from 1 is suggestive of a different strength indactor effects. A calibration plot was also provdde
The Area Under the ROC-curve (AUC), estimated d&Jin measured the discrimination ability for
the CAMUNI and the Framingham risk scores in thiedaion set; the AUC was compared to the
value estimated for the CAMUNI score in the delimaitset, corrected for over-optimism.

Finally, in a sensitivity analysis we considered #ifect of the competing risk of non-CVD death
on risk stratification based on our prediction mdreconsidering model calibration with and
without competing risks. A published SAS macro waed to estimate the 20-year absolute risk of

first CVD event taking competing risk into accotint

Clinical utility

To assess the clinical utility of the long-term rabfibr risk stratification, we considered two
different public health goals. One is to decreagsenumber of events occurring among those
considered at “low-risk”. If we assume that a sab@assified at “high risk” will be targeted for
prevention (either lifestyle intervention or treamt), any event occurring outside this category is
“not-identified” or “missed” by the prevention stegy. The second strategy aims instead to reduce
un-necessary treatment, by decreasing the numbremeévents among those considered at “high-
risk”. Under the two scenarios, “high-risk “subjeetre defined as those with predicted risk above a
certain cut-off value. Clinical utility is definad terms ofi) fraction of “missed” events)

probability of event among those classified at high; andiii) false positive/true positive ratio, for
several threshold values in the 20-year prediagtdd YWe also provide a decision curve analysis
based on the net benefit:

Net Benefit = (true positives - w*false pogts)/n, [3]

10



where n is the sample size and the weight w repteske ratio between the harm of un-necessary

treatment and the harm of missing a case at thahgialue of predicted risk

Improvement in risk prediction

The analysis on the additional contribution of eatiom and family history of CHD to long-term

risk prediction was restricted to the first two M@M-Brianza surveys and the PAMELA study,
due to inclusion of an age limit at 50 in the ditiiom of family history of CHD in the most recent
MONICA survey. “Improvement” was defined in termisagsociation, change in discrimination and
reclassification improvement over the reference effddChange in discrimination was assessed as
difference in the Area Under the ROC-CurdeAUC(20)) as well as Integrated Discrimination
Improvemerit® (ID1). The A-AUC(20) is defined as the difference in AUC(20) foe new and the
traditional model, both estimated is in [2] takitensorship into account. The IDI was defined as
the net gain between the change in sensitivitythaadthange in (1-specificity) due to the “new”
model with respect to the “old” or “reference” one:

IDI = (ISnew_ ISold) _(IPnew_ II:)old )

In the survival setting, IDI becomes IDI(t) and altbbe estimated taking censorship into account.
Chambless et & found that the difference between IS(t) and If(t)a given model can be

interpreted as the proportion of variance explaimgthe model:

iS00 - 15() =212 _ ey

1) * [1-S(1)]

This quantity can be estimated from the fitted aahterm:

R () = SE2)] [4]
SO *[1- ()]
The estimator for IDI(t) becomes:
IDI (1) = Rl (®) ~ Ria (© [5]

11



where Iifew(t) and Iifld (t) are the proportion of variance explained by the aed the old model,

respectively, both estimated as in [4].

Pencina et al. introduced the concept of improvernmereclassification ability due to a new model
over the reference ofieIf we assume that subjects can be classifietrietcategories, i.e. “low”,
“intermediate” and “high” risk based on their ahgelrisk predicted by the reference model, the

new model might change risk stratification as fafo

New Model
Low Risk Int Risk High Risk
UpP
. (Improvement if UP
Low Risk D=1, worsened if  (Improvement if D=1,
= D=0) worsened if D=0
8 DOWN UP
€ IntRisk (Improvement if D=0, (Improvement if D=1,
g worsened if D= worsened if D=Q
DOWN

DOWN
High Risk  (Improvement if D=0,
worsened if D=))

(Improvement if
D=0, worsened if
D=1)

where “UP” and “DOWN” mean a reclassification icaegory at higher risk (upward) or lower
risk (downward) then the original category, respety; the grey cells identify no change in risk
categories. Whether a reclassification determine$naprovement” in risk stratification, it depends
on whether the subject is an event (D=1) or notQDwe can define the Net Reclassification

Improvement among events and non-events as:

NRI,,ens =P(UP|D =1) - P(DOWND =1)

events

NRI =P(DOWND = 0) - P(UP|D = 0)

non events
A weighted sum will define the overall Net Recléissition Improvemerit:

NRIoverall =W* NRlevents+ (1_ V\b * NRInon events [6]

12



where the weight w may reflect a differential “cbsinefit” function for improvement in events and
in non-events. In our application, w=0.5.
In the survival setting, a formula for NRI(t) whitéikes censorship into account has been proposed

by Chambless et #las an application of the Bayes’ theorem:

P(D(t) =1UP) * P(UP) _P(D(t) =1DOWN * P(DOWN)J

NRl(t)events= ( P(D(t) = ]_) P(D(t) = 1)

NRI P(D(t)= 0DOWN * P(DOWN) _ P(D(t)= OUP) * P(UP)
( )non events P(D(t) — O) P(D(t) — O)

and for w=0.5 andp = P(D(t) =1):

_ (P(D(t) =1UP) - p) * P(UP) - (P(D(t) =1DOWN) - p) * P(DOWN)

NRI =
(t) overal p(l _ p)

[7]

The quantities in [7] can be estimated as KaplameMsurvival estimates among those reclassified

upward and downward, as well as in the overall 3antp take censorship into account.

In our analysis, the improvement in risk stratifioa due to the addition of family history of CHD
and education over the traditional model was meakhy a three-category Net Reclassification
Improvement at 20 years (NRI(20)). To define tis& gategories, we used the threshold values
10% and 20% in men, and 2% and 10% in women; tases were chosen based on the previous
assessment of clinical utility. In a sensitivityadysis we considered different thresholds as NRI is
sensible to the choice of the cut-off valtfebut the findings did not change substantiallyrfro

those presented here. We provide also an estimatkd clinical NRI, defined as the NRI among
those originally considered at intermediate riskhmy reference mod@l*> As there are no close
forms for standard error estimators folAUC(20), IDI(20) and NRI(20) presented in [2], [&hd

[7] respectively, we provided bootstrapped confmkemtervals from 1,000 bootstrapped samples.

13



A new SAS package for risk prediction models

All the analyses were conducted using the SAS soéiyrelease 9.2. As there are no publicly
available programs, the author developed a comps®f® SAS package [reSAS, Risk Estimation
in Survival Analysis using SAS], with several macto assess model calibration, discrimination,
and internal validity, as well as to compare sevei@dels in terms oA-AUC(t), IDI(t) and

NRI(t). All the relevant metrics were estimateditakcensorship into account, as appropriate for
the survival settin’ ** Confidence intervals at a 95% nominal level wesgmated from

bootstrapping. The package and the macros arergplyrted and described in the appendix.

RESULTS

The CAMUNI 20-year CVD risk score: development andsalidation

In the CAMUNI study (derivation set) n=5,426 (2,7®&n) subjects were enrolled in the age range
35-69 years. N=205 subjects (3.8%; n=14 eventsphéhst one missing data; we considered data
imputation (Rtranscanfunctiorf®) and excluded only those with missing values inertban 4
covariates of interest (n=6 men and n=3 womenxlfim=120 men and n=45 women with a
positive history of cardiovascular disease at liaseavere also excluded, reducing the sample size
to 2,574 men and 2,673 women. The validation sesisted in the 2,418 men and 2,889 women,

aged 35-69 years and free of cardiovascular dissdsa&seline, enrolled in the MATISS study.

Main demographic characteristics and CVD risk fexctor the derivation and the validation set, by
gender, are shown ifable 1 Subjects in the validation set were about 1 wé&der on average, had
a lower HDL-cholesterol and a higher systolic blgodssure than the derivation set, in both
genders. The prevalence of smoking was 10% higherein, and 11% lower in women.

In the derivation set, during a median follow-upéi of 15 (interquartile range: 12-20), we

observed 315 first CVD events in men (233 coromamsnts) and 123 in women (n=85 coronary
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events). The Kaplan-Meier estimate for 20-year wsls 16.1% and 6.1% in men and women,
respectively. In the validation set the mediandiellup time was 17 years (interquartile range 13-
20); the 20-year Kaplan-Meier risk was slightly Enthan in the derivation set, in men (13.2%) and

in women (5.6%).

The beta-coefficients for the CAMUNI 20-year CVBkiscore in the derivation set are provided in
Table 2 All the risk factors were statistically signifita except for anti-hypertensive treatment,
though its point estimate reflected a 30% incréas@zard in both men and women; the variable
was retained in the model for comparability witk #hort-term CUORE model. There were no
significant differences in the set of beta estimdte the 20-year model as compared to those from
the 10-year risk model for the risk factors in thedel (data not shown). The model calibration in
the derivation set was satisfactory, in men (GrghgpeBogan goodness-of-fit chi-square 6.7, p-
value=0.67) and in women (chi-square 9.6, p-valug8)) the calibration plot, comparing the

average predicted risk among deciles of obsengid is available aBigure 1.

In the derivation set, after the correction for meptimisms we found no statistically significant
difference in the overall discrimination abilitytaeeen long- and short-term prediction models, in
men (AUC(20)=0.736 vs. AUC(10)=0.731) and in won&b/C(20)=0.801 vs. AUC(10)=0.816;
Table 3). Only 5% of 20-year events in men occurred amaigests with a predicted risk below
the 20 percentile (bottom quintile); the correspondirgufie in women is 2%. The relative risk of
event for being above the B@ercentile vs. below the $@ercentile of 20-year risk was 9.5 (i.e.
35.1/3.7) in men and 22.4 (i.e. 20.2/0.9) in wonfénally, the value of the 80percentile for 20-
year risk was more than twice as high than thelammpercentile for 10-year risk in men (26.8 vs.
10.8) and more than three times as high in womeri (is. 3.0). A similar consideration holds for

the 20" percentile of risk or the median value.
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Main findings from theexternal validatioranalysis are reported Table 4, for the CAMUNI risk
score as compared to the Framingham risk scorecdlitwation slope for the CAMUNI score in
the validation set did not significantly differ frol in men (1.07; 95% confidence interval 0.91-
1.23) nor in women (1.00; 0.83-1.16). The Framimghesk score performed equally well in men
(1.06; 0.90-1.22) but worse in women (1.32; 1.18B)..A lack of calibration in women in the
validation set for the Framingham risk score i® afisible in the calibration ploF{gure 2), in
particular when the observed 20-year risk is alde In the derivation set, the over-optimism
corrected AUC(20) for the CAMUNI model was 0.737men and 0.801 in womeigble 4);
corresponding figures in the validation set wei&0.(95% CI: 0.727-0.738) in men, and 0.801
(0.794-0.808) in women. The Framingham risk scemgpmed less well in men (0.722; 0.717-

0.727) and in women (0.705; 0.699-0.711).

Finally, we considered the potential impact of tbenpeting risk of non-CVD death on risk
stratification based on the prediction md@ef. In the derivation set, the Kaplan-Meier estinwite
20-year risk of first cardiovascular event adjustaccompeting ris® was 14.9 in men and 5.9 in
women. The calibration for the 20-year predicts#t from the standard Cox model was satisfactory
except for the last decile of predicted risk in nj@ata not shown). In addition, the analysis by age
strata did not reveal any clear pattern of riskresgmation by the standard Cox modEdifle 5).
These two findings somehow reflects the work by Méad and colleagues, which reported a
satisfactory calibration for the standard Cox mageto the age of 75 in a frail populatif@riThus

in our population of 35-69 years old the competisl of non-CVD death is likely not to affect

CVD risk stratification in a clinically meaningfway.
Clinical utility analysis

Table 6aandTable 6b describe strategies for the identification of higgk subjects, based on

predicted 20-year risk, in men and women respdgtivecut-off value of 10% twenty year risk in
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men would result in a 9% of “missed” events (ixerdgs among those with predicted risk below the
cut-point), with a probability of event of 23% aade true positive for every 3.4 false positives
(Table 6. In the second scenario, by choosing the 20%tiwwasar risk threshold value, the
fraction of missed events was 36%. Note that aBO%& of events occurred for a predicted 20-year
risk between 20% and 30%. Finally, using the nunatbeisk factors to define high risk subjects
would result in a higher fraction of missed eventish no changes in specificity or in the
prevalence of subjects at high risk.

Among women, a cut-off value of 2% would resultib% of missed events, with a probability of
event of 9% and a true positive for every 10.1fgssitive womenTable 6b). In the second
scenario, the probability of event among those waiibolute risk greater than 10% was 20.4%, with
a true positive for every 3.9 false positives. Hoare the fraction of missed events would be 32%;
this number can be reduced by lowering the cutralifie to 8%. By considering at high risk those
with 2 or more risk factor would result in a highieaction of missed events, with no gain in
specificity or in the probability of event in theogip. Figure 3 illustrates the decision curve

analysis based on the Net Benefit, for men (left) @omen (right). The figure suggests a greater
net benefit for the predicted risk with respecthte number of risk factors over the whole range of

values, thus generalizing the findings frdiable 6aandTable 6b.

Improvement in risk prediction due to family history of CHD and education

The analysis of the additional contribution of fimhistory of CHD and education was restricted to
the 4,099 subjects enrolled in the first two MONHBAanza surveys or in the PAMELA study in
the age range 35-69 years. 130 subjects with amsistory of CVD at baseline were excluded,
as well as subjects with missing data on covariatésterest (n=11). The available sample size for
the analysis was 1,941 men and 2,015 women. Thalerece of family history of CHD at baseline

was 27% in men and 34% in women; 42% of men and 8fA%®@men were in the low education
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group. During a median follow-up time of 18 yedrggrquartile range: 12-20), we observed 254
first CVD events in men (188 coronary events) ad@ ih women (68 coronary events). The

Kaplan-Meier estimate for 20-year risk was 16.7% &% in men and women, respectively.

In men, education was associated with incidena@aadiovascular events (2 df p-value=0.049)
when controlling for age; in particular, less ededamen had a significant 40% risk excess when
compared to more educated subjects (95% Confideterval: 1.01, 1.88Table 7). After the
adjustment for traditional risk factors and famigtory of CHD, the association remained
statistically significant (p-value: 0.03). We obsst a 40% risk excess for less educated women as
well; the association however was not significani] partially mediated by traditional risk factors.
In men, the age-adjusted hazard ratio for famisgdry of CHD was 1.55 (95% CI: 1.20; 2.02);
further adjustment for traditional risk factors aidt modify the estimate. No association was

present among women.

The model calibration was satisfactory, in men (@esby-Bogan goodness-of-fit chi-square below
20 for all the models, all p-values greater th&) @nd in women (all chi-squares less than 5; see
Table 3). The AUC(20) for the reference model was 0.75081en and 0.8358 in women. In men,
the inclusion of either education or family histafyCHD modesty increased model’'s
discrimination Table 8), while the improvement was more evident when beghe addedA-AUC:
0.01; 95% CI1 0.002-0.02; IDI: 0.01; 95% CI 0.00D24). Among women, the change in
discrimination was about one-fifth the level formfer any model, and no metric was significantly
different from zero.

Table 9reports the reclassification metrics, in men andwen, for the overall population and
considering only those classified at intermedig&tk from the reference model. In men, the addition
of both education and family history of CHD ledatio overall NRI of 5.8% (95% CI: 0.2%-15.2%).

Moreover, about 30% of those at intermediate riskeweclassified; the NRI among cases was
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12%, while the overall NRI was 20.1% (95%CI: 0.5%84). Among women, no significant change
in reclassification was observed, in the overapydation (NRI = -1.4%) nor considering only those
at intermediate risk (NRI = 6.6%, not significar®nly 5% to 7% of women were reclassified
either upward or downward by the different models.

Figure 4 illustrates the reclassification plot due to tkeition of both family history and education
to the reference model, in men (left) and womegh(ji The 20-year probability of event among the
134 men reclassified upward was 23% (26 CVDsxngisdo 31% considering only those at
intermediate risk according to the reference m¢delmen, 19 CVDs); i.e. about 1 event every 3
subjects. The probability of event among thoseassified downward was 13%. In women, the
probability of event among those reclassified ugia=48, 4 CVDs) and those reclassified

downward (n=54, 3 CVDs) were 9% and 12%, respelgtive

DISCUSSION

We illustrate here the development of a 20-yeatlipte®on model of first major coronary or

ischemic stroke event in a Northern Italian popalabf men and women aged 35 to 69 years at
baseline. To our knowledge, this is the first Iaagn prediction model in a low-incidence, southern
European population. Based on the findings fromettternal validation analysis, the risk score
seems to be appropriate for long-term risk preaiicin Italy and, more generally, in low-incidence
populations. As in the Framingham study, in ourydaton the long-term predicted risk was more
than simplyn-times the short-term risk predictibnin addition in the age range 35 to 49 years, the
long-term predicted risk in subjects with 1 or moom-optimal or elevated risk factors (defined as
in Lloyd-Jones at alwas 3-times the short-term risk in men, and 4-$iimewomen Eigure 5).

This conveys the importance of long-term predicfmmearly identification of young subjects and

women at increased likelihood of event during themaining lifespan.

Risk scores are an attempt to predict an individuédome based on group average among subjects
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sharing the same levels of risk factors. Two recdefates — the lack of concordance between
different risk calculatof§ and the severe risk overestimation by the newsiske adopted by 2013
American College of Cardiology/American Heart Adation CVD primary prevention

guideline§”°

— highlighted the importance of calibrating thedaloon the risk of the underlying
population. This finding is not completely néwand it justifies the need of developing specific
scores for populations at different disease inagdeBy far less attention has been paid so far on
how thresholds of predicted risk for subjects’ tfication are chosen, often arbitrafijyotentially
limiting the clinical utility of risk prediction maels’. According to 2013 US guidelin¥s45% and
23% of Caucasian men and women are above the reendad threshold of predicted risk for
statin prescription, respectively. However, thaeerm indications on sensitivity and specificity of
such a stratification, nor on cost implicationgofentially treating about 1 middle-aged man out of
2. In this research project, we considered twdegias for the identification of “high-risk” subjisc
with contrasting public health goals, either toréase the fraction of missed events or to decrease
un-necessary treatment. These can be implementeldmging threshold values for the predicted
risk driven by either sensitivity or by specificitgspectively. Despite the lowering costs of stati
treatment with respect to the costs of one un-preeeevent, the high sensitivity scenario was not
cost-effective over a 10-year periddThese two scenarios might be combined to adoptre
complex risk stratification, as often present imichl practicé® * For instance, if we consider at
“low-risk” the 36% of men with 20-year absolutekriess than 10%, the fraction of missed events
would be 9%, i.e. 31 first events in 20 years. AlRilf6 of men with absolute risk between 10%
and 20% could be addressed for lifestyle modifarabr treatment according to the presence of
specific risk factors; this category accounts foowat 20% of cases. Finally, the 33% of men with
predicted risk above the 20% could be targeted treitment intervention; they account for 68% of
events, and out of 3.2 treated men, one is a éasiilar stratification can be provided for women,
with different threshold values reflecting gendpedfic underlying risk as for the cardiovascular

age assessmént
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The analysis of the additional contribution of finhistory of CHD and education to a reference
model with established CVD risk factors gives tippartunity here to discuss the concept of
“improvement” in risk prediction from the statistiqperspective. Although family history and
education are well-established independent ristofador major cardiovascular evehts

association alone is not enough to warrant theiiech in any risk scoté Discrimination statistics
such as tha-AUC and the IDI define “improvement” in terms of ancreased ability of separating
events from non-events. These measures howevengdier and smaller as the discrimination
ability of the reference model increases, no méibev strong the additional predictor is;
furthermore, a\-AUC=0.02 has no straightforward clinical inter@tinr™2 The NRIs statistics
define “improvement” in terms of a better stratfiion of subjects in risk categories, which
ultimately leads to a more appropriate clinicalidien on treatment allocation. Thus the NRI assess
the clinical value of the additional informationedto the new markers, especially when its separate
components are also provided (NRI among eventsaarahg non-events; see [6] above). However,
Pepe and colleagues pointed out that the null ingsi¢ of no association is equivalent to the null
hypothesis of no “improvement”, no matter how deffii. As in the logistic regression setting the
distribution of “improvement” metrics under the hoay not be normat ** the null hypothesis of
no “improvement” should be tested through a stashilkelihood test comparing two nested
models®,

In our perspective cohort study with a long follow-eriod in which subjects are exposed to
censorship, we estimated a comprehensive set@ifrdisation and reclassification metrics, as
appropriate in the survival settifigThese estimators had less bias, smaller variamdenean
squared error than the original ones which igneresorshif”. As there are no close forms for
standard errors, we provided confidence intervatet on bootstrap, which may be slightly more
conservative than the nominal 95% IéVeTo investigate the asymptotic propertieAeAUC(t),

IDI(t) and NRI(t) could be the topic of future essch. Our findings were quite consistent from

Pepe and colleagues perspective. In men, aftexdjustment for established risk factors, low
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education and positive family history of CHD wessaciated with the study endpoint (table 7).
The addition of both factors to the reference madgiificantly improved discrimination (table 8)
and risk stratification (table 9), as bootstrappedfidence intervals for these quantities did not
contain 0. Considering the subgroup at intermediakeaccording to the reference model, the NRI
among cases was 12%, the overall NRI was 20.1% (35005%-44%), and about 1 every 3 men
reclassified upward is expected to experience a €vént in 20 years. In women, to a null finding
in the association for both education and famistdry of CHD (table 7) corresponded a modest
and not-significant change in discrimination andisk stratification. The age-adjusted hazard
ratios for low education were similar in men andwem (1.38 vs. 1.40, respectively; table 7), but
the lower number of events as well as the presehagder social inequalities in risk factors
distribution with respect to méhmay explain the non-statistically significant fésn women. For
family history of CHD, we acknowledge the absenicthe age limit in our definition. In the last
MONICA-Brianza survey (not included here), whermily history was defined within the age
limit of 50 years, the age-adjusted hazard ratiwamen raised to 1.59, as compared to 0.96 in

Table 7. The difference in hazard ratios was legdeat in men (1.64 vs. 1.55).

We briefly discuss strengths and limitations of ¢therent analysis. Our sample comprises subjects
drawn from a representative northern Italian pojpaha with a satisfactory participation rate. The
underlying population is characterized by high Is\a# industrialization and urbanization, with one
of the highest average incomes in Italy. We alsatioge a high-quality of follow-up procedures,
including case ascertainment for non-fatal evertsd a consistent event validation according to
MONICA criteria. Also, the Standardized Incidencat® a measure comparing the expected and
observed number of events in the cohort using fades the underlying population, was above 1
over the whole follow-up peridd Together with measures of internal validity of ghredictive

model, we provide a formal external validation g, which has been an issue for previous long-

term model¥ > Finally, the study endpoint reflects the clininakd to treat the “global” ischemic
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risk of a given patient, and not its separate cameptd’. Potential study limitations include the
definition of positive family history of CHD baseuh self-reported data without a formal
validation. The self-reported definition is liketty be used in clinical practite® and it has been
adopted by other observational prospective studigser wittf> 2°or without age limit&’. The lack
of age limit in our definition may have resultedaiower sensitivity for positive family history
potentially biasing the association with the stedgpoint toward the null, as mentioned above. In
more recent data from the same Brianza3ré@e prevalence of self-reported family history of
CVD was 28% in men (age limit 55) and 35% in wortege limit 65). The comparison with the
prevalence reported in our population (27% and 84%en and women, respectively) suggests a

non-differential misclassification by gender in aata.

CONCLUSION

During the PhD program the author developed ttst firodel to predict long-term risk of first
major ischemic cardiovascular event in a low-inocks Southern European population. The
prediction model has been internally and externadljdated, and its clinical utility has been
formally assessed at different thresholds of ptedicisk for clinical decisions. The clinical utyli
analysis should be part of the validity assessmokahy new predictive model. The statistical
implications of assessing the “improvement” in nskdiction were discussed and illustrated
through a paradigmatic analysis of two indicatdrdisease heritability and social status. A new
SAS package, Risk Estimation in Survival Analyssgng SAS [reSAS], detailed in the appendix,
has been specifically developed by the authorlferSAS software release 9.2, and is available to

other researchers.
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TABLES AND FIGURES

Table 1.Baseline characteristics (mean (SD) or %) of thdyspopulation and number of incident events, bydge. Men and women, 35-69 years
old, CVD-free at baseline. Derivation set (MONICAidza and PAMELA Study) and validation set (MATIS&idy).

Men Women
Variable Derivation set Validationset p Derivation set  Validationset p
N 2574 2418 - 2673 2889 -
Age (years) 50.8 (9.1) 51.9 (9.4) ok 50.3 (9) 51.4 (9.4) ok
Total Cholesterol (mg/dl) 223 (42.5) 221.9 (39) ns 222.9 (43.5) 220.5 (38.5) *
HDL-Cholesterol (mg/dl) 50.6 (13.2) 49.1 (12.1)  *** 61.5 (14.8) 54.4 (11.9) %
Body Mass Index 26.2 (3.5) 27.2 (3.6) *kk 25.6 (4.7) 29.2 (4.9) ok
Systolic Blood Pressure (mmHg) 134.8 (19.3) 13887  *** 131.6 (20.2) 138.8 (20.6)  ***
Anti-hypertensive treatment (%) 11.8 6.6 el 16.0 15.3 ns
Glycaemia (mg/dl) 97.9 (23.8) 95.2 (22.7)  *** 91.3 (21.6) 91.6 (22.8) ns
Diabetes (%) 6.7 5.3 * 4.0 5.3 *
Current smoker (%) 37.1 47.9 rrk 19.6 8.1 Frk
Incident coronary event (n) 233 187 - 85 68
Incident ischemic stroke (n) 99 59 - 43 53
Incident CVD event (n) 315 238 - 123 119
CVD Event Rate® 8.5 6.5 - 2.9 2.5
20-year absolute risk of CvD* 16.1 13.2 - 6.1 5.6

°: per 1000 person-years. ~: Kaplan-Meier Estimatealue testing the difference in risk factor dimition between the two sets of data; ***:<.0001.<.01; *:<.05. ns = not
significant. *: Kaplan-Meier estimate.
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Table 2: Beta-coefficients, standard errors and baselingsalrfor the CAMUNI 20-year risk prediction model the derivation set (MONICA-
Brianza and PAMELA Study). Men and women, 35 toyéfrs old, free of CVD at baseline.

Men Women
Beta SE p-value Beta SE p-value
Age (years) 0.058 0.008 <.0001 0.084 0.014 <.0001
Total Cholesterol®
200-240 mg/dl 0.388 0.161 0.553 0.287
240-280 mg/dl 0.690 0.167 <.0001 0.607 0.310 0.027
> 280 mg/dl 0.923 0.198 0.996 0.328
HDL-Cholesterol®
<45 mg/dI 0.403 0.160 0.804 0.250
45-50 mg/dI 0.367 0.186 0.013 0.364 0.309 0.015
50-60 mg/dI 0.024 0.177 0.261 0.225
Systolic Blood PressurdmmHg) 0.011 0.003 0.0003 0.015 0.005 0.001
Anti-hypertensive treatment (yes/no) 0.247 0.154 0.11 0.267 0.209 0.20
Smoking (yes/no) 0.521 0.117 <.0001 0.994 0.216 <.0001
Diabetes(yes/no) 0.744 0.163 <.0001 1.020 0.249 <.0001

SE = Standard Error. ~: reference group: total esterol<=200 mg/dl. °: reference group: HDL-chaest>60 mg/dl. *: at the mean value for continu®iss, and at the

reference class for categorical variables.

The risk model should be used within the followiagge for continuous risk factors: total choledté®5-330 mg/dl; HDL-cholesterol 30-100 mg/dl; &t blood pressure

100-190 mmHg.
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Table 3. Discrimination ability in the derivation set (MOBIA-Brianza and PAMELA Study) for the 10-year and #0-year risk prediction
models. Men and women, 35-69 years old, CVD-frdeastline.

Men Women
10-year risk 20-year risk 10-year risk 20-year rik

AUC (95% CI) (0.7%27;33.761) (0.7257;307.764) (0.7398;10%853) (0.73.185001.833)
Subjects with predicted risk below the 20th percenile

20th percentile of risk 2.3 6.3 0.3 1.1

Fraction of events* (%) 4.4 5.1 1.4 2.0

Probability of event in the group” (%) 0.8 3.7 0.2 0.9
Subjects with predicted risk above the 80th perceile

80th percentile of risk 10.8 26.8 3.0 10.1

Sensitivity* (%) 49.9 45.6 68.7 62.0

Specificity (%) 82.4 85.5 81.1 83.1

Probability of event in the group” (%) 194 35.1 7.5 20.2

The Area Under the ROC-curve (AUC) was estimat&ohtacensorship into account, and adjusting foramimism (n=1000 bootstrap).
*: Probability of belonging to the group, given thie subject is a case. *: Kaplan-Meier estimatbeprobability of event in the group.
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Table 4. External validation analysis for the CAMUNI scocalibration slope in the validation set, and dmmanation ability in the derivation and
in the validation sets. Men and women, 35-69 yeltsCVD-free at baseline.

Men Women
Calibration slope (95% CI)
Validation set®
CAMUNI Risk Score 1.07 (0.91; 1.23) 1.00 (0.83; 1.16)
Framingham Risk Score 1.06 (0.90; 1.22) 1.32 (1.10; 1.55)
Discrimination [AUC (95%Cl)]
Derivation set® 0.737 (0.713; 0.764) 0.801 (0.771; 0.833)
Validation set®
CAMUNI Risk Score 0.732 (0.727; 0.738) 0.801 (0.794; 0.808)
Framingham Risk Score 0.722 (0.717; 0.727) 0.705 (0.699; 0.711)

AUC = Area under the ROC Curve. ": corrected foereoptimism. °: the CAMUNI score and the Framinghdsk score were re-calibrated to the observede&d-yisk in the
validation set.
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Table 5: Comparison between observed and predicted 20-ykaofrCVD in the derivation set taking into accotime competing risk of non-CVD
death, according to different age groups at baselten (left) and women(right), 35-69 years oléhaseline, free from CVD at baseline

Men

Women
Observed 20- Predicted 20-year risk, Predicted 20-year risk, Observed 20- Predicted 20-year risk, Predicted 20-year risk,
Age C o . . . : . . C s . . . : . .
year risk®  with no competing risk  with competing risk year risk®  with no competing risk with competing risk
35-44 8.1 7.4 7.2 1.9 14 14
45-54 11.2 15.1 14.0 3.5 4.3 4.2
55-69 24.5 28.8 23.4 12.1 12.7 14.3

°: Kaplain-Meier estimate of 20-year risk, adjustedcompeting risk of non CVD death
Predicted 20-year risk: average predicted 20-yiskrlr ignoring competing risk of non-CVD deathtaRing the competing risk of non-CVD death into @aat
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Table 6a.ldentification of high risk men based on the 2@tyesk prediction model with respect to the numddfetisk factors, according to
strategies aiming tg reducing the fraction of missed events; andeducing un-necessary treatment. Men, 35-69 yadr<VD-free at baseline;

derivation set (MONICA-Brianza and PAMELA Study).

Men at high risk Fraction of Specificity Probability EP/TP

- " mlss(eo/d0 )events (%) of (eo\/g;,‘nt* Ratio

Strategy a: reduce the fraction of missed events

All 2574 100.0 0.0 - 16.1 5.2

1+ Major Risk Factdr 1842 71.6 13.7 325 19.5 4.1

20-year absolute risk > 10% 1645 63.9 9.1 41.2 22.9 3.4

20-year absolute risk > 15% 1169 45.4 22.1 60.9 27.7 2.6
Strategy b: reduce un-necessary treatment

2+ Major Risk Factofs 828 32.2 50.4 73.6 24.9 3.0

20-year absolute risk > 20% 841 32.7 35.7 73.7 31.7 2.2

20-year absolute risk > 30% 415 16.1 62.6 88.9 37.4 1.7

“Missed” events are events occurring among merclassified at “high risk”, i.e. with 20-year abst@uisk (or a number of risk factors) below the-ofitpoint.

*. Kaplan-Meier estimate of the probability of etémthe group (positive predicted value).
FP = Number of False Positives; TP = Number of TRositives
#: total cholesterol>240 mg/dl; HDL-cholesterol <#@/dl; systolic blood pressure >160 mmHg; smokitighetes
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Table 6b. Identification of high risk women based on they2@ risk prediction model with respect to the nemdif risk factors, according to
strategies aiming tg reducing the fraction of missed events; andeducing un-necessary treatment.
Women, 35-69 years old, CVD-free at baseline; dgian set (MONICA-Brianza and PAMELA Study).

Women at high risk Fraction of Specificity Probabllltg/ EP/TP
missed events (%) of event Ratio
n % (%) (%)

Strategy a: reduce the fraction of missed events

All 2673 100.0 0.0 - 6.1 15.3
1+ Major Risk Factdr 1654 61.9 17.7 40.1 8.2 11.3
20-year absolute risk > 2% 1733 64.8 4.5 37.4 9.0 011
20-year absolute risk > 5% 1067 39.9 14.7 63.2 13.1 6.6

Strategy b: reduce un-necessary treatment

2+ Major Risk Factofs 640 23.9 42.3 79.5 14.8 5.8
20-year absolute risk > 8% 698 26.1 22.7 77.1 182 45
20-year absolute risk > 10% 545 20.4 32.1 82.7 204 3.9

“Missed” events are events occurring among womertlagsified at “high risk”, i.e. with 20-year albsi risk (or a number of risk factors) below the-off point.
*. Kaplan-Meier estimate of the probability of etémthe group (positive predicted value).

FP = Number of False Positives; TP = Number of TRositives

#: total cholesterol>240 mg/dl; HDL-cholesterol <®@/dl; systolic blood pressure >160 mmHg; smokitighetes



Table 7: Association between education and family hisfr€HD with the onset of first major coronary evenischemic stroke during follow-up
in the Brianza population. Men (left) and womeglit), 35-69 years old at baseline, free from CVDaeline

Men Women
: Traditional : Traditional RFs-
Age-adjusted RFs-adjusted Full model Age-adjusted adjusted Full model
Education
High Education Ref* Ref Ref* Ref Ref Ref
Intermediate Education 1.00 0.90 0.93 1.17 1.18 1.18
(0.69; 1.46) (0.62;1.32) (0.63; 1.35) (0.72; 1.90) (0.71; 1.94) (0.72; 1.95)
. 1.38 1.29 1.35 1.40 1.26 1.24
Low Education (1.01;1.88) (0.94:1.78) (0.98:1.85) (0.83:2.36)  (0.73;2.15)  (0.73;2.12)
1.55 1.52 1.55 0.96 0.83 0.83

Family history of CHD (1.20:2.02§ (1.16;1.98) (1.19:2.03)  (0.63;1.45)  (0.54;1.27)  (0.55; 1.27)

In the table: Hazard Ratios (95% Confidence Intisjviaom Cox Proportional Hazards model

Traditional RFs-Adjusted Hazard Ratio: age, totallesterol, HDL-cholesterol, systolic blood pressuamti-hypertensive treatment, smoking, diabetes

Full model: model with traditional RFs (as abovkjspeducation and family history of CHD

p-value testing the association between educa®idhahi-square test) and family history of CHD (ttii-square test) with first coronary event or &iic stroke during follow-

up: *=<0.05; :=<0.001
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Table 8: Model calibration and improvement in discriminatdue to the addition of education, family histofyGHD, or both to the reference
model in the Brianza population. Men and womeng85ars old at baseline, free from CVD at baseline

Change in discrimination

Model
Calibration®  y_Auc (95%ClI) IDI (95%ClI)
Men
Reference model 7.7 Ref? Ref
Reference + education 6.6 0.004 (0; 0.013) 0.003 (-0.001; 0.012)
Reference + family history of CHD 6.7 0.005 (0; 0.015) 0.007(0; 0.022)
Reference + education & Family history of CHD 12.2 0.010 (0.002; 0.02) 0.010(0.001; 0.024)
Women
Reference model 4.8 Ref* Ref
Reference + education 2.8 0.0@1.001; 0.006) 0.00X-0.003; 0.009)
Reference + family history of CHD 2.2 0.0qD; 0.01) 0.000(-0.002; 0.007)
Reference + education & Family history of CHD 3.1 .002 (-0.001; 0.008) 0.002-0.005; 0.007)

The reference model includes: age, total cholelsteidL-cholesterol, systolic blood pressure, antpértensive treatment, smoking, diabetes
°: We report the chi-square values for the Gronpdtirgan goodness-of-fit test. Values above 20 ssfg lack of calibration
AUC: Area Under the ROC Curve (difference from teference model value). IDI = Integrated Discrintioa Improvement (%)

AUC for the reference model: » = 0.7508 (men) ard(.8358 (women)
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Table 9: Probability of reclassification and Net Reclassifion Improvement metrics over the reference mddelto the addition of education,
family history of CHD, or both, in the Brianza pdation. Men (left) and women (right), 35-69 yeald at baseline, free from CVD at baseline.

Men Women
Reference model +... Reference model +...
Education Eg{glﬁ; EdE;?rF\Ii(I); * Education Egtf(‘)':)}/l Fi(:;fyaﬂ?sr:()%y
istory
All subjects
Reclassified upward (%) 4.8 6.2 6.9 2.1 1.6 2.4
Reclassified downward (%) 6.5 6.4 9.4 2.1 2.2 2.7
NRI, events (%) 0.9 24 2.3 -4.5 -2.2 -1.6
NRI, non-events (%) 2.2 0.7 3.5 -0.3 0.5 0.2

NRI, overall (%; 95% Cl)  3.1(-1.4;12.1) 3.1 (4.3) 5.8(0.2;15.2) -4.9(-15.2;-2.1) -1.7 (-13.2; 0.5) -1.4 (-12.2; 3.7)

Subjects at intermediate risk*

Reclassified upward (%) 8.6 114 12.1 3.2 2.5 3.3
Reclassified downward (%) 10.3 9.9 17.4 2.5 3.1 3.6
NRI, events (%) 3.8 14.9 11.8 -0.8 1.6 6.1
NRI, non-events (%) 2.6 0.9 9.3 -0.7 0.7 0.6

NRI, overall (%; 95% Cl) 6.4 (-10.4; 22.3) 15.7.F138) 20.1(0.5;44) -1.4(-36.2;3.3) 2.4 (-10.2; 32.25.6 (-13.9; 32.3)

The reference model includes: age, total cholelsteidl -cholesterol, systolic blood pressure, antpértensive treatment, smoking, diabetes
*. Intermediate risk defined as 20-year predicieH from the reference model between 10% and 20P4en; and between 2% and 10% in women. NRI = NetaRsification
Improvement
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Figure 1: Calibration plot for the CAMUNI 20-year CVD risk gualiction model in the derivation set (MONICA-Brianand PAMELA Study).

Men (left) and women (right), 35 to 69 years oléefof CVD at baseline.
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Figure 2: Calibration plot in the validation set for the CAMWand the Framingham risk scores.
Men (left) and women (right), 35 to 69 years oléefof CVD at baseline.
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Figure 3: Decision curve for the CAMUNI 20-year risk predatimodel in the derivation set, as compared tslagtratification based on the

number of risk factors. Men (left) and women (rigi35 to 69 years old, free of CVD at baseline.
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Net Benefit: (TP-w*FP)/n, where TP = True Positit#®, = False Positive; w = (Absolute risk threshi§iid)(Absolute risk threshold)); n=sample size
Number of risk factors: total cholesterol>240 mgHIDL-cholesterol <40 [men] or <50 [women] mg/dyssolic blood pressure >160 mmHg; smoking; diabetes

40



Figure 4: Reclassification plot for the model with family tasy of CHD and education, with respect to the nefiee” 20-yer risk prediction model.
Men (left) and women (right), 35 to 69 years oléefof CVD at baseline. The MONICA-Brianza and PAMEStudy
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~: The reference model includes age, total chalektelDL-cholesterol, systolic blood pressure, dntpertensive treatment, smoking and diabetes.
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Figure 5: Distribution of predicted 10-year and 20-year w$Kirst major CVD event, according to the numberisk factors.
Men (left) and women (right), 35 to 49 years oléefof CVD at baseline
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All optimal: total cholesterol <180 mg/dl, HDL-Clesterol >= 40 mg/dl [men] or >= 50 mg/dl [womenhd pressure <120/80 mmHg, non smoker, non digbeti

1+ non-optimal: total cholesterol 180 to 199 mggyistolic blood pressure 120 to 139 mmHg, diastabod pressure 80 to 89 mmHg, non smoker, noretiab

1+ elevated: total cholesterol 200 to 239 mg/détalic blood pressure 140 to 159 mmHg, diastolaodlpressure 90 to 99 mmHg, non smoker, non dabeti

Major risk factor: total cholesterol >=240 mg/dIDH-Cholesterol <40 mg/dl [men] or <50 mg/dl [womesystolic blood pressure>=160 mmHg or treatmeiastdlic blood
pressure >=100 mmHg, smoker, or diabetic
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APPENDIX: THE reSAS PACKAGE

The “reSAS” is a SAS package written by the authibich includes several macros to assess
calibration (Grgnnesby-Bogan goodness-of-fit tegcrimination [AUC(t)] and the internal
validity of a given prediction model in the surviwtting, as well as to compare two models in
terms of discriminationf-AUC(t), IDI(t)] and risk stratification [NRI(t)]All these quantities have
been described in the methods section.

The underlying survival model for all the macro€mx proportional hazards, with time-on-study
on the time scale (macro variable TIME). The spee$sumptions for the Cox model need to be
tested separately. In addition, as AUC(t), IDI@iaNRI(t) are computed at a given time t, the
macro variable TIME_STOP needs to be specifiechersame time scale as TIME; if the survival
time is in years, a TIME_STOP = 10 will return thgC at 10-year time interval from baseline
(AUC(10)).

The candidate models (reference plus all the additimodels) need to be listed in a SAS dataset
before running the macros, as below:

DATA MODEL_LIST;

infile datalines delimiter ="

LENGTHVIODEL $175. LABEL $25. :
INPUT NUM MODEL LABEL:

DATALINES,

1, AGE SEX SBP TRATT DIAB SMK, REF_MODEL,

2, AGE SEX SBP TRATT DIAB SMK choldl hdldl hdldl, T C_HDL,

3, AGE SEX SBP TRATT DIAB SMK choldl hdldl hdldI*SE X, TC_HDL_INT,

4, AGE SEX SBP TRATT DIAB SMK CT_CL2 CT_CL3 CHDL_CL 1 CHDL_CL2 CHDL_CL1 CHDL_CL2,
CLASS_TC_HDL,

5, AGE SEX SBP TRATT DIAB SMK CT_CL2 CT_CL3 CHDL_CL 1 CHDL_CL2 CHDL_CL1*SEX
CHDL_CL2*SEX, CLASS_TC_HDL_INT

RUN;

The first row is referring to the reference moddtjle the other rows are relative to the additional
contribution of total- and HDL-cholesterol, eithees continuous variables (model 2) or in classes
(model 4), with a sex*HDL-cholesterol interactianddel 3 and model 5, respectively, for
continuous or classes variables). The last colunthe MODEL_LIST dataset is a label to identify
the model in each output dataset. The macros aadidnanteractions as well as class variables; in
this latter case, dummies need to be created iaredvin the analysis dataset.

The reference model should be specified as macrablea REF_MODEL in the macros computing
A-AUC(t), IDI(t) and NRI(t).

Bootstrapped confidence intervals for AUCK)AUC(t), IDI(t) and NRI(t) can be obtained from
the OVERALL_ANALYSIS macro. The macro produces apoit dataset with the parameters’
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estimates in each bootstrapped sample; confidenervals can be the obtained using a standard
program. In this macro, by setting the macro vaei&diJMBOOT = 0, AUC(t) A-AUC(t), IDI(t)

and NRI(t) are computed only on the original datase

Each macro produces output datasets, which caadig exported in excel for tables production.
The CALIB_PLOT macro produces a standard calibrgpilot for deciles of predicted risk, as well
as a SAS dataset with observed and predictedtasiystomize the plot if needed, either in SAS or
in a different environment. The ROC_PLOT macro pices a standard plot of AUC contrasting
each tested model with the reference ones wellS&Sdataset with observed and predicted risk, to
customize the plot if needed, either in SAS or difeerent environment.

All the macros in the package were written usingS2elease 9.2.

List of macros in the package:

1A. Model calibration — Grgnnesby-Bogan goodnesttaést

1B. Model calibration — Calibration plot of expetttes. predicted risk of event at time t
2A. Model discrimination — AUC(t)A- AUC(t), IDI(t)

2B. Model discrimination — plot the ROC curve

3. Net Reclassification Improvement — NRI(t), oiali NRI(t), continuous NRI(t)

4. Bootstrapped Confidence Intervals for AUCAAUC(t), IDI(t), NRI(t)

5A. Internal validation analysis: over-optimism.

5B. Internal validation analysis: calibration slope

References for the quantities estimated in the maaos:

Model calibration, goodness-of-fit test, calibratiplot:
May S., Hosmer DW. A simplified method of calcutgfian overall Goodness-of-Fit test
for the Cox proportional hazards modsafetime Data Anall998;4:109-120

Steyerberg EW. Clinical prediction models. 2009iigyer Science + Business Media, LLC.
New York, US.

Model discrimination and reclassification:
Chambless LE, Cummiskey CP, and Cui G. Severdimdstto assess improvement in
risk prediction models: extension to survival asayStatist med®011;30:22-28

Internal validation analysis:

Harrel FE, Lee KL and Marck DB. Tutorial in biossics: multivariable prognostic

models: issues in developing models, evaluatingrapons and adequacy, and measuring and
reducing errorsStatist med 996;15:361-387

Steyerberg EW. Clinical prediction models. 2009iigyer Science + Business Media, LLC.
New York, US.
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1A. Model calibration — Grgnnesby-Bogan goodness-dit test

%ACRO CALIB_TEST(DATASET, OUTPUT_TEST, OUTPUT_EXP, EV, T  IME, MIN_MOD, MAX_MOD,
COND=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT_TEST: name of the output SAS dataset wighrésults of the Grannesby-Bogan test
(chi-square value, chi-square p-value)

OUTPUT_EXP: name of the output SAS dataset withnilmaber of observed and expected events
in each decile of predicted risk

EV: variable name for the event

TIME: variable name for the follow-up time

MIN_MOD: number corresponding to the first modebmtested in the MODEL_LIST dataset
MAX_MOD: number corresponding to the last modebéotested in the MODEL_LIST dataset
COND-=: run the whole analysis (including model mstie) in a subgroup of subjects, i.e. men only
(optional)

%VACRO CALIB_TEST(DATASET, OUTPUT_TEST, OUTPUT_EXP, EV, T IME, MIN_MOD, MAX_MOD,
COND-=);

PROC DATASETS NOLIST,; DELETE &OUTPUT_TEST &OUTPUT_KP; QUIT,;

%DCCI_MOD = &MIN_MOD %TO&MAX_MOD; *RUN WITHIN EACH MODEL TO EVALUATE;
DATA _NULL_;SET MODEL_LIST;

CALL SYMPUT("MODEL", MODEL);

CALL SYMPUT('LABEL" , LABEL);

WHERE NUM = &CI|_MOD; RUN;

*kkkkkkkkkkhhhhhhhhhhhhhkrhkkxkx *kkkkkkkkk kkkkkhkkkkkkk

1. RUN THE REGRESSION MODELS AND FIND PERCENTILES O F PRED RISK;
PROC PHREG DATA=&DATASET NOPRINT,;
MODEL &TIME*&EV( 0)=&MODEL;
OUTPUT OUT = PRED XBETA = XBETA SURVIVAL = SURYV,
WHERE &COND;
RUN;
PROC UNIVARIATE DATA = PRED NOPRINT;
VAR XBETA; OUTPUT OUT =TTT

pctlpts = 10 20 30 40 50 60 70 80 90
pctipre = XBETA
pctiname = P10 P20 P30 P40 P50 P60 P70 P8 0 P90; RUN;

DATA _NULL_; SETTTT;
CALL SYMPUT('P10" , XBETAP10);CALL SYMPUT( "P20" , XBETAP20);CALL SYMPUT( "P30"
XBETAP30);CALL SYMPUT("P40" , XBETAP40);CALL SYMPUT( "P50" , XBETAP50);
CALL SYMPUT('P60" , XBETAP60);CALL SYMPUT( "P70" , XBETAP70);CALL SYMPUT( "P80" ,
XBETAP80);CALL SYMPUT("P90" , XBETAP90);RUN;
DATA PRED; SET PRED;
IF XBETA LT &P10 THENP_CLASS = 1;
ELSE IF XBETA LT &P20 THEN P_CLASS =
ELSE IF XBETA LT &P30 THEN P_CLASS =
ELSE IF XBETA LT &P40 THEN P_CLASS =
ELSE IF XBETA LT &P50 THEN P_CLASS =
ELSE IF XBETA LT &P60 THEN P_CLASS =
ELSE IF XBETA LT &P70 THEN P_CLASS =
ELSE IF XBETA LT &P80 THEN P_CLASS =
ELSE IF XBETA LT &P90 THEN P_CLASS =
ELSEP_CLASS = 10;
SURV_ZERO = SURV*EXP(-XBETA);
EXP = -EXP(XBETA)*LOG(SURV_ZERO);
RUN;

LN RWN
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*kkkkkkkkkkkhkhkhhhhhhhhhhhhhhrhhrkxxkx

2. GRONNESBY-BORGAN GOODNESS OF FIT;

PROC PHREG DATA=PRED;
CLASS P_CLASS;

MODEL &TIME*&EV( 0)=&MODEL P_CLASS;

CONTRAST"GOF" P_.CLASS 1000 0

P_CLASS 0

P_CLASS 0

P_CLASS 0

P_CLASS 0

0

0

0

0

P_CLASS
P_CLASS
P_CLASS
P_CLASS

ODS OUTPUT CONTRASTTEST = GOF;

RUN;

DATA GOF; SET GOF; RENAME ScoreChiSq = GB_TEST Pro bScoreChiSq = GB_PVAL;

DROP Contrast ScoreDF,;

LENGTH EVENT LABEL $25. ;

LABEL = "&LABEL";

MODEL = &CI_MOD;

EVENT = "&EV";

RUN;

0
1
0
0
0
0
0
0
0

COO0OO0OOOFr O
COO0OO0OOr OO
COOOFrOO0OO0Oo
ool NeolNoNoNe]
ool NeolloNoNoNe]
el NeololoNoNoNe]

0
0
0
0
0
0
0
1

/| TEST(SCORE);

* *

3. EXPECTED AND PREDICTED COUNTS BY DECILE OF XBETA ;
PROC MEANS DATA = PRED N SUM NOPRINT;
CLASS P_CLASS; OUTPUT OUT = EXP SUM = OBS EXP;
VAR &EV EXP;
TYPES P_CLASS;
RUN;
DATA EXP;
SET EXP;
LENGTH EVENT LABEL $25. ; LABEL = "&LABEL"; MODELLO = &CI_MOD; EVENT =
"&EV";
RUN;
PROC DATASETS NOLIST,;
APPEND DATA = EXP BASE = &OUTPUT_EXP FORCE;
APPEND DATA = GOF BASE = &0OUTPUT_TEST FORCE;
DELETE TTT PRED GOF EXP; QUIT,;
%END *END RUN FOR A GIVEN MODEL,
%VEND,
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1B. Model calibration — Calibration plot of expectel vs. predicted risk of event at time t

%VACRO CALIB_PLOT(DATASET, OUTPUT_PLOT, EV, TIME, TIME_ST  OP, MIN_MOD, MAX_MOD,
COND=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT_PLOT: name of the output SAS dataset withabserved risk (Kaplan-Meier) at time t
(varianle OBS_RISK) and the mean of predicted aiskme t (variable PRED_RISK) by deciles of
predicted risk

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of prédicinterval

MIN_MOD: number corresponding to the first modebmtested in the MODEL_LIST dataset
MAX_MOD: number corresponding to the last modebéotested in the MODEL_LIST dataset
COND-=: run the whole analysis (including model mstie) in a subgroup of subjects, i.e. men only
(optional)

%VACRO CALIB_PLOT(DATASET, OUTPUT_PLOT, EV, TIME, TIME_ST OP, MIN_MOD, MAX_MOD,
COND-=);
PROC DATASETS NOLIST; DELETE &OUTPUT_PLOT; QUIT;

%DCCI_MOD = &MIN_MOD %TO&MAX_MOD;  *RUN WITHIN EACH MODEL TO EVALUATE,;
DATA _NULL_;SET MODEL_LIST;

CALL SYMPUT("MODEL", MODEL);

CALL SYMPUT('LABEL" , LABEL);

WHERE NUM = &CI|_MOD; RUN;

*kkkkkkkkkkhhhhhhhhhhrhhhrikkxkx * *%

1. REGRESSION MODEL AND PREDICTED SURV(T);
DATA SURV_ZERO; SET &DATASET,
&EV = . ; &TIME = &TIME_STOP; RUN,;
DATA BIS_&DATASET; SET &DATASET SURV_ZERO; RUN;

PROC PHREG DATA=BIS_&DATASET NOPRINT,;

MODEL &TIME*&EV( 0)=&MODEL;

OUTPUT OUT = PRED XBETA = XBETA SURVIVAL=SURYV,
WHERE &COND;

RUN;

*kkkk

2. DECILES OF PREDICTED RISK - USING XBETA EQUIVALE NTLY;
PROC UNIVARIATE DATA = PRED NOPRINT,;

VAR XBETA; OUTPUT OUT =TTT pctlpts = 10 20 30 40 50 60 70 80 90
pctlpre = XBETA
pctiname = P10 P20 P 30 P40 P50 P60 P70 P80 P90;

RUN;

DATA _NULL_; SET TTT,

CALL SYMPUT("P10" , XBETAP10);CALL SYMPUT( "P20" , XBETAP20);CALL
SYMPUT(P30" , XBETAP30);CALL SYMPUT( "P40" , XBETAP40);CALL SYMPUT( "P50" ,
XBETAP50);

CALL SYMPUT("P60" , XBETAP60);CALL SYMPUT( "P70" , XBETAP70);CALL
SYMPUT(P80" , XBETAP80);CALL SYMPUT( "P90" , XBETAP90);

RUN;

DATA PRED_PCT,; SET PRED;

IF XBETA LE &P10 THEN P_CLASS = 1;
ELSE IF XBETA LE &P20 THEN P_CLASS = 2,
ELSE IF XBETA LE &P30 THEN P_CLASS = 3;
ELSE IF XBETA LE &P40 THEN P_CLASS = 4;
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ELSE IF XBETA LE &P50 THEN P_CLASS = 5
ELSE IF XBETA LE &P60 THEN P_CLASS = 6
ELSE IF XBETA LE &P70 THEN P_CLASS = 7,
ELSE IF XBETA LE &P80 THEN P_CLASS = 8
ELSE IF XBETA LE &P90 THEN P_CLASS = 9
ELSE P_CLASS =

RUN;

10;

3. MEAN(PRED RISK(T)) BY DECILES OF XBETA,
PROC MEANS DATA = PRED_PCT MEAN NOPRINT;
CLASS P_CLASS; VAR SURYV,
WHERE &EV =

OUTPUT OUT = PRED_AVR MEAN = PRED_MEAN; TYPES P_CLASS;RUN,;

*IMPORTANT: USE PRED(T);

4. KAPLAN-MEIER SURV(T) BY DECILES OF PREDICTED RIS

DATA KM_EST;

SET PRED_PCT;

WHERE &EV NE
RUN;

*%

K;

.; *IMPORTANT: USE ORIGINAL DATA ON EVENT;

PROC SORT DATA = KM_EST,; BY P_CLASS; RUN;
PROC LIFETEST DATA = KM_EST OUTSURV=KM NOPRINT,;

BY P_CLASS;

TIME &TIME*&EV( 0);

RUN;

PROC SORT DATA = KM; BY P_CLASS &TIME; RUN;

DATA LAST_KM;
SET KM; BY P_CLASS &TIME; IF LAST.P_CLASS; WHERE _

&TIME_STOP; RUN;

5. MERGE PREDICTED AND OBSERVED RISK(T) BY DECILES

DATA G_CALIB;
MERGE PRED_AVR (DROP=_TYPE_ _FREQ_) LAST_KM (KEEP = P_CLASS SURVIVAL);

BY P_CLASS; IF SURVIVAL =

PRED_RISK
OBS_RISK

LENGTH EVENT LABEL $25. ; LABEL =

RUN;

PROC DATASETS NOLIST; APPEND DATA = G_CALIB BASE =
DELETE BIS_&DATASET TTT SURV_ZERO PRED_AVR PRED_PCPRED KM KM_EST LAST_KM

G_CALIB; QUIT;

. THEN SURVIVAL =

1 - PRED_MEAN;

1 - SURVIVAL;

%END *END RUN FOR A GIVEN MODEL;

*annotated dataset for 45° line;

data anno;
function= ‘move’
xsys= '1' ;ysys=
x= 0;y= 0;
output;
function= ‘draw'
xsys= '1' ;ysys=
color= ‘black’
LINE = 3;

x= 100;y= 100;
output;
run;

DATA DDD; SET CALIB_PLOT; RENAME OBS_RISK=Y PRED_RI SK=X; RUN;

goptions reset=global gunit=pct cback=white device=

red)

ftitte=swissb ftext=swiss htitle=
%DAJIUI = &MIN_MOD

symbol&UIUI interpol=join width=

%TC&MAX_MOD

6 htext= 4;

0. 5 VALUE=DOT height=

*kkkkhkhkkk

OF XBETA,;

1,

"&LABEL" ; MODEL = &CI_MOD; EVENT =

&OUTPUT_PLOT FORCE;

win colors=(black blue green

1.3;

"&EV";

CENSOR_ =0 AND &TIME LE
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%END
TITLEL ;
TITLE2 "Calibration Plot"

axisl order=( Oto 0.5hby 0.1)label=( "Predicted Risk" ) length= 60;

axis2 order=( Oto 0.5by 0.1)label=(a= 90 "Observ
legendl down=%EVAI&MAX_MOD - &MIN_MOD) shape=symbol(
INSIDE) mode=share LABEL=(  "Model" );

PROC GPLOT DATA = DDD;

PLOT Y*X=MODEL / ANNO=ANNO haxis=axis1 vaxis=axis2

RUN; QUIT;

PROC DATASETS NOLIST; DELETE ANNO DDD;QUIT;

%VEND;

ed Risk" ) length=  69;
2, 1) position=(BOTTOM RIGHT

legend=legend;
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2A. Model discrimination — AUC(t), A- AUC(t), IDI(t)

YACRODISCR_ANALYSIS(DATASET, OUTPUT, EV, TIME, TIME_STO P, REF_MODEL=,
CONTRAST_MIN=, CONTRAST_MAX=, COND=, PRINT=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset containidgCAR, average sensitivity (ISt) and
average 1-specificity (IPt) for each contrast mpdslwell as for the reference model; the diffeeenc
in AUC between each contrast model and the referearad the IDI.

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of pradicinterval

REF_MODEL: reference model

CONTRAST_MIN: number corresponding to the first tast model to be tested in the
MODEL_LIST dataset

CONTRAST_MAX: number corresponding to the last casit model to be tested in the
MODEL_LIST dataset

COND-=: run the whole analysis (including modelmstie) in a subgroup of subjects, i.e. men only
(optional)

PRINT=: specify YES to print the output from the REG procedure

YACRODISCR_ANALYSIS(DATASET, OUTPUT, EV, TIME, TIME_STO P, REF_MODEL=,
CONTRAST_MIN=, CONTRAST_MAX=, COND=, PRINT=);

PROC DATASETS NOLIST,; DELETE &OUTPUT,; QUIT;

DATA FAKE; SET &DATASET; &EV = . ; &TIME = &TIME_STOP; RUN;
DATA BIS_&DATASET,; SET &DATASET FAKE; RUN;

*kkkkkkkkkkhhhhhhhhhhhhhhrkkxkx * *kkkkkkkkhk *kkkk

1. REFERENCE MODEL: REGRESSION, AVR SENS, AVR 1-SPE C, R;
PROC PHREG DATA=BIS_&DATASE®6if %upcase(&PRINT)*=YES %then %dg noprint
%end;
MODEL &TIME*&EV( 0)=&REF_MODEL;
OUTPUT OUT = PRED_BASE XBETA = XBETA SURVIVAL =SU RV_BASE;
WHERE &COND;
RUN;

DATA PRED_BASE;

SET PRED_BASE;

S_1 S BASE=SURV_BASE*(1-SURV_BASE);
St_square_ BASE=SURV_BASE** 2;

RUN;

PROC MEANS DATA = PRED_BASE MEAN VAR NOPRINT;

VAR SURV_BASE S_1_S_BASE St_square_BASE;

WHERE &EV = . ;

OUTPUT OUT = IDI_BASE MEAN = MEAN_SURV_BASE ES_1_S_BASE E_St_Square_BASE
VAR = VAR_SURV_BASE;

RUN;

DATA IDI_BASE;

SET IDI_BASE;

R_BASE = VAR_SURV_BASE/(MEAN_SURV_BASE*(-MEAN_SURV_BASE));
ISt BASE= 1-ES_1_S_BASE/( 1-MEAN_SURV_BASE):
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IPt_BASE= 1-E_St_Square_BASE/MEAN_SURV_BASE;
RUN;

2. REFERENCE MODEL: AUC;

DATA PRED_AUC_BASE; SET PRED_BASE; KEEP XBETA SURV_BASE; WHERE &EV = . ;
*AND &CONDZ; RUN;

PROC SORT DATA = PRED_AUC_BASE; BY XBETA; RUN;

PROC IML;

USE PRED_AUC_BASE;
READ ALL INTO Z_BASE;
CLOSE PRED_AUC_BASE;

N=NROW(Z_BASE);
E1_StU_StV_BASE= 0;
EStZ BASE=  0;

doi= 1lton;
EStZ_BASE=EStZ_BASE+z_BASE[j, 2];
|_survobs_BASE = j(n, 1,( 1-z_BASEJi, 2]));
smaller_BASE = (z_BASE], 1]<z_BASE]Ji, 1]);
equal_ BASE = (z_BASE], 1]=z_BASE]Ji, 1]);
smaller_BASE(i:n]= 0;
equal_BASE[i:n]= 0;

E1l StU_StV_BASE=E1_StU_StV_BASE+sum(l_survobs_BASE  #z_BASE[, 2J#smaller_BASE
)+ 0. 5*sum(l_survobs_BASE#z_ BASE][, 2]#equal_BASE);
end;

E1_StU_StV_BASE= E1_StU_StV_BASE/(n** 2);
EStZ_BASE=EStZ_BASE/n;

auct BASE=E1_StU_StV_BASE/(EStZ_BASE*( 1-EStZ_BASE));
create AUC_BASE from auct_ BASE[colname={AUC_BASE]}]; [*create dataset for
bootstrap*/

append from aucT_BASE;

close AUC_BASE;

QUIT;

PROC DATASETS NOLIST; DELETE PRED_BASE PRED_AUC_BAB; RUN;
*kkkk

3. CONTRAST MODELS: REGRESSION, AVR SENS, AVR 1-SPE C, R;
%DQCI_MOD = &CONTRAST_MIN %TO&CONTRAST_MAX;*RUN WITHIN EACH MODEL TO
EVALUATE;

DATA _NULL_;SET MODEL_LIST;

CALL SYMPUT("MODEL", MODEL);

CALL SYMPUT('LABEL" , LABEL);

WHERE NUM = &CI_MOD; RUN;

PROC PHREG DATA=BIS_&DATASE®6if %upcase(&PRINT)*=YES %then %dg noprint
%end;
MODEL &TIME*&EV( 0)=&MODEL;
OUTPUT OUT = PRED XBETA = XBETA SURVIVAL=SURYV;
WHERE &COND;
RUN;

DATA PRED;

SET PRED;
S_1_S=SURV*( 1-SURV);
St_square=SURV**  2:
RUN;

PROC MEANS DATA = PRED MEAN VAR NOPRINT;
VAR SURV S_1 S St_square;
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WHERE &EV = .; *AND &COND2;
OUTPUT OUT = IDI MEAN = MEAN_SURV ES_1_S E_St_Squa re VAR = VAR_SURYV;
RUN;

DATA IDI;
SET IDI;

R = VAR_SURV/(MEAN_SURV*( 1-MEAN_SURV));
ISt= 1-ES_1_S/( 1-MEAN_SURV);

IPt= 1-E_St_Square/MEAN_SURV;

RUN;
3. CONTRAST MODELS: AUC;
DATA PRED_FIN; SET PRED; KEEP XBETA SURV; WHERE &E V = .; *AND &COND2; RUN;
PROC SORT DATA = PRED_FIN; BY XBETA; RUN,;
PROC IML;
USE PRED_FIN;

READ ALL INTO Z;
CLOSE PRED_FIN;

N=NROW(2);
E1_StU_StV= 0;
EStz=  O;

doi= 1lton;
EStZ=EStZ+z]i, 2];
|_survobs =j(n, 1,0 1-z[i, 2]));
smaller =(z], 1]<z[i, 1]);
equal =(z], 1]=z[i, 1]);
smaller[i:n]= 0;
equalli:n]= 0;
E1l StU_Stv= E1_StU_Stv+ sum(l_survobs#z], 2]#smaller)
+0. 5*sum(l_survobs#z], 2]#equal);
end;
E1 StU_Stv= E1_StU_StV/(n** 2);
EStZ=EStZ/n;
auct=E1_StU_StV/(EStZ*( 1-ESt2));

create AUC_&LABEL from auct[colname={AUC}];
append from aucT;

close AUC_&LABEL;

QUIT;

DATA RRR_FINALE;
MERGE AUC_&LABEL IDI IDI_BASE AUC_BASE;

DROP _TYPE_ _FREQ_MEAN_SURV_BASE VAR_SURV_BASE MEASURV VAR _SURVES_1_S
E_ST SQUARE ES_1_S_BASE E_ST_SQUARE_BASE;

DELTA_AUC = AUC - AUC_BASE;

IDI = R- R_BASE;

LENGTH EVENT LABEL $25. ;

MODEL = &C|_MOD;

LABEL = "&LABEL";

EVENT = "&EV";

RUN;

PROC DATASETS NOLIST,;

APPEND DATA = RRR_FINALE BASE = &OUTPUT FORCE;

DELETE RRR_FINALE PRED PRED_FIN AUC_&LABEL IDI; QUI T,

%END *END RUN FOR A GIVEN MODEL,

PROC DATASETS NOLIST; DELETE BIS_&DATASET FAKE IDI_ BASE AUC_BASE; QUIT;
%VEND,
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2B. Model discrimination — plot the ROC curve

YWACROROC_PLOT(DATASET, OUTPUT, EV, TIME, TIME_STOP, REF  _MODEL=, CONTRAST_MIN=,
CONTRAST_MAX=, COND=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset containemgisivity and specificity at any percentile of
predicted risk.

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of prédicinterval

REF_MODEL: reference model

CONTRAST_MIN: number corresponding to the first ttast model to be tested in the
MODEL_LIST dataset

CONTRAST_MAX: number corresponding to the last casit model to be tested in the
MODEL_LIST dataset

COND-=: run the whole analysis (including model mstie) in a subgroup of subjects, i.e. men only
(optional)

9%ACROROC_PLOT(DATASET, OUTPUT, EV, TIME, TIME_STOP, REF_MODEL=, CONTRAST_MIN=,
CONTRAST_MAX=, COND=);
PROC DATASETS NOLIST; DELETE &OUTPUT; QUIT;

DATA AR_DIST,; SET &DATASET; &EV = .; &TIME = &TIME_STOP; RUN;
DATA AR_DIST; SET AR_DIST &DATASET; RUN;

kkkkkhkhkhhhhhhkhx

REFERENCE MODEL,;

PROC PHREG DATA = AR_DIST NOPRINT;

WHERE &COND;

OUTPUT OUT = PRED_REF XBETA = XBETA SURVIVAL=SURYV;
MODEL &TIME*&EV(0) = &REF_MODEL;

RUN;

DATA PRED_REF; SET PRED_REF;RISK = 1 - SURV; RUN;

*XBETA PCTS - ONLY WHERE &EV =. FOR THE REF MODEL;

PROC UNIVARIATE DATA = PRED_REF NOPRINT;

VAR XBETA RISK;

OUTPUT OUT = AR_PCT_REF PCTLPRE=QR_RI_PCTLPTS=( 1TO 99 BY 1),
WHERE &EV = . ; RUN;

*OVERALL(DENOMINATOR) - ONLY WHERE &EV = . FOR REF  MODEL;
PROC MEANS DATA = PRED_REF MEAN N NOPRINT;
VAR SURV RISK; OUTPUT OUT = SENS_OVR_REF MEAN = MEAN_SURV_OVR MEAN_RISK_OVR N =
NUM;
WHERE &EV = . ; RUN;
OPTION NONOTES;
%DA= 1 %TO99; *RUN WITHIN PCTS:
DATA _NULL_; SET AR_PCT_REF;CALL SYMPUT( "PCT", QR_&I);CALL SYMPUT( "RISK" ,
RI_&I); RUN;
DATA SENS_&I; SET PRED_REF; WHERE &EV = . AND XBETA GE &PCT; RUN;
PROC MEANS DATA = SENS_&I SUM NOPRINT;
VAR SURV RISK : OUTPUT OUT = SENS_M_ &l
SUM = SUM_SURV_SENS SUM_RISK:
RUN;
DATA SENS_M_&I; SET SENS_M_&;
KEEP SUM_SURV_SENS SUM_RISK QR PCT RISK;
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QR = &l; PCT=&PCT, RISK=&RISK; RUN;

DATA SPEC_&I; SET PRED_REF; WHERE &EV = . AND XBETA LT &PCT; RUN;
PROC MEANS DATA = SPEC_&I SUM NOPRINT;

VAR SURV; OUTPUT OUT = SPEC_M_&I SUM = SUM_SURV;

RUN;

DATA SPEC_M_&I: SET SPEC_M_&I; KEEP SUM_SURV QR; Q R = &I; RUN;

DATA XXX_&I; MERGE SENS_M_&I SPEC_M_&I SENS_OVR_RE F; RUN;

PROC DATASETS NOLIST;
APPEND DATA = XXX_&I BASE = ROC_PCT_REF FORCE;

DELETE XXX_& SPEC_M_&I SENS_M_&I SENS_&I SPEC_&I;  QUIT;
%END*END CYCLE WITHIN PCTS:

OPTION NOTES;

DATA ROC_REF_FINAL; SET ROC_PCT_REF;

FP =SUM_SURV_SENS/NUM;

SENS = (SUM_RISK/NUM)*( 1/MEAN_RISK_OVR);

SPEC = (SUM_SURV/NUM)*( 1/MEAN_SURV_OVRY);

|_SPEC = 1-SPEC;

KEEP QR SENS SPEC |_SPEC MODEL LABEL TIME PCT RISK  mean_risk_ovr mean_surv_ovr
sum_risk num sum_surv FP SUM_SURV_SENS;

LENGTH LABEL $25. ;

MODEL = 999999; TIME = &TIME_STOP;

LABEL = "REF_MODEL"RUN;

*EXPORT DATASET:;
PROC DATASETS NOLIST;

APPEND DATA = ROC_REF_FINAL BASE = &0UTPUT FORCE;

DELETE ROC_PCT_REF SENS_OVR_REF AR_PCT_REF PRED_REJUIT;

*MODELS TO BE EVALUATED:;
%DCHKAS = &CONTRAST_MIN %TO&CONTRAST_MAX;

DATA _NULL_;SET MODEL_LIST; CALL SYMPUT( "MODEL", MODEL);

CALL SYMPUT('LABEL" , COMPRESS(LABEL)); WHERE NUM = &HKAS; RUN;

PROC PHREG DATA = AR_DIST ;

WHERE &COND;

OUTPUT OUT = PRED XBETA = XBETA SURVIVAL=SURYV,
MODEL &TIME*&EV(0) = &MODEL;

RUN;

DATA PRED; SET PRED; RISK = 1 - SURV; RUN;

*XBETA PCTS - ONLY WHERE &EV = ;

PROC UNIVARIATE DATA = PRED NORMAL PLOT NOPRINT,;

VAR XBETA RISK;

OUTPUT OUT = AR_PCT PCTLPRE=QR_RI_PCTLPTS=( 1TO 99BY 1);
WHERE &EV = . ;

RUN;

*OVERALL(DENOMINATOR) - ONLY WHERE &EV = ;
PROC MEANS DATA = PRED MEAN N NOPRINT;
VAR SURV RISK;
OUTPUT OUT = SENS_OVR MEAN = MEAN_SURV_OVR MEAN_RKSOVR N = NUM,;
WHERE &EV = . ;
RUN;
OPTION NONOTES;
%DA= 1 %TO99; *RUN WITHIN PCTS;
DATA _NULL_; SET AR_PCT;CALL SYMPUT( "PCT", QR_&l);CALL SYMPUT( "RISK" ,
RI_&Il); RUN;
DATA SENS_&I; SET PRED; WHERE &EV = . AND XBETA GE &PCT; RUN;
PROC MEANS DATA = SENS_&I SUM NOPRINT,;
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VAR SURV RISK : OUTPUT OUT = SENS_M_ &l
SUM = SUM_SURV_SENS SUM_RISK:

RUN;

DATA SENS_M_&I; SET SENS_M_&;

KEEP SUM_SURV_SENS SUM_RISK QR PCT RISK;

QR = &l; PCT=&PCT; RISK=&RISK; RUN;

DATA SPEC_&I; SET PRED; WHERE &EV = . AND XBETA LT &PCT; RUN;
PROC MEANS DATA = SPEC_&I SUM NOPRINT;

VAR SURV; OUTPUT OUT = SPEC_M_&I SUM = SUM_SURV;

RUN;

DATA SPEC_M_&I: SET SPEC_M_&I; KEEP SUM_SURV QR; Q R = &I; RUN;

DATA XXX_&I; MERGE SENS_M_&I SPEC_M_&I SENS_OVR; R UN;

PROC DATASETS NOLIST;

APPEND DATA = XXX_&I BASE = ROC_PCT FORCE;

DELETE XXX_& SPEC_M_&I SENS_M_&I SENS_&I SPEC_&I;  QUIT;
%END*END CYCLE WITHIN PCTS;

OPTION NOTES;

DATA ROC_PCT_FINAL; SET ROC_PCT;

FP =SUM_SURV_SENS/NUM;

SENS = (SUM_RISK/NUM)*( 1/MEAN_RISK_OVR);

SPEC = (SUM_SURV/NUM)*( 1/MEAN_SURV_OVRY);

|_SPEC = 1-SPEC;

KEEP QR SENS SPEC |_SPEC MODEL LABEL TIME PCT RISK  mean_risk_ovr mean_surv_ovr
sum_risk num sum_surv FP SUM_SURV_SENS;

LENGTH LABEL $25. ;

MODEL = &HKAS; TIME = &TIME_STOP;

LABEL = "&LABEL" ;RUN;

*PLOTTING DATASET:
PROC DATASETS NOLIST;

DELETE PLOT _TTT;

APPEND DATA = ROC_REF_FINAL BASE = PLOT_TTT FORCE:;
APPEND DATA = ROC_PCT_FINAL BASE = PLOT_TTT FORCE:
QUIT;

plotting the roc curve;
*annotated dataset for 45° line;

data anno;

function= 'move’ ;
xsys= ‘1" ;ysys= 'l ;
x= 0;y= 0;

output;

function= ‘draw’
xsys= ‘1" ;ysys= 1" ;
color= ‘black’ ;
LINE = 3;

x= 100;y= 100;
output;

run;
DATA DDD; SET PLOT_TTT, RENAME SENS=Y I_SPEC=X; RUN ;

goptions reset=global gunit=pct border cback=white device=win colors=(black blue
green red)

ftitle=swissb ftext=swiss htitle= 6 htext= 4;

TITLEL ;

TITLE2 "ROC Curve for Reference and Extended Model" ;

symboll interpol=join color=green width= 0. 5 value=dot height= 0. 5;
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symbol2 interpol=join color=blue width= 0. 5 value=circle height= 0. 5;

axis1 label=( "1 - Specificity” ) order=( Oto 1by O0.2)length= 60;

axis2 label=(a= 90 "Sensitivity" Jorder=( Oto 1by O0.2)length= 69;

legendl ORDER=( 999999 &HKAS) value=( "Reference" "Extended:&LABEL" ) down= 2
label=none shape=symbol( 2, 1) position=(BOTTOM RIGHT INSIDE) mode=share;

PROC GPLOT DATA = DDD;

PLOT y*x=MODEL / anno=anno haxis=axis1 vaxis=axis2 legend=legend;

WHERE MODEL IN (999999 &HKAS);

RUN; QUIT;

PROC DATASETS NOLIST; DELETE ANNO DDD;QUIT;

*EXPORT DATASET;
PROC DATASETS NOLIST;

APPEND DATA = ROC_PCT_FINAL BASE = &0OUTPUT FORCE;

DELETE ROC_PCT ROC_PCT_FINAL SENS_OVR AR_PCT AR_PCFIN PRED PLOT_TTT; QUIT;
%END *FINE CICLO ENTRO MODELLO;

PROC DATASETS NOLIST; DELETE AR_DIST ROC_REF_FINAL; QUIT;
%VEND,
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3. Net Reclassification Improvement — NRI(t), clintal NRI(t), continuous NRI(t)

YWACRORECLASS_ANALYSIS(DATASET, OUTPUT, ID, EV, TIME, TI ME_STOP, WEIGHT, LOW_T,
HIGH_T, REF_MODEL=, CONTRAST_MIN=, CONTRAST_MAX=, COND=, COND_CLIN=, PRINT=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset contairhegadllowing quantities: the probability of
being reclassified upward (EV_IMPROVED) and downdvgEY_WORSENED) among the
events; the probability of being reclassified dovangv(NONEV_IMPROVED) and upward
(NONEV_WORSENED) among non-events; the overall plolity of event at t-years (KM_OVR);
the probability of event among those reclassifipdard (RISK_UPWARDS); the probability of
being reclassified upward (P_UP) and downward (P, the overall NRI; a flag (TYPE)
indicatingi) the overall NRI (TYPE = 1})j) the clinical NRI (TYPE = 2); anii) the continuous
NRI (TYPE = 3).

ID: variable name for ID of any given subject (nuioge

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of pradicinterval

WEIGTH: number indicating how to weight NRI amorages and among non-cases (generally 0.5)
LOW_T: a number indicating the lower bound for thiermediate risk category

HIGH_T: a number indicating the upper bound forititermediate risk category

REF_MODEL: reference model

CONTRAST_MIN: number corresponding to the first tast model to be tested in the
MODEL_LIST dataset

CONTRAST_MAX: number corresponding to the last casit model to be tested in the
MODEL_LIST dataset

COND-=: run the whole analysis (including modelmstie) in a subgroup of subjects, i.e. men only
(optional)

PRINT=: specify YES to print the output from the REG procedure

YWACRORECLASS_ANALYSIS(DATASET, OUTPUT, ID, EV, TIME, TI ME_STOP, WEIGHT, LOW_T,
HIGH_T, REF_MODEL=, CONTRAST_MIN=, CONTRAST_MAX=, COND=, PRINT=);

PROC DATASETS NOLIST; DELETE &0OUTPUT CONT_&OUTPUT CASS_&OUTPUT CLIN_&OUTPUT:
QUIT;

DATA FAKE; SET &DATASET; &EV = . ; &TIME = &TIME_STOP; RUN;
DATA BIS_&DATASET,; SET &DATASET FAKE; RUN;

%LETCOND_CLIN = &LOW_T<=RISK_BASE<=&HIGH_T;

1. REFERENCE MODEL: REGRESSION;
PROC PHREG DATA=BIS_&DATASE®bif %upcase(&PRINT)A=YES %then %dg noprint
%end;
MODEL &TIME*&EV( 0)=&REF_MODEL;
OUTPUT OUT = PRED_BASE SURVIVAL = SURV_BASE;
WHERE &COND;
RUN;

2. KM SURV(20) OVERALL SAMPLE;
PROC LIFETEST DATA = &DATASET OUTSURV=KM NOPRINT,;
TIME &TIME*&EV( 0);
RUN;
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PROC SORT DATA = KM; BY _CENSOR_ &TIME; RUN;

DATA LAST_KM_OVR;

SET KM; BY _CENSOR_ &TIME; IF LAST._CENSOR_; WHERE =~ _CENSOR_ = 0 AND &TIME
LE &TIME_STOP;

KEEP SURVIVAL; RENAME SURVIVAL = KM_OVR;RUN;

PROC DELETE DATA = KM; RUN,;

*kkkkhkhkkhhkk

3. REGRESSION MODEL AND PREDICTED RISK IN EACH CONT RAST MODEL,;
%DCCI_MOD = &CONTRAST_MIN %TO&CONTRAST_MAX; *RUN WITHIN EACH MODEL TO
EVALUATE;

DATA _NULL_;SET MODEL_LIST;

CALL SYMPUT("MODEL", MODEL);

CALL SYMPUT( "LABEL" , LABEL);

WHERE NUM = &CI_MOD; RUN;

PROC PHREG DATA=PRED_BAS#if %upcase(&PRINT)*=YES %then %dg noprint

%end; *REGRESSION ON PRED_BASE IS IMPORTANT TO HAVE BOTH SURVIVALS IN THE
SAME DATASET;

MODEL &TIME*&EV( 0)=&MODEL;

OUTPUT OUT = PRED SURVIVAL=SURYV;

WHERE &COND;

RUN;

*kkkk

COMPARING PREDICTED RISK FROM THE OLD AND THE NEW NDDEL;
DATA PRED_FINALE;

SET PRED;
WHERE &EV = . ; *IMPORTANT TO COMPARE PREDICTED RISK AT TIME T;
RISK = 1 - SURYV,

RISK_BASE = 1 - SURV_BASE;

ARRAY R (*) RISK RISK_BASE;
ARRAY R_C (*) RISK_CL RISK_BASE_CL;

DO PPPPP = 1 TO DIM(R);

IF R(PPPPP) LT &LOW_T THEN R_C(PPPPP) = 1;
ELSE IF R(PPPPP) LT &HIGH_T THEN R_C(PPPPP) = 2
ELSE R_C(PPPPP) = 3;
END;

*CLASS NRI;

IF RISK_CL = RISK_BASE_CL THENMOVE =  0;

ELSE IF RISK_CL < RISK_BASE_CL THENMOVE =-  1;
ELSE IF RISK_CL > RISK_BASE_CL THEN MOVE = 1;
ELSE MOVE = 9;

MOVE_UP = (MOVE = 1);
MOVE_DOWN = (MOVE = -1);
*CONTINUOUS NRI;

IF RISK GT RISK_BASE THEN MOVE_CONT = 1;
ELSE IF RISK LT RISK_BASE THEN MOVE_CONT =-  1;
ELSE IF RISK = RISK_BASE THEN MOVE_CONT = 0;
MOVE_UP_CONT = (MOVE_CONT =1);
MOVE_DOWN_CONT = (MOVE_CONT =1);

RUN;

PROC SQL;

CREATE TABLE HHH AS

(SELECT T1. *, T2.MOVE, T2.MOVE_CONT, T2.RISK_BASE FROM
&DATASET AS T1 LEFT JOIN PRED_FINALE AS T2 ON

T1. &ID = T2. &ID); QUIT;
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*hkkkkkkhkhhhhhhhhhrhhrAkkkkkkkkkkhhhkhhhhhhhhhhrhix *kkkk

A. CLASS NRI,

PROC MEANS DATA = PRED_FINALE MEAN NOPRINT,;

VAR MOVE_UP MOVE_DOWN,;

OUTPUT OUT = PREV_MOVE MEAN = PROP_UP PROP_DOWN,;

RUN;

DATA PREV_MOVE; SET PREV_MOVE; KEEP PROP_UP PROP_D@N; RUN,;
DATA HHH_CLASS; SET HHH; WHERE &COND;RUN,;

PROC SORT DATA = HHH_CLASS; BY MOVE; RUN;

PROC LIFETEST DATA = HHH_CLASS OUTSURV=KM NOPRINT;

BY MOVE;

TIME &TIME*&EV( 0);

RUN;

PROC SORT DATA = KM; BY MOVE &TIME; RUN;

DATA LAST_KM; KEEP MOVE SURVIVAL;

SET KM; BY MOVE &TIME; IF LAST.MOVE;

WHERE (_CENSOR_ = 0 AND &TIME LE &TIME_STOP) OR (SURVIVAL= 1 AND &TIME LE
&TIME_STOP);

RUN;

*CLASS NRI: THOSE WHO DID NOT MOVE ARE NOT OF INTER EST;

DATA LAST_KM; SET LAST_KM; WHERE MOVE NE 0: RUN;

PROC DELETE DATA = KM; RUN;

*kkkk

B. CLINICAL NRI;
PROC MEANS DATA = PRED_FINALE MEAN NOPRINT;
VAR MOVE_UP MOVE_DOWN;
OUTPUT OUT = PREV_MOVE_CLIN MEAN = PROP_UP PROP_DOW
WHERE &COND_CLIN;
RUN;
DATA PREV_MOVE_CLIN; SET PREV_MOVE_CLIN; KEEP PROP_UP PROP_DOWN; RUN:
DATA HHH_CLINICAL; SET HHH_CLASS;
WHERE &COND_CLIN;
RUN;
KM SURV(T) INTERMEDIATE RISK;
PROC LIFETEST DATA = HHH_CLINICAL OUTSURV=KM NOPRI NT;
TIME &TIME*&EV( 0);
RUN;
PROC SORT DATA = KM; BY _CENSOR_ &TIME; RUN;
DATA LAST_KM_OVR_CLIN;
SET KM; BY _CENSOR_ &TIME; IF LAST. CENSOR_; WHERE ~_CENSOR_ = 0 AND &TIME
LE &TIME_STOP;
KEEP SURVIVAL; RENAME SURVIVAL = KM_OVR;RUN;
PROC DELETE DATA = KM; RUN;
KM SURV(T) BY MOVE;
PROC SORT DATA = HHH_CLINICAL; BY MOVE; RUN;
PROC LIFETEST DATA = HHH_CLINICAL OUTSURV=KM NOPRI NT;
BY MOVE;
TIME &TIME*&EV( 0);
RUN;
PROC SORT DATA = KM; BY MOVE &TIME; RUN;
DATA LAST_KM_CLIN; KEEP MOVE SURVIVAL;
SET KM; BY MOVE &TIME; IF LAST.MOVE;
WHERE (_CENSOR_ = 0 AND &TIME LE &TIME_STOP) OR (SURVIVAL = 1 AND &TIME LE
&TIME_STOP);
RUN;
*CLINICAL NRI: THOSE WHO DID NOT MOVE ARE NOT OF IN  TEREST:
DATA LAST_KM_CLIN; SET LAST_KM_CLIN; WHERE MOVE NE  0: RUN;
PROC DELETE DATA = KM; RUN;
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C. CONTINUOUS NRI;
PROC MEANS DATA = PRED_FINALE MEAN NOPRINT;

VAR MOVE_UP_CONT MOVE_DOWN_CONT;

OUTPUT OUT = PREV_MOVE_CONT MEAN = PROP_UP PROP_DOW
RUN;

DATA PREV_MOVE_CONT; SET PREV_MOVE_CONT; KEEP PROBP PROP_DOWN; RUN;

DATA HHH_CONT,;
SET HHH,;

WHERE &COND;
RUN;

KM SURV(T) BY MOVE;
PROC SORT DATA = HHH_CONT; BY MOVE_CONT; RUN;

PROC LIFETEST DATA = HHH_CONT OUTSURV=KM NOPRINT;

BY MOVE_CONT,

TIME &TIME*&EV( 0);

RUN;

PROC SORT DATA = KM; BY MOVE_CONT &TIME; RUN;

DATA LAST_KM_CONT; KEEP MOVE_CONT SURVIVAL,;

SET KM; BY MOVE_CONT &TIME; IF LAST.MOVE_CONT;

WHERE (_CENSOR_ = 0 AND &TIME LE &TIME_STOP) OR (SURVIVAL =

&TIME_STOP);
RUN;

*CONTINUOUS NRI: THOSE WHO DID NOT MOVE ARE NOT OF INTEREST;

1 AND &TIME LE

DATA LAST_KM_CONT; SET LAST_KM_CONT; WHERE MOVE_CRT NE 0; RUN,;

PROC DELETE DATA = KM; RUN;

5. IML FOR NRI, CLIN NRI AND CONT NRI;
PROC IML;
*NRI:
USE LAST_KM_OVR;
READ ALL INTO KM_OVR;
CLOSE LAST_KM_OVR;
USE LAST_KM:;
READ ALL INTO KM;
CLOSE LAST_KM;
USE PREV_MOVE;
READ ALL INTO PROP;
CLOSE PREV_MOVE;

IFPROP[ 1,2]= 0 THENDO; *ONLY UPWARD MOVEMENTS;
NRILUP =(  1-KM[1, 2)#PROP[ 1, 1]# 1/( 1-KM_OVRI[L, 1]);
NRI_DOWN =-KM[ 1, 2[#PROP[ 1, 1]# 1/KM_OVR[1, 1J;

NRI'= &WEIGHT*NRI_UP + ( 1-&WEIGHT)*NRI_DOWN;
EV_IMPROVED = ( 1-KM[ 2, 2])#PROPJ[ 1, 1J# 1/( 1-KM_OVR[L, 1]);

EV_WORSENED = . ;
NONEV_IMPROVED = .

NONEV_WORSENED = KM[ 2, 2]#PROP[ 1, 1J# 1/KM_OVR[1, 1];

KM_OVR  =KM_OVR[ 1, 1];
RISK_UPWARDS = ( 1-KM[ 2, 2]);
END;

ELSE IFPROP[ 1,1]= 0 THENDO; *ONLY DOWNWARD MOVEMENTS;
NRI_UP =-( 1-KM[ 1, 2)#PROP[ 1, 2J# 1/( 1-KM_OVRI[L, 1]);

NRI_DOWN = KM[ 1, 2]#PROP[ 1, 2J# 1/KM_OVR[1, 1];

NRI = &WEIGHT*NRI_UP + ( 1-&WEIGHT)*NRI_DOWN;

EV_IMPROVED = .,

EV_WORSENED = ( 1-KM[ 1, 2])#PROPJ[ 1, 2J# 1/( 1-KM_OVR[L, 1]);
NONEV_IMPROVED = KM[ 1, 2]#PROP[ 1, 2J# 1/KM_OVR[1, 1];

NONEV_WORSENED =. ;
KM_OVR =KM OVR[ 1,1
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RISK_UPWARDS = .;
END;
ELSE DO; *BOTH UPWARD AND DOWNWARD MOVEMENTS;
NRI_UP =( 1-KM[ 2, 2)#PROP[ 1, 1]# 1/( 1-KM_OVRI[1, 1])-(  1-
KMI[1, 2))#PROPJ[ 1, 2]# 1/( 1-KM_OVR[1, 1]);
NRI_DOWN = KM[ 1, 2J#PROP[ 1, 2]# 1/KM_OVR[1, 1] -
KM[2, 2]#PROPJ[ 1, 1]# 1/KM_OVRI1, 1];
NRI = &WEIGHT*NRI_UP + ( 1-&WEIGHT)*NRI_DOWN;
EV_IMPROVED = ( 1-KM[ 2, 2])#PROP[ 1, 1J# 1/( 1-KM_OVR([1, 1]);
EV_WORSENED = ( 1-KM[ 1, 2)#PROP[ 1, 2J# 1/( 1-KM_OVR([1, 1]);
NONEV_IMPROVED = KM[ 1, 2]#PROPJ[ 1, 2J# 1/KM_OVR][1, 1];
NONEV_WORSENED = KMP, 2]#PROP[ 1, 1]# 1/KM_OVR][1, 1];
KM_OVR = KM_OVR[ 1, 1];
RISK_UPWARDS = ( 1-KM[ 2, 2]);
END;
TYPE= 1;
jauct_fin =
shape((TYPE||INRI||EV_IMPROVED||[EV_WORSENEDI||NONEV_|I MPROVEDI|INONEV_WORSENED||KM_O
VR||RISK_UPWARDS||PROP[ 1, 1]||PROP[ 1, 2]), 1, 10);

create NRI from jauct_fin[colname={TYPE NRI EV_IMP ROVED EV_WORSENED
NONEV_IMPROVED NONEV_WORSENED KM_OVR RISK_UPWARDS8 P_DOWN}];

append from jauct_fin;

close NRI;

*CLINICAL NRI,

USE LAST_KM_OVR_CLIN;

READ ALL INTO KM_OVR,;

CLOSE LAST_KM_OVR_CLIN;

USE LAST_KM_CLIN;

READ ALL INTO KM;

CLOSE LAST_KM_CLIN;

USE PREV_MOVE_CLIN;

READ ALL INTO PROP;

CLOSE PREV_MOVE_CLIN;

IFPROP[ 1,2]= 0 THENDO; *ONLY UPWARD MOVEMENTS;

NRILUP =(  1-KM[1, 2)#PROP[ 1, 1]# 1/( 1-KM_OVRI[L, 1]);
NRI_DOWN =-KM[ 1, 2J#PROP[ 1, 1J# 1/KM_OVRI[L, 1];
NRI = &WEIGHT*NRI_UP + ( 1-&WEIGHT)*NRI_DOWN;
EV_IMPROVED = ( 1-KM[ 2, 2])#PROP[ 1, 1]# 1/( 1-KM_OVR[L, 1]);

EV_WORSENED = . ;

NONEV_IMPROVED = . ;

NONEV_WORSENED = KM[ 2, 2]#PROP[ 1, 1J# 1/KM_OVR[1, 1];

KM_OVR  =KM_OVR[ 1, 1];
RISK_UPWARDS = ( 1-KM[ 2, 2]);
END;
ELSE IFPROP[ 1,1]= 0 THENDO; *ONLY DOWNWARD MOVEMENTS;
NRI_UP =-( 1-KM[ 1, 2)#PROP[ 1, 2J# 1/( 1-KM_OVRI[L, 1]);

NRI_DOWN = KM[ 1, 2J#PROP[ 1, 2J# 1/KM_OVR[L, 1];
NRI'= &WEIGHT*NRI_UP + (  1-&WEIGHT)*NRI_DOWN;
EV_IMPROVED = .;
EV_WORSENED = ( 1-KM[ 1, 2])#PROPJ[ 1, 2J# 1/( 1-KM_OVR[L, 1]);
NONEV_IMPROVED = KM[ 1, 2]#PROP[ 1, 2J# 1/KM_OVR[1, 1];
NONEV_WORSENED =. ;
KM_OVR =KM OVR[ 1,1
RISK_UPWARDS = . ;
END;
ELSE DO; *BOTH UPWARD AND DOWNWARD MOVEMENTS;
NRI_UP =(  1-KM[2, 2])#PROP[ 1, 1J# 1/( 1-KM_OVR[1, 1])-(  1-
KM[1, 2])#PROP[ 1, 2J# 1/( 1-KM_OVRIL, 1]);
NRI_DOWN = KM[ 1, 2]#PROP[ 1, 2J# 1/KM_OVR[1, 1] -
KM[2, 2]#PROPJ[ 1, 1]# 1/KM_OVR[1, 1J;
NRI = &WEIGHT*NRI_UP + (  1-&WEIGHT)*NRI_DOWN;
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EV_IMPROVED = ( 1-KM[ 2, 2D#PROP[ 1, 1J# 1/( 1-KM_OVR[1, 1]);
EV_WORSENED = ( 1-KM[ 1, 2)#PROP[ 1, 2J# 1/( 1-KM_OVR[1, 1]);
NONEV_IMPROVED = KM[ 1, 2]J#PROP[ 1, 2]# 1/KM_OVRI[1, 1];
NONEV_WORSENED = KMP, 2]J#PROP[ 1, 1]# 1/KM_OVRI[1, 1];
KM_OVR = KM_OVR[ 1, 1];
RISK_UPWARDS = ( 1-KM[ 2, 2]);
END;
TYPE= 2;
CLIN_jauct_fin =
shape((TYPE||NRI||EV_IMPROVEDI||[EV_WORSENED||INONEV_|I MPROVED|INONEV_WORSENED||KM_O
VR||RISK_UPWARDS||PROP[ 1, 1]||IPROP[ 1, 2]), 1, 10);
create CLINICAL_NRI from CLIN_jauct_fin[colname={T YPE NRI EV_IMPROVED
EV_WORSENED NONEV_IMPROVED NONEV_WORSENED KM_C8#&R BPWARDS P_UP P_DOWN}];
append from CLIN_jauct_fin;
close CLINICAL_NRI;
*CONTINUOUS NRI;
USE LAST_KM_OVR,;
READ ALL INTO KM_OVR;
CLOSE LAST_KM_OVR;
USE LAST_KM_CONT;
READ ALL INTO KM;
CLOSE LAST_KM_CONT;
USE PREV_MOVE_CONT;
READ ALL INTO PROP;
CLOSE PREV_MOVE_CONT;
NRI_UP =( 1-KM[2, 2])#PROP[ 1, 1J# 1/( 1-KM_OVRI[L, 1])-(  1-
KM[1, 2])#PROPJ 1, 2J# 1/( 1-KM_OVRIL, 1]);
NRI_DOWN = KM[ 1, 2J#PROP[ 1, 2]# 1/KM_OVR][1, 1] -
KM[2, 2J#PROP[ 1, 1]# 1/KM_OVR][1, 1];
NRI = &WEIGHT*NRI_UP + (  1-&WEIGHT)*NRI_DOWN;
EV_IMPROVED = ( 1-KM[ 2, 2])#PROP[ 1, 1}# 1/( 1-KM_OVR][1, 1]);
EV_WORSENED = (1-KM[ 1, 2])#PROP[ 1, 2J# 1/( 1-KM_OVR][1, 1]);
NONEV_IMPROVED = KM[1, 2]#PROPJ[ 1, 2]# 1/KM_OVRJ[1, 1];
NONEV_WORSENED = KM, 2]#PROP[ 1, 1]# 1/KM_OVRJ[1, 1];

KM_OVR =KM OVR[ 1,1];
RISK_UPWARDS = ( 1-KM[ 2, 2]);
TYPE= 3;

CONT _jauct fin=
shape((TYPE||NRI||EV_IMPROVEDI||[EV_WORSENED||INONEV_|I MPROVED|INONEV_WORSENED||KM_O
VR||RISK_UPWARDSI||PROP[ 1, 1]|]|IPROP[ 1, 2]), 1, 10);
create CONTINUOUS_NRI from CONT_jauct_fin[colname= {TYPE NRI EV_IMPROVED
EV_WORSENED NONEV_IMPROVED NONEV_WORSENED KM_C8H& BPWARDS P_UP P_DOWN}J;
append from CONT _jauct_fin;
close CONTINUOUS_NRI;
QUIT; *END IML;
*OUTPUT: DATASET WITH DETAILS FOR EACH INDICATOR,;

DATA NRI;SET NRI; NRI = 2*NRI; LENGTH EVENT LABEL
$25. ;MODEL = &CI_MOD; LABEL = "&LABEL"; EVENT = "&EV"; RUN;

DATA CLINICAL_NRI; SET CLINICAL_NRI; NRI = 2*NRI; LENGTH EVENT LABEL
$25. ;MODEL = &CI_MOD; LABEL = "&LABEL"; EVENT = "&EV"; RUN;

DATA CONTINUOUS_NRI; SET CONTINUOUS_NRINRI = 2*NRI; LENGTH EVENT LABEL
$25. ;MODEL = &CI_MOD; LABEL = "&LABEL"; EVENT = "&EV"; RUN;

PROC DATASETS NOLIST;

APPEND DATA = NRI BASE = &0UTPUT FORCE;

APPEND DATA = CLINICAL_NRI BASE = &OUTPUT FORCE;

APPEND DATA = CONTINUOUS_NRI BASE = &OUTPUT FORCE;

DELETE OUTPUT PRED PRED_FINALE PREV_MOVE PREV_MOMVELIN PREV_MOVE_CONT
HHH HHH_CLASS HHH_CONT HHH_CLINICAL

LAST_KM LAST_KM_CLIN LAST_KM_OVR_CLIN LAST_KM_CONT

NRI CLINICAL_NRI CONTINUOUS_NRI; QUIT;

%END *END RUN FOR A GIVEN MODEL:

PROC DATASETS NOLIST; DELETE PRED_BASE LAST_KM_OVRFAKE BIS_&DATASET; QUIT;
%VEND;
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4. Bootstrapped CI for AUC(t), A-AUC(t), IDI(t), NRI(t)

YWACROBOOT_ANALYSIS(DATASET, OUTPUT, EV, TIME, TIME_STOP , WEIGHT, LOW_T,
HIGH_T, REF_MODEL=, CONTRAST_MIN=, CONTRAST_MAX=, COND=, NUMBOOT=, SEED=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset contairhegallowing quantities: AUC, R, average
sensitivity (ISt) and average 1-specificity (IRty £ach contrast model, as well as for the referenc
model; the difference in AUC between each contrazdel and the reference; IDI; NRI, clinical
NRI and continuous NRI. The variable BOOT indicates bootstrapped cycle; BOOT = 0 is the
analysis for the original dataset

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of prédicinterval

WEIGTH: number indicating how to weight NRI amorages and among non-cases (generally 0.5)
LOW_T: a number indicating the lower bound for thiermediate risk category

HIGH_T: a number indicating the upper bound forititermediate risk category

REF_MODEL: reference model

CONTRAST_MIN: number corresponding to the first tast model to be tested in the
MODEL_LIST dataset

CONTRAST_MAX: number corresponding to the last casit model to be tested in the
MODEL_LIST dataset

COND-=: run the whole analysis (including modelmstie) in a subgroup of subjects, i.e. men only
(optional)

NUMBOOT: the number of bootstrapped samples. If N\BDOT = 0 the analysis is run on the
original dataset only (no bootstrap). The outpairfthe PHREG procedure will be printed in this
case.

SEED: a number indicating the seed for bootstrapfiieed to be changed in every run)

%VACROBOOT_ANALYSIS(DATASET, OUTPUT, EV, TIME, TIME_STOP , WEIGHT, LOW_T,
HIGH_T, REF_MODEL=, CONTRAST_MIN=, CONTRAST_MAX=, COND=, NUMBOOT=, SEED=);
PROC DATASETS NOLIST; DELETE &OUTPUT; QUIT,;

*ORIGINAL DATASET;
DATA FAKE_BIS:

SET &DATASET;
WHERE &COND;
_SAMPLE_ = 0;

RUN;

*NO BOOTSTRAPP;

%IF &NUMBOOT =0 %THEN%DO

DATA BOOT,; SET FAKE_BIS; RUN;

PROC DATASETS NOLIST,; DELETE FAKE_BIS; QUIT;
%LETPRINT = YES;

%END

*BOOTSTRAPP;
%IF &NUMBOOT >0 %THEN%DOQ
%LETPRINT = NO;

DATA FAKE; SET &DATASET NOBS=NOBS; WHERE &COND;
BOOT_ID=_N_; CALL SYMPUT ("MAX", N_);RUN;

DATA BOOT_J (DROP = HHH);
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DO _SAMPLE_= 1 TO &NUMBOOT;
*DO HHH = 1 TO &M;
*ID = INT(&M*RANUNI(-1)+1);
DOHHH= 1 TO &MAX;
BOOT_ID2 = INT(&MAX*RANUNI(&SEED)+  1);
SET FAKE POINT = BOOT _ID2;
IF_ERROR_ THEN ABORT;
OUTPUT;
END;
END;
STOP;
RUN;

DATA BOOT,; SET FAKE_BIS BOOT_J; RUN;
PROC DATASETS NOLIST; DELETE BOOT_J FAKE FAKE_BIS;Q UIT;
%END

%PUT&PRINT,;

%DQFK = 0 %TO&NUMBOOT; *BOOTSTRAP CYCLE. 0 = ORIGINAL DATASET;
*BOOT_ID TO BE USED IN THE NRI MACRO;

DATA BOOT_&JFK; SET BOOT;

WHERE _SAMPLE_ = &JFK;

BOOT_ID=_N_; RUN;

*kkkkkkkkkkhhhhhhhhhhx

2. MODEL DISCRIMINATION;
9Dl SCR_ANALYSI S(BOOT_&JFK, DISCRIMINATION_&JFK, &EV, &TIME, &TIME_  STOP,
REF_MODEL=&REF_MODEL, CONTRAST_MIN=&CONTRAST_MIN)NTRAST _MAX=&CONTRAST_MAX,
COND=&COND, PRINT=&PRINT);

3. RECLASSIFICATION;

YRECLASS_ANALYSI S(BOOT_&JFK, RECL_AN_&JFK, BOOT_ID, &EV, &TIME, &TIM  E_STOP,
&WEIGHT, &LOW_T, &HIGH_T, REF_MODEL=&REF_MODEL, CONRAST_MIN=&CONTRAST_MIN,
CONTRAST_MAX=&CONTRAST_MAX, COND=&COND, PRINT=&PRIN

DATA NRI_&JFK; SET RECL_AN_&JFK; WHERE TYPE = 1, KEEP NRI EVENT LABEL MODEL,
RENAME NRI = CLASS_NRI; RUN;

DATA CLIN_&JFK; SET RECL_AN_&JFK; WHERE TYPE = 2; KEEP NRI EVENT LABEL MODEL,;
RENAME NRI = CLIN_NRI; RUN;

DATA CONT_&JFK; SET RECL_AN_&JFK; WHERE TYPE = 3; KEEP NRI EVENT LABEL MODEL,;
RENAME NRI = CONT_NRI; RUN;

DATA RRR_FINALE;

MERGE DISCRIMINATION_&JFK NRI_&JFK CLIN_&JFK CONT_ &JFK;
BOOT = &JFK;

RUN;

PROC DATASETS NOLIST;

APPEND DATA = RRR_FINALE BASE = &0UTPUT FORCE;

DELETE DISCRIMINATION_&JFK RRR_FINALE NRI_&JFK CLIN _&JFK CONT_&JFK BOOT_&JFK
RECL_AN_&JFK; QUIT:

%END *END BOOTSTRAP;

PROC DATASETS NOLIST; DELETE FAKE BOOT; QUIT;
%VEND,;
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5A. Internal validation analysis: over-optimism.

%VACRO OPTIMISM_AUC(DATASET, OUTPUT, ID, EV, TIME, TIME_S TOP, MIN_MOD, MAX_MOD,
NUMBOOT=, SEED=, COND=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset contairhegallowing quantities: the AUC on the
bootstrapped dataset, the AUC on the original @atasd the optimism as the difference among the
two values

ID: variable name for ID of any given subject (nuiope

EV: variable name for the event

TIME: variable name for the follow-up time

TIME_STOP: number corresponding to time t of pradicinterval

MIN_MOD: number corresponding to the first modebmtested in the MODEL_LIST dataset
MAX_MOD: number corresponding to the last modebéotested in the MODEL_LIST dataset
NUMBOOT=: the number of bootstrapped samples.

SEED=: a number indicating the seed for bootstragpfneed to be changed in every run)

COND=: run the whole analysis (including model mstie) in a subgroup of subjects, i.e. men only
(optional)

*kkkkkkkhkkkhhhhhhhhhhhhhhrkkxkx * *kkkkk

5A. INTERNAL VALIDATION: OVER-OPTIMISM IN AUC,;

YACRO OPTIMISM_AUC(DATASET, OUTPUT_OPT, ID, EV, TIME, TI ME_STOP, MIN_MOD,
MAX_MOD, NUMBOOT=, SEED=, COND=);

PROC DATASETS NOLIST,; DELETE &OUTPUT_OPT,; QUIT,;

DATA FAKE; SET &DATASET NOBS=NOBS; WHERE &COND;
BOOT_ID=_N_; CALL SYMPUT ("MAX", N_);RUN; *REPLY OF THE ORIGINAL DATASET;

*kkkkkkkkkkhhhhhhhhhhhhhhrkkxkx *

BOOTSTRAPPING THE ORIGINAL DATASET,

DATA BOOT (DROP = HHH);

DO BOOT = 1 TO &NUMBOOT;
DOHHH= 1 TO &MAX;
BOOT_ID = INT(&MAX*RANUNI(&SEED)+  1);
SET FAKE POINT = BOOT_ID;
IF_ERROR_ THEN ABORT;
OUTPUT;

END;

END;

STOP;

RUN;

%DCCI_MOD = &MIN_MOD %TO&MAX_MOD;  *RUN WITHIN EACH MODEL TO EVALUATE,;
DATA _NULL_;SET MODEL_LIST;

CALL SYMPUT("MODEL", MODEL);

CALL SYMPUT('LABEL" , LABEL);

WHERE NUM = &CI|_MOD; RUN;

%DAFK = 1 %TO&NUMBOOT; *RUN WITHIN EACH BOOTSTRAPPED DATASET,
DATA JLKJ; SET BOOT,; WHERE BOOT = &JFK; AUC_VVV = 1;RUN;

*BOOTSTRAP SAMPLE;
DATA JLKJ; SET JLKJ; ID_BOOT = _N_; RUN;
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DATA FAKE_BIS; SET JLKJ; &EV = .; &TIME = &TIME_STOP; AUC_VVV = 2; RUN,;
*BOOTSTRAP REPLICATE;

DATA FAKE_TER; SET FAKE; &EV = .; &TIME = &TIME_STOP; AUC_VVV = 3; RUN;
*ORIGINAL REPLICATE;

DATA BIS_BOOTSTRAPP; SET JLKJ FAKE_BIS FAKE_TER; R UN;

AUC IN THE BOOTSTRAPPED DATASET AND SAME MODEL IN THE ORIGINAL DATASET,
PROC PHREG DATA=BIS_BOOTSTRAPP NOPRINT,;
MODEL &TIME*&EV( 0)=&MODEL,;
OUTPUT OUT = PRED XBETA = XBETA SURVIVAL=SURYV,
RUN;

AUC IN THE BOOTSTRAPPED DATASET;

DATA PRED_BOOT; SET PRED; KEEP ID_BOOT XBETA SURV; WHERE &EV = . AND
AUC_VVV = 2; RUN;

PROC SORT DATA = PRED_BOOT; BY ID_BOOT; RUN,;

DATA PRED_BOOT; SET PRED_BOOT,; BY ID_BOOT;IF LAST. ID_BOOT; RUN;

PROC SORT DATA = PRED_BOOT; BY XBETA; RUN;

DATA PRED_BOOT; SET PRED_BOOQOT,; DROP ID_BOOT, RUN,;

PROC IML;

USE PRED_BOOT,;
READ ALL INTO Z;
CLOSE PRED_BOOT;

N=NROW(2);
E1l_StU_Stv= 0;
EStz= 0;
do i= 1ton;
EStZ=EStZ+z]i, 2];
|_survobs = j(n, 1,0 1-z[i, 2]);
smaller =(z][, 1]<z[i, 1]);
equal = (z], 1=z[i, 1]);
smaller[i:n]= 0;
equalli:n]= 0;
E1l StU_StV=E1l StU_StV+sum(l_survobs#z|, 2J#smaller)+ 0. 5*sum(l_survobs#z], 2]
#equal);
end;
E1 StU_StV = E1_StU_StV/(n** 2);
EStZ=EStZ/n;
auct_boot=E1_StU_StV/(EStZ*( 1-ESt2));
create AUC_BOOTSTRAPP from auct_boot[colname={AUC _BOOT}];

append from auct_boot;
close AUC_BOOTSTRAPP;
QUIT;
PROC DATASETS NOLIST; DELETE PRED_BOOQOT; QUIT;

*kkkkkkkkkhhhhhhhhhhhhkkkkkxkhkkrrhkhrrrk

AUC FROZEN MODEL ON THE ORIGINAL DATASET;
DATA PRED_ORIG; SET PRED; KEEP &ID XBETA; WHERE &E V= . AND AUC_VVV = 3;

RUN;

PROC SQL,;
CREATE TABLE FF_&JFK AS (SELECT T1.XBETA, T2. * FROM
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PRED_ORIG AS T1 LEFT JOIN FAKE AS T2 ON
T1. &ID = T2. &ID); QUIT;

DATA FAKE_QUATER; SET FF_&JFK; &EV = .; &TIME = &TIME_STOP; RUN;
DATA FF_BIS_&JFK; SET FF_&JFK FAKE_QUATER;RUN;

PROC PHREG DATA=FF_BIS &JFK NOPRINT;

MODEL &TIME*&EV( 0) = XBETA;

OUTPUT OUT = PRED_ORIG_XBETA XBETA = XBETA_ SURVIV AL=SURV;

RUN;

DATA PRED_ORIG_XBETA; SET PRED_ORIG_XBETA; KEEP XB ETA_ SURV; WHERE &EV =
.. RUN;

PROC SORT DATA = PRED_ORIG_XBETA; BY XBETA_; RUN;

PROC IML;

USE PRED_ORIG_XBETA,
READ ALL INTO Z;

CLOSE PRED_ORIG_XBETA;

N=NROW(Z);
E1l StU_Stv= 0;
EStz= O;
do i= 1lton;
EStZ=EStZ+z]i, 2];
|_survobs = j(n, 1,0 1-z[i, 2]);
smaller = (z], 1l<z[i, 1]);
equal =(z[, 1]=z[i, 1]);
smaller[i:n]= 0;
equalli:n]= 0;
E1l StU_StVv=E1l_StU_StV+sum(l_survobs#z], 2J#smaller)+ 0. 5*sum(l_survobs#z], 2]
#equal);
end;
E1_StU_StV = E1_StU_StV/(n** 2);
EStZ=EStZ/n;
auct_orig=E1_StU_StV/(EStZ*( 1-ESt2));
create AUC_BOOTSTRAPP_ORIG from auct_orig[colname ={AUC_ORIG}];

append from auct_orig;
close AUC_BOOTSTRAPP_ORIG;
QUIT;

DATA AUC_BOOTSTRAPP; MERGE AUC_BOOTSTRAPP AUC_BOIRAPP_ORIG;
LENGTH EVENT LABEL $25. ;

LABEL = "&LABEL"; MODEL = &CI_MOD; EVENT = "&EV";

BOOT = &JFK; OPT = AUC_BOOT - AUC_ORIG; RUN;

PROC DATASETS NOLIST; APPEND DATA = AUC_BOOTSTRAPPBASE = &OUTPUT_OPT FORCE;

DELETE AUC_BOOT AUC_ORIG PRED PRED_ORIG_XBETA PREDRIG AUC_BOOTSTRAPP

AUC_BOOTSTRAPP_ORIG

FF_&JFK FF_BIS_&JFK FAKE_QUATER BIS_BOOTSTRAPP JLKJ FAKE_BIS FAKE_TER; QUIT;
%END *END BOOTSTRAPPED DATASET;

%END *END MODEL:

PROC DATASETS NOLIST; DELETE FAKE BOOT; QUIT;

%VEND;
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5B. Internal validation analysis: calibration slope

YACRO CAL_SLOPE(DATASET, OUTPUT, ID, EV, TIME, MIN_MOD, MAX_MOD, NUMBOOT=,
SEED=, COND=);

Description of macro variables:

DATASET: name of the input SAS dataset

OUTPUT: name of the output SAS dataset contairhegallowing quantities: the estimate of the
model on the bootstrapped dataset (ESTIMATE) (Hib@tion slope is the mean of the variable
ESTIMATE)

ID: variable name for ID of any given subject (nuiope

EV: variable name for the event

TIME: variable name for the follow-up time

MIN_MOD: number corresponding to the first modebm®tested in the MODEL_LIST dataset
MAX_MOD: number corresponding to the last modebéotested in the MODEL_LIST dataset
NUMBOOT=: the number of bootstrapped samples.

SEED=: a number indicating the seed for bootstragpfimeed to be changed in every run)
COND=: run the whole analysis (including model mstie) in a subgroup of subjects, i.e. men only
(optional)

%VACRO CAL_SLOPE(DATASET, OUTPUT, ID, EV, TIME, MIN_MOD, MAX_MOD, NUMBOOT=,
SEED=, COND=);
PROC DATASETS NOLIST; DELETE &OUTPUT; QUIT,;

DATA FAKE; SET &DATASET NOBS=NOBS; WHERE &COND; BOO_ID = _N_; CALL SYMPUT
("MAX", _N_);RUN;

BOOTSTRAPPING FROM THE ORIGINAL DATASET;
DATA BOOT (DROP = HHH);
DO BOOT = 1 TO &NUMBOOT;
DOHHH= 1 TO &MAX;
BOOT _ID = INT(&MAX*RANUNI(&SEED)+ 1);
SET FAKE POINT = BOOT_ID;
IF_ERROR_THEN ABORT;
OUTPUT;
END;
END;
STOP;
RUN;

%DQCI_MOD = &MIN_MOD %TO&MAX_MOD;  *RUN WITHIN EACH MODEL TO EVALUATE;
DATA NULL_;SET MODEL_LIST;
CALL SYMPUT("MODEL", MODEL);
CALL SYMPUT('LABEL" , LABEL);
WHERE NUM = &C|_MOD; RUN;
%DAFK = 1 %TO&NUMBOOT; *RUN WITHIN EACH BOOTSTRAPPED SAMPLE;

REGRESSION ON BOOTSTRAPPED DATASET AND FREEZE THEQDEL FOR THE ORIGINAL
DATASET;

DATA JLKJ; SET BOOT; WHERE BOOT = &JFK; RUN;

DATA FAKE_TER; SET FAKE; &EV = S &TIME = RUN;

DATA BIS_BOOTSTRAPP; SET JLKJ FAKE_TER; RUN;

PROC PHREG DATA=BIS_BOOTSTRAPP NOPRINT,;

MODEL &TIME*&EV( 0)=&MODEL,;

OUTPUT OUT = PRED_BOOT XBETA = XBETA_BOOT SURVIVAL=SURYV,

RUN;
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*kkkkkkkkkhhhhhhkx

CALIBRATION SLOPE FOR XBETA,;

"&EV";

%END
%VEND,

DATA SLOPE; SET PRED_BOOT; WHERE &EV = . ; KEEP &ID XBETA BOOT; RUN;
PROC SORT DATA = SLOPE; BY &ID; RUN;

DATA PRED_TOTALE;

MERGE FAKE (IN=AA) SLOPE (IN = BB); BY &ID;

IF AA AND BB;

RUN;

PROC PHREG DATA=PRED_TOTALENOPRINT;

MODEL &TIME*&EV( 0)= XBETA_BOOT;

ODS OUTPUT PARAMETERESTIMATES = PAR;

RUN;

DATA PAR; SET PAR; DROP Parameter Label DF;

LENGTH EVENT LABEL_EV $25. ;LABEL_EV = "&LABEL"; MODEL = &Cl_MOD; EVENT =

BOOT = &JFK;

RUN;

PROC DATASETS NOLIST; APPEND DATA = PAR BASE = &0OU TPUT FORCE;

DELETE PAR SLOPE FAKE_TER JLKJ BIS_BOOTSTRAPP PRED _BOOT PRED_TOTALE; QUIT,;
%END *END BOOTSTRAPP;

*END MODEL,;
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