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ABSTRACT

Scheduling is a complex activity that is needed in a large number of �elds, which can

involve heterogeneous factors and that may have di�erent goals. In this thesis, scheduling

problems that involve the air tra�c �eld at di�erent phases are faced. At each phase,

the di�erent characteristics of the problems are considered, devoting special attention to

uncertainty. Given the heterogeneous characteristics and goals of the problems, di�erent

models and methods are proposed to solve each of them.

The �rst analyzed phase is the strategic phase. It takes place around six months

before the operation of �ights, when they need to be assigned scheduled departure and

arrival times at the airports where they operate. Future capacity realizations are very

di�cult to forecast at this phase, as capacity is in�uenced by weather conditions. A two-

stage stochastic programming model with two alternative formulations is proposed to

capture this uncertainty. Since the number of scenarios may be extreme, Sample Average

Approximation is used to solve the model. The utilization of the proposed model allows to

identify advantageous tradeo�s between schedule/request discrepancies, i.e., the distance

between the allocated schedule and airline requests, and operational delays. This tradeo�

can result in substantial reductions of the cost of delays for airlines. In the computational

experiments, delays were reduced up to 45% on an instance representing a network of

European airports.

The second considered phase is the tactical phase, which takes place on the day of

operation of �ights. At this time, complete �ight plans need to be de�ned, specifying

the route and operation times of �ights. This is done considering two di�erent sources of

uncertainty. First, uncertainty on capacity availability is taken into account, similarly to

the strategic phase. However, the number of capacity realization scenarios is now small,
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Abstract

as they can be de�ned using available weather forecasts. The problem of minimizing delay

costs considering this source of uncertainty is the Stochastic Air Tra�c Flow Management

problem. A two-stage stochastic programming model with two alternative formulations

is proposed to solve this problem. An ad-hoc heuristic that takes advantage of the good

structure of the model is used to solve problem instances within short computation times.

The analysis of the Value of the Stochastic Solution shows that the proposed stochastic

model can signi�cantly reduce delay costs when bad weather a�ects the whole network.

Second, the implicit uncertainty on the departure time of �ights is taken into account.

This kind of uncertainty involves operations that may cause a delay on the scheduled

departure time of a �ight. The �exibility of the scheduled time of departure, as well as

the other �ight operations, is determined de�ning time windows within which �ights are

granted capacity resources to operate. The narrower a time window, the more critical a

�ight operation. The problem of minimizing delay cost and maximizing time windows is

faced by the Air Tra�c Flow Management Problem with Time Windows. The problem is

formulated with two alternative deterministic models, one of which is able to provide time

windows in 40" on average for instances involving over 6,000 �ights. Less conservative

criteria to reserve capacity within time windows can also be used. Despite not granting

the possibility for a �ight to execute its operations at every instant of a time window,

the implementation of these alternative criteria is shown to be viable. In fact, less than

0.14% of �ights were subject to capacity shortages in the analyzed cases.

Finally, the operational phase takes place when operations are being executed. The

goal at this phase is to manage the �nal departure times announced by �ights � with

uncertain information becoming deterministic � allowing them to depart at the announced

time even if this time exceeds the assigned departure time window. This problem is

named Real Time Flight Rescheduling with Time Windows. Resources are provided to

�ights that need them by reallocating previously reserved capacity with an algorithm that

follows the Ration-By-Schedule mechanism. Both the practical usage of time windows

and the impact of collaboration among airlines are studied. While airline collaboration

limits time window �exibility up to some time before the scheduled departure of a �ight,

it can allow to reduce additional �ight delays by over 14%.

This thesis is a �rst work that involves determining �ight schedules from the moment

of their de�nition to the time of execution of �ights. Providing cost reductions by

considering the di�erent factors that in�uence each decision phase can lead to a global

improvement of the management of �ight operations, whose delays are very expensive in

practice for airlines.
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Chapter 1

INTRODUCTION

Decision making shapes both individuals and organizations. It ranges from simple

everyday decisions to complex processes that involve a huge amount of data. This thesis

focuses on a well studied category of decision making problems, i.e., scheduling problems.

Decisions on schedules di�er greatly depending on the time at which they are made. It

is therefore possible to face problems more e�ciently individually, by decomposing the

whole decision making process into di�erent decision phases, maintaining the coherence

between decisions in a unique framework. Then, to solve each problem, di�erent math-

ematical models and algorithms are developed. In particular, models explicitly consider

the uncertainty that characterizes each decision phase. Decision making is subdivided

into the three following phases.

Strategic phase

This is a long or medium-term decision making phase, and it is characterized by high

uncertainty, i.e., the number of possible future scenarios is large. Decisions at this

phase may involve actions of high economic importance. Some examples are planning

the construction of new infrastructures, displacing long-term investments, creating or

cancelling �ight routes, etc. Uncertainty may characterize heterogeneous data, from

the availability and cost of di�erent resources, to the pro�t resulting from di�erent

investments. Since decisions involve future operations, it is in general possible to execute

algorithms and models that are complex and require long computation times.

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 1
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Chapter 1. Introduction

Tactical phase

This phase involves short-term problems. Decisions of high importance may have already

been made at the strategic phase, however adjustments of previous decisions � such as

the revision of existing schedules � based on more precise forecasts on uncertain data

may critically improve system performance. Uncertainty is now characterized by a

limited number of scenarios compared with the strategic phase. For example, if resource

availability depends on weather conditions, uncertainty may even be completely removed

based on accurate weather forecasts. Algorithms and models have limited time to be

executed, as decisions involve operations that are scheduled to start in the near future.

The speci�c amount of time available is application-dependent, and could be in the order

of minutes.

Operational phase

This is the last decision making phase faced, as it takes place just before or during the

execution of the operations. Uncertainty is now vanishing and deterministic information

is being provided. Using this information, it may be possible to provide real-time

adjustments to the execution of ongoing operations, for example by providing a better

usage of available resources. Since these decisions are made while the operations are

being executed, algorithms should provide results in real time.

From a modeling point of view, faced problems all belong to the general class of

Resource-Constrained Project Scheduling Problems (RCPSPs). These problems can be

focused on many di�erent subjects by de�ning models with di�erent characteristics and

goals. In general, they involve the scheduling of projects, which are de�ned as sequences

of jobs or operations, that need to use limited resources. The di�erent specializations of

RCPSPs may consider job preemptiveness, resource renewability, variability of resource

availability, job multi-modality, multiple project scheduling, and di�erent objectives. The

interested reader may refer to the survey by Hartmann and Briskorn [1] for an overview

on RCPSPs. More speci�cally, this thesis focuses on scheduling problems from the �eld of

air tra�c faced at each considered decision making phase. Specializing the RCPSP to this

class of problems results in considering projects as �ights and jobs as �ight operations,

with limited resources being sector and airport capacity.

2 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
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Chapter 1. Introduction

This chapter unfolds as follows. In �1.1 the �eld of air transportation is analyzed,

illustrating its current state and challenges. Related terminology is then introduced in

�1.2. Air tra�c problems belonging to each di�erent decision making phase are discussed

in �1.3. Some of these problems are modeled using stochastic programming, which is

introduced in �1.4.

1.1 The air transport industry

The air transport industry is one of the biggest industries in the global economy. It

involves all the activities needed for operating �ights, both on the ground and in the air.

Monetary and tra�c �gures show that it is a growing industry that is very challenging

to deal with. EUROCONTROL's 2012 Performance Review Report [2] shows that the

number of IFR (Instrument Flight Rules) �ights in Europe almost doubled from 1990 to

2008, increasing from approximately �ve million �ights to over ten million �ights per year.

This increasing trend showed a two-year decrease period between 2001 and 2002, as a

result of the September 11 terrorist attacks in the United States. After 2008, the economic

crisis hit the air tra�c industry, resulting in a drastic decrease of the number of operated

�ights in 2009. Operated �ights increased again in 2010 and 2011, then decreased in

2012, showing the current instability of the European air transport industry. However,

the 2013 STATFOR seven-year forecast [3] expects European air tra�c to reach pre-

economic crisis levels by 2016, and a continuation of the growth afterwards. European

air tra�c is expected to double by 2035 in the most likely scenario, with 12% of tra�c

not accommodated. Also, the top 20 airports are expected to become heavily congested,

handling over 150,000 departures per year, a level of tra�c achieved in 2013 only at eight

airports in Europe [4].

Many stakeholders generate revenue in this industry, mainly airports, airlines and

aircraft manufacturers. In 2011, 5.4 billion passengers were served by the 1,345 Airports

Council International (ACI) member airports worldwide [5]. This �gure corresponds to

an increase of 8% over 2010. According to the ACI Economics Survey 2011 [6], worldwide

total airport income in �nancial year 2011 reached $101.8 billion, an increase of 7% on

the previous �nancial year. Airport operating expenses amounted to 55% of the total

revenue. Airlines, on the other hand, enjoyed industry-wide net pro�ts of around $8

billion in 2011 at a global level. These pro�ts are only half of those recorded in the

previous year, but still represent a reasonable outcome when compared against recent

historical results. The core reason for the dip in net pro�ts in 2011 is that the rise in
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costs (10.8%) outstripped that of revenues (9.4%) compared with the previous year. High

fuel costs were the main contributory factor accounting for 30% of total costs in 2011.

Non-fuel expenses also rose to their highest level in the last seven years to $405 billion

[5]. According to the International Air Transport Association (IATA), its member airlines

collectively recorded an air cargo decline � measured in Freight Tonne Kilometres (FTKs)

� of nearly 1% in 2011 over 2010 levels. This was mainly due to a slowdown in export

demand from the Asia-Paci�c region to its major consumption markets in Europe and

North America [5]. Finally, �gures related to aircraft manufacturers report a turnover

of the European aeronautic sector in 2010 equal to 106.6 Be , an increase of 6.2% over

2009. Despite this increase, the number of persons employed in aeronautics decreased by

2% over 2009, reaching 458,700 units.

A lot of di�erent issues are faced in the �eld of air transportation. An obvious

issue for all stakeholders is that of generating revenue. This is an issue strictly related

with all other air transportation issues and operations. E�ectively facing environmental

issues, for example, can allow to reduce both air pollution and fuel consumption. A

reduction in fuel costs can provide great savings to airlines, since they amounted to

30% of total airline costs in 2011. Safety and security of �ights are also crucial for

the whole market. Disastrous events can in fact heavily in�uence the perception of air

transportation, as proved by the worldwide decrease of air tra�c �gures that followed

the September 11 attacks. Another key issue in air transportation is delay minimization.

Delays in the air tra�c system are not only expensive in terms of time, but also in

terms of money. Air Navigation Service (ANS) costs are divided into two categories:

ANS provision costs, which derive from terminal and en-route charges, and ANS quality

of service related costs, that derive from �ight ine�ciencies and from Air Tra�c Flow

Management (ATFM) delays. ATFM regulates air tra�c in order to avoid exceeding

available capacity in handling tra�c, using capacity e�ciently. In 2012, estimated ANS

provision costs in Europe amounted to a total of 8.3Be, while ANS quality of service

related costs amounted to a total of 4.6Be, with 900Me resulting from ATFM delays [2].

The University of Westminster estimates ATFM delays in Europe to cost 83eper minute

[7]. The problems faced in this thesis are all related to the minimization of air tra�c

delays, using some novel approaches based on deterministic and stochastic optimization

that focus on di�erent sources of uncertainty. This approach is consistent with the Single

European Sky ATM Research (SESAR) Work Package E (WP-E) theme 4 (Information

Management, Uncertainty and Optimization) research project [8]. Next, de�nitions of

terms commonly used in air tra�c problems are introduced.

4 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
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1.2 Air tra�c de�nitions

The �rst air tra�c de�nitions described in this section are those involving the resources

needed for the execution of �ights. Delays in air tra�c are caused by imbalances

between the demand and the availability of needed resources. These imbalances result in

congestion, which typically arises at airports or in the airspace around them. Airports

are particularly critical as the number of runways is limited, and it may not be possible

to expand them or to build new ones due to physical limitations. This results in

the de�nition of a maximum number of departures, arrivals, or a combination of the

two at any time at an airport. Each of these numbers de�nes the departure, arrival,

and total airport capacity. In the long term, planning the increase of current airport

capacity is an absolute prerequisite to cope with the projected increase in tra�c demand.

EUROCONTROL reports that capacity provided in 2011 was still at the level provided in

2007, thus indicating insu�cient attention to this problem and motivating the pessimistic

congestion forecasts at the top European airports. However, at least in the short-medium

term, optimizing the use of existing capacity is necessary in order to alleviate congestion.

The airspace is subdivided into air sectors � or simply sectors � that are managed by

air tra�c controllers. Congestion in the airspace results from two main factors. First,

from the physical limitations of the air sectors in which safety rules for �ying must be

respected at all times. Second, from the number of available air tra�c controllers who

can monitor an air sector at a speci�c time. Physical limitations of the airspace are of

particular relevance around airports, as that is where �ights converge in order to depart

or land. Similarly to airports, the maximum number of �ights that may simultaneously

be managed in an air sector de�nes sector capacity.

The air tra�c system has very high internal interdependencies, i.e., delay on a �ight

may cause disruptions in the whole system. In fact, each �ight is connected to a set of

other �ights at its destination airport. This �ight connectivity results from the resources

that are shared between �ights, e.g., the aircraft, the �ight crew, etc. Practically, �ight

connectivity results in the need for a connected �ight to wait for one or more incoming

�ights to land and provide it with the complete set of resources it needs to depart. The

amount of time separating each pair of connected �ights is called turnaround time.

To e�ciently manage �ight operations, di�erent control options may be considered.

In particular, three fundamental control options are now discussed. The �rst is called

rerouting, and it is the possibility to deviate a �ight from its �standard� route to a

di�erent one. A route is de�ned as the trajectory that a �ight follows to go from origin

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 5
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Chapter 1. Introduction

to destination. The trajectory can be de�ned in di�erent ways depending on the context

of application. For modeling purposes, it is generally de�ned as the ordered set of sectors

crossed by a �ight to �y from origin to destination. Rerouting can be a useful control

option to avoid congested air sectors. The second fundamental control option is ground

holding. This control option involves moving delay from the airspace to the ground,

whenever possible. Ground holding is useful as delay that takes place in the air, called

airborne delay, is more expensive than delay that takes place on the ground, which is

called ground holding delay, or simply ground delay. In fact, when an aircraft is waiting

to depart on the ground, it does not consume any fuel, which is expensive and would have

been consumed in the air if the delay took place after the departure. Also, a �ight waiting

to depart at its airport of origin does not congest the airspace and does not need to be

supervised by any air tra�c controller for its safety. The third control option considered

is speed control. With this option, the speed of an aircraft can be changed along its route,

resulting in a variable sector crossing time. This option can allow to move �ight delays

in space, to avoid causing further congestion to already congested sectors. For details on

additional available control options, the interested reader may refer to Ball et al. [9]. In

the following section, air tra�c problems at each considered decision making phase are

discussed.

1.3 Decision making at di�erent phases for air tra�c

problems

The di�erent air tra�c problems faced at each decision making phase are now illustrated.

In particular, the di�erent objectives and types of uncertainty considered are highlighted.

Strategic decision making

The strategic phase is the �rst decision phase considered, and it takes place around

six months before the execution of �ights. It is discussed in chapter 2. At this phase,

timetables at di�erent airports are determined. Airlines formulate requests to operate

�ight departures and arrivals at speci�c times, and an initial �ight schedule is determined

taking the uncertainty on capacity availability into account. Considering uncertainty on

capacity availability is very important, as at this phase the number of possible scenarios

is � in general � very high, and it could be in the order of billions. Since the main

source of uncertainty on capacity availability is weather conditions, it is only possible

6 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
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to use historical data or seasonal forecasts � which are very unprecise � to de�ne the

scenarios. Furthermore, since the proposed schedule is an initial one and it will be

subject to further revision, and considering that capacity availability is mostly critical at

airports, only airport capacity is considered. This way, it is possible to provide an initial

�ight schedule at considered airports in a simpli�ed way. Computation times allowed for

problems at this phase may be in the order of days.

Tactical decision making

The second decision phase considered is the tactical phase, which is discussed in chapter 3.

This phase takes place a few hours before the execution of �ights. Two di�erent problems

are faced at this phase. First, the problem of providing precise and robust �ight plans is

faced, considering the whole set of airport and sector capacity resources needed for the

execution of �ights. Uncertainty on capacity availability is considered again. However, at

this phase, it is generally possible to formulate forecasts on capacity availability that are

more precise, limiting the number of scenarios by deriving them from available weather

forecasts. Second, the problem of providing �exibility to �ight operations is faced. This

�exibility involves another type of uncertainty, which is the implicit uncertainty on the

departure time of �ights. In this case, no stochastic information is explicitly considered.

The goal is to de�ne time windows within which capacity to execute �ight operations

is granted. This allows for a �exible execution of the operations that does not involve

the reassignment of capacity resources. In fact, the delayed departure of a �ight usually

corresponds to the need for its operating airline to request the assignment of new capacity

resources to depart. Time windows allow to avoid many of these requests, making the

system more �exible and highlighting which �ights are critical to operate. Computation

times for both problems should not exceed 15-30 minutes.

Operational decision making

The third and �nal decision phase considered is the operational phase, which is discussed

in chapter 4. Decisions are made just before the departure of some �ights, while other

�ights are already being executed. Uncertainty on capacity availability is not considered,

as at the time of operation of �ights it can be considered deterministic. However,

uncertainty on the departure time of �ights may still be present. In fact, problems arising

shortly before the planned departure of a �ight, typically related to airport operations,

may force airlines to delay departures. In this context, time windows de�ned at the

tactical phase are considered as a starting point: departures can take place at any time

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 7
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within the assigned time windows. Should a departure time window not be met, the

corresponding �ight needs to be assigned new capacity to depart. The goal of the

considered problem is to avoid wasting capacity resources that are not used by other

�ights, reassigning them to those �ights that need to use them due to exceeding their

own time windows. These reassignments should be made in real time, so algorithms

should be designed to provide solutions in a matter of seconds.

Di�erent types of models and algorithms are used at each decision phase. Both

deterministic and stochastic optimization models are used, depending on the requirements

and the type of uncertainty considered by each problem. For the sake of completeness,

stochastic optimization is introduced in the next section.

1.4 Introduction to stochastic programming

When uncertainty is an important factor and constraints on computational times are not

too strict, problems can be modeled using stochastic programming, which can provide

better solutions over deterministic programs. For a broad overview of the main themes

and methods of stochastic programming, the interested reader may refer to the introduc-

tory textbook by Birge and Louveaux [10]. In this thesis, two-stage stochastic integer

programming (SIP) models are used to model problems involving uncertainty on airport

or sector capacity. In this type of models, a decision must be made �here and now�, in

the �rst-stage of decision making, when uncertainty is still present. This uncertainty is

modeled using a probability distribution of the random variables. When uncertainty is

resolved, in the second-stage of decision making, a recourse action is taken. The general

two-stage SIP model can be formulated as follows:

z = Min c⊤x+ E[f(x, ω̃)]

s.t. Ax ≥ b

x ∈ X.

(1.1)

In formulation (1.1), decisions are made on the �rst-stage decision variables vector x ∈
X ⊆ ℜN1

+ . The objective function is also characterized by the �rst-stage cost vector

c ∈ ℜN1 and the recourse function f(x, ω̃), with ω̃ being a multivariate random variable

de�ned on a probability space (Ω,A,P). The underlying probability distribution of ω̃ is

assumed as discrete with a �nite number of realizations (scenarios) ω and corresponding

8 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
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probabilities p(ω), ω ∈ Ω, with Ω being the set of all scenarios. Furthermore, �rst-stage

constraints are characterized by the �rst-stage constraint matrix A ∈ ℜM1×N1 , the �rst-

stage right-hand side vector b ∈ ℜM1 , and the set X which de�nes integer or binary

restrictions on some components of x.

For each scenario ω ∈ Ω, the recourse function f(x, ω) is given by the following

second-stage mixed integer program (MIP):

f(x, ω) = Min q(ω)⊤y(ω)

s.t. W (ω)y(ω) ≥ h(ω)− T (ω)x

y(ω) ∈ Y.

(1.2)

In formulation (1.2), decisions are made on the second-stage decision variables vector

y(ω) ∈ Y ⊆ ℜN2 . In the objective function, q(ω) ∈ ℜN2 is the recourse cost vector. The

constraints are also characterized by the recourse matrix W (ω) ∈ ℜM2×N2 , the second-

stage right-hand side vector h(ω) ∈ ℜM2 , and the technology matrix T (ω) ∈ ℜM2×N1 .

When the recourse matrix is independent of the scenario realization, the recourse function

is said to be �xed recourse. This is the case for all the models considered in this work, as

the only parameter to change with the scenario realization is the second-stage right-hand

side vector. Finally, set Y de�nes integer or binary restrictions on some components of

y(ω).

It is always possible to solve a stochastic programming model through its Deter-

ministic Equivalent Problem (DEP). The DEP of a problem is a single deterministic

formulation that is equivalent to the two-stage formulation from (1.1) and (1.2), and it

can be solved using any optimization solver. The DEP has the following formulation:

Min c⊤x+
∑
ω∈Ω

p(ω)q(ω)⊤y(ω)

s.t. Ax ≥ b

W (ω)y(ω) ≥ h(ω)− T (ω)x ∀ω ∈ Ω

x ∈ X

y(ω) ∈ Y ∀ω ∈ Ω

(1.3)

Solving a problem through its DEP, however, may be ine�cient. The number of second-

stage variables in the DEP is equal to the sum of the number of second-stage variables

over all scenarios. The same applies to second-stage constraints. When the number

of scenarios is very large, the DEP may become too large to be solved in reasonable
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computation times. Decomposition approaches or ad-hoc algorithms that take advantage

of a speci�c structure of the mathematical formulation may improve the computation

times provided by solving the DEP of a problem. In this thesis, an ad-hoc heuristic

is proposed to solve instances of the Stochastic Air Tra�c Flow Management problem,

taking advantage of their special structure, see �3.3. Decomposition approaches for multi-

stage stochastic programming are generally classi�ed as either stage-wise or scenario-wise.

The stage-wise approach is usually based on Benders decomposition [11] or L-shaped

decomposition [12]. In this type of decomposition approach the problem is decomposed

by decision stage, starting from the �rst-stage and then evaluating the e�ect of such

decisions in the second-stage. This approach can be extended to an arbitrary number

of decision stages. In the works presented in this thesis, only two-stage models are

discussed. In scenario-wise decomposition, �rst-stage decision variables are duplicated

to create several independent problems. Nonanticipativity constraints are then enforced

to ensure that the �rst-stage decision is the same for all scenarios. Such constraints

are relaxed using Lagrangian relaxation and a solution to the Lagrangian dual is then

searched with speci�c algorithms.

A di�erent computational problem arises when the number of possible scenarios is

too high to evaluate �rst-stage decisions for all of them. This is the case for many

strategic problems. A possible approach for solving such problems involves the use

of sampling techniques, which consider only randomly selected subsets of the set of

scenarios in order to obtain approximate solutions. Sampling may be interior or exterior.

Interior sampling is performed within the algorithm whenever needed, using a di�erent

sample each time. Examples of such algorithms are provided by the L-Shaped method

with embedded sampling proposed by Infanger and Dantzig [13], and the stochastic

decomposition method by Higle and Sen [14, 15], to mention a few. In exterior sampling

algorithms, on the other hand, a sample is de�ned from the set of scenarios and a

corresponding approximation of the recourse function is determined. The approximate

objective is called sample average approximation (SAA) of the recourse function, and

optimization is performed without performing further sampling. SAA is used in this

work to solve instances of the Time Slot Allocation Problem under Uncertainty, and is

explained into detail in �2.3.

When time requirements are stricter, it may not be possible to use stochastic pro-

gramming. However, it may still be possible to take uncertainty into account, formulating

solutions based on deterministic data that are designed to do so. In this thesis, time win-

dows are used to grant �exibility to �ight operations. A time window is a set of contiguous

10 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
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time instants within which it is possible to execute operations. The initial instant of a

time window is the scheduled time of operation, while the remaining instants of the time

window provide �exibility to operations. Time windows are constructed by considering

deterministic data, e.g., initial �ight plans and expected capacity availability. Their

width, however, allows to manage uncertain delays �exibly. Since they are determined

using a deterministic model, they are compatible with short-term decision making.

In the following chapters, all discussed problems are faced, subdivided by the decision

phase they are faced at. Di�erent models and algorithms to solve them are proposed,

and related computational results are presented.

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 11
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Chapter 2

STRATEGIC DECISION MAKING

In this chapter, a strategic problem from the �eld of air tra�c, the Time Slot Allocation

Problem Under Uncertainty (TSAPU) is discussed. First, the problem and related

literature are described in �2.1. Then, in �2.2, a stochastic programming model to

solve the TSAPU is presented, providing two alternative formulations. The model is

solved on realistic instances using Sample Average Approximation (SAA). This method

is illustrated in �2.3, while the computational results from tests performed on a set

of instances representing European airport networks of di�erent sizes are discussed in

�2.4. Finally, in �2.5, the conclusions and future directions of work on the TSAPU are

summarized.

2.1 The Time Slot Allocation Problem

Under Uncertainty

Congestion in air tra�c causes very high expenses for airlines and aircraft operators every

day. It usually arises at airports or in the airspace around them. Airspace congestion

is more relevant in Europe than in the United States. Despite being fully coordinated,

the most congested airports in Western and Central Europe su�er persistent congestion.

Full coordination of an airport means, essentially, that the number of �ights scheduled

at the airport per hour (or other unit of time) is not allowed to exceed the declared

capacity of the airport [16]. Here, a coordinator is appointed to allocate slots to airlines
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and other aircraft operators using or planning to use the airport as a means of managing

available capacity. In the long term, planning the increase of current airport capacity

is an absolute prerequisite to cope with the projected tra�c demand. However, at least

in the short-medium term, optimizing the use of existing capacity is necessary in order

to alleviate congestion. Properly managing available airport capacity needs to start at

the strategic phase, when the initial �ight schedules are de�ned under high capacity

availability uncertainty.

Several approaches have been proposed to alleviate congestion and resolve demand-

capacity imbalances. Strategic approaches, such as the use of slot auctions or congestion

pricing, are mostly administrative or economic in nature, and try to alleviate congestion

by modifying spatial or temporal tra�c patterns, see Brueckner [17], Fan [18] and Ra�arin

[19] among others. The work presented in this chapter focuses on strategic initiatives

aimed at allocating slots among airlines and aircraft operators e�ciently. A slot is de�ned

as the amount of capacity needed by an aircraft to land or take-o�. Its assignment to a

�ight corresponds to the permission given by a coordinator for a planned operation to use

the full range of airport infrastructure necessary to arrive or depart at a fully coordinated

airport on a speci�c date and time [20].

Slot allocation is de-facto handled according to the IATA guidelines. Since 1974,

IATA has provided the global air transport community with a single set of standards

for the management of airport slots, outlining policies, principles and processes for slot

allocation. These guidelines are the result of consultation between airlines and airport

coordinators, re�ecting the proven best practice for the coordination and management of

airport slots [20]. For the allocation of slots at European Union airports, IATA guidelines

are enriched with further conditions that aim to encourage the e�cient use of airport

capacity through the optimal allocation of slots [21].

European Commission regulation 95/1993 guarantees that slot allocation is based

on neutral, transparent and nondiscriminatory rules. In this regulation process, each

Member State has the duty of appointing a schedule coordinator at airport or national

level with the ultimate mission to operationalize, coordinate, supervise, and arbitrate

the slot allocation process. The fundamental principle of the slot allocation process

is the grandfather right, i.e., the right of an airline to keep a slot from the preceding

equivalent season. This right is granted if and only if such a slot was used at least 80%

of the time (use-it-or-lose-it rule). However, this procedure is far from being e�cient.

Indeed, as reported by ACI Europe, unsatis�ed/unaccommodated demand, overbidding,

late return of unwanted slots, �ights operated signi�cantly and repeatedly o� slot time
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(o� slot), and failure to operate allocated slots (de�ned as no shows), are all factors

pointing or contributing to the ine�cient allocation and use of an already insu�cient

resource, see Zografos et al. [22]. Several amendments to the EC regulation have been

adopted or proposed to ensure the fullest and most �exible use of limited capacity at

congested airports. For instance, regulation (EC) 793/2004 was adopted to strengthen

the coordinator's role and the monitoring of compliance, i.e., the usage of slots with

respect to the allocation, to verify that airlines do not use slots in a signi�cantly di�erent

way than allocated by the coordinator.

Based on the UK experience, the Commission is also considering to change the

current regulation. This is aimed at introducing market-based mechanisms across the

EU, provided that safeguards to ensure transparency and undistorted competition are

established, including greater independence for slot coordinators. Several studies that

analyze the introduction of market-based mechanisms in the slot allocation process are

present in literature. Rassenti et al. [23] developed a sealed-bid combinatorial auction

for the allocation of time slots to competing airlines. A similar approach was proposed

by Ball et al. [24]. Kleit and Kobayashi [25] and Fukui [26] examined whether slot

markets have resulted in anticompetitive activities with restricted market entry and

service expansion by other carriers, especially rival carriers. Verhoef [27] looked into some

alternative economic instruments for managing congestion at airports, notably slot sales

and slot trading. In the last few years, secondary trading received a lot of attention by the

research community. Some of these studies were commissioned by the EU Commission as

a guidance on the possible market and legal impacts of the introduction of such trading.

For instance, the Mott MacDonald Group [28] analyzed into detail the likely e�ects of

the introduction of secondary slot trading into Community legislation, while Starkie [29]

examined the arguments for and against a secondary market in slots, focusing on evidence

from U.S. airports. Furthermore, Pellegrini et al. [30] proposed a market mechanism for

secondary trading based on budget balanced combinatorial exchange.

In this chapter, the focus is on the judicious allocation of time slots to aircraft opera-

tors with the purpose of obtaining �e�ective" and �reliable" airline schedules. Schedules

are �e�ective" because slots are allocated according to airline preferences. Currently,

slot allocations at di�erent airports are independent. However, coherently allocating the

departure and arrival slots at origin and destination for each �ight is a widely recognized

issue. Furthermore, it is necessary to consider interdependencies among �ights operated

by the same airline. The approach herein proposed, based on stochastic programming,

allocates slots at all airports simultaneously, considering a true network of airports thus
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guaranteeing the coherence of the �nal result, i.e., the �ight schedule. The di�erence

between airline requests and the schedule, i.e., the allocated time slots, is referred to in

this work as �schedule/request discrepancies�. Also, schedules are �reliable" because the

proposed model takes the inherent uncertainty a�ecting airport capacity into account.

The slot allocation problem is currently solved by slot coordinators at each single

coordinated airport independently, using a First-In-First-Served discipline. Issues related

to airport network dependencies and slot complementarity are not immediately faced

by slot coordinators, as they are resolved o�-line at the IATA Worldwide Scheduling

Conference, which is held biannually. Few approaches have been proposed for this speci�c

problem. For example, Kösters developed a heuristic procedure [31] that addresses the

interrelationship between slot demand and the time di�erence between assigned and

requested slots in order to predict the latter depending on slot utilization. Another

relevant work was developed by Zografos et al. [22]. The authors proposed a model for the

single airport slot allocation problem, implementing existing EU/IATA scheduling rules

and coordination procedures. They applied their work to real data from three di�erent

Greek airports, showing that it is possible to reduce the total amount of schedule/request

discrepancies up to over 95%, compared to that assigned in practice without using

optimization models. This is a very important result, as it shows that mathematical

methods can greatly bene�t the time slot allocation process. Finally, Pellegrini et al.

[32] compared di�erent metaheuristic algorithms to solve the slot allocation problem.

A stochastic programming model for the time slot allocation problem with two alter-

native formulations is proposed in this chapter. This model extends the deterministic

single airport model by Zografos et al. [22] in the following directions. First, the new

model simultaneously allocates time slots on multiple airports explicitly considering � in

addition to other operational constraints � the coherence between the departure time slot

at the airport of origin and the arrival time slot at the airport of destination of each �ight.

Second, it takes stochastic capacity availability into account. This is a relevant issue since

time slot allocation is performed at a strategic phase, when the uncertainty on available

capacity is extremely high, i.e., the number of possible capacity availability scenarios is

extreme. The proposed stochastic optimization approach provides robust solutions to the

problem by balancing the immediate costs generated by schedule/request discrepancies

with future costs of delays that one can expect to be assigned using a proposed �ight

schedule on the days of operation.

Finally, it is important to note that, as a by-product, the proposed model is able

to address an issue of great concern for slot coordinators. Indeed, slot coordinators are
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called for �xing the declared capacity of fully coordinated airports, i.e., the capacity

that is available at each airport to accommodate the demand. Such values of capacity

are currently assessed by a thorough demand and capacity analysis whenever there are

signi�cant changes in airport infrastructure, operational policies, or demand patterns.

The problem of de�ning airport capacity is also faced in literature. Churchill et al.

[33] proposed a stochastic optimization model with three alternative formulations to

determine the number of slots that should exist at an airport during di�erent time

intervals across the course of a single day. Their model explicitly accounts for di�ering slot

valuations and hedges against the variety of capacity outcomes that are likely to occur,

providing responsiveness to demand and robustness against uncertain outcomes. Slack is

built into the pro�les where it is clear that a high probability of congestion later in the

day could su�er greatly from residual queues from earlier in the day. Zografos et al. [34]

focused on runway complexes explicitly taking the stochastic nature of aircraft operations

into account. The authors proposed a fast and easy-to-use analytical model that estimates

the capacity of a wide range of runway complexes, capturing all the major parameters that

a�ect it. Furthermore, the model provides an estimate of the potential capacity bene�ts

from sequencing arriving aircraft. Andreatta et al. [35] proposed two macroscopic

decision support systems for airport strategic planning on airside and landside, discussing

their connectivity. The airside decision support system, called MACAD, uses the model

developed by Zografos et al. [34] as an internal module. The landside decision support

system is called Simple Landside Aggregate Model (SLAM) and is an analytical aggregate

model for estimating capacity and delays in airport passenger terminals, see Brunetta

et al. [36]. Andreatta et al. [37] discussed the implementation of SLAM at the Athens

International Airport, as well the implementation of an enhanced version of SLAM, see

Brunetta et al. [38]. The airside and landside systems provide estimates of the capacity

and performance of the airport quickly and with little e�ort.

Airport capacity values can be obtained from the solutions provided by the model

presented in this chapter. In fact, the total number of departures and arrivals at airports,

served in periods of demand peaks, can be interpreted as values of declared capacity,

which is bounded by the nominal capacity. In this case, the declared capacity of an

airport will not be a static value, but it will be time-dependent, i.e., it may change period

by period on each day of operation thus guaranteeing the fullest and most �exible usage

of limited capacity at congested airports. The new two-stage stochastic programming

model for the TSAPU is described in the following section.
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2.2 Stochastic optimization model

In this section a stochastic programming model with two alternative formulations to solve

the TSAPU is presented. Given the nominal capacity of each airport, i.e., the number

of available time slots, and airline requests for time slots in order to operate speci�c

�ight movements, the TSAPU allocates time slots to airlines and aircraft operators.

This results in a �ight schedule that allocates time slots with the goal of accommodating

airline preferences, i.e., slot requests, by minimizing the di�erence between the allocated

and the requested slot times, i.e., the schedule/request discrepancies. However, on each

day of operation, available capacity can be much less than the nominal one, e.g., as a

consequence of bad weather conditions. In this case, large delays may have to be assigned

to �ights in order to resolve demand-capacity imbalances. Therefore, a tradeo� exists

between the schedule/request discrepancies and expected delays to be assigned on the

day of operation. A very tight schedule operating at nominal capacity is likely to be

subject to delays on the day of operation when capacity is reduced. The TSAPU aims

at �nding a schedule that results in a good compromise for the described tradeo�.

One of the fundamental aspects of the proposed model is the fact that it considers

a network of interconnected airports, taking downstream e�ects of local decisions into

account. Since a movement is either the departure or the arrival of a �ight taking place

at an airport, a pair of movements (m1,m2) is associated with each �ight, where m1 is

the departure movement from the airport of origin and m2 is the arrival movement of the

same �ight at the destination airport. The elapse of time between the departure time

slot at the airport of origin and the arrival time slot at destination corresponds to the

�ight time. This amount of time is �xed, as it corresponds to the scheduled duration

of the �ight. In view of this fact, allocating a speci�c time slot for the execution of the

departure of a �ight explicitly �xes the allocation of an arrival time slot at the airport of

destination of the �ight. Decisions are therefore not merely local, as they have e�ects on

the whole network. Furthermore, each movement is requested on a set of days, to ensure

that the same time slot is assigned on each day of operation to the same movement.

Therefore, assigning a time slot to a movement a�ects multiple days simultaneously.

From a modeling point of view, this helps to keep the model's dimensions at a reasonable

size, as the number of decisions to be made is the same for a movement requested on a

single day or on a large set of days.

Flight connectivity, that makes sure that the turnaround time for each pair of con-

nected �ights is respected, is also considered by the TSAPU to de�ne schedules. Further-
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more, it is important to highlight that the proposed model is �exible enough to accom-

modate capacity constraints deriving from operational considerations. Despite decisions

related to the optimal mix of departure/arrival operations being of daily/operational

nature, they have a remarkable impact in setting the declared capacity of an airport. By

including these �operational constraints", the declared capacity of an airport will not be

a static value but rather time-dependent, i.e., it may change period by period on each

day of operation thus guaranteeing the fullest and most �exible usage of limited capacity

at congested airports. Finally, the TSAPU explicitly models uncertainty, which a�ects �

predominantly � airport capacity. In the following subsection, an example that highlights

the bene�t of incorporating uncertainty within the mathematical model is illustrated.

2.2.1 Example

An example of the functioning of the proposed model is now illustrated, to highlight

how considering uncertainty on capacity availability can lead to decrease �ight delays.

Consider an airport with capacity constraints de�ned at each hour, with a limit of

two departure movements, two arrival movements and three total movements per hour.

Suppose that di�erent airlines formulate the following movement requests at this airport:

(a) arrival at 8:30, (b) departure at 9:00, (c) arrival at 9:20, (d) departure at 9:50, (e)

arrival at 10:20, (f ) departure at 10:30. These requests correspond to the aggregated

hour by hour demand reported in Table 2.1. It is easily possible to verify that this

demand respects the airport's capacity constraints, therefore in a deterministic setting

the optimal solution allocates all requested time slots to airlines .

Now consider uncertainty on available capacity by de�ning two equiprobable scenar-

ios. In the �rst scenario, which has probability 0.5, nominal capacity is respected. In the

other scenario, capacity is decreased by 33% with probability 0.5. Since capacity assumes

integer values, this corresponds to having departure and arrival capacity constraints both

to one �ight movement per hour, and the total capacity to two �ight movements per hour.

Considering this information and 15' wide time slots, the delay on the day of operation

Table 2.1: Example: movement demand

Time horizon Arrivals Departures Total
8-9 1 0 1
9-10 1 2 3
10-11 1 1 2
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of �ights � when �ights can only be delayed and cannot depart ahead of schedule � using

the schedule de�ned only considering deterministic information is:

• With nominal capacity: 0

• With reduced capacity: movement d is delayed to the 10:00 time slot (1 time

instant) and movement f is delayed to the 11:00 time slot (2 time instants), resulting

in a total of 3 instants of delay

The average delay is therefore equal to 0 · 0.5+3 · 0.5 = 1.5 time instants, i.e., 22'30".

This delay can be reduced by considering capacity scenarios when de�ning the schedule.

For example, it is possible to de�ne a schedule that is feasible for all capacity scenarios,

i.e., providing no operational delay, by simply moving departure movement b from the

9:00 to the 8:45 time slot. This results in a discrepancy between the schedule and airline

requests of one time instant (15'), which is less than the average operational delay of 1.5

time instants (22'30") on the day of operation of �ights obtained by using the schedule

formulated by only considering deterministic information. From this small example it is

also possible to see the tradeo� between the schedule/request discrepancies (0' considering

deterministic information versus 15' considering stochastic information) and the delay on

the day of operation (22'30" considering deterministic information versus 0' considering

stochastic information).

2.2.2 Formulations

The two formulations of the new two-stage stochastic programming model for the TSAPU

are now illustrated. The two formulations are the same in the �rst-stage, where �ights

are scheduled according to airline requests, satisfying nominal capacity at all airports.

The objective is to minimize the schedule/request discrepancies, plus the estimate of

future delays that will arise by choosing a speci�c schedule. This estimate is provided by

the second-stage recourse function, for which the two formulations di�er. Their goal is to

provide an estimate of the delay on the day of operation of �ights. The �rst formulation is

called simpli�ed recourse. It does not consider the downstream e�ect of delays over time,

providing a rounding down estimate of future delays. The other formulation is called time-

linked recourse, and it takes delay propagation between consecutive time instants into

account. The simpli�ed formulation has the advantage of being more computationally

e�cient than an exact approach, as it is a mere count of instant by instant delays, and

therefore separable into many di�erent small subproblems. The time-linked formulation,
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on the other hand, provides a higher level of accuracy. However, this comes at the cost

of having longer computational times to solve instances of the problem. This is due to

the fact that the time instants are not independent of one another as in the simpli�ed

recourse formulation, but are linked, thus making the problem inseparable by time. In

the following, the �rst-stage subproblem � which is common to both formulations � and

the recourse subproblem for each formulation are illustrated.

Formulation of the �rst-stage

To formulate the problem, the time horizon is assumed as �xed and subdivided into

equal size contiguous time slots. This assumption is typical of nearly all Air Tra�c

Management (ATM) formulations and agrees with practice. The notation used in both

formulations of the TSAPU model is now introduced.

Notation

T : Set of time slots, indexed by t

D : Set of scheduled days, indexed by d

A : Set of airports, indexed by a

Dd
a : Set of departure movements taking place at airport a ∈ A on day d ∈ D

Ad
a : Set of arrival movements taking place at airport a ∈ A on day d ∈ D

M : Set of all movements (M = ∪a∈A,d∈DD
d
a ∪ Ad

a), indexed by m

DCa, ACa, TCa : Set of departure, arrival and total capacity constraints for airport

a ∈ A, indexed by c, each spanning over tc time slots

F : Set of movement pairs (m1,m2) corresponding to the operation of a

speci�c �ight. The �ight time tm12 is the time di�erence between the

two movements

P : Set of movement pairs (m1,m2) corresponding to consecutive �ights,

where m1 ∈ M is the arrival corresponding to departure m2 ∈ M. The

turnaround time lm12 is the time di�erence between the two movements

tm : Requested time slot for movement m ∈ M

ctm : Cost of allocating movement m ∈ M to time slot t, with ctm = |t− tm|
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αdt
a , β

dt
a , γdt

a : Departure, arrival and total capacity available at airport a ∈ A on day

d ∈ D at time t ∈ T .

w : Weight of the second-stage estimation, w = 1 ⇒ each scheduled day

has the same weight as the schedule, w =
1

|D|
⇒ all days together

have the same weight as the schedule

Decision Variables

xt
m =

{
1, if movement m ∈ M is allocated to time slot t ∈ T
0, otherwise

It is important to highlight that the number of variables is not related to the number of

days on which movements have been requested. Therefore, if a single movement can be

assigned to ten di�erent time instants, the corresponding number of decision variables is

equal to ten even if the movement is requested on a large set of days, as the time slot

assigned is the same on each requested day.

The �rst-stage formulation can now be stated as follows:

Min
∑
m∈M

∑
t∈T

ctmx
t
m + w · E[f(x, ω̃)] (2.1a)

s.t.
∑
t∈T

xt
m = 1 ∀m ∈ M (2.1b)∑

m∈Dd
a

∑
t∈[τ,τ+tc)

xt
m ≤ αdτ

a ∀a ∈ A, c ∈ DCa, d ∈ D, τ ∈ T (2.1c)

∑
m∈Ad

a

∑
t∈[τ,τ+tc)

xt
m ≤ βdτ

a ∀a ∈ A, c ∈ ACa, d ∈ D, τ ∈ T (2.1d)

∑
m∈Dd

a∪Ad
a

∑
t∈[τ,τ+tc)

xt
m ≤ γdτ

a ∀a ∈ A, c ∈ TCa, d ∈ D, τ ∈ T (2.1e)

xt
m1

− x
t+tm12
m2 = 0 ∀(m1,m2) ∈ F , t ∈ T (2.1f)∑

t∈[0,k)

xt
m2

+
∑

t∈[k−lm12 ,|T |)

xt
m1

≤ 1 ∀(m1,m2) ∈ P , k ∈ [lm12 , |T |) (2.1g)

xt
m ∈ {0, 1} ∀m ∈ M, t ∈ T (2.1h)
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In the �rst-stage, a decision is made on the schedule of requested movements m ∈ M
at every airport a ∈ A, taking into account the e�ect that possible future capacity

reductions � on the day of operation of �ights � may have in terms of delays. The

objective function (2.1a) minimizes the sum of the schedule/request discrepancies and

operational delays, with the w parameter taking care of properly balancing the �rst-

and second-stage decisions. This is very important when a large number of days are

considered for scheduling: in such case, w = 1 gives little importance to airline requests,

favoring the reduction of delays on the day of operation. The recourse function f(x, ω)

is given as de�ned in the following of this section. Constraints (2.1b) guarantee that a

time slot is allocated to every requested movement. Constraints (2.1c), (2.1d) and (2.1e)

ensure that departure, arrival and total capacity constraints are satis�ed at every airport

a ∈ A all the time. Constraints (2.1f) guarantee that the �ight time for all �ights is

�xed, by properly distancing departure movements from the corresponding arrivals. The

two decision variables referring to the departure movement at time t and to the arrival

movement at time t + tm12 of a �ight have the same value, as they are either both be

equal to 0 (�ight not departing at t) or to 1 (�ight departing at t, therefore arriving

at t + tm12). Constraints (2.1g) guarantee that the turnaround time for all aircraft is

respected, by properly distancing all couples of consecutive movements (m1,m2) ∈ P .

Finally, constraints (2.1h) impose binary restrictions on the xt
m decision variables.

Formulation of the second-stage

The second-stage value function that measures the expected delays � assigned to �ights

in order to meet airport capacity realizations � taken over all the possible realizations

of the random event ω is now described. In what follows, uncertainty is supposed to

only a�ect capacity at airports. More speci�cally, the right-hand side of the capacity

constraints depends on the random variable ω̃. This value function does not provide the

exact amount of delay per each scenario, but rather it determines the number of delayed

departure and arrival movements resulting from a speci�c capacity realization. This is

done macroscopically, without considering the e�ects of delays on speci�c �ights on the

complete network, in order to have second-stage formulations that are easy to compute.
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Decision Variables

yωadt : Number of delayed departures from airport a ∈ A on day d ∈ D

at time instant t ∈ T for capacity realization ω ∈ Ω

zωadt : Number of delayed arrivals to airport a ∈ A on day d ∈ D

at time instant t ∈ T for capacity realization ω ∈ Ω

Given a �rst-stage decision � which is the schedule of departures and arrivals at each

airport and for each time instant � and the realization of the random event ω � which

is the capacity at each airport and for each period of time � a certain number of �ights

has to be delayed to avoid imbalances between demand and capacity. For each airport

a ∈ A, time instant t ∈ T and day d ∈ D, de�ning T t
c = {k|t ≤ k < t + tc}, the set of

feasible second-stage decisions Yt
ad(x, ω) can be de�ned as follows:

Yt
ad(x, ω) = {(yωadt, zωadt) | yωadt ∈ R+, zωadt ∈ R+,

yωadt ≥
∑

m∈Dd
a,τ∈T t

c

xτ
m − αdt

a (ω) ∀c ∈ DCa,

zωadt ≥
∑

m∈Ad
a,τ∈T t

c

xτ
m − βdt

a (ω) ∀c ∈ ACa,

yωadt + zωadt ≥
∑

m∈Dd
a∪Ad

a,τ∈T t
c

xτ
m − γdt

a (ω) ∀c ∈ TCa}

The stochastic program has complete recourse, therefore Yt
ad(x, ω) ̸= ∅ for any x and

realization ω. Denoting with qa the cost for delaying a movement at airport a ∈ A, the
second-stage value function is given by:

f(x, ω) = Min
∑
a∈A

qa
∑
d∈D

∑
t∈T

(yωadt + zωadt) (2.2a)

(yωadt, z
ω
adt) ∈ Yt

ad(x, ω) ∀a ∈ A, d ∈ D, t ∈ T . (2.2b)

The second-stage value function described above is only an estimate of the delays assigned

to movements in order to meet available capacity given slot assignment x. Indeed, this

second-stage formulation penalizes the excess of demand at each time period without

taking into account the interactions between time periods, i.e., it does not capture the

propagation of delays from one time period to the next. Delay propagation results in

having a delayed arrival (departure) movement at time instant t increase the demand
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of arrivals (departures) at time instant t + 1 by one unit. Due to this simpli�cation

in the formulation, this formulation is called simpli�ed recourse. To overcome this

issue, a di�erent formulation of the second-stage is now considered, in which demand

at consecutive time instants is linked, i.e., movements not operated at time t increase the

demand for movements at time t+ 1. This provides a better estimate of delays. Due to

its nature, this formulation is referred to as time-linked recourse.

f(x, ω) = Min
∑
a∈A

qa
∑
d∈D

∑
t∈T

(yωadt + zωadt) (2.3a)

(yωadt − yωad,t−1, z
ω
adt − zωad,t−1) ∈ Yt

ad(x, ω) ∀a ∈ A, d ∈ D, t ∈ T .

(2.3b)

The better quality of the time-linked recourse function comes at the cost of a higher

computational burden. In fact, the second-stage program cannot be decomposed into

subproblems for each time instant t, as in the case of the simpli�ed recourse. Subproblems

may however be de�ned for each airport a and schedule day d. Furthermore, it is

important to notice that neither recourse formulation takes the e�ect of delay on a single

�ight into account, which prevents from evaluating the network e�ect of delays at this

stage. This is due to the fact that both formulations are macroscopic in nature to allow

for relatively fast computation times.

2.2.3 Second-stage formulation example

A practical example to provide a better understanding of the two second-stage formula-

tions is now provided, highlighting the di�erences between them. Consider a schedule x

(�rst-stage solution) and a capacity realization ω. The proposed schedule corresponds to

a speci�c demand ddta for departures and adta for arrivals at each considered airport a ∈ A,
scheduled day d ∈ D, and time instant t ∈ T . Capacity de�ned at each time instant is

also considered, a�ecting the same time instant only, i.e., the αdt
a (ω), β

dt
a (ω), and γdt

a (ω)

values de�ne the maximum demand that can be accommodated at each time instant t.

In the example illustrated in Table 2.2, it is possible to observe how the objective values

of the simpli�ed and time-linked recourse formulations can be signi�cantly di�erent.

In Table 2.2, the �rst row (Time) provides the di�erent time instants considered.

The second row (ddta ) shows the instant departure demand at the considered airport

a and day d. Similarly, the third row (αdt
a ) depicts available departure capacity at
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Table 2.2: Second-stage delay calculation example

Time 1 2 3 4 5 6
ddta 5 6 7 6 6 5
αdt
a 6 6 6 6 6 6

Simpl. delay 0 0 1 0 0 0
T-link. delay 0 0 1 1 1 0

each time instant. For the sake of simplicity, arrival and total capacity constraints are

not considered. Finally, rows four and �ve provide the amount of delay estimated by

each recourse formulation. In this table, it is possible to observe that at time t = 3

capacity is exceeded by one departure movement. Demand matches capacity at the two

following time instants, therefore this departure delay has a downstream e�ect, causing

delays at time instants 4 and 5 too. This fact is correctly captured by the time-linked

recourse formulation, which has an objective value for this part of the problem equal to

3. The simpli�ed recourse formulation, on the other hand, only detects on how many

time instants capacity is exceeded, without considering the downstream e�ect of delays,

thus providing an objective value equal to 1.

2.3 Sample Average Approximation

Two-stage stochastic programming models with a general formulation discussed in �1.4,

such as the TSAPU formulations presented in �2.2, can be decomposed with stage-wise

decomposition methods. This involves solving the �rst-stage of the problem �rst, and

then evaluating the proposed solution over the set of scenarios Ω. However, the number

of possible scenarios may be very large, especially when di�erent independent phenomena

are considered. This is the case for the instances of the TSAPU, as weather at di�erent

airports is considered independently, since the problem can be solved for a network of

airports that are very distant one from another. Also, the correlation between weather

conditions on di�erent days of the calendar horizon to schedule is not considered, i.e.,

weather conditions are considered independently on each day. This contributes to the

further increase of the number of scenarios to be considered. Therefore, the number of

possible scenarios for each instance of the TSAPU is given by:

|Ω| =
∏
a∈A

Ω|D|
a (2.4)
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where Ωa is the number of possible capacity realizations at airport a ∈ A and |D| is
the number of scheduled days. This number increases very quickly with the number of

airports |A|, scheduled days |D|, and capacity realizations at each airport Ωa.

For such problems, evaluating each possible scenario is not computationally feasible.

Therefore, sampling methods need to be used. To solve instances of the TSAPU, the

SAA method [39] was implemented in C++ Language, using the CPLEX 12.1 Callable

Libraries [40]. SAA is based on the fact that the objective function of the problem involves

the expected value of a random variable. In fact, since ω̃ is a random variable, f(x, ω̃) is a

random variable for each x ∈ X too. Therefore, E[f(x, ω̃)] can be estimated statistically.

SAA uses exterior sampling, i.e., sampling is performed outside of the algorithm and does

not depend on its execution.

Given N ∈ N, let {ωt}Nt=1 be a random sample of size N from ω̃, where the ωt values

are independent and identically distributed (i.i.d.) observations of ω̃. Replacing ω̃ with

ω̃N � which has a distribution that is the empirical distribution of {ωt}Nt=1 � it is possible

to estimate E[f(x, ω̃)] with the following stochastic linear problem, called SAA problem:

ẑN = Min c⊤x+
1

N

N∑
t=1

f(x, ωt)

s.t. Ax ≥ b

x ∈ X.

(2.5)

The optimal solution x∗
N to problem (2.5) can be determined using any optimization

algorithm. The implemented code uses the L-Shaped algorithm to deal with the N

subproblems that derive from the chosen sample. This solution is not necessarily a valid

solution to the original problem (1.1). In fact, it is a valid solution for the considered

sample. This fact can be extended to the original problem if the problem has (relatively)

complete recourse. This is the case of the TSAPU formulations proposed, therefore x∗
N

is a feasible solution to the original problem. However, it is not necessarily the optimal

solution, as optimality is guaranteed for the chosen sample only.

Problem (1.1) has an optimal solution x∗ that corresponds to the optimal objective

value ẑ. With SAA, it is possible to provide both statistical lower and upper bound limits

to the z∗ value. The lower bound can be obtained observing that the optimal solution x∗
N

to a problem solved with a sample of size N provides, by de�nition, an objective value

that is at least as good as that provided by any other solution, including the optimal
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solution x∗ to the problem that considers the whole set of scenarios Ω, i.e.,

c⊤x∗
N + E[f(x∗

N , ω̃N)] ≤ c⊤x∗ + E[f(x∗, ω̃N)] (2.6)

Taking the expectation on both sides, the previous inequation becomes:

E[ẑN ] ≤ ẑ (2.7)

Inequation (2.7) indicates that the optimal objective value ẑ of problem (1.1) is lower

bounded by the expectation of the optimal objective value of problems solved for a sample

of size N . To get this expectation, it is necessary to solve M di�erent problems with

sample of size N , i.e., the SAA problem must be solved on M di�erent samples. This

corresponds to the following:

E[ẑN ] =
1

M

M∑
i=1

ẑiN (2.8)

where ẑiN is the optimal objective value of the problem solved on the i-th sample, i.e.,

ẑiN = Min c⊤x
N∑
t=1

1

N
f(x, ωt,i)

s.t. Ax ≤ b

x ∈ X

(2.9)

In practice, since the implemented code uses the L-Shaped algorithm to solve a problem

with a sample of size N , estimating ẑN requires M executions of the L-Shaped algorithm.

Once these computations are performed, it is possible to compute the (1−α) con�dence

interval for the lower bound. Denoting with LB the average objective value obtained by

the M replications, the Central Limit Theorem indicates the following convergence in

distribution: √
M(LB − E[ẑN ]) ⇒ N(0, V ar(ẑN)) for M → ∞ (2.10)

It is also necessary to de�ne the lower bound sample variance estimator, which is given

by:

S2
L(M) =

1

M − 1

M∑
i=1

(ẑiN − LB)2 (2.11)

De�ning zα s.t. P{N(0, 1) ≤ zα} = 1− α, it is possible to de�ne the (1− α) con�dence
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interval for the lower bound as follows:[
LB −

zα/2 · SL(M)√
M

,LB +
zα/2 · SL(M)√

M

]
(2.12)

After de�ning the lower bound, it is also possible to de�ne an upper bound to the

optimal solution value of the problem. The upper bound can be determined observing

that any feasible solution to the problem, including the N SAA problem solutions xi∗
N ,

with i ∈ [1, N ], are at most as good as the optimal solution to the original problem

calculated on the whole set of scenarios Ω. That is,

ẑ ≤ c⊤xi∗
N + E[f(xi∗

N , ω̃)] (2.13)

It is not possible to exactly compute the right-hand side because it would require to

compute function f for all scenarios ω ∈ Ω. Therefore, it needs to be statistically

estimated. To do so, it is necessary to generate M i.i.d. samples of size N >> N , i.e.,

{ωt,j}Nt=1 for j ∈ [1,M ]. The objective value associated with each sample j is de�ned by:

ẑj
N
(xi∗

N) = c⊤xi∗
N +

1

N

N∑
t=1

f(xi∗
N , ω

t,j) (2.14)

The estimation of the upper bound, calculated for the feasible solution xi∗
N , is de�ned as

follows:

UB(xi∗
N) =

1

M

M∑
j=1

ẑj
N
(xi∗

N) (2.15)

To formulate the con�dence interval of the upper bound, it is necessary to de�ne the

upper bound sample variance estimator as follows:

S2
U(M,xi∗

N) =
1

M − 1

M∑
j=1

(
ẑj
N
− UB(xi∗

N)
)2

(2.16)

Finally, with zα de�ned as for the lower bound, it is possible to formulate the (1 − α)

upper bound con�dence interval, calculated using solution xi∗
N :[

UB(xi∗
N)−

zα/2 · SU(M,xi∗
N)√

M
,UB(xi∗

N) +
zα/2 · SU(M,xi∗

N)√
M

]
(2.17)

The upper bound allows to determine the quality of a solution xi∗
N chosen from the N

SAA replications, compared with the lower bound that indicates how good the optimal
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solution could be. Con�dence intervals also allow to highlight the uncertainty on these

bounds: the narrower the intervals, the more precise they are. In the following section,

SAA lower and upper bounds are used to analyze the solutions to di�erent instances of

the TSAPU.

2.4 TSAPU Computational Results

In this section, the computational experiments performed using the mathematical model

described in �2.2 are presented. Ten realistic problem instances were generated following

real air tra�c pro�les from di�erent airports. Each instance represents a di�erent network

of interconnected airports, and considers four di�erent scheduled days. Due to the small

number of days considered, for all computational experiments the �rst-stage objective

function parameter w is set to 1, i.e., the schedule/request discrepancies have the same

weight as the sum of expected delays on all four scheduled days. Each day is subdivided

into 5' wide time instants. Nominal airport capacity is based on real data � where it was

possible to retrieve this information � or generated from the analysis of airport schedules.

Considered capacity constraints apply to departure, arrival and total �ight movements,

and they all have a one-hour duration. For example, a total capacity constraint of

20 movements at airport a and at the time instant corresponding to 10:00 imposes a

limitation of 20 total movements (arrivals and departures) between 10:00 and 11:00.

Capacity reduction scenarios are generated from real historical weather conditions at the

di�erent airports. Data on weather conditions spanning over one month were analyzed to

de�ne the di�erent scenarios. A single scenario represents a speci�c capacity realization

at each di�erent airport for the whole scheduling horizon. Flight movement requests are

generated from available real airport schedules. This generation involves perturbing the

time of departure and of arrival of certain �ights in order to simulate the real requests of

airlines prior the assignment of time slots. The perturbation consists in shifting both the

time of departure and of arrival of selected �ights either one time period in the past or in

the future. Selected �ights are those operated at �appealing time slots�, i.e., time slots of

periods of time at which an airport operates at its nominal capacity. Flight connectivity

is not implemented due to the lack of real information.

In the following, the ten considered instances are described. A list with the name and

International Civil Aviation Organization (ICAO) code for all airports included in each

instance is provided. The list of airports for each instance is preceded by an abbreviated

name with which instances are referred to in the following of this chapter.
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• 2europe: Munich (EDDM), Toulouse (LFBO)

• 3europe: Munich (EDDM), Venice Marco Polo (LIPZ), Paris Charles de Gaulle

(LFPG)

• 4europe: Lyon (LFLL), Helsinki-Vantaa (EFHK), Venice Marco Polo (LIPZ), War-

saw (EPWA)

• 5europe: Hamburg (EDDH), London Gatwick (EGKK), Copenhagen (EKCH),

Lisbon (LPPT), Basel-Mulhouse-Freiburg (LFSB)

• 6europe: Hamburg (EDDH), Edinburgh (EGPH), Liverpool (EGGP), Warsaw (EPWA),

Barcelona (LEBL), Porto (LPPR)

• west : Paris Charles de Gaulle (LFPG), Barcelona (LEBL), Milan Linate (LIML)

• southwest : Rome Fiumicino (LIRF), Barcelona (LEBL), Lyon (LFLL), Porto (LPPR)

• france: Paris Charles de Gaulle (LFPG), Toulouse (LFBO), Lyon (LFLL), Basel-

Mulhouse-Freiburg (LFSB)

• italy : Rome Fiumicino (LIRF), Milan Linate (LIML), Catania (LICC), Palermo

(LICJ), Cagliari (LIEE)

• large: Bergamo (LIME), Beauvais Tillé (LFOB), London Gatwick (EGKK), Tarbes-

Lourdes (LFBT), Rhodes International (LGRP), Menorca (LEMH), Porto (LPPR),

East Midlands (EGNX), Pisa (LIRP), Ibiza (LEIB)

Additional details on the size of each instance are provided in Table 2.3. Column

1 (Instance) provides the name of each instance. Columns 2 (Flights) and 3 (Mov.s)

provide the number of �ights and movements considered for each instance, respectively.

Notice that each �ight corresponds to a couple of movements, and movements can be

operated on multiple days, resulting in a number of movements smaller than that of

�ights in the table. Columns 4 (1st Cols) and 5 (1st Rows) provide the size of �rst-stage

problems, while columns 6 (2nd Cols) and 7 (2nd Rows) provide the size of (second-

stage) subproblems. Subproblems have the same size with the simpli�ed and time-linked

recourse formulations. Finally, column 8 (|Ω|) provides the total number of possible

scenarios for each instance, calculated with formula (2.4).

Furthermore, some insight on the level of congestion presented by each instance is

provided in Table 2.4. In column 2, the average number of movement requests per airport
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Table 2.3: Description of the instances

Instance Flights Mov.s 1st Cols 1st Rows 2nd Cols 2nd Rows |Ω|
2europe 5,675 3,392 42,648 6,116 2,280 4,170 3.5 · 107
3europe 10,795 6,492 82,332 13,061 3,468 8,428 3.7 · 106
4europe 5,969 3,724 46,919 12,952 4,632 10,570 8.5 · 107
5europe 9,267 6,402 81,057 15,716 5,760 10,939 5.5 · 1011
6europe 8,458 5,872 74,057 13,917 6,912 10,119 6.9 · 1013
west 9,962 6,010 76,100 10,539 3,468 6,312 1.7 · 106

southwest 9,058 5,712 72,447 11,591 4,620 7,539 5.0 · 1011
france 8,474 5,288 68,010 11,209 4,673 6,366 6.5 · 1010
italy 5,586 3,530 49,676 21,920 5,812 14,303 2.5 · 109
large 6,520 5,702 73,068 25,594 11,554 20,423 1.4 · 1017

that exceed available �instant capacity� is provided. The term �instant capacity� refers

to the result of the subdivision of total capacity, which is de�ned for a set of contiguous

time instants (in the considered case, the set spans over a one-hour horizon), over single

time instants, that are �ve-minute wide. Column 3 provides the average number of time

instants per airport at which demand is greater or equal to the instant capacity.

2.4.1 Experimental results

All instances were solved using both recourse formulations on a computer with Intel Xeon

E5620 dual core CPU at 2.40GhZ with 12 GB of RAM on a 64-bit Windows 7 operating

system. The model was solved using the SAA method described in �2.3, implemented

in C++ language using the CPLEX 12.1 libraries. To compute the lower bound, 20

SAA replications were performed for each instance (M = 20), using di�erent samples of

size 100 (N = 100). The SAA optimality gap varies between 1% and 5% depending on

Table 2.4: Instance congestion
Exceeding Congested

Instance demand/airport instants/airport
2europe 129.0 270.5
3europe 123.3 250.3
4europe 109.3 86.8
5europe 203.6 196.0
6europe 140.2 99.2
west 72.0 98.0

southwest 86.5 100.8
france 74.3 77.8
italy 469.8 174.6
large 375.0 189.2
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the instance. For instances taking a longer computation time, the gap was set to 5%,

while for �easy� instances the gap was set to 1%. To compute the upper bound, 20 SAA

replications were performed (M = 20), using samples of size 1000 (N = 1000).

The computational results for the simpli�ed and time-linked recourse formulations

are reported in Tables 2.5 and 2.6, respectively. The two tables share the following

structure. Column 1 (Instance) provides the name of each instance. Column 2 (LB)

shows the 95% con�dence interval for the lower bound. The solution out of the 20 SAA

replications whose value is the closest to the average value computed by the SAA is then

chosen to compute the upper bound value, whose 95% con�dence interval is reported

in column 3 (UB). Similarly, column 4 reports the 95% con�dence interval of the upper

bound computed using the solution of the problem that considers nominal capacity, i.e.,

without considering uncertainty. When values in column 3 are lower than values in

column 4 (Nom. UB), the TSAPU model provides an improvement over a model that

does not consider uncertainty. Columns 5 (1st N.) and 6 (1st U.) compare the �rst-stage

objective values, i.e., the schedule/request discrepancies, of the solution computed only

considering nominal capacity (column 5) and of the SAA solution chosen to compute the

upper bound (column 6). The larger the di�erence between these two values, the more

di�erent the schedules proposed with and without considering uncertainty. Finally, the

last two columns (LB t (h) and UB t (h)) provide the computation times for the lower and

upper bounds. Since computing the upper bound involves computing a large number of

subproblems that consider di�erent scenarios, the upper bound computation times re�ect

the level of di�culty of solving the subproblems. Comparing the values in the two tables,

it is possible to observe that it is equally di�cult to solve subproblems with simpli�ed or

time-linked recourse. However, simpli�ed recourse subproblems may be decomposed by

day, airport, and time into smaller independent problems, while time-linked recourse sub-

problems cannot be decomposed by time. Therefore, implementing parallel algorithms it

may be possible to achieve lower solution times with the simpli�ed formulation compared

with the time-linked formulation. Lower bound computation times, on the other hand,

can di�er greatly between simpli�ed and time-linked recourse due to the di�erent cuts

provided by subproblems. Averaging over the considered instance set, calculating the

lower bound appears to be faster using the simpli�ed recourse formulation, which takes

4.6h on average, against 5.2h needed by the time-linked recourse formulation. However,

this is an instance-dependent factor. For example, the lower bound for instance italy is

computed in 8.1h using the simpli�ed recourse formulation, while it only takes 5h to be

computed using the time-linked formulation.
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Table 2.5: Simplified recourse results

Instance LB UB Nom. UB 1st N. 1st U. LB t (h) UB t (h)
2europe [364.0, 388.7] [385.3, 391.5] [378.1, 386.5] 177 194 1.0 0.7
3europe [403.5, 428.4] [422.9, 429.5] [430.9, 439.4] 177 202 6.2 1.8
4europe [43.3, 44.2] [45.6, 45.8] [62.2, 62.8] 21 35 3.8 2.5
5europe [361.1, 365.3] [369.6, 371.0] [399.0, 400.2] 282 305 5.2 2.9
6europe [85.6, 95.6] [91.4, 94.4] [93.7, 96.5] 0 1 1.0 2.4
west [115.0, 137.9] [127.9, 136.2] [129.5, 137.5] 0 0 0.2 1.1

southwest [105.3, 109.7] [106.3, 107.8] [123.9, 125.6] 35 46 4.1 1.4
france [45.0, 45.7] [45.3, 45.5] [92.7, 93.3] 3 32 13.3 1.3
italy [468.8, 518.1] [466.1, 484.0] [526.8, 545.2] 41 108 8.1 5.4
large [726.5, 739.7] [728.0, 731.2] [736.7, 741.4] 608 612 3.7 10.1

Table 2.6: Time-linked recourse results

LB t UB t
Instance LB UB Nom. UB 1st N. 1st U. (h) (h)
2europe [620.9, 684.5] [652.7, 668.2] [685.5, 711.6] 177 274 4.4 0.6
3europe [675.0, 735.0] [739.2, 753.7] [745.7, 770.3] 177 344 10.7 1.9
4europe [43.3, 44.3] [43.7, 43.9] [62.2, 62.8] 21 32 3.9 2.5
5europe [371.9, 377.4] [374.5, 376.5] [410.6, 412.4] 282 316 4.9 2.9
6europe [184.2, 214.8] [201.9, 215.8] [206.9, 219.1] 0 1 0.7 2.5
west [524.4, 622.3] [581.8, 618.3] [612.8, 654.0] 0 70 1.2 1.1

southwest [114.6, 119.3] [117.9, 119.9] [133.3, 135.4] 35 44 4.0 1.4
france [45.0, 45.6] [50.5, 50.7] [92.7, 93.3] 3 40 12.7 1.3
italy [2,978.5, 3,370.1] [2,896.7, 3,037.1] [3,138.3, 3,354.0] 41 487 5.0 5.4
large [984.0, 1,046.4] [1,024.0, 1,038.5] [1,030.1, 1,052.1] 608 644 4.1 10.0

2.4.2 Results interpretation

The utilization of the described TSAPU model leads to the proposal of a tradeo� be-

tween schedule quality, i.e., the schedule/request discrepancies, and future delays. The

di�erence between columns 6 (1st U.) and 5 (1st N.) from Tables 2.5 and 2.6 corresponds

to the �cost� of the proposed new schedule. In fact, column 6 shows the schedule/request

discrepancies of the proposed schedule, while column 5 shows the schedule/request dis-

crepancies of the optimal schedule, which is the minimum possible value. This tradeo�

is analyzed in Table 2.7. Here, in columns 2 and 5 the �price� to pay in terms of �rst-

stage delay for the simpli�ed and time-linked recourse formulations is shown. Paying

this �price� it is possible to reduce future demand-capacity imbalances. This bene�t is

evaluated by comparing the second-stage cost estimated by using the nominal solution,

which guarantees schedule optimality, with that estimated by using the solution computed

with SAA. The value of this bene�t is shown in columns 3 and 6. The decision maker can

evaluate this tradeo� and decide whether to keep the schedule that only minimizes the
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schedule/request discrepancies or to opt for a more robust one, that allows to save delay

on the day of operation of �ights. The percentage of global gain in terms of objective

value that arises from using the schedule proposed by solving the proposed model is also

shown in columns 4 and 7.

The global gain that can be achieved with the discussed tradeo� di�ers greatly

instance by instance. With the simpli�ed recourse formulation it is possible to provide

improvements in nine out of ten cases. Using the time-linked recourse formulation,

which is more precise than the simpli�ed recourse formulation, it is possible to provide

improvements for all considered instances. However, the degree of improvement can range

from very limited (see large, 3europe and 6europe, where improvements do not exceed

2%) to very relevant (see southwest, 4europe and france, where improvements are over

10%, with the last instance showing an improvement of over 45%).

The simpli�ed and time-linked formulations lead to schedules that can be very dif-

ferent. For example, consider instance west. Using the simpli�ed recourse formulation

one would choose an optimal schedule, di�erent from the originally selected one (there

are multiple optimal schedules), that provides some future bene�t. On the other hand,

using the time-linked recourse formulation, the �rst-stage objective increases from 0 to

70, indicating a much di�erent proposed schedule. This results in a larger future bene�t,

as can be observed in Table 2.7: there are 103.3 fewer capacity violations on the day of

operation, compared with 1.4 fewer capacity violations obtained using simpli�ed recourse.

This analysis can be seen as a method that can be applied to suggest possible

improvements that can make a schedule more robust. In particular, Table 2.7 constitutes

a good instrument for evaluating the proposed results, indicating di�erent possible actions

from case to case.

Table 2.7: Delay tradeoff

Simpli�ed recourse Time-linked recourse
Instance 1st Add. 2nd Saved Global gain 1st Add. 2nd Saved Global gain
2europe 17 10.9 -1.6% 97 135.1 5.5%
3europe 25 33.9 2.1% 167 178.5 1.5%
4europe 14 30.8 26.9% 11 29.7 29.9%
5europe 23 52.3 7.3% 34 70.0 8.7%
6europe 1 2.9 2.0% 1 5.2 2.0%
west 0 1.4 1.1% 70 103.3 5.3%

southwest 11 28.7 14.2% 9 24.5 11.5%
france 29 76.6 51.2% 37 79.4 45.6%
italy 67 128.0 11.4% 446 725.3 8.6%
large 4 13.5 1.3% 36 45.8 0.9%
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2.5 TSAPU Conclusions

In this chapter, a two-stage stochastic programming model for the TSAPU with two

alternative formulations was presented. This model has the goal of determining robust

�ight schedules, i.e., schedules that consider both airline requests for time slots and future

delay on the day of operation that can be expected by using a speci�c schedule.

Today, slot allocation practice su�ers several ine�ciencies. Slot coordinators have to

make complex decisions with limited support from rule-driven slot management appli-

cations. These decisions are made locally, despite having a relevant network e�ect, as

assigning a departure time slot at some airport needs to correspond to the assignment of

a speci�c arrival time slot at another airport. Local decisions are currently coordinated

with biannual conferences, which constitute a big overhead in the decision making process.

Furthermore, the regulatory framework on slot allocation needs to be improved to achieve

a more e�cient use of scarce capacity, notably through the use-it-or-lose-it rule, the new

entrant rule, revenue neutral measures and secondary trading, see [41].

The proposed TSAPU model constitutes a new decision support tool for slot coor-

dinators, as they can use it to assign time slots according to airline requests and the

future impact of the schedule. Two alternative formulations which consider multiple

airports at the same time are proposed, thus taking into account the complex network

interdependency that is not considered when schedules are proposed locally.

The contribution to literature of this work is in providing a model that, to the best of

the author's knowledge, is the �rst model for time slot allocation that considers multiple

airports being scheduled as a whole network and the uncertainty on future capacity

realizations. The model does not implement any of the existing IATA rules for time

slot allocation (e.g., it does not consider di�erent priority rules for �ights) and is based

on optimization criteria only. It is however possible to easily align it with the existing

IATA slot allocation procedures by applying the model sequentially to each priority class,

i.e., �rst allocating requests holding �grandfather rights�, then allocating 50% of the

new capacity, including withdrawn and surrendered slots, to requests of �new entrants",

and �nally allocating all remaining time slot requests. This would lead to much faster

solutions for each subproblem than the times reported in �2.4, as each of them would be

of smaller dimensions.

The practical impact of the discussed model is that it can be a useful tool for slot

coordinators to evaluate the tradeo� between the distance of the schedule from airline

requests and future delays. In fact, by paying a �cost� given by an increased distance
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of the schedule from airline requests, it is possible to obtain a reduction of delays that

are expected to occur on the day of operation of the �ights. As highlighted in �2.4, this

tradeo� can range from very limited to highly bene�cial. In one of the instances, it was

possible to reduce total delay costs, i.e., the sum of the schedule/request discrepancies

and operational delays, by over 45% using the time-linked recourse formulation, which

is the most precise formulation proposed. It should also be noted that another possible

interpretation of the results is determining the optimal capacity levels at each considered

airport that minimize the sum of schedule/request discrepancies and operational delays.

The computation times obtained are viable for the application, as they are consistent

with the time constraints associated with the current decision making interaction between

slot coordinators and airlines, which is a process spanning over several days. Good results

and computational viability together show that the proposed approach is very promising

and deserves further investigation, as it may lead to relevant monetary bene�ts for airlines

and all other stakeholders. Future research will �rst focus on the analysis of the fair

distribution of the schedule/request discrepancies among �ights. This involves changing

the objective function to include fair time slot allocation among di�erent �ights, to avoid

over-penalizing a small set of �ights while favoring other �ights. This analysis should

then be extended to fair allocation among airlines, however this development depends on

the availability of complete real �ight data that were not available for this study. Also,

these promising results should be studied further, involving wider networks of coordinated

airports and considering a larger scheduling horizon. Both factors are critical as they will

make the problem of larger scale, however the discussed subdivision of the problem into

smaller subproblems considering �grandfather rights� from IATA rules will help mitigate

this increase in the size of the problem to solve. Future research will therefore be focused

on showing that such problems are also solvable within acceptable computation times.
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TACTICAL DECISION MAKING

Most air tra�c works available in literature face decision problems at the tactical phase,

which takes place on the day of operation of �ights. Di�erent decisions can be made

considering heterogeneous factors. Two main problems that involve �ight schedules at

this phase can be identi�ed: the Ground Holding Problem (GHP) and the Air Tra�c Flow

Management (ATFM) problem. The GHP is typically faced either as the Single-Airport

GHP (SAGHP) or the Multi-Airport GHP (MAGHP). The GHP only de�nes ground

holding policies at di�erent airports to regulate air tra�c. ATFM, on the other hand,

usually de�nes the whole �ight plan, with ground holding being one of the considered

control options. The de�nition of complete �ight plans is important when the airspace

may be congested, which applies to the European case more than to the U.S. case.

However, since solutions are more into detail, ATFM models are more di�cult to solve

than GHP models. For example, computational results for a ground holding model

proposed in 1998 by Andreatta et al. [42, 43] report computation times of less than 20'

for instances with over 20,000 �ights, while it is still very challenging to solve instances

that consider the same number of �ights with ATFM models within similar computation

times nowadays. A review of models for these tactical air tra�c problems is provided by

Agustín et al. [44], in which both SAGHP and MAGHP models are described, as well as

deterministic and stochastic models for the ATFM problem.

Two di�erent problems that arise at the tactical phase are faced in this chapter.

The �rst problem involves ATFM considering the uncertainty on capacity availability.

This is the same kind of uncertainty considered in the strategic phase, but uncertainty
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is now much lower, i.e., the number of possible scenarios is limited. This problem is

called Stochastic Air Tra�c Flow Management (SATFM) problem, and is discussed in

�3.1. A stochastic optimization model to solve it is proposed in �3.2, and an ad-hoc

heuristic to solve its instances is described in �3.3. In �3.4, the results are shown for the

computational experiments performed on a set of realistic instances, and conclusions are

discussed in �3.5.

The second tactical problem faced also involves ATFM. Di�erently from the problems

faced so far, it does not consider the uncertainty on capacity availability. The uncertainty

considered by the second problem is the implicit uncertainty on the time of departure

of �ights, i.e., the fact that a �ight may not be able to depart at its scheduled time

due to operational problems. To solve this problem, time windows are used, and the

problem is therefore called the Air Tra�c FlowManagement problem with TimeWindows

(ATFMTW). This problem is illustrated in �3.6, and a deterministic optimization model

to solve it is presented in �3.7. The model is solved using a standard optimization solver,

and it was tested on a set of simulated instances. The results of the computational

experiments are illustrated in �3.8. Finally, the conclusions and future directions of

research are discussed in �3.9.

3.1 The Stochastic Air Tra�c Flow Management

Problem

The need to operate a growing number of �ights is not currently accompanied by a

su�cient increase of the resources needed to operate them. This fact is at the origin of

congestion at airports and in the airspace, especially terminal airspace around airports.

The increasing gap between demand for operations and the availability of resources leads

to the need for the air tra�c industry to manage its operations e�ciently. ATFM faces

the problem of regulating air tra�c in order to avoid congestion. It is a typical problem

that arises at the tactical phase, when �ight plans need to be de�ned. ATFM decisions

are typically not revised once a �ight departs from the airport and enters the air tra�c

system.

The ATFM problem is widely faced in literature, considering a lot of di�erent aspects.

In particular, it is possible to subdivide ATFM models into two categories: deterministic

and stochastic models. In this chapter, both kinds of models are formulated. First, in the

current section, uncertainty on capacity availability is explicitly considered, identifying a
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set of possible di�erent capacity realizations. To do so, a stochastic programming model

that captures and represents the network e�ect of the ATFM problem is developed and

implemented. Then, in �3.6, a di�erent ATFM problem is faced, which is formulated with

deterministic programming. Due to the di�culty of solving complex stochastic problems

within short computational times, as required by ATFM problems, most related models

do not consider any stochastic aspect. Stochastic models for the ATFM problem typically

present some simpli�cation in their formulation in order to keep the solution times low.

A review of the literature on stochastic models for the ATFM and ground holding

problems is now presented. An early stochastic model of the ground holding problem

in air tra�c control was proposed by Richetta and Odoni [45]. This model presents

the multi-period dynamic stochastic ground holding problem for a single destination

airport, providing a dynamic multi-stage stochastic integer programming formulation

with recourse actions. Ground delay decisions are made at each stage as the weather

forecasts are the most up-to-date. The stochastic model is simpli�ed by making ground

holding decisions on groups of aircraft de�ned according to di�erent characteristics.

Alonso et al. [46] later presented a stochastic multi-stage 0-1 model and a robust

algorithmic framework for ATFM with sector and airport capacity uncertainty based

on the Bertsimas-Stock model [47]. The authors propose two alternative versions based

on simple and full recourse, which are compared with the deterministic problem that

considers capacity expectation. The integer solution is reported to be within 0.25%

of the optimal relaxed solution in most of the cases, indicating a good mathematical

formulation.

Nilim and El Ghaoui [48] developed a stochastic dynamic programming algorithm for

ATFM where the evolution of the weather is modeled as a stationary Markov chain. Their

results provide a dynamic routing strategy that minimizes the expected system delay.

Performed simulation suggests that a signi�cant improvement in delay can be obtained by

using their approach. Mukherjee and Hansen [49] developed a linear dynamic stochastic

optimization model for ATFM that considers uncertainty a�ecting both airport and sector

capacity. The authors focused on the case of a single destination airport with a small

number of arrival �xes subject to reduced capacity due to bad weather, with the main

decisions assigning ground holding delays and local rerouting of inbound �ights. Their

experiments, conducted using data from the Dallas/Fort Worth International Airport,

show that when weather impact is severe and persistent, substantial bene�ts in terms

of delay savings are achieved by dynamically rerouting �ights. Chang [50] analyzed

stochastic programming approaches to ATFM under weather uncertainty in his PhD
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thesis. First, he proposes a two-stage SIP that indicates how aircraft should be sent

toward a sector subject to weather uncertainty. However, due to the large number

of weather scenarios, the model is intractable in practice. This issue is faced using a

rolling horizon method that involves Lagrangian relaxation and the subgradient method.

The two-stage model is then extended to the multi-stage version of the problem, which

increases the number of possible weather realizations.

Andreatta et al. [51] formulated an aggregated stochastic model for the ATFM

problem under airport capacity uncertainty. The authors consider the multi-airport

capacity allocation problem to manage congestion phenomena in ATFM. Their model

suggests how many �ights should be delayed during each time period under consideration,

rather than providing detailed information. The objective is to compute an optimal mix of

arrivals and departures for a given network of airports that minimizes the total delay over

all the airports during the periods of congestion. Computed solutions are consistent with

the Collaborative Decision Making (CDM) procedure in ATFM, which is widely adopted

in the U.S. and is of great interest in Europe. Computational results for a maximum

of 12 airports with 60 scenarios are reported. The Value of the Stochastic Solution

(VSS) is reported around 5.74% on average. The results for the instances indicate a

tradeo� between a higher number of departures and a lower number of arrivals at both

airports, compared to the deterministic solution. The �rst-stage stochastic solution is less

restrictive, in terms of ground delay assignment, than the corresponding deterministic

solution.

A. Agustín et al. [52] presented a framework for modeling multi-stage mixed 0-1

problems for ATFM with rerouting under uncertainty on airport and air sector capacities

and �ight demand. Five di�erent objective functions are considered, and a scenario tree

based scheme is used to represent the Deterministic Equivalent Model (DEM) of the

stochastic mixed 0-1 program with full recourse. The nonanticipativity constraints that

equate the common 0-1 and continuous variables from the same group of scenarios in each

period are implicitly satis�ed in the compact representation of the DEM. Computational

experiments are reported for medium-scale instances. The authors report that the model

is so tight that the branch-and-cut phase from a commercial MIP solver is not required

for most instances.

Bertsimas and Gupta [53] presented the �rst application of robust and adaptive

optimization to the ATFM problem. They consider the stochastic ATFM problem

with uncertainty on airport and sector capacity induced by weather, incorporating both

adaptability and robustness. An uncertainty set for robust optimization is constructed
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based on a small number of bad weather fronts moving across di�erent parts of the

U.S. National Airspace System (NAS). Tractable solution methodologies are proposed,

and the equivalence of the robust problem to a new deterministic instance is proven.

Computational experiments are reported on instances based on real data augmented

with simulated weather fronts. Instances of the robust problem that consider a number

of �ights between 500 and 1,000 are solved in solution times that range between 6' and

78'. The authors highlight that the robust problem inherits the attractive properties

of the deterministic problem, and that the price of robustness is typically small. In the

following section, a new stochastic model for the ATFM problem that considers stochastic

capacity availability at airports and air sectors is discussed.

3.2 Stochastic optimization model

A new two-stage stochastic integer programming model for the SATFM problem is now

presented. This model considers a geographical area that includes the corresponding

available airspace and a network of selected airports. Its objective is to minimize the

cost of delays of �ights scheduled over a speci�c time horizon at these airports. Both

airport and sector capacity constraints are considered, taking the related uncertainty due

to bad weather conditions into account. Information on possible capacity reductions can

be derived from available weather forecasts. The model produces �ight plans that are

robust against the bad weather fronts that are expected on the considered airspace.

To formulate the proposed model, some assumptions are made, and a speci�c set of

control options is considered. The rerouting option for �ights is considered. However,

for each �ight only a �small" set of possible routes is considered. This is important for

the computational experiments. Control options also include the possibility to assign

both ground holding and airborne delay. However, airborne delay is assumed to be

only assignable to a �ight in the terminal area of its destination airport, i.e., the last

sector in the �ight route, therefore speed adjustment along the route is not considered.

In view of this assumption, the sector �ight time for each �ight is considered constant

and known in advance, except for the last sector before the destination airport, where

airborne delay can take place. This assumption is motivated considering that the model

is executed at the tactical phase, and including more operational decisions in the model

at this phase is somewhat questionable. Furthermore, in most ATFM instances, it may

not even be possible to capture such e�ect. Indeed, the time spent by a �ight to cross

a sector is usually at most 20 minutes. The speed variation of a �ight is of the order of
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few percentage points. Supposing a 10% �ight speed reduction, the �ight time is equal

to 22 minutes. With the time horizon divided into 10 or 15-minute time instants, it is

not possible to detect or measure the delay due to operational decisions.

Two di�erent sets of decisions that can be made on �ights are proposed in the

following, which result in two di�erent formulations for the model. Such formulations are

referred to in the following as �ight plan formulation and route formulation. Flights are

subdivided into three sets in both formulations, with the two formulations only di�ering

on the de�nition of the second set of �ights. The three sets of �ights are de�ned as

follows:

• Set F1. On upcoming �ights, a �nal �ight plan is de�ned. The departure time is

�xed and cannot be delayed. The arrival time may be delayed by applying airborne

delay to �ights. This de�nition is valid for both formulations.

• Set F2. For the following �ights, an initial �ight plan is determined in the �ight

plan formulation. This �ight plan is evaluated over future scenarios and both

ground holding and airborne delays may be applied. For the route formulation,

only the route is chosen for this set of �ights, without de�ning a complete �ight

plan.

• Set F3. Flights that are far away into the future are only used to estimate the cost

of their delays using their standard (most commonly used) route at each scenario

realization. Delay decisions are not applied in practice, as they are only made for

the sake of future cost estimation. This de�nition is valid for both formulations.

An example of use of this subdivision of �ights is illustrated in Figure 3.1, where an

eight-hour time horizon is considered. Flights departing in the �rst hour of this time

horizon belong to F1. Flights departing in the following two hours belong to F2. Finally,

�ights departing in the �nal �ve hours of the time horizon belong to F3. A �nal decision

is made on the departure time of upcoming �ights, i.e., �ights departing between 8:00

and 9:00, and an initial �ight plan (or the preferred route, in case of use of the route

formulation) is determined for �ights taking place in the next two hours.

In the following, the two mathematical formulations proposed for the new model are

illustrated. The notation, decision variables, objective function and constraints for the

�rst and second-stage of the formulations are provided in �3.2.1 and 3.2.2, respectively.
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Figure 3.1: Time horizon subdivision for determining flight categories

3.2.1 First-stage formulations

Notation

The �rst-stage formulations use the following notation:

A ≡ set of airports, indexed by a

S ≡ set of sectors, indexed by s

F1 ≡ set of �ights for which a �nal decision is made on the departure time

F2 ≡ set of �ights for which an initial �ight plan is computed

F ≡ set of �ights, F = F1 ∪ F2, indexed by f

F ≡ set of �ights scheduled in the �rst-stage, F = F for the �ight plan

formulation, F = F1 for the route formulation

Rf ≡ set of routes that can be �own by �ight f ∈ F , indexed by r

gf : Rf → 2|S| ≡ map that assigns each route the subset of sectors included in it

origf ≡ airport of origin of �ight f

destf ≡ airport of destination of �ight f

T ≡ set of discrete time periods

τ fr,j ≡ minimum �ight time of �ight f ∈ F to get from the departure airport

to airport/sector j ∈ S ∪ destf . For sectors, the �ight time is �xed

ftf ≡ minimum �ight time of �ight f ∈ F from origin to destination

TIfa ≡ planned time of use of airport a by �ight f

TF f
a ≡ last instant at which �ight f may use airport a, considering the

maximum ground holding and airborne delays allowed

T f
a ≡ set of discrete time periods at which �ight f may use airport a

following any route, T f
a = [TIfa, TF

f
a]

T ′
j ⊆ T ≡ set of time instants at which capacity is deterministic for airport/sector j

T ′′
j ⊆ T ≡ set of time instants at which capacity is stochastic for airport/sector j
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P ≡ set of �ights (f, f ′), with f, f ′ ∈ F , that are connected, with corresponding

turnaround time lff ′

αt
a, β

t
a, γ

t
a ≡ departure, arrival and total capacity available at airport a at time t.

For t ∈ T ′
a capacity is deterministic, for t ∈ T ′′

a the value represents the

maximum available capacity

θts ≡ capacity available at sector s at time t. For t ∈ T ′
s, capacity is deterministic.

For t ∈ T ′′
s , it represents the maximum available capacity

Lf
j ≡ set of airport/sectors preceding airport/sector j over any route r for �ight f

N f
j ≡ set of airport/sectors following airport/sector j over any route r for �ight f

GD ≡ maximum ground holding delay that can be assigned to a single �ight

AD ≡ maximum airborne delay that can be assigned to a single �ight

Decision variables

In the �rst-stage, a decision is made on the complete �ight plan for �ights in F1 in

both formulations, and for �ights in F2 for the �ight plan formulation. A decision on

the complete �ight plan means that the solution provides departure and arrival times at

airports for �ights, as well as the route to follow. Since the �ight time between sectors is

�xed, the departure time and the chosen route de�ne sector entry times too. The decision

at the origin is made by variables xofr (t). At the destination airport, the arrival time is

de�ned by variables xdf (t), considering that airborne delay may take place in the last

sector of the �ight route only. For the route formulation, only the route is chosen in the

�rst-stage for �ights in F2. The decision on the route is made by using the yfr variables,

which are not de�ned for the �ight plan formulation.

xofr (t) =

{
1, if �ight f ∈ F departs from airport origf by time t following route r,

0, otherwise.

xdf (t) =

{
1, if �ight f ∈ F arrives at airport destf by time t,

0, otherwise.

yfr =

{
1, if �ight f ∈ F \ F follows route r,

0, otherwise.

Objective function

As is the case with most ATFM models from literature, the proposed model minimizes a

function which is a combination of the costs of airborne delay � denoted with AH � and
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ground holding delay � denoted with GH. The objective function has the two following

properties:

1. A unit of airborne delay is more expensive than a unit of ground holding delay;

2. Flight delays are assigned �fairly".

Fairness of delay assignment asks for delays to be evenly distributed over di�erent

�ights when such a distribution is possible. Accumulating all the delay on a single �ight

is an �unfair" decision. Hence, the objective function is de�ned as a super-linear function

of the tardiness of a �ight, i.e., it is the sum over the set of all �ights of AH1+ϵ2 and

GH1+ϵ1 . De�ning ϵ2 > ϵ1 it is possible to guarantee property 1, as airborne delay will be

more expensive than ground holding delay. If ϵ1 and ϵ2 are close to zero, i.e., the terms

of the objective function are slightly super-linear, the following approximation can be

made:

AH1+ϵ2
f +GH1+ϵ1

f = AH1+ϵ2
f +GH1+ϵ1

f +GH1+ϵ2
f −GH1+ϵ2

f
∼= TD1+ϵ2

f −(GH1+ϵ2
f −GH1+ϵ1

f )

where TDf = AHf +GHf is the total delay of �ight f .

As �rst described by Lulli and Odoni [54], using total delay helps to overcome the

following complication. If airborne and ground holding delay costs are accounted for

separately � as is the case in most of the models from the existing literature � there is

no distinction between the two following solutions. The �rst delays only one �ight by

assigning it one unit of airborne delay and one unit of ground holding delay. The second

delays two �ights by assigning one unit of ground holding delay to the �rst and one unit

of airborne delay to the second. By contrast, if total delay is used, the model will favor

the latter alternative, which is a preferable solution as it is more fair.

Summarizing, the objective function is composed of two terms. The �rst term provides

the cost of the total delay assigned to a �ight. The second term accounts for the cost

reduction obtained when a part of the total delay takes place on the ground, before taking

o�. Hence, for each �ight f ∈ F and for each time period t ∈ T , the following two cost

coe�cients are de�ned:

cftd(t) = (t− af )
1+ϵ2 ≡ total cost of delaying �ight f by (t− af ) units

of time

cfg (t) = (t− df )
1+ϵ2 − (t− df )

1+ϵ1 ≡ cost reduction obtained by holding �ight f on the

ground for (t− df ) units of time
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where af = TIfdestf and df = TIforigf are the scheduled arrival and departure times of

�ight f , respectively. The objective function can now be formulated as follows:

Min
∑

f∈F ,t∈T f
destf

cftd(t) ·
(
xdf (t)− xdf (t− 1)

)
− (3.1a)

∑
f∈F ,r∈Rf ,t∈T f

origf

cfg (t) ·
(
xofr (t)− xofr (t− 1)

)
+ E[f(xo, xd, ω̃)]

Constraints

The objective function is optimized over the set of feasible solutions described by the

following sets of constraints.

Capacity constraints ∑
f∈F ,r∈Rf

(
xofr (t)− xofr (t− 1)

)
≤ αt

a ∀a ∈ A, t ∈ T (3.1b)

∑
f∈F

(
xdf (t)− xdf (t− 1)

)
≤ βt

a ∀a ∈ A, t ∈ T (3.1c)

∑
f∈F

(
xdf (t)− xdf (t− 1) +

∑
r∈Rf

(
xofr (t)− xofr (t− 1)

))
≤ γt

a ∀a ∈ A, t ∈ T (3.1d)∑
f∈F ,r∈Rf :s∈gf (r)

(
xofr (t− τ fr,s)− xofr (t− τ fr,s − 1)

)
≤ θts ∀s ∈ S, t ∈ T (3.1e)

Constraints (3.1b), (3.1c) and (3.1d) enforce the departure, arrival and total capacity

limitations at airports, respectively. Sector capacity constraints are de�ned by (3.1e).

The capacity of a sector s ∈ S is de�ned as the maximum number of entries in the sector

per time period, according to the European de�nition of sector capacity. It is however

possible to easily adapt the model to the U.S. de�nition of sector capacity, which considers

the number of �ights present in a sector at a given time period. Constraints (3.1f) provide

the sector capacity de�nition for the U.S..

∑
f∈F ,r∈Rf :s∈gf (r)

(
xofr (t− τ fr,s)−

{
xofr (t− τf

r,Nf
r (s)

) if Nf
r (s) ̸= destf

xdf (t) otherwise

)
≤ θts ∀s ∈ S, t ∈ T

(3.1f)
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Route selection ∑
r∈Rf

yfr = 1 ∀f ∈ F \ F (3.1g)∑
r∈Rf

xofr (TF
f
origf

) = 1 ∀f ∈ F (3.1h)∑
r∈Rf

xofr (t− τ fr,destf ) ≥ xdf (t) ∀f ∈ F , t ∈ T f
D(f) (3.1i)

xdf (t+ ftf + AD) ≥
∑
r∈Rf

xofr (t) ∀f ∈ F, t ∈ T f
origf

(3.1j)

xdf (TF f
destf

) = 1 ∀f ∈ F (3.1k)

These constraints take care of the routes followed by �ights. To ensure that exactly

one route is selected for each �ight, constraints (3.1g) take care of �ights from set F2

for the route formulation, while constraints (3.1h) take care of �ights from set F1 and

for �ights from set F2 for the �ight plan formulation. Constraints (3.1g) are not present

in the �ight plan formulation. Constraints (3.1i) guarantee that the minimum �ight

time for the chosen route is respected. Constraints (3.1j) guarantee that the maximum

airborne delay is not exceeded. Finally, constraints (3.1k) guarantee the arrival of a �ight.

Connectivity

xdf (t) ≥
∑
r∈Rf

xof
′

r (t+ lff ′) ∀(f, f ′) ∈ P , t ∈ T f
destf

: t+ lff ′ ∈ T f
origf ′

(3.1l)

Constraints (3.1l) guarantee that the turnaround time between connected �ights is re-

spected, by properly spacing the arrival and departure movements of two connected

�ights.

Decision variables de�nition

xofr (t) ≤ xofr (t+ 1) ∀f ∈ F , r ∈ Rf , t ∈ T f
origf

(3.1m)

xdf (t) ≤ xdf (t+ 1) ∀f ∈ F , t ∈ T f
destf

(3.1n)

xofr (t), xd
f (t), yfr ∈ {0, 1} f ∈ F , r ∈ Rf , t ∈ T f

origf
∪ T f

destf
(3.1o)

Constraints (3.1m) and (3.1n) guarantee that the xofr and xdf decision variables mono-

tonically increase over time. Finally, constraints (3.1o) de�ne decision variables as binary.
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The proposed formulations are advantageous as the number of variables for each

�ight f is small. For example, consider a �ight for which a complete �ight plan should

be de�ned. The number of variables needed for the departure movement is equal to

the number of time instants at which the departure may take place, multiplied by the

number of routes it may follow. If the considered �ight has three alternative routes and

a maximum ground holding delay of 90', the number of variables to de�ne its departure

is 6 · 3 = 18, considering a time horizon subdivided into 15' time instants. For the

arrival, possible airborne delay in the last sector of a route has to be taken into account.

However, it is not necessary to make a decision on the route, as all routes lead to the same

airport, reducing the number of variables needed. If the maximum airborne delay for the

considered �ight is 30', the number of variables is equal to eight (six for ground holding

delay, plus two for airborne delay). The total number of variables for the considered �ight

is equal to 21. Notice that the number of variables needed to represent the complete route

of a �ight is independent of the number of sectors it may �y through. This property is

valid for the assumption of �xed �ight times between sectors. Also, there is no need to

formulate explicit constraints on the sequence of sectors a �ight may �y through. This is

due to the de�nition of the xdfr (t) variables, which make a joint decision on the departure

time and the route to be followed by a �ight.

3.2.2 Second-stage formulations

Notation

The second-stage formulations present the following additional notation:

F3 ≡ set of �ights for which future delays are only evaluated on their

standard route

F ≡ set of �ights that may be assigned ground holding delay, F = F2 ∪ F3

F ′ ≡ set of all �ights, F ′ = F ∪ F3, indexed by f

dat ≡ amount of departure capacity reserved to �ights of set F1 at airport a

and time t in the �rst-stage

cst ≡ amount of capacity reserved to �ights of set F1 at sector s and time t

in the �rst-stage, with s not being the �ights' terminal sector

Ω ≡ set of scenarios, indexed by ω
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αa
t (ω), β

a

t (ω), γ
a
t (ω) ≡ departure, arrival and total capacity available at airport a at

time t under scenario ω

θ
s

t(ω) ≡ capacity of sector s at time t under scenario ω

Furthermore, notation from the �rst-stage is expanded to consider �ight f ∈ F3

too. Notice that the route set for these new �ights is formed by a single element, which

represents the preferred route.

Decision variables

The decision variables used in the second-stage are the following:

zofr (t) =

{
1, if �ight f ∈ F departs by time t following route r

0, otherwise.

zdf (t) =

{
1, if �ight f ∈ F ′ arrives at destination by time t

0, otherwise.

These decision variables are of the same form as the xofr (t) and xdf (t) variables from

the �rst-stage and determine when a �ight departs/arrives from/at airport a, along with

the chosen route. Notice that these decision variables are only de�ned at the destination

airport for �ights f ∈ F1, as such �ights may only be assigned airborne delay. The route

to be followed is �xed by the constraints, as it is either set in the �rst-stage for �ights

f ∈ F , or it is the standard route for �ights f ∈ F3.

Objective function

In the second-stage, �ights belonging to set F1 can only be assigned additional airborne

delay. Under a �ight plan formulation, �ights belonging to set F2 may receive additional

ground holding or airborne delay, and they follow the route r ∈ Rf chosen in the �rst-

stage. Under a route formulation, they are only required to follow a speci�c route chosen

in the �rst-stage, with delay being calculated over this route. Furthermore, the delay to

assign to �ights that belong to set F3 is estimated for each scenario realization ω ∈ Ω

considering their execution over their standard route rf , i.e., the route they use the most

frequently. The second-stage objective function is de�ned as follows:

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 51
in the Air Tra�c Domain



Chapter 3. Tactical decision making

f(xo, xd, ω) = Min
∑

f∈F ′,t∈T

cftd(t) ·
(
zdf (t)− zdf (t− 1)

)
−

∑
f∈F ,r∈Rf ,t∈T

cfg (t) ·
(
zofr (t)− zofr (t− 1)

)
− (3.2a)

(F1 ground delay cost + F delay cost)

This objective function is the summation of the additional delay cost assigned to

�ights that belong to F and the estimate of the cost of delays assigned to �ights that

belong to F ′ \ F . Cost coe�cients cftd(t) and cfg (t) are naturally extended to �ights

f ∈ F ′ \ F . To only consider additional costs for �ights f ∈ F , the cost of delay of their

original schedule is subtracted from their total delay cost. Since the second addend does

not consider �ights in F1, it is necessary to separately subtract the ground delay cost for

these �ights. This cost can be retrieved from the �rst-stage objective value. This is also

done to retrieve the delay cost assigned in the �rst-stage to all �ights f ∈ F . Since they

are both constant values, they do not in�uence the second-stage decision. It is however

important to include them in the objective function to give the second-stage objective

function its correct weight in the two-stage decision making process.

Constraints

The second-stage formulations have the following sets of constraints.

Capacity constraints

∑
f∈F ,r∈Rf

(
zofr (t)− zofr (t− 1)

)
≤
{

αa
t − dat ∀a ∈ A, t ∈ T ′

a

αa
t (ω) ∀a ∈ A, t ∈ T ′′

a

(3.2b)∑
f∈F ′

(
zdf (t)− zdf (t− 1)

)
≤
{

βa
t ∀a ∈ A, t ∈ T ′

a

β
a

t (ω) ∀a ∈ A, t ∈ T ′′
a

(3.2c)∑
f∈F ,r∈Rf

(
zofr (t)− zofr (t− 1)

)
+
∑
f∈F ′

(
zdf (t)− zdf (t− 1)

)
≤
{

γa
t − dat ∀a ∈ A, t ∈ T ′

a

γa
t (ω) ∀a ∈ A, t ∈ T ′′

a

(3.2d)
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∑
f∈F ,r∈Rf :s∈gf (r)

(
zofr (t− τ fr,s)− zofr (t− τ fr,s − 1)

)
≤
{

θst − cst ∀s ∈ S, t ∈ T ′
s

θ
s

t (ω) ∀s ∈ S, t ∈ T ′′
s

(3.2e)

Constraints (3.2b) are the second-stage equivalent of constraints (3.1b), de�ned for

time instants with deterministic and stochastic departure capacity. The �rst possible

right-hand side term corresponds to the residual capacity available after scheduling

�ights f ∈ F1, while the second right-hand side term considers stochastic capacity only.

Similarly, constraints (3.2c) address arrival capacity, being the second-stage version of

constraints (3.1c), and constraints (3.2d) address total capacity, being the second-stage

version of constraints (3.1d). Finally, constraints (3.2e) correspond to constraints (3.1e)

from the �rst-stage, regulating sector capacity according to the European de�nition.

Constraints (3.2f), discussed in the following, are the adaptation of the sector capacity

constraints to the U.S. de�nition of sector capacity. Constraints operating in the stochas-

tic time horizon are characterized by capacity availability that depends on the scenario

realization ω ∈ Ω. Notice that the left-hand side considers all sectors for �ights f ∈ F
and only the terminal sector for �ights f ∈ F1. In fact, for latter set of �ights, airborne

delay may be applied in the last sector of the �ight route in the second-stage, while the

rest of the �ight plan is �xed and cannot be changed.

∑
f∈F ,r∈Rf :s∈gf (r)

(
zofr (t− τ fr,s)−

{
zofr (t− τf

r,Nf
r (s)

) if Nf
r (s) ̸= destf

zdf (t) otherwise

)
+

∑
f∈F1:r∈Rf :Nf

r (s)=destf

(
xofr (t− τ fr,s)− zdf (t)

)
≤
{

θst − cst ∀s ∈ S, t ∈ T ′
s

θ
s

t (ω) ∀s ∈ S, t ∈ T ′′
s

(3.2f)

First/second-stage link

zofr (t) ≤ xofr (t) ∀f ∈ F \ F1, r ∈ Rf , t ∈ T f
origf

(3.2g)

zdf (t) ≤ xdf (t) ∀f ∈ F , t ∈ T f
destf

(3.2h)

Constraints (3.2g) and (3.2h) link �rst and second-stage variables, ensuring that

�ights f ∈ F can only be assigned delay (possibly null) in the second-stage. Ground

holding delay may be assigned to �ights in F2 only, while airborne delay can be applied

to all �ights in F . Flights f ∈ F3 are not considered in the �rst-stage so there is no link

with this stage.
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Route selection

zofr (TF
f
origf

) = yfr ∀f ∈ F \ F (3.2i)∑
r∈Rf

zofr (TF
f
origf

) = 1 ∀f ∈ F (3.2j)

zdf (t) ≤
∑
r∈Rf

{
xofr (t− τfr,destf )

zofr (t− τfr,destf )

∀f ∈ F1, t ∈ T f
destf

∀f ∈ F , t ∈ T f
destf

(3.2k)

zdf (t+ ftf + AD) ≥
∑
r∈Rf

{
xofr (t)

zofr (t)

∀f ∈ F1, t ∈ T f
origf

∀f ∈ F , t ∈ T f
origf

(3.2l)

zdf (TF f
destf

) = 1 ∀f ∈ F ′ (3.2m)

Constraints (3.2i) take advantage of constraints (3.1g) from the �rst-stage, which

de�ne the route followed by a �ight f ∈ F2 for the route formulation. These constraints

are not present in the �ight plan formulation. With the route formulation, routes for these

�ights are set in the �rst-stage, so variables corresponding to routes that are not followed

can be �xed to 0. Constraints (3.2j) correspond to constraints (3.1h) from the �rst-

stage, which ensure that each �ight departs and follows exactly one route. Constraints

(3.2k) impose the minimum duration of a �ight, similarly to �rst-stage constraints (3.1i).

Constraints (3.2l) are the second-stage version of constraints (3.1j), and ensure that

the maximum airborne delay is respected. Finally, constraints (3.2m) correspond to

constraints (3.1k) from the �rst-stage, that ensure the arrival of �ights at destination.

Connectivity

zdf (t) ≥
∑
r∈Rf

zof
′

r (t+ lff ′) ∀(f, f ′) ∈ P , t ∈ T (3.2n)

Constraints (3.2n) correspond to �rst-stage constraints (3.1l). They ensure that the

turnaround time is respected.

Decision variables de�nition

zofr (t) ≤ zofr (t+ 1) ∀f ∈ F , r ∈ Rf , t ∈ T f
origf

(3.2o)

zdf (t) ≤ zdf (t+ 1) ∀f ∈ F ′, t ∈ T f
destf

(3.2p)

zofr (t), zd
f (t) ∈ {0, 1} ∀f ∈ F ′, r ∈ Rf , t ∈ T f

origf
∪ T f

destf
(3.2q)
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Constraints (3.2o) and (3.2p) link variables that are consecutive in time, de�ning them

as monotonically increasing. Finally, constraints (3.2q) de�ne all variables as binary.

3.3 Progressive Binary Heuristic

To e�ciently solve instances of the SATFM problem, an ad-hoc heuristic, called Progres-

sive Binary Heuristic (PBH), is developed and used. It is a stage-wise heuristic based

on the speci�c characteristics of the mathematical formulations described in �3.2. The

solution of the DEP (see �1.4) with relaxed second-stage variables is binary in most

analyzed instances, as discussed in the following section. This relaxed problem is easier

to solve than the DEP, since all subproblems are linear and not binary programs. When

its solution is binary, no further action needs to be taken, as an optimal binary solution

is computed. When the solution is not binary, the computational experience reports

a limited number of second-stage variables with non-binary solution. The PBH deals

with this case, making second-stage variables converge to a binary solution, providing a

solution that is (close to) optimal in short computation times.

The PBH method can be applied to any problem with the discussed characteristics. It

is illustrated by the �owchart in Figure 3.2. The algorithm starts with reading the DEP

with relaxed second-stage variables of the instance to solve. This problem is named RP.

Also, the iteration counter i is initialized to 1, see step (1) in the �owchart. In step (2),

RP is solved to optimality, providing a �rst-stage optimal solution (x1, y1) and a second-

stage optimal solution z1(ω) for each scenario ω ∈ Ω. These solutions are associated

with the �rst and second-stage objective values v′RP and v′′RP , respectively. In step (3),

the problem's lower bound LB is set to the sum of the �rst and second-stage objective

values. Also, an additional parameter v′′ is set to the second-stage objective value. Step

(4) checks whether all subproblems have a binary solution. If this is true, the PBH

loop stops and the incumbent solution is declared either as optimal � see step (9a) � or

ϵ-optimal � see step (9b). This depends on the comparison of the lower bound LB with

the incumbent objective value v′RP + v′′, see step (8). Alternatively, the heuristic aims at

making subproblems with some variable having a non-binary solution value converge to a

binary solution. This is achieved by adding binary constraints to all binary variables with

non-integer solution, see step (5). Since optimization solvers typically do not allow to

change the type of a variable after their declaration, binary constraints are added for each

second-stage variable zj(ω) with non-binary solution with two operations. First, a new

binary variable zj(ω) is added to the subproblem ω. Then, a constraint zj(ω)−zj(ω) = 0
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Figure 3.2: Progressive Binary Heuristic
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to make the linear variable equal to the binary variable is added to the same subproblem.

Next, the iteration counter i is updated in step (6). Finally, the iteration terminates

solving the updated subproblems. The second-stage objective value v′′ is updated if the

newly solved subproblems provide a higher objective value compared with the previous

solve. These operations are performed in step (7). The PBH loop then iterates, going

back to step (4), to check that all subproblems have binary solutions.

Notice that step (5) of the heuristic, which adds binary constraints to subproblems,

does not guarantee that the next subproblem solve will provide a binary solution. In fact,

second-stage variables previously having a non-binary solution value will now change their

value to either 0 or 1, and this may in�uence the value of other variables. For this reason,

the heuristic may have to perform multiple iterations to converge to a binary solution,

progressively adding binary constraints, hence the name of the heuristic.

Other similar approaches may be proposed. For example, it may be possible to only

add a single binary constraint per iteration for each scenario, instead of adding constraints

for all second-stage variables with a non-binary solution. This may provide a binary

solution solving a problem that has fewer binary variables, which is easier to compute.

For example, if two variables za and zb that have a non-binary solution value are linked

together by constraints such that za+zb = 1, enforcing binary restrictions on one variable

also enforces binary restrictions on the other. However, this approach may require a

larger number of iterations. If ten unlinked second-stage variables have a non-binary

solution, ten iterations may be required, solving the scenario subproblem ten times,

instead of adding 10 variables and constraints and performing only one new subproblem

solve. Therefore, this approach may be very ine�cient in practice. Another approach

may consist in enforcing binary constraints on all second-stage variables belonging to a

subproblem with some non-binary solution value. This guarantees a binary solution at the

following iteration, at the cost of solving a much more di�cult problem. The proposed

approach is a good compromise between these two extremes, as it solves subproblems

with a limited number of binary variables and it avoids iterating too many times.

Finally, notice that the solution provided by the PBH is not guaranteed to be optimal.

In fact, the heuristic only adds constraints to the second-stage subproblems, without af-

fecting the �rst-stage. This means that the �rst-stage decisions are made only considering

the relaxed subproblems, and the PBH provides the exact second-stage solution for each

scenario, given the selected �rst-stage solution. In the following section, the PBH is used

to solve di�erent sets of instances of the SATFM problem, and its results are compared

with those from the execution of the DEP.

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 57
in the Air Tra�c Domain



Chapter 3. Tactical decision making

3.4 SATFM Computational Results

The mathematical model for the SATFM problem was tested on four sets of realistically

generated instances. The European airspace, i.e., the subdivision into air sectors, was

simulated by de�ning a grid with squared cells with sides of approximately 100km.

Airports and �ights were then appropriately placed in this grid to simulate the real

system, generating �ight data realistically by considering real airport schedules.

Each instance set contains four di�erent instances, which involve the same �ights in

the four sets. Instances involving the same �ights consider di�erent simulated weather

conditions in each set. This di�erence is chosen to evaluate the e�ect of stochastic models

on instances characterized by di�erent types of stochastic information. For each instance,

both the �ight plan and route formulations were tested, resulting in eight di�erent tests

per instance set. The width of the time horizons to de�ne the sets of �ights F1, F2 and

F3, as well as the total number of �ights considered in each instance, is shown in Table

3.1. These �gures apply to all instance sets. The airports considered in each instance are

some of the busiest airports from Central/Western Europe, and they are the following:

• 4central and 4central8h: London Heathrow (EGLL), Paris - Charles de Gaulle

(LFPG), Amsterdam - Schiphol (EHAM), Frankfurt (EDDF)

• 6central and 6central8h: London Heathrow (EGLL), Paris - Charles de Gaulle

(LFPG), Amsterdam - Schiphol (EHAM), Frankfurt (EDDF), Dusseldorf (EDDL),

Munich (EDDM)

Bad weather generation is crucial in the de�nition of the di�erent sets of instances. For

each instance, nine di�erent bad weather scenarios are generated in the time horizon of F2

and F3. A basic capacity reduction is applied, and scenarios consider the possibility for

bad weather to either enforce the basic capacity reduction, a heavier capacity reduction,

or a lighter capacity reduction. This generates three di�erent scenarios. Each scenario is

then branched again considering bad weather staying the same, getting heavier or getting

Table 3.1: Description of the instances

F1 time F2 time F3 time
Name horizon (h) horizon (h) horizon (h) # Flights
4central 1 1 2 1234

4central8h 2 2 4 2381
6central 1 1 2 1620

6central8h 2 2 4 3163
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lighter in the middle of the stochastic time horizon, thus producing the �nal nine sce-

narios. Parameters on the width of the bad weather fronts and on the increase/decrease

probability and percentage di�er for each instance set. The di�erent characteristics

of each of the four sets are illustrated in Table 3.2. Here, column 1 (Instance set)

provides the name of the instance set. Column 2 (Basic red.) shows the basic capacity

reduction applied to sector and airport capacity constraints a�ected by the bad weather

front. Columns 3 (Prob. better weather), 4 (Prob. same weather) and 5 (Prob. worse

weather) show the probability of bad weather getting lighter, staying the same or getting

heavier, respectively. These probabilities apply both at the beginning of the stochastic

time horizon and in the middle of the time horizon, when bad weather conditions might

change. The percentage of capacity increase or decrease when the bad weather front gets

lighter or heavier is shown in columns 6 (Cap. incr. with better weather) and 7 (Cap.

decr. with worse weather), respectively. Finally, column 8 (Front location) describes

the behavior of the bad weather front. For sets 1 to 3, the fronts a�ect a squared area

with a side of approximately 500km, starting with a North-Western position in London,

and then moving East at approximately 100km/h. For set 4, on the other hand, bad

weather a�ects the whole network for the whole time horizon. These parameters re�ect

the following behaviors of the bad weather fronts:

• Set 1: The bad weather front causes a mild capacity reduction, which does not

have a very high probability to change over time. Furthermore, bad weather is not

expected to get much heavier.

• Set 2: Same characteristics as set 1, with a stronger bad weather front that cuts

o� half of the capacity resources in the a�ected area.

• Set 3: The evolution of bad weather is subject to higher uncertainty, i.e., the prob-

ability of having either worse or better weather is higher compared with parameters

from sets 1 and 2. Also, capacity increases or decreases in the respective scenarios

by a higher percentage, making scenarios more diverse.

• Set 4: Bad weather is not very heavy, as the basic capacity reduction is lighter than

in the other sets. Capacity variations over scenarios are not as heavy as in set 3,

however scenarios have the same probability distribution as set 3. In this set, the

key factor is the geographic distribution of the bad weather front, as it involves the

whole network for the whole stochastic time horizon.
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Table 3.2: Bad weather characteristics by instance set

Prob. Prob. Prob. Cap. incr. Cap. decr.
Instance Basic better same worse with better with worse Front

set red. weather weather weather weather weather location
Set 1 30% 20% 60% 20% 20% 10% EGLL → East
Set 2 50% 20% 60% 20% 20% 10% EGLL → East
Set 3 30% 30% 40% 30% 30% 30% EGLL → East
Set 4 20% 30% 40% 30% 20% 20% Whole network

The di�erent generated bad weather fronts a�ect the di�culty to solve problem

instances. In particular, to avoid infeasibility on some instances, it is necessary to allow

for larger ground holding and airborne delays. Since the maximum allowed amount

of both kinds of delay in�uences the number of variables in the model, the need for

larger delays corresponds to solving larger instances. The dimensions of all considered

instances are shown in Table 3.3 for sets 1 and 3, whose corresponding instances share

the same dimensions. Then, for instances from sets 2 and 4, the size of each instance

is provided by Tables 3.4 and 3.5, respectively. The three tables have the following

structure. Column 1 (Instance) provides the name of the instance. Column 2 (Form.)

speci�es the formulation used to create the instance, with �FP� indicating the �ight plan

formulation and �R� indicating the route formulation. Column 3 (Max GH/A Delay)

indicates the maximum ground holding and airborne delay that can be assigned to a

single �ight. Notice that the time horizon is subdivided into 15' wide time instants.

Finally, columns 4 (1st Stage Columns), 5 (1st Stage Rows), 6 (2nd Stage Columns) and

7 (2nd Stage Rows) show the size of the �rst and second-stage problems. All instances

have nine second-stage problems, de�ned by the di�erent scenarios generated. Notice

that the number of variables is also in�uenced by the number of routes considered in

the rerouting decisions. For the generated instances, at most three alternative routes are

considered, which include the shortest path on the airspace grid and � at most � two

close alternative routes.

Computational experiments were performed on a computer with Intel Core i7 CPU

at 2.20GHz and 8GB of RAM. Computation times to solve each instance from the

four sets using both the PBH and the DEP are reported in Tables 3.6-3.9. The PBH

was implemented using the CPLEX 12.1 Callable Libraries [40] to solve optimization

problems. The DEP was solved with CPLEX 12.4. The structure of Tables 3.6-3.9 is the

following. Column 1 (Instance) provides the name of the instance. Column 2 (Form.)

indicates the formulation used. Columns 3 (PBH Solution) and 4 (PBH Time (s)) show
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Table 3.3: Size of instances from sets 1 and 3

Max GH/A 1st Stage 1st Stage 2nd Stage 2nd Stage
Instance Form. Delay Columns Rows Columns Rows
4central FP 4 13,732 17,442 17,636 34,019
4central R 4 8,269 10,384 17,636 29,704

4central8h FP 4 26,301 34,894 34,459 65,263
4central8h R 4 15,191 18,984 34,459 56,497
6central FP 4 17,494 22,063 23,285 44,601
6central R 4 10,046 12,426 23,285 38,753

6central8h FP 4 33,805 44,585 45,482 85,643
6central8h R 4 19,354 23,915 45,482 74,308

Table 3.4: Size of instances from set 2

Max GH/A 1st Stage 1st Stage 2nd Stage 2nd Stage
Instance Form. Delay Columns Rows Columns Rows
4central FP 6 19,484 24,547 25,184 48,172
4central R 6 11,433 14,313 25,184 41,843

4central8h FP 8 48,330 63,528 63,931 120,693
4central8h R 8 26,695 33,334 63,931 103,747
6central FP 6 24,828 31,143 33,247 63,272
6central R 6 13,856 17,151 33,247 54,700

6central8h FP 8 62,145 81,509 84,398 158,550
6central8h R 8 34,022 42,281 84,398 136,659

the optimal objective value and the solution time in seconds obtained by using the PBH.

The optimality gap is not reported as it is always less than 0.1%. Column 5 (RP Sol.

Nonbins.) shows the number of non-binary values in the solution of the DEP with relaxed

second-stage. When this number is equal to 0, the PBH only solves the DEP with relaxed

second-stage. Else, the PBH loop is executed to add binary constraints. Columns 6 (DEP

Solution) and 7 (DEP Time (s)) show the optimal objective value and the computation

time in seconds for solving the DEP with CPLEX. All problems were solved to optimality.

Table 3.5: Size of instances from set 4

Max GH/A 1st Stage 1st Stage 2nd Stage 2nd Stage
Instance Form. Delay Columns Rows Columns Rows
4central FP 4 13,732 17,442 17,636 34,019
4central R 4 8,269 10,384 17,636 29,705

4central8h FP 6 37,315 49,276 49,195 93,101
4central8h R 6 20,943 26,183 49,195 80,245
6central FP 4 17,494 22,063 23,285 44,601
6central R 4 10,046 12,426 23,285 38,753

6central8h FP 6 47,975 63,110 64,940 122,301
6central8h R 6 26,688 33,124 64,940 105,688
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Table 3.6: Instance set 1 - Solution times

PBH PBH RP Sol. DEP DEP Time
Instance Form. Solution Time (s) Nonbins. Solution Time (s) saved (s)
4central FP 392.82 49.3 0 392.82 90.1 40.8
4central R 392.82 20.6 4 392.82 17.1 -3.5

4central8h FP 862.00 216.2 0 862.00 434.1 217.8
4central8h R 862.00 55.6 0 862.00 183.2 127.6
6central FP 437.28 73.3 0 437.28 150.6 77.3
6central R 436.00 24.7 0 436.00 25.5 0.8

6central8h FP 1121.56 237.8 0 1121.56 639.4 401.6
6central8h R 1121.56 81.3 0 1121.56 81.4 0.1

Table 3.7: Instance set 2 - Solution times

PBH PBH RP Sol. DEP DEP Time
Instance Form. Solution Time (s) Nonbins. Solution Time (s) saved (s)
4central FP 830.38 365.5 20 830.38 393.0 27.5
4central R 829.95 49.1 0 829.95 45.1 -4.0

4central8h FP 2048.88 1585.3 20 2048.88 1939.7 354.4
4central8h R 2048.87 412.4 64 2048.87 807.0 394.6
6central FP 875.07 513.6 46 875.07 656.8 143.2
6central R 873.82 105.3 4 873.82 210.8 105.5

6central8h FP 2542.93 1855.4 4 2542.93 2638.4 783.0
6central8h R 2542.83 378.9 0 2542.83 1374.0 995.1

Finally, column 8 (Time saved (s)) shows the amount of time � expressed in seconds �

saved by executing the PBH compared with the execution of the DEP.

In these tables, the number of non-binary solution values for all instances is very

limited, as required by the PBH. Indeed, the maximum number of second-stage variables

with a non-binary solution is 64 for instance 4central8h with route formulation from set

2. Each second-stage problem in this instance has 63,931 variables, therefore only one

out of every 8,990 second-stage variables does not have a binary value in the solution of

Table 3.8: Instance set 3 - Solution times

PBH PBH RP Sol. DEP DEP Time
Instance Form. Solution Time (s) Nonbins. Solution Time (s) saved (s)
4central FP 422.97 54.3 0 422.97 121.3 67.0
4central R 422.03 19.9 0 422.03 65.1 45.2

4central8h FP 955.33 176.8 0 955.33 482.6 305.8
4central8h R 955.33 63.6 0 955.33 220.2 156.6
6central FP 466.60 89.0 4 466.60 91.7 2.7
6central R 464.91 26.9 0 464.91 128.6 101.7

6central8h FP 1225.84 362.2 0 1225.84 768.4 406.2
6central8h R 1225.54 106.8 0 1225.54 103.1 -3.7
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Table 3.9: Instance set 4 - Solution times

PBH PBH RP Sol. DEP DEP Time
Instance Form. Solution Time (s) Nonbins. Solution Time (s) saved (s)
4central FP 252.98 66.2 36 252.98 33.5 -32.7
4central R 252.97 39.1 22 252.97 49.8 10.7

4central8h FP 835.86 498.2 0 835.86 988.7 490.5
4central8h R 835.86 116.1 0 835.86 102.3 -13.8
6central FP 386.58 62.1 0 386.58 60.0 -2.1
6central R 386.57 27.3 0 386.57 24.0 -3.3

6central8h FP 1134.00 642.2 0 1134.00 1284.0 641.8
6central8h R 1133.80 192.5 0 1133.80 130.7 -61.8

the DEP with relaxed second-stage. The computational advantage of using the PBH on

the considered instances is evident from the results reported in the tables. In just one

out of the 32 considered cases the PBH takes one minute more than the DEP to solve the

problem. Furthermore, for all cases where the PBH requires a longer computation time

compared with the DEP, its computation times are always below 200". For more di�cult

instances, the PBH provides considerable savings in runtime. For example, consider the

route formulation 6central8h instance from set 2. The PBH is able to solve this instance

in 6'18", compared with a runtime of 22'54" of the DEP. On average, the PBH allows

to save 1'47" for set 1, 5'49" for set 2, 2'15" for set 3 and 2'08" for set 4, providing

results within a 0.01% optimality gap. This con�rms the good structure of the proposed

formulations and the usefulness of the PBH.

Finally, to evaluate the practical advantage of using a stochastic model to solve the

ATFM problem, the Value of the Stochastic Solution (VSS) is analyzed. The VSS

represents the value provided by considering stochastic information. Without considering

stochastic information, the decision maker can simply use the expected value of the

stochastic data, substituting ω̃ with E[ω̃] in the recourse function. A problem where this

substitution is made is called Expected Value (EV) problem. The �rst-stage decisions

made considering the EV problem can then be evaluated by implementing them in the

two-stage program, which allows to get the expected result of the EV problem, denoted

with EEV. The di�erence between the EEV and the optimal objective value of the

stochastic problem is the VSS. The larger the VSS, the greater the bene�t of using a

stochastic model to solve the problem.

The study of the VSS for the di�erent instance sets is presented in Tables 3.10-

3.13. These tables have the following structure. Columns 1 (Instance) and 2 (Form.)

provide the name of the instance and the formulation used, respectively. Column 3
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Table 3.10: Instance set 1 - Value of the Stochastic Solution

Instance Form. DEP Sol. EEV Sol. VSS VSS Pct.
4central FP 392.82 397.23 4.41 1.1%
4central R 392.82 394.26 1.44 0.4%

4central8h FP 862.00 866.81 4.81 0.6%
4central8h R 862.00 863.24 1.24 0.1%
6central FP 437.28 443.99 6.71 1.5%
6central R 437.00 438.04 1.04 0.2%

6central8h FP 1121.55 1148.53 26.98 2.4%
6central8h R 1121.55 1121.95 0.40 0.0%

Table 3.11: Instance set 2 - Value of the Stochastic Solution

Instance Form. DEP Sol. EEV Sol. VSS VSS Pct.
4central FP 830.38 838.87 8.49 1.0%
4central R 829.95 830.75 9.80 0.1%

4central8h FP 2048.88 2061.90 13.02 0.6%
4central8h R 2048.87 2050.89 2.02 0.1%
6central FP 875.07 880.45 5.38 0.6%
6central R 873.82 876.27 2.45 0.3%

6central8h FP 2542.93 2549.00 6.07 0.2%
6central8h R 2542.83 2544.71 1.88 0.1%

(DEP Sol.) provides the optimal objective value obtained by solving each instance using

the stochastic model. This is the best objective value that can be achieved for each

instance. Column 4 (EEV Sol.), on the other hand, provides the EEV, which cannot

by de�nition be lower than the DEP solution. The di�erence between the EEV and the

DEP solution is reported in column 5 and it is the VSS. For a better understanding of

its value, the VSS is reported in percentage terms in column 6.

Results report a limited VSS for instances from sets 1 to 3. On average, it is equal to

1.5%, 0.5% and 1.8% for instances formulated with the �ight plan formulation for the �rst

3 sets. Using the route formulation, the VSS decreases to 0.1%, 0.1% and 0.3% on the 3

Table 3.12: Instance set 3 - Value of the Stochastic Solution

Instance Form. DEP Sol. EEV Sol. VSS VSS Pct.
4central FP 422.97 430.01 7.04 1.7%
4central R 422.03 426.63 4.60 1.1%

4central8h FP 955.33 970.72 15.39 1.6%
4central8h R 955.33 957.01 1.68 0.2%
6central FP 466.60 472.28 5.68 1.2%
6central R 464.91 465.56 0.65 0.1%

6central8h FP 1225.84 1254.20 28.36 2.3%
6central8h R 1225.54 1226.73 1.19 0.1%
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Table 3.13: Instance set 4 - Value of the Stochastic Solution

Instance Form. DEP Sol. EEV Sol. VSS VSS Pct.
4central FP 252.98 258.63 5.65 2.2%
4central R 252.97 253.76 0.79 0.3%

4central8h FP 835.86 958.26 122.40 14.6%
4central8h R 835.86 838.05 2.19 0.3%
6central FP 386.58 401.78 15.20 3.9%
6central R 386.57 388.97 2.40 0.6%

6central8h FP 1134.00 1214.23 80.23 7.1%
6central8h R 1133.80 1135.97 2.17 0.2%

instance sets. Set 4 reports a much higher VSS value for the �ight plan formulation, which

is 8.6% on average. The route formulation, on the other hand, is still limited to 0.3%.

These �gures suggest that the proposed stochastic formulations provide little bene�t when

weather phenomena are local. On the other hand, the proposed stochastic model with

�ight plan formulation provides relevant bene�t when bad weather phenomena are spread

throughout the whole network. The route formulation, which makes limited decisions on

�ights from set F2 compared with the �ight plan formulation, does not provide airlines

with bene�ts that may justify the use of a stochastic model. The longer computation

time needed by the �ight plan formulation is therefore justi�ed by the added value to the

stochastic solution.

Using the study from the University of Westminster for EUROCONTROL [7] that

estimates the average cost of one minute of ATFM delay to 83e , it is possible to

provide an approximate upper bound estimate of the monetary savings that may be

achieved using the stochastic model. The estimate is an upper bound of the savings

due to the super-linear cost coe�cients used in the de�nition of the objective function

to favor ground holding over airborne delay and to implement fairness among �ights.

The multiplication of the VSS by the number of minutes within a single time period �

which is equal to 15 � and by the 83e per-minute ATFM delay cost estimate provides

this approximate estimate of the monetary savings. For example, for �ight plan instance

4central8h from set 4, whose VSS is equal to 14.6%, the upper bound estimate of the

savings amounts to 152,384e , corresponding to 64e per �ight.
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3.5 SATFM Conclusions

Most research works on the ATFM problem focus on solving it using deterministic models,

i.e., not considering its stochastic aspects. Stochastic models are more di�cult to solve

in nature than their corresponding deterministic versions, therefore some simpli�cations

are usually adopted to make stochastic models solvable within computation times that

are compatible with the practical needs of the application. The stochastic ATFM model

presented considers uncertainty on capacity availability, both at airports and air sectors,

assuming two simpli�cations. First, airborne delay may only take place in a �ight's

terminal airspace, i.e., the last sector crossed by a �ight before landing. Second, rerouting

is performed considering a limited number of routes.

Two di�erent formulations are proposed, which make di�erent decisions on �ights.

Also, taking advantage of the structure of the mathematical formulations proposed, an

ad-hoc heuristic method is developed to improve the computation times of the problem

instances. Four di�erent sets of instances are analyzed, each characterized by simulated

weather phenomena of di�erent nature. Experiments on these instances show that the

proposed heuristic, called Progressive Binary Heuristic, reduces the computation times

provided by the Deterministic Equivalent Problem by over 40% on average. The Value

of the Stochastic Solution is also analyzed to determine the bene�t that airlines can

obtain by using the proposed stochastic model to solve the ATFM problem. VSS �gures

indicate that the route formulation does not provide a tangible bene�t, while the �ight

plan formulation provides airlines with a relevant delay cost reduction when bad weather

a�ects the whole network. In this case, the VSS indicates that airlines may have reduced

delay costs by up to 14% using the new stochastic model with �ight plan formulation on

a considered instance. The proposed stochastic programming model should therefore be

used when uncertainty caused by bad weather is a factor that in�uences a wide portion

of the managed airspace.

Future developments of this work include the development of a new algorithm to

improve the presented computation times that can guarantee optimality for all instances.

An approach based on Fenchel cutting planes [55] is currently being studied. Further-

more, experiments on additional instances involving wide bad weather fronts will be

conducted to provide a more detailed analysis of the results reported in �3.4.

In the following section, the focus switches to a di�erent type of uncertainty at the

tactical decision phase. This is the implicit uncertainty on the time of departure of �ights,

and it is faced using deterministic optimization models.
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3.6 The Air Tra�c Flow Management Problem

with Time Windows

The ATFM problem can be faced in di�erent ways, involving both deterministic and

stochastic optimization models. These models typically subdivide the time horizon

into time instants of equal size. The operator of a �ight is expected to adhere to its

�ight plan as precisely as possible. Specifying the execution of an action within a time

instant corresponds in practice to the execution of said action within a period of time of

prede�ned size. Some adjustments are usually possible. However, there are certain �ights

which must be operated in strict accordance with the approved �ight plan, since even a

small delay assigned to them may have a large downstream e�ect on the performance of

the ATC system, leading to a degradation of the system itself. These �ights are referred

to as �critical �ights� in the following. For these critical �ights, there is no slack time

in handling their operations and only a limited number of recovery options are generally

available. Inversely, as some portions of the airspace may be less congested than others,

a larger �exibility or room for maneuver can be given to airspace users, air navigation

service providers and airports operating in sparse areas without degrading the overall

performance, i.e., the total cost of delay, of the entire system. The notion of �ight

criticality herein proposed is not intended as a measure of the amount of downstream

e�ect, but rather should be considered as a measure of the degree of �ight �exibility,

given by the amount of time granted to �ights to perform their operations.

In the following, a new mathematical model that identi�es a period of time, de�ned

as �time window�, during which each �ight operation (i.e., take o�, landing and entry into

a sector) should be executed is presented. The problem of identifying time windows in

ATFM is called ATFM problem with Time Windows (ATFMTW). The width of a time

window re�ects degree of �exibility granted to �ights: the larger the time window, the

greater the amount of slack time available to execute the corresponding �ight operation.

The smaller the time window, the more important it is that all support operations for

each phase of the �ight, e.g. maintenance, ground and �ight crew activities, and ATC

clearances, are coordinated and executed on time, i.e., the more critical the �ight. Both

the position of the time window (i.e., its starting time instant) and its width (i.e., the

number of time instants that belong to it) univocally determine the time window, and

they depend on the state of the air tra�c system.
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An example of de�nition of a time window is illustrated in Figure 3.3. Here, the

departure of a �ight is scheduled at time instant t = 1. This indicates that the model

guarantees the ability of a �ight to depart within a window of time that is �xed to the

size of the time instant. If the time instants are narrow, e.g., 5' wide, the execution of the

departure movement has to be operated very carefully due to the strict time constraints

provided by the model. Most importantly, the model does not indicate what is going to

happen if the �ight does not depart within the assigned time instant. Using time windows

of �exible size, on the other hand, it is possible to indicate the criticality of �ights. In

the considered case, it is known that the �ight will still be able to depart at t = 2, i.e.,

with one time instant of delay. In case of 5' wide time instants, this corresponds to a 10'

departure time window, which is easier to deal with than a 5' time window. After the

time window closes, i.e., at t = 2, there is no guarantee on the availability of resources

to operate the �ight, i.e., the �ight may incur in additional delay. The time window

concept is consistent with the Single European Sky ATM Research (SESAR) program

as it enhances the responsibility of airlines in the context of the Air Tra�c Management

(ATM) system [56]. In fact, airlines are driven to manage their operations in order to

deliver their �ights inside these temporal intervals, thus leading to improved planning

and earlier detection of delays.

An optimal position of the time windows, which minimizes the total amount of

delay, can be computed with any ATFM model. Time windows can be assigned using

a deterministic optimization model. Therefore, the literature on deterministic models

for ATFM is now analyzed. The ATFM problem was �rst formalized in 1987 by Odoni

[57]. Since then, a plethora of mathematical models have been developed. Some of the

�rst models to include ground and airborne delay, as well as airspace capacity, were

proposed by Helme [58] and Lindsay et al. [59], but both were unmanageable due to size

limitations. Bertsimas and Stock Patterson [47] proposed a readily solvable large-scale

model which also includes � in addition to ground holding and airborne delay � speed

Figure 3.3: Example of time window
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control as a control option. The authors showed that their model is NP-hard. The same

authors later proposed a mathematical model [60] which also allows each �ight to have

more than one possible route, i.e., the possibility to reroute a �ight. Alonso and Escudero

[61] discussed the tightness of mathematical formulations for the ATFM problem. They

compared the de�nition of variables that identify events either occurring at or by given

time periods, and proved that the latter de�nition provides a tighter model. Several other

authors addressed both delay and routing decisions simultaneously, including Sun and

Bayen [62] in a control context and Myers and Kierstead [63] in a network �ow context.

Lulli and Odoni [54] formulated an ATFM model that focuses on the characteristics

of the European Union airspace. Their model has a cost function that ensures equity

in the assignment of delays to �ights. This is achieved by favoring the assignment of a

moderate amount of delay to a large set of �ights over the assignment of a large amount

of delay to a limited number of �ights. The intrinsic complexity of optimal ground and

airborne holding strategies in the European context is also addressed. Their approach is

consistent with the European speci�cation of sector capacity, de�ned as the number of

�ights that can enter the sector in a single time period [64]. Recently, Bertsimas, Lulli,

and Odoni [65] proposed a powerful and �exible Integer Programming model � in the

following referred to as �BLO� � which combines the good mathematical properties of the

Bertsimas-Stock Patterson model [47] with a complete representation of control actions.

Their model optimizes the total cost of delay taking fairness issues into account. Three

classes of valid inequalities are also included to improve the computational performance.

Computational results are reported for two sets of instances, named �regional" (3,000

�ights) and �national" (6,500 �ights), that are solved within a 1% optimality gap in 305�

and 743�, respectively. An extension of this work was proposed by Churchill, Lovell, and

Ball [66].

Agustín et al. [67] proposed a deterministic mixed binary model for ATFM that

allows for �ight cancellation and rerouting. Seven alternative objective functions that

allow decision makers to achieve di�erent goals are described. The proposed model is so

tight that it does not require the execution of the branch-and-bound phase to obtain the

optimal solution for any tested instance. Authors report computation times of 69� and

172� for a regional and national size instance of the BLO, respectively, as well as 394� to

solve a modi�ed (more di�cult) BLO national size instance. Sun et al. [68] developed

an aggregated ATFM model based on a multicommodity network to minimize the total

travel time of �ights in the entire U.S. airspace. The model is subject to sector, arrival and

departure capacity constraints at an aggregated level, i.e., for the entire airspace rather
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than at each airport, for each time period. The authors relaxed their IP formulation into

an LP for computational e�ciency and used the dual decomposition procedure to solve

the large-scale LP model. Around 95% of instances yield an IP solution from a relaxation

solve and a rounding heuristic is used for the remaining instances. The computation time

for instances that involve two-hour tra�c �ows for the entire U.S. airspace (around 8,000

�ights) is around 150". In the following section, two alternative models for ATFMTW

are proposed.

3.7 Deterministic optimization models

Time windows may be de�ned either jointly with the schedule or separately from it.

The �rst approach, that is formulated in a model named �optimal model�, is more

computationally challenging. In fact, it does not simply look for a schedule with a

minimum delay, but it determines which minimum delay cost schedule � as there may be

multiple optimal schedules � provides the largest time windows. This model is illustrated

in �3.7.1. The second approach, on the other hand, is formulated in a model named �near-

optimal model�. This is an easier approach, as it separates the decisions made on the

schedule and on the width of the time windows. First, the �rst minimum delay cost

schedule found is chosen as a solution which �xes the position of the time windows.

Other possible minimum delay schedules are not considered. Then, the time windows

are maximized for the chosen schedule, i.e., their width is determined. This model is

presented in �3.7.2. Computational results for both models are discussed in �3.8. Finally,

conclusions are drawn in �3.9.

3.7.1 Optimal time window model

In the optimal model, a decision is made on the �ight schedule and the time windows

at the same time, i.e., both their position and width is determined. This model is an

extension of the BLO model, which provides a wide set of control options and is able

to provide good computational results. In the following, the notation, decision variables

and constraints that are used to formulate the optimal time window model are presented.

70 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
in the Air Tra�c Domain



Chapter 3. Tactical decision making

Notation

A ≡ set of airports, indexed by a

S ≡ set of sectors, indexed by s

F ≡ set of �ights, indexed by f

Sf ⊆ (S ∪ A) ≡ set of sectors/airports that can be �own by �ight f

T ≡ set of time periods, indexed by t

DCa, ACa, TCa ≡ Set of departure, arrival and total capacity constraints for airport a,

indexed by c, regulating time periods in set τc

SCs ≡ Set of capacity constraints for sector s, indexed by c, regulating

time periods in set τc

P ≡ set of pairs of �ights (f, f ′) that are connected, with corresponding

turnaround time lf,f ′

Lf
s ≡ set of sectors preceding sector s

N f
s ≡ set of sectors following sector s

Cc ≡ available capacity for airport or sector constraint c

origf ≡ airport of origin of �ight f

destf ≡ airport of destination of �ight f

tfss′ ≡ minimum number of time periods that �ight f must spend in sector s

before entering sector s′

endf ≡ maximum acceptable duration of �ight f

T f
j = [T f

j , T
f

j ] ≡ set of feasible time periods for �ight f to operate at airport/sector j

TW ≡ minimum time window size

TW ≡ maximum time window size

Decision variables

Two sets of decision variables are de�ned, one for each type of decision to be made. The

�rst set, named xs, is used to make decisions on the position, or start time, of time

windows. The second set, named xe, is used to make decisions on the width of the time

windows, by de�ning their closing time.
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xsfjt =


1, if the time window for �ight f at airport/sector j has been opened

by time t ∈ T f
j

0, otherwise

xefjt =


1, if time window for �ight f at airport/sector j has been closed

by time t ∈ T f
j

0, otherwise

Notice that, since �ight cancellation is not considered in the model, it is possible to

set variables xef
origf ,T origf

and xef
destf ,T destf

to 1 for each �ight f . This ensures both the

departure and arrival operations of �ights within the feasible operation times speci�ed.

Furthermore, this de�nition of the decision variables, which indicates the opening or

closing of a time window by instead of at a speci�c time instant, is consistent with the

variable de�nition from the BLO model. This variable de�nition is consistent with the

discussed �ndings by Alonso and Escudero [61].

Objective functions

Since the model makes two separate decisions, one on the position and the other on the

width of time windows, two di�erent objective functions are de�ned. The �rst objective,

which is used to de�ne the position of the time windows, is the minimization of the total

cost of delay. For a �ight f , this total delay cost is the sum of the departure and arrival

delay costs. The cost coe�cients dcf (t) and acf (t) represent the cost of delay for �ight

f when the departure and arrival time windows open at time t. They are de�ned as

follows:

dcf (t) =(t− T f
origf

)1+ϵd

acf (t) =(t− T f
destf

)1+ϵa

where the values ϵd > 0 and ϵa > 0 are two positive parameters which make the cost

coe�cients super-linear. As discussed by Lulli and Odoni [54], this choice grants a fair

assignment of delay among di�erent �ights, favoring the distribution of delays among

di�erent �ights rather than concentrating it on a small set of �ights. The objective

function minimizing the total cost of delay is formulated as follows:
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Z1 = Min
∑
f∈F

( ∑
t∈T f

origf

(
(xeforigf ,t − xeforigf ,t−1) · dcf (t)

)
+ (3.3a)

+
∑

t∈T f
destf

(
(xefdestf ,t − xefdestf ,t−1) · ac

f (t)
))

Once the minimum delay cost Z1 is determined, the second objective is to maximize the

width of the time windows. This is done considering all minimum cost schedules. This

way, it is possible to provide greater �exibility to the di�erent stakeholders with no harm

to the overall system performance. Mathematically, the second objective function looks

for the optimal solution on the polyhedron made of the optimal solutions of the �rst step.

The objective is to maximize the number of time periods composing each time window:

Z2 = Max
∑

f∈F ,j∈Sf ,t∈T f
j

(xsfj,t − xefj,t−1) (3.3b)

being subject to the additional constraint:

∑
f∈F

( ∑
t∈T f

origf

(
(xsforigf ,t − xsforigf ,t−1) · dcf (t)

)
+ (3.3c)

+
∑

t∈T f
destf

(
(xsfdestf ,t − xsfdestf ,t−1) · ac

f (t)
))

= Z1

Constraints

The optimal time window model has the following sets of constraints.

Capacity constraints∑
f∈F :a=origf ,t∈τc

(xsfat − xefa,t−1) ≤ Cc ∀a ∈ A, c ∈ DCa (3.3d)

∑
f∈F :a=destf ,t∈τc

(xsfat − xefa,t−1) ≤ Cc ∀a ∈ A, c ∈ ACa (3.3e)
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∑
f∈F :a=origf∨a=destf ,t∈τc

(xsfat − xefa,t−1) ≤ Cc ∀a ∈ A, c ∈ TCa (3.3f)

∑
f∈F :s∈Sf ,t∈τc

(xsfst − xefs,t−1) ≤ Cc ∀s ∈ S, c ∈ SCs (3.3g)

Constraints (3.3d), (3.3e) and (3.3f) ensure that capacity is respected at airports for

departure, arrival and total �ight movements, respectively. Capacity constraints at air

sectors are de�ned by (3.3g). Notice that this de�nition for sector capacity is consistent

with the European de�nition of sector capacity.

Route constraints

xef
j,T̄ f

j

≤
∑
j′∈Nf

j

xef
j′,T̄ f

j′
∀f ∈ F , j ∈ Sf : j ̸= destf (3.3h)

xef
j,T̄ f

j

≤
∑
j′∈Lf

j

xef
j′,T̄ f

j′
∀f ∈ F , j ∈ Sf : j ̸= origf (3.3i)

∑
j′∈Nf

j

xef
j′,T̄ f

j′
≤ 1 ∀f ∈ F , j ∈ Sf : j ̸= destf (3.3j)

∑
j′∈Lf

j

xef
j′,T̄ f

j′
≤ 1 ∀f ∈ F , j ∈ Sf : j ≠ origf (3.3k)

xsfjt ≤
∑
j′∈Nf

j

xsfj′,t−lfj′j
∀f ∈ F , j ∈ Sf : j ≠ origf , t ∈ T f

j (3.3l)

xefjt ≥
∑
j′∈Lf

j

xefj′,t−lfj′j
− (1 − xef

j,T̄ f
j

) ∀f ∈ F , j ∈ Sf : j ̸= destf , t ∈ T f
j (3.3m)

Constraints (3.3h) and (3.3i) represent the execution of a �ight along a route, given

by the sequence of contiguous sectors/airports crossed from origin to destination. Con-

straints (3.3h) link a sector/airport j to a following sector/airport j′ ∈ N f
j . Constraints

(3.3i) ensure that a �ight f can reach a sector/airport j if and only if a preceding

sector/airport j′ ∈ Lf
j is included in the �ight route. Constraints (3.3j) and (3.3k)

ensure that a �ight f only follows one route from origin to destination. Constraints

(3.3j) guarantee that a �ight that has reached some sector/airport j will only reach a

speci�c successive sector/airport j′ ∈ N f
j . Constraints (3.3j), on the other hand, ensure

that a �ight f that has reached some sector/airport j can come from only one preceding
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sector/airport j′ ∈ P f
j . Constraints (3.3l) and (3.3m) stipulate that a �ight f cannot

enter a following sector j′ along its route until it has spent at least lfjj′ time periods (the

minimum �ight time) travelling through the current sector/airport j.

Connectivity and �ight duration constraints

xsf
′

origf ′ ,t+sf
≤ xefdestf ,t ∀(f, f ′) ∈ P , t ∈ T f

destf
(3.3n)

xsforigf ,t ≤ xefdestf ,t+endf−1 ∀f ∈ F , t ∈ T f
origf

(3.3o)

The turnaround time between connected �ights is guaranteed by constraints (3.3n),

which separate the departure and arrival time windows of two connected �ights. Con-

straints (3.3o) impose that the total �ight time does not exceed the maximum duration

allowed for the �ight.

Time windows de�nition

xsfjt − xefjt ≥ 0 ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3p)

xsf
j,T

f
j

= xef
j,T

f
j

∀f ∈ F , j ∈ Sf (3.3q)

xefj,t+TW−1 ≤ xsfjt ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3r)

xsf
j,t−TW+1

≤ xefjt ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3s)

Constraints (3.3p) ensure that time windows are correctly formulated, i.e., if a time

window opens, then it must be at least one time instant wide. Furthermore, constraints

(3.3q) ensure that time windows that open must also close by the last feasible time period.

Constraints (3.3r) and (3.3s) de�ne the minimum and maximum size for a time window,

respectively.

Decision variables de�nition

xsfj,t+1 − xsfj,t ≥ 0 ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3t)

xefj,t+1 − xefj,t ≥ 0 ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3u)

xsfjt ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3v)

xefjt ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.3w)
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Constraints (3.3t) and (3.3u) de�ne decision variables as monotone increasing vari-

ables. Finally, constraints (3.3v) and (3.3w) de�ne the decision variables as binary.

3.7.2 Near-optimal time window model

The near-optimal model makes limited decisions compared with the optimal model. In

fact, it is designed to only compute the width of time windows. The position of each time

window is given by the optimal solution of an ATFM model of choice. Hence, the model

determines the optimal closing time for all time windows such that their total width is

maximized. This does not guarantee an optimal solution to the problem because only a

speci�c �ight schedule is considered, which may not provide the largest time windows at

the minimum delay cost.

The complete formulation of the near-optimal model is presented in the following,

illustrating its notation, decision variables, objective function and constraints. This

notation is slightly di�erent from the one used for the optimal model, to follow more

closely the original de�nition of the BLO model that is used to generate optimal solutions

to the ATFM problem. In particular, capacity constraints are de�ned at each time

instant and only regulate capacity at that speci�c instant, rather than considering a set

of contiguous time instants as in the optimal model.

Notation

A ≡ set of airports, indexed by a

S ≡ set of sectors, indexed by s

F ≡ set of �ights, indexed by f

Sf ⊆ (S ∪ A) ≡ set of sectors/airports that can be �own by �ight f

T ≡ set of time periods, indexed by t

P ≡ set of pairs of �ights (f, f ′) that are connected, with corresponding

turnaround time lf,f ′

Dt
a, A

t
a, T

t
a ≡ available capacity for departures, arrivals and total movements at

airport a and time t

St
s ≡ available capacity at sector s and time t
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origf ≡ airport of origin of �ight f

destf ≡ airport of destination of �ight f

T f
j = [T f

j , T
f

j ] ≡ set of feasible time periods for �ight f to operate at airport/sector j,

with T f
j the opening time period of the time window

tfss′ , tfss′ ≡ minimum and maximum number of time periods that �ight f must

spend in sector s before entering sector s′, respectively

Decision variables

Similarly to the optimal model, for each �ight f , sector/airport j, and time period t the

following set of monotone binary variables is de�ned:

xf
jt =

{
1, if time window for �ight f at airport/sector j is still open at time t

0, otherwise

In view of this de�nition, the decision variables are monotone decreasing, di�erently

from the decision variables from the optimal model, which are de�ned as monotone

increasing. Also, since the opening time of a time window is de�ned by input data coming

from the execution of an ATFM model, the decision variables are only de�ned for sectors

along the chosen route of a �ight. Finally, if each time window needs to satisfy minimum

width TW and maximum width TW constraints, it is possible to �x some variables to

obtain this result. In fact, given the opening instant of a time window T f
j , the �rst

constraint is satis�ed by �xing xf
jt = 1 for all time periods such that t < T f

j +TW . Also,

the second constraint is similarly satis�ed by �xing xf
jt = 0 for all time periods satisfying

t ≥ T f
j + TW .

Objective function

The objective function is the maximization of total width of the time windows, which

can be obtained as follows:

Max
∑

f∈F ,j∈Sf ,t∈T f
j

αf
jt · x

f
jt (3.4a)

If all the αf
jt coe�cients are equal to 1, the objective function computes the total

number of time periods assigned to time windows. However, considering sub-linear cost
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coe�cients it is possible to include the notion of fairness, i.e., the model favors the

assignment of time windows of similar width to multiple �ights rather than assigning

large time windows to a small number of �ights, penalizing other �ights. More speci�cally,

given some ϵ > 0, the αf
jt coe�cients can be de�ned as follows:

αf
jt =


(t−T f

j )
1−ϵ

t−T f
j

, if t > T f
j

0, otherwise

Constraints

The formulation of the near-optimal model has the following sets of constraints.

Capacity constraints ∑
f∈F :origf=a

xf
at ≤ Dt

a ∀a ∈ A, t ∈ T (3.4b)

∑
f∈F :destf=a

xf
at ≤ At

a ∀a ∈ A, t ∈ T (3.4c)

∑
f∈F :origf=a∨destf=a

xf
at ≤ T t

a ∀a ∈ A, t ∈ T (3.4d)

∑
f∈F :s∈Sf

xf
st ≤ St

s ∀s ∈ S, t ∈ T (3.4e)

Departure, arrival and total capacity constraints are de�ned by (3.4b), (3.4c) and

(3.4d), respectively. Similarly, constraints (3.4e) ensure that available capacity is re-

spected at sectors. If a time window of a �ight f is open at time period t, then one unit

of capacity is reserved to the �ight. This modeling approach guarantees that all �ight

phases can be executed with no additional delay if they occur within the assigned time

window.

Time windows constraints

xf
jt ≤ xf

j′,t+tfjj′
∀f ∈ F , j ∈ Sf , t ∈ T f

j (3.4f)

xf
jt ≥ xf

j′,t+tfjj′
∀f ∈ F , j ∈ Sf , t ∈ T f

j (3.4g)

Constraints (3.4f) and (3.4g) impose the consistency of the time windows. By taking

into account the minimum and maximum aircraft speed, they prevent a given time
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window from being too wide if the time window at the subsequent or previous sector

is narrow, and viceversa.

Connectivity constraints

xf ′

origf ′ ,t
≥ xf

destf ,t−lff ′
∀(f, f ′) ∈ P , t ∈ T f ′

origf ′
(3.4h)

Constraints (3.4h) link the time windows of connected �ights, providing the minimum

spacing between the arrival of �ight f at destination and the departure of �ight f ′ from

its airport of origin, with destf = origf ′ .

Decision variables de�nition constraints

xf
jt ≥ xf

j,t+1 ∀f ∈ F , j ∈ Sf , t ∈ T f
j (3.4i)

xf
jt ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f

j (3.4j)

Constraints (3.4i) de�ne the decision variables as monotone decreasing. Finally,

constraints (3.4j) de�ne the variables as binary.

This formulation can be extended to include other practical issues such as the maxi-

mum �total� amount of delay that an aircraft can incur over the course of its �ight due to

fuel limitations. Nevertheless, the �exibility granted to airlines allows them to take these

and other operational aspects into account without explicitly adding further constraints

to the model. In fact, it is under the airline's responsibility to make sure that all its

operations in support of the �ight execution are ful�lled within the allowed level of slack

time.

Capacity utilization

The mathematical model described above can lead to overly conservative solutions,

reserving an excessive amount of capacity for each �ight. Indeed, for any period of a

time window, the model reserves all the capacity resources necessary for the execution of

the corresponding �ight operation. Suppose that a three-period time window is assigned

to �ight f . Then, with the considered de�nition of time windows, one unit of capacity

is reserved to the �ight for each time period, for a total of three units of capacity, even

though the �ight will actually use only one unit. In the following, this approach is

referred to as the �conservative� criterion. To overcome this issue, it is possible to modify
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capacity constraints (3.4b)-(3.4e), introducing a �capacity utilization coe�cient� βτ
t for

each period of the time window. This coe�cient can assume values between 0 and 1,

with 0 denoting that no capacity is reserved for the execution of the �ight operation, and

1 denoting that capacity is granted. Given this de�nition, capacity constraints can be

rewritten as follows.

Capacity constraints with utilization coe�cient∑
f∈F :origf=a

∑
τ∈T f

a :τ≥t

βτ
t x

f
aτ ≤ Dt

a ∀a ∈ A, t ∈ T (3.5a)

∑
f∈F :destf=a

∑
τ∈T f

a :τ≥t

βτ
t x

f
aτ ≤ At

a ∀a ∈ A, t ∈ T (3.5b)

∑
f∈F :origf=a∨destf=a

∑
τ∈T f

a :τ≥t

βτ
t x

f
aτ ≤ T t

a ∀a ∈ A, t ∈ T (3.5c)

∑
f∈F :s∈Sf

∑
τ∈T f

s :τ≥t

βτ
t x

f
sτ ≤ St

s ∀s ∈ S, t ∈ T (3.5d)

Di�erent criteria can be de�ned by di�erently shaping the capacity utilization coe�-

cient. For instance, it is possible to set the coe�cient to the reciprocal of the width of the

time window. This criterion is referred to as �proportional criterion�. If a �ight departure

is associated with a �ve-period time window, for each period of the time window only 1
5

of the capacity is reserved. This can be achieved de�ning the βτ
t coe�cients as follows:

βτ
t =


1

t+1−T f
j

, if τ = t

βτ
τ − βτ−1

τ−1 , if τ ≥ t+ 1

In Table 3.14, an example of de�nition of the βτ
t capacity coe�cients is shown for time

windows of maximum width TW = 5.

For the sake of clarity, consider the capacity constraint for sector s at time period

t = 2, and a �ight f such that T f
s = 1. The utilization coe�cients for this constraint for

�ight f are given in the second row of Table 3.14. If the time window for the �ight at

this sector is still open at time period τ = 2, the width of the time window is at least two

time periods, and the capacity reserved for the �ight is at most one half, thus explaining

the coe�cient βτ
τ = 1/2. But, if the time window is also open at time period τ + 1, its

width is at least three, and the capacity utilization for the �ight is at most one third.

Since 1/3 = 1/2− 1/6, it follows that βτ+1
τ = −1/6, and so on.
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Table 3.14: Proportional criterion: coefficients for TW = 5

τ − T
f

j

t− T
f

j 0 1 2 3 4
0 1 -1/2 -1/6 -1/12 -1/20
1 1/2 -1/6 -1/12 -1/20
2 1/3 -1/12 -1/20
3 1/4 -1/20
4 1/5

Other capacity utilization criteria can be proposed. For instance, a third approach,

called �intermediate criterion�, guarantees the required capacity � one unit � for the

�rst time period of the time window, while it employs a capacity utilization inversely

proportional to the width of the time window for the remaining time periods. For this

criterion, the capacity constraint coe�cients are de�ned as follows:

βτ
t =


1, if t = τ = T f

j

0, if t = T f
j ∧ τ ≥ T f

j + 1
1

t−T f
j

, if t = τ > T f
j

βτ
τ − βτ−1

τ−1 , if τ ≥ t+ 1

Table 3.15 shows an example of de�nition of the capacity utilization coe�cients using

the intermediate criterion for TW = 5.

Capacity constraints (3.5), which use the capacity utilization coe�cients, can be

considered as a surrogate relaxation of constraints (3.4b)-(3.4e). Therefore, it is possible

that under the proportional and intermediate criteria, or under other user-de�ned criteria

similarly de�ned, the actual demand at time t is larger than the available capacity. This

phenomenon is analyzed in �3.8 using experimental data.

Table 3.15: Intermediate criterion: coefficients for TW = 5

τ − T
f

j

t− T
f

j 0 1 2 3 4
0 1 0 0 0 0
1 1 -1/2 -1/6 -1/12
2 1/2 -1/6 -1/12
3 1/3 -1/12
4 1/4
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3.8 ATFMTW Computational Results

In this section, the results from the computational experiments performed with both

discussed models are presented. First, in �3.8.1, results are illustrated for tests performed

using the optimal model. Then, in �3.8.2, results for the tests performed using the near-

optimal model are presented.

3.8.1 Optimal model computational results

The computational experiments were performed on two sets of randomly generated

instances on a computer with Intel Core 2 Duo CPU at 2.00 GHz and with 2GB of

RAM. The mathematical model was implemented in Mosel modeling language, solving

the instances with the Xpress solver. The two sets of instances are called �medium-size�

and �small-size�, and they only di�er in the number of considered �ights, which amounts

to 750 and 350, respectively. In both sets, 50% of the �ights are connected.

Instances are generated representing the airspace as a grid of squared cells. This

choice allows to accommodate sectors of arbitrary shape. Airports are randomly located

on the grid with a minimum distance between two airports of three cells. Airports

are also randomly subdivided between regional and hub airports. A regional airport is

only connected to hubs, while hub airports are connected to both types of airports.

All instances involve 29 sectors and �ve airports, three of which are hubs. Flights

are randomly generated, and their routes unfold along adjacent cells. The considered

scheduling horizon spans over �ve hours and is subdivided into 15-minute time instants.

The size of time windows can be equal to either one or two time instants. Capacity

constraints at airports are only de�ned for departures and arrivals, with a limit of 35

�ights every 30 minutes. At air sectors, the maximum number of entries within 30

minutes is also set to 35 �ights. Other key parameters that are set for all �ights are:

the sector �ight time, the maximum delay in the time window assignment, the departure

and arrival delay cost coe�cients, and the maximum extra-duration for the �ight time.

Instances are studied with di�erent sector and airport capacity levels, starting from

nominal capacity and lowering it by 10% each time, to test the performance of the

model under bad weather conditions � a�ecting the whole network � of di�erent intensity.

For each capacity level, ten di�erent random instances are generated for medium-size

instances, while for small-size instances 30 random instances were tested per capacity

level. The optimal model performs two consecutive optimizations, therefore computation
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times are analyzed separately for each step. For the �rst step, i.e., delay minimization,

feasible solutions are computed within a 1% optimality gap. For the second step, i.e.,

time windows maximization, feasible solutions are computed within a 5% optimality gap.

Moreover, considering the constraints on the computation times at this decision phase,

the time limit for the computation of both steps is set to 20'.

The computational results of the execution of the delay minimization step are reported

in Tables 3.16 and 3.17 for the medium-size and small-size instance sets, respectively.

Similarly, Tables 3.18 and 3.19 provide the computational results for the execution of the

time windows maximization step for the two sets of instances. These four tables have the

following structure. Column 1 (Capacity) shows the percentage of nominal capacity

available for the considered instances. Column 2 (Sol. Time) provides the average

computation time. Column 3 (Solved) provides the percentage of instances solved within

the 20' time limit. Column 4 (Infeasible) shows the percentage of infeasible instances.

Finally, column 5 (Opt. Sol.) provides the average value of the optimal delay cost.

Table 3.16: Delay minimization results for medium-size instances

Capacity Sol. Time Solved Infeasible Opt. Sol.
100% 312.0" 100% 0% 0
90% 448.1" 100% 0% 0
80% 744.3" 60% 0% 0
70% 1176.1" 20% 0% 33.6

40-60% - 0% 0% -
30% - 0% 20% -
0-20% - 0% 100% -

Table 3.17: Delay minimization results for small-size instances

Capacity Sol. Time Solved Infeasible Opt. Sol.
100% 48.6" 100% 0% 0
90% 49.4" 100% 0% 0
80% 59.8" 100% 0% 0
70% 68.7" 100% 0% 0
60% 66.0" 100% 0% 0
50% 108.3" 100% 0% 0
40% 276.3" 86.7% 0% 0

20-30% - 0% 0% -
0-10% - 0% 100% -
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Table 3.18: Time windows maximization results for medium-size instances

Capacity Sol. Time Solved Infeasible Opt. Sol. Gap
100% 231.0" 90% 0% 7254.2 3.6%
90% 231.2" 70% 0% 6946.0 3.4%
80% 242.9" 20% 0% 6613.0 3.4%

40-70% - 0% 0% - -
30% - 0% 20% - -
0-20% - 0% 100% - -

Table 3.19: Time windows maximization results for small-size instances

Capacity Sol. Time Solved Infeasible Opt. Sol. Gap
100% 27.5" 100% 0% 3597.6 2.6%
90% 31.8" 100% 0% 3601.5 3.2%
80% 33.4" 100% 0% 3602.8 3.3%
70% 57.0" 100% 0% 3567.1 3.1%
60% 44.8" 100% 0% 3486.2 3.4%
50% 124.9" 100% 0% 3578.3 3.9%
40% 293.8" 66.7% 0% 3514.0 4.1%

20-30% - 0% 0% - -
0-10% - 0% 100% - -

To summarize the results of the two optimization steps, an analysis is provided in

Tables 3.20 and 3.21, which refer to the medium-size and small-size instances, respec-

tively. The two tables have the following structure. Column 1 (Capacity) provides the

percentage of the nominal capacity available. Columns 2 (Step 1 Time) and 3 (Step 2

Time) provide the average computation times for the �rst and second optimization steps,

respectively. Finally, columns 4 (Step 1 %) and 5 (Step 2%) provide the percentage of

total computation time spent on each optimization step.

Results for medium-size instances show that the computation times of delay minimiza-

tion increase when available capacity decreases. The time windows maximization step,

Table 3.20: Global results for medium-size instances

Capacity Step 1 Time Step 2 Time Step 1 % Step 2 %
100% 312.0" 231.0" 57.5% 42.5%
90% 448.1" 231.2" 66.0% 34.0%
80% 744.3" 242.9" 75.4% 24.6%
70% 1176.1" - - -
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Table 3.21: Global results for small-size instances

Capacity Step 1 Time Step 2 Time Step 1 % Step 2 %
100% 48.6" 27.5" 63.9% 36.1%
90% 49.4" 31.8" 60.8% 39.2%
80% 59.8" 33.4" 64.1% 35.9%
70% 68.7" 57.0" 54.6% 45.4%
60% 66.0" 44.8" 59.6% 40.4%
50% 108.3" 124.9" 46.4% 53.6%
40% 276.3" 293.8" 48.5% 51.5%

on the other hand, does not follow this trend. However, a limited number of solutions

is provided: no solution complete with time windows is determined within the 20' time

limit for capacity reduced to 70% or less of the nominal. More solutions are available for

small-size instances thanks to the reduced number of �ights. For these instances, it is

possible to observe the slow increase of solution times for both optimization steps when

capacity decreases from 100% to 60% of the nominal. Computation times drastically

increase for both steps when capacity decreases to 50% or less of the nominal.

Average reported computation times for both optimization steps are equal to 9'03"

for medium-size instances when nominal capacity is available. These solution times are

acceptable in practice, however the size of these instances is still small compared with real

life problems. The implementation of larger instances was also tested, but the optimal

model did not scale up well. In fact, instances with 750 �ights, i.e., only 25 more �ights

than the considered medium-size instances, did not provide any integer solution for the

�rst step after one hour of computation.

Another drawback of the proposed approach lays in the percentage of time spent

computing the second step, i.e., maximum width time windows. As reported in Table

3.20, for instances with nominal capacity, over 42% of the computation time is spent

maximizing time windows. This means that, after computing a minimum delay schedule,

an additional time equal to 74% of the computation time already spent is needed in order

to �nd an optimal schedule/time windows combination. This increase in computation

times is not acceptable in practice, even reducing the computation times for the �rst step

to those reported by most state-of-the-art models. These unsatisfactory results motivated

the development of the near-optimal model, whose computational results are discussed

in the next subsection.
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3.8.2 Near-optimal model computational results

The computational experiments on the near-optimal model were conducted on a series of

randomly generated instances whose dimensions are representative of problems of near-

continental scope in Europe. More speci�cally, instances consider 30 airports (10 of which

are hubs), 145 sectors, 50 time periods, and 6,475 �ights. These �gures are the same as

the national size instances used to test the BLO model. Each instance includes bad

weather fronts that reduce the capacity of a set of airports and sectors. Di�erent levels

of capacity reductions are studied. The time horizon is divided into 5' time periods. The

width of each time window can vary from one to three time periods. The mathematical

model is implemented in Mosel modeling language, using the Xpress IVE programming

environment. The position of the time windows is determined with the BLO model.

Computation times for instances of this size are reported by the authors to range between

3'18" and 19'40", depending on the capacity reduction level. The average computation

times of the near-optimal model are very limited compared with those of the optimal

model. In fact, the average computation time is 40�, with very few instances requiring

over 1' of computation for the most congested instances. These computation times are

reported on a standard laptop, and constitute a small overhead after the computation of

an optimal �ight schedule. Therefore, the near-optimal model may feasibly be used in

practice.

To analyze results, four sets of �ights are identi�ed in each instance. Each set involves

�ights with time windows of di�erent size. The �rst set of �ights, depicted in Figures

3.4-3.6 by a gray line with diamond indicators, considers �ights with time windows that

are one period wide from origin to destination. These are the �most critical� �ights. The

second set of �ights, shown by the pink line with squared indicators, contains �ights that

only have time windows that are two periods (10 minutes) wide. The third set, shown

by the red line with triangle indicators, only contains �ights with time windows that

are three periods wide, thus representing the �ights with the largest degree of �exibility.

Finally, a fourth group of �ights with time windows of di�erent widths, i.e., not constant

along the route, is considered. These �ights are referred to as �heterogeneous�, and they

are depicted by the black line with circle indicators in the �gures.

Furthermore, the three capacity utilization criteria discussed in �3.7.2, i.e., the conser-

vative, the intermediate and the proportional criteria, are considered. For each criterion,

a diagram displaying the distribution of �ights among the four sets under bad weather

fronts of di�erent intensity is reported in Figures 3.4 to 3.6. The intensity of the bad
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Figure 3.4: Flight distribution under conservative criterion

Figure 3.5: Flight distribution under proportional criterion

weather fronts is reported on the abscissa as the percentage of the available capacity

with respect to the nominal capacity. For example, the value 10 represents the case with

only 10% of the nominal capacity available at sectors and airports involved by the bad

weather fronts, while the value 100 corresponds to the absence of bad weather fronts.

As expected, Figures 3.4-3.6 show that the number of most critical �ights decreases

when the available capacity increases. The percentage of most critical and heterogeneous

�ights shows a wide variability across the capacity utilization criteria. In fact, for the

instances with the largest amount of available capacity, the percentage of most critical

�ights varies from 0% (proportional criterion, see Figure 3.5), up to 17% (conservative

criterion, see Figure 3.4), whereas heterogeneous �ights are always around 30%. These

statistics support the observation that the initial formulation is indeed conservative

in nature. Inversely, the implementation of constraints (3.5a)-(3.5d) implies that the
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Figure 3.6: Flight distribution under intermediate criterion

proportional capacity utilization criterion is quite inattentive in guaranteeing the required

capacity resources for all �ight operations. Under this criterion, the percentage of both

the most critical and heterogeneous �ights is almost irrelevant, especially for instances

with a low level of congestion. A compromise solution is given by the intermediate

criterion, where the sum of the percentages of the most critical and heterogeneous �ights

lies between 20% and 30%. The application of the proportional and intermediate criteria

might lead to capacity shortages which should be addressed at the operational phase by

assigning ATC delays. This calls for an evaluation of the robustness of the solutions,

which is discussed in �3.8.3.

Figure 3.7 depicts the distribution of the time window width for heterogeneous �ights

under the conservative and intermediate criteria at three di�erent levels of capacity

availability: 10%, 50%, and 100%. The number of heterogeneous �ights is negligible

under the proportional criterion. As expected, the percentage of three time periods

wide time windows increases with the available capacity for both criteria. Viceversa,

the percentages of two and one time periods wide time windows decrease. Finally, the

percentage of three time periods wide time windows is always slightly lower under the

intermediate criterion. Nevertheless, their overall number is signi�cantly higher than

under the conservative criterion, as the percentages of �ights with three time periods

time windows only under the intermediate and conservative criteria are around 40-45%

and 25%, respectively.
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Figure 3.7: Time windows distribution for heterogeneous flights

3.8.3 Ex-Post Feasibility Analysis

Once the time windows for all �ights are identi�ed, each �ight is entitled to use any of

the available time periods within a time window to execute the corresponding operation.

Therefore, discounting the use of capacity, as in the intermediate and the proportional

criteria, may result in the violation of some of the capacity constraints due to an excess

of the demand. If this adverse situation takes place, control actions have to be put into

place with negative e�ects on the performances of the air tra�c system. The likelihood of

occurrence of these adverse situations under both the proportional and the intermediate

criteria is evaluated. Capacity utilization is evaluated at every time period by simulating

resource occupancy as follows. The departure time of each �ight is randomly generated

within its departure time window. Then, the sequence of time periods used by the �ight

along its route is determined. This procedure allows to compute the capacity demand

for each time period and airspace element (airport/sector), and consequently to evaluate

whether capacity constraints are violated or not. The random choice of the departure

times is made in accordance with three probability distribution functions.
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• Uniform distribution: all the time periods of a time window can be chosen with

equal probability.

• Triangular distribution: the probability monotonically decreases with time.

Hence, the �rst time period has the highest probability and the last time period

the lowest one.

• Mixed distribution: the initial time period has probability 1
2
to be chosen,

whereas all the other time periods equally share the remaining probability.

For each congestion level, probability distribution, and capacity utilization criterion,

1,200 simulations of the usage of time windows were performed. Test instances involve

about 50 time periods and 200 airports/sectors, therefore approximately 10,000 (air-

port/sector, time period) pairs are considered, each de�ning a capacity constraint. Table

3.22 shows the main results of this ex-post feasibility analysis, and it is structured as

follows. Column 1 (Capacity) shows the level of available capacity at airports/sectors

involved by a bad weather front. The �gures in the other columns show how many

(airport/sector, time period) pairs � out of 10,000 � report capacity violations under the

corresponding probability distribution function for setting the random departure times.

These �gures are the average values over the 1,200 random tests performed.

The results show that, for each capacity level and probability distribution function,

the number of capacity violations is on average always higher under the proportional

criterion. These �ndings are coherent with the discount capacity factors used to de�ne

the two criteria. Nevertheless, the absolute values of the capacity violations are always

extremely low under the proportional criterion too. In fact, the highest number of

capacity violations � which occurs in the case of minimum capacity availability with

departures chosen with the uniform distribution � is equal to 14.1 on 10,000 constraints,

i.e., only 0.141% of capacity constraints is violated in the worst analyzed case.

The results of this analysis demonstrate the applicability of the proposed approaches,

as the adopted criteria rarely produce adverse capacity shortages. In fact, even under the

proportional criterion that guarantees the maximum level of �exibility to �ights, with

an almost irrelevant number of most critical �ights (see Figure 3.5), capacity violations

are very rare. Then, it is possible to conclude that the �exibility granted to �ights has a

negligible impact on capacity utilization even in congested situations, and thus does not

produce any signi�cant additional ATC delay.
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Table 3.22: Feasibility analysis

Proportional Intermediate
Capacity Uniform Triangular Mixed Uniform Triangular Mixed
10% 14.1 10.3 11.9 4.1 1.7 3.4
20% 10.5 8.7 9.7 2.5 0.9 2.4
30% 7.1 6.1 6.8 2.2 0.7 2.1
40% 5.7 5.2 5.6 2.0 0.5 1.9
50% 5.4 5.2 5.4 1.7 0.3 1.6
60% 4.3 4.1 4.3 1.8 0.4 1.7
70% 3.6 3.4 3.7 1.8 0.4 1.7
80% 2.7 2.8 3.1 1.7 0.3 1.6
90% 2.4 2.4 2.6 1.5 0.3 1.5
100% 2.3 2.3 2.5 1.5 0.3 1.4

3.9 ATFMTW Conclusions

In ATFM, time windows address the implicit uncertainty on the time of departure of

�ights. They can be used to measure the degree of �exibility of �ight operations, allowing

to identify �ights whose execution is critical. Two di�erent deterministic models are

proposed in this chapter to determine time windows in ATFM. The �rst, called �optimal

model�, provides the optimal schedule/time windows combination. The second, called

�near-optimal model�, provides the largest time windows for a speci�c schedule, and is

faster to compute.

Computational experiments on the optimal model were performed on small-scale

random instances with moderate or low congestion. Computing time windows with

this model is not trivial. In fact, for the largest instances considered, computing time

windows after determining optimal schedules increases computation times by 74% in the

least congested case. This increase in computation times is not acceptable for practical

applications. This motivated the development of the near-optimal model, which allows

to reduce computation times, making the time windows tool usable in practice. This

model �xes the position of time windows, i.e., the initial instant, using any deterministic

ATFM model from literature. Then, the total width of time windows is maximized for

the chosen schedule. Instances of near-continental scope in Europe reported computation

times to maximize time windows of 40� on average, showing the practical viability of the

proposed approach.
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The standard time window approach reserves capacity for all time instants within a

time window. However, this approach can be too conservative in practice, resulting in

the declaration of too many �ights as critical. For this reason, two additional criteria �

called �proportional� and �intermediate� criteria � for computing capacity utilization are

proposed. Each criterion gives rise to a tradeo� between the level of conservatism and

the occurrence of imbalances between demand and capacity when �ights are operated.

Computational results show that the proportional criterion identi�es a very limited

number of critical �ights, while the intermediate criterion provides a more balanced

solution, as each �ight is always granted the possibility to operate at the initial time

period of its time windows. Demand/capacity imbalances are evaluated by randomly

choosing the departure time of a �ight within the available time periods of its departure

time window. Results show that, on average, capacity constraints are respected with a

rate always higher than 99.8%, even when severe bad weather fronts are present, thus

proving the viability of the proposed framework.

Interesting future developments of this work can be achieved by applying time win-

dows to real air tra�c data. Using real data, it may be possible to provide interesting

insight on congestion phenomena through the identi�cation of critical �ights. In par-

ticular, the study of the spatial distribution of the width of time windows can allow to

identify spacial bottlenecks in the system. Finally, uncertainty on both capacity and

�ight departure times may be considered together, joining the two di�erent approaches

discussed in this chapter, proposing time windows for stochastic solutions.
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OPERATIONAL DECISION MAKING

After the strategic and tactical decision phases, the �nal phase considered is the oper-

ational decision phase. In this chapter, the problem of rescheduling �ights in real time

is faced. Flight operations were scheduled at the tactical phase, and time windows to

manage them were also determined. The application of time windows at the operational

phase is now analyzed. The studied operational problem is named Real Time Flight

Rescheduling with Time Windows (RTFRTW), and it is described in �4.1. To solve it in

real time, a rule-based algorithm, described in �4.2, is used. The algorithm was tested

on two sets of instances, one with simulated data and the other based on real �ight data.

These results are presented in �4.3. Finally, in �4.4, the conclusions and future directions

of work on RTFRTW are summarized.

4.1 Real Time Flight Rescheduling with

Time Windows

At the tactical phase, complete �ight plans for the execution of �ights are determined.

As highlighted in �3.6, the operation times speci�ed in the �ight plans can be associated

with time windows, which specify the slack time available to execute each �ight operation

without the need to ask for the assignment of new capacity resources. This is particularly

critical at departure, as unforeseen events at the airport of origin of a �ight involving

passengers, sta� or machines may take place. Time windows allow to identify �ights that
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need to be executed carefully to avoid incurring in additional delays due to the lack of

resources needed to operate them at a delayed time. Such �ights are de�ned as �critical

�ights�.

Time windows can be used as a tool to deal with �ight �exibility. However, they

only measure the �exibility of each �ight operation, without specifying the actions that

should be taken when a �ight is not able to respect a time window. In fact, time windows

only specify that, in such a case, capacity resources are not assigned to the �ight. No

information is provided on when resources will be available for the �ight, i.e., when it is

possible to reschedule it. Such decisions can be made at the operational phase. At this

phase, the uncertainty on the departure time of a �ight is vanishing, and it is possible to

determine the actual usage of capacity resources by �ights. In fact, uncertainty on the

departure time a�ects all �ights, and the delayed departure of a �ight can result in the

ability of another �ight to use the capacity resources initially scheduled to be used by

the �rst �ight. A framework to reschedule �ight operations at the operational phase is

the subject of this chapter.

The proposed framework is based on an algorithm that reschedules �ights in real

time according to the evolving capacity availability in order to reduce delays. This

algorithm follows the principles of the Ration-By-Schedule (RBS) procedure [69]. RBS

rations limited capacity resources according to schedule-based priority rules. Rationing is

typically done under the Collaborative Decision Making (CDM) framework [70, 71]. CDM

in Europe is concerned with the data exchange between the Central Flow Management

Unit (CFMU) and the airlines. Data exchange is a key factor leading to better decision

making in ATFM. CDM also aims at the decentralization of decisions which have a

potential economic impact on airline operations, to make them in collaboration with

the airlines. Under CDM, by rationing available capacity, slots are assigned to airlines

rather than to �ights. Then, airlines may perform substitutions or cancellations of slots,

resulting in a slot usage di�erent from the rationed one. It is therefore necessary to

execute a compression algorithm to avoid wasting unused capacity resources. This

is achieved by moving �ights earlier in time to �ll slots that are available after the

substitution/cancellation.

The RBS algorithm was introduced to substitute the Grover Jack algorithm, see Ball

et al. [72]. The Grover Jack algorithm forms a list of �ights ordered by the most recent

estimated time of arrival of each �ight. Controlled arrival times are assigned following

this list, depending on the arrival slots available at the destination airport. However,

this mechanism is subject to several problems. First, a so-called �double penalty� can
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occur. In fact, an incoming �ight reporting its delay is penalized in the Grover Jack

�ight list, and may receive additional delay, which would have not been assigned if the

airline did not report the original delay. Also, slots allocated to cancelled �ights are

allocated to other �ights regardless of the operating airline, which resulted in airlines

not reporting �ight cancellations to avoid favoring rival airlines. The RBS mechanism

was introduced to overcome these problems. In literature, di�erent issues related to

RBS and resource allocation under CDM are faced. Vossen [73] discussed fair allocation

of resources in CDM procedures, introducing and evaluating several approaches to fair

allocation, using both multi-objective optimization models and cooperative models from

game theory. Ball and Lulli [74] investigated how the set of �ights to which delays are

applied under CDM is de�ned. They de�ned a �distance-based� GDP that only applies

to �ights coming from airports within a prescribed distance from destination, and they

studied how to appropriately de�ne this distance. Brinton et al. [75] discussed an airport

surface departure management concept that was evaluated operationally in the �eld in the

U.S., the Collaborative Departure Queue Management (CDQM) concept. An application

from Memphis, TN was studied and CDQM is reported to provide reduced taxi times,

reducing fuel usage while maintaining full use of departure capacity. Jones et al. [76]

studied four di�erent algorithms designed to reduce the amount of delay in the terminal

phase of �ight. Di�erent priority criteria are evaluated, with three algorithms being

variants of the RBS algorithm, while the last uses an integer program to assign arrival

times. Their analysis suggests that RBS-based algorithms provide strong throughput

performance, which is achieved at the expense of higher fuel usage.

Another issue involving slot allocation under CDM is given by slot exchange between

airlines. Vossen and Ball [77] discussed how the procedures for allocating slots to

airlines and exchanging slots between airlines may be formalized through appropriately

de�ned optimization models. In addition, they described how inter-airline slot exchanges

may be viewed as a bartering process, in which each �round� of bartering requires

the solution of an optimization problem. They compared the resulting optimization

problem with the existing procedure for exchanging slots and discussed possibilities

for increased decision-making capabilities by the airlines. Auction mechanisms are also

studied. Cholakerin [78] proposed a sequential, sealed-bid Vickery auction without pack-

age bidding as a mechanism for allocating arrival slots during Ground Delay Programs

(GDPs). The auction was simulated on historical �ight data and compared with two

CDM slot auction methods and a �global optimization� method where it is assumed

that one airline owns all �ights. Computational results report that the proposed auction
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mechanism improves the performance of CDM. Balakrishnan [79] considered two di�erent

approaches based on market design to resolve the issue of airport landing resource

allocation. His work analyzes the problem of slot trading without monetary payments,

presenting su�cient conditions for the existence of stable allocations. Furthermore, a

combination of optimization-based slot trading with a payment-based exchange scheme

that uses the Vickrey-Clarke-Groves (VCG) pricing mechanism [80] is proposed.

Many literature works solve problems that, despite being similar to the operational

problem faced in this chapter, are more tactical in nature. This allows to use op-

timization models, algorithms or auction methods that are not compatible with real

time requirements. Operational actions are usually faced by Air Tra�c Control (ATC),

which is a service provided by ground-based controllers that manage airborne �ights

enforcing �ight safety rules. Auction mechanisms compatible with operational problems

may be proposed. A possible mechanism is a protocol-based auction mechanism with

time limit managed by the CFMU. In this mechanism, airlines may submit bids at any

time before the deadline, being aware of the current winning bid, thanks to a continuous

communication between the airlines and the CFMU. However, this mechanism may be

subject to issues related to slow bid increase. An alternative mechanism may be inspired

by token ring networks (see the IEEE 802.5 standard). In such a mechanism, airlines

place bids at turns de�ned by the ring, with each airline having limited time to place

a bid. However, this mechanism may be slow when many airlines participate in the

auction, resulting ine�cient in practice. A solution to this ine�ciency may be provided

by a �rst-price sealed-bid auction mechanism [81]. In this mechanism, airlines do not

need to send a message to enter the auction, as they are free to send their own o�er

by some deadline. When the deadline expires, the CFMU announces the winner of the

auction. Very short times can be granted for the auction. However, it is known that such

auctions give the bidders incentive to bid lower than their valuation of the item, lowering

the �nal revenue.

This chapter focuses on the application of RBS and compression algorithms to the

special case of time windows. Auction mechanisms are not considered. The di�erence

with RBS mechanisms from literature is in the reservation of slots. In fact, using time

windows, �ights may be assigned multiple consecutive slots, re�ecting the size of their

time windows. Also, airlines behavior is in�uenced by the existence of time windows,

as when they are respected �ights do not need to be rescheduled through capacity

compression. In the proposed framework, slots are assigned to �ights instead of airlines,

providing a maximum system �exibility. This may however be di�cult to implement

96 L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases
in the Air Tra�c Domain



Chapter 4. Operational decision making

in practice due to the unwillingness of airlines to release resources that may favor their

competitors. Collaborative and non-collaborative airline attitudes are explicitly faced in

this work, to study the global bene�ts resulting from collaborative airline attitudes.

The starting point of this problem is the a schedule with time windows, de�ned

as in chapter 3. This schedule may contain ATFM delays applied to �ights. When

the scheduled departure time � that includes the possible ATFM delay � of a �ight

approaches, its operating airline is, in general, able to reduce the uncertainty on the

actual time of departure of the �ight. Some time before the scheduled departure time,

the airline is supposed to be able to determine an accurate �nal departure time for the

�ight. A delay on the scheduled departure time may have to be applied. This delay is

referred to as �additional delay�. The additional delay may cause the �ight to exceed

its departure time window. Supposing that time windows are de�ned according to the

conservative criterion (see �3.8), an airline that expects the departure of a �ight to take

place within the assigned departure time window does not need to take any corrective

action. On the other hand, an airline that expects a �ight not to meet the assigned

departure time window needs to request for the assignment of new capacity resources to

depart at a delayed time. If capacity is not available at the new requested time, a new

delay should be applied. This delay is referred to as �increased additional delay�.

De�ning time windows conservatively reduces the amount of available capacity re-

sources to operate �ights. By de�nition, capacity resources are assigned to a �ight at

each time instant of a time window that is de�ned according to the conservative criterion.

This can result in a situation such as the one illustrated in Figure 4.1. In this example,

four �ights are assigned three time periods wide time windows to depart. At time period

t = 3, departure capacity is congested even if only a single �ight is scheduled to depart

at that time, due to the time windows of all three other �ights being open at that time

period. From a tactical point of view, this means that all �ights may freely depart

at time period t = 3. However, from an operational point of view, this may result in

capacity shortages. For example, another previously scheduled �ight may need to delay

its departure at t = 3. Due to the presence of time windows, it may not be possible to

reschedule its departure at that time period.

RTFRTW deals with the discussed problem, proposing a way to keep time windows

without incurring in relevant capacity shortages for �ights not respecting them. During

�ight execution, capacity availability is updated at every time instant. This is done by

releasing capacity resources that are not reserved by �ights anymore. This happens at

the departure of a �ight, when it is possible to close its departure time window as the

L. Corolli - Deterministic and Stochastic Optimization for Heterogeneous Decision Phases 97
in the Air Tra�c Domain



Chapter 4. Operational decision making

Figure 4.1: Capacity availability example

�ight does not need resources to depart anymore. Capacity may also be released when

an airline requests for a new departure time for a �ight outside its assigned time window,

as it is not able to use the allocated resources as scheduled. New capacity availability is

then compared with requests for capacity usage by airlines for delayed �ights. Capacity

is allocated according to precedence rules which favor �ights rescheduled with a large

increased additional delay. Flights are rescheduled to single time periods, i.e., no slack

time is provided to operate at the new requested departure time.

The described approach does not involve any collaboration from airlines, as they

only provide information when they have a direct interest in doing so. To improve

the performance of the global system, a di�erent approach is proposed and evaluated.

This new approach is named �collaborative approach�, while the approach described so

far is referred to as �non-collaborative approach�. The collaborative approach requires

airlines to provide the CFMU with the planned time of departure of a �ight before this

operation takes place, even when a �ight is scheduled to depart within its departure time

window. This allows to restrict time windows before departures take place, so capacity

resources are available some time periods in advance compared with the non-collaborative

approach. It is therefore easier to reschedule a �ight at a new desired time of departure.
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The described procedure is applied in real time using a rule-based algorithm based

on RBS. The strict constraints on computation times do not allow to use optimization

models at this decision phase: as soon as some resources are released by an airline, they

should be reallocated in real time, if a reallocation is possible. The proposed algorithm

is described in the following section.

4.2 Real time capacity reassignment algorithm

The RBS-based algorithm to reassign capacity resources to �ights in real time is illus-

trated in Figure 4.2. Input data for the algorithm are the �ight plans with the associated

time windows and the capacity constraints for airports and sectors. This information is

given for the time horizon under analysis. After reading the input data, a loop starts,

with one iteration per time period from the considered time horizon. At each time period,

airlines submit requests for new departure times to allocate to �ights that are expected

not to meet the assigned departure time windows. Also, �ights that have departed are

not considered for reallocation anymore. In the collaborative approach case, announced

�nal departure times are received for all �ights.

In the block denoted with (a), �ights for which a reallocation request is formulated

are assigned an earliest arrival time given the available capacity resources. If a �ight is

not assigned the new requested departure time, it is added to a pool of �ights named

toReallocate. For these �ights, the algorithm will later try to reallocate their departure

time at a time that is closer to their request. This is one of the crucial parts of the

algorithm, and it is described into detail in �4.2.1. Capacity resources are then released

for all operations which do not need them anymore. First, �ights that have departed

are assigned time windows of unitary size along all the route, so the corresponding

time windows can be restricted. This holds only in the non-collaborative case. In the

collaborative case, at this phase, time windows are already of unitary size. In fact,

time windows for �ights that announce a �nal departure time within the departure time

window are restricted to unitary size at the time of announcement of the �nal departure

time. Under the collaborative approach, airlines are requested to announce the �nal

departure time of �ights by a deadline. This deadline is �xed to a prede�ned amount of

time before the scheduled departure time of each �ight. Furthermore, resources previously

assigned to �ights requesting for a new departure time are also released.

After the release of all these resources, the block denoted with (b) in the �owchart is

executed. This is the most important step of the algorithm, as it performs the reallocation
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Figure 4.2: Algorithm for RTFRTW
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of capacity resources. The details of this block are illustrated in �4.2.2. First, the

toReallocate pool of �ights is ordered according to prede�ned rules. Then, available

capacity resources are reallocated to �ights that belong to this pool, according to the

de�ned order. The described steps are repeated for each time period of the considered

time horizon, until the �nal one, then the algorithm stops.

In the next two subsections, blocks (a) and (b) are discussed into detail. Then, in

�4.2.3, an example of the execution of the algorithm is provided.

4.2.1 Management of new reallocation requests

In Figure 4.2, block (a) refers to the management of new requests to operate �ight

departures at a time period outside the assigned time window. Details on the functioning

of this block are shown in Figure 4.3. All reallocation requests are placed in a set named

reallocateRequests. Each element contains information on the new requested time of

departure for a �ight. All elements of the set are analyzed in a loop. After the selection

of a �ight from the set, a variable t is set to the requested departure time, and the

availability of the complete set of capacity resources needed along the route to depart at

t is checked. If capacity is insu�cient to operate the �ight at t, the algorithm looks for the

earliest departure time available by incrementing t until available resources are found.

The �ight plan can then be updated, reserving the needed resources. If the allocated

departure time matches the request, the �ight is removed from the reallocateRequests

set. Else, the �ight is moved to the toReallocate set, whose �ights are considered for

rescheduling later, to decrease their increased additional delay. These operations are

repeated for each element of the reallocateRequests set, until it is empty.

4.2.2 Resource reallocation

Block (b) from Figure 4.2 is the core of the real time �ight rescheduling algorithm, as

it reallocates available capacity to �ights. The detailed �owchart is provided in Figure

4.4. Only �ights that are scheduled to depart at least two time periods from the current

instant are considered for resource allocation. In fact, reallocating a �ight scheduled to

depart in the next time period implies rescheduling it at the current time period, forcing

it to depart immediately, with too little time to react to the updated decision. Flights not

satisfying this requirement are therefore removed from the toAllocate set, which is the set

of all �ights that are considered for rescheduling, to decrease their increased additional

delay.
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Figure 4.3: Management of new reallocation requests
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The second step of the algorithm, which starts the main cycle, orders the toAllocate

set according to the speci�ed precedence rules. Ordering is performed according to the

two following rules:

1. �ights with a larger arrival delay get the precedence;

2. �ights with an earlier scheduled arrival time get the precedence.

After ordering the �ights, a variable named reallocated is set to 0. This variable

counts how many �ights have been reallocated in the current iteration. A reallocation

involves the release of resources that were assigned to a �ight that is now reducing its

delay. These resources may now be used by some �ight that has already been analyzed

in the cycle. Using the reallocated variable it is possible to check whether some new

reallocation may be possible in a new iteration, which is performed if reallocated > 0.

After initializing the reallocated variable, the �rst �ight from the toAllocate set is

retrieved, to start analyzing all �ights in an inner cycle. The inner cycle starts by setting

the �rst time period at which reallocation of the selected �ight's departure is attempted.

The value t is therefore set to the maximum value between the requested �ight time and

the time period following the one at which the algorithm is executed. No earlier time

period is feasibly assignable to the �ight to depart. Then, capacity availability at t is

veri�ed. If capacity resources are insu�cient to move the departure at t, the same test

is performed at the following time instant, until a feasible better reallocation is found,

if one can be found. In fact, reallocations are looked up to the time instant at which t

is less than the previously assigned departure time. If no better reallocation is found,

the algorithm moves on to the following iteration of the inner cycle, selecting the next

�ight from the toReallocate set. On the other hand, if a better reallocation is found,

the assigned departure time and the complete �ight plan are updated. Then, capacity

resources related to the old �ight plan are released, and those related to the new �ight

plan are reserved. Also, the reallocated variable is incremented, to count the performed

reallocation. If the �ight is reallocated to the earliest possible departure time, it can be

removed from the toReallocate set, since no better reallocation can be performed. Then,

the algorithm goes to the next iteration of the inner cycle, by selecting the next �ight from

the toReallocate set. Once all �ights from the toReallocate set are analyzed, the inner

cycle ends. The main cycle now also ends, checking the value of the reallocated variable:

if reallocated > 0 and toReallocate is not empty, then some additional improvement

may be achieved. Therefore, the main cycle iterates. Else, the reallocation part of the

algorithm terminates.
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Figure 4.4: Reallocation of available capacity resources
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4.2.3 Example

An example of the functioning of this algorithm is now provided. In this example, three

�ights, called f1, f2 and f3, that are scheduled to depart from the same airport, are

considered. Also, for the sake of simplicity, only operations taking place at the departure

airport are considered. Capacity is only considered to be a critical factor here, with

enough capacity available along the rest of the route of the considered �ights. At time

t = 1, the following information is available:

• f1 has a departure time window [1, 3] and can depart at t = 1

• f2 has a departure time window [1, 2], but its operating airline requests for a delayed

departure at t = 3

• f3 has a departure time window [1, 3], but its operating airline requests for a delayed

departure at t = 4

Furthermore, after the execution of block (a) of the algorithm, f2 is assigned an

updated departure time at t = 4, while f3 is assigned an updated departure time at t=6.

Supposing that the non-collaborative approach is followed, the departure of f1 at t = 1

causes the release of the capacity that it is not going to use. Speci�cally, there is one

more unit of capacity available at t = 2 and t = 3 for �ights to depart. Block (b) of the

algorithm can now be executed, resulting in the following operations:

• sorting of �ights: f3 precedes f2;

• analysis of f3: capacity to reschedule the departure at an earlier time is not found;

• analysis of f2: the �ight can depart at t = 3, it is removed from the toAllocate set,

and capacity to depart at t = 4 is released;

• the algorithmmanaged to reduce some delay during the last execution (reallocated =

1), so it is executed again;

• sorting of �ights: f3 is the only �ight left;

• analysis of f3: the �ight can depart at t = 4, it is removed from the toAllocate set,

and capacity to depart at t = 6 is released;

• the algorithmmanaged to reduce some delay during the last execution (reallocated =

1), but no �ights are left in toAllocate, so the algorithm is terminated.
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This example results in the complete removal of the increased additional delay as-

signed to �ights: both f2 and f3 are able to depart at the new departure times requested

by airlines. The results from computational tests using the discussed algorithm are

discussed in the next section.

4.3 RTFRTW Computational Results

In this section, the results of the computational experiments performed to assess the

practical viability of the proposed approach are presented. For each experiment, three

steps are executed. First, time windows are identi�ed. Second, reassignment requests

are received, assigning increased additional delays (block (a) of the algorithm) when

needed. Finally, the increased additional delays (block (b) of the algorithm) are reduced.

Two di�erent instance sets are considered. The �rst instance set consists of simulated

instances, and the corresponding results are discussed in �4.3.1. The second set of

instances is based on real European air tra�c data, and results from the computational

experience on this set of instances are discussed in �4.3.2. Both the non-collaborative

and collaborative approaches are considered and evaluated.

4.3.1 Simulated instances

The computational experiments on simulated instances are based on the results of the

ATFMTW model with a near-optimal model presented in �3.8.2. The actual departure

times of �ights, which can generate requests for new resource allocations to depart,

are de�ned in accordance to a realistic probability distribution of delays based on data

derived from EUROCONTROL's Demand Data Repository (DDR). An analysis on this

data source was performed by Corolli, Castelli and Lulli [82]. In particular, based on

real data from December 19th 2011, the additional delay is computed as the di�erence

between the radar o� block time and the last �lled �ight plan o� block time. These

�gures are available in the DDR m3 and m1 .s06 �les, respectively. The distribution of

additional delay is depicted in Figure 4.5. The percentage of departures that are executed

within the assigned time windows after the application of additional delay is determined

on a set of 200 simulations per instance and per capacity level. Figure 4.6 shows that this

percentage, as expected, increases with the available capacity, but ranging between very

close values. In fact, it varies from 73.3% when the bad weather front is the strongest to

74.1% when no bad weather front is present.
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Figure 4.5: Probability distribution of additional delays

Figure 4.6: Percentage of respected time windows

Every �ight not respecting its departure time window may be subject to an increased

additional delay. The total amount of increased additional delay in the network is strongly

in�uenced by the attitude of airlines to share their information. In fact, assuming that �ve

time instants (25 minutes) before the scheduled departure of a �ight the corresponding

airline is in the position to know whether it can respect or not its departure time

window, the �gures of increased additional delay from the simulations on the set of

simulated instances are shown in Figure 4.7. Here, it is possible to observe that the

increased additional delay initially assigned � i.e., after the execution of block (a) of the

algorithm � is much higher using the non-collaborative approach. For example, in the

case with capacity reduced to 10% of the nominal, the total increased additional delay is

equal to 268" and 338" per �ight with the collaborative and non-collaborative approach,
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Figure 4.7: Initial increased additional delay

respectively. These �gures correspond to a total of 28,910 and 36,497 minutes of delay

on the whole system for the two di�erent approaches. Among all the di�erent capacity

reduction levels, the increased additional delay is from 24.3% to 26.6% higher following

the non-collaborative approach.

Once the increased additional delay is assigned to all �ights, it can be reduced through

the delay recovery algorithm from block (b). Figure 4.8 shows that most of the increased

additional delay can be eliminated. The increased additional delay is reduced by 99.8% for

instances with no bad weather fronts using both the collaborative and non-collaborative

approaches. The smallest gain is obtained for the instances with the heaviest bad weather

fronts, where 97.6% and 97.8% of the increased additional delay is removed with the two

di�erent approaches. The quantity of remaining increased additional delay is very much

dependent on the available capacity: using the collaborative approach, it ranges from 6.4"

to 0.4" per �ight, i.e., from 696' to 46' on the whole system. Using the non-collaborative

approach, on the other hand, the remaining increased additional delay ranges from 7.3"

to 0.8" per �ight, i.e., from 785' to 85' on the whole system. The di�erence between the

two attitudes is small, as it ranges between 0.8" and 0.4" per �ight, i.e., between 89' and

39' on the whole system. This result seems to justify the use of the non-collaborative

approach as the price to pay, in terms of absolute added delay, is very low. Furthermore, a

non-collaborative approach allows airline operators to deal with possible delays that may

be added to a �ight between the time when the exact time of departure is formulated and

the departure itself, as �ights maintain their time windows until they actually depart.

The percentage of respected time windows and the limited increased additional delay

obtained using the non-collaborative approach show that it is possible to e�ciently
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Figure 4.8: Final increased additional delay

operate �ights using time windows even in uncertain situations where �ights may not

respect them. This is very important for their possible application to real �ights,

where the ability of dealing with uncertainty is fundamental. Furthermore, the average

runtime of the delay reduction algorithm, i.e., block (b), was 49ms and 61ms using

the collaborative and non-collaborative approach, respectively. These estimates refer

to executions of the algorithm that considered for delay reduction a minimum of 100

�ights. Therefore, the practical impact of the computation times to execute the proposed

algorithm is negligible, making it usable for a real-time application.

4.3.2 Real data instances

A set of experimental computations based on real European air tra�c data is also

considered. EUROCONTROL DDR data from May 23rd to 29th 2011 were used as

input. This is a whole week, from Monday to Sunday, with signi�cant di�erences in

the number of �ights �own: Friday is the busiest day, and then comes Thursday, the

other weekdays and �nally the two weekend days. All �ights scheduled to depart from

European airports in the time interval between 12pm to 6pm every day are considered.

Time windows are applied to last �lled �ight plans, while departure times speci�ed in

radar data are used as the requested �ight times. Due to the lack of real data on sector

capacity constraints, only airport capacity constraints are enforced. Since most of the

congestion typically arises at airports, this is not a big drawback for the computational

experiments. The �gures of airport capacities are also taken from DDR data.

The results of the application of the delay reduction algorithm to real �ight data
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are reported in Table 4.1. The table has the following structure. Column 2 shows

the number of �ights considered for each day. Additional delays are considered as the

di�erence between the radar o� block time and the last �lled �ight plan o� block time,

as in the simulated experimentations. Column 3 shows the average additional delay per

�ight. Column 4 shows the percentage of departure time windows that are respected

after the introduction of the additional delay. Notice that they are inversely proportional

to the average additional delay (correlation coe�cient = -0.99). Furthermore, in highly

tra�cked days (May 26th and 27th), this percentage is signi�cantly lower than in the

case of simulated data. Columns 5 to 8 present the average amount of increased ad-

ditional delay before and after the execution of the delay recovery algorithm using the

collaborative and non-collaborative approaches. Again, in cases of high tra�c the system

performances are signi�cantly worse. Initial increased additional delays are very similar

under the two approaches. On the other hand, the delay recovery algorithm allows to

reduce the increased additional delay to a larger extent using the collaborative approach.

The last two columns of the table show that airline collaboration allows to save at least

14% of the increased additional delay.

These �gures are signi�cantly di�erent from those of the tests on simulated instances.

Using real data, in fact, increased additional delay is not negligible, therefore saving some

of this delay can lead to tangible improvements. The great variability of results from day

to day highlights the di�culty of realistically simulating an air tra�c system. Given the

non-negligible increased additional delays that can be saved by adopting a collaborative

approach among airlines, its adoption can be desirable to improve the performances of

a system that uses time windows. In fact, the collaborative approach allows to save

between 7" and 26" of delay per �ight in the considered real life cases.

Table 4.1: Results on instances from real data

Increased Additional Delay
Add. Resp. Collaborative Noncollaborative

Day Flights delay TW (%) Initial Final Initial Final Time %
29 7991 1'23" 76.7% 13'44" 46" 14'20" 57" 11" 19.8%
24 7649 1'29" 76.4% 11'23" 42" 11'40" 50" 8" 16.9%
25 7952 1'40" 75.5% 9'10" 44" 9'36" 51" 7" 14.1%
23 8029 1'59" 74.4% 14'59" 38" 15'12" 45" 7" 15.1%
28 6344 4'11" 70.6% 11'40" 36" 16'56" 1'02" 26" 42.2%
26 8028 5'28" 67.3% 15'30" 50" 15'28" 59" 9" 15.0%
27 8372 5'46" 65.0% 28'35" 1'17" 28'46" 1'31" 13" 14.5%
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4.4 RTFRTW Conclusions

By de�ning as time window the interval of time between the maximum additional delay

and the scheduled delay � possibly null, corresponding to the scheduled time � imposed

by the Network Manager, this chapter evaluates the practical applicability of the time

window concept in realistic scenarios. In particular, when a �ight has a departure time

window of, say, three time periods, this means that this �ight occupies one unit of the

airport capacity at each of these time instants. However, if the actual time of departure

within this time window is known in advance, only one unit of the airport capacity

can be reserved to the �ight, thus allowing the remaining units to be used by other

�ights. Then, in accordance with the ability of airlines to predict their operations and

their willingness to disclose them, two di�erent approaches can be followed. The �rst is a

collaborative approach, where airline operators always announce the exact departure time

of a �ight some time before its execution. The second is a non-collaborative approach,

where airline operators do not announce delays within a �ight's departure time window.

Using the latter attitude, unused capacity is released by airline operators late, or may not

be released at all, resulting in increased delays for other �ights. This attitude however

allows airline operators to deal with other unexpected delays that may occur between

the time of the formulation of the updated time of departure and the departure itself.

Relying on simulated air tra�c data, the reallocation of unused capacity is shown to

be just slightly more e�ective, i.e., the overall network delay is lower, when airlines

collaborate and disclose their exact departure time in advance. Hence, it might be

possible to conclude that the non-collaborative approach is justi�able since it produces

only a small deterioration of the network performances while granting higher �exibility

to all �ights. However, results based on real air tra�c data of the European airspace

suggest that the network average delay per �ight is indeed signi�cantly lower when airlines

collaborate, with collaboration resulting in a non-negligible positive e�ect on delays.

Furthermore, both simulated and real �ight data show that, in non-congested situations,

time windows can be respected by more than 73% of �ights, which is close to three out

of four �ights. Time windows can therefore allow a good share of �ights to perform their

operations without requiring the network manager any rescheduling activity.

Assignment of capacity resources to �ights rather than to airlines, however, may be

practically problematic. While this approach allows for the highest system �exibility, the

actual willingness of airlines to collaborate is doubtful. In fact, airlines are typically not

willing to release resources that may be used by their competitors, reducing their costs.
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This practical di�culty is not faced in this work. Penalties may be applied to airlines

not releasing unused resources, however such an approach is not likely to be accepted

by airlines. A future development of this work should therefore study the assignment

of capacity resources to airlines rather than to �ights, to address this issue. A closely

related issue is the tradeo� between the fairness of delay allocation among airlines and

the overall network delay, which should also be studied. Another future development will

be devoted to re�ning and updating the analysis of the real instances, including sector

capacity constraints to represent the complete real air tra�c system. Finally, di�erent

priority rules to be used in the delay recovery algorithm will be evaluated, to better

re�ect RBS mechanisms.
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CONCLUSIONS

In this thesis, scheduling problems at di�erent decision making phases from the �eld

of air tra�c are faced. Solving such problems is very important in practice, as delays

in air tra�c management are very expensive for airlines. A study of the University of

Westminster [7] estimated the cost of ATFM delays to 83e per minute, including direct

costs, the network e�ect, and the estimated costs for airlines to retain passenger loyalty.

Part of these costs results from non-deterministic events, such as bad weather fronts

that cause a reduction of available capacity or last minute problems involving the sta�,

passengers, or aircraft of a �ight. Considering such uncertainty can lead to important

monetary bene�ts for airlines. This work is a �rst attempt to coherently face air tra�c

scheduling problems at di�erent decision phases within a unique framework.

The decision making process that involves �ight schedules and �ight plans spans over

a wide time horizon. Schedules are �rst de�ned months before the time of operation of

�ights, translating airline requests into schedules. These decisions are made at the strate-

gic decision making phase, when uncertainty on future weather conditions is extreme. In

fact, for generating capacity availability scenarios, it is in general only possible to use

historical data on weather or capacity availability, or seasonal forecasts, which are very

unprecise. This results in the de�nition of a huge number of scenarios. The problem of

de�ning the �rst �ight schedules considering such uncertainty at this phase is called Time

Slot Allocation Problem under Uncertainty. This problem is faced in chapter 2, where a

two-stage stochastic programming model with two alternative formulations is proposed to

solve it. Due to the possible extreme number of scenarios at this phase, Sample Average
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Approximation is used to solve problem instances. Results on instances representative

of di�erent airport networks in Europe indicate that considering uncertainty and solving

the problem over the whole network can lead to a great reduction of delays for airlines.

In an instance representative of a network of airports in France, the improvement over

a schedule that does not consider uncertainty on capacity is equal to 45%, showing the

great potential of this approach. Larger airport networks will be analyzed in future

developments of this research.

On the day of operation of �ights, a few hours before their execution, complete �ight

plans are de�ned. De�ning �ight plans at this phase is known as Air Tra�c Flow

Management. This problem is faced in chapter 3. Two di�erent types of uncertainty

are considered. First, the uncertainty on capacity availability is considered. Then, the

implicit uncertainty on the departure time of �ights is taken into account. Uncertainty

on capacity availability at this phase is limited, as scenarios can be derived from weather

forecasts, which are in general quite accurate for the same day. A two-stage stochastic

programming model with two alternative formulations is proposed, as well as an ad-

hoc heuristic to solve problem instances within short computation times. The execution

of the proposed stochastic programming model shows that stochastic programming can

provide airlines with relevant ATFM delay cost reductions when bad weather a�ects a

large portion of the airspace. In particular, among the studied instances, it was possible

to save over 14% of ATFM delay cost in a case considering bad weather a�ecting the

whole network.

The implicit uncertainty on the departure time of �ights is managed using time

windows which determine the time intervals �ights can use to execute their operations

without incurring in any additional delay. The narrower a time window, the more

critical the execution of the related �ight operation. Two deterministic models to de�ne

time windows are proposed. The �rst model, called optimal model, is ine�cient in

terms of computation times, as it makes a joint decision on the schedule and the time

windows. An approach that can be used in practice is provided by the near-optimal

model, which provides maximum time windows for a given schedule in only 40" on average

for large-scale instances. Furthermore, di�erent criteria to de�ne time windows have been

compared through simulation, since reserving capacity at each instant of a time window

results in declaring too many �ights as critical. This analysis highlights that at least

99.8% of airport/sector constraints are respected in practice when time windows are

de�ned proportionally, i.e., the amount of capacity reserved at each instant of a time

window is inversely proportional to the width of the time window. This suggests that
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time windows can be a viable tool to deal with the implicit uncertainty on the departure

time of �ights without having to declare too many �ights as critical.

Finally, when operations take place, i.e., at the operational phase, some adjustments

may need to be done to schedules. In fact, some �ights may not be able to meet the

assigned departure time windows, resulting in their request for new capacity resources

in order to depart at a later time. Capacity resources can be retrieved from departing

�ights and reassigned to �ights that do not respect time windows. This problem is

called Real Time Flight Rescheduling with Time Windows, and is discussed in chapter 4.

Since the problem should be solved in real time, a rule-based algorithm based on RBS is

used to perform resource allocation according to some prede�ned precedence rules. Two

di�erent airline behaviors are compared: one that is collaborative, and one that is non-

collaborative. When airlines collaborate, computational tests on real tra�c data indicate

that additional delays can be reduced by at least 14%. This can stimulate airlines to

adopt a collaborative approach, which is in line with the Collaborative Decision Making

goals.

Future research will focus on the further development of each single work, maintaining

the coherence between them to improve the whole framework. Also, some possible

conjunctions between di�erent solutions may be studied. For example, the uncertainty

on capacity availability and the implicit uncertainty on the departure time of �ights

may be considered together in a single model. Implementing time windows in Stochastic

Air Tra�c Flow Management, however, is not a trivial step, due to the complexity

of reserving stochastic capacity and taking appropriate recourse actions. The works

presented in this thesis, however, already indicate a wide set of improvements that can

be made in managing air tra�c operations over a wide time horizon, which can result in

relevant monetary bene�ts for airlines and other stakeholders.
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