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Introduction

After the recent financial crisis there is much more emphasis on the sources of risk rather than just

on the levels. The importance of attributing risk to each portfolio component can be deduced even

from the fact that in the last few years a new principle arose in finance: the Risk Parity. It is an

approach in portfolio management which focuses on allocation of risk rather than on the capital

allocation (see Denis et al. [2011] for further details).

Value at risk (see RiskMetrics [1996]) and Expected Shortfall (see Tasche [2002]) have emerged

as industry standards for measuring downside risk. Non-parametric approaches have gained the

consensus of the practitioners since they are easier to implement and only the information in the

return series is used. However, usually non-parametric methods imply more uncertain estimates

for the risk measures considered as shown for example in Aussenegg and Miazhynskaia [2006].

Although risk decomposition in a parametric context is not straightforward, Boudt et al. [2009]

show that the use of modified versions of VaR and ES based on asymptotic expansions simplifies

the problem.

In this thesis we discuss the problem of risk attribution in a multifactor context using non-

parametric approaches but we also introduce a new distribution for modeling returns. The risk

measures considered are homogeneous since we exploit the Euler rule as in Tasche [1999]. Partic-

ular attention is given to the problem of attributing risk to user defined factors since the existing

literature is limited when compared to other research arguments but of practical relevance. We

point out the problems encountered during the analysis and present some methodologies that can

be useful in practice. Each chapter combines both theoretical and practical issues.

The main original contributions can be found in Chapter 3 and Chapter 4 respectively in the

introduction of a methodology for identifying idiosyncratic risk in presence of custom factors and

the introduction of a new distribution named Mixed Tempered Stable.

The thesis is organized as follows. In Chapter 1 we review the existing literature on linear multi-

factor models. Starting from the usual Ordinary Least Squares regression we move on to a more

sophisticated method for factor exposure estimation, the Kalman Filter (see Kalman [1960]). Prin-

cipal Component Analysis (see Jolliffe [2002]) is applied for the identification of statistical factors

in order to reduce dimensionality. At the end of the chapter a comparison with another mathe-
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matical procedure, the Independent Component Analysis (see Hyvarinen [1999]), is given.

In Chapter 2 we review the main characteristics of two well known homogeneous risk measures :

the Value At Risk (VaR) and the Expected Shortfall (ES). We discuss the problem of defining a

unique risk measure from the regulator point of view and the mathematical properties required.

The expectiles introduced in Newey and Powell [1987] as the solution of an Asymmetric Least

Squares (ALS) regression have been considered only recently in the context of risk measurement.

Coherence (see Artzner et al. [1999], Bellini et al. [2013]) and elicitability (see Gneiting [2011])

are two desirable properties that are both satisfied by the expectile based risk measure. The main

difficulty in its use is the identification of the parameter that controls the tail weight in the ALS

regression which in Kuan et al. [2009a] is interpreted as the level of prudentiality. From the quantile

- expectile relation derived in Jones [1994], we find the implicit values for the weight parameter in

datasets coming from equity and credit risk markets. The confidence levels used are those usually

fixed by the regulators in the Value at Risk computation. The estimated parameter values are

then used for comparing risk attribution results for the three considered risk measures.

Chapter 3 is devoted to the study of risk decomposition models for arbitrary factors chosen directly

from the investors. We describe the approach proposed in Meucci [2007] and extend the analysis

by considering independent factors obtained through the Independent Component Analysis Hy-

varinen [1999] since the methodology can be applied to any linear transformation of the original

risk factors that generates new uncorrelated variables. Starting from the work of Menchero and

Poduri [2008] we derive a model for attributing risk to generic factors. The introduction of new

factors, orthogonal to those considered by the investor, enables us to identify the idiosyncratic

term and its contribution to risk. This result can be very useful in risk management because it is

simple to implement and each component has a straightforward interpretation.

We propose a new distribution, named Mixed Tempered Stable (MixedTS), in Chapter 4. It is built

as a Normal Variance Mean Mixture (NVMM) where the Normal assumption is substituted with

the standardized Tempered Stable distribution. Assuming that the mixing random variable fol-

lows a Gamma distribution, the proposed model has the Variance Gamma (see Madan and Seneta

[1990b]), the Tempered Stable (see Kim et al. [2008]) and the Geometric Stable distribution (see

Kozubowski et al. [2011]) as special cases for particular parameters choice. The moment gener-

ating function exists and we give analytical formulas for the first four moments. The MixedTS,

having as special cases some distributions widely applied in financial literature, is expected to

be flexible in capturing different tail behaviors. By construction, no more than one independent

component obtained through an ICA analysis can be Gaussian though it is interesting to see how

the MixedTS fits the different components. Risk measures for the MixedTS are computed using

numerical integration and the Saddlepoint approximation (Lugannani and Rice [1980]) for the tails.



Chapter 1

Linear factor models

In this chapter we review the literature on linear multifactor models for describing returns and

discuss the problems arising in their use. The return decomposition is the starting point for the

risk attribution process that will be discussed in the next chapters.

The Ordinary Least Squares regression is the simplest way of facing these kind of problems. It

is well known that it considers the entire estimation period for computing factor exposures. By

using the Kalman Filter (Kalman [1960]) we have a model where factor exposures can vary daily

while maintaining the information obtained from the past. Kalman Filter is based on a state space

model where the state variables are the factor exposures. The implementation is not easy and part

of the data is needed for the algorithm stability. Both OLS and Kalman Filter can be applied

when factor time series are given.

Principal Component Analysis Jolliffe [2002] generates statistical factors that are the projections

of the original data on the eigenvectors associated to the dataset covariance matrix. In finance this

technique is particularly useful for dimension reduction purposes. In a recent paper Longstaff et

al. [2011] study the nature of sovereign credit risk and find that the majority of sovereign credit

risk can be linked to global factors. They find that sovereign credit spreads are more related to the

stock indexes than they to local economic measures. In the same spirit we apply the PCA analysis

to credit spreads of European companies grouped by their rating. The dependence on different

factors can suggest that the structure of each group is different.

Principal Component Analysis has been widely applied although the gaussianity hypothesis for the

components is not in line with the stylized facts observed in financial markets. Independent Com-

ponent Analysis (ICA) can be a valid alternative since it yields independent factors by maximizing

the non-gaussianity of the components. Unfortunately, in the ICA analysis there is no single rule

for ordering the components while the explained variance is a criterion for ordering the principal

components. This fact justifies the difficulties of using ICA in dimension reduction problems in

finance.
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1.1 Multifactor models in finance

The simplest type of models are linear multifactor models since the relation between the variable

of interest and the factors from which it is influenced is linear. Let us consider the portfolio return

πt for the time interval (t− 1; t] defined as :

πt =
n∑

i=1

wt
ir

t
i (1.1)

where wt
i is the weight of the i-th asset in the portfolio. The portfolio is composed by n assets with

the i-th asset log-return 1, given its price P t
i , for the period (t− 1; t] is :

rt
i = ln

(
P t

i

P t−1
i

)

(1.2)

We suppose that the investment decision is taken at time t− 1 and the holding period is the time

interval (t− 1; t]. We assume a linear relation with a finite number of factors F t :

rt
i = αt

i +
n′

∑

j=1

βt
ijF t

ij + ǫt
i (1.3)

with αt being a constant and ǫt the residual term. The risk factors F2 are financial variables like

log returns on equities, bonds or indexes while from quantities like interest rates and spreads risk

factors are built using absolute variations. The literature on this argument is rich and in continuous

evolution. The main contributions in chronological order are :

CAPM one factor model (see Sharpe [1964], Lintner [1965] and Black [1972]).

It assumes a linear relationship between the expected return of a risky asset and its β:

E[ri] = rf + βi(E[rmkt]− rf ) (1.4)

where rmkt is the return of the well diversified market porfolio and rf the risk free rate. The model

states that βi defined as :

βi =
Cov(ri, rmkt)

V ar(rmkt)
(1.5)

drives the expected returns of asset i since it measures the part of the asset’s statistical variance

that cannot be removed by the diversification provided in the market portfolio.

Fama and French three factor model can be defined in the form (see Fama and French [1992] and

1We use log returns instead of simple returns since they are additive, i.e longer period returns are obtained by
summation of short period returns.

2From now on we will drop the time index and we will consider only one period returns
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Fama and French [1995]):

E[ri] = βi
mktE[rmkt] + βi

SMBE[rSMB ] + βi
HMLE[rHML] (1.6)

They assume that all market returns can be explained by three factors:the exposure to the portfolio

market, the exposure to value stocks (HML: High [book-to-market ratio] Minus Low), and the

exposure to small stocks (SMB: Small [market capitalization]) where rSMB measures the excess

returns of small caps over big caps and rHML the excess returns of value stocks over growth stocks.

Carhart [1997] four factor model considers the momentum in addition to the three factor model:

E[ri] = βi
mktE[rmkt] + βi

SMBE[rSMB ] + βi
HMLE[rHML] + βi

MomE[rMom] (1.7)

The recent literature considers a higher number of factors. For example the Barra Integrated Model

(BIM) considers more than 200 factors (see Shepard [2011] ). It identifies first local risk factors

and develop local models for different asset classes. These are then combined into a single risk

model to capture cross-market correlations. The resulting model provides a structure for detailed

risk decomposition of multi-asset class strategies.

Factors can have an economic interpretation, or can be statistical. In particular, in Strau-

mann and Garidi [2011] they distinguish between six type of factors: macroeconomic, market,

sector/industry, fundamental, technical and statistical.

Macroeconomic factors can be for example change in the growth rate of GDP or CPI, differences

between returns on high yield and government bond indexes etc. Since most of the macroeconomic

variables are released quarterly and risk management is performed daily, their use presents some

problems. Returns on indexes like for example S&P500 or FTSEMib are market factors. Morgan

Stanley Capital International (MSCI) releases daily estimates on GICS (Global Industry Classifi-

cation Standard ) indexes and the corresponding returns are the so called sector/industry factors.

In 2004, MSCI acquired Barra Inc. which uses these factors especially in the Barra Integrated

Equity Model.

Firm specific quantities like price to book ratios and market capitalization are considered as fun-

damental factors while typical examples for technical factors are measures of liquidity. Statistical

factors are different since they are not directly observable in the market but extracted via mathe-

matical procedures.

These models have been used for return attribution in Brinson [1985] and risk contribution in

Meucci [2007], Menchero and Poduri [2008] and Marchioro and Borrello [2013]. After the decision

of the type of factors to consider, it remains to fix the number of factors to include in the model.

Except for the cases when one is fully confident about the factors to include, the decision should

be taken after considering some statistical tests. One simple way is to proceed step by step, in the

sense that when we add an additional factor we compare the likelihood of the model with n factors

to that of the n+1 factors model. Under the i.i.d assumption, for large time-series samples, the
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ratio of the log likelihoods has an approximate chi-squared distribution. In particular, Connor and

Korajczyk (1993) derive a test for the number of factors that is robust and is based on the decline

in average idiosyncratic variance as additional factors are added.

In matrix notations, the linear factor model is :

r = α + βF + ǫ (1.8)

where r, a and ǫ are 1×T vectors. If we consider K factors β is a 1×K vector, while F is a K×T

matrix. Meucci [2010] puts the conditions for a model to be in the systematic-plus-idiosyncratic

form : the residuals must be uncorrelated with each other and with the factors. In this paper he

shows that the multifactor models used in finance are never of this form.

In models considering statistical risk factors both factors F and exposures β must be estimated

but no constraints on the residual uncorrelation are posed. For risk factors directly observed in

the market, matrix F is fully known and what remains to estimate is only the factor exposures β

and the vector of constants α. Models of this type are coined as time-series models.

The Ordinary Least Squares approach is obtained by considering time-series models for which

factor exposures are the solution of an unconstrained minimization problem. In mathematical

notations, the factor exposure estimates β̂ resulting from the OLS approach are the solution of the

problem :

β̂ = argminβ ‖r − βF‖ (1.9)

where ‖.‖ is the L2-norm. Geometrically, it projects the returns in r on the linear space spanned

by the factors F. The minimization problem give the estimate of the factor exposures in matrix

notations:

β̂ = (FF ′)−1Fr (1.10)

Particular attention deserves the decision of the time frame to consider for factor exposure

estimation. In fig 1.2 we show the results of the OLS regression for four fund indexes vs 17 factors.

The first fund considered is the Vanguard Asset allocation Fund which tracks the performance of

its benchmark index, the S&P500 index. The second fund is the Vanguard Balanced Fund which

tracks the performance of the overall US stock market index using 60 % of its capital and with the

remaining tracks the performance of a market-weighted bond index. Allianz RCM Global Water

and First Eagle Gold funds invest mainly in assets related to commodities. Indeed, the first invests

on equity securities related to companies that have direct or indirect exposures to water related

activities while the last fund invests 80 % of its assets in gold or related securities.

The factors used for explaining the returns for each fund are based on different asset classes. Two

commodity indexes: Oil and Gold ; three interest rate based risk factors: 3m Libor, 10y and 30

swap rates ; the exchange rate EurUsd, the implied volatility index VIX and the 10 GICS sector

indexes.



1.1 Multifactor models in finance 11

r

ê = r − β̂1F1 − β̂2F2

β̂1F1 + β̂2F2

F2

F1

Figure 1.1: Geometric interpretation of the OLS regression: projection of returns in r on the linear
space spanned by the regressors F1 and F2. The factor exposures estimates β̂1 and β̂2 minimize
the residual ê.

The evaluation date is 12/10/2012. The dataset is composed by daily log returns while the time

frame estimation period changes. We consider respectively 1.5, 2, 2.5 and 3 years as estimation

periods and compare the results. In general, factor exposures tend to remain stable but this is not

always the case. Consider for example the Vanguard Balanced Fund exposure to the 3m Libor :

choosing to use the last 2 years data instead of 2.5 years doubles the factor exposure.

The sign of the exposures remains the same since, depending on the target of each fund, the

relation between each fund and the risk factor has an economic interpretation that is translated in

a numeric value. For example, Allianz RCM Global Water fund seems to have a greater exposure

to the Industrial GICS index. This is coherent with the idea that water influences the industrial

sector. As we expected, the First Eagle Gold fund returns are highly influenced from the Gold

returns. The OLS regression is very useful in giving an intuition of the factors that we must

consider for a correct return/risk attribution model but we have to move on to more advanced

instruments for computing factor exposures that are updated at least daily.
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Tracks the performance of the SP500 index

WTI Oil Gold US003M SWAP10 SWAP30 EURUSD VIX INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS 

1,5 2,9E-04 0,004 -0,002 0,010 -0,008 -0,009 1,5E-04 0,186 0,137 0,134 0,096 0,118 0,114 0,111 0,043 0,042 0,024

2 3,8E-04 0,004 0,001 0,006 -0,005 -0,007 -1,4E-04 0,185 0,143 0,127 0,098 0,120 0,112 0,112 0,038 0,042 0,024

2,5 -9,5E-05 0,005 0,001 0,007 -0,006 -0,002 -3,2E-04 0,182 0,147 0,119 0,103 0,119 0,111 0,112 0,037 0,041 0,022

3 -1,3E-04 0,004 0,001 0,005 -0,004 -0,001 -3,6E-04 0,185 0,148 0,120 0,106 0,117 0,111 0,111 0,036 0,039 0,023

WTI Oil Gold US003M SWAP10 SWAP30 EURUSD VIX INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS 

1,5 0,007 0,030 0,118 -0,050 0,025 0,108 0,018 0,158 0,065 0,136 0,079 0,036 0,136 0,032 0,027 0,027 0,047

2 0,006 0,033 0,130 -0,045 0,017 0,090 0,018 0,159 0,074 0,133 0,076 0,042 0,140 0,032 0,027 0,030 0,037

2,5 0,010 0,056 0,049 -0,033 0,003 0,098 0,022 0,157 0,069 0,149 0,095 0,031 0,144 0,045 0,018 0,051 0,037

3 0,009 0,049 0,056 -0,037 0,008 0,097 0,022 0,159 0,076 0,157 0,104 0,032 0,141 0,048 0,007 0,042 0,028

WTI Oil Gold US003M SWAP10 SWAP30 EURUSD VIX INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS 

1,5 0,025 0,046 -0,103 0,006 -0,004 0,213 -0,022 0,085 0,081 -0,003 0,083 -0,013 0,010 0,325 0,086 0,170 0,014

2 0,020 0,051 -0,110 0,019 -0,021 0,210 -0,018 0,071 0,065 -0,005 0,090 0,016 0,023 0,322 0,099 0,134 0,036

2,5 0,031 0,037 -0,066 0,006 -0,007 0,221 -0,018 0,072 0,059 0,001 0,084 0,015 0,022 0,350 0,079 0,067 0,047

3 0,032 0,024 -0,059 0,001 0,003 0,219 -0,017 0,085 0,039 0,017 0,084 0,017 0,016 0,356 0,074 0,054 0,052

It invests 80% of its assets in gold or related securities.

WTI Oil Gold US003M SWAP10 SWAP30 EURUSD VIX INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS 

1,5 0,041 0,898 -0,071 0,012 0,030 0,012 -0,012 0,158 -0,073 -0,265 -0,109 0,090 -0,005 -0,236 0,508 0,059 -0,035

2 0,033 0,945 -0,122 0,083 -0,042 0,048 -0,013 0,141 -0,047 -0,286 -0,133 0,085 0,084 -0,295 0,473 0,060 -0,012

2,5 0,046 0,941 -0,072 0,075 -0,049 -0,003 -0,017 0,119 -0,054 -0,225 -0,101 0,080 0,047 -0,197 0,415 0,017 -0,023

3 0,033 0,954 -0,075 0,077 -0,054 0,002 -0,018 0,069 -0,071 -0,186 -0,110 0,085 0,032 -0,129 0,445 -0,011 -0,043

Vanguard Asset 

Allocation Inv

Vanguard 

Balanced Index

With 60% of the capital tracks the performance of the overall US stock market and with 40% the performance of a 

market- weighted bond index.

Allianz RCM

Global Water 

Seek the long-term capital appreciation. Invest in equity securities of companies which have direct or indirect exposure 

to water related activities.

First Eagle Gold 

Figure 1.2: We consider different funds and through a simple linear regression obtain the exposures to the selected
risk factors. To emphasize the importance of estimation window selection we report results for four estmation
windows: 1.5, 2, 2.5 and 3 years.
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1.1.1 Kalman Filter

An alternative method for estimating factor exposures that does not require any decision on the

time frame to consider is the Kalman Filtering (KF) introduced in Kalman [1960]. It is based on

a state space model composed from two equations namely state and observation equation. The

Kalman filter is a recursive algorithm that computes estimates for the unobserved variables at

time t, based on the available information up to that date. The filter structure and the update

after receiving a new information give more reliable results than a simple Ordinary Least Squares

regression. Here we outline how the Kalman Filter can be used for estimation.

Let rt be a n×1 be the vector of n asset returns at time t. Suppose that each asset return depends

linearly on p factors that are the rows of the deterministic n × p matrix Ht. The state variables

are the factor exposures in the p× 1 vector βt. A general linear state space model is of the form :

rt = Htβt + ǫt (1.11)

βt = Atβt−1 + vt (1.12)

where ǫt ∼ N(0, Rt) and vt ∼ N(0, Qt). We assume ǫt and vt to be mutually and serially uncor-

related, meaning that they don’t depend on each other and on their past values. We will refer to

equation 1.11 as the observation (or measurement) equation, while equation 1.12 is the state equa-

tion which describes the dynamic of the unobserved state variable βt. If At = I, the distribution

of each factor loading in β is a random walk. In financial applications it is reasonable to suppose

At different from the identity matrix in order to model autocorrelated factor exposures because

we observe persistence in financial market returns. In the case of a time homogeneous system,

matrices At,Rt and Qt don’t depend on time. We assume stationarity for the shocks and for the

autocorrelation structure in the state varibles, i.e we consider an homogeneous model.

Once the model is put in the state space form, the Kalman Filter is used to compute optimal

forecasts of the normally distributed state space vector βt, at a given time t, based on the infor-

mation we have up to the previous time t− 1. The purpose of the filter is to update the estimate

for the state vector as soon as we observe rt. Consider the information set It generated by the

return observations and by the estimates of the state space variable up to time t.

It−1 =
{

rt−1, ...., r0, β̂t−1, ..., β̂0

}

(1.13)

It contains the past return observations rt−1, ...., r0 and the past estimates β̂t−1, ..., β̂0. The a priori

estimates of the state variables are the best estimates using the information contained in It−1:

β̂∗
t = E [βt |It−1 ] (1.14)
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vt−1 vt vt+1

· · · βt−1 A βt A βt+1 · · ·

ǫt−1 Ht−1 ǫt Ht ǫt+1 Ht+1

rt−1 rt rt+1

Figure 1.3: In this figure we describe the Kalman Filter model. Equation 1.12 formulates the
dynamics of the state variables in βt while the relation between rt and βt is given in equation
1.11 . At time t, we already have an estimate for βt−1 and a realization of the gaussian shock vt.
Having fixed matrix A we to determine βt. Factor realizations at time t are put in Ht. From the
gaussianity assumption for ǫt in the observation equation rt is easily computed.

The a priori error estimates are :

et
∗ = βt − β̂∗

t (1.15)

with covariance matrix :

P ∗
t = E

[

et
∗e∗

t

′
]

(1.16)

The posterior information set It
∗ in addition to It−1 contains the observation vector rt and the a

priori estimate β̂∗
t :

It
∗ =

{

rt, rt−1, ...., r0, β̂∗
t , β̂t−1, ..., β̂0

}

(1.17)

The a posteriori estimate for the state vector is obtained considering the a priori estimate and the

return observation :

β̂t = E [βt |It
∗ ] (1.18)

The a posteriori estimates for the estimation error and the covariance matrix are :

et = βt − β̂t (1.19)

Pt = E [ete
′
t] (1.20)

In the Kalman Filter system the a posteriori estimate β̂t is supposed to be the a priori estimate
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β̂∗
t plus a correction term which depends on Kt, the Kalman gain matrix :

β̂t = β̂∗
t + Kt

(

rt −Htβ̂
∗
t

)

(1.21)

The Kalman gain matrix Kt is a measure of the modification from the a priori β̂t to the a posteriori

estimates after the observation of market returns rt. If we are fully confident in our a priori

estimates, that implies zero elements for P ∗
t , the new observation rt will not modify the estimation

of the state space variables. Conversely, if the covariance matrix R of the measurement equation

has all zero elements, our confidence in the measurements is high so the Kalman gain is high.

Suppose now that we have already the a priori error and the corresponding covariance matrix. As

soon as we get a new observation rt, we update the estimation. After some simple calculations it

is possible to have an expression for Pt in terms of the a priori error covariance matrix and the

Kalman gain matrix:

Pt = E

[(

βt − β̂t

)(

βt − β̂t

)′]

(1.22)

= E

[(

βt − β̂∗
t −Kt

(

rt −Htβ̂
∗
t

))(

βt − β̂∗
t −Kt

(

rt −Htβ̂
∗
t

))′]

(1.23)

= Pt
∗ −KtHtPt

∗ − Pt
∗H ′

tK
′
t + KtHtPt

∗H ′
tK

′
t + KtRtK

′
t (1.24)

We used the fact that vectors et and ǫt are orthogonal. The intertemporal independence assumption

for the errors implies that the error covariance matrix Pt is diagonal. The trace of Pt coincides

with the sum of squared a posteriori errors. Observe that :

tr (Pt) = tr (Pt
∗)− tr (KtHtPt

∗)− tr (Pt
∗H ′

tK
′
t) + tr (KtHtPt

∗H ′
tK

′
t) + tr (KtRtK

′
t) (1.25)

Since Pt is the expectation of the squared residuals, we want to minimize it meaning that after the

observation of return rt the a posteriori error becomes small. The Kalman gain matrix introduced

in equation 1.21 is chosen to be the solution of the following minimization problem:







min
Kt

tr(Pt)

s.t.

β̂t = β̂∗
t + Kt

(

rt −Htβ̂
∗
t

)
, (1.26)

Recall the following properties :
∂tr(KX)

∂K
= X ′ (1.27)

∂tr(KBK ′)
∂K

= 2KB (1.28)

where B is a symmetric matrix.
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The minimum is obtained when :

∂tr(Pt)
∂K

= 0− (HtPt
∗)′ − Pt

∗H ′
t + 2KtHtPt

∗H ′
t + 2KtRt (1.29)

= 0 (1.30)

The solution is the desired Kalman gain matrix :

Kt = Pt
∗H ′

t (HtPt
∗H ′

t + Rt)
−1 (1.31)

Using this matrix and the observation rt, we are able to update the estimation:

β̂∗
t = E [βt |It−1 ] = E [Aβt−1 + vt−1 |It−1 ] = Aβ̂t−1 (1.32)

It is now possible to compute the covariance error of the a priori estimator:

P ∗
t = E

[(

βt − β̂∗
t

)(

βt − β̂∗
t

)′
|It−1

]

(1.33)

= E

[(

A
(

βt−1 − β̂t−1

)

+ vt−1

)(

A
(

βt−1 − β̂t−1

)

+ vt−1

)′
|It−1

]

(1.34)

= APt−1A′ + Q (1.35)

It is possible to have an explicit expression for Pt:

Pt = E

[(

βt − β̂t

)(

βt − β̂t

)′
|I∗

t

]

(1.36)

= (I −KtHt) Pt
∗ (1.37)

The Kalman filter algorithm gives an a priori estimate of the factor loading β̂∗
t and immediately

after we observe the actual return it updates the estimate in order to improve its prediction in the

next step. The two steps are called the forecast step where we get the a priori estimates for the

state space variables and the corresponding error covariance matrix:

β̂∗
t = Aβ̂t−1 (1.38)

Pt
∗ = APt−1A′ + Q (1.39)

and the update during which the a posteriori quantities are obtained :

Kt = Pt
∗H ′

t (HtPt
∗H ′

t + Rt)
−1 (1.40)

β̂t = β̂∗
t + Kt

(

rt −Htβ̂
∗
t

)

(1.41)

Pt = (I −KtHt) Pt
∗ (1.42)
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From the description of the main passages needed for the algorithm construction it can be

easily noticed that the initial conditions we put on two state space equations highly influence the

solution and the difficulty in its attainment. In fact, the assumption of stability for the error terms

ease the update of the covariance matrices for the a priori and the a posteriori estimate errors.

However, the implementation of this algorithm is not always possible since, as we will see later,

about 50 to 100 observations are needed in order to reach stability. For market risk factors this

is not a problem while for macroeconomic factors where the data available are not so frequent we

may be not able to implement the KF algorithm.

Init. Est. β̂∗

t
Measurement rt

Kalman Gain

Kt = P ∗

t
HT (HP ∗

k
HT + R)−1

P roject into t+1

β̂∗

t+1
= Aβ̂t

Pt+1 = APtAT + Q

Update Estimate

β̂t = β̂∗

t
+ Kt(rt − Hβ̂∗

t
)

Update Covariance
Pt = (I − KtH)P ∗

t

P rojected Estimates β̂∗

t+1 Save State Estimated β̂t

Figure 1.4: In this figure we describe how the Kalman Filter works. At time t, we have an a priori
estimate for the factor exposure β̂∗

t . With the available information we compute the Kalman Gain
matrix Kt. The new observation rt allows to update the state space variable estimation and get
the a posteriori estimate β̂t. Now an a priori estimate for the state space variable at time t + 1
becomes the starting point for the process to continue .
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Multifactor models become dynamic by specifying the dynamic for each factor or by using

time varying factor exposure β. The easiest method to obtain time - varying factor exposures is

by using rolling Ordinary Least Squares regression. However, this approach is costly in terms of

computations. It is preferable to use a more sophisticated instrument like Kalman Filter since it

generates sequences for factor exposures that minimizes the variance of the prediction error as we

discussed before.

We plot in figure 1.4 the OLS and KF factor loadings for the Vanguard Fund Utilities index Fund

when three factors are considered: the Utilities Index, the exchange rate EURUSD and and the

Industry Index. The OLS univariate regression gives a constant factor loading for the entire period,

while the KF allows for time-varying exposures. In the first 100 iterations the algorithm is not so

stable but after it gives reliable estimates. Observe that we supposed A=I in order to show that

even the simplest choice can give time varying factor exposures. Q=8.5e-05 and R=7.9e-05 are

maximum likelihood estimates based on conditional probabilities.

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1
Utility Index

0 100 200 300 400 500 600 700 800
−0.1

−0.05

0

0.05

0.1
EUR/USD

0 100 200 300 400 500 600 700 800
−0.1

−0.05

0

0.05

0.1
Industry Index

Figure 1.5: In the figure are shown results of univariate OLS regression and Kalman Filter analysis
of the Vanguard Fund Utilities index vs three factors: Utility index, EURUSD and Industry Index.

Even if we use rolling OLS regression, the limit of having a mean factor exposure estimate for

the entire period remains. On the other side, since the Kalman Filter algorithm is not so easy to

understand its use in finance is limited.
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1.2 Statistical Factors

Factor identification and dimensionality reduction are among the primary goals of multivariate

financial time series analysis. They are useful in order to extract features and to find latent

relations of risk drivers from high dimensional and complex portfolios. Attainment of these goals

can be challenging.

Principal Component Analysis (PCA) is a mathematical procedure introduced in Pearson [1901]

that uses an orthogonal transformation to convert a set of correlated variables into a set of un-

correlated variables called principal components (see Jolliffe [2002]). It yields uncorrelated factors

but together with the Gaussian distribution assumption they become independent. In so doing,

the problem of defining a dependence structure among the components is avoided.

Many papers test the performance of principal component analysis when applied to financial data .

Different problems were faced with the ahead mentioned technique like hedging bond portfolios by

Falkenstein and Hanweck [1997], interest rate forecasting by Reisman and Zohar [2004], immuniza-

tion by Soto [2004] and value at risk estimation by Abad and Benito [2007]. PCA simultaneously

solves factor identification and dimension reduction problems but the assumption of Gaussianity

is not realistic for the description of financial data.

An alternative method for factor identification is Independent Component Analysis (ICA). ICA

extracts Independent Components (ICs) but there is no projection on the maximum variance direc-

tion. This technique has been implemented in stock returns analysis by Back and Weigend [1997],

in high frequency analysis by Moody and Wu [1998], in immunization problems by Bellini and

Salinelli [2003],in an intertemporal GARCH context by Wu et al. [2006] and in risk management

by Chen et al. [2010]. These articles show a nice performance of the ICA method, when applied

to financial data that are not gaussianly distributed. However, the literature on ICA applied to

finance is not so rich due to the fact that the factors do not have an economic interpretation.

The two methods, PCA and ICA, are different since they are based on quantities describing two

dependence measures. Correlation is a measure of linear relation between variables while inde-

pendence measures the existence of any relation between them. Note that independence, meaning

that it doesn’t exist any type of relation between variables, implies uncorrelation which considers

only the linear relation between the variables. The vice versa is not always true.
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Definition 1. The covariance of two r.v’s X and Y is :

Cov(X, Y ) = E[XY ]− E[X]E[Y ] (1.43)

They are said to be uncorrelated if Cov(X, Y ) = 0. The quantity :

ρX,Y =
Cov(X, Y )
σ(X)σ(Y )

(1.44)

is the correlation coefficient for the two r.v’s X, Y . Notice that if the two r.v’s are uncorrelated

then :

E[XY ] = E[X]E[Y ] (1.45)

Definition 2. Two r.v’s X, Y are said to be independent if their joint probability distribution is
the product of their marginal probability distributions, i.e :

PX,Y (x, y) = PX(x)PY (y) (1.46)

for any realization x, y of the two r.v’s.

From the Bayes rule we have that the conditional probability distribution for X is :

PX|Y (x|y) = PX,Y (x, y)/PY (y) (1.47)

giving an equivalent definition for independence :

PX|Y (x|y) = PX(x) (1.48)

Notice that since :

E[XY ] =
∫ ∫

xyPX,Y (x, y)dxdy =
∫ ∫

xyPX(x)PY (y)dxdy (1.49)

we have that independence implies uncorrelation :

E[XY ] =
∫

xPX(x)dx

∫

yPY (y)dy = E[X]E[Y ] (1.50)

The vice versa is not always true except for the case when X,Y are the marginals of a multivariate

normal distribution.



1.2 Statistical Factors 21

1.2.1 Principal Component Analysis

There are many books explaining what Principal Component Analysis is. In particular Jolliffe

[2002] gives in two sentences a general overview of the procedure :

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a

data set consisting of a large number of interrelated variables, while retaining as much as possible

of the variation present in the data set. This is achieved by transforming to a new set of variables,

the principal components (PCs), which are uncorrelated, and which are ordered so that the first few

retain most of the variation present in all of the original variables.

PCA is used in multivariate analysis since it allows to obtain new uncorrelated variables. We

describe the idea and some important characteristics of this technique. Consider a dataset given

by a matrix Xp×T with p denoting the number of variables and T the length of time observation.

In matrix notations each variable is given by a generic row :

X =














x1

x2

...

xi

...

xp














=














x1,1 x1,2 ... ... x1,T

x2,1 x2,2 ... ... x2,T

... ... ... ... ....

xi,1 xi,2 ... ... xi,T

... ... ... ... ...

xp,1 xp,2 ... ... xp,T














(1.51)

We want to generate a new set of uncorrelated variables by linearly transforming the original

variables X. The new variables are the rows of the matrix Yp×T obtained as :

Y = A′X (1.52)

and are called Principal Components (PCs). Geometrically, they are the projections of the original

variables on the rows of Ap×p that contain the eigenvectors associated to the covariance matrix

ΣX of the original variables defined as :

ΣX = XX ′ (1.53)

The covariance matrix ΣX is symmetric and positive semidefinite3. Its eigenvalues are non negative

and its eigenvectors are orthogonal. There exist infinitely many eigenvectors associated to each

eigenvalue but by adding the unit length condition, the corresponding eigenvectors are orthonormal.

The i-th principal component is obtained by multiplying the eigenvector associated to the i-th

3This is a prpoerty that satisfy all the covariance matrices
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largest eigenvalue of the dataset covariance matrix with the original variables , i.e :

yi =
[

yi,1 yi,2 ... yi,T

]

=
[

a1,i a2,i ... ap,i

]














x1

x2

...

xi

...

xp














(1.54)

Putting together all the PCs we have :

Y =














y1

y2

...

yi

...

yp














=














∑

i=1

ai,1xi

...
∑

i=1

ai,kxi

...
∑

i=1

ai,pxi














=














a1,1 a2,1 ... ai,1 ... ap,1

a1,2 a2,2 ... ai,2 ... ap,2

... ... ... ... ... ...

a1,k a2,k ... ai,k ... ap,k

... ... ... ... ... ...

a1,p a2,p ... ai,p ... ap,p



























x1

x2

...

xi

...

xp














(1.55)

Uncorrelation for the transformed variables implies a diagonal form for the covariance matrix

ΣY = Y Y ′. The new and the original covariance matrices are connected since :

ΣY = A′X(A′X)′ = A′XX ′A = A′ΣXA (1.56)

Observe that ΣX and ΣY are the covariance matrices respectively for the r.v’s X and Y . The

sample covariances are obtained by dividing the theoretical covariances with T − 1.

The variance of the i-th PC is :

V ar(yi) = a′
iΣXai (1.57)

and it coincides with λi that is the i-th largest eigenvalue of the matrix ΣX . The uncorrelation of

the PCs allows to linearly decompose the total variance, i.e :

V ar(Y ) = V ar(y1) + V ar(y2) + ... + V ar(yp) = λ1 + λ2 + .... + λp. (1.58)

The PCA is known as a method used to reduce the number of variables considered in order to

make easier the identification of common features among the original variables. This is not done

without an information loss but in some circumstances with only few PCs we can reproduce a

large portion of the original variability. Considering only the first r PCs ordered according to their

variance, with r < p, the explained variance is :

λ1 + λ2 + .... + λr

λ1 + λ2 + .... + λp
(1.59)
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We can go on two directions: fix r (the number of PCs) and compute the variance explained by

the first r PCs or choose first the level of the variance to be explained and then find the minimum

number of PCs for which it is possible. In a financial context, we aim at explaining most of the

variance present in the dataset so we follow the second direction. Eigenvectors are calculated

iteratively. The two most applied procedures are the singular value decomposition (SVD) and

Jacobi Rotation method. The last one is slower but more accurate. See Golub and Van Loan

[1996] for more details on these procedures.

PCs are uncorrelated variables each orthogonal to the previous one. Let us see how the PCA works

for a given dataset X:

X = (x1, x2, ..., xn) (1.60)

This procedure can be represented as a constrained maximization problem. Each PC is a convex

combination of the observations:

yk =
p
∑

i=1

aikxi = a
′

kX (1.61)

where ak, for any k > l ≥ 1 is the solution of the problem:







max
ak

V ar (yk)

s.t.

Cov (yk, yl) = 0

a
′

kak = 1

, (1.62)

The consequence of zero covariance is the orthogonality between the PCs.

Let us see more details on how the PCs are computed. In particular, to find a1 we must observe

that:

V ar (y1) = V ar (x1a11 + x2a21 + .... + xnan1) = a
′

1Cov (x1, ...., xn) a1 = a
′

1Σa1 (1.63)

so that the maximization problem becomes:






max
a1

V ar (y1)

s.t.

a
′

1a1 = 1

, (1.64)

By using the technique of Lagrange multipliers we can rewrite the problem in the form :

m
a1

ax
(

a
′

1Σa1 − λ1

(

a
′

1a1 − 1
))

⇔ Σa1 − λ1a1 = 0 (1.65)

We recognize that this problem can be viewed as an eigenvalue decomposition since we have:

Σa1 = λ1a1 (1.66)
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Notice that a1 is an eigenvector of Σ associated to the eigenvalue λ1. Furthermore, this eigenvalue

coincides with the variance of the first component. Indeed, the variance associated to the vector

y1 is:

V ar (y1) = a
′

1Σa1 = a
′

1λ1a1 = λ1 (1.67)

Eigenvector a2 is the solution of the following constrained problem:







max
a2

V ar (y2)

s.t.

Cov (y2, y1) = 0

a
′

2a2 = 1

, (1.68)

The uncorrelation between the first two PCs gives a condition about the product of the eigenvectors

a1 and a2:

Cov
(

a
′

1X, a2X
)

= a
′

1Σa2 = a
′

2Σa1 = a
′

2 λ1a1
︸︷︷︸

Σa1

= λ1a
′

2a1 = 0⇔ a
′

2a1 = 0 (1.69)

By writing the problem in the Lagrangian form we have:

m
a2

ax
(

a
′

2Σa2 − λ2

(

a
′

2a2

)

− φ
(

a
′

2a1

))

⇔ Σa2 − λ2a2 − φa1 = 0⇔ a
′

1Σa2 − λ2a
′

1a2 − φa
′

1a1 = 0

(1.70)

The first two quantities are zero, so it remains that:

−φ a
′

1a1
︸︷︷︸

1

= 0⇔ φ = 0 (1.71)

The solution of the Lagrangian problem can be found in the eigenvalue problem:

Σa2 − λ2a2 = 0⇔ Σa2 = λ2a2 (1.72)

In the same way, it can be shown that the maximum variance for the i-th PC score is i-th largest

eigenvalue.

In real world applications we face the problem of deciding whether the Principal Component

Analysis should be applied on the covariance or on the correlation matrix of the given dataset.

Results are affected by the volatility of each variable when you do the PCA on the covariance

matrix, whereas they are independent of volatility when PCA is based on the correlation matrix.

Applying PCA to covariance or correlation is an empirical question.

Note that PCA is not scale invariant and using the correlation matrix for PCA means to rescale

the data such that they all have unit variance. This feature suggests that results of PCA on

covariance and correlation matrices could differ significantly. If assets in the portfolio are of the
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same type and with similar variance, the choice is not so relevant. But if we consider a portfolio

composed of bonds and equities with bond yields being much less volatile than equity returns, PCA

on covariance matrix would give higher weights to equities in the first component than if we use

the correlation matrix. Significant differences in variable variances implies a greater influence of

the variables with the largest variance in the first eigenvectors associated to the covariance matrix.

However, sometimes using PCA on correlation matrix may be convenient. For example, consider a

portfolio composed by a bond and a stock where bond return is expressed in basis points and stock

return is expressed in units. Applying directly PCA on the covariance matrix would give misleading

results since the two variables are not measured using the same unit. In some sense choosing to

work with correlation matrices protects from these kind of problems but has the drawback that

not all the information present in the data is used.

We will follow a hybrid approach composed by two steps. In the first step we standardize the

variables by using the volatility of a previous fixed period that can be for example the volatility of

the last quarter. Depending on the past, the relative variances are near one but they can be higher

or lower since the market conditions change frequently. As a second step we perform PCA on the

new covariance matrix whose diagonal elements will have similar values. In doing so, we maintain

some of the information about greater volatility of some assets and in the same time have no big

differences in the data units.

In particular we consider the five GICS indexes: Information Technology, Financial, Consumption

Staple, Health and Energy. The dataset is composed by daily log returns going from 12/09/2010

to 12/09/2012. We first perform a PCA analysis on the covariance matrix computed using data

from 01/01/2011 to 12/09/2012.

For the same time frame we perform the PCA on the correlation matrix. It is possible to observe

that now the variance explained from the first PC is lower than in the case where the covariance

matrix. We compare the results with the hybrid approach. The volatility computed on the period

12/09/2010 - 31/12/2012 is used to standardize the data in the remaining period. The outcome is

coherent with our expectations, in the sense that the first PC explains more than in the correlation

case and less than in the covariance context.
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Cov Inf Fin Cons Hlth Enr Eigenvalues Perc

Inf 1.56E-04 1.74E-04 7.16E-05 9.79E-05 1.53E-04 7.05E-04 86%

Fin 1.74E-04 2.91E-04 9.72E-05 1.32E-04 2.11E-04 4.69E-05 92%

Cons 7.16E-05 9.72E-05 5.62E-05 6.14E-05 8.66E-05 3.44E-05 96%

Hlth 9.79E-05 1.32E-04 6.14E-05 9.21E-05 1.17E-04 2.50E-05 99%

Enr 1.53E-04 2.11E-04 8.66E-05 1.17E-04 2.27E-04 1.01E-05 100%

Table 1.1: Covariance matrix using five sector indexes going from January 2011 to September 2012. The Consumer
Staple and Health sectors show a lower variance meaning that the first eigenvalues will be driven by the remaining
sectors are Information Technology, Financial and Energy.

Corr Inf Fin Cons Hlth Enr Eigenvalues Perc

Inf 1.00 0.82 0.77 0.82 0.82 4.22 84%

Fin 0.82 1.00 0.76 0.81 0.82 0.28 90%

Cons 0.77 0.76 1.00 0.85 0.77 0.19 94%

Hlth 0.82 0.81 0.85 1.00 0.81 0.18 97%

Enr 0.82 0.82 0.77 0.81 1.00 0.14 100%

Table 1.2: Correlation matrix using the data going from January 2011 to September 2012. The explained variance
by the first PC is lower than in the case when covariance matrix was used.

Hybrid Inf Fin Cons Hlth Enr Eigenvalues Perc

Inf 1.02 0.82 0.75 0.88 0.88 4.42 85%

Fin 0.82 1.00 0.75 0.87 0.88 0.28 90%

Cons 0.75 0.75 0.94 0.89 0.79 0.20 94%

Hlth 0.88 0.87 0.89 1.10 0.91 0.19 98%

Enr 0.88 0.88 0.79 0.91 1.14 0.11 100%

Table 1.3: Covariance matrix using hybrid data : the last quarter of 2010 was used to compute the basis standard
deviation . The data going from January 2011 to September 2012 were then "standardized" and used for the
covariance matrix computation. The explained variance by the first PC is lower than when we use covariance
matrix for PCA and higher than in the correlation matrix case.
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Now we apply the PCA analysis on Euro market Z-spread data grouped by sectors and subsec-

tors in order to identify possible leading factors. The notion of spread is encountered frequently

in finance, especially in fixed income. We call nominal spread the difference between the yield to

maturity of a risky bond and the yield to maturity of a risk-free one with the same maturity.

The zero volatility spread (z-spread) is the fixed amount that should be added to the Libor

curve in order to obtain the market price for a given bond. In the last decade credit risk has

become very important. In fact for portfolios that contain bonds, the z-spreads are crucial risk

factors. If we are in the market and have in the portfolio positions on a large number of bonds,

identifying a smaller number of factors that can explain the movements of the z-spreads for different

ratings reduces the number of risk factors considered in the portfolio management. In addition, the

information we get can be used to identify the sectors or subsectors that have a higher influence

for a given rating.

In the considered market we have that most of the investment grade issuers are AA, A or BBB

rated. As uncertainty grows, in the market there is much more reluctance in assigning an AAA

rating to a given issuer. Even for the A rated is not easy to have a large dataset since a lot of

companies originally having this rating have been either uprated or more probably downrated. As

we will show for the A group the most representative sector is the Public Sovereign since it is

perceived as safer than other sectors whose issuers are private companies. However we were able

to perform a complete analysis only for the time span going from 01/08/2011 to 29/02/2012. The

considered period is not too long but it is interesting to observe the most important factors driving

the z-spread of the AA rated companies.

Util Util Fin Util Fin Fin Basic Indus Indus Indus Indus Indus Pub Util

Gas Transp Bank Water Finance Insurance Industries Healthcare Manifact Retail Technology Telecom Sovereign Electric

Util_Gas 1.410 1.209 0.795 1.343 0.865 0.623 0.818 0.944 0.853 0.963 0.546 0.936 0.302 1.351

Util_Transp 1.209 1.037 0.681 1.152 0.742 0.534 0.702 0.809 0.732 0.826 0.468 0.803 0.259 1.159

Fin_Bank 0.795 0.681 1.648 0.753 1.610 0.757 0.374 0.432 0.430 0.497 0.181 0.678 0.035 0.761

Util_Water 1.343 1.152 0.753 1.291 0.823 0.592 0.780 0.902 0.812 0.917 0.519 0.895 0.299 1.287

Fin_Finance 0.865 0.742 1.610 0.823 2.466 0.886 0.375 0.474 0.457 0.507 0.157 0.681 0.198 0.829

Fin_ Insurance 0.623 0.534 0.757 0.592 0.886 0.883 0.351 0.387 0.375 0.371 0.263 0.403 0.266 0.597

Basic_Industries 0.818 0.702 0.374 0.780 0.375 0.351 0.937 0.720 0.675 0.765 0.518 0.680 0.233 0.784

Indus_Healthcare 0.944 0.809 0.432 0.902 0.474 0.387 0.720 1.007 0.765 0.892 0.517 0.706 0.230 0.904

Indus_Manufacturing 0.853 0.732 0.430 0.812 0.457 0.375 0.675 0.765 0.909 0.824 0.490 0.669 0.160 0.817

Indus_Retail 0.963 0.826 0.497 0.917 0.507 0.371 0.765 0.892 0.824 1.239 0.499 0.807 0.229 0.922

Indus_Technology 0.546 0.468 0.181 0.519 0.157 0.263 0.518 0.517 0.490 0.499 1.275 0.358 0.124 0.523

Indus_Telecom 0.936 0.803 0.678 0.895 0.681 0.403 0.680 0.706 0.669 0.807 0.358 1.101 0.158 0.897

Pub_Sovereign 0.302 0.259 0.035 0.299 0.198 0.266 0.233 0.230 0.160 0.229 0.124 0.158 2.953 0.290

Util_Electric 1.351 1.159 0.761 1.287 0.829 0.597 0.784 0.904 0.817 0.922 0.523 0.897 0.290 1.294

Table 1.4: Rated A subsectors : Covariance matrix using the 2010 historical standard deviation as basis for
standardizing the data.

The corresponding eigenvalues and explained variance are given in the table 1.10:

By observing the eigenvectors we can find the sectors that drive the market.

If we choose to build the covariance matrix based on the hybrid data with base the entire

year we observe still big differences in terms of variability among the subsectors. A more accurate
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Eigenvalues Explained Variance

10.293 53%

2.955 68%

2.717 82%

0.979 87%

0.668 91%

0.430 93%

0.423 95%

0.321 97%

0.257 98%

0.214 99%

0.183 100%

0.009 100%

0.000 100%

0.000 100%

Table 1.5: Eigenvalues associated to the A rated covariance matrix using 2010 as basis year

Eigvec1 Eigvec2 Eigvec3 Eigvec4 Eigvec5

Util_Gas 0.353 0.028 0.101 0.163 0.317

Util_Transp 0.302 0.024 0.087 0.140 0.271

Fin_Bank 0.263 -0.325 -0.369 -0.066 -0.075

Util_Water 0.336 0.031 0.096 0.159 0.304

Fin_Finance 0.302 -0.386 -0.572 -0.144 -0.174

Fin_ Insurance 0.191 -0.079 -0.190 -0.143 0.236

Basic_Industries 0.230 0.094 0.174 -0.077 -0.248

Indus_Healthcare 0.259 0.083 0.180 -0.001 -0.208

Indus_Manufacturing 0.239 0.055 0.168 -0.036 -0.261

Indus_Retail 0.275 0.081 0.193 0.048 -0.520

Indus_Technology 0.160 0.104 0.218 -0.908 0.153

Indus_Telecom 0.265 -0.013 0.079 0.160 -0.287

Pub_Sovereign 0.106 0.837 -0.531 -0.005 -0.034

Util_Electric 0.338 0.027 0.097 0.156 0.303

Table 1.6: Eigenvectors of the A rated sectors
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procedure could be based on considering only the last quarter of the year 2010 since volatility rose

to higher levels in all the sectors. The standard deviation computed on the entire year gives a

flatter measure than using only the more volatile period. We decided to standardize the 2011-2012

dataset using the volatile period and compare the results with the A rated group :

Util Util Fin Util Fin Fin Basic Indus Indus Indus Indus Indus Pub Util

Gas Transp Bank Water Finance Insurance Industries Healthcare Manifact Retail Technology Telecom Sovereign Electric

Util_Gas 1.096 0.984 0.648 1.121 0.763 0.582 0.805 0.814 0.789 0.832 0.405 1.102 0.234 1.127

Util_Transp 0.984 0.883 0.582 1.006 0.685 0.523 0.723 0.730 0.709 0.747 0.364 0.989 0.210 1.012

Fin_Bank 0.648 0.582 1.411 0.659 1.490 0.743 0.387 0.391 0.417 0.450 0.141 0.837 0.028 0.666

Util_Water 1.121 1.006 0.659 1.156 0.779 0.594 0.824 0.834 0.806 0.851 0.414 1.130 0.248 1.152

Fin_Finance 0.763 0.685 1.490 0.779 2.468 0.940 0.419 0.464 0.480 0.497 0.132 0.909 0.174 0.784

Fin_ Insurance 0.582 0.523 0.743 0.594 0.940 0.993 0.416 0.402 0.417 0.386 0.235 0.571 0.247 0.599

Basic_Industries 0.805 0.723 0.387 0.824 0.419 0.416 1.168 0.786 0.791 0.837 0.487 1.013 0.228 0.828

Indus_Healthcare 0.814 0.730 0.391 0.834 0.464 0.402 0.786 0.963 0.785 0.855 0.426 0.921 0.197 0.837

Indus_Manufacturing 0.789 0.709 0.417 0.806 0.480 0.417 0.791 0.785 1.001 0.847 0.433 0.937 0.147 0.812

Indus_Retail 0.832 0.747 0.450 0.851 0.497 0.386 0.837 0.855 0.847 1.189 0.411 1.055 0.197 0.855

Indus_Technology 0.405 0.364 0.141 0.414 0.132 0.235 0.487 0.426 0.433 0.411 0.904 0.403 0.091 0.417

Indus_Telecom 1.102 0.989 0.837 1.130 0.909 0.571 1.013 0.921 0.937 1.055 0.403 1.962 0.185 1.133

Pub_Sovereign 0.234 0.210 0.028 0.248 0.174 0.247 0.228 0.197 0.147 0.197 0.091 0.185 2.272 0.240

Util_Electric 1.127 1.012 0.666 1.152 0.784 0.599 0.828 0.837 0.812 0.855 0.417 1.133 0.240 1.159

Table 1.7: Rated A subsectors : Covariance matrix using the last quarter of 2010 standard deviation.

Eigenvalues Explained Variance

10.193 55%

2.700 69%

2.223 81%

0.807 85%

0.690 89%

0.513 92%

0.447 94%

0.340 96%

0.297 98%

0.226 99%

0.180 100%

0.008 100%

0.000 100%

0.000 100%

Table 1.8: Eigenvalues associated to the A rated covariance matrix using the last quarter of 2010 for the standard
deviation used for the hybrid data

Now to explain at least 90 per cent of the total variability we need six factors, one more than

the factors needed when we use the entire year 2010 for the estimation. The aim of PCA is to

reduce the number of factors through which we can reproduce most of the variability originally

observed in the market. At a first glance it seems that we are going on the wrong direction. If we

concentrate only on the number of PCs yes, but if we look behind the second method gives more

information. Indeed, by looking at the second and third eigenvectors we observe that now each

PC, excluding the first one which gives almost equal weight, is dominated by one specific sector.
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The second PC explains 14 per cent of the total variability and gives more weight to the finance

sector. In particular it seems strongly influenced by the Financial Bank and Financial Finance

subsectors. The third PC explains 12 per cent of the total variability and is highly dependent on

the Public Sovereign subsector. The next two PCs explain each 4 per cent of the total variability

but are driven by different sectors. The fourth PC influenced mostly by the Industrial sectors gives

a quite big weight to the Industrial Technology subsector and negative weight to the Industrial

Telecomunication. The fifth PC gives negative weight to the Industrial and Financial sectors while

the dependence from the Utility seems strongly positive. Changing the time frame used for the

estimation of the standard deviation we obtain different results.

Eigvec1 Eigvec2 Eigvec3 Eigvec4 Eigvec5 Eigvec6

Util_Gas 0.310 0.079 0.027 0.006 0.357 0.037

Util_Transp 0.278 0.071 0.024 0.005 0.320 0.033

Fin_Bank 0.244 -0.459 0.004 -0.034 -0.094 0.179

Util_Water 0.317 0.083 0.024 0.001 0.367 0.040

Fin_Finance 0.302 -0.706 -0.098 0.066 -0.197 -0.285

Fin_ Insurance 0.202 -0.221 -0.094 0.320 0.172 0.187

Basic_Industries 0.262 0.224 0.042 0.093 -0.280 -0.057

Indus_Healthcare 0.255 0.187 0.046 0.079 -0.067 -0.304

Indus_Manufacturing 0.255 0.173 0.070 0.090 -0.163 -0.299

Indus_Retail 0.273 0.200 0.062 -0.063 -0.272 -0.450

Indus_Technology 0.132 0.173 0.041 0.708 -0.336 0.432

Indus_Telecom 0.368 0.085 0.098 -0.600 -0.354 0.521

Pub_Sovereign 0.085 0.158 -0.977 -0.058 -0.053 0.019

Util_Electric 0.319 0.081 0.028 0.006 0.367 0.038

Table 1.9: Eigenvectors of the A rated sectors obtained with the hybrid data whose base standard deviation is
computed using the last quarter of 2010

We perform the same analysis for the BBB rated issuers. We use the hybrid approach based on

the standard deviation estimated during the last quarter of 2010. By looking at the eigenvectors,

we observe that now we cannot claim that the PCs give a higher weight to a specific sector i.e

each new factor is now a weighted average of the different sectors. We now need eight factors to

explain 90 per cent of the total variability. The variance explained by each PC is not very large .

Unfortunately there is not a unique recipe that tells us how long we must go back in the estimation

period and how long these estimates can be used. In turbulent periods, volatility changes rapidly

so the covariances of the hybrid data will probably be quite different from one. On the other side

if the market is quiet volatility moves slowly so the covariances obtained from the hybrid data will

be near one. If we observe a severe change of the market conditions probably this is due to one

or more factors in particular so the update of the basis standard deviation becomes compulsory.

However, even if market conditions remain stable, the factors driving the market may change. We
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Eigenvalues Explained Variance

16.721 48%

3.908 59%

3.215 68%

2.507 75%

1.696 80%

1.521 84%

1.259 88%

0.955 90%

0.850 93%

0.736 95%

0.594 97%

0.464 98%

0.417 99%

0.285 100%

0.022 100%

0.000 100%

0.000 100%

Table 1.10: Eigenvalues associated to the BBB rated covariance matrix using the last quarter of 2010 for the
standard deviation estimation

Eigvec1 Eigvec2 Eigvec3 Eigvec4 Eigvec5 Eigvec6 Eigvec7 Eigvec8
Utility Gas_Pipelines 0.310 0.233 0.124 0.141 0.028 0.016 0.037 0.031
Utility Reg_Transp 0.445 0.334 0.178 0.203 0.041 0.023 0.054 0.045
Utility Water 0.298 0.225 0.118 0.130 0.031 0.001 0.040 0.030
Utility Electric 0.300 0.225 0.120 0.136 0.027 0.015 0.036 0.030
Financial Bank 0.182 0.004 0.126 -0.193 -0.163 0.093 0.087 0.095
Financial Finance 0.252 -0.175 0.177 -0.364 -0.664 0.367 -0.045 -0.091
Financial Insurance 0.340 -0.272 0.159 -0.620 0.354 -0.470 0.137 -0.012
Industrial Basic_Industries 0.168 -0.167 0.004 -0.004 -0.037 0.255 -0.014 -0.054
Industrial Consumer_Products 0.147 -0.244 -0.159 0.166 0.133 0.107 -0.052 -0.032
Industrial Energy 0.232 0.075 0.030 0.116 0.063 -0.189 -0.317 -0.415
Industrial Manufacturing 0.248 -0.235 -0.063 0.042 0.053 -0.010 -0.233 0.251
Industrial Media 0.125 -0.250 -0.138 0.138 0.131 0.061 -0.004 -0.290
Industrial Property 0.142 -0.268 -0.205 0.368 -0.531 -0.595 0.268 -0.015
Industrial Retail 0.234 -0.379 -0.193 0.180 0.137 0.176 -0.335 0.460
Industrial Technology 0.109 -0.204 -0.108 0.076 0.137 0.236 0.069 -0.651
Industrial Telecom 0.194 0.387 -0.832 -0.330 -0.076 0.004 -0.057 -0.006
Industrial Transportation 0.097 -0.103 -0.141 0.067 0.183 0.280 0.784 0.140

Table 1.11: The first 8 eigenvectors associated to the covariance matrix of the BBB rated issuers
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face the same problem as in curve construction or market timing problems: it is not a science but

a matter of art and making the right decision is left to the sensitivity of the subject based on its

past experience.
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1.2.2 Independent Component Analysis

Independent component analysis (ICA) (see Hyvarinen [1999]) is a mathematical procedure for

revealing hidden factors driving the realizations of the observed variables. As in the PCA case, we

have the multivariate data matrix Xp×T and we want to find the independent components that are

the rows of matrix Sp×T . Again we suppose that the observed variables are a linear transformation

of the original factors through a matrix Ap×p, i.e :

X = AS (1.73)

Except for the linearity all the other assumptions presented in PCA are relaxed. In this model

the original sources S, called independent components (ICs), are mixed with matrix A giving the

observations in X.

A W
S X Y

In fact, we do not find directly matrix A and the unobservable variables in S but we look

for a demixing matrix Wp×p from which we obtain Yp×T whose rows are the estimates for the

unobservable sources.

Y = WX (1.74)

Matrix W is obtained using any ICA algorithm which performs an optimization procedure whose

objective function depends on a measure of independence of the ICs. Variance maximization is

now substituted with independence for finding the hidden factors.

In literature we can find different approaches and related algorithms for the application of this

model. ICA can be derived in various ways, for example by maximization of non gaussianity, maxi-

mum likelihood estimation or minimization of mutual information. Although there are some recent

papers on parametric approaches (see for example Lu et al. [2009] for an example on parametric

ICA for modeling financial time series), most of the literature is about non-parametric ICA.

In the general definition, each vector Yi represents an independent component that is actually

an estimate of the i-th source Si. There is an ambiguity in the ICA method in the sense that an

estimated signal Yi determines up to a multiple the variance of the source Si. That is, there exist

infinite values for αi such that this decomposition holds :

Xi = ÃiS̃i (1.75)

where Ãi is obtained by dividing with αi the corresponding elements in matrix A while we must

multiply the elements in S with αi to obtain the elements in S̃i. It is possible to choose αi in that

way that we have a unit variance signal but the sign ambiguity still remains.

Another problem is the fact that it is not possible to uniquely determine the order of the
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independent components. The reason is that given a permutation matrix P and its inverse the

model can be decomposed in:

X = AP −1PS (1.76)

Any algorithm chosen for factor identification can suppose that the original independent variables

are PS instead of S with estimated mixing matrix being AP −1.

It is reasonable to affirm that the observed variables are more gaussian than the distribution of

some factors. Indeed, if we think at the observed variables as a linear transformation of more than

two r.v’s, whose distribution is unknown for us, from the Central Limit Theorem we have that the

univariate distributions can be highly non gaussian.

As we already mentioned one way of estimating the ICs we can maximize a measure of nonguas-

sianity for each component. FastICA is an algorithm ( see Hyvarinen [1999] ) based on a fixed-point

iteration scheme maximizing non-Gaussianity. Since we will use it in many application let us recall

the main passages in its construction.

The ICs are assumed to be non-gaussian. A measure of non-gaussianity is the negentropy J(Y )

defined as a difference of two quantities :

J(y) = H(ŷ)−H(y) (1.77)

where ŷ is a random vector coming from a gaussian distribution while the random vector y can

be generated using any distribution. Observe that H(y) is a measure of entropy for the random

vector y :

H(y) =
∫

−p(y)logp(y)dy (1.78)

The negentropy can be seen as a measure of the distance from the perfect disorder of the gaussian

world. It is possible to use an approximation for the negentropy which facilitates computations:

J(y) ≈ [E {G(ŷ)} − E {G(y)}]2 (1.79)

for particular choices of function G. In particular, we consider choose :

G(Y ) = e−y2/2 (1.80)

Before applying the ICA algorithm the original dataset must be preprocessed, i.e centered and

whitened. Consider a dataset composed by two r.v’s uniformly distributed on [−30, 70]. Each

original variable is centered meaning that we subtract the vector mean to the dataset. The centered

data are then whitened, i.e the transformed dataset X̂ is such that:

E[X̂X̂ ′] = I (1.81)
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Figure 1.6: In the left figure we plot the two original signals S1 and S2 that are uniformly dis-
tributed on [−30, 70]. The observed quantities X1 and X2 are linear transformations of the signals
S1 and S2. The plot in the right refers to X1 = 0.3 ∗S1− 0.6 ∗S2 and X2 = 0.72 ∗S1 + 0.17 ∗S2.

A common way to trasform the data is by using the matrix obtained from the eigenvalue and

eigenvectors decomposition of Cov(X) = E[XX ′]. If we put the eigenvectors in matrix E and D is

a diagonal matrix whose elements are the corresponding eigenvalues D = diag(λ1, λ2, .., λn) then

X = EDE′ (1.82)

The performed transformation :

X̂ = ED− 1
2 E′X (1.83)

yields the whitened data. Since :

X̂ = ED− 1
2 E′AS = ÂS (1.84)

the new mixing matrix Â is orthogonal because :

E[X̂X̂ ′] = ÂE[SS′]Â′ = ÂÂ′ = I (1.85)

FastICA is an iterative algorithm and it finds the direction for the weight vector w maximizing

the non-Gaussianity of the projection w′ for the data x̂. The function g(·) is the derivative of the

function G defined in equation 1.80. The main steps of the algorithm to obtain one IC are:

• 1 Start with a random weight vector w

• 2 Define w+ ← E
{

x̂g(w
′

x̂)
}

− E
{

g′(w
′

x̂)
}

w
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Figure 1.7: Preprocessing the dataset means to center the data and then whiten them. The last term means that
the covariance matrix of the transformed dataset is diagonal.

• 3 Divide w ← w+/‖w+‖

• 4 Compare w with the previous one. If the difference is bigger than a fixed value ǫ, it means

that there is no convergence so the update the value as in 2.

In multivariate analysis the identification of the main factors that generate the variables that

we observe is an important step. Under the stationary hypothesis it gives the possibility to use

the past information to predict the future. Here we apply the ICA analysis and try to identify

the factors driving the returns on stock markets. We consider the ten GICS sectors as factors for

the VFIAX index and apply the FastICA algorithm to find 10 independent components . In 1.2.2

differences between the components can be immediately noticed.

Madan [2006a] suggests to consider as independent factors only those that differ substantially

from the normal distribution while the remaining components are grouped together to form the

idiosyncratic component. The difficulty in the component interpretation explains the limited use

of this instrument in finance although from a mathematical point of view it is very interesting.
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Figure 1.8: We consider the ten GICS sectors as factors for the VFIAX index and apply the
FastICA algorithm to find 10 ICs that generate our portfolio return. In the figure we show the
time series of the ICs
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1.2.3 PCA vs ICA

PCA and ICA yield both linear transformations of the variables but they are based on quite dif-

ferent hypothesis and yield components that have different statistical properties. In fact we have

that PCs are uncorrelated and gaussian while ICs are independent and supposed non gaussian .

Only Second-order statistics are needed in the PCA analysis since derivation is based on variance

maximization while higher -order statistics are considered for non-gaussianity identification in the

ICA analysis. Although explained variance is a criterion for ordering the principal components, no

single criterion exists for ordering the independent components. This is the reason why in litera-

ture alternative methods that at least produce a sparse mixing matrix are considered (see Zhang

et al. [2009]). The exact amplitude and sign of the independent components cannot be determined.

Since in the ICA analysis we try to maximize the non-gaussianity of the components, the

distribution of the components are fitted better using distributions with heavier tails. In figure

1.2.3 we fit both the Normal and the Variance Gamma ( see Madan and Seneta [1990b]) distribution

to the first three ICs and PCs of the ten GICS. In Chapter 4 we will discuss the ICA analysis in a

parametric context in order to identify the differences among the components.
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Figure 1.9: The pictures show the first three ICs and PCs of the ten GICS. The Normal and
Variance distribution were fitted to each of them to evidence the differences. In particular, the
first IC has a peaked distribution and the normal assumption doesn’t hold.



Chapter 2

Risk Measures: VaR, CVaR and

Expectiles

Risk analysis is most commonly considered in the context of a particular risk measure leading

to concepts such as mean-variance optimization or diversification. The first risk measure consid-

ered was the standard deviation and one of the most well-known work based on this quantity is

Markowitz [1952] which considers a risk-return optimization problem. In the last twenty years,

the attention given to the correct definition of risk increased. The most used risk measure is the

ValueAtRisk (VaR henceforth) RiskMetrics [1996].

Despite its popularity, VaR has two main disadvantages. The first is that it is not a coherent

measure in the sense of Artzner et al. [1999] meaning that the diversification principle is not en-

sured. The second drawback is due to the fact that it does not fully take account for the tail risk.

Indeed, being a point of the distribution, it does not consider the amount of loss below its value.

The international regulators are thinking about moving to another risk measure for the capital

requirements and, although the Expected Shortfall (ES henceforth) is a coherent risk measure, it

does not seem to be the best alternative. Indeed its backtesting is more difficult to perform and,

moreover, methodologies used for the estimation of the ES are not directly comparable.

In fact risk measures for which direct comparison is possible satisfy the elicitability property (see

Gneiting [2011]). A statistical functional is elicitabile if it is a solution of a minimization of a suit-

able score function. In this context a particular attention was recently given to another statistical

quantity: the expectile. Introduced in Newey and Powell [1987], it is the result of an Asymmetric

Least Square regression. The expectile based risk measure seems to have nice properties.

In particular, in this chapter we review the definition of a risk measure and its mathematical prop-

erties. Then we focus on the VaR and the ES before introducing the elicitability property. An

empirical investigation is performed on equity and credit risk market data for the extraction of

implicit values for the weight parameter in the expectile definition.
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2.1 Risk measures: mathematical properties and confor-

mity to Basel III

Let χ be the family of the random variables defined on the same probability space (Ω,F , P )

describing the profit and loss (or return) of a given portfolio (or asset). The risk measure associated

to X ∈ χ is defined as follows:

Definition 3. A risk measure is a map ρ : χ→ ℜ meaning that ρ(X) ∈ ℜ.

From an economic point of view ρ(X) is referred to capital requirements. Depending on the

sign it can have two interpretations :

• Positive : ρ(X) is the additional amount of money to give as a margin so that the new

position becomes acceptable.

• Negative : ρ(X) is the maximum amount of money that can be withdrawn in order to

maintain the acceptability of the position.

Portfolio managers use risk measures to quantify the riskiness of their position for a fixed horizon

of time T and usually a confidence level α.

From a theoretical point of view, a very appealing class of risk measures are the coherent ones.

Following the axiomatic approach introduced in Artzner et al. [1999], ρ (X) is a coherent risk

measure if it satisfies the following properties:

• Translation Invariance For all λ ∈ ℜ and for all X ∈ χ we have ρ(X − λ) = ρ(X)− λ.

• Monotonicity For all X, Y ∈ χ such that X ≤ Y we have ρ(X) ≤ ρ(Y ).

• Positive Homogeneity For all λ ≥ 0 and for all X ∈ χ we have ρ(λX) = λρ(X).

• Subadditivity For all X, Y ∈ χ we have ρ(X + Y ) ≤ ρ(X) + ρ(Y )

2.1.1 Value At Risk and Expected Shortfall

Let X be a r.v defined on the probability space (Ω,F , P ). q ∈ ℜ is an α−quantile with α ∈ (0, 1)

if:

P (X < q) ≤ α ≤ P (X ≤ q) (2.1)

The biggest α−quantile of X is :

q+
α (X) = inf {x ∈ R; FX (x) > α} (2.2)

while the lowest α−quantile of X is defined as:

q−
α (X) = inf {x ∈ R; FX (x) ≥ α} (2.3)
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For continuous rv’s we have that q+
α (X) = q−

α (X) = qα(X) though we can use both for defining

VaR. In particular, we define the ValueAtRisk with α level of confidence as:

V aRα(X) = −qα(X) (2.4)

The notion of Value at Risk was first introduced in a technical report of J.P.Morgan in 1996. Its

great success is due to the fact that it entered in the requirements of the Basel committee although

it does not satisfy the subadditivity property.

Another crucial risk measure is the Expected Shortfall Acerbi [2002] defined as:

ESα (X) =
1
α

∫ α

0

V aRβ (X) dβ (2.5)

In the particular case where the distribution of X is continuous, Expected Shortfall coincides with

the Conditional Value at Risk (CVaR) introduced in Rockafellar and Uryasev [2000]. For α ∈ (0, 1)

the CVaR at confidence level α is defined by:

CV aRα (X) =
∫ +∞

−∞
zdF α

X (z) (2.6)

where

F α
X (z) =

{

0 z < V aRα,t(X)
FX (z)−α

1−α z ≥ V aRα,t(X)
(2.7)

In this thesis we will use the Expected Shortfall for continuous and empirical distributions. The

interpretation will be that of a conditional mean based on Tail Conditional(TCE) definition:

TCEα(X) = E[−X|X ≤ −V aRα(X)] (2.8)

That is, for us CVaR, ES and TCE will refer to the same quantity. As we have seen , the two

considered risk measures have both Pros and Cons. In particular VaR is not subadditive, its

estimators are stable and backtesting is straightforward. On the other side we have that ES is

coherent, is sensitive to extreme values but its estimators are less stable than the VaR estimators

as shown in Yamai and Yoshiba [2005]. Backtesting for VaR it is simple and a lot of work has been

done (see Christoffersen [2010] for a general overview) while for ES is not the same since it is not

an elicitable functional as explained in the next section.

2.2 Elicitability and Expectiles

2.2.1 Elicitability: forecast and comparison of estimation procedures

Savage [1971] introduced the notion of elicitability for statistical functionals. In this section we

follow the presentation given in Gneiting [2011].
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Let F be the distribution function of a r.v Y. Suppose we make a probabilistic forecast F for

the events concerning Y. The future observations Y are the realizations of a random variable and

we need a scoring method to compare the predictive performance of forecasters. There are two

types of forecasts: probabilistic and point forecasts. The first considers the problem of finding

any probability measure F ∈ F related to Y while in the second case we seek for a forecast of

the distribution function F . For example the forecast of the mean, the mode and the quantile

associated to a distribution enter in the last type of problems. We will focus on point forecast

results but before explaining how all this is related to the considered risk measures let us recall some

important results known in literature. Consider a family F of probability measures on (I,B(I)).

Definition 4. Statistical functional or functional
A functional is a map T : F → P (I) where P (I) is the power set of the interval I.

Definition 5. Consistent Scoring function
A scoring function S is said to be consistent for a specified functional T defined on the the class of
probability measures F if are satisfied both conditions:

• EF S(x, Y ) exists and it is finite ∀x ∈ I and ∀F ∈ F .

• EF S(t, Y ) ≤ EF S(x, Y ) for all x ∈ I , ∀F ∈ F and ∀t ∈ T (F ).

where the scoring function is usually an error measure.

Definition 6. Strictly Consistent Scoring function
A scoring function S is said to be strictly consistent for a specified functional T defined on the the
class of probability measures F if:

• EF S(t, Y ) = EF S(x, Y ) ∀x ∈ I , ∀F ∈ F and ∀t ∈ T (F ).

The equality of the expectations ensures that t ∈ T (F ) implies x ∈ T (F ).

Definition 7. Elicitable functional
A functional T is elicitable if exists a scoring function S that is strictly consistent for it.

Recently, Bellini and Bignozzi [2013] suggest a slightly more restrictive definition more suited

for financial applications by adding the convexity requirement for the scoring function.

The following result is useful in the case we want to show that a given functional is not elicitable:

Osband [1985] shows that the level sets of an elicitable functional are convex. This property

requires that if F0 ∈ F , F1 ∈ F and for p ∈ (0, 1) Fp = (1 − p)F0 + pF1 ∈ F the conditions

t ∈ T (F0) and t ∈ T (F1) imply that t ∈ (Fp). In fact, if T is elicitable, meaning that it exists

a strictly consistent scoring function S, the linearity property of expectations and the elicitability

definition, for any x ∈ I suggest that:

EFp
S(t, Y ) = pEF0

S(t, Y ) + (1− p)EF1
S(t, Y ) ≤ pEF0

S(x, Y ) + (1− p)EF1
S(x, Y ) = EFp

S(x, Y )

(2.9)
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ensuring that t ∈ (Fp).
For a given functional T, in order to get precise proofs, we need some smoothness conditions on
the scoring function S. A common choice is the class of Generalized Piecewise linear functions of
order α:

Definition 8. Generalized Piecewise linear (GPL) of order α
A function Sg : I × I → [0, +∞) of the form:

Sg(x, y) = (1− α)[g(x)− g(y)]1y≤x + α[g(x)− g(y)]1y x (2.10)

with g : I → ℜ being a non decreasing function.

In the particular case where g is a linear function, Sg coincides with the asymmetric piecewise

loss function used in quantile regression. The function Sg, for g linear, is a strictly consistent

scoring function for the functional qα(Y ) = F −1
Y (α). It is simple now to understand why VaR is

an elicitable functional. This property ensures that exists competing alternatives that are directly

comparable which to measure the error we make by assuming a particular distribution for the data

considered. The sufficiency condition for elicitability doesn’t depend on the smoothness conditions

for the GPL function. The CVaR functional is not elicitable since the level set of the functionals

are not convex. In Gneiting [2011] a counterexample for the class F containing measures with

finite support . In particular suppose a, b, c, d ∈ I with a < b < c < 0.5(b + d) and define two

probability measures:

F1 = αδa + 0.5(1− α)[δb + δd]F2 = αδc + (1− α)δ(b+d)/2 (2.11)

It is easy to observe that for α ≤ 1/3 :

CV aRα(F1) = CV aRα(F1) = 0.5(b + d) (2.12)

CVaR doesn’t have convex level sets since:

CV aRα(0.5(F1 + F2)) = 0.25(b + c + 2d) > 0.5(b + d) (2.13)

The CVaR associated to the convex combination of the probability measures is higher than the

weighted sum of the single CVaRs since b < d.

The BIS Consultative Document BIS [2012] poses the question of what are the likely operational

constraints with moving from VaR to ES, including any challenges in delivering robust backtesting,

and how might these be best overcome. The absence of elicitability property probably will justify

the embargo for the use of the ES for capital requirements.
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2.2.2 Expectiles: coeherent and elicitable

For τ ∈ (0, 1), the τ -expectile of a r.v X with finite mean is defined as:

eτ (X) = argminm∈ℜE[τmax(m−X, 0)2 + (1− τ)max(X −m, 0)2] (2.14)

It can easily be shown that eτ (X) satisfies the relation:

eτ (X) =
τE
[
XI{X≤eτ (X)}

]
+ (1− τ)E

[
XI{X>eτ (X)}

]

τP [X ≤ eτ (X)] + (1− τ)P [X > eτ (X)]
(2.15)

The risk measure associated to the expectile is:

ρ(X) = −eτ (X) (2.16)

The main characteristics that make it a candidate as a risk measure are the fact that it is ho-

mogenous and coherent for particular choice of τ (see Bellini et al. [2013]). Under the condition of

finiteness for the second moment of F, the τ -expectile is the optimal point forecast if the scoring

function is:

Sτ (x, y) = |1x≥y − τ | (x− y)2 (2.17)

Bellini and Bignozzi [2013] showed that expectiles are the only coherent risk measures to be elic-

itable it exists a clear methodology to perform backtesting. The alternative procedures can be

ranked by using the scoring function since if the scoring function S(x, y) is consistent for the

considered risk measure ρ(X), then the averaged realized score:

1
n

=
n∑

i=1

S(ρi, xi) (2.18)

should be small.

The main difficulty in the use of the expectile based risk measure is the choice of the parameter τ .

The arbitrary choice for the parameter value can be faced by recalling that the expectile parameter

τ and quantiles are connected since (see Jones [1994]) :

τ =
αqα −

∫ qα

−∞ xdF (x)

E[X]− 2
∫ qα

−∞ xdF (x)− (1− 2α)qα

(2.19)

It is though possible, once fixed α, to obtain a value for τ for the given distribution of the data

considered.

In order to have a better intuition of the parameters appearing in the quantile and expectile

definitions, we perform a naive backtesting analysis. The S&P500 returns for the time-period
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12/09/2009- 12/09/2012 are modeled as as:

rt = σtǫt (2.20)

and following Bollerslev [1986] we suppose σt ∼ GARCH(1, 1), that is:

σ2
t = ω + β1r2

t−1 + β2σ2
t−1 (2.21)

where β1 and β2 are the model parameters. From the GARCH(1,1) fitting, we get the sequence σ̂t

t = 1, ..., n. Consider :

ǫ̂t =
rt

σ̂t
(2.22)

and compute the expectile of this sequence for fixed τ as the solution of an Asymmetric Least

Square Regression :

eτ = argminm
1
n

n∑

i=1

[
τ(ǫ̂t −m)2Iǫ̂t≥m + (1− τ)(m− ǫ̂t)2Iǫ̂t<m

]
(2.23)

As a first attempt, we fix two values for τ respectively 0.05 and 0.01. The expectiles obtained

daily for these two parameter values are plotted together with the α- quantile for α = 0.05. The
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Figure 2.1: The S&P500 returns for the time-period 12/09/2009- 12/09/2012 is modeled using a
GARCH(1,1). The daily forecast for the quantities e0.05, e0.01 and q0.05 is then compared with the
actual returns in order to compute the exceedance rate.
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time frame considered for the estimation contains 200 observations. Daily we check whether the

actual return observed is less than the expectile or quantile estimated in the previous step. The

returns for which this happen form the sequence of exceedances or hittings. The exceedance rate

is defined as the fraction of the exceedances over the total number of observations. We compute

e0.01 and obtain an exceedance rate of 4.36% while for e0.05 the exceedance rate is 12.55%. The

exceedance rate for V aR0.05 is 5.45%. From this simple exercise we confirm the fact that while

α can be interpreted as the probability of observing returns lower than the corresponding V aRα

value, for τ this is not possible. In fact, it has been interpreted as the prudential parameter in

Kuan et al. [2009b] since it the weight given to the tails in the ALS regression problem. Now

we perform an empirical analysis based on the expectile-quantile relation given in equation 2.19.

Fixed α, we use the empirical distribution to compute the value for τ . First we apply our analysis

to the S&P500 and to the ten GICS return distributions. Then we move on to the credit market

and consider the daily z-spread variations for eleven European countries.
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From the empirical distribution of the daily log returns for the S&P500 index, we get the τ for

α values that are usually used in finance: 0.01, 0.05 and 0.10.
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Figure 2.2: In this figure we plot the τ for different α values using the empirical distributions of
the S&P500 index. The values were obtained from the formula that relates α to τ .

α 0.01 0.05 0.1
τ 0.0011 0.0119 0.0459

qα -0.0226 -0.0159 -0.0107
eτ -0.0227 -0.0161 -0.0108

Table 2.1: In this table we give the τ values obtained using the corresponding empirical distribution
for the S&P500 index when α is 0.01, 0.05 and 0.10. The corresponding empirical expectile and
quantile values are given and we can see they differ quite slightly.



48 Risk Measures: VaR, CVaR and Expectiles

For the same α values, we repeat the analysis for the ten GICS sector indexes.
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Figure 2.3: In this figure we plot τ values for different α using the empirical distributions of the ten
GICS. Observe that for α = 0.05 the ten sectors τ -s are more concentrated than the τ -s obtained
for α = 0.10.

α 0.01 0.05 0.1
τ INFT 0.0003 0.0134 0.0363

FINL 0.0010 0.0155 0.0450
CONS 0.0008 0.0143 0.0419
HLTH 0.0009 0.0118 0.0415
ENRS 0.0011 0.0128 0.0371
COND 0.0012 0.0158 0.0430
INDU 0.0009 0.0143 0.0475
MATR 0.0014 0.0118 0.0406
UTIL 0.0014 0.0112 0.0390
TELS 0.0011 0.0125 0.0411

Table 2.2: In this table we give the τ value obtained using the corresponding empirical distribution
for the ten GICS when α is 0.01, 0.05 or 0.10.

Observe that for higher α values, the set of implicit values for τ becomes larger. However, since

the distributions of the ten GICS sector indexes are similar, the corresponding τ -s are similar too.
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Let us consider the dataset composed by the daily variations of the z-spreads for eleven

sovereigns in the euro zone going from 20/10/2010 to 20/10/2012. With respect to the equity

dataset, now there in bigger variability in the τ values for each fixed α. Moreover, we systemati-

cally observe higher values for τ than those obtained for the same α values when the GICS dataset

is considered.
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Figure 2.4: In this figure we show τ for different α using the empirical distributions of eleven
European sovereign z-spreads.

α 0.01 0.05 0.1

τ Austria 0.0039 0.0328 0.0831

Belgium 0.0061 0.0306 0.0723

Finland 0.0043 0.0292 0.0697

France 0.0036 0.0307 0.0702

Ireland 0.0024 0.0344 0.0915

Italy 0.0009 0.0322 0.0804

Netherl 0.0034 0.0230 0.0700

Portugal 0.0041 0.0179 0.0746

Slovakia 0.0034 0.0205 0.0610

Spain 0.0026 0.0295 0.0814

Germany 0.0017 0.0228 0.0570

Table 2.3: In this table we give the τ value obtained using the corresponding empirical distribution
for the sovereign z-spread daily variations when α is 0.01, 0.05 or 0.10.
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The difference in the results suggests that for fixed α values, the implicit τ depend on the shape

of the dataset distribution. In fact, if we compute the kurtosis level for the z-spread dataset, the

value is much higher than when we consider equity indexes. The results show that if we want

to use an expectile based risk measure, the parameter τ should not be chosen arbitrarily but it

it should be dependent on some statistics of the distribution considered. From the two exercises

performed, it seems that τ can be defined as an increasing function of the kurtosis level. Further

investigations should be performed in order to model the relation between them.

INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS
kurtosis 3.6637 4.1544 3.4976 3.8195 3.5810 3.9228 3.6497 3.6099 3.2496 3.1990

Table 2.4: Kurtosis level for the empirical distribution of the daily log returns for the ten GICS
indexes.

Austria Belgium Finland France Ireland Italy Netherl Portugal Slovakia Spain Germany
kurtosis 10.3713 12.9797 10.8325 9.3513 12.6521 8.2672 9.4645 20.8646 5.6186 7.6921 6.3067

Table 2.5: Kurtosis level for the empirical distribution of the sovereign z-spread daily variation for
eleven countries. The departure from the normal distribution is evident

2.3 Risk decomposition

We cannot define universally the most appropriate financial risk measure. Users have to make

choices of the properties of risk measures that are most important for their purposes. Let us

see how the three considered risk measures can be used in risk decomposition. The homogeneity

property results fundamental.

2.3.1 Homogeneity and Euler decomposition

A function f(x, y) is said to be homogeneous of order n if:

f(λx, λy) = λnf(x, y) (2.24)

For homogeneous functions holds the Euler theorem:

∂f(x, y)
∂x

x +
∂f(x, y)

∂y
y = nf(x, y) (2.25)

This theorem can be generalized for more variables and it is the basis for the risk contribution

methodology introduced in Tasche [1999]

Consider a linear model relating portfolio returns π with factors in F:

π = βF (2.26)
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Any homogeneous risk measure R(π) can be written as the sum:

R(π) =
n∑

i=1

βi
∂R(π)

∂βi
=

n∑

i=1

RCi (2.27)

where the risk contribution of the i-th risk factor is:

RCi(π) = βi
∂R(π)

∂βi
(2.28)

This result has been widely used in finance since it gives a simple rule for attributing risk ( see for

example Meucci [2007] and Marchioro and Borrello [2013]).

2.3.2 Risk measure decomposition formulas

Sharpe [2002] affirms that a mere mathematical decomposition of portfolio risk can not necessarily

be seen as risk contribution. However, this mathematical decomposition of portfolio risk has a

financial meaning. Consider the following risk measures :

Value at Risk

V aRα(π) = −q+
α (π) = −inf {x ∈ ℜ|Fπ(x) > α} (2.29)

Expected Shortfall (or CVaR)

ESα(π) = −E [π |π ≤ −V aRα(π) ] (2.30)

Expectile based risk measure

ρτ (π) = −τE
[
πI{π≤eτ (π)}

]
+ (1− τ)E

[
πI{π>eτ (π)}

]

τP [π ≤ eτ (π)] + (1− τ)P [π > eτ (π)]
(2.31)

and the corresponding risk contributions based on the:

Value-at-risk (see Gourieoux et al. [2000])

RCi = −E [Fi |π = V aRα(π) ] βi (2.32)

Expected Shortfall (see Scaillet [2002])

RCi = −E [Fi |π ≤ −V aRα(π) ] βi (2.33)

Expectiles (see Tasche (2013))

RCi = −τE
[
FiI{π≤eτ (π)}

]
+ (1− τ)E

[
FiI{π>eτ (π)}

]

τP [π ≤ eτ (π)] + (1− τ)P [π > eτ (π)]
βi (2.34)

The formulas described are easy to implement. In fact, we will perform risk attribution considering

the three described risk measures in the following sections.
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2.3.3 Empirical results

Here, we consider the data composed by daily log returns from 11/02/2010 to 11/02/2013 on the

SP500 and the ten GICS. The ES at level α = 0.05 and the expectile for τ = 0.012 were computed

for the general index and for each sector. The portion of risk associated to each sector seems to

remain stable going from one measure to the other.

SPX INFT FINL CONS HLTH ENRS COND INDU MATR UTIL TELS Residual
ES_0.05 0.0191 0.0037 0.0037 0.0015 0.0015 0.0024 0.0022 0.0024 0.0008 0.0004 0.0003 2.72E-05

19.6% 19.3% 8.0% 8.1% 12.7% 11.7% 12.8% 4.3% 1.9% 1.5% 0.1%
e_0.012 0.0153 0.0032 0.0028 0.0013 0.0010 0.0021 0.0017 0.0019 0.0007 0.0003 0.0002 2.70E-05

20.8% 18.6% 8.8% 6.6% 13.9% 11.2% 12.7% 4.4% 1.7% 1.0% 0.2%

Table 2.6: Risk decomposition when the factors are the GICS



Chapter 3

User defined risk factors

In the previous chapters we discussed the problem of identifying the factors that can be useful in

explaining the overall return/risk. As we already saw, the considered factors can have a finan-

cial interpretation or can be the result of a mathematical procedure though interpretation is not

straightforward. In this chapter we face the problem of attributing risk to factors that are directly

chosen by the investor and different from those that fully determine the total portfolio/asset re-

turns.

Now we suppose that the explicative factors have already been identified. We want to quantify

the influence of a financial variable that doesn’t enter in the set of risk factors considered. For

example, consider a portfolio of fixed rate bonds whose risk factors are the changes in value of zero

rates and credit spreads and suppose that an abrupt movement in the Oil index price is observed.

Though not considered before, the exposure of the portfolio to the Oil index becomes relevant.

Since this variable is not uncorrelated with the initial risk factors, its inclusion in the risk decompo-

sition model requires some efforts in order to avoid the creation of possible collinear factors. This

problem has become particularly relevant especially since the recent financial crisis has suggested

that market variables are more related to each other than one could think. Meucci [2007] considers

the problem in the context where the new defined factors are uncorrelated from the residuals and

linear transformations of the original risk factors. We extend the analysis by attributing risk to

the ICs since the conditions posed in the approach are satisfied in the ICA analysis.

However, in order to be more realistic, we study the problem in the case of non linear transfor-

mations. Menchero and Poduri [2008] propose a model that is justified by the need of attributing

risk to the allocation decisions made by the portfolio manager. We consider the question from a

different point of view. After the allocation decision has been made, we define some new factors

uncorrelated with the user defined factors. They are the projections of the original factors on the

space orthogonal to that generated from the user defined factors. In this way we are able to de-

compose the return vector in three uncorrelated quantities: the user defined factors, the projected
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factors and the idiosyncratic error term. The model proposed is easy to implement and each risk

component has a financial interpretation.

3.1 Risk Contribution from user defined factors

In this section we discuss the problem of attributing risk to user defined risk factors following

the approach introduced in Meucci [2007]. We consider the return vector r1×t = βF that can be

attributed to n factors:

Fn×t =














F1

F2

...

Fi

...

Fn














=














F1,1 F1,2 ... F1,t

F2,1 F2,2 ... F2,t

... ... ... ...

Fi,1 Fi,2 ... Fi,t

... ... ... ...

Fn,1 Fn,2 ... Fn,t














(3.1)

with exposures given by the vector:

β1×n =
[

β1 β2 ... βi ... βn

]

(3.2)

The risk associated to the asset is the weighted sum of each factor marginal risk:

R(β) =
n∑

i=1

βi
∂R(β)

∂βi
. (3.3)

As we have seen in Chapter 2, if we choose to consider the expected shortfall as the risk measure:

R(β) = E [−βF |r ≤ −V aRα(βF ) ] (3.4)

the marginal contribution to risk associated to the i-th factor is:

∂R(β)
∂βi

= −E [Fi |r ≤ −V aRα(βF ) ] (3.5)

Consider now k new factors F̃ , with k ≤ n, obtained as a linear transformation of the original

factors through matrix Pk×n :

F̃k×t = Pk×nFn×t =









P1,1 P1,2 ... P1,n

P2,1 P2,2 ... P2,n

... ... ... ...

Pk,1 Pk,2 ... Pk,n






















F1,1 F1,2 ... F1,t

F2,1 F2,2 ... F2,t

... ... ... ...

Fi,1 Fi,2 ... Fi,t

... ... ... ...

Fn,1 Fn,2 ... Fn,t














(3.6)
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The new defined factors F̃ don’t span the entire market and an error term appears:

r = β̃F̃ + ǫ (3.7)

The new exposures β̃ need to be defined following any criteria. In a linear regression problem the

exposures are chosen such that the new variables (here F̃ ) are uncorrelated with the residuals:

Cov(F̃ , ǫ′) = 0 (3.8)

Substitute the return definition in terms of the original factors F :

Cov(F̃ , r′ − F̃ ′β̃′) = 0 (3.9)

and after performing some linear algebra passages we have:

Cov(PF, F ′β′)− Cov(PF, F ′P ′)β̃′ = 0 (3.10)

The exposures to the new factors are:

β̃′ = [PΣF P ′]−1
PΣF β′ (3.11)

where ΣF is the covariance matrix of the original set of risk factors. Given the rule that identifies

the exposures β̃, we can compute the risk contribution for the new factors. The part of r that

is not attributed to the new factors F̃k×t = Pk×nFn×t is attributed to the remaining theoretical

factors F̂ , i.e :

r = β̃F̃ + β̂F̂ (3.12)

F̂(n−k)×t = P̂(n−k)×nFn×t (3.13)

where P̂(n−k)×n is such that the matrix:

P̄n×n =

[

P

P̂

]

(3.14)

is invertible. The portfolio return vector can be written in the form :

r = βF = βP̄ −1P̄F =
[

β̃ β̂
]
[

F̃

F̂

]

(3.15)
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The total risk using the Euler rule is:

R = β̃
∂R

∂β̃
+ β̂

∂R

∂β̂
=
[

β̃1 ... β̃k

]









∂R
∂β̃1

...

...
∂R
∂β̃k









+
[

β̂1 ... β̂(n−k)

]









∂R
∂β̂1

...

...
∂R

∂β̂(n−k)









(3.16)

The complete vector of exposures is:
[

β̃ β̂
]

= βP̄ −1 (3.17)

from where we have:
[

β̃ β̂
]
[

P

P̂

]

= β (3.18)

In order to get the marginal exposures we need to express β as a linear transformation of β̃ making

clear the relation between them:

β = β̃P + β̂P̂ (3.19)

Recall the differentiation rule
∂XA

∂X
= A (3.20)

and the chain rule applied to matrices and get that :

∂R

∂β̃
=
[

∂R
∂β̃1,1

∂R
∂β̃1,2

... ∂R
∂β̃1,k

]

=
[

∂R
∂β1,1

∂R
∂β1,2

... ∂R
∂β1,k

]







∂β1,1

∂β̃1,1

∂β1,1

∂β̃1,2
...

∂β1,1

∂β̃1,k

... ... ... ...
∂β1,n

∂β̃1,1

∂β1,n

∂β̃1,2
...

∂β1,n

∂β̃1,k







(3.21)

The contribution to risk of each new factor becomes the product of the initial contribution to risk

with the transposed matrix used for the factor transformation:

∂R

∂β̃
=

∂R

∂β
P ′ (3.22)

This approach requires only the knowledge of the transformation matrix but it can be applied

in the cases when the new considered factors are uncorrelated and linear transformations of the

original risk factors. In his paper Meucci [2007] performs an empirical analysis using the PCs

as new uncorrelated factors. We go on and use this approach for decomposing risk when the

factors considered are the ICs. The independence of the ICs ensures their uncorrelation, though

the conditions required are satisfied.
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3.1.1 Risk contribution using PCA and ICA

Let us consider the same dataset as in Section 2.5, i.e we consider the S&P500 index as a portfolio

whose returns depend on the initial risk factors, the GICS sector indexes. First, we investigate the

risk attributed to the 7 PCs that explain at least 98% of the portfolio total variability. The risk

measures considered are the Expected Shortfall for α = 0.05 and the expectile for τ = 0.012. As

we expected, the first PC contribution to the portfolio risk is substantial for both the risk measures

considered.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Residual
ES_0.05 0.0191 0.0192 0.0004 -0.0003 -4.97E-05 -3.69E-06 -1.64E-05 -5.93E-05 -3.47E-05

100.6% 1.9% -1.6% -0.3% 0.0% -0.1% -0.3% -0.2%
e_0.012 0.0153 0.0151 0.0004 -0.0002 1.92E-05 -8.27E-06 -1.96E-05 0.0001 1.41E-05

98.5% 2.4% -1.6% 0.1% -0.1% -0.1% 0.7% 0.1%

Table 3.1: Risk decomposition using PCs as user defined factors. The analysis is performed
considering on the S&P500 and considering as initial risk factors the GICS sector indexes.

When the factors considered are the ICs, it is not possible to order them according to the

variance explained. Being in front of an open problem, we decide to consider the same number

of factors as suggested in the PCA analysis. That is, we consider the first 7 ICs as the sources

of randomness in the market while the remaining 3 are grouped together in the residual term.

Observe that, as we supposed, the contribution to risk of the ICs does not descrease systematically

as we go on with the components. The risk attribution to the residual term is higher than that of

the seventh IC. This suggests that further investigation should be performed on the residual term

in order to extract any other IC that influences directly the portfolio risk.

Since the distribution of the statistical factors can be quite different from those of the initial risk

IC1 IC2 IC3 IC4 IC5 IC6 IC7 Residual
ES_0.05 0.0191 0.0189 -0.0048 -0.0004 0.0005 0.0005 0.0036 0.0002 0.0006

98.9% -25.0% -2.4% 2.6% 2.9% 18.8% 1.2% 2.9%
e_0.012 0.0153 0.0152 -0.0039 -0.0004 0.0003 0.0005 0.0031 0.0001 0.0003

99.6% -25.7% -2.6% 2.3% 3.4% 20.1% 1.0% 1.9%

Table 3.2: Risk decomposition using ICs as user defined risk factors. The analysis is performed
considering on the SPX and considering as initial risk factors the GICS sector indexes.

factors, the sign of the contribution to the total risk can be negative. In the next section we will

attribute risk to user defined risk factors that are based on observed financial quantities and we

expect that the sign of the contribution to risk for each factor to be coherent with the sign of the

correlation coefficient of the portfolio and the factor considered.
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3.2 Custom Factor Attribution

An intuitive attribution of risk requires that the sources of risk to be aligned with the sources of

return. Improper use of return sources may lead to a number of problems like mismatch between

risk and return sources, non-intuitive marginal contributions to risk or wrongly naming aggressive

positions as risk reducing. Risk forecasting is an ex-ante analysis. Generally a portfolio manager

knows the factor exposures β but factor return distributions F must be predicted. During the

performance attribution process, that is an ex-post analysis, β and F are known at the end.

The discussion in this section is about risk forecasting, i.e an ex-ante analysis and based on the

methodology introduced in Menchero and Poduri [2008].

The starting point is the return attribution model. Suppose that each asset return depends on K

factors and on an idiosyncratic component:

r = βF + ǫorig (3.23)

where the idiosyncratic returns ǫorig are mutually uncorrelated and uncorrelated with factor re-

turns. In particular, we have that r is the 1 × T vector of asset returns, β is the 1 × K vector

containing the weights generated from the allocation decisions, F is the K × T matrix of factor

returns and ǫ is the 1× T vector of residuals. Factors F can be used for describing returns but if

they don’t match the manager investment process may be wrong for performance attribution. Let

F Y be the custom factors such that they reflect the investment process:

r = βY F Y + ǫY (3.24)

with the residuals ǫY being neither mutually uncorrelated nor uncorrelated with factors F Y . Most

of the time factors F Y are not able to explain all the risk but there is some interest in understanding

the part of return/risk attributed to a specific decision on investing in a particular asset. In terms

factors F and F Y the portfolio return becomes :

r = βY F Y + βF + ǫY,orig (3.25)

The possible linear dependence among βY and β makes difficult the estimation used by regression.

To avoid collinear β and βY create the exposures to residual factors β̃ such that:

βY ′

β̃ = 0 (3.26)

We want to decompose total risk in contributions coming from custom and residual factors.

The projection operator which preserves only the components perpendicular to βY is :

PβY ⊥ = I − βY (β′Y βY )−1β′Y (3.27)
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and is used to obtain the exposures to the residual factors :

β̃ = PβY ⊥β (3.28)

The projection operator which preserves only the components within the space of βY is :

PβY = βY (β′Y βY )−1β′Y (3.29)

Observe that :

PβY + PβY ⊥ = I (3.30)

and obtain :

r = βY F Y + β̃F̃ + ǫ̃ (3.31)

where F Y is the L×T vector of custom factors, F̃ is the K ×T matrix of residual factors, ǫ̃ is the

1 × T vector of idiosyncratic returns, βY is the 1 × L vector of custom factor exposures and β̃ is

the 1 ×K vector of residual factor exposures. Through OLS regression factor returns estimation

are :

Fols
Y = (β′Y βY )−1β′Y r (3.32)

F̃ols = (β̃
′

β̃)−1β̃′r (3.33)

If we think at r as the matrix of the returns of n assets1 and consider the weight n× 1 vector w,

the portfolio return π, defined as :

π = w′r (3.34)

becomes the sum of returns attributable to custom, residual factors and idiosyncratic factors :

π = πY + πX̃ + πǫ̃ (3.35)

where πY = w′PY r, πF̃ = w′PF̃ r and πǫ̃ = w′(IN − PY − PF̃ )r.

3.3 Custom and projected factors

3.3.1 Decomposing the residual

In this section we consider ex-post analysis, in the sense that once the factor returns are observed we

can perform risk attribution to the factors. The approach is similar to that discussed in Menchero

and Poduri [2008] but with some differences. As usual, we start with the hypothesis that the return

can linearly be decomposed using n factors that we call F X . The problem of attributing risk to a

new set of factors in F Y and contemporary to the old factors F X is faced at first by considering

a two step-regression. Here we describe the main steps. Given the new factors F Y we determine

1r is an n × t matrix
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the exposures to them by :

βY = (F Y ′

F Y )−1F Y ′

r (3.36)

Denoting the new residuals with δ we have the decomposition of the returns in terms of the new

factors and the residual term:

r = βY F Y + δ (3.37)

Since F Y is an arbitrary chosen factor, its contribution to the portfolio return/risk can be quite

limited. In order to extract more information from the δ term, we perform another regression

analysis this time using as regressors the original factors F X . The relation of δ with factors F X is:

δ = βP rojX F X + ǫ̂ (3.38)

where :

βP rojX = (F X′

F X)−1F X′

δ (3.39)

The new decomposition is:

r = βY F Y + βP rojX F X + ǫ̂ (3.40)

but remains the problem that F Y and F X could be linearly dependent.

We want to attribute risk to factors F Y but in the same time the contribution of the idiosyncratic

term must be extracted form the first regression step. That is, we aim at having a model of the

form :

r = βY F Y + βX̃F X̃ + ǫi (3.41)

where ei is the idiosyncratic residual uncorrelated with the custom factors F Y and F X̃contains

the factors uncorrelated both with the idiosyncratic residual and the custom factors.

We start by identifying what remains unexplained from the old factors F X when we consider only

the factors in F Y . This is done through a simple linear regression model :

F X = β̃Y F Y + ũ (3.42)

The residuals ũ, that by construction are uncorrelated with F Y , are defined as new factors F X̃ .

These are the projections of the old factors F X on the space orthogonal to F Y :

F X̃ = F X − β̃Y F Y = F X [I − F
′Y (F Y F

′Y )−1F Y ] (3.43)

In this way we are able to decompose the return vector r in three uncorrelated quantities:

r =
[

βY βX̃
]
[

F Y

F X̃

]

+ ǫi (3.44)
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ũ = FX − β1FY1
− β2FY2

FX

β1FY1
+ β2FY2

FY2

FY1

Figure 3.1: Geometric representation of the residuals ũ orthogonal to the space generated by the
custom factors F Y

The estimated exposures are the result of an OLS regression of two uncorrelated groups of variables:

[

βY βX̃
]

= r

[

F Y

F X̃

]′([
F Y

F X̃

]
[

F Y F X̃
]
)−1

(3.45)

The new introduced methodology is composed by three simple steps:

1) Given the custom factors F Y and using equation (3.43) we obtain the new residual factors F X̃ .

2) The new exposures are :
[

βY βX̃
]

=
[

rF Y ′

(F Y F Y ′

)−1 rF X̃′

(F X̃F X̃′

)−1
]

(3.46)

3) As a final step, we compute the idiosyncratic residuals : ǫi = r−(βY F Y +βX̃F X̃). The procedure

is simple and doesn’t require a lot of storage space. Once we have the return decomposition model,

for the discussed risk measures the attribution to each factor is straightforward. Any portfolio

manager can offer to his clients a set of custom factors and daily update the residual factors. In

this way the client receives the information required and in the same time gets an idea of where

does the residual risk come from. The new factors F X̃ have a simple interpretation since they

contain the returns that are not idiosyncratic and not explained from F Y .
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3.3.2 Application to the stock market

Here we apply the procedure described in the previous section to the equity market and in particular

we consider the returns of the VFIAX fund index which replicates the performance of the SPX

index. The evaluation date is 16/10/2012 and we use two years of historical data in computing

the risk measures. As a first step we compute the exposures to the factors used for explaining the

retuns, i.e daily log returns on GICS indexes.

Factor COND CONS ENRS FINL HLTH INDU INFT MATR TELS UTIL
β 0.110 0.130 0.122 0.141 0.098 0.112 0.187 0.040 0.024 0.040

(0.007) (0.009) (0.005) (0.004) (0.008) (0.008) (0.006) (0.006) (0.005) (0.006)

Table 3.3: Exposures of the VFIAX fund index to the 10 GICS sectors considered as factors
computed considering the period 16/10/2010 till 16/10/2012.

The Global index return vector ( quoted in the U.S market and downloaded from the Bloomberg

terminal) is considered as a custom factor. We compute the projections of the GICS returns on the

space orthogonal to that generated from the custom factor and applying the procedure introduced

before, we get the idiosyncratic return vector. In figure 3.3.2 we plot the fund returns and the

sequence of the idiosyncratic residuals. To confirm the fact,that to the residual term is attributed

a small part of the fund risk we show the results of the decomposition of the Expected Shortfall

in 3.3.2 for the three groups of factors : the custom, the projected and the idiosyncratic factors.
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0

0.02
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0.06

 

 

VFIAX returns
Idiosyncratic Residual

Figure 3.2: In this figure we show the time series of the VIAX returns and the idiosyncratic residual
vector when the Global index is considered as custom factor.
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V FIAX F Y F X̃ ǫi

ES0.05 0.0298 0.0249 0.0048 4.79E-05
83.57% 16.27% 0.16%

Table 3.4: Decomposition of the VFIAX ES0.05 considering as new factor F Y the return on the
Global index to which is most of the risk.

3.3.3 Application to fixed income securities

Here we give two examples of the methodology introduced in the previous section. In particular,

we consider the returns of two bonds both with time to maturity 5 years paying coupons annually.

The issuer of the first bond is assumed to have a z-spread similar to the Industrial Sector B

rated companies while the second bond z-spread is that of the Utility sector A rated companies.

Coherently, we assume a coupon rate of 6.875% for the first bond and a coupon rate of 2% for the

second bond. The evaluation date is 16/11/2012 while the maturity date is 16/11/2017.

Given function g such that a bond price is :

P = g(βX , F X) (3.47)

we can define βXi = −MDXi , i.e minus the modified duration of the i-th zero rate or i-th z-spread.

The log-returns can be approximated using the modified duration associated to each risk factor :

rt ≈ −
5∑

i=1

MDziy ∆ziy −MDzspread∆zspread (3.48)

The formula used to compute the modified duration is:

MDziy =
P (ziy + 0.0001)− P (ziy)

2P (ziy)0.0001
(3.49)

We consider the daily realizations for the risk factors and use them to generate bond return

scenarios. As custom factor we consider the returns on the Oil index whose prices are downloaded

from the Bloomberg terminal.

We consider the Expected Shortfall as a risk measure. We expect the bond in the Industrial sector

to have a higher exposure to the Oil index than the second bond. The two step-regression and the

new projection factor method are used to determine the residuals. In the second approach, being

the idiosyncratic residuals the part of return that can not be attributed neither to the custom

factor nor to the projected factors, the risk contribution of the residual term should be lower.



64 User defined risk factors

At the evaluation date the price of the first bond is P1 = 96.92 with z-spread = 645.39 basis

points. The notional amount is N = 100 and the coupon rate = 6.875%. The original risk factors are

the change in value of the zero rates corresponding to the payment maturities and of the z-spread.

The new factor with respect to which we want to perform the return and risk decomposition is

∆ z1y ∆ z2y ∆ z3y ∆ z4y ∆z5y ∆ zspread1

Factor Exposure 0.067 0.125 0.174 0.216 3.864 4.447

Table 3.5: Here we report the factor exposures for the first bond that in this case are minus the
modified duration for the considered zero rate or z-spread.

F Y that is the log return of the Oil Index quoted in the market. We apply the two procedures

discussed in the previous section, i.e the two-step regression and the orthogonal factor projection

procedure. The residuals obtained with both methods are showed in figure 3.3 .
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Figure 3.3: Comparison of the residual term in the two step regression and the idiosyncratic
residual obtained with the second method for the bond with coupon rate 6.875%.The idiosyncratic
errors are much more smaller than the residuals obtained in the two step regression method.

At the evaluation date the price of the second bond is P1 = 95.85 with z-spread = 208.5 basis

points. The notional amount is N = 100 and coupon rate = 2%. The original risk factors are the

change in value of the zero rates corresponding to the payment maturities and of the z-spread.

The new factor with respect to which we want to perform the return and risk decomposition is

F Y that is the log return of the Oil Index quoted in the market. We apply the two procedures

discussed in the previous section, i.e the two-step regression and the orthogonal factor projection

procedure. The residuals obtained with both methods are showed in fig 3.4.
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BondIndu F Y F X̃ ǫi

ES0.05(r) 0.0128 1.70E-04 0.0127 -1.03E-04
1.3% 99.5% -0.8%

Table 3.6: Decomposition of the ES0.05 of the bond in the Industrial sector considering as new
factor F Y the return on Oil index. The greater part of the risk is attributed to the projected
factors F X̃

.

∆ z1y ∆ z2y ∆ z3y ∆ z4y ∆z5y ∆ zspread2

Factor Exposure 0.021 0.040 0.059 0.076 4.675 4.871

Table 3.7: Here we report the factor exposures for the second bond that in this case are minus the
modified duration for the considered zero rate or z-spread.
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Figure 3.4: Comparison of the residual term in the two step regression and the idiosyncratic
residual obtained with the second method for the bond with coupon rate 2%. The risk attributed
to the custom factor here is smaller since the bond issuer operates in the Utility sector that is less
influenced from the Oil index returns than the bond whose issuer operates in the Industrial sector.

BondIndu F Y F X̃ ǫi

ES0.05(r) 8.27E-03 1.80E-06 0.0083 -3.39E-05
0.02% 100.39% −0.41%

Table 3.8: Decomposition of the second bond ES0.05 considering as new factor F Y the return on
Oil index. The greater part of the risk is attributed to the projected factors F X̃
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Chapter 4

Mixed Tempered Stable

distribution

4.1 Semi-heavy tailed distributions

The Stable distribution has gained a great popularity in modeling economic and financial time

series, starting from the seminal work of Mandelbrot [1963]. However, empirical evidence is not

coherent with the Stable model assumption since the return distribution shows tails heavier than

Normal but thinner than the Stable ones.

A drawback of the Stable distribution is that only fractional moments of order p ≤ α with

α ∈ (0, 2) exist and, consequently, the standard hypothesis for applying the Central Limit Theorem

do not hold. For this reason several researchers have considered the Tempered Stable distribution

as an valid alternative in modeling financial returns.

The Tempered Stable distribution can be obtained by multiplying the Lévy density of an α- Stable

with a decreasing tempering function (see Cont and Tankov [2003]). Performing this operation, the

tail behavior of the new distribution changes from heavy to semi-heavy characterized by exponential

instead of power decay. The existence of the conventional moments is ensured and the Tempered

Stable satisfies the conditions of the classical Central Limits Theorem. This is an advantage in

modeling asset returns with respect to the Stable distribution. Indeed the return distributions

tend to be closed to normal when we consider monthly or annual data (see Cont [2001] for survey

of the Stylized Facts).

In this chapter, we propose a new distribution, namely the Mixed Tempered Stable (MixedTS

henceforth). The idea is to build the new distribution in the similar way of the Normal Variance

Mean Mixture (NVMM) where the Normal assumption is substituted by the standardized Tem-

pered Stable. In this way, we are able to overcome some limits of the NVMM. In particular, the

asymmetry and the kurtosis do not depend only on the mixing random variable but also on the
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Tempered Stable.

Assuming that the mixing random variable follows a Gamma distribution, the proposed model

has the Variance Gamma (see Madan and Seneta [1990b] and Loregian et al. [2012]), the Tem-

pered Stable (see Cont and Tankov [2003]) and the Geo-Stable distributions (see Kozubowski et

al. [1997]) as special cases. The new distribution is applied to real data. In particular, we conduct

two experiments. In the first, we build a Garch(1,1) with MixedTS innovations and estimate it

using the financial time series. In the second, we consider a multifactor model to describe the log

returns of the Vanguard Fund Index which tries to replicate the performance of the S&P 500 index.

As factors, we consider the Global Industry Classification Standard (GICS) indexes developed by

MSCI-Barra provider. We capture the GICS dependence structure using the Independent Com-

ponent Analysis introduced by Comon [1994] and developed by Hyvarinen et al. [2001].

Once fixed the number of the independent components, we use the Mixed Tempered Stable to

model each of them. Since the observed fund returns are modeled as a linear sum of the indepen-

dent ones, the single factor return density could be non-gaussian and/or semi-heavy tailed. This

is confirmed by our results and the different values obtained for the MixedTS parameters suggest

that the component distributions can be of quite different nature. The Independent Component

Analysis has been already used in finance to model the interest rates term structure (see Bellini

and Salinelli [2003]). Recently Madan [2006b] used a non-Gaussian factor model and modelled

the components, coming fromman ICA analysis, using the Variance Gamma distribution. Our

multifactor model can be seen as a generalization of this latter since, as observed above, the Vari-

ance Gamma is a particular case of the Mixed Tempered Stable distribution. This portfolio return

decomposition can be used in risk management. Marginal contribution of each linear transformed

factor can be easily computed for given homogeneous risk measures as described in Chapter 3.

The outline of the chapter is as follows. In Section 2 we describe the main characteristics of the

Tempered Stable distribution and make some observations useful for the derivation of the new

distribution. In Section 3 we introduce the Mixed Tempered Stable distribution, its main features

and illustrate the fitting of the MixedTS distribution to the Independent Components. Section 5

gives some results for the computation of the risk measures considered in this thesis considering

the new distribution.

4.2 Tempered Stable distribution

In this section we review the main features of the Tempered Stable distribution. A random variable

X follows a Tempered Stable distribution if its Lévy measure is given by:

ν (dx) =

(

C+e−λ+x

x1+α+
1x>0 +

C−e−λ−|x|

|x|1+α−

1x<0

)

dx (4.1)
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with α+, α− ∈ (0, 2) and C+, C−, λ+, λ− ∈ (0, +∞).

The characteristic function is obtained by solving the integral [see Cont and Tankov, 2003]:

E
[
eiuX

]
= exp

[

iuγ +
∫

ℜ

(
eiux − 1− iux

)
ν (dx)

]

= exp {iuγ + C+Γ (−α+) [(λ+ − iu)α+ − λα+ ]

+ C−Γ (−α−) [(λ− + iu)α− − λα− ]}
(4.2)

where γ ∈ ℜ. As observed in Küchler and Tappe [2013], for α+, α− ∈ (0, 1), the Tempered Stable

is obtained as a difference of two independent one sided tempered stable distributions introduced

in Tweedie [1984]. The corresponding process shows finite variation with infinite activity.

The interest of researchers for the Tempered Stable distribution is confirmed by the fact that

the following cases have been investigated in literature:

• For C+ = C− = C and α+ = α− = α, the CGMY distribution is obtained [see Carr et al.,

2002].

• If α+ = α− and λ+ = λ− we get the truncated Lévy flight introduced in Koponen [1995].

• Computing the limit for α+ = α− → 0+ we get the Bilateral Gamma distribution [see

Küchler and Tappe, 2008a,b, 2009].

• Taking the limit for α+ = α− → 0+, C+ = C− and λ+ = λ− the Variance Gamma is

obtained [see Madan and Seneta, 1990a; Loregian et al., 2012, for estimation].

In this chapter, we consider the same restrictions as in [see Kim et al., 2008], i.e : α+ =

α− = α and γ = µ − Γ (1− α)
(
C+λα−1

+ − C−λα−1
−

)
. In this case the distribution of X ∼

CTS (α, λ+, λ−, C+, C−, µ) is called classical tempered stable and E (X) = µ. Its charac-

teristic function is given by:

E
[
eiuX

]
= Φ (u; α, λ+, λ−, C+, C−, µ)

= exp
[
iuµ− iuΓ (1− α)

(
C+λ+

α−1 − C−λ+
α−1

)

+ C+Γ (−α)
(
(λ+ − iu)α − λα

+

)
+ C−Γ (−α)

(
(λ− + iu)α − λα

−
)]

The cumulants of the r.v X can though be obtained taking the derivatives of the characteristic

function :

cn (X) :=
1
in

∂n

∂un
ln
(
E
[
eiuX

])
∣
∣
∣
∣
u=0

(4.3)

Given the distribution parameters, for n = 1 we have :

c1(X) = µ (4.4)
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and for n ≥ 2:

cn(X) = Γ(n− α)(C+λα−n
+ + (−1)nC−λα−n

− ) (4.5)

Therefore using (4.5) the following quantities are computed:







E (X) = c1 (X) = µ

V ar (X) = c2 (X) = Γ (2− α)
[
C+λα−n

+ + (−1)n
C−λα−n

−
]

γ1 = c3(X)

c
3/2
2 (X)

=
Γ(3−α)[C+λα−3

+ −C−λα−3
−

]
c

3/2
2 (X)

γ2 = 3 + c4(X)
c2

2(X)
= 3 +

Γ(4−α)[C+λα−4
+ −C−λα−4

−
]

c2
2(X)

(4.6)

From the skewness formula it can be noticed that the difference between C+λα−3
+ and C−λα−3

−
drives the asymmetry while for C+ = C−we must look only at the two tempering parameters λ+

and λ−.

Remark 9. Fixing λ+ = λ− = λ, µ = 0 and C+ = C− = C, the characteristic function of a
symmetric Tempered Stable distribution is given by:

E [exp (iuX)] = exp [iuµ + CΓ (1− α) [(λ− iu)α + (λ + iu)α − 2λα]] (4.7)

If r =
√

u2 + λ2 and θ = arctg
(

u
λ

)
, the characteristic function in (4.7) becomes:

E [exp (iuX)] = exp
[
CΓ (1− α)

[
rαe−iαθ + rαeiαθ − 2λα

]]

= exp [CΓ (1− α) [2rα cos(αθ)− 2λα]]

The last equality holds due to the Euler relation eiθ+e−iθ

2 = cos (αθ). Taking the limit for λ→ 0+

we obtain the symmetric α−stable distribution since:

lim
λ→0+

exp
[

CΓ (1− α)
[

2
(
u2 + λ2

)α
2 cos(αθ)− 2λα

]]

= exp
[

CΓ (1− α)
[

2 |u|α cos
(απ

2

)]]

The r.v X has zero mean and unit variance for µ = 0 and :

C = C+ = C− =
1

Γ(2− α)(λα−2
+ + λα−2

− )
(4.8)

The correponding r.v is standardized, i.e X ∼ stdCTS(α, λ+, λ−). It useful to observe that in the

standardized CTS distribution C is fully determined once given the values for α, λ+ and λ−. Its

characteristic exponent, defined as LstdCT S (u; α, λ+, λ−) = logE[eiuX ], is given by:

LstdCT S(u : α, λ+, λ−) =
(λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−

α(α− 1)(λα−2
+ + λα−2

− )
+

iu(λα−1
+ − λα−1

− )

(α− 1)(λα−2
+ + λα−2

− )
(4.9)

For α→ 2 the limiting distribution coincides with the normal distribution:

lim
α→2

LstdCT S(u : α, λ+, λ−) = −u2

2
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Remark 10. Condition (4.8) implies that the convergence to α− stable distribution is not possible
since the characteristic exponent would converge to zero.

The standardized Classical Tempered Stable distribution has the following property that makes
it appealing for mixtures.

Proposition 11. Let X̃ ∼ stdCTS
(

u : α, λ+

√
h, λ−

√
h
)

and h ∈ (0, +∞) then the random vari-

able Y
d=
√

hX̃ has the following characteristic exponent:

ln E
[
eiuY

]
= h

[

(λ+ − iu)α − λα
+ + (λ− + iu)α − λα

−
α (α− 1)

(
λα−2

+ + λα−2
−

) +
iu
(
λα−1

+ − λα−1
−

)

(
λα−2

+ + λα−2
−

)

]

(4.10)

Moreover if h ∈ N we have:

Y
d=

h∑

j=1

Xj (4.11)

where Xj are iid stdCTS (α, λ+, λ−)

Proof. To derive the (4.10) exponent we evaluate (4.9) in
√

hu and obtain:

ln E
[
eiuY

]
=





(

λ+

√
h− iu

√
h
)α

− h
α
2 λα

+ +
(

λ−
√

h + iu
√

h
)α

− h
α
2 λα

−

α (α− 1)
(
h

α
2 −1λα−2

+ + h
α
2 −1λα−2

−
) +

i
√

hu
(

h
α−1

2 λα−1
+ − h

α−1
2 λα−1

−

)

(
h

α
2 −1λα−2

+ + h
α
2 −1λα−2

−
)





(4.12)
factorizing h we get:

ln E
[
eiuY

]
=

[

h
α
2 (λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−

h
α
2 −1α (α− 1)

(
λα−2

+ + λα−2
−

) +
iuh

α
2

(
λα−1

+ − λα−1
−

)

h
α
2 −1

(
λα−2

+ + λα−2
−

)

]

(4.13)

simplifying we obtain the result (4.10).
To prove the (4.11) we use the iid assumption for Xj and the characteristic exponent of the random
variable

∑h
j=1 Xj becomes:

ln E



exp





h∑

j=1

Xj







 = h ln E [exp (X1)] (4.14)

where X1 ∼ stdCTS (α, λ+, λ−). Using (4.9) we obtain the characteristic exponent of
√

hX̃ that
implies the condition (4.11).
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4.3 Mixed Tempered Stable distribution

In this section, using the prop. 11, we build a new distribution that is shown to have some nice

mathematical and statistical chacteristics .

4.3.1 Definition and particular cases

Definition 12. We say that a continuous random variable Y follows a Mixed Tempered Stable
distribution if:

Y
d=
√

V X̃ (4.15)

where X̃ |V ∼ stdTS(α, λ+

√
V , λ−

√
V ). V is a Lévy distribution defined on positive axis and its

m.g.f always exists.

The logarithm of the m.g.f. is :

ΦV (u) = ln [E [exp (uV )]] (4.16)

We compute the characteristic exponent for the new distribution and apply the law of iterated

expectation:

E
[

eiu
√

V X̃
]

= E
{

E
[

eiu
√

V X̃
∣
∣
∣V
]}

= exp [ΦV (LstdCT S (u; α, λ+, λ−))]

(4.17)

The characteristic function identifies the distribution at time one of a time changed Lévy pro-
cess.From [see Sato, 1998; Carr and Wu, 2004] the distribution is infinitely divisible.

Proposition 13. The first four moments for the MixedTS are:







E
[√

V X̃
]

= 0

V ar
[√

V X̃
]

= E [V ]

γ1 = (2− α) (λα−3
+ −λα−3

−
)

(λα−2
+ +λα−2

−
)E−1/2 [V ]

γ2 =
[

3 + (3− α) (2− α) (λα−4
+ +λα−4

−
)

(λα−2
+ +λα−2

−
)

]
E[V 2]
E2[V ]

Figure 4.1 shows the behaviour of the skewness for different combinations of λ+ and λ− and

fixed α.

In figure 4.2 we have the behaviour of the kurtosis for different values of λ+, λ− and α.
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Figure 4.1: Consider the case when V ∼ Γ(1, 1) and fix some value for α. We plot the skewness
curve levels for different combinations of λ+ and λ− to have an idea of the possible skewness values.
In the particular case when they coincide, the skewness is zero. The effect of an higher α is the
reduction of the skewness level (kept fixed values of the other parameters). The distribution of the
MixedTS becomes symmetric for α = 2.
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Figure 4.2: Consider the case when V ∼ Γ(1, 1) and fix some value for α. We plot the kurtosis
values for different combinations of λ+ and λ− to have an idea of the possible kurtosis values. The
effect of an higher α is the reduction of the kurtosis level. If the fixed value for α is 1.9 the curve
level for kurtosis tend to be close to 3 and the limiting case of kurtosis=3 is obtained for α = 2.
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If we assume that V ∼ Γ(a, σ2) the characteristic exponent in (4.17) becomes:

E
[

exp
(

u
√

V X
)]

= exp
[

−a ln
(

1− σ2 (λ+ − iu)α − (λ+)α + (λ− + iu)α − (λ−)α

α (α− 1) ((λ+)α−2 + (λ−)α−2)

− σ2 iu(λα−1
+ − λα−1

− )

(α− 1)(λα−2
+ + λα−2

− )

)]

(4.18)

For σ = 1√
a

we compute the limit for a going to infinity and obtain the stdCTS as a special case

(see Figure 4.3(b)). The symmetric Variance Gamma distribution is obtained by choosing α = 2

as shown in Figure 4.3(a).

Proposition 14. Choosing

λ+ = λ− = λ

a = 1 (4.19)

σ = λ
α−2

2 γ
α
2

√
√
√
√

∣
∣
∣
∣
∣

α (α− 1)
cos
(
α π

2

)

∣
∣
∣
∣
∣

(4.20)

and computing the limit for λ→ 0+ we obtain the Geometric Stable distribution.

Indeed substituting the conditions (4.20) in the characteristic exponent of the new distribution

we get:

E
[

exp
(

iu
√

V X
)]

= exp
[

− ln
(

1− (λ+ − iu)α − (λ+)α + (λ− + iu)α − (λ−)α

2α (α− 1)

)]

Applying the limit and following the same arguments for the convergence of the Tempered Stable

to the symmetric distribution we get:

E
[

exp
(

iu
√

V X
)]

→
(

1− |u|α cos
(
α π

2

)

α (α− 1)

)−1

for α 6= 1. The convergence to the Geometric Stable distribution is shown in Figure 4.3(c).
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(a) The symmetric VG distribution is a particular case of the MixedTS and it is obtained for α = 2.
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= 8. In the figure we plot the MixedTS for

different α values. The distribution associated is asymmetric but the limiting case not.
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Figure 4.3: Special cases of the Mixed Tempered Stable distribution
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4.3.2 Investigation using real market data

This section is devoted to the empirical investigation of the MixedTS distribution in modeling asset

returns. We consider daily log returns of the Vanguard Fund Index which tries to replicate the

Standard and Poor 500 performance. It seems quite natural to consider as portfolio risk factors

the daily log-returns of the 10 GICS sector indexes since each of the S&P500 members belongs

to one of them. The data are daily log returns ranging from 14-June-2010 to 20-September-2012

obtained from the Bloomberg data provider. We denote by X(t) the vector of risk factors at time t

with the i-th component X
(t)
i = logS

(t)
i /S

(t−1)
i being the i-th GICS daily log-return. We can now

define a linear model for the portfolio returns:

rP = βX + ǫ. (4.21)

where β is the 1×n vector of factor exposures, X is the n× t matrix of factor returns and ǫ is the

1× t vector of residuals

Note that we drop the t index since we report in matrix notations the whole time-series for our

quantities. In the simplest case β and ǫ are obtained through an OLS regression. Here the number

of risk factors is n = 10 and the residuals are centered due to the particular choice of our portfolio.

The R2 is about 99 per cent meaning that the explained variance is quite high.In Table 4.1 we report

factor exposures and observe that they are coherent with the market capitalization associated to

each sector. We apply the FastICA Algorithm to the GICS returns and find the components that

Regression coefficients and Capitalization weights

COND CONS ENRS FINL HLTH INDU INFT MATR TELS UTIL

β 0.1105 0.1154 0.1238 0.1442 0.105 0.1145 0.1818 0.0378 0.0220 0.0415

Cap weight (14/06/2010) 0.1103 0.1165 0.1206 0.1441 0.1190 0.1221 0.1800 0.0115 0.0213 0.0546

Cap weight (20/09/2012) 0.1108 0.1089 0.1127 0.1507 0.1228 0.099 0.1921 0.03499 0.03175 0.0362

Table 4.1: We perform a regression analysis and obtain the factor exposures for our portfolio. The dataset is
composed by closing prices ranging from 14/06/2010 to 21/09/2012. The associated R2 is 99, 69 meaning that the
explanatory power of our factors is quite high. We report the capitalization weight at the begining and at the end
of the study period. The factor exposures are in line with the average market capitalization for each sector.

will be the ones that maximize the non-gaussianity condition present in the optimization algorithm.

If we think the ICs to be the columns of a matrix S, the risk factors time series can be seen as linear

transformations of the independent signal sources. In the mixing matrix A ∈ ℜn×n is contained

the information about the weight of the single original source in the market sector, i.e X = AS.

The portfolio return distribution can be obtained as a linear combination of n independent

distributions. The Central Limit theorem suggests that the distribution of the single IC can

be heavy tailed and/or asymmetric since what we observe is the realization vector of a sum of

distributions.

We use the Jarque-Bera test to check for non-normality in the univariate case. Simultaneously
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sample skewness and kurtosis are compared with the corresponding normal values. In Table 4.2

we show the sample skewness, kurtosis and p-values for the Jarque-Bera test of the 10 ICs.

Mean Std Skew Ex-Kurt Min Max
VFIAX 0.0005 0.0121 -0.4693 3.9683 -0.0688 0.0463

COND 0.0007 0.0129 -0.5674 3.0566 -0.0690 0.0472

CONS 0.0006 0.0078 -0.3871 3.2413 -0.0390 0.0332

ENRS 0.0006 0.0158 -0.3878 3.3909 -0.0864 0.0687

FINL 0.0002 0.0175 -0.3415 4.1493 -0.1052 0.0789

HLTH 0.0006 0.0101 -0.4205 3.9130 -0.0540 0.0456

INDU 0,0004 0.0142 -0.4390 2.7993 -0.0711 0.0495

INFT 0.0007 0.0130 -0.2948 2.0849 -0.0596 0.0445

MATR 0.0005 0.0159 -0.3575 2.5824 -0.0756 0.0593

TELS 0.0007 0.0097 -0.2897 2.9581 -0.0550 0.0426

UTIL 0.0004 0.0089 -0.1124 4.7863 -0.0563 0.0414

Table 4.2: The reported statistics for the fund VFIAX and for the GICS show that the corre-
sponding distributions are negatively skewed and with tails heavier than the one generated from a
normal distribution.

The portfolio return can be decomposed in the form:

rP = βF F + βN N + ǫ. (4.22)

with F ∈ ℜl×t being the matrix containing the l rows of the S matrix containing the components

we decided to be meaningful in the market and with N ∈ ℜ(n−l)×t the remaining considered as

noise. The new exposures βF and βN are obtained by multiplying of the initial exposures β with

the associated rows in the mixing matrix A.

The linear decomposition of returns in terms of uncorrelated factors eases the computation of the

characteristic function:

E[eiurp ] = E[eiu[
∑l

i=1
βF

i Fi+ǫ̂]] =
l∏

i=1

E[eiuβF
i Fi ]E[eiuǫ̂] (4.23)

The linear relation in the portfolio return model can be used to compute the marginal contribution

to return/risk of each of the chosen IC or in a portfolio optimization problem as in Madan [2006a].

We emphasize the fact that our main focus is not introducing a new method on how to use ICA

in finance but to stress how the flexibility of the Mixed Tempered Stable distribution can allow to

capture contemporaneously the different shapes of each IC.
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As measures of fit we consider the Mortara index A1 and the quadratic K. Pearson index A2 :

A1 =
1
n

S∑

j=1

|nj − n̂j |

A2 =

√
√
√
√

1
n

S∑

j=1

(nj − n̂j)2

n̂j

where S is the number of classes, nj are the observed frequencies while n̂j are the theoretical ones.

The n is the summation of the theoretical frequencies.

Table 4.3 reports the estimated mixing matrix obtained using the FastICA algorithm.

Mixing Matrix

I II III IV V VI VII VIII IX X

-0.0035 -0.0098 -0.0016 0.0024 -0.0018 0.0035 -0.0044 -0.0014 0.0028 0.0023

-0.0008 -0.0059 -0.0001 0.0030 -0.0007 0.0029 0.0002 -0.0006 0.0021 -0.0014

0.0030 -0.0126 -0.0006 0.0013 0.0000 0.0029 -0.0067 -0.0034 0.0034 -0.0015

-0.0022 -0.0149 -0.0020 0.0047 0.0023 0.0030 -0.0052 -0.0027 -0.0027 0.0005

-0.0021 -0.0083 -0.0017 0.0029 -0.0005 0.0002 -0.0026 0.0005 0.0027 -0.0020

-0.0036 -0.0103 -0.0016 0.0029 0.0018 0.0035 -0.0055 -0.0037 0.0031 -0.0009

-0.0028 -0.0089 -0.0030 0.0027 -0.0038 0.0019 -0.0046 -0.0050 0.0015 -0.0008

-0.0019 -0.0113 -0.0023 0.0005 -0.0003 0.0060 -0.0082 -0.0018 0.0013 -0.0028

-0.0029 -0.0077 0.0044 0.0013 -0.0010 0.0006 -0.0012 -0.0011 0.0007 -0.0017

-0.0012 -0.0080 -0.0009 -0.0008 0.0004 0.0014 0.0018 -0.0011 0.0018 -0.0011

Table 4.3: Estimated Mixing Matrix obtained applying the FastIca algorithm to the dataset composed by the
GICS. Only 8 out of the 10 Independent Components are chosen to use as factors. The remaining two are considered
as noise.

The empirical densities of the independent components are shown in figure 4.4. In table 4.5 we

give the MixedTS fitted parameters for each component and some measures of fit.

Statistics Ics

I II III IV V VI VII VIII IX X

Skewness -0,6496 -0,1200 -0,5531 0,2913 -0,0349 -0,2916 0,0876 -0,1975 -0,0881 -0,0021

Kurtosis 7,7030 7,5633 5,9752 5,9352 4,6628 4,1283 4,2410 3,7250 3,6370 3,4420

JB-Statistic 546,5730 479,4040 231,3230 205,6020 63,5910 37,0450 36,0660 15,6540 10,0440 4,4830

Table 4.4: We report the skewness, kurtosis and JB-test for each component.

The four ICs with the highest JB statistic are considered as factors while the remaining ones as

noise. The VFIAX return density was reconstructed using the MixedTS distribution for the factors
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Figure 4.4: The MixedTS was fitted to each IC empirical density. The fitted parameters are reported in 4.5.It is
easy to observe that the new distribution contemporaneously captures density shapes which are asymmetric and/or
fat tailed.

and assuming normality for the noise. For comparison we plot the normal distribution fitted to

the fund return density in figure 4.5.

Mixed TS Parameters and Fitting Measures

I II III IV V VI VII VIII IX X

σ 1.0146 0.6666 0.7919 0.7814 0.8071 0.5983 0.6371 0.2595 0.1907 0.6358

a 1.2686 2.3377 2.1517 2.0305 1.4409 3.2953 2.8364 14.7360 30.4567 2.5446

λ+ 1.0247 0.9146 1.8861 1.0256 1.0000 1.8062 2.2127 8.2816 9.9490 1.0890

λ
−

0.9965 1.3665 0.1000 1.0431 1.0000 0.1000 0.6080 0.1000 0.1000 1.2074

α 1.3724 1.7579 1.7150 1.5458 1.3000 1.6660 1.5057 1.7187 0.5000 1.8469

A2 0.0082 0.0064 0.0059 0.0072 0.0076 0.0036 0.0077 0.0062 0.0052 0.0063

X2 0.0463 0.0781 0.0471 0.0512 0.0439 0.0314 0.0482 0.0434 0.0314 0.0412

A1 0.0048 0.0040 0.0038 0.0052 0.0045 0.0026 0.0047 0.0043 0.0037 0.0038

Table 4.5: We fitted the MixedTS distribution to the ICs considered as factors in our model. In the table we show
the parameters and the fitting measures.
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Figure 4.5: The four ICs with the highest JB statistic are considered as factors while the remaining ones as
noise. The VFIAX return density was reconstructed using the MixedTS distribution for the factors and assuming
normality for the noise. For comparison we plot the normal distribution fitted to the fund return density.
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VFIAX COND CONS ENRS FINL HLTH INDU INFT MATR TELS UTIL

µ0 -0.0681 -0.0318 0.1399 -0.3049 -0.0830 -0.0338 -0.0655 0.0064 -0.0212 0.6256 0.0936

µ 0.0601 0.0227 -0.0454 0.1310 0.0204 0.0780 0.0232 -0.0311 0.0605 -0.1931 -0.0409

σ 1.0530 0.7276 0.5038 0.8314 0.7026 1.1109 0.7843 0.8554 1.0803 0.5487 0.5291

a 1.1670 2.0313 3.8303 1.9440 2.2742 0.9718 1.8799 1.5514 1.2326 3.2875 3.4667

λ+ 1.0280 1.0384 1.0855 1.6044 1.0921 1.0000 1.0635 1.0540 0.9942 0.4083 0.9824

λ
−

1.0311 1.0786 1.1733 0.4052 1.0961 1.0000 1.0801 1.0925 1.6001 1.9144 1.2202

α 1.4717 1.6663 1.9189 1.2897 1.7461 1.3000 1.6610 1.5913 1.3256 1.5053 1.8437

A_2_MixedTS 0.0060 0.0055 0.0035 0.0065 0.0047 0.0055 0.0048 0.0046 0.0057 0.0061 0.0093

X_2_MixedTS 0.0400 0.0333 0.0345 0.0413 0.0365 0.0317 0.0363 0.0370 0.0393 0.0363 0.0474

A_1_MixedTS 0.0038 0.0036 0.0021 0.0042 0.0034 0.0037 0.0037 0.0038 0.0039 0.0034 0.0061

A_2_VG 0.0062 0.0066 0.0066 0.0071 0.0057 0.0092 0.0058 0.0048 0.0063 0.0075 0.0069

X_2_VG 0.0449 0.0346 0.0384 0.0435 0.0377 0.0345 0.0383 0.037 0.0385 0.0415 0.0555

A_1_VG 0.0042 0.0040 0.0041 0.00500 0.0042 0.0055 0.0044 0.0039 0.0042 0.0042 0.0047

Table 4.6: We fitted the MixedTS ang VG distribution to the empirical density of each sector and obtained the corresponding parameters for both
models.
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4.4 Risk Measures using the Mixed Tempered Stable dis-

tribution

4.4.1 Saddlepoint Approximation

In some cases we need to approximate the tail of the return density. Edgeworth expansions are

frequently used to approximate distributions when the higher order moments are available. This

methodology seems to work well in the center of distribution but not in the tails. In particular, it

often produces negative values for densities in the tails. Saddlepoint expansion can be understood

as an refinement of Edgeworth expansion on the tails. Wong [2008] proposes the saddle point

technique to derive the small sample asymptotic distribution for the sample expected shortfall

under a standard normal null hypothesis. In Cizek et al. [2011] is given a general introduction about

how to approximate the density and the cumulative distribution function (cdf) of a continuous r.v.

X whose moment generating function (mgf) MX (t) exists in an open set around zero. Here, we

describe the main passages. We define the cumulant generating function (cgf)

KX (t) = ln [MX (t)] (4.24)

and the solution ŝ = s (x) of the equation x = K ′
X (ŝ) is the Saddle-Point at x for every x ∈

support(X). The first order Saddle-Point approximation for the density fX (x) is:

f̂X (x) =
1

√

2πK”
X (ŝ)

exp {KX (ŝ)− xŝ} (4.25)

while the approximation for the cdf FX (x) obtained by Lugannani and Rice [1980] is :

F̂X (x) = Φ (ω̂) + φ (ω̂)
{

1
ω̂
− 1

û

}

, x 6= E [X] (4.26)

for ω̂ = sgn(ŝ)
√

2ŝx− 2KX (ŝ), û = ŝ
√

K”
X (ŝ). Φ (z) and φ (z) are the cdf and the density

of a standard normal random variable. The condition K
′

X (0) = E [X] implies that ŝ = 0 is

the saddlepoint for E [X]. Since KX (0) = 0 and ω̂ = 0 we can not use directly the expression

for x = E [X] but linear interpolation around the mean ensures continuity of the F̂X (x). Second

order approximation formula requires higher order derivatives of the cumulant generating function.

Defining:

κ̂i =
Ki

X (ŝ)
{

K”
X (ŝ)

} i
2

(4.27)

and

ai =
κ̂4

8
− 5κ̂2

3

24
(4.28)
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the second order saddle-point approximation formulas for the density and the cdf are respectively:

f̃ (x) = f̂ (x) (1 + a1)

F̃ (x) = F̂ (x)− Φ (ω̂)
{

û−1

(
κ̂4

8
− 5

24
κ̂2

3

)

− û−3 − κ̂3

2û2
+ ω̂−3

}

, x 6= E [X]

(4.29)

The saddlepoint approximation can be used for computing some risk measures, in particular Martin

[2006] gives an approximation for the integral appearing in the Expected Shortfall (ES) formula:

ESα (X) =
1
α

∫ q

−∞
xfX(x)dx ≈ 1

α

[

µXFX (q)− fX (q)
q − µX

ŝ

]

(4.30)

Replacing the true density in (4.30) with the saddle-point first order approximation formula (4.25),

the ES can be evaluated using the following first-order approximation formula:

ÊSα (X) = Φ (ω̂q) µX +

√

1
2π

exp

{

−
ω̂2

q

2

}[
µX

ω̂q
− q

ûq

]

(4.31)

where ω̂q, ûq are evaluated in x = q.

Using the second order saddle-point approximation (4.29) the corresponding Expected Shortfall

approximated formula is:

ẼSα = Φ (ω̂q) µX +

√

1
2π

exp

{

−
ω̂2

q

2

}[
µX

ω̂q
− q

ûq
+
(

q

û3
q

− µz

û3
q

− µX

û3
q

+
qκ̂3

2û2
q

− qa1

ûq
− 1

ŝqûq

)]

(4.32)

These formulas can be easily handled in a parametric context and the obtained estimates are more

stable than the historical quantities.
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4.4.2 Numerical Analysis

In the previous sections we tested the ability of the new distribution to reproduce the features of the

returns observed in the market. Now, we focus on some methodologies that allow the computation

of risk measures in a parametric context in order to exploit the results obtained for the Mixed

tempered Stable distribution. As a first exercise, we fit the marginal MixedTS directly to each

GICS sector index empirical distribution and in table 4.7 we report the estimated parameters for

each index.

VFIAX COND CONS ENRS FINL HLTH INDU INFT MATR TELS UTIL
µ0 -0.0011 0.0035 -0.0023 0.0023 0.0041 -0.0078 0.0073 0.0030 0.0046 0.0116 0.0064
µ 0.0021 -0.0016 0.0031 0.0000 -0.0019 0.0092 -0.0039 -0.0014 -0.0030 -0.0149 -0.0040
a 3.6321 9.0000 1.5784 9.0000 4.2702 7.2298 2.2836 1.6623 4.2977 9.0000 4.3842
σ 0.0045 0.0028 0.0062 0.0033 0.0047 0.0029 0.0069 0.0085 0.0048 0.0026 0.0040

λ+ 1.6337 1.9358 5.0716 1.8305 1.4665 6.8170 0.6007 1.8138 1.7252 2.1552 0.8187
λ− 0.8290 2.0906 0.7012 2.0792 1.9103 0.7407 1.6886 4.4918 1.6860 1.9341 2.7837

α 0.7000 1.9900 0.7000 1.9900 1.4160 0.7000 0.7000 0.7000 1.6500 1.9900 0.7000

Table 4.7: Estimated Parameters for each Index in the dataset

We evaluate the cumulative distribution function using the formula that through the charac-

teristic function φX (t) allows us to evaluate the cdf FX (x):

FX (x) =
1
2
− 1

2π

∫ +∞

−∞

[
e−itxφX (t)

]

it
dt (4.33)

We consider the VaR computed using the Inverse Fourier Transform and compare it with that

obtained with historical simulation approach. The comparison for 5% and 10% levels of confidence

is reported in Table 4.8

V aRMixedT S
0.05 V aREmp

0.05 V aRMixedT S
0.1 V aREmp

0.1

VFIAX 0.0131 0.0130 0.0085 0.0092
COND 0.0118 0.0121 0.0086 0.0097
CONS 0.0118 0.0107 0.0072 0.0079
ENRS 0.0169 0.0166 0.0101 0.0112
FINL 0.0155 0.0154 0.0098 0.0105

HLTH 0.0128 0.0123 0.0082 0.0095
INDU 0.0118 0.0120 0.0108 0.0097
INFT 0.0169 0.0145 0.0119 0.0111

MATR 0.0154 0.0168 0.0110 0.0140
TELS 0.0142 0.0129 0.0104 0.0104
UTIL 0.0118 0.0115 0.0085 0.0089

Table 4.8: In this table we compare the empirical VaR with the theoretical one obtained for the
ten GICS and the VFIAX fund index.
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For each index, we compare the empirical ES estimates with the estimates using four different

methodologies.

1. Numerical integration of the expected value, i.e the distribution is obtained through the

Inverse Fourier Transform. We recall that, under the assumption of the existence for the

E (X) 1, the Expected Shortfall can be written as (see Cizek et al. [2011] ):

ESα(X) := E [X| X ≤ xα] = xα −
1
α

∫ xα

−∞
F (u) du (4.34)

2. The second approach is based on Monte Carlo simulation. The random number generator

is built using the Inverse Transform Sampling method (see Glasserman [2003]) based on the

following two steps:

a Generate a random number û from a uniform distribution U ([0, 1]).

b Find x such that the equation FX (x) = û.

3. First order Saddle Point Approximation formula.

4. Second order Saddle Point Approximation formula.

Tables 4.9 and 4.10 report the ES computed with the four methodologies and in the last column

we have the empirical ES obtained using the historical simulation. In this case the windows size

is the last year of observations. In table 4.9, we have computed the ES at 5% level of confidence,

while in table 4.10 the ES is at 10% level of confidence.

1For the Mixed Tempered Stable distribution, this condition is ensured by the existence of moment generating
function. The condition of existence of the first moment is less obvious when we obtain the Geo Stable as a special
case.
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ESMixedT S
0.05 ESF ourier

0.05 ESSP A1
0.05 ESSP A2

0.05 ESEmp
0.05

VFIAX 0.0173 0.0179 0.0205 0.0204 0.0170
COND 0.0157 0.0158 0.0155 0.0164 0.0170
CONS 0.0176 0.0177 0.0200 0.0196 0.0163
ENRS 0.0184 0.0185 0.0182 0.0192 0.0230
FINL 0.0192 0.0194 0.0194 0.0202 0.0206

HLTH 0.0177 0.0188 0.0209 0.0204 0.0171
INDU 0.0210 0.0210 0.0235 0.0233 0.0197
INFT 0.0209 0.0206 0.0231 0.0223 0.0191

MATR 0.0215 0.0211 0.0212 0.0218 0.0233
TELS 0.0186 0.0188 0.0189 0.0192 0.0216
UTIL 0.0161 0.0161 0.0165 0.0165 0.0170

Table 4.9: In this table we give the results of computing the ES for α = 0.05

ESMixedT S
0.1 ESF ourier

0.1 ESSP A1
0.1 ESSP A2

0.1 ESEmp
0.1

VFIAX 0.0142 0.0147 0.0161 0.0166 0.0140
COND 0.0128 0.0129 0.0123 0.0141 0.0139
CONS 0.0132 0.0139 0.0158 0.0159 0.0126
ENRS 0.0153 0.0152 0.0145 0.0165 0.0184
FINL 0.0154 0.0155 0.0151 0.0173 0.0166
HLTH 0.0133 0.0145 0.0154 0.0156 0.0139
INDU 0.0165 0.0175 0.0183 0.0195 0.0153
INFT 0.0168 0.0183 0.0199 0.0198 0.0160
MATR 0.0172 0.0170 0.0168 0.0184 0.0191
TELS 0.0152 0.0155 0.0153 0.0160 0.0163
UTIL 0.0129 0.0131 0.0132 0.0140 0.0133

Table 4.10: In this table we give the results of computing the ES for α = 0.10



4.4 Risk Measures using the Mixed Tempered Stable distribution 87

The last comparison based on marginal distribution regards the expectile based risk measure.

As observed in Chapter 2 a plausible value of the weight parameter for the considered dataset is

0.012. The parametric expectile is obtained by using the second approach described for the ES

computation, i.e by using Monte Carlo technique.

The results are reported in Table 4.11

eMixedT S
0.012 eEmp

0.012

VFIAX 0.0135 0.0136
COND 0.0127 0.0134
CONS 0.0130 0.0132
ENRS 0.0141 0.0184
FINL 0.0156 0.0162

HLTH 0.0152 0.0135
INDU 0.0156 0.0157
INFT 0.0183 0.0152

MATR 0.0173 0.0188
TELS 0.0156 0.0175
UTIL 0.0137 0.0139

Table 4.11: We fix τ = 0.012 coherently with the value obtained in chapter 2 for the VFIAX fund
and then compare the parametric and non parametric results.
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Chapter 5

Conclusions and Future Research

In this thesis we investigate some methodologies applied to risk attribution analysis. Based on the

existing literature, we emphasize the problems encountered in their implementation and proposed

some modifications that were supported by the empirical analysis.

In the first three chapters we focus on non parametric approaches and study several methods

for identifying the factors that most influence asset or portfolio returns. In Chapter 2 from the

empirical analyisis performed, it seems that τ can be defined as an increasing function of the

kurtosis but further investigation is needed in order to model the weight parameter. In Chapter 3,

starting from the seminal work of Menchero and Poduri [2008], we obtain a model through which

we are able to decompose the return vector in three uncorrelated quantities: the user defined

factors, the projected factors and the idiosyncratic error term. It is easy to implement and each

risk component has a financial interpretation. In the future, we will apply this methodology to

more complex portfolios and for a higher number of custom risk factors considered.

In the last chapter, we propose a new distribution, namely Mixed Tempered Stable. The flexibility

of this distribution, supported from our empirical analysis, derives from its capability of having as

special cases distributions that are able to fit the tails.

The study of risk attribution using the MixedTS will be object of future research. The definitions of

modified VaR Zangari [1996] and modified ES Boudt et al. [2009] that use asymptotic expansions

can be a starting point. Another interesting argument is the study of efficient algorithms that

generate sparse linear models as the one recently introduced in Zhang et al. [2009]. In a parametric

context, with a large number of factors considered, they facilitate numerical implementation of

parameters estimation.
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